WO2018142825A1 - Friction reducing device for ship - Google Patents

Friction reducing device for ship Download PDF

Info

Publication number
WO2018142825A1
WO2018142825A1 PCT/JP2017/047059 JP2017047059W WO2018142825A1 WO 2018142825 A1 WO2018142825 A1 WO 2018142825A1 JP 2017047059 W JP2017047059 W JP 2017047059W WO 2018142825 A1 WO2018142825 A1 WO 2018142825A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
gas chamber
ship
container
air supply
Prior art date
Application number
PCT/JP2017/047059
Other languages
French (fr)
Japanese (ja)
Inventor
真一 ▲高▼野
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020187036691A priority Critical patent/KR102258219B1/en
Publication of WO2018142825A1 publication Critical patent/WO2018142825A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/34Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
    • B63B1/38Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/005Nozzles or other outlets specially adapted for discharging one or more gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/03Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material
    • B05B9/04Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the present invention relates to a ship friction reducing device that reduces frictional resistance acting on the ship hull.
  • a technique for reducing the frictional resistance acting on the hull of a ship a technique is known in which air (bubbles) is blown out into the water and the surface of the hull is covered with bubbles.
  • a gas supply pipe is connected to a gas chamber (air chamber), and a plurality of air jets are provided on the outer plate of the ship bottom in the gas chamber.
  • a baffle plate is disposed between the air outlet and each air outlet. Therefore, the air supplied from the gas supply pipe to the gas chamber collides with the baffle plate and is diffused, and is ejected from each air ejection port into the water in a substantially uniform state.
  • Patent Documents 1-3 there is one described in Patent Documents 1-3 below.
  • the blower provided in the ship is driven, the air sucked from the outside is supplied to the gas chamber from the gas supply pipe, and the air diffused by colliding with the baffle plate is supplied to each air. It is ejected from the spout into the water in an almost uniform state.
  • a plurality of gas chambers are provided at predetermined positions on the ship bottom, and it is necessary to dispose a plurality of gas supply pipes from the blower to each gas chamber.
  • the space for disposing the gas supply pipe is limited.
  • This invention solves the subject mentioned above, and aims at providing the friction reduction apparatus of the ship which aims at the simplification of a structure and the improvement of a frictional resistance reduction effect.
  • a ship friction reducing device of the present invention for achieving the above object is provided in a gas chamber provided inside a hull, a partition wall partitioning the gas chamber from the outside of the hull, and the partition wall.
  • the compressed air generated by the compressor is supplied to the gas chamber through the air supply passage, and at this time, the compressed air supplied to the gas chamber is uniformly dispersed in the gas chamber by colliding with the container. It enters the container through the through hole, and blows out into the water outside the hull through each air outlet.
  • the flow area of the compressed air supplied from the air supply passage to the gas chamber and the flow rate per unit time are set so that the passage area to the gas chamber in the air supply passage is smaller than the opening area of the air outlet. Therefore, the frictional resistance reduction effect can be improved by uniformizing the amount of air blown from each air outlet and covering the surface of the hull with air bubbles. Further, by reducing the diameter of the air supply passage, the structure can be simplified and the arrangement space can be reduced.
  • the plurality of air outlets are provided along the width direction of the hull, and a plurality of the through holes are provided corresponding to one air outlet,
  • the passage area of the air supply passage is set to an area smaller than the opening area of one air outlet.
  • the flow area of the compressed air supplied from the air supply passage to the gas chamber and the flow rate per unit time are specified by setting the passage area of the air supply passage to be smaller than the opening area of one air outlet. As a result, the amount of air ejected from each air outlet can be made uniform.
  • one of the through holes has a passage area set to an area smaller than an opening area of one of the air outlets.
  • the amount of air ejected from the air can be made uniform.
  • the container includes a collision plate disposed at a position facing the connection portion of the air supply passage to the gas chamber, and a partition connecting the collision plate and the partition wall. And the through hole is formed in the partition plate.
  • the container is constituted by the collision plate and the partition plate, and the through hole is formed in the partition plate, so that the compressed air supplied from the air supply passage to the gas chamber collides with the collision plate, so that the air is Can then be uniformly dispersed, and then enter the container uniformly through each through hole, and the amount of air blown out into the water outside the hull through each air outlet can be made uniform. it can.
  • the gas chamber includes a ceiling portion that faces the partition wall, and a sidewall portion that connects the partition wall and the ceiling portion, and the sidewall portion and the partition plate. A predetermined gap is provided between the two.
  • the air that is supplied to the gas chamber and collides with the collision plate enters the container through the through hole through the predetermined gap, and the air is uniformly dispersed in the container, and from each air outlet to the outside of the hull. Can be ejected uniformly into the water.
  • the ship friction reducing device of the present invention is characterized in that the through hole is provided close to the partition wall side.
  • the through hole close to the partition wall side the water accumulated between the gas chamber and the container is guided from the through hole into the container during the maintenance of the hull, and easily drained to the outside from the air outlet. can do.
  • the plurality of air outlets are provided along a width direction of the hull, and the container covers the plurality of air outlets.
  • the structure of the container can be simplified.
  • the container is composed of one collision plate and two partition plates, each end in the longitudinal direction is connected to a side wall of the gas chamber, and the partition plate is A predetermined gap is provided between the side wall portion that is not connected and the two partition plates.
  • the container is composed of a collision plate and a partition plate, and by connecting each end in the longitudinal direction to the side wall of the gas chamber, a sealed space can be easily secured in the container with a simple configuration,
  • the structure can be simplified and the cost can be reduced.
  • the container is provided with a partition plate that divides the container for each air outlet.
  • the partition plate by partitioning the inside of the container for each air outlet by the partition plate, the amount of air blown out from each air outlet can be made uniform.
  • the plurality of air outlets are provided along the width direction of the hull, and the plurality of containers are provided so as to cover the plurality of air outlets, A plurality of through holes are provided in the plurality of containers.
  • the container covers each air outlet, the amount of air blown out from each air outlet can be made uniform.
  • a plurality of the through holes are provided in the container, and a detachable plug is attached to at least one of the through holes.
  • the plug can be removed and another through hole can be used. By doing so, the apparatus can be used for a long time.
  • the air supply passage is branched from a midway portion to be provided with a main passage and a sub-passage, and the main passage and the sub-passage are respectively connected to the gas chamber, An on-off valve is provided.
  • the main passage and the sub-passage are provided as the air supply passage, the main passage is opened by the on-off valve and the sub-passage is closed, and the main passage in use is blocked by marine organisms, the on-off valve By opening the sub passage and making it usable, the apparatus can be used for a long period of time.
  • the compressor is capable of supplying compressed air of 500 kPa or more to the gas chamber.
  • the structure can be simplified and the installation space can be reduced.
  • the structure can be simplified and the frictional resistance reducing effect can be improved.
  • FIG. 1 is a schematic side view of a ship equipped with the ship friction reducing device of the first embodiment.
  • FIG. 2 is a schematic bottom view of a ship equipped with a ship friction reduction device.
  • FIG. 3 is a schematic diagram showing an air supply system.
  • FIG. 4 is a perspective view schematically showing the gas chamber.
  • FIG. 5 is a longitudinal sectional view showing the gas chamber. 6 is a cross-sectional view taken along the line VI-VI in FIG. 7 is a sectional view taken along line VII-VII in FIG.
  • FIG. 8 is an exploded view showing the gas chamber.
  • FIG. 9 is a longitudinal sectional view showing a gas chamber in the ship friction reducing device of the second embodiment.
  • FIG. 10 is a perspective view schematically showing a gas chamber in the ship friction reducing device of the third embodiment.
  • FIG. 11 is a longitudinal sectional view showing the gas chamber.
  • FIG. 12 is a longitudinal sectional view showing a gas chamber in the ship friction reducing device of the fourth embodiment.
  • FIG. 13 is a longitudinal sectional view showing the operation of the gas chamber.
  • FIG. 14 is a longitudinal sectional view showing a gas chamber in the ship friction reducing device of the fifth embodiment.
  • FIG. 15 is a perspective view schematically showing a gas chamber in the ship friction reducing apparatus of the sixth embodiment.
  • FIG. 18 is an exploded view showing a gas chamber.
  • FIG. 19 is a longitudinal sectional view showing a gas chamber in the ship friction reducing device of the seventh embodiment.
  • FIG. 20 is a cross-sectional view of a ship equipped with the ship friction reducing device of the eighth embodiment.
  • FIG. 21 is a longitudinal sectional view showing a gas chamber.
  • FIG. 1 is a schematic side view of a ship equipped with the ship friction reducing device of the first embodiment
  • FIG. 2 is a schematic bottom view of the ship equipped with the ship friction reducing device
  • FIG. 3 represents an air supply system.
  • the ship equipped with the ship friction reducing device of the first embodiment is, for example, a passenger ship (car ferry), and the hull 10 includes a bow 11, a stern 12, and a ship bottom. 13, port (ship side) 14 and starboard (ship side) 15.
  • the ship length direction (front-rear direction) of the hull 10 is represented as the X direction, the ship width direction (width direction) as the Y direction, and the ship height direction (up and down direction) as the Z direction.
  • CL represents the center line of the hull 10
  • WL represents the full load water line of the hull 10.
  • the hull 10 has an engine room 17 defined by a partition wall 16 on the stern 12 side, and a main engine (for example, a diesel engine) 18 is disposed in the engine room 17.
  • the main engine 18 is drivingly connected to a propeller 19 that transmits propulsive force.
  • the hull 10 is provided with a rudder 20 for controlling the direction of the hull 10 at the stern 12.
  • the hull 10 includes an air supply equipment room 21, a hold 22, a vehicle deck 23, a lamp 24, a deck exposure part 25, a partition wall 26, a ship bottom skin 27, and ship side skins 28 and 29.
  • the air supply device room 21 is arranged on the bow 11 side from the hold 22.
  • the air supply equipment room 21 and the hold 22 are partitioned by a partition wall 26.
  • the vehicle deck 23 forms the floor surfaces of the air supply equipment room 21 and the hold 22.
  • the ramp 24 is used for an automobile (not shown) to get on and off the hold 22.
  • the deck exposure unit 25 is, for example, the upper deck of the bow 11 and is disposed above the air supply device room 21.
  • the friction reduction device 31 includes an air supply device 32, an air cooler 33, a ventilation cylinder 34, an air suction port 35, an air blowing portion 36, an air blowing portion 37, a seawater intake portion 38, and a pump 39. is doing.
  • the air blowing portions 36 are disposed on the port 14 (ship side skin 28) and the starboard 15 (ship side skin 29).
  • the air blowing part 37 and the seawater intake part 38 are arranged on the ship bottom 13 (the ship bottom outer plate 27) on the bow 11 side.
  • the air supply device 32 and the air cooler 33 are installed in the air supply device chamber 21.
  • the ventilation tube 34 and the air suction port 35 are disposed in the deck exposure unit 25.
  • the ventilation tube 34 communicates with the air supply device chamber 21 and is used to ventilate the air supply device chamber 21.
  • the air suction port 35 is connected to the air supply device 32.
  • the air supply device 32 is connected to the air blowing portions 36 and 37 via the air cooler 33.
  • the seawater intake unit 38 is connected to the air cooler 33 via the pump 39.
  • the seawater intake part 38 and the air blowing part 37 are, for example, arranged on the center line CL of the hull 10 and are arranged on the flat part of the ship bottom skin 27 on the ship bottom 13.
  • the seawater intake unit 38 is disposed closer to the bow 11 than the air blowing unit 37.
  • the air blowing portions 36 are disposed on the ship side skins 28 and 29 of the port 14 and starboard 15 on the bow 11 side. Each air blowing portion 36 is arranged symmetrically with respect to the center line CL, and is arranged obliquely so that the bow 11 side approaches.
  • the seawater intake part 38 is disposed between the air blowing parts 36 provided in both the cages 14 and 15.
  • the air supply device 32 pressurizes the air sucked from the air suction port 35 and supplies the pressurized compressed air from the air cooler 33 to the air blowing portions 36 and 37.
  • the pump 39 supplies seawater taken from the seawater intake unit 38 to the air cooler 33.
  • the air cooler 33 cools the compressed air using seawater.
  • the air cooler 33 is a heat exchanger that exchanges heat between compressed air and seawater, for example.
  • the air cooler 33 may be configured to cool the compressed air by spraying seawater into the compressed air, or may be configured to cool the compressed air by blowing the compressed air into the seawater.
  • the air blowing portions 36 and 37 blow out the compressed air supplied from the air supply device 32 into the water.
  • the air blowing portion 37 disposed on the ship bottom 13 on the bow 11 side includes a plurality of gas chambers 41 provided inside the hull 10, and the inside of each gas chamber 41 and the outside of the hull 10. And a plurality of air outlets 42 provided on the ship bottom outer plate 27.
  • the gas chamber 41 is a sealed space, and an air supply device 32 is connected via an air cooler 33.
  • the plurality of air outlets 42 are passages that penetrate from the gas chamber 41 through the ship bottom outer plate 27 to the outside of the hull 10, that is, in water.
  • the plurality of air outlets 42 are arranged along the ship length direction (X direction) of the ship bottom 13 and at predetermined intervals in the ship width direction (Y direction). Therefore, the compressed air blown out into the water from the plurality of air outlets 42 becomes bubbles, and flows rearward through the flat portion of the ship bottom 13 and diffuses in the width direction.
  • the air supply device 32 includes a gas chamber 41, an air outlet 42, a compressor 43, a main air supply pipe 44, a main chamber 45, and a plurality of sub air supply pipes (air supply passages) 46. ing.
  • the compressor 43 is connected to an air suction port 35 via an air intake pipe 47.
  • the compressor 43 is connected to a main chamber 45 via a main air supply pipe 44.
  • the compressor 43 can pressurize the taken-in air to 500 kPa or more (desirably, 700 kPa to 1300 kPa).
  • the main air supply pipe 44 is provided with an on-off valve 48, a flow meter 49, and a pressure gauge 50.
  • the main chamber 45 can store a predetermined amount of compressed air supplied under pressure by the compressor 43 at a predetermined pressure.
  • the main chamber 45 is connected to the downstream end of the main air supply pipe 44 and to the other upstream end of each of the plurality of sub air supply pipes 46.
  • Each sub air supply pipe 46 has a downstream end connected to the gas chamber 41.
  • the auxiliary air supply pipe 46 is provided with a flow rate adjustment valve 51 and a shutoff valve 52.
  • the compressor 43 pressurizes the taken-in air to a predetermined pressure and sends it to the main chamber 45 through the main air supply pipe 44.
  • the main chamber 45 is compressed air. Is stored at a predetermined pressure.
  • the flow regulating valve 51 and the shutoff valve 52 are opened, the compressed air in the main chamber 45 is supplied to each gas chamber 41 via each sub air supply pipe 46, and the compressed air supplied to each gas chamber 41. Are blown out into the water from a plurality of air outlets 42 and flow into the rear of the hull 10 along the flat portion of the bottom 13 as bubbles.
  • FIG. 4 is a perspective view schematically showing the gas chamber
  • FIG. 5 is a longitudinal sectional view showing the gas chamber
  • FIG. 6 is a sectional view taken along the line VI-VI in FIG. 5
  • FIG. 7 is a sectional view taken along the line VII-VII in FIG. Sectional drawing
  • FIG. 8 are exploded views showing a gas chamber.
  • the gas chamber 41 includes a ceiling portion 61, a pair of first side wall portions 62, and a pair of second side wall portions 63, and together with the ship bottom skin 27 (the ship bottom 13).
  • An air supply space S1 having a box-shaped sealed shape is formed.
  • the ceiling portion 61 is arranged in parallel to the ship bottom outer plate 27 (the ship bottom 13), and is a rectangular plate shape that is long along the series direction of a plurality (five in the present embodiment) of the air outlets 42. I am doing.
  • the pair of first side wall parts 62 are arranged so as to be parallel to each other and orthogonal to the ship bottom outer plate 27, and have a long rectangular flat plate shape along the series direction of the air outlets 42.
  • the pair of second side wall parts 63 are arranged so as to be parallel to each other and perpendicular to the ship bottom outer plate 27 and have a long rectangular flat plate shape along the direction perpendicular to the series direction of the air outlets 42. ing. And a pair of 1st side wall part 62 and a pair of 2nd side wall part 63 comprise the frame which makes
  • the gas chamber 41 is connected to the ceiling 61 at the tip of the auxiliary air supply pipe 46 of the air supply device 32.
  • the sub air supply pipe 46 is set in the ceiling portion 61 at a position where the connecting portion 46 a faces the air outlet 42 at the center of the five air outlets 42.
  • the gas chamber 41 is provided with a container 64 that covers each air outlet 42 and divides the air chamber 41 from the air supply space S1.
  • the container 64 includes a collision plate 65 and a pair of partition plates 66, and has an air circulation space S ⁇ b> 2 that forms a box-shaped hermetic shape together with the ship's bottom outer plate 27 (the ship's bottom 13) and each second side wall 63 of the gas chamber 41. Forming.
  • the collision plate 65 is disposed between the ship bottom outer plate 27 (the ship bottom 13) and the ceiling portion 61 and in parallel with and opposed to both, and is a rectangular flat plate that is long along the series direction of the air outlets 42. It has a shape.
  • the pair of partition plates 66 are arranged so as to be parallel to each other, orthogonal to the ship bottom outer plate 27 and parallel to the first side wall 62, and are long along the series direction of the air outlets 42. It has a rectangular flat plate shape.
  • the collision plate 65 and each partition plate 66 constitute a C-shaped cover, and the longitudinal ends of the collision plate 65 and each partition plate 66 are connected to the respective second side wall portions 63, and the lower ends of the partition plates 66.
  • the portion is connected to the ship bottom skin 27.
  • the collision plate 65 is arranged with a predetermined interval from the ceiling portion 61 of the gas chamber 41, and each partition plate 66 is arranged with a predetermined interval from the first side wall portion 62 of the gas chamber 41.
  • the connection portion 46 a of the auxiliary air supply pipe 46 is disposed so as to face the collision plate 65.
  • the container 64 is provided with a through hole 67 at a predetermined position where the connecting portion 46a of the sub air supply pipe 46 does not face.
  • a plurality of the through holes 67 are formed in the pair of partition plates 66.
  • Each through hole 67 is provided in each partition plate 66 in the same number as each air outlet 42, and is provided on both sides of each air outlet 42. Therefore, the auxiliary air supply pipe 46 is arranged along the ship height direction Z, each through hole 67 is formed along the ship length direction X, and each air outlet 42 is arranged along the ship height direction Z.
  • the Rukoto is provided along the ship height direction Z.
  • the passage area of the connection part 46a where the sub air supply piping 46 communicates with the gas chamber 41 (air supply space S1) is set to an area smaller than the opening area of each air outlet 42.
  • a plurality of air outlets 42 are provided along the ship width direction Y, and a plurality of through holes 67 correspond to one air outlet 42 (two in this embodiment).
  • the passage area of the connecting portion 46 a in the auxiliary air supply pipe 46 is set to an area smaller than the opening area of one air outlet 42.
  • one through hole 67 has a passage area set to an area smaller than the opening area of one air outlet 42.
  • each air blowing port 42 is a perfect circle shape, is all the same shape, and is set to the same opening area.
  • the shape of the air outlet 42 is not limited to a perfect circle shape, and may be an elliptical shape, an oval shape, an oval shape, a rounded square shape, a square shape, a rhombus shape, a triangular shape, or the like.
  • Each through-hole 67 is also a perfect circle, and all have the same shape and the same opening area.
  • the shape of the through hole 67 is not limited to a perfect circle, and may be other shapes.
  • the air outlets 42 and the through holes 67 have the same shape, the same opening area, and the same passage area. However, for example, the shape is changed, and the air blowing positions far from the connecting portion 46a of the sub air supply pipe 46 are used.
  • the opening area of the opening 42 and the passage area of each through hole 67 may be increased.
  • the passage area of the connection portion 46 a in the sub air supply pipe 46 is set to an area smaller than the opening area of the largest air outlet 42. Further, the passage area of the largest through hole 67 is set to be smaller than the opening area of the largest air outlet 42.
  • the auxiliary air supply pipe 46 has a connection portion 46 a connected to the ceiling portion 61 of the gas chamber 41, and the passage area of the connection portion 46 a is set to an area smaller than the opening area of the air outlet 42.
  • the auxiliary air supply pipe 46 has substantially the same diameter at any position in the longitudinal direction, and the connection portion 46a is directly connected to the ceiling portion 61, but is not limited to this configuration.
  • a configuration in which a large-diameter portion is provided between the connection portion 46a of the auxiliary air supply pipe 46 and the gas chamber 41 may be used. Even in this configuration, the passage area of the connection portion 46a connected to the large-diameter portion is small. An area smaller than the opening area of the air outlet 42 is set.
  • the gas chamber 41 and the container 64 are configured to be disassembled in consideration of maintainability.
  • the ceiling portion 61 has a plurality of attachment holes 71 formed in the outer peripheral portion, and a plurality of attachment holes 73 formed in the flange portions 72 of the side wall portions 62 and 63. Then, in a state where the ceiling portion 61 is placed on the flange portion 72 of each side wall portion 62, 63, the bolt 74 passes through each mounting hole 71, 73 and is screwed into the nut 75, so that the ceiling portion 61 is Fastened to the side wall portions 62 and 63.
  • the collision plate 65 has a plurality of attachment holes 76 formed in the outer peripheral portion, and a plurality of attachment holes 78 formed in the flange portion 77 of each partition plate 66. Then, in a state where the collision plate 65 is placed on the flange portion 77 of each partition plate 66, the bolt 79 passes through each mounting hole 76, 78 and is screwed into the nut 80, so that the collision plate 65 is engaged with each partition plate 66. It is concluded to.
  • a seal member may be interposed between the ceiling portion 61 and the side wall portions 62 and 63 and between the collision plate 65 and each partition plate 66.
  • the compressed air pressurized by the compressor 43 (see FIG. 3) is supplied to the air supply space S1 of the gas chamber 41 through the auxiliary air supply pipe 46.
  • the compressed air supplied to the air supply space S ⁇ b> 1 flows in a direction that changes in the horizontal radial direction in the gas chamber 41 by colliding with the collision plate 65 of the container 64. Are dispersed almost uniformly.
  • the compressed air dispersed almost uniformly in the gas chamber 41 flows into the gap between the first side wall 62 and the partition plate 66 and enters the air circulation space S ⁇ b> 2 in the container 64 through each through hole 67.
  • the compressed air that has entered the air circulation space S ⁇ b> 2 is blown out into the water outside the ship bottom outer plate 27 through each air outlet 42.
  • the gas chamber 41 provided inside the hull 10, the ship bottom skin plate 27 that partitions the inside of the gas chamber 41 and the outside of the hull 10, and the ship bottom A plurality of air outlets 42 provided in the outer plate 27, a compressor 43, a passage area connecting the compressor 43 and the gas chamber 41 and communicating with the gas chamber 41 is smaller than the opening area of the air outlet 42 Of the sub-air supply pipe 46 set to the above, a container 64 that covers and partitions the air outlet 42 in the gas chamber 41, and a container 64 that does not face the connection portion 46 a of the sub-air supply pipe 46 to the gas chamber 41.
  • a plurality of through holes 67 provided at predetermined positions are provided.
  • the passage area to the gas chamber 41 in the sub air supply pipe 46 is set to an area smaller than the opening area of one air outlet 42, so that the compression supplied from the sub air supply pipe 46 to the gas chamber 41 is performed.
  • the air flow rate and the flow rate per unit time will be defined, and the amount of air jetted from each air outlet 42 will be made uniform, and the surface of the hull will be properly covered with bubbles to improve the frictional resistance reduction effect. Can do.
  • the compressor 43 as an air supply source, the compressed air obtained by pressurizing the air is supplied to the gas chamber 41, so that the auxiliary air supply pipe 46 can be reduced in diameter. If the diameter of the auxiliary air supply pipe 46 can be reduced, the workability of the auxiliary air supply pipe 46 can be improved and the routing property in the hull 10 can be improved. As a result, the manufacturability is improved, the structure can be simplified, and the arrangement space in the hull 10 can be reduced.
  • the passage area of one through hole 67 is set to be smaller than the opening area of one air outlet 42. Accordingly, the amount of air that enters the container 64 from the gas chamber 41 through the through hole 67 is limited, and variation in the pressure of the air in the gas chamber 41 is reduced, so that the air outlet 42 can be moved from the container 64. The amount of air passing through can be made uniform.
  • a collision plate 65 disposed at a position facing the connection portion 46a to the gas chamber 41 of the auxiliary air supply pipe 46, the collision plate 65, and the ship bottom outer plate. 27, and a through hole 67 is formed in the partition plate 66. Therefore, the compressed air supplied from the auxiliary air supply pipe 46 to the gas chamber 41 collides with the collision plate 65, so that the air can be uniformly dispersed in the gas chamber 41. 64, the amount of air blown out into the water through each air outlet 42 can be made uniform.
  • a ceiling portion 61 that opposes the ship bottom outer plate 27 and a plurality of side wall portions 62 and 63 that connect the ship bottom outer plate 27 and the ceiling portion 61 are provided as the gas chamber.
  • a predetermined gap is provided between the first side wall portion 62 and the partition plate 66. Therefore, the air that has been supplied to the gas chamber 41 and collided with the collision plate 65 goes around the predetermined gap and enters the container 64 from each through hole 67, and the air is uniformly dispersed in the container 64. The air can be uniformly ejected from the air outlet 42 into the water.
  • a plurality of air outlets 42 are provided along the ship width direction Y, and the container 64 covers the plurality of air outlets 42. Therefore, the structure of the container 64 can be simplified.
  • the container 64 includes one collision plate 65 and two partition plates 66, and each end in the longitudinal direction is connected to the second side wall 63 of the gas chamber 41.
  • a predetermined gap is provided between the first side wall portion 62 to which the partition plate 66 is not connected and the two partition plates 66. Therefore, the air circulation space S2 sealed in the container 64 can be easily secured with a simple configuration, and the structure can be simplified and the cost can be reduced.
  • the compressor 43 can supply compressed air of 500 kPa or more to the gas chamber 41. Therefore, the structure of the sub air supply pipe 46 can be simplified and the arrangement space can be reduced.
  • FIG. 9 is a longitudinal sectional view showing a gas chamber in the ship friction reducing device of the second embodiment.
  • symbol is attached
  • the gas chamber 41 includes a ceiling part 61, a pair of first side wall parts 62, and a pair of second side wall parts 63, An air supply space S1 having a box-shaped sealed shape is formed together with the ship bottom outer plate 27 (the ship bottom 13).
  • the gas chamber 41 is connected to the ceiling 61 at the tip of the sub air supply pipe 46 of the air supply device 32.
  • the gas chamber 41 is provided with a container 64 that covers each air outlet 42 and divides the air chamber 41 from the air supply space S1.
  • the container 64 includes a collision plate 65 and a pair of partition plates 66, and has an air circulation space S ⁇ b> 2 that forms a box-shaped hermetic shape together with the ship's bottom outer plate 27 (the ship's bottom 13) and each second side wall 63 of the gas chamber 41. Forming.
  • the container 64 is provided with a through hole 67 at a predetermined position where the connecting portion 46a of the auxiliary air supply pipe 46 does not face. A plurality of the through holes 67 are formed in the pair of partition plates 66 in the vicinity of the ship bottom outer plate 27 side.
  • the through hole 67 is provided below the intermediate position of the partition plate 66 in the height direction of the hull 10.
  • the through hole 67 may be provided as a notch at the lowest end position of the partition plate 66 in the height direction of the hull 10.
  • the compressed air pressurized by the compressor 43 (see FIG. 3) is supplied to the air supply space S 1 of the gas chamber 41 through the sub air supply pipe 46.
  • the compressed air supplied to the air supply space S ⁇ b> 1 flows in a direction that changes in the horizontal radial direction in the gas chamber 41 by colliding with the collision plate 65 of the container 64.
  • the compressed air dispersed almost uniformly in the gas chamber 41 flows into the gap between the first side wall 62 and the partition plate 66 and enters the air circulation space S ⁇ b> 2 in the container 64 through each through hole 67.
  • the compressed air that has entered the air circulation space S ⁇ b> 2 is blown out into the water outside the ship bottom outer plate 27 through each air outlet 42.
  • the gas chamber 41 is located below the full load water line WL, when air is not blown into the water from the air outlet 42, seawater enters the container 64 from the air outlet 42, and the through hole 67 enters the gas chamber 41 and the gas chamber 41 and the container 64 are filled with seawater.
  • the through hole 67 enters the gas chamber 41 and the gas chamber 41 and the container 64 are filled with seawater.
  • compressed air is supplied to the gas chamber 41 through the sub air supply pipe 46, enters the container 64 through each through hole 67, and is blown into the water through each air outlet 42, Seawater in the chamber 41 and the container 64 is pushed out into the water from the air outlet 42 by air.
  • the through hole 67 is formed close to the ship bottom outer plate 27 side, seawater is prevented from remaining in the gap between the first side wall portion 62 and the partition plate 66.
  • the through hole 67 is provided close to the ship bottom outer plate 27 side of the partition plate 66. That is, the through hole 67 is provided below the intermediate position of the partition plate 66 in the height direction of the hull 10.
  • FIG. 10 is a perspective view schematically showing a gas chamber in the ship friction reducing device of the third embodiment
  • FIG. 11 is a longitudinal sectional view showing the gas chamber.
  • symbol is attached
  • the gas chamber 41 includes a ceiling portion 61, a pair of first side wall portions 62, and a pair of second side wall portions 63.
  • the air supply space S1 which is configured and forms a box-shaped hermetic shape together with the ship bottom outer plate 27 (the ship bottom 13) is formed.
  • the gas chamber 41 is connected to the ceiling 61 at the tip of the sub air supply pipe 46 of the air supply device 32.
  • the gas chamber 41 is provided with a container 64A that covers each air outlet 42 inside.
  • the container 64 ⁇ / b> A includes a collision plate 65 and a pair of partition plates 66, and forms a box-shaped sealed space together with the ship bottom outer plate 27 (the ship bottom 13) and the second side wall portions 63 of the gas chamber 41. Yes.
  • the container 64 ⁇ / b> A is provided with a plurality of partition plates 81 that divide the internal space for each air outlet 42. Therefore, the container 64A forms a plurality of air circulation spaces S21, S22, S23, S24, and S25 having a box-shaped sealed shape by the partition plates 81.
  • the container 64A is provided with a plurality of through holes 67 at predetermined positions where the connecting portions 46a of the auxiliary air supply pipe 46 do not face each other. That is, each through hole 67 is formed corresponding to each air circulation space S21, S22, S23, S24, S25 in each partition plate 66.
  • the compressed air supplied to the air supply space S1 of the gas chamber 41 through the sub air supply pipe 46 collides with the collision plate 65 of the container 64A, so that the direction of the compressed air is changed along the horizontal radiation direction in the gas chamber 41.
  • the flow is changed and is dispersed almost uniformly in the gas chamber 41.
  • the compressed air dispersed almost uniformly in the gas chamber 41 enters the air circulation spaces S21, S22, S23, S24, and S25 in the container 64A through the through holes 67.
  • the compressed air that has entered the air circulation spaces S21, S22, S23, S24, and S25 is blown out into the water outside the ship bottom outer plate 27 through the air blowing ports 42.
  • the container 64A is provided with the partition plate 81 that is partitioned for each air outlet 42 inside.
  • the container 64A is blown into the water from each air outlet 42 by partitioning into a plurality of air circulation spaces S21, S22, S23, S24, and S25 corresponding to each air outlet 42 by each partition plate 81.
  • the amount of air ejection can be made uniform.
  • FIG. 12 is a longitudinal sectional view showing a gas chamber in the ship friction reducing device of the fourth embodiment
  • FIG. 13 is a longitudinal sectional view showing the action of the gas chamber.
  • symbol is attached
  • the gas chamber 41 is provided with a container 64 that covers each air outlet 42 and divides it from the air supply space S1.
  • the container 64 includes a collision plate 65 and a pair of partition plates 66, and has an air circulation space S ⁇ b> 2 that forms a box-shaped hermetic shape together with the ship's bottom outer plate 27 (the ship's bottom 13) and each second side wall 63 of the gas chamber 41. Forming.
  • the container 64 is provided with a plurality of through holes 67 in a predetermined position where the connecting portion 46 a of the auxiliary air supply pipe 46 does not face, that is, in each partition plate 66.
  • the plurality of through-holes 67 are each provided with a detachable plug 91 in a through-hole 67 less than half of the through-hole 67.
  • the plug 91 is mounted from the outside of the partition plate 66, that is, from the gas chamber 41 side (air supply space S1 side).
  • a plurality of through holes 67 that are not equipped with the plug 91 can be used.
  • the plurality of through holes 67 not only air flows but also seawater flows when the friction reducing device is not used. Then, marine organisms may adhere and block the through hole 67. Moreover, since seawater adheres to the partition plate 66, rust may occur. If foreign matter such as marine organisms or rust adheres to the partition plate 66, the foreign matter may block the through hole 67.
  • the closed through hole 67 is closed by a plug 92, and plugs 91 (see FIG. 12) are plugged from the plurality of through holes 67.
  • the plug 92 is mounted from the inside of the partition plate 66, that is, from the inside of the container 64 (air circulation space S23 side). In this case, the plug 91 may be removed from the plurality of through holes 67 and the closed through hole 67 may not be closed by the plug 92.
  • a detachable plug 91 is attached to at least one through hole 67 among the plurality of through holes 67 provided in the container 64. Therefore, when the through-hole 67 in use is blocked by foreign matter such as marine organisms, the plug 91 can be removed from the other through-hole 67 and used, so that the device can be used for a long period of time.
  • FIG. 14 is a longitudinal sectional view showing a gas chamber in the ship friction reducing device of the fifth embodiment.
  • symbol is attached
  • the gas chamber 41 includes a ceiling portion 61, a pair of first side wall portions 62, and a pair of second side wall portions 63.
  • An air supply space S1 having a box-shaped sealed shape is formed together with the ship bottom outer plate 27 (the ship bottom 13).
  • the gas chamber 41 is connected to the ceiling 61 at the tip of the sub air supply pipe 46 of the air supply device 32.
  • the gas chamber 41 is provided with a container 64 that covers each air outlet 42 and divides the air chamber 41 from the air supply space S1.
  • the container 64 includes a collision plate 65 and a pair of partition plates 66, and has an air circulation space S ⁇ b> 2 that forms a box-shaped hermetic shape together with the ship's bottom outer plate 27 (the ship's bottom 13) and each second side wall 63 of the gas chamber 41. Forming.
  • the container 64 is provided with a through hole 67 at a predetermined position where the connecting portion 46a of the auxiliary air supply pipe 46 does not face.
  • the sub air supply pipe 46 is branched from the middle portion, and is provided with a sub air supply pipe 46 as a main passage and a sub passage 53.
  • the auxiliary air supply pipe 46 and the auxiliary passage 53 are connected to the gas chamber 41 and provided with on-off valves 54 and 55, respectively.
  • the secondary air supply pipe 46 can be used with the open / close valve 54 opened, and the secondary passage 53 cannot be used because the open / close valve 55 is closed.
  • the auxiliary air supply pipe 46 not only allows air to flow, but also allows seawater to flow in when the friction reducing device is not used. Then, marine organisms may adhere and block the auxiliary air supply pipe 46. Further, since seawater adheres to the auxiliary air supply pipe 46, rust may be generated. If foreign matter such as marine organisms or rust adheres to the auxiliary air supply pipe 46, the foreign matter may block the passage.
  • the on / off valve 54 of the auxiliary air supply pipe 46 is closed to disable the use, and the on / off valve 55 of the auxiliary passage 53 is opened to be used. To do.
  • the auxiliary air supply pipe 46 and the auxiliary passage 53 are provided as a main passage branched from the middle portion of the auxiliary air supply pipe 46, and the auxiliary air supply pipe is provided.
  • 46 and the sub-passage 53 are connected to the gas chamber 41, and on-off valves 54 and 55 are provided, respectively. Therefore, when the sub air supply pipe 46 in use is blocked by foreign matter such as marine organisms, the on / off valve 54 of the sub air supply pipe 46 is closed to disable use, and the on / off valve 55 of the sub passage 53 is opened for use. By making it possible, the device can be used over a long period of time.
  • FIG. 15 is a perspective view schematically showing a gas chamber in the ship friction reducing device of the sixth embodiment
  • FIG. 16 is a longitudinal sectional view showing the gas chamber
  • FIG. 17 is a sectional view taken along XVII-XVII in FIG.
  • FIG. 18 is an exploded view showing a gas chamber.
  • symbol is attached
  • the gas chamber 41 includes a ceiling portion 61, a pair of first side wall portions 62, and a pair of second side wall portions 63.
  • the air supply space S1 which is configured and forms a box-shaped sealed shape together with the ship bottom skin 27 (the ship bottom 13) is formed.
  • the gas chamber 41 is connected to the ceiling 61 at the tip of the sub air supply pipe 46 of the air supply device 32.
  • the sub air supply pipe 46 is set in the ceiling portion 61 at a position where the connecting portion 46 a faces the air outlet 42 at the center of the five air outlets 42.
  • the gas chamber 41 is provided with a plurality of containers 101 that cover the air outlets 42 and partition from the air supply space S1.
  • a plurality (five in this embodiment) of air outlets 42 are provided along the ship width direction Y, and a plurality of containers 101 are provided so as to cover each air outlet 42.
  • Each container 101 includes a collision plate 102 and a partition cylinder 103, and forms an air circulation space S2 having a box-shaped sealed shape together with a ship bottom outer plate 27 (ship bottom 13).
  • the collision plate 102 is disposed between the ship bottom outer plate 27 (the ship bottom 13) and the ceiling portion 61 and in parallel with and opposed to both, and has a disk shape facing one air outlet 42.
  • the partition cylinder 103 has a cylindrical shape and is orthogonal to the ship bottom skin 27 and is disposed around each air outlet 42.
  • the collision plate 102 and each partition tube 103 constitute a hollow cylinder having one side open, and the end of the open side partition tube 103 is connected to the ship bottom outer plate 27.
  • Each container 101 covers a plurality of air outlets 42 so that the containers 101 are arranged at a predetermined interval.
  • the collision plate 102 is arranged with a predetermined distance from the ceiling 61 of the gas chamber 41, and each partition tube 103 is spaced from the side walls 62 and 63 of the gas chamber 41 with a predetermined distance.
  • each container 101 is arrange
  • each container 101 is provided with a through hole 104 at a predetermined position where the connecting portion 46a of the sub air supply pipe 46 does not face.
  • a plurality of (four in this embodiment) through holes 104 are formed in each partition tube 103 at equal intervals in the circumferential direction. Therefore, the auxiliary air supply pipe 46 is disposed along the ship height direction Z, and each through hole 104 is formed along a direction (the ship length direction X and the ship width direction Y) orthogonal to the ship height direction Z.
  • the air outlets 42 are arranged along the ship height direction Z.
  • the passage area of the connection part 46a where the sub air supply piping 46 communicates with the gas chamber 41 (air supply space S1) is set to an area smaller than the opening area of each air outlet 42.
  • a plurality of air outlets 42 are provided along the ship width direction Y, each container 101 is provided for one air outlet 42, and four for each container 101.
  • the through holes 104 are provided, and the passage area of the connecting portion 46 a in the sub air supply pipe 46 is set to be smaller than the opening area of one air outlet 42.
  • one through hole 104 has a passage area set to an area smaller than the opening area of one air outlet 42.
  • each through-hole 104 is a perfect circle shape, is all the same shape, and is set to the same passage area.
  • the shape of the through hole 104 is not limited to a perfect circle shape, and may be an elliptical shape or a polygonal shape.
  • one container 101 is provided for one air outlet 42, and four through holes 104 are provided in one container 101.
  • the number and formation positions are limited to those described above. It is not something.
  • the gas chamber 41 and the container 101 are configured to be disassembled in consideration of maintainability.
  • the collision plate 102 has a plurality of attachment holes 111 formed in the outer peripheral portion, and a plurality of attachment holes 113 formed in the flange portion 112 of each partition tube 103. Then, in a state where the collision plate 102 is placed on the flange portion 112 of each partition tube 103, the bolt 114 passes through each attachment hole 111, 113 and is screwed into the nut 115, so that the collision plate 102 is Fastened to the tube 103.
  • the compressed air pressurized by the compressor 43 (see FIG. 3) is supplied to the air supply space S1 of the gas chamber 41 through the sub air supply pipe 46.
  • the compressed air supplied to the air supply space S ⁇ b> 1 flows in a direction that changes in the horizontal radial direction in the gas chamber 41 by colliding with the collision plate 102 of the container 101.
  • the compressed air dispersed almost uniformly in the gas chamber 41 flows into the gaps between the side wall portions 62 and 63 and the partition cylinders 103 and enters the air circulation space S2 in the containers 101 through the through holes 104.
  • the compressed air that has entered the air circulation space S ⁇ b> 2 is blown out into the water outside the ship bottom outer plate 27 through each air outlet 42.
  • the gas chamber 41 provided inside the hull 10, the ship bottom outer plate 27 that partitions the inside of the gas chamber 41 and the outside of the hull 10, and the ship bottom A plurality of air outlets 42 provided in the outer plate 27, a compressor 43, a passage area connecting the compressor 43 and the gas chamber 41 and communicating with the gas chamber 41 is smaller than the opening area of the air outlet 42 Of the sub-air supply pipe 46 set to 1), the container 101 that covers and partitions the air outlet 42 in the gas chamber 41, and the container 101 that does not face the connection portion 46a of the sub-air supply pipe 46 to the gas chamber 41.
  • a plurality of through holes 104 provided at predetermined positions are provided.
  • the passage area to the gas chamber 41 in the sub air supply pipe 46 is set to an area smaller than the opening area of one air outlet 42, so that the compression supplied from the sub air supply pipe 46 to the gas chamber 41 is performed.
  • the air flow rate and the flow rate per unit time will be defined, and the amount of air jetted from each air outlet 42 will be made uniform, and the surface of the hull will be properly covered with bubbles to improve the frictional resistance reduction effect. Can do.
  • the compressor 43 as an air supply source, the compressed air obtained by pressurizing the air is supplied to the gas chamber 41, so that the auxiliary air supply pipe 46 can be reduced in diameter. If the diameter of the auxiliary air supply pipe 46 can be reduced, the workability of the auxiliary air supply pipe 46 can be improved and the routing property in the hull 10 can be improved. As a result, the manufacturability is improved, the structure can be simplified, and the arrangement space in the hull 10 can be reduced.
  • a plurality of air outlets 42 are provided along the ship width direction Y, a plurality of containers 101 are provided so as to cover each air outlet 42, and a plurality of each container 101 is provided.
  • Through-holes 104 are provided. Accordingly, the amount of air blown out from each air outlet 42 into the water can be made uniform.
  • FIG. 19 is a longitudinal sectional view showing a gas chamber in the ship friction reducing device of the seventh embodiment.
  • symbol is attached
  • the gas chamber 41 includes a ceiling part 61, a pair of first side wall parts 62, and a pair of second side wall parts 63, An air supply space S1 having a box-shaped sealed shape is formed together with the ship bottom outer plate 27 (the ship bottom 13).
  • the gas chamber 41 is connected to the ceiling 61 at the tip of the sub air supply pipe 46 of the air supply device 32.
  • the sub air supply pipe 46 is set in the ceiling portion 61 at a position where the connecting portion 46 a faces the air outlet 42 at the center of the five air outlets 42.
  • the gas chamber 41 is provided with a plurality of containers 101 that cover the air outlets 42 and partition from the air supply space S1.
  • a plurality (five in this embodiment) of air outlets 42 are provided along the ship width direction Y, and a plurality of containers 101 are provided so as to cover each air outlet 42.
  • Each container 101 is constituted by a collision plate 102 and a partition cylinder 103, and forms an air circulation space S2 having a box-shaped hermetic shape together with a ship bottom outer plate 27 (ship bottom 13).
  • Each container 101 covers a plurality of air outlets 42 so that the containers 101 are arranged at a predetermined interval.
  • the container 101 is provided with a through hole 104 at a predetermined position where the connecting portion 46a of the auxiliary air supply pipe 46 does not face.
  • a plurality of (four in this embodiment) through holes 104 are formed in each partition tube 103 at equal intervals in the circumferential direction.
  • a plurality of through-holes 104 are formed in the partition cylinder 103 in the vicinity of the ship bottom outer plate 27 side. That is, the through hole 104 is provided below the intermediate position of the partition tube 103 in the height direction of the hull 10. In this case, the through hole 104 may be provided as a notch at the lowest position in the height direction of the hull 10 in the partition tube 103.
  • the through hole 104 is provided close to the ship bottom skin 27 side of the partition tube 103. That is, the through hole 104 is provided below the intermediate position of the partition tube 103 in the height direction of the hull 10.
  • FIG. 20 is a cross-sectional view of a ship equipped with the ship friction reducing device of the eighth embodiment
  • FIG. 21 is a vertical cross-sectional view showing a gas chamber.
  • symbol is attached
  • the hull 10 is provided with a friction reducing device 31, and the friction reducing device 31 includes an air supply device 32, an air suction port 35, and an air blowing portion 36. And have.
  • the air blowing portion 36 is disposed on the inclined ship bottom 13 (the ship bottom outer plate 27) on the bow 11 side.
  • the air supply device 32 includes a gas chamber 41, an air outlet 42, a compressor 43 (see FIG. 3), and a plurality of sub air supply pipes 46.
  • the compressor 43 is connected to the air suction port 35 and to the gas chamber 41 via a plurality of sub air supply pipes 46.
  • the gas chamber 41 is a flooded portion of the hull 10 and is provided in a portion where the width of the hull 10 changes when the position of the hull 10 in the height direction changes due to a change in the width of the hull 10. Therefore, this gas chamber 41 is provided in the inclined part of the ship bottom 13 (ship bottom outer plate 27) of the hull 10.
  • the gas chamber 41 includes a ceiling part 61, a pair of first side wall parts 62, and a pair of second side wall parts 63, An air supply space S1 having a box-shaped sealed shape is formed together with the inclined ship bottom outer plate 27 (the ship bottom 13).
  • the gas chamber 41 is connected to the ceiling 61 at the tip of the sub air supply pipe 46 of the air supply device 32.
  • the gas chamber 41 is provided with a container 64 that covers each air outlet 42 inside.
  • the container 64 includes a collision plate 65 and a pair of partition plates 66, and forms a box-shaped sealed space together with the inclined ship bottom outer plate 27 (ship bottom 13) and each second side wall portion 63 of the gas chamber 41. is doing.
  • the container 64 is provided with a plurality of partition plates 81 that divide the internal space for each air outlet 42 inside. Therefore, the container 64 forms a plurality of air circulation spaces S21, S22, S23, S24, and S25 having a box-shaped sealed shape by the partition plates 81.
  • the container 64 is provided with a plurality of through holes 67a, 67b, 67c, 67d, 67e at predetermined positions where the connecting portion 46a of the auxiliary air supply pipe 46 does not face. That is, the through holes 67a, 67b, 67c, 67d, 67e are formed corresponding to the air circulation spaces S21, S22, S23, S24, S25 in the partition plates 66, respectively.
  • the passage areas of the through holes 67a, 67b, 67c, 67d, and 67e of the containers 64 are different. Specifically, the passage area of the through hole 67e of the container 64 corresponding to the air outlet 42 at the high position of the hull 10 is the same as that of the through hole 67a of the container 64 corresponding to the air outlet 42 at the low position of the hull 10. It is set to be smaller than the passage area. Therefore, the flow rate of air flowing into the air circulation spaces S21, S22, S23, S24, and S25 from the air supply space S1 through the through holes 67a, 67b, 67c, 67d, and 67e is a container corresponding to the through hole 67e at a high position.
  • the 64 is smaller than the container 64 corresponding to the through hole 67a in the lower position. That is, the plurality of containers 64 reduce the flow rate of air guided to the corresponding air outlets 42 as the through holes 67a, 67b, 67c, 67d, and 67e corresponding to the containers 64 are located at higher positions. Then, the through holes 67 a, 67 b, 67 c, 67 d, 67 e of the plurality of containers 64 have a function of adjusting the flow rate of the air guided to the air outlet 42 corresponding to the container 64.
  • the compressed air pressurized by the compressor 43 (see FIG. 3) is supplied to the air supply space S 1 of the gas chamber 41 through the sub air supply pipe 46.
  • the compressed air supplied to the air supply space S ⁇ b> 1 flows in a direction that changes in the horizontal radial direction in the gas chamber 41 by colliding with the collision plate 65 of the container 64.
  • the compressed air dispersed almost uniformly in the gas chamber 41 flows into the gap between the first side wall portion 62 and the partition plate 66, and the air in the container 64 passes through the through holes 67a, 67b, 67c, 67d, 67e. It enters into the distribution spaces S21, S22, S23, S24, S25.
  • the compressed air that has entered the air circulation spaces S21, S22, S23, S24, and S25 is blown out into the water outside the ship bottom outer plate 27 (the ship bottom 13) through each air outlet 42.
  • the gas chamber 41 provided inside the hull 10, the ship bottom skin 27 that partitions the gas chamber 41 from the outside of the hull 10, and the ship bottom skin 27, a plurality of air outlets 42, a compressor 43, a secondary air supply pipe 46 connecting the compressor 43 and the gas chamber 41, and the air outlet 42 are covered and partitioned in the gas chamber 41.
  • Through holes 67 a, 67 b, 67 c, 67 d, 67 e, and the passage area of the through hole 67 e of the container 64 corresponding to the air outlet 42 at the high position of the hull 10 is set to the air outlet at the low position of the hull 10. It is set to be smaller than the passage area of the through hole 67a of the container 64 corresponding to the mouth 42.
  • the flow rate of the air blown from the plurality of air blowing ports 42 is equalized, and the diffusibility of the air blown from the plurality of air blowing ports 42 is also equalized, so that the air along the outer wall of the ship Can be made uniform.
  • the gas chamber 41 having a square box shape and the container 64 having a square box shape or the container 101 having a cylindrical shape have been described. It is not limited to the shape of 101, and may be set as appropriate according to the arrangement location in the hull 10 and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

This friction reducing device for ships is provided with: a gas chamber (41) provided inside a hull (10); a ship bottom shell plate (27) that partitions the inside of the gas chamber (41) and the outside of the hull (10); a plurality of air blowout ports (42) provided in the ship bottom shell plate (27); a compressor (43); a sub air supply piping (46) in which the area of a passage which connects the compressor (43) and the gas chamber (41) and communicates with the gas chamber (41) is set smaller than the opening area of the air blowout ports (42); a container (64) that covers and partitions the air blowout ports (42) inside the gas chamber (41); and a plurality of through holes (67) provided in a predetermined position of the container (64), wherein the predetermined position does not face a connection path (46a) to the gas chamber (41) of a sub air supply piping (46).

Description

船舶の摩擦低減装置Ship friction reduction device
 本発明は、船舶の船体に作用する摩擦抵抗を低減する船舶の摩擦低減装置に関するものである。 The present invention relates to a ship friction reducing device that reduces frictional resistance acting on the ship hull.
 船舶の船体に作用する摩擦抵抗を低減する技術として、空気(気泡)を水中に吹き出して船体の表面を気泡で覆うものが知られている。この船体摩擦抵抗低減装置は、気体室(エアチャンバ)に気体供給管が接続されると共に、気体室における船底の外板部に複数の空気噴出口が設けられ、気体室の気体供給管の接続部と各空気噴出口との間にバッフルプレートを配設したものとなっている。そのため、気体供給管から気体室に供給された空気がバッフルプレートに衝突して拡散され、各空気噴出口から水中へほぼ一様な状態で噴出される。このような船体摩擦抵抗低減装置としては、例えば、下記特許文献1-3に記載されているものがある。 As a technique for reducing the frictional resistance acting on the hull of a ship, a technique is known in which air (bubbles) is blown out into the water and the surface of the hull is covered with bubbles. In this hull frictional resistance reduction device, a gas supply pipe is connected to a gas chamber (air chamber), and a plurality of air jets are provided on the outer plate of the ship bottom in the gas chamber. A baffle plate is disposed between the air outlet and each air outlet. Therefore, the air supplied from the gas supply pipe to the gas chamber collides with the baffle plate and is diffused, and is ejected from each air ejection port into the water in a substantially uniform state. As such a hull frictional resistance reduction device, for example, there is one described in Patent Documents 1-3 below.
特開2008-143345号公報JP 2008-143345 A 特開2010-120609号公報JP 2010-120609 A 特開2015-081043号公報Japanese Patent Laying-Open No. 2015-081043
 上述した従来の摩擦抵抗低減型船舶では、船内に設けられたブロアを駆動し、外部から吸い込んだ空気を気体供給管から気体室に供給し、バッフルプレートに衝突して拡散された空気を各空気噴出口から水中へほぼ一様な状態で噴出している。この場合、気体室は、船底における所定の位置に複数設けられており、ブロアから各気体室に複数の気体供給管を配設する必要がある。ところが、船内は、多数の構造物や隔壁があることから、気体供給管の配設スペースが限られてしまう。そこで、ブロアに代えてコンプレッサを用いると共に、気体供給管の配管径を小さくすることで、気体供給管自体を小型化して配設スペースの縮小化を図ることが考えられる。しかし、コンプレッサを用いて気体供給管の配管径を小さくすると、気体供給管から気体室に供給される空気の流速が増加し、バッフルプレートに衝突した空気を気体室内に一様に拡散することが困難となる。すると、気体室内の空気の圧力分布が不均一となり、各空気噴出口から水中へ噴出される空気量にばらつきが生じ、船体の摩擦抵抗を十分に低減することが困難となる。 In the conventional frictional resistance reduction type ship described above, the blower provided in the ship is driven, the air sucked from the outside is supplied to the gas chamber from the gas supply pipe, and the air diffused by colliding with the baffle plate is supplied to each air. It is ejected from the spout into the water in an almost uniform state. In this case, a plurality of gas chambers are provided at predetermined positions on the ship bottom, and it is necessary to dispose a plurality of gas supply pipes from the blower to each gas chamber. However, since there are many structures and partitions in the ship, the space for disposing the gas supply pipe is limited. In view of this, it is conceivable to use a compressor instead of the blower and reduce the diameter of the gas supply pipe, thereby reducing the size of the gas supply pipe and reducing the installation space. However, if the pipe diameter of the gas supply pipe is reduced using a compressor, the flow velocity of the air supplied from the gas supply pipe to the gas chamber increases, and the air colliding with the baffle plate may be uniformly diffused into the gas chamber. It becomes difficult. Then, the pressure distribution of the air in the gas chamber becomes non-uniform, and the amount of air ejected from each air ejection port into the water varies, making it difficult to sufficiently reduce the frictional resistance of the hull.
 本発明は上述した課題を解決するものであり、構造の簡素化を図ると共に摩擦抵抗低減効果の向上を図る船舶の摩擦低減装置を提供することを目的とする。 This invention solves the subject mentioned above, and aims at providing the friction reduction apparatus of the ship which aims at the simplification of a structure and the improvement of a frictional resistance reduction effect.
 上記の目的を達成するための本発明の船舶の摩擦低減装置は、船体の内部に設けられる気体室と、前記気体室内と前記船体の外方とを仕切る仕切壁と、前記仕切壁に設けられる複数の空気吹き出し口と、圧縮機と、前記圧縮機と前記気体室とを接続して前記気体室へ連通する通路面積が前記空気吹き出し口の開口面積より小さい面積に設定される空気供給通路と、前記気体室内で前記空気吹き出し口を被覆して区画する容器と、前記空気供給通路の前記気体室への接続部に対向しない前記容器の所定位置に設けられる複数の貫通孔と、を備えることを特徴とするものである。 A ship friction reducing device of the present invention for achieving the above object is provided in a gas chamber provided inside a hull, a partition wall partitioning the gas chamber from the outside of the hull, and the partition wall. A plurality of air outlets, a compressor, an air supply passage in which a passage area connecting the compressor and the gas chamber and communicating with the gas chamber is set to an area smaller than an opening area of the air outlet; A container that covers and divides the air outlet in the gas chamber, and a plurality of through holes provided at predetermined positions of the container that do not oppose the connection portion of the air supply passage to the gas chamber. It is characterized by.
 従って、圧縮機により生成された圧縮空気は、空気供給通路を通して気体室に供給され、このとき、気体室に供給された圧縮空気は、容器に衝突することで気体室内に均一に分散され、各貫通孔を通して容器内に進入し、各空気吹き出し口を通って船体外部の水中に吹き出される。このとき、空気供給通路における気体室への通路面積が空気吹き出し口の開口面積より小さい面積に設定されることで、空気供給通路から気体室に供給される圧縮空気の流速と単位時間当たりの流量が規定されることとなり、各空気吹き出し口からの空気の噴出量を均一化して船体の表面を気泡により適正に覆うことで摩擦抵抗低減効果を向上させることができる。また、空気供給通路を細径化することで、構造を簡素化して配設スペースの縮小化を図ることができる。 Therefore, the compressed air generated by the compressor is supplied to the gas chamber through the air supply passage, and at this time, the compressed air supplied to the gas chamber is uniformly dispersed in the gas chamber by colliding with the container. It enters the container through the through hole, and blows out into the water outside the hull through each air outlet. At this time, the flow area of the compressed air supplied from the air supply passage to the gas chamber and the flow rate per unit time are set so that the passage area to the gas chamber in the air supply passage is smaller than the opening area of the air outlet. Therefore, the frictional resistance reduction effect can be improved by uniformizing the amount of air blown from each air outlet and covering the surface of the hull with air bubbles. Further, by reducing the diameter of the air supply passage, the structure can be simplified and the arrangement space can be reduced.
 本発明の船舶の摩擦低減装置では、前記複数の空気吹き出し口は、前記船体の幅方向に沿って設けられ、前記貫通孔は、1個の前記空気吹き出し口に対応して複数個設けられ、前記空気供給通路の通路面積は、1個の前記空気吹き出し口の開口面積より小さい面積に設定されることを特徴としている。 In the ship friction reducing device of the present invention, the plurality of air outlets are provided along the width direction of the hull, and a plurality of the through holes are provided corresponding to one air outlet, The passage area of the air supply passage is set to an area smaller than the opening area of one air outlet.
 従って、空気供給通路の通路面積が1個の空気吹き出し口の開口面積より小さい面積に設定されることで、空気供給通路から気体室に供給される圧縮空気の流速と単位時間当たりの流量が規定されることとなり、各空気吹き出し口からの空気の噴出量を均一化することができる。 Therefore, the flow area of the compressed air supplied from the air supply passage to the gas chamber and the flow rate per unit time are specified by setting the passage area of the air supply passage to be smaller than the opening area of one air outlet. As a result, the amount of air ejected from each air outlet can be made uniform.
 本発明の船舶の摩擦低減装置では、1個の前記貫通孔は、通路面積が1個の前記空気吹き出し口の開口面積より小さい面積に設定されることを特徴としている。 In the ship friction reducing device of the present invention, one of the through holes has a passage area set to an area smaller than an opening area of one of the air outlets.
 従って、空気供給通路から気体室に供給されて、被覆板に衝突することで、拡散した空気が空気供給通路の通路面積より大きい各空気吹き出し口から水中に吹き出されることで、各空気吹き出し口からの空気の噴出量を均一化することができる。 Accordingly, the air that is supplied from the air supply passage to the gas chamber and collides with the cover plate, and the diffused air is blown into the water from each air outlet that is larger than the passage area of the air supply passage. The amount of air ejected from the air can be made uniform.
 本発明の船舶の摩擦低減装置では、前記容器は、前記空気供給通路の前記気体室への接続部に対向する位置に配置される衝突板と、前記衝突板と前記仕切壁とを連結する区画板とを有し、前記貫通孔は、前記区画板に形成されることを特徴としている。 In the ship friction reducing device according to the present invention, the container includes a collision plate disposed at a position facing the connection portion of the air supply passage to the gas chamber, and a partition connecting the collision plate and the partition wall. And the through hole is formed in the partition plate.
 従って、容器を衝突板と区画板とにより構成し、貫通孔を区画板に形成することで、空気供給通路から気体室に供給された圧縮空気が衝突板に衝突することで、空気を気体室内で均一に分散することができ、その後、各貫通孔を通して容器内に均一に進入することとなり、各空気吹き出し口を通って船体外部の水中に吹き出される空気の噴出量を均一化することができる。 Therefore, the container is constituted by the collision plate and the partition plate, and the through hole is formed in the partition plate, so that the compressed air supplied from the air supply passage to the gas chamber collides with the collision plate, so that the air is Can then be uniformly dispersed, and then enter the container uniformly through each through hole, and the amount of air blown out into the water outside the hull through each air outlet can be made uniform. it can.
 本発明の船舶の摩擦低減装置では、前記気体室は、前記仕切壁に対向する天井部と、前記仕切壁と前記天井部とを連結する側壁部とを有し、前記側壁部と前記区画板との間に所定隙間が設けられることを特徴としている。 In the ship friction reducing device according to the present invention, the gas chamber includes a ceiling portion that faces the partition wall, and a sidewall portion that connects the partition wall and the ceiling portion, and the sidewall portion and the partition plate. A predetermined gap is provided between the two.
 従って、気体室に供給されて衝突板に衝突した空気は、所定隙間を回り込んで貫通孔から容器内に進入することとなり、空気を容器内で均一に分散し、各空気吹き出し口から船体外部の水中に均一に噴出することができる。 Therefore, the air that is supplied to the gas chamber and collides with the collision plate enters the container through the through hole through the predetermined gap, and the air is uniformly dispersed in the container, and from each air outlet to the outside of the hull. Can be ejected uniformly into the water.
 本発明の船舶の摩擦低減装置では、前記貫通孔は、前記仕切壁側に近接して設けられることを特徴としている。 The ship friction reducing device of the present invention is characterized in that the through hole is provided close to the partition wall side.
 従って、貫通孔を仕切壁側に近接して設けることで、船体のメンテナンス時に、気体室と容器との間に溜まった水を貫通孔から容器内に導き、空気吹き出し口から容易に外部に排水することができる。 Therefore, by providing the through hole close to the partition wall side, the water accumulated between the gas chamber and the container is guided from the through hole into the container during the maintenance of the hull, and easily drained to the outside from the air outlet. can do.
 本発明の船舶の摩擦低減装置では、前記複数の空気吹き出し口は、前記船体の幅方向に沿って設けられ、前記容器は、前記複数の空気吹き出し口を被覆することを特徴としている。 In the ship friction reducing device of the present invention, the plurality of air outlets are provided along a width direction of the hull, and the container covers the plurality of air outlets.
 従って、容器が複数の空気吹き出し口を被覆することで、容器の構造の簡素化を図ることができる。 Therefore, since the container covers the plurality of air outlets, the structure of the container can be simplified.
 本発明の船舶の摩擦低減装置では、前記容器は、1個の衝突板と2個の区画板から構成され、長手方向の各端部が前記気体室の側壁部に連結され、前記区画板が連結されない前記側壁部と2個の前記区画板との間に所定隙間が設けられることを特徴としている。 In the ship friction reducing device of the present invention, the container is composed of one collision plate and two partition plates, each end in the longitudinal direction is connected to a side wall of the gas chamber, and the partition plate is A predetermined gap is provided between the side wall portion that is not connected and the two partition plates.
 従って、容器を衝突板と区画板とから構成し、長手方向の各端部を気体室の側壁部に連結することで、簡単な構成で容易に容器内に密閉空間を確保することができ、構造の簡素化及び低コスト化を図ることができる。 Therefore, the container is composed of a collision plate and a partition plate, and by connecting each end in the longitudinal direction to the side wall of the gas chamber, a sealed space can be easily secured in the container with a simple configuration, The structure can be simplified and the cost can be reduced.
 本発明の船舶の摩擦低減装置では、前記容器は、内部に前記空気吹き出し口ごとに区画する仕切板が設けられることを特徴としている。 In the friction reducing device for a ship according to the present invention, the container is provided with a partition plate that divides the container for each air outlet.
 従って、仕切板により容器の内部を空気吹き出し口ごとに区画することで、各空気吹き出し口から水中に吹き出される空気の噴出量を均一化することができる。 Therefore, by partitioning the inside of the container for each air outlet by the partition plate, the amount of air blown out from each air outlet can be made uniform.
 本発明の船舶の摩擦低減装置では、前記複数の空気吹き出し口は、前記船体の幅方向に沿って設けられ、前記容器は、前記複数の空気吹き出し口ごとに被覆するように複数設けられ、前記貫通孔は、複数の前記容器に複数設けられることを特徴としている。 In the ship friction reducing device of the present invention, the plurality of air outlets are provided along the width direction of the hull, and the plurality of containers are provided so as to cover the plurality of air outlets, A plurality of through holes are provided in the plurality of containers.
 従って、容器が空気吹き出し口ごとに被覆することで、各空気吹き出し口から水中に吹き出される空気の噴出量を均一化することができる。 Therefore, since the container covers each air outlet, the amount of air blown out from each air outlet can be made uniform.
 本発明の船舶の摩擦低減装置では、前記貫通孔は、前記容器に複数設けられ、少なくとも一つの前記貫通孔に着脱自在なプラグが装着されることを特徴としている。 In the ship friction reducing device of the present invention, a plurality of the through holes are provided in the container, and a detachable plug is attached to at least one of the through holes.
 従って、容器に設けられた複数の貫通孔のうちの一つにプラグを装着することで、使用中の貫通孔が海洋生物などにより閉塞したとき、プラグを外して別の貫通孔を使用可能とすることで、装置を長期間にわたって使用することができる。 Therefore, by attaching a plug to one of the plurality of through holes provided in the container, when the through hole in use is blocked by marine organisms, the plug can be removed and another through hole can be used. By doing so, the apparatus can be used for a long time.
 本発明の船舶の摩擦低減装置では、前記空気供給通路は、中途部から分岐して主通路と副通路が設けられ、前記主通路と前記副通路は、それぞれ前記気体室に接続されると共に、開閉弁が設けられることを特徴としている。 In the ship friction reducing device of the present invention, the air supply passage is branched from a midway portion to be provided with a main passage and a sub-passage, and the main passage and the sub-passage are respectively connected to the gas chamber, An on-off valve is provided.
 従って、空気供給通路として主通路と副通路を設けられ、開閉弁により主通路を開放して副通路を閉塞して使用するとき、使用中の主通路が海洋生物などにより閉塞したとき、開閉弁により副通路を開放して使用可能とすることで、装置を長期間にわたって使用することができる。 Therefore, when the main passage and the sub-passage are provided as the air supply passage, the main passage is opened by the on-off valve and the sub-passage is closed, and the main passage in use is blocked by marine organisms, the on-off valve By opening the sub passage and making it usable, the apparatus can be used for a long period of time.
 本発明の船舶の摩擦低減装置では、前記圧縮機は、500kPa以上の圧縮空気を前記気体室に供給可能であることを特徴としている。 In the ship friction reducing device of the present invention, the compressor is capable of supplying compressed air of 500 kPa or more to the gas chamber.
 従って、空気供給通路を細径化することで、構造を簡素化して配設スペースの縮小化を図ることができる。 Therefore, by reducing the diameter of the air supply passage, the structure can be simplified and the installation space can be reduced.
 本発明の船舶の摩擦低減装置によれば、構造の簡素化を図ることができると共に摩擦抵抗低減効果の向上を図ることができる。 According to the ship friction reducing device of the present invention, the structure can be simplified and the frictional resistance reducing effect can be improved.
図1は、第1実施形態の船舶の摩擦低減装置を搭載した船舶の概略側面図である。FIG. 1 is a schematic side view of a ship equipped with the ship friction reducing device of the first embodiment. 図2は、船舶の摩擦低減装置を搭載した船舶の概略底面図である。FIG. 2 is a schematic bottom view of a ship equipped with a ship friction reduction device. 図3は、空気供給系統を表す概略図である。FIG. 3 is a schematic diagram showing an air supply system. 図4は、気体室を模式的に表した斜視図である。FIG. 4 is a perspective view schematically showing the gas chamber. 図5は、気体室を表す縦断面図である。FIG. 5 is a longitudinal sectional view showing the gas chamber. 図6は、図5のVI-VI断面図である。6 is a cross-sectional view taken along the line VI-VI in FIG. 図7は、図5のVII-VII断面図である。7 is a sectional view taken along line VII-VII in FIG. 図8は、気体室を表す分解図である。FIG. 8 is an exploded view showing the gas chamber. 図9は、第2実施形態の船舶の摩擦低減装置における気体室を表す縦断面図である。FIG. 9 is a longitudinal sectional view showing a gas chamber in the ship friction reducing device of the second embodiment. 図10は、第3実施形態の船舶の摩擦低減装置における気体室を模式的に表した斜視図である。FIG. 10 is a perspective view schematically showing a gas chamber in the ship friction reducing device of the third embodiment. 図11は、気体室を表す縦断面図である。FIG. 11 is a longitudinal sectional view showing the gas chamber. 図12は、第4実施形態の船舶の摩擦低減装置における気体室を表す縦断面図である。FIG. 12 is a longitudinal sectional view showing a gas chamber in the ship friction reducing device of the fourth embodiment. 図13は、気体室の作用を表す縦断面図である。FIG. 13 is a longitudinal sectional view showing the operation of the gas chamber. 図14は、第5実施形態の船舶の摩擦低減装置における気体室を表す縦断面図である。FIG. 14 is a longitudinal sectional view showing a gas chamber in the ship friction reducing device of the fifth embodiment. 図15は、第6実施形態の船舶の摩擦低減装置における気体室を模式的に表した斜視図である。FIG. 15 is a perspective view schematically showing a gas chamber in the ship friction reducing apparatus of the sixth embodiment. 図16は、気体室を表す縦断面図である。FIG. 16 is a longitudinal sectional view showing a gas chamber. 図17は、図16のXVII-XVII断面図である。17 is a cross-sectional view taken along the line XVII-XVII in FIG. 図18は、気体室を表す分解図である。FIG. 18 is an exploded view showing a gas chamber. 図19は、第7実施形態の船舶の摩擦低減装置における気体室を表す縦断面図である。FIG. 19 is a longitudinal sectional view showing a gas chamber in the ship friction reducing device of the seventh embodiment. 図20は、第8実施形態の船舶の摩擦低減装置を搭載した船舶の断面図である。FIG. 20 is a cross-sectional view of a ship equipped with the ship friction reducing device of the eighth embodiment. 図21は、気体室を表す縦断面図である。FIG. 21 is a longitudinal sectional view showing a gas chamber.
 以下に添付図面を参照して、本発明に係る船舶の摩擦低減装置の好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。 Hereinafter, a preferred embodiment of a ship friction reducing device according to the present invention will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited by this embodiment, and when there are two or more embodiments, what comprises combining each embodiment is also included.
[第1実施形態]
 図1は、第1実施形態の船舶の摩擦低減装置を搭載した船舶の概略側面図、図2は、船舶の摩擦低減装置を搭載した船舶の概略底面図、図3は、空気供給系統を表す概略図である。
[First Embodiment]
FIG. 1 is a schematic side view of a ship equipped with the ship friction reducing device of the first embodiment, FIG. 2 is a schematic bottom view of the ship equipped with the ship friction reducing device, and FIG. 3 represents an air supply system. FIG.
 第1実施形態の船舶の摩擦低減装置を搭載した船舶は、図1及び図2に示すように、例えば、旅客船(カーフェリー)であって、船体10は、船首11と、船尾12と、船底13と、左舷(船側)14と、右舷(船側)15を有している。本実施形態では、船体10の船長方向(前後方向)をX方向、船幅方向(幅方向)をY方向、船高方向(上下方向)をZ方向として表している。そして、CLは、船体10のセンターラインを表し、WLは、船体10の満載喫水線を表している。 As shown in FIGS. 1 and 2, the ship equipped with the ship friction reducing device of the first embodiment is, for example, a passenger ship (car ferry), and the hull 10 includes a bow 11, a stern 12, and a ship bottom. 13, port (ship side) 14 and starboard (ship side) 15. In this embodiment, the ship length direction (front-rear direction) of the hull 10 is represented as the X direction, the ship width direction (width direction) as the Y direction, and the ship height direction (up and down direction) as the Z direction. CL represents the center line of the hull 10, and WL represents the full load water line of the hull 10.
 船体10は、船尾12側に隔壁16により機関室17が区画され、この機関室17に主機関(例えば、ディーゼルエンジン)18が配置されている。この主機関18は、推進力を伝達するプロペラ19が駆動連結されている。また、船体10は、船尾12に船体10の方向を制御する舵20が設けられている。 The hull 10 has an engine room 17 defined by a partition wall 16 on the stern 12 side, and a main engine (for example, a diesel engine) 18 is disposed in the engine room 17. The main engine 18 is drivingly connected to a propeller 19 that transmits propulsive force. Further, the hull 10 is provided with a rudder 20 for controlling the direction of the hull 10 at the stern 12.
 また、船体10は、空気供給機器室21と、船倉22と、車両甲板23と、ランプ24と、甲板暴露部25と、隔壁26と、船底外板27と、船側外板28,29とを有している。空気供給機器室21は、船倉22より船首11側に配置されている。空気供給機器室21と船倉22は、隔壁26により仕切られている。車両甲板23は、空気供給機器室21及び船倉22の床面を形成している。ランプ24は、自動車(図示略)が船倉22に乗り降りするために使用される。甲板暴露部25は、例えば、船首11の上甲板であり、空気供給機器室21の上方に配置される。 Further, the hull 10 includes an air supply equipment room 21, a hold 22, a vehicle deck 23, a lamp 24, a deck exposure part 25, a partition wall 26, a ship bottom skin 27, and ship side skins 28 and 29. Have. The air supply device room 21 is arranged on the bow 11 side from the hold 22. The air supply equipment room 21 and the hold 22 are partitioned by a partition wall 26. The vehicle deck 23 forms the floor surfaces of the air supply equipment room 21 and the hold 22. The ramp 24 is used for an automobile (not shown) to get on and off the hold 22. The deck exposure unit 25 is, for example, the upper deck of the bow 11 and is disposed above the air supply device room 21.
 摩擦低減装置31は、空気供給装置32と、エアクーラ33と、通風筒34と、空気吸い込み口35と、空気吹き出し部36と、空気吹き出し部37と、海水取入部38と、ポンプ39とを有している。空気吹き出し部36は、左舷14(船側外板28)と、右舷15(船側外板29)に配置されている。空気吹き出し部37及び海水取入部38は、船首11側の船底13(船底外板27)に配置されている。空気供給装置32及びエアクーラ33は、空気供給機器室21に設置されている。通風筒34及び空気吸い込み口35は、甲板暴露部25に配置されている。通風筒34は、空気供給機器室21に連通され、空気供給機器室21を換気するために用いられる。空気吸い込み口35は空気供給装置32に接続されている。空気供給装置32は、エアクーラ33を介して空気吹き出し部36,37に接続されている。海水取入部38は、ポンプ39を介してエアクーラ33に接続されている。 The friction reduction device 31 includes an air supply device 32, an air cooler 33, a ventilation cylinder 34, an air suction port 35, an air blowing portion 36, an air blowing portion 37, a seawater intake portion 38, and a pump 39. is doing. The air blowing portions 36 are disposed on the port 14 (ship side skin 28) and the starboard 15 (ship side skin 29). The air blowing part 37 and the seawater intake part 38 are arranged on the ship bottom 13 (the ship bottom outer plate 27) on the bow 11 side. The air supply device 32 and the air cooler 33 are installed in the air supply device chamber 21. The ventilation tube 34 and the air suction port 35 are disposed in the deck exposure unit 25. The ventilation tube 34 communicates with the air supply device chamber 21 and is used to ventilate the air supply device chamber 21. The air suction port 35 is connected to the air supply device 32. The air supply device 32 is connected to the air blowing portions 36 and 37 via the air cooler 33. The seawater intake unit 38 is connected to the air cooler 33 via the pump 39.
 海水取入部38と空気吹き出し部37は、例えば、船体10のセンターラインCL上に配置され、船底13における船底外板27の平坦な部分に配置されている。海水取入部38は、空気吹き出し部37より船首11側に配置されている。空気吹き出し部36は、船首11側における左舷14と右舷15の各船側外板28,29に配置されている。各空気吹き出し部36は、センターラインCLに対して対称に配置され、船首11側が接近するように斜めに配置されている。海水取入部38は、両舷14,15に設けられた空気吹き出し部36の間に配置されている。 The seawater intake part 38 and the air blowing part 37 are, for example, arranged on the center line CL of the hull 10 and are arranged on the flat part of the ship bottom skin 27 on the ship bottom 13. The seawater intake unit 38 is disposed closer to the bow 11 than the air blowing unit 37. The air blowing portions 36 are disposed on the ship side skins 28 and 29 of the port 14 and starboard 15 on the bow 11 side. Each air blowing portion 36 is arranged symmetrically with respect to the center line CL, and is arranged obliquely so that the bow 11 side approaches. The seawater intake part 38 is disposed between the air blowing parts 36 provided in both the cages 14 and 15.
 空気供給装置32は、空気吸い込み口35から吸い込んだ空気を加圧し、その加圧された圧縮空気をエアクーラ33から空気吹き出し部36,37に供給する。ポンプ39は、海水取入部38から取り入れられた海水をエアクーラ33に供給する。エアクーラ33は、海水を用いて圧縮空気を冷却する。エアクーラ33は、例えば、圧縮空気と海水を熱交換する熱交換器である。また、エアクーラ33は、圧縮空気中に海水を散布して圧縮空気を冷却するように構成してもよく、海水中に圧縮空気を吹き出して圧縮空気を冷却するように構成してもよい。空気吹き出し部36,37は、空気供給装置32から供給された圧縮空気を水中に吹き出す。即ち、船体10の空気吹き出し部36,37から水中に空気が吹き出され、この吹き出された空気により形成される気泡が船底13の平坦部に送り出され、この気泡により船体10が覆われることで船体10の摩擦抵抗が低減される。 The air supply device 32 pressurizes the air sucked from the air suction port 35 and supplies the pressurized compressed air from the air cooler 33 to the air blowing portions 36 and 37. The pump 39 supplies seawater taken from the seawater intake unit 38 to the air cooler 33. The air cooler 33 cools the compressed air using seawater. The air cooler 33 is a heat exchanger that exchanges heat between compressed air and seawater, for example. The air cooler 33 may be configured to cool the compressed air by spraying seawater into the compressed air, or may be configured to cool the compressed air by blowing the compressed air into the seawater. The air blowing portions 36 and 37 blow out the compressed air supplied from the air supply device 32 into the water. That is, air is blown out into the water from the air blowing portions 36 and 37 of the hull 10, and bubbles formed by the blown air are sent out to the flat portion of the bottom 13, and the hull 10 is covered by the bubbles, thereby the hull. Ten frictional resistances are reduced.
 また、船首11側の船底13に配置された空気吹き出し部37は、図3に示すように、船体10の内部に設けられる複数の気体室41と、この各気体室41内と船体10の外方とを仕切る仕切壁としての船底外板27と、船底外板27に設けられる複数の空気吹き出し口42とを有している。気体室41は、密閉された空間であって、エアクーラ33を介して空気供給装置32が接続されている。複数の空気吹き出し口42は、気体室41から船底外板27を貫通して船体10の外方、つまり、水中に流通する通路である。この複数の空気吹き出し口42は、船底13の船長方向(X方向)に沿うと共に、船幅方向(Y方向)に所定間隔を空けて配置されている。そのため、複数の空気吹き出し口42から水中に吹き出された圧縮空気は、気泡となり、船底13の平坦部を後方に流れると共に幅方向に拡散する。 Further, as shown in FIG. 3, the air blowing portion 37 disposed on the ship bottom 13 on the bow 11 side includes a plurality of gas chambers 41 provided inside the hull 10, and the inside of each gas chamber 41 and the outside of the hull 10. And a plurality of air outlets 42 provided on the ship bottom outer plate 27. The gas chamber 41 is a sealed space, and an air supply device 32 is connected via an air cooler 33. The plurality of air outlets 42 are passages that penetrate from the gas chamber 41 through the ship bottom outer plate 27 to the outside of the hull 10, that is, in water. The plurality of air outlets 42 are arranged along the ship length direction (X direction) of the ship bottom 13 and at predetermined intervals in the ship width direction (Y direction). Therefore, the compressed air blown out into the water from the plurality of air outlets 42 becomes bubbles, and flows rearward through the flat portion of the ship bottom 13 and diffuses in the width direction.
 空気供給装置32は、気体室41と、空気吹き出し口42と、圧縮機43と、主空気供給配管44と、メインチャンバ45と、複数の副空気供給配管(空気供給通路)46とを有している。圧縮機43は、空気取り込み配管47を介して空気吸い込み口35が接続されている。また、圧縮機43は、主空気供給配管44を介してメインチャンバ45が接続されている。この圧縮機43は、例えば、取り込んだ空気を500kPa以上(望ましくは、700kPa~1300kPa)に加圧することができる。主空気供給配管44は、開閉弁48、流量計49、圧力計50が設けられている。 The air supply device 32 includes a gas chamber 41, an air outlet 42, a compressor 43, a main air supply pipe 44, a main chamber 45, and a plurality of sub air supply pipes (air supply passages) 46. ing. The compressor 43 is connected to an air suction port 35 via an air intake pipe 47. The compressor 43 is connected to a main chamber 45 via a main air supply pipe 44. For example, the compressor 43 can pressurize the taken-in air to 500 kPa or more (desirably, 700 kPa to 1300 kPa). The main air supply pipe 44 is provided with an on-off valve 48, a flow meter 49, and a pressure gauge 50.
 メインチャンバ45は、圧縮機43により加圧供給された圧縮空気を所定圧の状態で、所定量だけ貯留することができる。このメインチャンバ45は、主空気供給配管44の下流端部が接続されると共に、複数の副空気供給配管46の各上流側他端部がそれぞれ接続されている。この各副空気供給配管46は、下流側端部がそれぞれ気体室41に接続されている。副空気供給配管46は、流量調整弁51と遮断弁52が設けられている。 The main chamber 45 can store a predetermined amount of compressed air supplied under pressure by the compressor 43 at a predetermined pressure. The main chamber 45 is connected to the downstream end of the main air supply pipe 44 and to the other upstream end of each of the plurality of sub air supply pipes 46. Each sub air supply pipe 46 has a downstream end connected to the gas chamber 41. The auxiliary air supply pipe 46 is provided with a flow rate adjustment valve 51 and a shutoff valve 52.
 そのため、開閉弁48を開放して圧縮機43を駆動すると、圧縮機43は、取り込んだ空気を所定圧まで加圧し、主空気供給配管44を通してメインチャンバ45に送り、メインチャンバ45は、圧縮空気を所定圧の状態で貯留する。ここで、流量調整弁51と遮断弁52を開放すると、メインチャンバ45の圧縮空気が各副空気供給配管46を介して各気体室41にそれぞれ供給され、各気体室41に供給された圧縮空気が複数の空気吹き出し口42から水中に吹き出され、気泡となって船底13の平坦部に沿って船体10の後方に流れる。 Therefore, when the on-off valve 48 is opened and the compressor 43 is driven, the compressor 43 pressurizes the taken-in air to a predetermined pressure and sends it to the main chamber 45 through the main air supply pipe 44. The main chamber 45 is compressed air. Is stored at a predetermined pressure. Here, when the flow regulating valve 51 and the shutoff valve 52 are opened, the compressed air in the main chamber 45 is supplied to each gas chamber 41 via each sub air supply pipe 46, and the compressed air supplied to each gas chamber 41. Are blown out into the water from a plurality of air outlets 42 and flow into the rear of the hull 10 along the flat portion of the bottom 13 as bubbles.
 ここで、第1実施形態の気体室41について詳細に説明する。図4は、気体室を模式的に表した斜視図、図5は、気体室を表す縦断面図、図6は、図5のVI-VI断面図、図7は、図5のVII-VII断面図、図8は、気体室を表す分解図である。 Here, the gas chamber 41 of the first embodiment will be described in detail. 4 is a perspective view schematically showing the gas chamber, FIG. 5 is a longitudinal sectional view showing the gas chamber, FIG. 6 is a sectional view taken along the line VI-VI in FIG. 5, and FIG. 7 is a sectional view taken along the line VII-VII in FIG. Sectional drawing and FIG. 8 are exploded views showing a gas chamber.
 気体室41は、図4から図7に示すように、天井部61と、一対の第1側壁部62と、一対の第2側壁部63とから構成され、船底外板27(船底13)と共に箱形密閉形状をなす空気供給空間S1を形成している。天井部61は、船底外板27(船底13)に対向して平行をなして配置され、複数(本実施形態では、5個)の空気吹き出し口42の直列方向に沿って長い矩形の平板形状をなしている。一対の第1側壁部62は、互いに平行をなすと共に船底外板27に対して直交するように配置され、各空気吹き出し口42の直列方向に沿って長い矩形の平板形状をなしている。一対の第2側壁部63は、互いに平行をなすと共に船底外板27に対して直交するように配置され、各空気吹き出し口42の直列方向に直交する方向に沿って長い矩形の平板形状をなしている。そして、一対の第1側壁部62と一対の第2側壁部63が矩形状をなす枠体を構成し、各側壁部62,63が船底外板27と天井部61を連結している。 As shown in FIGS. 4 to 7, the gas chamber 41 includes a ceiling portion 61, a pair of first side wall portions 62, and a pair of second side wall portions 63, and together with the ship bottom skin 27 (the ship bottom 13). An air supply space S1 having a box-shaped sealed shape is formed. The ceiling portion 61 is arranged in parallel to the ship bottom outer plate 27 (the ship bottom 13), and is a rectangular plate shape that is long along the series direction of a plurality (five in the present embodiment) of the air outlets 42. I am doing. The pair of first side wall parts 62 are arranged so as to be parallel to each other and orthogonal to the ship bottom outer plate 27, and have a long rectangular flat plate shape along the series direction of the air outlets 42. The pair of second side wall parts 63 are arranged so as to be parallel to each other and perpendicular to the ship bottom outer plate 27 and have a long rectangular flat plate shape along the direction perpendicular to the series direction of the air outlets 42. ing. And a pair of 1st side wall part 62 and a pair of 2nd side wall part 63 comprise the frame which makes | forms a rectangular shape, and each side wall part 62 and 63 has connected the ship bottom outer plate 27 and the ceiling part 61. FIG.
 気体室41は、天井部61に空気供給装置32の副空気供給配管46の先端部が接続されている。この副空気供給配管46は、接続部46aが5個の空気吹き出し口42のうちの中央部の空気吹き出し口42に対向する位置の天井部61に設定されている。 The gas chamber 41 is connected to the ceiling 61 at the tip of the auxiliary air supply pipe 46 of the air supply device 32. The sub air supply pipe 46 is set in the ceiling portion 61 at a position where the connecting portion 46 a faces the air outlet 42 at the center of the five air outlets 42.
 気体室41は、内部に各空気吹き出し口42を被覆して空気供給空間S1から区画する容器64が設けられている。容器64は、衝突板65と、一対の区画板66とから構成され、船底外板27(船底13)及び気体室41の各第2側壁部63と共に箱形密閉形状をなす空気流通空間S2を形成している。衝突板65は、船底外板27(船底13)及び天井部61の間で、且つ、両者に対向して平行をなして配置され、各空気吹き出し口42の直列方向に沿って長い矩形の平板形状をなしている。一対の区画板66は、互いに平行をなすと共に船底外板27に対して直交し、且つ、第1側壁部62と平行をなすように配置され、各空気吹き出し口42の直列方向に沿って長い矩形の平板形状をなしている。そして、衝突板65と各区画板66がC字形状をなすカバーを構成し、衝突板65及び各区画板66の長手方向の各端部が各第2側壁部63に連結され、各区画板66の下端部が船底外板27に連結されている。 The gas chamber 41 is provided with a container 64 that covers each air outlet 42 and divides the air chamber 41 from the air supply space S1. The container 64 includes a collision plate 65 and a pair of partition plates 66, and has an air circulation space S <b> 2 that forms a box-shaped hermetic shape together with the ship's bottom outer plate 27 (the ship's bottom 13) and each second side wall 63 of the gas chamber 41. Forming. The collision plate 65 is disposed between the ship bottom outer plate 27 (the ship bottom 13) and the ceiling portion 61 and in parallel with and opposed to both, and is a rectangular flat plate that is long along the series direction of the air outlets 42. It has a shape. The pair of partition plates 66 are arranged so as to be parallel to each other, orthogonal to the ship bottom outer plate 27 and parallel to the first side wall 62, and are long along the series direction of the air outlets 42. It has a rectangular flat plate shape. The collision plate 65 and each partition plate 66 constitute a C-shaped cover, and the longitudinal ends of the collision plate 65 and each partition plate 66 are connected to the respective second side wall portions 63, and the lower ends of the partition plates 66. The portion is connected to the ship bottom skin 27.
 容器64は、衝突板65が気体室41の天井部61と所定間隔を空けて配置されると共に、各区画板66が気体室41の第1側壁部62と所定間隔を空けて配置されている。そして、容器64は、衝突板65に副空気供給配管46の接続部46aが対向して配置されている。 In the container 64, the collision plate 65 is arranged with a predetermined interval from the ceiling portion 61 of the gas chamber 41, and each partition plate 66 is arranged with a predetermined interval from the first side wall portion 62 of the gas chamber 41. In the container 64, the connection portion 46 a of the auxiliary air supply pipe 46 is disposed so as to face the collision plate 65.
 また、容器64は、副空気供給配管46の接続部46aが対向しない所定位置に貫通孔67が設けられている。この貫通孔67は、一対の区画板66に複数形成されている。この各貫通孔67は、各区画板66に各空気吹き出し口42と同数設けられており、各空気吹き出し口42の両側に対向して設けられている。そのため、副空気供給配管46は、船高方向Zに沿って配置され、各貫通孔67は、船長方向Xに沿って形成され、各空気吹き出し口42は、船高方向Zに沿って配置されることとなる。 Further, the container 64 is provided with a through hole 67 at a predetermined position where the connecting portion 46a of the sub air supply pipe 46 does not face. A plurality of the through holes 67 are formed in the pair of partition plates 66. Each through hole 67 is provided in each partition plate 66 in the same number as each air outlet 42, and is provided on both sides of each air outlet 42. Therefore, the auxiliary air supply pipe 46 is arranged along the ship height direction Z, each through hole 67 is formed along the ship length direction X, and each air outlet 42 is arranged along the ship height direction Z. The Rukoto.
 そして、本実施形態にて、副空気供給配管46が気体室41(空気供給空間S1)に連通する接続部46aの通路面積は、各空気吹き出し口42の開口面積より小さい面積に設定されている。具体的に、各空気吹き出し口42は、船幅方向Yに沿って複数設けられ、各貫通孔67は、1個の空気吹き出し口42に対応して複数個(本実施形態では、2個)設けられ、副空気供給配管46における接続部46aの通路面積が、1個の空気吹き出し口42の開口面積より小さい面積に設定されている。また、1個の貫通孔67は、通路面積が1個の空気吹き出し口42の開口面積より小さい面積に設定されている。 And in this embodiment, the passage area of the connection part 46a where the sub air supply piping 46 communicates with the gas chamber 41 (air supply space S1) is set to an area smaller than the opening area of each air outlet 42. . Specifically, a plurality of air outlets 42 are provided along the ship width direction Y, and a plurality of through holes 67 correspond to one air outlet 42 (two in this embodiment). The passage area of the connecting portion 46 a in the auxiliary air supply pipe 46 is set to an area smaller than the opening area of one air outlet 42. Further, one through hole 67 has a passage area set to an area smaller than the opening area of one air outlet 42.
 なお、各空気吹き出し口42は、真円形状であり、全て同形状で、且つ、同開口面積に設定されている。但し、空気吹き出し口42の形状は、真円形状に限らず、楕円形状、長円形状、小判型形状、角丸四角形状、四角形状、ひし形状、三角形状などとしてもよい。また、各貫通孔67も、真円形状であり、全て同形状で、且つ、同開口面積に設定されている。但し、貫通孔67の形状も、真円形状に限らず、他の形状としてもよい。 In addition, each air blowing port 42 is a perfect circle shape, is all the same shape, and is set to the same opening area. However, the shape of the air outlet 42 is not limited to a perfect circle shape, and may be an elliptical shape, an oval shape, an oval shape, a rounded square shape, a square shape, a rhombus shape, a triangular shape, or the like. Each through-hole 67 is also a perfect circle, and all have the same shape and the same opening area. However, the shape of the through hole 67 is not limited to a perfect circle, and may be other shapes.
 そして、各空気吹き出し口42や各貫通孔67を全て同形状、同開口面積や同通路面積としたが、例えば、形状を変更し、副空気供給配管46の接続部46aから遠い位置の空気吹き出し口42の開口面積や各貫通孔67の通路面積を大きくしてもよい。この場合、副空気供給配管46における接続部46aの通路面積が、最も大きい空気吹き出し口42の開口面積より小さい面積に設定される。また、最も大きい貫通孔67の通路面積が、最も大きい空気吹き出し口42の開口面積より小さい面積に設定される。 The air outlets 42 and the through holes 67 have the same shape, the same opening area, and the same passage area. However, for example, the shape is changed, and the air blowing positions far from the connecting portion 46a of the sub air supply pipe 46 are used. The opening area of the opening 42 and the passage area of each through hole 67 may be increased. In this case, the passage area of the connection portion 46 a in the sub air supply pipe 46 is set to an area smaller than the opening area of the largest air outlet 42. Further, the passage area of the largest through hole 67 is set to be smaller than the opening area of the largest air outlet 42.
 また、1個の空気吹き出し口42に対して2個の貫通孔67を設けたが、その数や形成位置は、上述したものに限定されるものではない。 In addition, although two through holes 67 are provided for one air outlet 42, the number and formation position thereof are not limited to those described above.
 なお、副空気供給配管46は、接続部46aが気体室41の天井部61に接続され、この接続部46aの通路面積が空気吹き出し口42の開口面積より小さい面積に設定している。この場合、副空気供給配管46は、長手方向のどの位置であってもほぼ同径であり、接続部46aが直接天井部61に接続されているが、この構成に限定されるものではない。例えば、副空気供給配管46の接続部46aと気体室41との間に拡径部を設けた構成でもよく、この構成であっても、拡径部に接続される接続部46aの通路面積が空気吹き出し口42の開口面積より小さい面積に設定している。 The auxiliary air supply pipe 46 has a connection portion 46 a connected to the ceiling portion 61 of the gas chamber 41, and the passage area of the connection portion 46 a is set to an area smaller than the opening area of the air outlet 42. In this case, the auxiliary air supply pipe 46 has substantially the same diameter at any position in the longitudinal direction, and the connection portion 46a is directly connected to the ceiling portion 61, but is not limited to this configuration. For example, a configuration in which a large-diameter portion is provided between the connection portion 46a of the auxiliary air supply pipe 46 and the gas chamber 41 may be used. Even in this configuration, the passage area of the connection portion 46a connected to the large-diameter portion is small. An area smaller than the opening area of the air outlet 42 is set.
 ところで、図8に示すように、気体室41や容器64は、メンテナンス性を考慮し、分解可能な構成となっている。気体室41にて、天井部61は、外周部に複数の取付孔71が形成され、各側壁部62,63のフランジ部72に複数の取付孔73が形成されている。そして、天井部61が各側壁部62,63のフランジ部72に載置された状態で、ボルト74が各取付孔71,73を貫通し、ナット75に螺合することで、天井部61が各側壁部62,63に締結されている。同様に、容器64にて、衝突板65は、外周部に複数の取付孔76が形成され、各区画板66のフランジ部77に複数の取付孔78が形成されている。そして、衝突板65が各区画板66のフランジ部77に載置された状態で、ボルト79が各取付孔76,78を貫通し、ナット80に螺合することで、衝突板65が各区画板66に締結されている。なお、天井部61と各側壁部62,63との間、衝突板65と各区画板66との間にシール部材を介装してもよい。 By the way, as shown in FIG. 8, the gas chamber 41 and the container 64 are configured to be disassembled in consideration of maintainability. In the gas chamber 41, the ceiling portion 61 has a plurality of attachment holes 71 formed in the outer peripheral portion, and a plurality of attachment holes 73 formed in the flange portions 72 of the side wall portions 62 and 63. Then, in a state where the ceiling portion 61 is placed on the flange portion 72 of each side wall portion 62, 63, the bolt 74 passes through each mounting hole 71, 73 and is screwed into the nut 75, so that the ceiling portion 61 is Fastened to the side wall portions 62 and 63. Similarly, in the container 64, the collision plate 65 has a plurality of attachment holes 76 formed in the outer peripheral portion, and a plurality of attachment holes 78 formed in the flange portion 77 of each partition plate 66. Then, in a state where the collision plate 65 is placed on the flange portion 77 of each partition plate 66, the bolt 79 passes through each mounting hole 76, 78 and is screwed into the nut 80, so that the collision plate 65 is engaged with each partition plate 66. It is concluded to. A seal member may be interposed between the ceiling portion 61 and the side wall portions 62 and 63 and between the collision plate 65 and each partition plate 66.
 そのため、気体室41にて、図3から図7に示すように、圧縮機43(図3参照)が加圧した圧縮空気が副空気供給配管46を通して気体室41の空気供給空間S1に供給される。ここで、空気供給空間S1に供給された圧縮空気は、容器64の衝突板65に衝突することで、気体室41内の水平な放射方向に沿って向きを変えて流れ、この気体室41内にほぼ均一に分散される。この気体室41でほぼ均一に分散された圧縮空気は、第1側壁部62と区画板66との間の隙間に流れ込み、各貫通孔67を通して容器64内の空気流通空間S2に進入する。そして、空気流通空間S2に進入した圧縮空気は、各空気吹き出し口42を通って船底外板27の外部の水中に吹き出される。 Therefore, in the gas chamber 41, as shown in FIGS. 3 to 7, the compressed air pressurized by the compressor 43 (see FIG. 3) is supplied to the air supply space S1 of the gas chamber 41 through the auxiliary air supply pipe 46. The Here, the compressed air supplied to the air supply space S <b> 1 flows in a direction that changes in the horizontal radial direction in the gas chamber 41 by colliding with the collision plate 65 of the container 64. Are dispersed almost uniformly. The compressed air dispersed almost uniformly in the gas chamber 41 flows into the gap between the first side wall 62 and the partition plate 66 and enters the air circulation space S <b> 2 in the container 64 through each through hole 67. Then, the compressed air that has entered the air circulation space S <b> 2 is blown out into the water outside the ship bottom outer plate 27 through each air outlet 42.
 このように第1実施形態の船舶の摩擦低減装置にあっては、船体10の内部に設けられる気体室41と、気体室41内と船体10の外方とを仕切る船底外板27と、船底外板27に設けられる複数の空気吹き出し口42と、圧縮機43と、圧縮機43と気体室41とを接続して気体室41へ連通する通路面積が空気吹き出し口42の開口面積より小さい面積に設定される副空気供給配管46と、気体室41内で空気吹き出し口42を被覆して区画する容器64と、副空気供給配管46の気体室41への接続部46aに対向しない容器64の所定位置に設けられる複数の貫通孔67とを設けている。 As described above, in the ship friction reducing device according to the first embodiment, the gas chamber 41 provided inside the hull 10, the ship bottom skin plate 27 that partitions the inside of the gas chamber 41 and the outside of the hull 10, and the ship bottom A plurality of air outlets 42 provided in the outer plate 27, a compressor 43, a passage area connecting the compressor 43 and the gas chamber 41 and communicating with the gas chamber 41 is smaller than the opening area of the air outlet 42 Of the sub-air supply pipe 46 set to the above, a container 64 that covers and partitions the air outlet 42 in the gas chamber 41, and a container 64 that does not face the connection portion 46 a of the sub-air supply pipe 46 to the gas chamber 41. A plurality of through holes 67 provided at predetermined positions are provided.
 従って、副空気供給配管46における気体室41への通路面積が1個の空気吹き出し口42の開口面積より小さい面積に設定されることで、副空気供給配管46から気体室41に供給される圧縮空気の流速と単位時間当たりの流量が規定されることとなり、各空気吹き出し口42からの空気の噴出量を均一化して船体の表面を気泡により適正に覆うことで摩擦抵抗低減効果を向上させることができる。 Therefore, the passage area to the gas chamber 41 in the sub air supply pipe 46 is set to an area smaller than the opening area of one air outlet 42, so that the compression supplied from the sub air supply pipe 46 to the gas chamber 41 is performed. The air flow rate and the flow rate per unit time will be defined, and the amount of air jetted from each air outlet 42 will be made uniform, and the surface of the hull will be properly covered with bubbles to improve the frictional resistance reduction effect. Can do.
 即ち、空気供給源として圧縮機43を用いることで、空気を加圧した圧縮空気を気体室41に供給することから、副空気供給配管46を細径化することができる。この副空気供給配管46を細径化することができると、副空気供給配管46の加工性を向上することができると共に、船体10内への配索性を向上することができる。その結果、製作性が良くなって構造を簡素化することができ、船体10内の配設スペースの縮小化を図ることができる。 That is, by using the compressor 43 as an air supply source, the compressed air obtained by pressurizing the air is supplied to the gas chamber 41, so that the auxiliary air supply pipe 46 can be reduced in diameter. If the diameter of the auxiliary air supply pipe 46 can be reduced, the workability of the auxiliary air supply pipe 46 can be improved and the routing property in the hull 10 can be improved. As a result, the manufacturability is improved, the structure can be simplified, and the arrangement space in the hull 10 can be reduced.
 第1実施形態の船舶の摩擦低減装置では、1個の貫通孔67の通路面積を1個の空気吹き出し口42の開口面積より小さい面積に設定している。従って、気体室41から貫通孔67を通って容器64内に進入する空気量が制限されることとなり、気体室41内での空気の圧力のばらつきを減少して容器64から空気吹き出し口42を通過する空気量を均一化することができる。 In the ship friction reducing device of the first embodiment, the passage area of one through hole 67 is set to be smaller than the opening area of one air outlet 42. Accordingly, the amount of air that enters the container 64 from the gas chamber 41 through the through hole 67 is limited, and variation in the pressure of the air in the gas chamber 41 is reduced, so that the air outlet 42 can be moved from the container 64. The amount of air passing through can be made uniform.
 第1実施形態の船舶の摩擦低減装置では、容器64として、副空気供給配管46の気体室41への接続部46aに対向する位置に配置される衝突板65と、衝突板65と船底外板27とを連結する区画板66とを設け、貫通孔67を区画板66に形成している。従って、副空気供給配管46から気体室41に供給された圧縮空気が衝突板65に衝突することで、空気を気体室41内で均一に分散することができ、その後、各貫通孔67を通して容器64内に均一に進入することとなり、各空気吹き出し口42を通って水中に吹き出される空気の噴出量を均一化することができる。 In the ship friction reducing device of the first embodiment, as the container 64, a collision plate 65 disposed at a position facing the connection portion 46a to the gas chamber 41 of the auxiliary air supply pipe 46, the collision plate 65, and the ship bottom outer plate. 27, and a through hole 67 is formed in the partition plate 66. Therefore, the compressed air supplied from the auxiliary air supply pipe 46 to the gas chamber 41 collides with the collision plate 65, so that the air can be uniformly dispersed in the gas chamber 41. 64, the amount of air blown out into the water through each air outlet 42 can be made uniform.
 第1実施形態の船舶の摩擦低減装置では、気体室として、船底外板27に対向する天井部61と、船底外板27と天井部61とを連結する複数の側壁部62,63とを設け、第1側壁部62と区画板66との間に所定隙間を設けている。従って、気体室41に供給されて衝突板65に衝突した空気は、所定隙間を回り込んで各貫通孔67から容器64内に進入することとなり、空気を容器64内で均一に分散し、各空気吹き出し口42から水中に均一に噴出することができる。 In the ship friction reducing device according to the first embodiment, as the gas chamber, a ceiling portion 61 that opposes the ship bottom outer plate 27 and a plurality of side wall portions 62 and 63 that connect the ship bottom outer plate 27 and the ceiling portion 61 are provided. A predetermined gap is provided between the first side wall portion 62 and the partition plate 66. Therefore, the air that has been supplied to the gas chamber 41 and collided with the collision plate 65 goes around the predetermined gap and enters the container 64 from each through hole 67, and the air is uniformly dispersed in the container 64. The air can be uniformly ejected from the air outlet 42 into the water.
 第1実施形態の船舶の摩擦低減装置では、複数の空気吹き出し口42が船幅方向Yに沿って設けられ、容器64は、複数の空気吹き出し口42を被覆している。従って、容器64の構造の簡素化を図ることができる。 In the ship friction reducing device of the first embodiment, a plurality of air outlets 42 are provided along the ship width direction Y, and the container 64 covers the plurality of air outlets 42. Therefore, the structure of the container 64 can be simplified.
 第1実施形態の船舶の摩擦低減装置では、容器64を1個の衝突板65と2個の区画板66から構成し、長手方向の各端部を気体室41の第2側壁部63に連結し、区画板66が連結されない第1側壁部62と2個の区画板66との間に所定隙間を設けている。従って、簡単な構成で容易に容器64内に密閉した空気流通空間S2を確保することができ、構造の簡素化及び低コスト化を図ることができる。 In the ship friction reducing device according to the first embodiment, the container 64 includes one collision plate 65 and two partition plates 66, and each end in the longitudinal direction is connected to the second side wall 63 of the gas chamber 41. In addition, a predetermined gap is provided between the first side wall portion 62 to which the partition plate 66 is not connected and the two partition plates 66. Therefore, the air circulation space S2 sealed in the container 64 can be easily secured with a simple configuration, and the structure can be simplified and the cost can be reduced.
 第1実施形態の船舶の摩擦低減装置では、圧縮機43が500kPa以上の圧縮空気を気体室41に供給可能としている。従って、副空気供給配管46の構造を簡素化して配設スペースの縮小化を図ることができる。 In the ship friction reducing device of the first embodiment, the compressor 43 can supply compressed air of 500 kPa or more to the gas chamber 41. Therefore, the structure of the sub air supply pipe 46 can be simplified and the arrangement space can be reduced.
[第2実施形態]
 図9は、第2実施形態の船舶の摩擦低減装置における気体室を表す縦断面図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
[Second Embodiment]
FIG. 9 is a longitudinal sectional view showing a gas chamber in the ship friction reducing device of the second embodiment. In addition, the same code | symbol is attached | subjected to the member which has the same function as embodiment mentioned above, and detailed description is abbreviate | omitted.
 第2実施形態の船舶の摩擦低減装置において、図9に示すように、気体室41は、天井部61と、一対の第1側壁部62と、一対の第2側壁部63とから構成され、船底外板27(船底13)と共に箱形密閉形状をなす空気供給空間S1を形成している。気体室41は、天井部61に空気供給装置32の副空気供給配管46の先端部が接続されている。 In the ship friction reducing device of the second embodiment, as shown in FIG. 9, the gas chamber 41 includes a ceiling part 61, a pair of first side wall parts 62, and a pair of second side wall parts 63, An air supply space S1 having a box-shaped sealed shape is formed together with the ship bottom outer plate 27 (the ship bottom 13). The gas chamber 41 is connected to the ceiling 61 at the tip of the sub air supply pipe 46 of the air supply device 32.
 気体室41は、内部に各空気吹き出し口42を被覆して空気供給空間S1から区画する容器64が設けられている。容器64は、衝突板65と、一対の区画板66とから構成され、船底外板27(船底13)及び気体室41の各第2側壁部63と共に箱形密閉形状をなす空気流通空間S2を形成している。容器64は、副空気供給配管46の接続部46aが対向しない所定位置に貫通孔67が設けられている。この貫通孔67は、一対の区画板66に船底外板27側に近接して複数形成されている。即ち、貫通孔67は、区画板66における船体10の高さ方向の中間位置より下方に設けられている。この場合、貫通孔67を区画板66における船体10の高さ方向の最下端位置に切欠として設けてもよい。 The gas chamber 41 is provided with a container 64 that covers each air outlet 42 and divides the air chamber 41 from the air supply space S1. The container 64 includes a collision plate 65 and a pair of partition plates 66, and has an air circulation space S <b> 2 that forms a box-shaped hermetic shape together with the ship's bottom outer plate 27 (the ship's bottom 13) and each second side wall 63 of the gas chamber 41. Forming. The container 64 is provided with a through hole 67 at a predetermined position where the connecting portion 46a of the auxiliary air supply pipe 46 does not face. A plurality of the through holes 67 are formed in the pair of partition plates 66 in the vicinity of the ship bottom outer plate 27 side. That is, the through hole 67 is provided below the intermediate position of the partition plate 66 in the height direction of the hull 10. In this case, the through hole 67 may be provided as a notch at the lowest end position of the partition plate 66 in the height direction of the hull 10.
 そのため、圧縮機43(図3参照)が加圧した圧縮空気が副空気供給配管46を通して気体室41の空気供給空間S1に供給される。ここで、空気供給空間S1に供給された圧縮空気は、容器64の衝突板65に衝突することで、気体室41内の水平な放射方向に沿って向きを変えて流れ、この気体室41内にほぼ均一に分散される。この気体室41でほぼ均一に分散された圧縮空気は、第1側壁部62と区画板66との間の隙間に流れ込み、各貫通孔67を通して容器64内の空気流通空間S2に進入する。そして、空気流通空間S2に進入した圧縮空気は、各空気吹き出し口42を通って船底外板27の外部の水中に吹き出される。 Therefore, the compressed air pressurized by the compressor 43 (see FIG. 3) is supplied to the air supply space S 1 of the gas chamber 41 through the sub air supply pipe 46. Here, the compressed air supplied to the air supply space S <b> 1 flows in a direction that changes in the horizontal radial direction in the gas chamber 41 by colliding with the collision plate 65 of the container 64. Are dispersed almost uniformly. The compressed air dispersed almost uniformly in the gas chamber 41 flows into the gap between the first side wall 62 and the partition plate 66 and enters the air circulation space S <b> 2 in the container 64 through each through hole 67. Then, the compressed air that has entered the air circulation space S <b> 2 is blown out into the water outside the ship bottom outer plate 27 through each air outlet 42.
 ところで、気体室41は、満載喫水線WLより下方に位置していることから、空気吹き出し口42から水中に空気が吹き出されていないとき、海水が空気吹き出し口42から容器64内に入り、貫通孔67を通して気体室41内に入り、気体室41と容器64に海水が充満する。そして、この状態で、圧縮空気が副空気供給配管46を通して気体室41に供給され、各貫通孔67を通して容器64内に進入し、各空気吹き出し口42を通って水中に吹き出されると、気体室41と容器64の海水が空気により空気吹き出し口42から水中に押し出される。このとき、貫通孔67が船底外板27側に近接して形成されていることから、海水が第1側壁部62と区画板66との隙間に残留することが抑制される。 By the way, since the gas chamber 41 is located below the full load water line WL, when air is not blown into the water from the air outlet 42, seawater enters the container 64 from the air outlet 42, and the through hole 67 enters the gas chamber 41 and the gas chamber 41 and the container 64 are filled with seawater. In this state, when compressed air is supplied to the gas chamber 41 through the sub air supply pipe 46, enters the container 64 through each through hole 67, and is blown into the water through each air outlet 42, Seawater in the chamber 41 and the container 64 is pushed out into the water from the air outlet 42 by air. At this time, since the through hole 67 is formed close to the ship bottom outer plate 27 side, seawater is prevented from remaining in the gap between the first side wall portion 62 and the partition plate 66.
 このように第2実施形態の船舶の摩擦低減装置にあっては、貫通孔67は、区画板66における船底外板27側に近接して設けられている。即ち、貫通孔67は、区画板66における船体10の高さ方向の中間位置より下方に設けられている。 As described above, in the ship friction reducing device of the second embodiment, the through hole 67 is provided close to the ship bottom outer plate 27 side of the partition plate 66. That is, the through hole 67 is provided below the intermediate position of the partition plate 66 in the height direction of the hull 10.
 従って、空気吹き出し口42から水中に空気が吹き出されていないとき、海水が空気吹き出し口42から気体室41と容器64に入り込むが、貫通孔67が船底外板27側に近接して形成されていることから、船体10のメンテナンス時に、船体を陸上に引き上げると、気体室41や容器64の海水が空気吹き出し口42から外部に排水され、第1側壁部62と区画板66との隙間に残留することがほとんどない。その結果、気体室41や容器64のメンテナンス性を向上することができる。 Accordingly, when air is not blown into the water from the air outlet 42, seawater enters the gas chamber 41 and the container 64 from the air outlet 42, but the through-hole 67 is formed close to the ship bottom outer plate 27 side. Therefore, when the hull is lifted to the land during the maintenance of the hull 10, the seawater in the gas chamber 41 and the container 64 is drained to the outside from the air outlet 42 and remains in the gap between the first side wall 62 and the partition plate 66. There is little to do. As a result, the maintainability of the gas chamber 41 and the container 64 can be improved.
[第3実施形態]
 図10は、第3実施形態の船舶の摩擦低減装置における気体室を模式的に表した斜視図、図11は、気体室を表す縦断面図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
[Third Embodiment]
FIG. 10 is a perspective view schematically showing a gas chamber in the ship friction reducing device of the third embodiment, and FIG. 11 is a longitudinal sectional view showing the gas chamber. In addition, the same code | symbol is attached | subjected to the member which has the same function as embodiment mentioned above, and detailed description is abbreviate | omitted.
 第3実施形態の船舶の摩擦低減装置において、図10及び図11に示すように、気体室41は、天井部61と、一対の第1側壁部62と、一対の第2側壁部63とから構成され、船底外板27(船底13)と共に箱形密閉形状をなす空気供給空間S1を形成している。気体室41は、天井部61に空気供給装置32の副空気供給配管46の先端部が接続されている。 In the ship friction reducing device of the third embodiment, as shown in FIGS. 10 and 11, the gas chamber 41 includes a ceiling portion 61, a pair of first side wall portions 62, and a pair of second side wall portions 63. The air supply space S1 which is configured and forms a box-shaped hermetic shape together with the ship bottom outer plate 27 (the ship bottom 13) is formed. The gas chamber 41 is connected to the ceiling 61 at the tip of the sub air supply pipe 46 of the air supply device 32.
 気体室41は、内部に各空気吹き出し口42を被覆する容器64Aが設けられている。容器64Aは、衝突板65と、一対の区画板66とから構成され、船底外板27(船底13)及び気体室41の各第2側壁部63と共に箱形密閉形状をなす空間を形成している。また、容器64Aは、内部に内部空間を空気吹き出し口42ごとに区画する仕切板81が複数設けられている。そのため、容器64Aは、各仕切板81により箱形密閉形状をなす複数の空気流通空間S21,S22,S23,S24,S25を形成している。そして、容器64Aは、副空気供給配管46の接続部46aが対向しない所定位置に複数の貫通孔67が設けられている。即ち、この各貫通孔67は、各区画板66における各空気流通空間S21,S22,S23,S24,S25に対応して形成されている。 The gas chamber 41 is provided with a container 64A that covers each air outlet 42 inside. The container 64 </ b> A includes a collision plate 65 and a pair of partition plates 66, and forms a box-shaped sealed space together with the ship bottom outer plate 27 (the ship bottom 13) and the second side wall portions 63 of the gas chamber 41. Yes. The container 64 </ b> A is provided with a plurality of partition plates 81 that divide the internal space for each air outlet 42. Therefore, the container 64A forms a plurality of air circulation spaces S21, S22, S23, S24, and S25 having a box-shaped sealed shape by the partition plates 81. The container 64A is provided with a plurality of through holes 67 at predetermined positions where the connecting portions 46a of the auxiliary air supply pipe 46 do not face each other. That is, each through hole 67 is formed corresponding to each air circulation space S21, S22, S23, S24, S25 in each partition plate 66.
 そのため、副空気供給配管46を通して気体室41の空気供給空間S1に供給された圧縮空気は、容器64Aの衝突板65に衝突することで、気体室41内の水平な放射方向に沿って向きを変えて流れ、この気体室41内にほぼ均一に分散される。この気体室41でほぼ均一に分散された圧縮空気は、各貫通孔67を通して容器64A内の各空気流通空間S21,S22,S23,S24,S25に進入する。そして、各空気流通空間S21,S22,S23,S24,S25に進入した圧縮空気は、各空気吹き出し口42を通って船底外板27の外部の水中に吹き出される。 For this reason, the compressed air supplied to the air supply space S1 of the gas chamber 41 through the sub air supply pipe 46 collides with the collision plate 65 of the container 64A, so that the direction of the compressed air is changed along the horizontal radiation direction in the gas chamber 41. The flow is changed and is dispersed almost uniformly in the gas chamber 41. The compressed air dispersed almost uniformly in the gas chamber 41 enters the air circulation spaces S21, S22, S23, S24, and S25 in the container 64A through the through holes 67. The compressed air that has entered the air circulation spaces S21, S22, S23, S24, and S25 is blown out into the water outside the ship bottom outer plate 27 through the air blowing ports 42.
 このように第3実施形態の船舶の摩擦低減装置にあっては、容器64Aは、内部に空気吹き出し口42ごとに区画する仕切板81を設けている。 As described above, in the ship friction reducing device of the third embodiment, the container 64A is provided with the partition plate 81 that is partitioned for each air outlet 42 inside.
 従って、容器64Aは、各仕切板81により各空気吹き出し口42に対応した複数の空気流通空間S21,S22,S23,S24,S25に区画することで、各空気吹き出し口42から水中に吹き出される空気の噴出量を均一化することができる。 Therefore, the container 64A is blown into the water from each air outlet 42 by partitioning into a plurality of air circulation spaces S21, S22, S23, S24, and S25 corresponding to each air outlet 42 by each partition plate 81. The amount of air ejection can be made uniform.
[第4実施形態]
 図12は、第4実施形態の船舶の摩擦低減装置における気体室を表す縦断面図、図13は、気体室の作用を表す縦断面図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
[Fourth Embodiment]
FIG. 12 is a longitudinal sectional view showing a gas chamber in the ship friction reducing device of the fourth embodiment, and FIG. 13 is a longitudinal sectional view showing the action of the gas chamber. In addition, the same code | symbol is attached | subjected to the member which has the same function as embodiment mentioned above, and detailed description is abbreviate | omitted.
 第4実施形態の船舶の摩擦低減装置において、図12に示すように、気体室41は、内部に各空気吹き出し口42を被覆して空気供給空間S1から区画する容器64が設けられている。容器64は、衝突板65と、一対の区画板66とから構成され、船底外板27(船底13)及び気体室41の各第2側壁部63と共に箱形密閉形状をなす空気流通空間S2を形成している。容器64は、副空気供給配管46の接続部46aが対向しない所定位置、つまり、各区画板66に複数の貫通孔67が設けられている。そして、複数の貫通孔67は、その半分以下の貫通孔67に着脱自在なプラグ91が装着されている。このプラグ91は、区画板66の外側、つまり、気体室41側(空気供給空間S1側)から装着されている。 In the ship friction reducing device of the fourth embodiment, as shown in FIG. 12, the gas chamber 41 is provided with a container 64 that covers each air outlet 42 and divides it from the air supply space S1. The container 64 includes a collision plate 65 and a pair of partition plates 66, and has an air circulation space S <b> 2 that forms a box-shaped hermetic shape together with the ship's bottom outer plate 27 (the ship's bottom 13) and each second side wall 63 of the gas chamber 41. Forming. The container 64 is provided with a plurality of through holes 67 in a predetermined position where the connecting portion 46 a of the auxiliary air supply pipe 46 does not face, that is, in each partition plate 66. The plurality of through-holes 67 are each provided with a detachable plug 91 in a through-hole 67 less than half of the through-hole 67. The plug 91 is mounted from the outside of the partition plate 66, that is, from the gas chamber 41 side (air supply space S1 side).
 そのため、複数の貫通孔67は、プラグ91が装着されていないものが使用可能となっている。複数の貫通孔67は、空気が流通するだけでなく、摩擦低減装置の不使用時には、海水が流入する。すると、海洋生物が付着して貫通孔67を閉塞してしまうおそれがある。また、区画板66に海水が付着することから、錆が発生する可能性がある。区画板66に海洋生物や錆などの異物が付着すると、この異物が貫通孔67を閉塞してしまうことがある。船体10のメンテナンス時に、異物による貫通孔67の閉塞が見つかると、図13に示すように、閉塞した貫通孔67をプラグ92により閉塞し、複数の貫通孔67からプラグ91(図12参照)を取外して使用可能とする。なお、このプラグ92は、区画板66の内側、つまり、容器64の内側(空気流通空間S23側)から装着されている。この場合、複数の貫通孔67からプラグ91を取外し、閉塞した貫通孔67をプラグ92により閉塞しなくてもよい。 Therefore, a plurality of through holes 67 that are not equipped with the plug 91 can be used. In the plurality of through holes 67, not only air flows but also seawater flows when the friction reducing device is not used. Then, marine organisms may adhere and block the through hole 67. Moreover, since seawater adheres to the partition plate 66, rust may occur. If foreign matter such as marine organisms or rust adheres to the partition plate 66, the foreign matter may block the through hole 67. When maintenance of the hull 10 finds that the through hole 67 is blocked by a foreign object, as shown in FIG. 13, the closed through hole 67 is closed by a plug 92, and plugs 91 (see FIG. 12) are plugged from the plurality of through holes 67. It can be removed and used. The plug 92 is mounted from the inside of the partition plate 66, that is, from the inside of the container 64 (air circulation space S23 side). In this case, the plug 91 may be removed from the plurality of through holes 67 and the closed through hole 67 may not be closed by the plug 92.
 このように第4実施形態の船舶の摩擦低減装置にあっては、容器64に設けられた複数の貫通孔67のうち、少なくとも一つの貫通孔67に着脱自在なプラグ91を装着している。従って、使用中の貫通孔67が海洋生物などの異物により閉塞したとき、別の貫通孔67からプラグ91を外して使用可能とすることで、装置を長期間にわたって使用することができる。 Thus, in the ship friction reducing device of the fourth embodiment, a detachable plug 91 is attached to at least one through hole 67 among the plurality of through holes 67 provided in the container 64. Therefore, when the through-hole 67 in use is blocked by foreign matter such as marine organisms, the plug 91 can be removed from the other through-hole 67 and used, so that the device can be used for a long period of time.
[第5実施形態]
 図14は、第5実施形態の船舶の摩擦低減装置における気体室を表す縦断面図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
[Fifth Embodiment]
FIG. 14 is a longitudinal sectional view showing a gas chamber in the ship friction reducing device of the fifth embodiment. In addition, the same code | symbol is attached | subjected to the member which has the same function as embodiment mentioned above, and detailed description is abbreviate | omitted.
 第5実施形態の船舶の摩擦低減装置において、図14に示すように、気体室41は、天井部61と、一対の第1側壁部62と、一対の第2側壁部63とから構成され、船底外板27(船底13)と共に箱形密閉形状をなす空気供給空間S1を形成している。気体室41は、天井部61に空気供給装置32の副空気供給配管46の先端部が接続されている。気体室41は、内部に各空気吹き出し口42を被覆して空気供給空間S1から区画する容器64が設けられている。容器64は、衝突板65と、一対の区画板66とから構成され、船底外板27(船底13)及び気体室41の各第2側壁部63と共に箱形密閉形状をなす空気流通空間S2を形成している。容器64は、副空気供給配管46の接続部46aが対向しない所定位置に貫通孔67が設けられている。 In the ship friction reducing device of the fifth embodiment, as shown in FIG. 14, the gas chamber 41 includes a ceiling portion 61, a pair of first side wall portions 62, and a pair of second side wall portions 63. An air supply space S1 having a box-shaped sealed shape is formed together with the ship bottom outer plate 27 (the ship bottom 13). The gas chamber 41 is connected to the ceiling 61 at the tip of the sub air supply pipe 46 of the air supply device 32. The gas chamber 41 is provided with a container 64 that covers each air outlet 42 and divides the air chamber 41 from the air supply space S1. The container 64 includes a collision plate 65 and a pair of partition plates 66, and has an air circulation space S <b> 2 that forms a box-shaped hermetic shape together with the ship's bottom outer plate 27 (the ship's bottom 13) and each second side wall 63 of the gas chamber 41. Forming. The container 64 is provided with a through hole 67 at a predetermined position where the connecting portion 46a of the auxiliary air supply pipe 46 does not face.
 副空気供給配管46は、中途部から分岐して主通路としての副空気供給配管46と、副通路53が設けられている。そして、副空気供給配管46と副通路53は、気体室41に接続されると共に、開閉弁54,55がそれぞれ設けられている。 The sub air supply pipe 46 is branched from the middle portion, and is provided with a sub air supply pipe 46 as a main passage and a sub passage 53. The auxiliary air supply pipe 46 and the auxiliary passage 53 are connected to the gas chamber 41 and provided with on-off valves 54 and 55, respectively.
 そのため、副空気供給配管46は、開閉弁54が開放されて使用可能となっており、副通路53は、開閉弁55が閉止されて使用不能となっている。副空気供給配管46は、空気が流通するだけでなく、摩擦低減装置の不使用時には、海水が流入する。すると、海洋生物が付着して副空気供給配管46を閉塞してしまうおそれがある。また、副空気供給配管46に海水が付着することから、錆が発生する可能性がある。副空気供給配管46に海洋生物や錆などの異物が付着すると、この異物が通路を閉塞してしまうことがある。船体10のメンテナンス時に、異物による副空気供給配管46の閉塞が見つかると、副空気供給配管46の開閉弁54を閉止して使用不能とし、副通路53の開閉弁55を開放して使用可能とする。 Therefore, the secondary air supply pipe 46 can be used with the open / close valve 54 opened, and the secondary passage 53 cannot be used because the open / close valve 55 is closed. The auxiliary air supply pipe 46 not only allows air to flow, but also allows seawater to flow in when the friction reducing device is not used. Then, marine organisms may adhere and block the auxiliary air supply pipe 46. Further, since seawater adheres to the auxiliary air supply pipe 46, rust may be generated. If foreign matter such as marine organisms or rust adheres to the auxiliary air supply pipe 46, the foreign matter may block the passage. If the auxiliary air supply pipe 46 is blocked by foreign matter during maintenance of the hull 10, the on / off valve 54 of the auxiliary air supply pipe 46 is closed to disable the use, and the on / off valve 55 of the auxiliary passage 53 is opened to be used. To do.
 このように第5実施形態の船舶の摩擦低減装置にあっては、副空気供給配管46の中途部から分岐して主通路としての副空気供給配管46と副通路53を設け、副空気供給配管46と副通路53を気体室41に接続すると共に、開閉弁54,55をそれぞれ設けている。従って、使用中の副空気供給配管46が海洋生物などの異物により閉塞したとき、副空気供給配管46の開閉弁54を閉止して使用不能とし、副通路53の開閉弁55を開放して使用可能とすることで、装置を長期間にわたって使用することができる。 As described above, in the ship friction reducing device according to the fifth embodiment, the auxiliary air supply pipe 46 and the auxiliary passage 53 are provided as a main passage branched from the middle portion of the auxiliary air supply pipe 46, and the auxiliary air supply pipe is provided. 46 and the sub-passage 53 are connected to the gas chamber 41, and on-off valves 54 and 55 are provided, respectively. Therefore, when the sub air supply pipe 46 in use is blocked by foreign matter such as marine organisms, the on / off valve 54 of the sub air supply pipe 46 is closed to disable use, and the on / off valve 55 of the sub passage 53 is opened for use. By making it possible, the device can be used over a long period of time.
[第6実施形態]
 図15は、第6実施形態の船舶の摩擦低減装置における気体室を模式的に表した斜視図、図16は、気体室を表す縦断面図、図17は、図16のXVII-XVII断面図、図18は、気体室を表す分解図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
[Sixth Embodiment]
15 is a perspective view schematically showing a gas chamber in the ship friction reducing device of the sixth embodiment, FIG. 16 is a longitudinal sectional view showing the gas chamber, and FIG. 17 is a sectional view taken along XVII-XVII in FIG. FIG. 18 is an exploded view showing a gas chamber. In addition, the same code | symbol is attached | subjected to the member which has the same function as embodiment mentioned above, and detailed description is abbreviate | omitted.
 第6実施形態の船舶の摩擦低減装置において、図15から図17に示すように、気体室41は、天井部61と、一対の第1側壁部62と、一対の第2側壁部63とから構成され、船底外板27(船底13)と共に箱形密閉形状をなす空気供給空間S1を形成している。気体室41は、天井部61に空気供給装置32の副空気供給配管46の先端部が接続されている。この副空気供給配管46は、接続部46aが5個の空気吹き出し口42のうちの中央部の空気吹き出し口42に対向する位置の天井部61に設定されている。 In the ship friction reducing device of the sixth embodiment, as shown in FIGS. 15 to 17, the gas chamber 41 includes a ceiling portion 61, a pair of first side wall portions 62, and a pair of second side wall portions 63. The air supply space S1 which is configured and forms a box-shaped sealed shape together with the ship bottom skin 27 (the ship bottom 13) is formed. The gas chamber 41 is connected to the ceiling 61 at the tip of the sub air supply pipe 46 of the air supply device 32. The sub air supply pipe 46 is set in the ceiling portion 61 at a position where the connecting portion 46 a faces the air outlet 42 at the center of the five air outlets 42.
 気体室41は、内部に各空気吹き出し口42を被覆して空気供給空間S1から区画する複数の容器101が設けられている。空気吹き出し口42は、船幅方向Yに沿って複数(本実施形態では、5個)設けられ、容器101は、空気吹き出し口42ごとに被覆するように複数設けられている。 The gas chamber 41 is provided with a plurality of containers 101 that cover the air outlets 42 and partition from the air supply space S1. A plurality (five in this embodiment) of air outlets 42 are provided along the ship width direction Y, and a plurality of containers 101 are provided so as to cover each air outlet 42.
 各容器101は、衝突板102と、区画筒103とから構成され、船底外板27(船底13)と共に箱形密閉形状をなす空気流通空間S2を形成している。衝突板102は、船底外板27(船底13)及び天井部61の間で、且つ、両者に対向して平行をなして配置され、1個の空気吹き出し口42に対向した円板形状をなしている。区画筒103は、円筒形状をなすと共に船底外板27に対して直交し、各空気吹き出し口42の周囲に配置されている。そして、衝突板102と各区画筒103が一方側が開放された中空円筒を構成し、開放側の区画筒103の端部が船底外板27に連結されている。 Each container 101 includes a collision plate 102 and a partition cylinder 103, and forms an air circulation space S2 having a box-shaped sealed shape together with a ship bottom outer plate 27 (ship bottom 13). The collision plate 102 is disposed between the ship bottom outer plate 27 (the ship bottom 13) and the ceiling portion 61 and in parallel with and opposed to both, and has a disk shape facing one air outlet 42. ing. The partition cylinder 103 has a cylindrical shape and is orthogonal to the ship bottom skin 27 and is disposed around each air outlet 42. The collision plate 102 and each partition tube 103 constitute a hollow cylinder having one side open, and the end of the open side partition tube 103 is connected to the ship bottom outer plate 27.
 各容器101は、複数の空気吹き出し口42をそれぞれ被覆することで、各容器101同士が所定間隔を空けて配置されている。また、各容器101は、衝突板102が気体室41の天井部61と所定間隔を空けて配置されると共に、各区画筒103が気体室41の各側壁部62,63と所定間隔を空けて配置されている。そして、各容器101は、直線状に配置され、その中間部の容器101の衝突板102に副空気供給配管46の接続部46aが対向して配置されている。 Each container 101 covers a plurality of air outlets 42 so that the containers 101 are arranged at a predetermined interval. In each container 101, the collision plate 102 is arranged with a predetermined distance from the ceiling 61 of the gas chamber 41, and each partition tube 103 is spaced from the side walls 62 and 63 of the gas chamber 41 with a predetermined distance. Has been placed. And each container 101 is arrange | positioned at linear form, and the connection part 46a of the subair supply piping 46 is arrange | positioned facing the collision plate 102 of the container 101 of the intermediate part.
 また、各容器101は、副空気供給配管46の接続部46aが対向しない所定位置に貫通孔104が設けられている。この貫通孔104は、各区画筒103に周方向に等間隔で複数(本実施形態では、4個)形成されている。そのため、副空気供給配管46は、船高方向Zに沿って配置され、各貫通孔104は、船高方向Zに直交する方向(船長方向Xと船幅方向Y)に沿って形成され、各空気吹き出し口42は、船高方向Zに沿って配置されることとなる。 Further, each container 101 is provided with a through hole 104 at a predetermined position where the connecting portion 46a of the sub air supply pipe 46 does not face. A plurality of (four in this embodiment) through holes 104 are formed in each partition tube 103 at equal intervals in the circumferential direction. Therefore, the auxiliary air supply pipe 46 is disposed along the ship height direction Z, and each through hole 104 is formed along a direction (the ship length direction X and the ship width direction Y) orthogonal to the ship height direction Z. The air outlets 42 are arranged along the ship height direction Z.
 そして、本実施形態にて、副空気供給配管46が気体室41(空気供給空間S1)に連通する接続部46aの通路面積が、各空気吹き出し口42の開口面積より小さい面積に設定されている。具体的に、各空気吹き出し口42は、船幅方向Yに沿って複数設けられ、各容器101が1個の空気吹き出し口42に対して設けられており、1個の容器101に対して4個の貫通孔104が設けられ、副空気供給配管46における接続部46aの通路面積が、1個の空気吹き出し口42の開口面積より小さい面積に設定されている。 And in this embodiment, the passage area of the connection part 46a where the sub air supply piping 46 communicates with the gas chamber 41 (air supply space S1) is set to an area smaller than the opening area of each air outlet 42. . Specifically, a plurality of air outlets 42 are provided along the ship width direction Y, each container 101 is provided for one air outlet 42, and four for each container 101. The through holes 104 are provided, and the passage area of the connecting portion 46 a in the sub air supply pipe 46 is set to be smaller than the opening area of one air outlet 42.
 また、1個の貫通孔104は、通路面積が1個の空気吹き出し口42の開口面積より小さい面積に設定されている。 Further, one through hole 104 has a passage area set to an area smaller than the opening area of one air outlet 42.
 なお、各貫通孔104は、真円形状であり、全て同形状で、且つ、同通路面積に設定されている。但し、貫通孔104の形状は、真円形状に限らず、楕円形状や多角形状などとしてもよい。また、1個の空気吹き出し口42に対して1個の容器101を設け、1個の容器101に4個の貫通孔104を設けたが、その数や形成位置は、上述したものに限定されるものではない。 In addition, each through-hole 104 is a perfect circle shape, is all the same shape, and is set to the same passage area. However, the shape of the through hole 104 is not limited to a perfect circle shape, and may be an elliptical shape or a polygonal shape. In addition, one container 101 is provided for one air outlet 42, and four through holes 104 are provided in one container 101. However, the number and formation positions are limited to those described above. It is not something.
 ところで、図18に示すように、気体室41や容器101は、メンテナンス性を考慮し、分解可能な構成となっている。容器101にて、衝突板102は、外周部に複数の取付孔111が形成され、各区画筒103のフランジ部112に複数の取付孔113が形成されている。そして、衝突板102が各区画筒103のフランジ部112に載置された状態で、ボルト114が各取付孔111,113を貫通し、ナット115に螺合することで、衝突板102が各区画筒103に締結されている。 By the way, as shown in FIG. 18, the gas chamber 41 and the container 101 are configured to be disassembled in consideration of maintainability. In the container 101, the collision plate 102 has a plurality of attachment holes 111 formed in the outer peripheral portion, and a plurality of attachment holes 113 formed in the flange portion 112 of each partition tube 103. Then, in a state where the collision plate 102 is placed on the flange portion 112 of each partition tube 103, the bolt 114 passes through each attachment hole 111, 113 and is screwed into the nut 115, so that the collision plate 102 is Fastened to the tube 103.
 そのため、気体室41にて、圧縮機43(図3参照)が加圧した圧縮空気が副空気供給配管46を通して気体室41の空気供給空間S1に供給される。ここで、空気供給空間S1に供給された圧縮空気は、容器101の衝突板102に衝突することで、気体室41内の水平な放射方向に沿って向きを変えて流れ、この気体室41内にほぼ均一に分散される。この気体室41でほぼ均一に分散された圧縮空気は、各側壁部62,63と各区画筒103との間の隙間に流れ込み、各貫通孔104を通して各容器101内の空気流通空間S2に進入する。そして、空気流通空間S2に進入した圧縮空気は、各空気吹き出し口42を通って船底外板27の外部の水中に吹き出される。 Therefore, in the gas chamber 41, the compressed air pressurized by the compressor 43 (see FIG. 3) is supplied to the air supply space S1 of the gas chamber 41 through the sub air supply pipe 46. Here, the compressed air supplied to the air supply space S <b> 1 flows in a direction that changes in the horizontal radial direction in the gas chamber 41 by colliding with the collision plate 102 of the container 101. Are dispersed almost uniformly. The compressed air dispersed almost uniformly in the gas chamber 41 flows into the gaps between the side wall portions 62 and 63 and the partition cylinders 103 and enters the air circulation space S2 in the containers 101 through the through holes 104. To do. Then, the compressed air that has entered the air circulation space S <b> 2 is blown out into the water outside the ship bottom outer plate 27 through each air outlet 42.
 このように第6実施形態の船舶の摩擦低減装置にあっては、船体10の内部に設けられる気体室41と、気体室41内と船体10の外方とを仕切る船底外板27と、船底外板27に設けられる複数の空気吹き出し口42と、圧縮機43と、圧縮機43と気体室41とを接続して気体室41へ連通する通路面積が空気吹き出し口42の開口面積より小さい面積に設定される副空気供給配管46と、気体室41内で空気吹き出し口42を被覆して区画する容器101と、副空気供給配管46の気体室41への接続部46aに対向しない容器101の所定位置に設けられる複数の貫通孔104とを設けている。 As described above, in the ship friction reducing device of the sixth embodiment, the gas chamber 41 provided inside the hull 10, the ship bottom outer plate 27 that partitions the inside of the gas chamber 41 and the outside of the hull 10, and the ship bottom A plurality of air outlets 42 provided in the outer plate 27, a compressor 43, a passage area connecting the compressor 43 and the gas chamber 41 and communicating with the gas chamber 41 is smaller than the opening area of the air outlet 42 Of the sub-air supply pipe 46 set to 1), the container 101 that covers and partitions the air outlet 42 in the gas chamber 41, and the container 101 that does not face the connection portion 46a of the sub-air supply pipe 46 to the gas chamber 41. A plurality of through holes 104 provided at predetermined positions are provided.
 従って、副空気供給配管46における気体室41への通路面積が1個の空気吹き出し口42の開口面積より小さい面積に設定されることで、副空気供給配管46から気体室41に供給される圧縮空気の流速と単位時間当たりの流量が規定されることとなり、各空気吹き出し口42からの空気の噴出量を均一化して船体の表面を気泡により適正に覆うことで摩擦抵抗低減効果を向上させることができる。 Therefore, the passage area to the gas chamber 41 in the sub air supply pipe 46 is set to an area smaller than the opening area of one air outlet 42, so that the compression supplied from the sub air supply pipe 46 to the gas chamber 41 is performed. The air flow rate and the flow rate per unit time will be defined, and the amount of air jetted from each air outlet 42 will be made uniform, and the surface of the hull will be properly covered with bubbles to improve the frictional resistance reduction effect. Can do.
 即ち、空気供給源として圧縮機43を用いることで、空気を加圧した圧縮空気を気体室41に供給することから、副空気供給配管46を細径化することができる。この副空気供給配管46を細径化することができると、副空気供給配管46の加工性を向上することができると共に、船体10内への配索性を向上することができる。その結果、製作性が良くなって構造を簡素化することができ、船体10内の配設スペースの縮小化を図ることができる。 That is, by using the compressor 43 as an air supply source, the compressed air obtained by pressurizing the air is supplied to the gas chamber 41, so that the auxiliary air supply pipe 46 can be reduced in diameter. If the diameter of the auxiliary air supply pipe 46 can be reduced, the workability of the auxiliary air supply pipe 46 can be improved and the routing property in the hull 10 can be improved. As a result, the manufacturability is improved, the structure can be simplified, and the arrangement space in the hull 10 can be reduced.
 第6実施形態の船舶の摩擦低減装置では、複数の空気吹き出し口42を船幅方向Yに沿って設け、複数の容器101を空気吹き出し口42ごとに被覆するように設け、各容器101に複数の貫通孔104を設けている。従って、各空気吹き出し口42から水中に吹き出される空気の噴出量を均一化することができる。 In the ship friction reducing device of the sixth embodiment, a plurality of air outlets 42 are provided along the ship width direction Y, a plurality of containers 101 are provided so as to cover each air outlet 42, and a plurality of each container 101 is provided. Through-holes 104 are provided. Accordingly, the amount of air blown out from each air outlet 42 into the water can be made uniform.
[第7実施形態]
 図19は、第7実施形態の船舶の摩擦低減装置における気体室を表す縦断面図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
[Seventh Embodiment]
FIG. 19 is a longitudinal sectional view showing a gas chamber in the ship friction reducing device of the seventh embodiment. In addition, the same code | symbol is attached | subjected to the member which has the same function as embodiment mentioned above, and detailed description is abbreviate | omitted.
 第7実施形態の船舶の摩擦低減装置において、図19に示すように、気体室41は、天井部61と、一対の第1側壁部62と、一対の第2側壁部63とから構成され、船底外板27(船底13)と共に箱形密閉形状をなす空気供給空間S1を形成している。気体室41は、天井部61に空気供給装置32の副空気供給配管46の先端部が接続されている。この副空気供給配管46は、接続部46aが5個の空気吹き出し口42のうちの中央部の空気吹き出し口42に対向する位置の天井部61に設定されている。 In the ship friction reducing device of the seventh embodiment, as shown in FIG. 19, the gas chamber 41 includes a ceiling part 61, a pair of first side wall parts 62, and a pair of second side wall parts 63, An air supply space S1 having a box-shaped sealed shape is formed together with the ship bottom outer plate 27 (the ship bottom 13). The gas chamber 41 is connected to the ceiling 61 at the tip of the sub air supply pipe 46 of the air supply device 32. The sub air supply pipe 46 is set in the ceiling portion 61 at a position where the connecting portion 46 a faces the air outlet 42 at the center of the five air outlets 42.
 気体室41は、内部に各空気吹き出し口42を被覆して空気供給空間S1から区画する複数の容器101が設けられている。空気吹き出し口42は、船幅方向Yに沿って複数(本実施形態では、5個)設けられ、容器101は、空気吹き出し口42ごとに被覆するように複数設けられている。各容器101は、衝突板102と、区画筒103とから構成され、船底外板27(船底13)と共に箱形密閉形状をなす空気流通空間S2を形成している。各容器101は、複数の空気吹き出し口42をそれぞれ被覆することで、各容器101同士が所定間隔を空けて配置されている。また、容器101は、副空気供給配管46の接続部46aが対向しない所定位置に貫通孔104が設けられている。この貫通孔104は、各区画筒103に周方向に等間隔で複数(本実施形態では、4個)形成されている。そして、この貫通孔104は、区画筒103に船底外板27側に近接して複数形成されている。即ち、貫通孔104は、区画筒103における船体10の高さ方向の中間位置より下方に設けられている。この場合、貫通孔104を区画筒103における船体10の高さ方向の最下端位置に切欠として設けてもよい。 The gas chamber 41 is provided with a plurality of containers 101 that cover the air outlets 42 and partition from the air supply space S1. A plurality (five in this embodiment) of air outlets 42 are provided along the ship width direction Y, and a plurality of containers 101 are provided so as to cover each air outlet 42. Each container 101 is constituted by a collision plate 102 and a partition cylinder 103, and forms an air circulation space S2 having a box-shaped hermetic shape together with a ship bottom outer plate 27 (ship bottom 13). Each container 101 covers a plurality of air outlets 42 so that the containers 101 are arranged at a predetermined interval. In addition, the container 101 is provided with a through hole 104 at a predetermined position where the connecting portion 46a of the auxiliary air supply pipe 46 does not face. A plurality of (four in this embodiment) through holes 104 are formed in each partition tube 103 at equal intervals in the circumferential direction. A plurality of through-holes 104 are formed in the partition cylinder 103 in the vicinity of the ship bottom outer plate 27 side. That is, the through hole 104 is provided below the intermediate position of the partition tube 103 in the height direction of the hull 10. In this case, the through hole 104 may be provided as a notch at the lowest position in the height direction of the hull 10 in the partition tube 103.
 なお、本実施形態の作用は、第6実施形態並びに第2実施形態とほぼ同様であることから、説明は省略する。 Note that the operation of this embodiment is substantially the same as that of the sixth embodiment and the second embodiment, and thus the description thereof is omitted.
 このように第7実施形態の船舶の摩擦低減装置にあっては、貫通孔104は、区画筒103における船底外板27側に近接して設けられている。即ち、貫通孔104は、区画筒103における船体10の高さ方向の中間位置より下方に設けられている。 Thus, in the ship friction reducing device of the seventh embodiment, the through hole 104 is provided close to the ship bottom skin 27 side of the partition tube 103. That is, the through hole 104 is provided below the intermediate position of the partition tube 103 in the height direction of the hull 10.
 従って、空気吹き出し口42から水中に空気が吹き出されていないとき、海水が空気吹き出し口42から気体室41と容器101に入り込むが、貫通孔104が船底外板27側に近接して形成されていることから、船体10のメンテナンス時に、船体10を陸上に引き上げると、気体室41や容器101の海水が空気吹き出し口42から外部に排水され、第1側壁部62と区画筒103との隙間に残留することがほとんどない。その結果、気体室41や容器101のメンテナンス性を向上することができる。 Accordingly, when air is not blown into the water from the air outlet 42, seawater enters the gas chamber 41 and the container 101 from the air outlet 42, but the through hole 104 is formed close to the ship bottom outer plate 27 side. Therefore, when the hull 10 is pulled up to the ground during the maintenance of the hull 10, the seawater in the gas chamber 41 and the container 101 is drained to the outside from the air outlet 42, and in the gap between the first side wall 62 and the partition cylinder 103. There is almost no residue. As a result, the maintainability of the gas chamber 41 and the container 101 can be improved.
[第8実施形態]
 図20は、第8実施形態の船舶の摩擦低減装置を搭載した船舶の断面図、図21は、気体室を表す縦断面図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
[Eighth Embodiment]
FIG. 20 is a cross-sectional view of a ship equipped with the ship friction reducing device of the eighth embodiment, and FIG. 21 is a vertical cross-sectional view showing a gas chamber. In addition, the same code | symbol is attached | subjected to the member which has the same function as embodiment mentioned above, and detailed description is abbreviate | omitted.
 第8実施形態において、図20に示すように、船体10は、摩擦低減装置31が設けられており、この摩擦低減装置31は、空気供給装置32と、空気吸い込み口35と、空気吹き出し部36とを有している。空気吹き出し部36は、船首11側の傾斜した船底13(船底外板27)に配置されている。 In the eighth embodiment, as shown in FIG. 20, the hull 10 is provided with a friction reducing device 31, and the friction reducing device 31 includes an air supply device 32, an air suction port 35, and an air blowing portion 36. And have. The air blowing portion 36 is disposed on the inclined ship bottom 13 (the ship bottom outer plate 27) on the bow 11 side.
 空気供給装置32は、気体室41と、空気吹き出し口42と、圧縮機43(図3参照)と、複数の副空気供給配管46とを有している。圧縮機43は、空気吸い込み口35が接続されると共に、複数の副空気供給配管46を介して気体室41が接続されている。気体室41は、船体10の吃水部であって、船体10の幅の変化により、船体10の高さ方向の位置が変わると船体10の幅が変わる部分に設けられている。よって、この気体室41は、船体10の船底13(船底外板27)の傾斜している部分に設けられている。 The air supply device 32 includes a gas chamber 41, an air outlet 42, a compressor 43 (see FIG. 3), and a plurality of sub air supply pipes 46. The compressor 43 is connected to the air suction port 35 and to the gas chamber 41 via a plurality of sub air supply pipes 46. The gas chamber 41 is a flooded portion of the hull 10 and is provided in a portion where the width of the hull 10 changes when the position of the hull 10 in the height direction changes due to a change in the width of the hull 10. Therefore, this gas chamber 41 is provided in the inclined part of the ship bottom 13 (ship bottom outer plate 27) of the hull 10.
 第8実施形態の船舶の摩擦低減装置において、図21に示すように、気体室41は、天井部61と、一対の第1側壁部62と、一対の第2側壁部63とから構成され、傾斜した船底外板27(船底13)と共に箱形密閉形状をなす空気供給空間S1を形成している。気体室41は、天井部61に空気供給装置32の副空気供給配管46の先端部が接続されている。 In the ship friction reducing device of the eighth embodiment, as shown in FIG. 21, the gas chamber 41 includes a ceiling part 61, a pair of first side wall parts 62, and a pair of second side wall parts 63, An air supply space S1 having a box-shaped sealed shape is formed together with the inclined ship bottom outer plate 27 (the ship bottom 13). The gas chamber 41 is connected to the ceiling 61 at the tip of the sub air supply pipe 46 of the air supply device 32.
 気体室41は、内部に各空気吹き出し口42を被覆する容器64が設けられている。容器64は、衝突板65と、一対の区画板66とから構成され、傾斜した船底外板27(船底13)及び気体室41の各第2側壁部63と共に箱形密閉形状をなす空間を形成している。また、容器64は、内部に内部空間を空気吹き出し口42ごとに区画する仕切板81が複数設けられている。そのため、容器64は、各仕切板81により箱形密閉形状をなす複数の空気流通空間S21,S22,S23,S24,S25を形成している。そして、容器64は、副空気供給配管46の接続部46aが対向しない所定位置に複数の貫通孔67a,67b,67c,67d,67eが設けられている。即ち、この各貫通孔67a,67b,67c,67d,67eは、各区画板66における各空気流通空間S21,S22,S23,S24,S25に対応して形成されている。 The gas chamber 41 is provided with a container 64 that covers each air outlet 42 inside. The container 64 includes a collision plate 65 and a pair of partition plates 66, and forms a box-shaped sealed space together with the inclined ship bottom outer plate 27 (ship bottom 13) and each second side wall portion 63 of the gas chamber 41. is doing. In addition, the container 64 is provided with a plurality of partition plates 81 that divide the internal space for each air outlet 42 inside. Therefore, the container 64 forms a plurality of air circulation spaces S21, S22, S23, S24, and S25 having a box-shaped sealed shape by the partition plates 81. The container 64 is provided with a plurality of through holes 67a, 67b, 67c, 67d, 67e at predetermined positions where the connecting portion 46a of the auxiliary air supply pipe 46 does not face. That is, the through holes 67a, 67b, 67c, 67d, 67e are formed corresponding to the air circulation spaces S21, S22, S23, S24, S25 in the partition plates 66, respectively.
 各容器64は、各貫通孔67a,67b,67c,67d,67eの通路面積が相違している。具体的に、船体10の高い位置にある空気吹き出し口42に対応する容器64の貫通孔67eの通路面積は、船体10の低い位置にある空気吹き出し口42に対応する容器64の貫通孔67aの通路面積よりも小さいものに設定されている。そのため、空気供給空間S1から各貫通孔67a,67b,67c,67d,67eを通して空気流通空間S21,S22,S23,S24,S25に流入する空気流量は、高い位置にある貫通孔67eに対応する容器64の方が、低い位置にある貫通孔67aに対応する容器64よりも少なくなる。つまり、複数の容器64は、この容器64に対応する貫通孔67a,67b,67c,67d,67eが高い位置にあるほど、対応する空気吹き出し口42へ導く空気の流量を少なくする。すると、複数の容器64の貫通孔67a,67b,67c,67d,67eは、容器64に対応する空気吹き出し口42へ導く空気の流量を調節する機能を有する。 The passage areas of the through holes 67a, 67b, 67c, 67d, and 67e of the containers 64 are different. Specifically, the passage area of the through hole 67e of the container 64 corresponding to the air outlet 42 at the high position of the hull 10 is the same as that of the through hole 67a of the container 64 corresponding to the air outlet 42 at the low position of the hull 10. It is set to be smaller than the passage area. Therefore, the flow rate of air flowing into the air circulation spaces S21, S22, S23, S24, and S25 from the air supply space S1 through the through holes 67a, 67b, 67c, 67d, and 67e is a container corresponding to the through hole 67e at a high position. 64 is smaller than the container 64 corresponding to the through hole 67a in the lower position. That is, the plurality of containers 64 reduce the flow rate of air guided to the corresponding air outlets 42 as the through holes 67a, 67b, 67c, 67d, and 67e corresponding to the containers 64 are located at higher positions. Then, the through holes 67 a, 67 b, 67 c, 67 d, 67 e of the plurality of containers 64 have a function of adjusting the flow rate of the air guided to the air outlet 42 corresponding to the container 64.
 そのため、圧縮機43(図3参照)が加圧した圧縮空気が副空気供給配管46を通して気体室41の空気供給空間S1に供給される。ここで、空気供給空間S1に供給された圧縮空気は、容器64の衝突板65に衝突することで、気体室41内の水平な放射方向に沿って向きを変えて流れ、この気体室41内にほぼ均一に分散される。この気体室41でほぼ均一に分散された圧縮空気は、第1側壁部62と区画板66との間の隙間に流れ込み、各貫通孔67a,67b,67c,67d,67eを通して容器64内の空気流通空間S21,S22,S23,S24,S25に進入する。そして、空気流通空間S21,S22,S23,S24,S25に進入した圧縮空気は、各空気吹き出し口42を通って船底外板27(船底13)の外部の水中に吹き出される。 Therefore, the compressed air pressurized by the compressor 43 (see FIG. 3) is supplied to the air supply space S 1 of the gas chamber 41 through the sub air supply pipe 46. Here, the compressed air supplied to the air supply space S <b> 1 flows in a direction that changes in the horizontal radial direction in the gas chamber 41 by colliding with the collision plate 65 of the container 64. Are dispersed almost uniformly. The compressed air dispersed almost uniformly in the gas chamber 41 flows into the gap between the first side wall portion 62 and the partition plate 66, and the air in the container 64 passes through the through holes 67a, 67b, 67c, 67d, 67e. It enters into the distribution spaces S21, S22, S23, S24, S25. Then, the compressed air that has entered the air circulation spaces S21, S22, S23, S24, and S25 is blown out into the water outside the ship bottom outer plate 27 (the ship bottom 13) through each air outlet 42.
 このとき、空気吹き出し口42が高い位置にあるほど、この空気吹き出し口42に導かれる空気の流量が少なくなる。一方、空気吹き出し口42が低い位置にあるほど、この空気吹き出し口42には、船体10の外部から高い水圧がかかり、この空気吹き出し口42から水中への吹き出す空気に対する水の抵抗が大きくなる。その結果、互いに高さの異なる複数の空気吹き出し口42から吹き出される空気の流量が均等化される。 At this time, the higher the air outlet 42 is, the smaller the flow rate of air guided to the air outlet 42 becomes. On the other hand, the lower the air outlet 42 is, the higher the water pressure is applied to the air outlet 42 from the outside of the hull 10, and the resistance of water to the air blown out from the air outlet 42 into the water increases. As a result, the flow rate of the air blown out from the plurality of air outlets 42 having different heights is equalized.
 このように第8実施形態の摩擦低減装置にあっては、船体10の内部に設けられる気体室41と、気体室41内と船体10の外方とを仕切る船底外板27と、船底外板27に設けられる複数の空気吹き出し口42と、圧縮機43と、圧縮機43と気体室41とを接続する副空気供給配管46と、気体室41内で空気吹き出し口42を被覆して区画する容器64と、容器64の内部を空気吹き出し口42ごとに区画する複数の仕切板81と、副空気供給配管46の気体室41への接続部46aに対向しない容器64の所定位置に設けられる複数の貫通孔67a,67b,67c,67d,67eとを設け、船体10の高い位置にある空気吹き出し口42に対応する容器64の貫通孔67eの通路面積を、船体10の低い位置にある空気吹き出し口42に対応する容器64の貫通孔67aの通路面積よりも小さいものに設定している。 As described above, in the friction reduction device according to the eighth embodiment, the gas chamber 41 provided inside the hull 10, the ship bottom skin 27 that partitions the gas chamber 41 from the outside of the hull 10, and the ship bottom skin 27, a plurality of air outlets 42, a compressor 43, a secondary air supply pipe 46 connecting the compressor 43 and the gas chamber 41, and the air outlet 42 are covered and partitioned in the gas chamber 41. The container 64, a plurality of partition plates 81 that divide the interior of the container 64 for each air outlet 42, and a plurality of containers 64 provided at predetermined positions of the container 64 that do not face the connection portion 46 a to the gas chamber 41 of the sub air supply pipe 46. Through holes 67 a, 67 b, 67 c, 67 d, 67 e, and the passage area of the through hole 67 e of the container 64 corresponding to the air outlet 42 at the high position of the hull 10 is set to the air outlet at the low position of the hull 10. It is set to be smaller than the passage area of the through hole 67a of the container 64 corresponding to the mouth 42.
 従って、複数の空気吹き出し口42から吹き出される空気の流量が均等化されると共に、複数の空気吹き出し口42から吹き出される空気の拡散性も均等化されることで、船外壁に沿った空気の分布の均等化を図ることができる。 Accordingly, the flow rate of the air blown from the plurality of air blowing ports 42 is equalized, and the diffusibility of the air blown from the plurality of air blowing ports 42 is also equalized, so that the air along the outer wall of the ship Can be made uniform.
 なお、上述した各実施形態にて、四角い箱型形状をなす気体室41と、四角い箱型形状をなす容器64または円筒形状をなす容器101とを説明したが、この気体室41や容器64,101の形状に限定されるものではなく、船体10内の配置場所などに応じて適宜設定すればよいものである。 In each embodiment described above, the gas chamber 41 having a square box shape and the container 64 having a square box shape or the container 101 having a cylindrical shape have been described. It is not limited to the shape of 101, and may be set as appropriate according to the arrangement location in the hull 10 and the like.
 10 船体
 11 船首
 12 船尾
 13 船底
 14 左舷(船側)
 15 右舷(船側)
 21 空気供給機器室
 27 船底外板
 28,29 船側外板
 31 摩擦低減装置
 32 空気供給装置
 33 エアクーラ
 34 通風筒
 35 空気吸い込み口
 36,37 空気吹き出し部
 38 海水取入部
 39 ポンプ
 41 気体室
 42 空気吹き出し口
 43 圧縮機
 44 主空気供給配管
 45 メインチャンバ
 46 副空気供給配管(空気供給通路)
 61 天井部
 62 第1側壁部
 63 第2側壁部
 64,101 容器
 65,102 衝突板
 66 区画板
 67,67a,67b,67c,67d,67e,104 貫通孔
 103 区画筒(区画板)
 S1 空気供給空間
 S2,S21,S22,S23,S24,S25 空気流通空間
 X 船長方向
 Y 船幅方向
 Z 船高方向
10 Hull 11 Bow 12 Stern 13 Bottom 14 Port side (ship side)
15 Starboard (ship side)
DESCRIPTION OF SYMBOLS 21 Air supply equipment room 27 Ship bottom skin 28, 29 Ship side skin 31 Friction reduction device 32 Air supply device 33 Air cooler 34 Ventilation pipe 35 Air suction port 36, 37 Air blowing part 38 Seawater intake part 39 Pump 41 Gas chamber 42 Air blowing Port 43 Compressor 44 Main air supply pipe 45 Main chamber 46 Sub air supply pipe (air supply passage)
61 Ceiling part 62 First side wall part 63 Second side wall part 64, 101 Container 65, 102 Collision plate 66 Partition plate 67, 67a, 67b, 67c, 67d, 67e, 104 Through hole 103 Partition cylinder (partition plate)
S1 Air supply space S2, S21, S22, S23, S24, S25 Air circulation space X Captain direction Y Ship width direction Z Ship height direction

Claims (13)

  1.  船体の内部に設けられる気体室と、
     前記気体室内と前記船体の外方とを仕切る仕切壁と、
     前記仕切壁に設けられる複数の空気吹き出し口と、
     圧縮機と、
     前記圧縮機と前記気体室とを接続して前記気体室へ連通する通路面積が前記空気吹き出し口の開口面積より小さい面積に設定される空気供給通路と、
     前記気体室内で前記空気吹き出し口を被覆して区画する容器と、
     前記空気供給通路の前記気体室への接続部に対向しない前記容器の所定位置に設けられる複数の貫通孔と、
     を備えることを特徴とする船舶の摩擦低減装置。
    A gas chamber provided inside the hull;
    A partition wall that partitions the gas chamber and the outside of the hull;
    A plurality of air outlets provided in the partition wall;
    A compressor,
    An air supply passage in which a passage area connecting the compressor and the gas chamber and communicating with the gas chamber is set to an area smaller than an opening area of the air outlet;
    A container that covers and partitions the air outlet in the gas chamber;
    A plurality of through holes provided at predetermined positions of the container that do not oppose the connection portion of the air supply passage to the gas chamber;
    A ship friction reducing device characterized by comprising:
  2.  前記複数の空気吹き出し口は、前記船体の幅方向に沿って設けられ、前記貫通孔は、1個の前記空気吹き出し口に対応して複数個設けられ、前記空気供給通路の通路面積は、1個の前記空気吹き出し口の開口面積より小さい面積に設定されることを特徴とする請求項1に記載の船舶の摩擦低減装置。 The plurality of air outlets are provided along the width direction of the hull, a plurality of the through holes are provided corresponding to one air outlet, and the area of the air supply passage is 1 2. The ship friction reducing device according to claim 1, wherein the area is set to an area smaller than an opening area of each of the air outlets.
  3.  1個の前記貫通孔は、通路面積が1個の前記空気吹き出し口の開口面積より小さい面積に設定されることを特徴とする請求項2に記載の船舶の摩擦低減装置。 3. The ship friction reducing device according to claim 2, wherein the one through hole has a passage area smaller than an opening area of the one air outlet.
  4.  前記容器は、前記空気供給通路の前記気体室への接続部に対向する位置に配置される衝突板と、前記衝突板と前記仕切壁とを連結する区画板とを有し、前記貫通孔は、前記区画板に形成されることを特徴とする請求項1から請求項3のいずれか一項に記載の船舶の摩擦低減装置。 The container includes a collision plate disposed at a position facing a connection portion of the air supply passage to the gas chamber, and a partition plate that connects the collision plate and the partition wall, The ship friction reducing device according to any one of claims 1 to 3, wherein the friction reducing device is formed on the partition plate.
  5.  前記気体室は、前記仕切壁に対向する天井部と、前記仕切壁と前記天井部とを連結する側壁部とを有し、前記側壁部と前記区画板との間に所定隙間が設けられることを特徴とする請求項4に記載の船舶の摩擦低減装置。 The gas chamber has a ceiling portion facing the partition wall and a side wall portion connecting the partition wall and the ceiling portion, and a predetermined gap is provided between the side wall portion and the partition plate. The ship friction reducing device according to claim 4, wherein:
  6.  前記貫通孔は、前記仕切壁側に近接して設けられることを特徴とする請求項1から請求項5のいずれか一項に記載の船舶の摩擦低減装置。 6. The ship friction reducing device according to any one of claims 1 to 5, wherein the through hole is provided close to the partition wall side.
  7.  前記複数の空気吹き出し口は、前記船体の幅方向に沿って設けられ、前記容器は、前記複数の空気吹き出し口を被覆することを特徴とする請求項1から請求項6のいずれか一項に記載の船舶の摩擦低減装置。 The plurality of air outlets are provided along a width direction of the hull, and the container covers the plurality of air outlets. The ship friction reducing apparatus as described.
  8.  前記容器は、1個の衝突板と2個の区画板から構成され、長手方向の各端部が前記気体室の側壁部に連結され、前記区画板が連結されない前記側壁部と2個の前記区画板との間に所定隙間が設けられることを特徴とする請求項7に記載の船舶の摩擦低減装置。 The container is composed of one collision plate and two partition plates, each end portion in the longitudinal direction is connected to a side wall portion of the gas chamber, the side wall portion to which the partition plate is not connected, and the two The ship friction reducing device according to claim 7, wherein a predetermined gap is provided between the partition plates.
  9.  前記容器は、内部に前記空気吹き出し口ごとに区画する仕切板が設けられることを特徴とする請求項8に記載の船舶の摩擦低減装置。 9. The ship friction reducing device according to claim 8, wherein the container is provided with a partition plate inside the container for each air outlet.
  10.  前記複数の空気吹き出し口は、前記船体の幅方向に沿って設けられ、前記容器は、前記複数の空気吹き出し口ごとに被覆するように複数設けられ、前記貫通孔は、複数の前記容器に複数設けられることを特徴とする請求項1から請求項7のいずれか一項に記載の船舶の摩擦低減装置。 The plurality of air outlets are provided along the width direction of the hull, the plurality of containers are provided so as to cover each of the plurality of air outlets, and the plurality of through holes are provided in the plurality of containers. The ship friction reducing device according to any one of claims 1 to 7, wherein the ship friction reducing device is provided.
  11.  前記貫通孔は、前記容器に複数設けられ、少なくとも一つの前記貫通孔に着脱自在なプラグが装着されることを特徴とする請求項1から請求項10のいずれか一項に記載の船舶の摩擦低減装置。 11. The ship friction according to claim 1, wherein a plurality of the through holes are provided in the container, and a detachable plug is attached to at least one of the through holes. Reduction device.
  12.  前記空気供給通路は、中途部から分岐して主通路と副通路が設けられ、前記主通路と前記副通路は、それぞれ前記気体室に接続されると共に、開閉弁が設けられることを特徴とする請求項1から請求項11のいずれか一項に記載の船舶の摩擦低減装置。 The air supply passage is branched from an intermediate portion to be provided with a main passage and a sub-passage, and the main passage and the sub-passage are respectively connected to the gas chamber and provided with an on-off valve. The ship friction reducing device according to any one of claims 1 to 11.
  13.  前記圧縮機は、500kPa以上の圧縮空気を前記気体室に供給可能であることを特徴とする請求項1から請求項12のいずれか一項に記載の船舶の摩擦低減装置。 The ship's friction reduction device according to any one of claims 1 to 12, wherein the compressor is capable of supplying compressed air of 500 kPa or more to the gas chamber.
PCT/JP2017/047059 2017-01-31 2017-12-27 Friction reducing device for ship WO2018142825A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020187036691A KR102258219B1 (en) 2017-01-31 2017-12-27 Ship's friction reduction device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017016149A JP6655563B2 (en) 2017-01-31 2017-01-31 Ship friction reduction device
JP2017-016149 2017-01-31

Publications (1)

Publication Number Publication Date
WO2018142825A1 true WO2018142825A1 (en) 2018-08-09

Family

ID=63040176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/047059 WO2018142825A1 (en) 2017-01-31 2017-12-27 Friction reducing device for ship

Country Status (3)

Country Link
JP (1) JP6655563B2 (en)
KR (1) KR102258219B1 (en)
WO (1) WO2018142825A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102663786B1 (en) * 2018-11-13 2024-05-07 한화오션 주식회사 Ship having air lubrication system using engine scavenge air

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5777283A (en) * 1980-10-30 1982-05-14 Mitsubishi Heavy Ind Ltd Masking and emitting device in ship
JP2012166704A (en) * 2011-02-15 2012-09-06 National Maritime Research Institute Bubble blowout device for reducing frictional resistance of ship
JP2015081043A (en) * 2013-10-23 2015-04-27 三菱重工業株式会社 Friction drag reduction device, ship with friction drag reduction device, and ship friction drag reduction method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4953296B2 (en) * 2006-12-08 2012-06-13 独立行政法人海上技術安全研究所 Hull frictional resistance reduction device
JP4959667B2 (en) 2008-11-21 2012-06-27 三菱重工業株式会社 Hull frictional resistance reduction device
PL2367717T3 (en) * 2008-12-02 2014-03-31 Dk Group Acs B V Positive pressure micro bubble generator
JP5314565B2 (en) * 2009-10-26 2013-10-16 三菱重工業株式会社 Ship resistance reduction device
KR101595701B1 (en) * 2015-07-02 2016-02-19 현대중공업 주식회사 Air lubrication system having inner chamber for ship

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5777283A (en) * 1980-10-30 1982-05-14 Mitsubishi Heavy Ind Ltd Masking and emitting device in ship
JP2012166704A (en) * 2011-02-15 2012-09-06 National Maritime Research Institute Bubble blowout device for reducing frictional resistance of ship
JP2015081043A (en) * 2013-10-23 2015-04-27 三菱重工業株式会社 Friction drag reduction device, ship with friction drag reduction device, and ship friction drag reduction method

Also Published As

Publication number Publication date
JP6655563B2 (en) 2020-02-26
KR20190009347A (en) 2019-01-28
JP2018122717A (en) 2018-08-09
KR102258219B1 (en) 2021-05-28

Similar Documents

Publication Publication Date Title
JP5022346B2 (en) Hull frictional resistance reduction device
US8402906B2 (en) Device for reducing frictional resistance of ship body
WO2010058614A1 (en) Device for reducing frictional resistance of ship body
JP2005536402A5 (en)
JP2011088605A (en) Resistance reduction device of ship
WO2012042947A1 (en) Air lubrication system for ship
KR101980738B1 (en) Water-jet type air lubrication device for reducing frictional resistance of a ship
WO2018142825A1 (en) Friction reducing device for ship
KR19990023663A (en) Friction Reducing Ships with Compressed Air Generator, Friction Reduction Device and Gas Blowing Device
KR101706489B1 (en) Ship having reduced frictional resistance
KR20160144365A (en) Use of an air lubrication system for reducing marine growth on a vessel
JPH07156859A (en) Method to reduce friction of sailing body and friction reducing sailing body and generating method of microbubble used to reduce friction and device thereof
WO2018142805A1 (en) Friction reducing device for ship
EP3315396B1 (en) Frictional resistance-reducing device and ship including same
US6881109B2 (en) Jet-propulsion watercraft
KR20180106904A (en) Ship
JP5138804B1 (en) Ship
JP2018122717A5 (en)
WO2018168585A1 (en) Ship
JP2015163492A (en) Friction reduction device of ship
JPH11301570A (en) Air outlet container for ship with reduced frictional resistance
CN116476971A (en) Bubble drag reduction system and ship comprising same
KR20180106871A (en) Vessel resistance reduction device
US650535A (en) Pneumatic propeller.
JP2846280B2 (en) Outboard drainage silencer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894969

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187036691

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894969

Country of ref document: EP

Kind code of ref document: A1