WO2018142772A1 - Combustion burner and boiler provided with same - Google Patents
Combustion burner and boiler provided with same Download PDFInfo
- Publication number
- WO2018142772A1 WO2018142772A1 PCT/JP2017/044446 JP2017044446W WO2018142772A1 WO 2018142772 A1 WO2018142772 A1 WO 2018142772A1 JP 2017044446 W JP2017044446 W JP 2017044446W WO 2018142772 A1 WO2018142772 A1 WO 2018142772A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- secondary air
- fuel
- air
- flow path
- gas flow
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C99/00—Subject-matter not provided for in other groups of this subclass
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D1/00—Burners for combustion of pulverulent fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23L—SUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
- F23L1/00—Passages or apertures for delivering primary air for combustion
Definitions
- the present invention relates to a combustion burner applied to a boiler for generating steam for power generation or factory use, and a boiler equipped with the combustion burner.
- a fuel gas which is a mixture of a pulverized carbon-containing solid fuel such as pulverized coal
- a carrier gas such as pulverized coal
- an air nozzle for supplying air to the furnace from the outside of the fuel nozzle
- the combustion burner of Patent Document 1 is provided with an additional air nozzle that ejects additional air having a velocity component in the circumferential direction of the fuel nozzle, and promotes mixing of the fuel and air conveyed by a low oxygen concentration carrier gas. is there.
- the combustion burner of Patent Document 2 arranges a divergence cone near the center axis of the fuel nozzle to reduce the amount of fuel flowing along the center axis, and introduces heated gas into the fuel nozzle so that the central portion of the primary flow
- the fuel gasification is promoted by increasing the stoichiometric ratio of the fuel to the fuel.
- a combustion burner in which a flame holder that forms a recirculation flow in the vicinity of the central axis of the fuel nozzle in the upstream portion of the fuel gas flow from the tip of the fuel nozzle is known.
- the fuel is ignited by receiving radiation from the adjacent flame, and the high-temperature gas generated by the ignition is kept in the vicinity of the ignition part as a recirculation flow by the flame holder.
- Flame holding is performed.
- This flame stabilizer is installed on the outer periphery of the mixed flow of pulverized coal and primary air is called outer periphery ignition or external flame holding, and the case where it is installed inside the cross section of the mixed flow is internal ignition or internal flame holding. That's it.
- Reduction of NOx can be realized by reducing nitrogen oxide (NOx) generated by combustion in a reducing atmosphere with insufficient air.
- NOx nitrogen oxide
- the ratio of the mass of air to the mass of, for example, coal (pulverized coal) as the carbon-containing solid fuel (hereinafter referred to as “A / C ratio”) It is desirable to promote ignition by surrounding flame radiation.
- the oxidative combustion of the fuel near the tip of the fuel nozzle in the furnace increases with an increase in the unburned fuel, and the amount of NOx generated increases due to the high flame temperature.
- the A / C ratio in the fuel gas is too high, the release of combustible volatiles contained in the fuel is delayed due to the difficulty of receiving the radiation of the surrounding flame, and the delay in contact with the secondary air.
- the amount of NOx generated increases due to the high flame temperature due to the oxidative combustion of the released volatile matter.
- Patent Document 1 additional air is jetted in the vicinity of the fuel nozzle outlet in order to accelerate the ignition of the fuel conveyed by the carrier gas having a low oxygen concentration.
- Patent Document 1 since many of the fuel particles flow along the outer partition wall of the fuel nozzle by the concentrator, external ignition or external flame holding is performed.
- the external ignition method with a flame holder on the outer periphery of the nozzle if the A / C ratio increases, the jet velocity of the pulverized coal flow only increases and the recirculation zone around the flame holder does not change. Will leave. Therefore, in Patent Document 1, the amount of NOx generated increases due to external ignition or external flame holding.
- Patent Document 2 a secondary flow is introduced into the upstream portion of the outlet end of the fuel injector in order to increase the stoichiometric ratio in the central portion of the primary flow.
- the amount of fuel flowing to the outer peripheral side of the central shaft is increased by the diverging cone provided in the fuel injector, so external ignition or external flame holding is performed. Therefore, in Patent Document 2, the amount of NOx generated increases due to external ignition or external flame holding.
- An object of the present invention is to provide a combustion burner and a boiler including the combustion burner.
- a combustion burner according to the present disclosure includes a fuel gas flow that extends in a cylindrical shape along an axis and supplies a fuel gas obtained by mixing a fuel containing pulverized carbon-containing solid fuel and primary air to a furnace.
- a fuel nozzle that forms a path, a secondary air nozzle that extends in a cylindrical shape along the axis and through which secondary air having a higher temperature than the fuel gas flows, and is formed between the secondary air nozzle and the fuel nozzle
- a secondary air flow path for supplying the secondary air to the furnace, and a secondary air introduction flow path for introducing at least part of the secondary air flowing through the secondary air flow path into the fuel gas flow path
- a flame holder disposed in the vicinity of a tip portion opened to the furnace in the fuel nozzle, wherein the secondary air introduction flow path is at least part of the secondary air to the fuel gas flow path. From the introduction position to introduce the flame holding 2 ⁇ L / W ⁇ 5, where L is the distance in the gas flow direction along the axis to the installation position, and W is the minimum width of the fuel gas flow path from the introduction position to the installation position. Fulfill.
- the combustion burner of the present disclosure at least a part of the secondary air having a temperature higher than that of the fuel gas flowing through the secondary air flow path is generated from the secondary air flow path by the secondary air introduction flow path.
- the fuel gas which is a mixture of the pulverized fuel and the primary air, is guided to the fuel gas flow path. Since the flame holder is disposed in the vicinity of the tip of the fuel nozzle that opens to the furnace, the ignitability of the fuel at the outlet of the fuel gas passage is improved and the flammable volatile matter contained in the fuel is released. Since the combustion of fixed carbon is promoted and the reduction of NOx is promoted, the amount of NOx generated is reduced.
- the flame holder holds the flame on the primary air side, even if the flow rate of the secondary air flowing through the secondary air flow path is reduced by guiding at least a part of the secondary air to the fuel gas flow path side, Good flame holding can be realized.
- the recirculation zone formed around the flame holder is strengthened by mixing the secondary air and increasing the flow velocity around the internal flame holder. Can keep ignition strong. If ignition can be kept strong, the mixed flow of fuel and primary air will be supplied in a shortage of air, and the volatile matter and unburned matter of pulverized coal will have a NOx reduction effect. It can be fully reduced in the jet.
- the combustion burner of the present invention since at least a part of the secondary air is guided to the fuel gas flow path, it is not necessary to increase the flow rate of the primary air in order to increase the A / C ratio of the fuel gas. Therefore, it is possible to suppress problems such as an increase in the power of the ventilator due to an increase in the flow rate of the primary air, a decrease in the classification accuracy of the pulverizer, and an increase in the wear amount of the transport pipe that transports the fuel.
- the distance in the gas flow direction along the axis from the introduction position of the secondary air to the installation position of the flame stabilizer is L, and the fuel gas flow path from the introduction position to the installation position
- 2 ⁇ L / W ⁇ 5 is satisfied.
- the reason why 2 ⁇ L / W is set is to secure a sufficient distance for uniformly mixing the fuel gas passing through the flame holder with the secondary air.
- L / W1 ⁇ 5 is set to prevent an increase in the size of the combustion burner. In this way, the combustion burner is prevented from being enlarged while ensuring a sufficient distance in the gas flow direction from when the secondary air is introduced into the fuel gas passage until it reaches the flame holder.
- ignition or flame holding by the flame holder can be performed in a state where the secondary air and the fuel gas have a more uniform concentration distribution.
- a combustion burner capable of reducing the amount of NOx generated by promoting the release of combustible volatile components contained in the fuel while suppressing the release of unburned fuel to the furnace.
- a boiler can be provided.
- the pulverized coal fired boiler to which the combustion burner of the first embodiment is applied uses pulverized coal obtained by pulverizing coal as a carbon-containing solid fuel, burns the pulverized coal with a combustion burner, and recovers heat generated by the combustion. It is a possible boiler.
- the pulverized coal fired boiler 10 of the present embodiment is a conventional boiler, and includes a furnace 11, a combustion device 12, and a flue 13.
- the furnace 11 has a rectangular hollow shape and is installed along the vertical direction.
- a combustion device 12 is provided at the lower part of the furnace wall constituting the furnace 11.
- the combustion apparatus 12 has a plurality of combustion burners 100A, 100B, 100C, 100D, and 100E mounted on the furnace wall.
- the combustion burners 100A, 100B, 100C, 100D, and 100E are arranged as a set having four equal intervals along the circumferential direction with the vertical direction in which the furnace 11 extends as the central axis. 5 sets (5 stages) are arranged along the vertical direction. In addition, although it was set as 5 sets here, it can be set to 6 sets or other arbitrary sets.
- Each combustion burner 100A, 100B, 100C, 100D, 100E is supplied to a pulverized coal machine (mill; pulverizer) 31, 32, 33, 34, 35 via a pulverized coal supply pipe 26, 27, 28, 29, 30. It is connected to.
- the pulverized coal machines 31, 32, 33, 34, and 35 are supported in a housing so that the pulverization table can be driven to rotate with a rotation axis along the vertical direction, and face the upper side of the pulverization table.
- a plurality of crushing rollers are configured to be rotatably supported in conjunction with the rotation of the crushing table.
- pulverized coal that has been crushed to a predetermined size and classified by air for transportation is supplied to the pulverized coal supply pipe 26, 27, 28, 29, 30 are supplied to the combustion burners 100A, 100B, 100C, 100D, 100E.
- the furnace 11 is provided with a wind box 36 at a mounting position of each combustion burner 100A, 100B, 100C, 100D, 100E, and one end portion of an air duct (secondary air supply pipe) 37 is provided in the wind box 36.
- the air duct 37 is connected to a blower 38 at the other end.
- the furnace 11 is provided with an additional air nozzle 39 vertically above the mounting position of each combustion burner 100A, 100B, 100C, 100D, 100E.
- the additional air nozzle 39 is connected to an end of a branched air duct 40 branched from the air duct 37.
- combustion air (secondary air) sent by the blower 38 is supplied from the air duct 37 to the wind box 36 and supplied from the wind box 36 to the combustion burners 100A, 100B, 100C, 100D, and 100E.
- combustion air (additional air) sent by the blower 38 can be supplied from the branch air duct 40 to the additional air nozzle 39.
- each combustion burner 100 ⁇ / b> A, 100 ⁇ / b> B, 100 ⁇ / b> C, 100 ⁇ / b> D, 100 ⁇ / b> E has a pulverized fuel mixture (fuel gas) obtained by mixing pulverized coal and carrier air (primary air) in the furnace 11.
- combustion air can be blown into the furnace 11.
- the combustion device 12 can form a flame by igniting the pulverized fuel mixture with an ignition torch (not shown).
- a flue 13 is connected to an upper part in the vertical direction, and a superheater (super heater) 41, which is a heat exchanger for recovering heat of combustion gas as a convection heat transfer section, is connected to the flue 13.
- reheaters 43 and 44, and economizers 45, 46, and 47 are provided, and heat exchange is performed between the combustion gas generated by the combustion in the furnace 11 and water or steam.
- the flue 13 is connected to an exhaust gas pipe 48 through which the combustion gas subjected to heat exchange is discharged as exhaust gas on the downstream side of the gas flow.
- the exhaust gas pipe 48 is provided with an air heater 49 between the air duct 37 and performs heat exchange between the air flowing through the air duct 37 and the exhaust gas flowing through the exhaust gas pipe 48, and the combustion burners 100A, 100B, 100C, The temperature of combustion air supplied to 100D and 100E can be raised.
- the combustion air is heated to 280 ° C. to 320 ° C., for example.
- the exhaust gas pipe 48 is provided with a denitration device, an electrostatic precipitator, an induction blower, and a desulfurization device, and a chimney is provided at the downstream end.
- the pulverized coal supply pipes (fuel supply pipes) 26, 27, 28, 29, 30 is supplied to the combustion burners 100A, 100B, 100C, 100D, and 100E.
- heated combustion air (secondary air) is supplied from the air duct 37 to the combustion burners 100A, 100B, 100C, 100D, and 100E through the wind box 36, and an additional air nozzle is supplied from the branch air duct 40. 39.
- the temperature of the carrier air (primary air) is low so that the pulverized coal does not ignite, and the combustion air (secondary air) is heated by the air heater 49, so the temperature is higher than the primary air and the pulverized fuel mixture. .
- the combustion burners 100A, 100B, 100C, 100D, and 100E blow the pulverized fuel mixture (fuel gas), which is a mixture of pulverized coal and carrier air, into the furnace 11 and the combustion air into the furnace 11.
- fuel gas which is a mixture of pulverized coal and carrier air
- the additional air nozzle 39 can perform combustion control for blowing additional air into the furnace 11 and optimizing the amount of air with respect to the pulverized coal.
- the pulverized fuel mixture and the combustion air are burned to generate a flame.
- the combustion gas exhaust gas
- the combustion burners 100A, 100B, 100C, 100D, and 100E blow the pulverized coal mixture and the combustion air (secondary air) into the combustion region in the furnace 11, and ignite at this time, so that the flame swirls in the combustion region. Is formed. This flame swirl rises while swirling and reaches the reduction region.
- the additional air nozzle 39 blows additional air vertically above the reduction region in the furnace 11. In the furnace 11, the interior is maintained in a reducing atmosphere by setting the air supply amount to be less than the theoretical air amount with respect to the pulverized coal supply amount.
- the NOx generated by the combustion of the pulverized coal is reduced in the furnace 11, and then additional air (additional air) is supplied to complete the oxidation combustion of the pulverized coal, and the amount of NOx generated by the combustion of the pulverized coal is reduced. Reduced.
- the water supplied from the water supply pump (not shown) is preheated by the economizers 45, 46 and 47, then supplied to the steam drum (not shown) and supplied to each water pipe (not shown) on the furnace wall.
- the saturated steam of the steam drum is introduced into the superheaters 41 and 42 and is heated by the combustion gas.
- the superheated steam generated by the superheaters 41 and 42 is supplied to a turbine (not shown) of the power plant.
- the steam taken out in the middle of the expansion process of the steam supplied by the turbine is introduced into the reheaters 43 and 44, is again superheated, is returned to the turbine and expands, and the turbine is rotationally driven.
- the furnace 11 was demonstrated as a drum type
- the exhaust gas that has passed through the economizers 45, 46, and 47 of the flue 13 is subjected to removal of harmful substances such as NOx by the supplied ammonia and catalyst in the denitration device (not shown) in the exhaust gas pipe 48, Particulate matter is removed with an electric dust collector, sulfur content is removed with a desulfurizer, and then discharged from the chimney into the atmosphere.
- each combustion burner 100A, 100B, 100C, 100D, 100E which comprises this combustion apparatus 12 has comprised the substantially the same structure, it is located in the uppermost stage. Only the combustion burner 100A will be described.
- the combustion burner 100 ⁇ / b> A includes combustion burners 100 ⁇ / b> Aa, 100 ⁇ / b> Ab, 100 ⁇ / b> Ac, 100 ⁇ / b> Ad provided on four wall surfaces in the furnace 11.
- Each combustion burner 100Aa, 100Ab, 100Ac, 100Ad is connected to each branch pipe 26a, 26b, 26c, 26d branched from the pulverized coal supply pipe 26, and each branch pipe 37a, 37b, 37c branched from the air duct 37. , 37d are connected.
- each combustion burner 100Aa, 100Ab, 100Ac, 100Ad on each wall surface of the furnace 11 has a pulverized fuel mixture in which pulverized coal and transport air (primary air) are mixed with the furnace 11 in the center of the furnace 11. In contrast, the air is blown with a slight deviation angle, and combustion air (secondary air) is blown to the outside of the pulverized fuel mixture. Then, by igniting the pulverized fuel mixture from each combustion burner 100Aa, 100Ab, 100Ac, 100Ad, four flames F1, F2, F3, F4 can be formed, and this flame F1, F2, F3, F4 Is a flame swirl flow swirling counterclockwise as viewed from above the furnace 11 (in FIG. 2).
- the combustion burners 100Aa, 100Ab, 100Ac, and 100Ad may be arranged so as to form a flame swirl flow that rotates clockwise.
- the combustion burner 100A As shown in the longitudinal sectional view of FIG. 3, the combustion burner 100 ⁇ / b> A of the present embodiment includes a fuel nozzle 110, a secondary air nozzle 120, a secondary air introduction flow path 130, and a flame holder 140. 3 is a cross-sectional view taken along the line II-II of a combustion burner 100A shown in FIG. 4 to be described later.
- the fuel nozzle 110 is a member formed to extend in a cylindrical shape along the axis X1.
- the fuel nozzle 110 forms therein a fuel gas passage 111 for supplying the pulverized fuel mixture supplied from the pulverized coal supply pipe 26 to the furnace 11.
- the fuel nozzle 110 includes a distal end side nozzle 110a disposed adjacent to the furnace 11, and a proximal end side nozzle 110b disposed upstream of the distal end side nozzle 110a.
- the distal end side nozzle 110a and the proximal end side nozzle 110b are connected in a state where the secondary air introduction flow path 130 is disposed therebetween.
- the shape of the portion of the tip side nozzle 110a facing the furnace 11 is a shape extending straight in the same direction as the gas flow direction of the pulverized fuel mixture. This is to prevent the pulverized coal contained in the pulverized fuel mixture from being guided to the outer peripheral side with respect to the central axis (axis line X1) of the fuel gas passage 111.
- the pulverized coal contained in the pulverized fuel mixture is led to the outer peripheral side, the pulverized coal burns in the region in the high-temperature and high-oxygen concentration furnace 11, and the amount of NOx generated increases in the region where NOx is not reduced. End up. Therefore, the shape of the part where the tip side nozzle 110a faces the furnace 11 performs internal flame holding or internal ignition as a shape that suppresses external flame holding or external ignition.
- the minimum width W1 of the front end side nozzle 110a of the fuel gas flow path 111 is larger than the minimum width W2 of the base end side nozzle 110b of the fuel gas flow path 111. This is because the flow rate of secondary air introduced from the secondary air introduction passage 130 to the fuel gas passage 111 increases, so that the flow rate of the pulverized fuel mixture flowing through the front end side nozzle 110a becomes the base end side nozzle 110b. This is so as not to increase more than the flow rate of the pulverized fuel mixture flowing through the fuel cell.
- the relationship between the minimum width W1 and the minimum width W2 is that the cross-sectional area of the tip nozzle 110a at the second position P2 on the downstream side of the gas flow with respect to the first position P1 is It is set to be larger than the cross-sectional area of the base end side nozzle 110b at the third position P3. Introducing a part of the secondary air from the secondary air introduction flow path 130 to the fuel gas flow path 111 suppresses problems due to an increase in the flow rate of the finely divided fuel mixture flowing through the fuel gas flow path 111, The internal flame holding can be stabilized.
- the secondary air nozzle 120 is a member that is formed so as to extend in a cylindrical shape along the axis X1 and is disposed so as to surround the outside with respect to the axis X1 of the fuel nozzle 110.
- the secondary air nozzle 120 forms an annular secondary air flow path 121 that supplies secondary air to the furnace 11 between its inner peripheral surface and the outer peripheral surface of the fuel nozzle 110.
- a part of the combustion air (secondary air) flowing into the secondary air nozzle 120 is introduced from the secondary air introduction flow path 130 to the fuel gas flow path 111, and the other is in the secondary air flow path 121. It is supplied to the furnace 11 from the tip.
- the secondary air introduction flow path 130 is a flow path for introducing a part of the secondary air flowing through the secondary air flow path 121 to the fuel gas flow path 111. 4 (end view of the combustion burner shown in FIG. 3 as viewed in the direction of arrow II) and FIG. 5, the secondary air introduction flow path 130 includes an upper introduction portion 131 disposed vertically above the fuel gas flow path 111. 132, 133, 134 and lower introduction portions 135, 136, 137, 138 disposed vertically below the fuel gas passage 111.
- FIG. 5 is a perspective view showing a part of the combustion burner 100A shown in FIG. 3 with the secondary air nozzle 120 removed.
- positioned inside the fuel nozzle 110 among the secondary air introduction flow paths 130 is shown with the broken line.
- arrows indicated by solid lines indicate the secondary air introduced from the secondary air passage 121 to the fuel gas passage 111 and the secondary air flowing through the secondary air passage 121 without being guided to the fuel gas passage 111. Indicates air.
- an arrow indicated by a broken line indicates a pulverized fuel mixture flowing through the fuel gas passage 111.
- the upper introduction portions 131, 132, 133, and 134 are arranged in a dispersed manner at a certain interval along a horizontal direction perpendicular to the gas flow direction of the pulverized fuel mixture along the axis X1.
- the lower introduction parts 135, 136, 137, and 138 are dispersed and arranged at a constant interval along a horizontal direction perpendicular to the gas flow direction of the pulverized fuel mixture along the axis X 1.
- the intervals at which the upper introduction portions 131, 132, 133, and 134 and the lower introduction portions 135, 136, 137, and 138 are arranged are constant along the horizontal direction, but they may be arranged at arbitrary intervals. .
- a space in which the pulverized fuel mixture flows is provided between the upper introduction portion 131 and the upper introduction portion 132 at the vertical position where the upper introduction portions 131, 132, 133, and 134 are disposed.
- a space through which the pulverized fuel mixture flows is provided between the upper introduction portion 132 and the upper introduction portion 133, and a space through which the pulverized fuel mixture flows is provided between the upper introduction portion 133 and the upper introduction portion 134. It has been.
- a space is provided between the lower introduction portion 135 and the lower introduction portion 136 to allow the pulverized fuel mixture to flow therethrough.
- a space in which the pulverized fuel mixture flows is provided between 136 and the lower introduction portion 137, and a space in which the pulverized fuel mixture flows is provided between the lower introduction portion 137 and the lower introduction portion 138.
- a part of the member forming the secondary air introduction flow path 130 forms a part of the fuel gas flow path 111.
- a portion where the lower surface 133a of the upper introduction portion 133 and the upper surface 137a of the lower introduction portion 137 are arranged is a cross-sectional area of the fuel gas flow passage 111.
- the shape is gradually reduced. Therefore, the lower surface 133a and the upper surface 137a are easily worn by direct contact with the flow of pulverized coal in the pulverized fuel mixture. Therefore, it is preferable to install a wear-preventing member (for example, a ceramic plate-like member) in the portions of the lower surface 133a and the upper surface 137a facing the fuel gas flow path 111 in order to suppress wear.
- a wear-preventing member for example, a ceramic plate-like member
- the flame holder 140 is arranged on the upstream side of the gas flow in the ejection direction of the pulverized fuel mixture with respect to the tip side nozzle 110a of the fuel nozzle 110 adjacent to the furnace 11, and is used for ignition and flame holding of the pulverized fuel mixture. It functions as.
- the flame holder 140 has long widened portions 141, 142, and 143 that are formed to extend along the horizontal direction. As shown in FIG. 3, the widened portions 141, 142, and 143 are disposed in the vicinity of the tip portion 110 c where the fuel nozzle 110 faces the furnace 11, with an interval along the vertical direction.
- the widened portions 141, 142, and 143 have an isosceles triangular cross section, and in the gas flow direction toward the gas flow downstream side of the gas flow direction of the pulverized fuel mixture.
- the width of the orthogonal cross section is widened, and the front end is disposed on a plane orthogonal to the flow direction of the pulverized fuel mixture.
- the widened portions 141, 142, and 143 are not limited to the isosceles triangular cross section, and may have a split shape that separates the flow of the pulverized fuel mixture and forms a recirculation region downstream of the gas flow.
- the cross section may be Y-shaped.
- the pulverized fuel mixture flowing through the fuel gas passage 111 and the secondary air introduced from the secondary air passage 121 are gently diffused and mixed to be supplied to the furnace 11 with a uniform concentration distribution.
- the upper introduction part 133 which the secondary air introduction flow path 130 has is demonstrated, since it is the same also about the upper introduction parts 131,132,134, description is abbreviate
- the lower introduction part 137 which the secondary air introduction flow path 130 has since it is the same also about the lower introduction parts 135,136,138, description is abbreviate
- the pulverized fuel mixture supplied from the pulverized coal supply pipe 26 to the fuel gas passage 111 flows from the proximal nozzle 110b to the distal nozzle 110a along the direction indicated by the arrow 201 in FIG.
- the gas flows from the third position P3 in the gas flow direction toward the first position P1.
- combustion air (secondary air) supplied from the air duct 37 to the secondary air nozzle 120 flows into the secondary air flow path 121 along the directions indicated by arrows 301 and 302 in FIG.
- a portion of the secondary air that has flowed into the secondary air flow path 121 flows into the upper introduction portion 133 along the direction indicated by the arrow 303 and is introduced vertically downward toward the axis X1 that is the central axis of the fuel nozzle 110. Then, it flows into the fuel gas flow path 111 along the direction indicated by the arrow 305. Further, part of the secondary air that has flowed into the secondary air flow path 121 flows into the lower introduction portion 137 along the direction indicated by the arrow 304, and vertically upwards toward the axis X 1 that is the central axis of the fuel nozzle 110. And flows into the fuel gas flow path 111 along the direction indicated by the arrow 306.
- the direction along the axis X2 indicated by the arrow 305 is the same direction as the axis X1
- the direction along the axis X3 indicated by the arrow 306 is the same direction as the axis X1. Therefore, the upper introduction part 133 and the lower introduction part 137 introduce a part of the secondary air into the fuel gas flow path 111 at a flow rate having a main component in the gas flow direction of the pulverized fuel mixture along the axis X1.
- the introduced secondary air is introduced from the secondary air introduction channel 130 to the fuel gas channel 111 at a flow velocity having a main component in the gas flow direction of the pulverized fuel mixture. Mix while gently diffusing without causing large disturbances.
- the introduced secondary air and the fine powder are arranged.
- the fuel mixture is mixed in a state adjacent to the fuel gas passage 111.
- the lower introduction portions 135, 136, 137, and 138 are discretely arranged along the horizontal direction orthogonal to the gas flow direction of the pulverized fuel mixture, the introduced secondary air and The pulverized fuel mixture is mixed in a state adjacent to the fuel gas flow path 111.
- the introduced secondary air and the pulverized fuel mixture are mixed in a state adjacent to each other in the fuel gas passage 111, and further, the secondary air introduction passage 130 is dispersed to a plurality of introduction portions, thereby increasing the chance of gas diffusion. Can improve diffusibility and make it uniform. Thereby, compared with the case where secondary air is introduced into the fuel gas flow path 111 from a single introduction part, the secondary air and the pulverized fuel mixture are better without being ignited in the region in contact with the secondary air. Mixed.
- the upper introduction portions 131, 132, 133, and 134 of the secondary air introduction flow path 130, and the lower introduction It is preferable that the portions 135, 136, 137, and 138 introduce secondary air at the same flow rate and the same flow rate so as to be symmetrical with respect to at least the axis X1. For this reason, it is preferable that the flow path cross-sectional areas of the upper introduction parts 131, 132, 133, and 134 and the lower introduction parts 135, 136, 137, and 138 are at least symmetrical with respect to the axis X1.
- each introduced secondary air can be made symmetric with respect to the axis X1 by adjusting the cross-sectional areas of the upper introduction portions 131, 132, 133, and 134 and the lower introduction portions 135, 136, 137, and 138 with a damper (not shown). Is possible.
- the first position P ⁇ b> 1 (secondary air is introduced) where the secondary air introduction passage 130 introduces a part of the secondary air into the fuel gas passage 111 along the axis X ⁇ b> 1.
- the distance in the gas flow direction from the introduction position) to the fourth position P4 (installation position where the flame stabilizer 140 is installed) at the upstream end of the flame holder 140 is L, and the distance in the tip side nozzle 110a of the fuel gas passage 111 is
- W1 (W) the minimum width is W1 (W)
- the distance L from the first position P1 to the fourth position P4 is made sufficiently larger than the minimum width W1 of the tip side nozzle 110a, so that the fuel gas flow path 111 is formed at the first position P1.
- the introduced secondary air and the pulverized fuel mixture are sufficiently mixed so as to obtain a uniform concentration distribution. Further, the mixing of the introduced secondary air and the pulverized fuel mixture is selected by adjusting and optimizing the shape and size of the secondary air introduction flow path 130. The reason why 2 ⁇ L / W1 is set is that the pulverized fuel mixture passing through the flame holder 140 is a pulverized fuel mixture uniformly mixed with the introduced secondary air.
- the mixing with the introduced secondary air is promoted. Since there is a case where ignition occurs between secondary air having a temperature higher than that of air, there is an upper limit of the shape and size of the secondary air introduction flow path 130.
- L / W1 ⁇ 5.
- the pulverized fuel mixture mixed with the secondary air at the first position P1 circulates in the direction indicated by the arrows 202, 203, 204 from the first position P1 toward the fourth position P4 in the direction indicated by the arrows 202, 203, 204, and holds the flame.
- the upstream end of the vessel 140 is reached.
- the pulverized fuel mixture is separated by the widened portions 141, 142, and 143 of the flame stabilizer 140 into the upper and lower parts in the vertical direction and recirculated immediately after the widened portions 141, 142, and 143 are downstream in the gas flow direction. It flows into the furnace 11 while forming a region.
- the pulverized fuel mixture which is separated and then recirculated by the flame holder 140 is burned and flame-held. At this time, by introducing a part of the secondary air to the fuel gas passage 111, the combustion of the pulverized coal in the pulverized fuel mixture is promoted by increasing the A / C ratio, and the unburned portion decreases. .
- the combustion burner 100 ⁇ / b> A of the present embodiment at least a part of the secondary air having a temperature higher than that of the fuel gas flowing through the secondary air flow path 121 is separated from the secondary air flow path 121 by the secondary air introduction flow path 130.
- the fuel gas passage 111 through which the fine fuel mixture is circulated is introduced. Since the flame holder 140 is disposed in the vicinity of the tip 110c that opens to the furnace 11 in the fuel nozzle 110, the ignitability of the fuel at the outlet of the fuel gas passage 111 is improved and the combustibility contained in the fuel is increased. Since the release of volatile matter is promoted and the reduction of NOx is promoted, the amount of NOx generated is reduced.
- the combustion burner 100A of this embodiment since at least a part of the secondary air is guided to the fuel gas passage 111, it is necessary to increase the flow rate of the primary air in order to increase the A / C ratio of the fuel gas. There is no. For this reason, there are problems such as an increase in the power of the ventilator due to an increase in the flow rate of the primary air, a decrease in the classification accuracy of the pulverized coal machines 31, 32, 33, 34, and 35, and an increase in the amount of wear on the transport pipe that carries the fuel Can be suppressed.
- the reason why 2 ⁇ L / W is set is to ensure a sufficient distance for uniformly mixing the fuel gas passing through the flame holder 140 with the secondary air.
- L / W1 ⁇ 5 is set to prevent the combustion burner 100Ac from becoming large.
- the combustion burner 100Ac is prevented from being enlarged while a sufficient distance in the gas flow direction from when the secondary air is introduced into the fuel gas passage 111 to the flame holder 140 is secured.
- the flame holder 140 can perform ignition or flame holding in a state where the introduced secondary air and fuel gas have a more uniform concentration distribution.
- the secondary air introduction channel 130 introduces at least part of the secondary air into the fuel gas channel 111 at a flow rate having a main component in the gas flow direction.
- the secondary air is introduced from the secondary air introduction channel 130 to the fuel gas channel 111 with a flow velocity of the main component in the gas flow direction of the fuel gas. Mixing while gently diffusing without causing large turbulence when joining with gas.
- the flame holder 140 is formed so as to extend along a direction intersecting with the gas flow direction and has a cross-sectional width orthogonal to the gas flow direction toward the downstream side in the gas flow direction. There may be widened portions 141, 142, 143 that become wider. By providing the flame stabilizer 140 with the widened portions 141, 142, and 143, it is possible to suitably perform internal flame holding.
- the pulverized coal burning boiler 10A of the second embodiment is a modification of the pulverized coal burning boiler 10 of the first embodiment, and is the same as the pulverized coal burning boiler 10 of the first embodiment, except as specifically described below. It is assumed that there is a description, and the description below is omitted.
- the pulverized coal-fired boiler 10 allows the entire amount of air (outside air) blown by the blower 38 to pass through the air heater (heat exchanger) 49 and the combustion air supplied from the air duct 37 to the wind box 36.
- the temperature was raised to 280 ° C to 320 ° C.
- the pulverized coal fired boiler 10A of the present embodiment passes a part of the air blown by the blower 38 through the air heater (heat exchanger) 49, while the other of the air blown by the blower 38 is an air heater (heat exchange). Instrument) 49 is not allowed to pass.
- the pulverized coal burning boiler 10A of the present embodiment is adjusted so that the combustion air supplied to the wind box 36 in this way is lower in temperature than the pulverized coal burning boiler 10 of the first embodiment.
- the pulverized coal burning boiler 10A of the present embodiment will be described in detail.
- the pulverized coal burning boiler 10A of the present embodiment includes an air duct 37A, an air duct 37B, and an air duct 39C as air ducts that guide the air blown by the blower 38 to the wind box 36. Have. A part of the air blown by the blower 38 is supplied to the air duct 37A, and the other is supplied to the air duct 37B.
- the air duct 37C mixes air that has passed through the air heater 49 and has become high temperature (280 ° C. or higher and 320 ° C. or lower) and air that has not passed through the air heater 49 (0 ° C. or higher and 40 ° C. or lower).
- the temperature of the air led from the air duct 37C to the wind box 36 is adjusted to be a predetermined temperature.
- the predetermined temperature is a temperature in a temperature range of 100 ° C. or more and 300 ° C. or less. By setting it as 100 degreeC or more, it is suppressed that dew condensation arises inside the air duct 37C. Further, by setting the temperature to 300 ° C. or lower, the problem that the pulverized fuel mixture is ignited by the secondary air guided from the secondary air nozzle 120 to the fuel gas passage 111 is suppressed.
- the predetermined temperature may be a temperature in the temperature range of 150 ° C. or more and 250 ° C. or less.
- the predetermined temperature may be a temperature in the temperature range of 175 ° C. or more and 225 ° C. or less.
- the temperature of the air guided from the air duct 37C to the wind box 36 is adjusted by the ratio between the flow rate of air guided from the blower 38 to the air duct 37A and the flow rate of air guided from the blower 38 to the air duct 37B.
- the ratio between the flow rate of air guided from the blower 38 to the air duct 37A and the flow rate of air guided from the blower 38 to the air duct 37B may be a fixed ratio.
- a damper (not shown) is provided in one of the air duct 37A and the air duct 37B, and by adjusting the opening of the damper, the flow rate of air guided from the blower 38 to the air duct 37A and the air duct from the blower 38 are adjusted. You may adjust a ratio with the flow volume of the air guide
- high-temperature air (280 ° C. or higher and 320 ° C. or lower) that has passed through the air heater 49 and normal temperature (0 ° C. or higher and 40 ° C. or lower) that does not pass through the air heater 49. )
- the temperature of the secondary air introduced into the fuel gas channel 111 can be lowered to an appropriate temperature (for example, 100 ° C. or more and 300 ° C. or less).
- the pulverized coal burning boiler according to the third embodiment is a modification of the pulverized coal burning boiler 10 according to the first embodiment, and is the same as the pulverized coal burning boiler 10 according to the first embodiment, unless otherwise described below. The description below will be omitted.
- the combustion burner 100F provided in the pulverized coal burning boiler of the present embodiment is different from the combustion burner 100A provided in the pulverized coal burning boiler 10 of the first embodiment in that a rectifying unit 150 is provided inside the fuel gas flow path 111. .
- combustion burner 100F of the present embodiment is a modification of the combustion burner 100A of the first embodiment, and is the same as the combustion burner 100A of the first embodiment except for the case described below. Is omitted.
- the secondary air introduction flow path 130 introduces a part of the secondary air into the fuel gas flow path 111 and the upstream of the flame holder 140.
- a rectifying unit 150 is provided between the end and the fourth position P4. The rectifying unit 150 agitates the pulverized fuel mixture in the fuel gas flow path 111, and drifts of the pulverized coal generated when the pulverized fuel mixture flows through the pulverized coal supply pipe 26 (the concentration of the pulverized coal in the flow path cross section). This is a member for eliminating (bias).
- the rectification unit 150 is disposed upstream of the flame holder 140 in the fuel nozzle 110 in the gas flow direction.
- the combustion burner 100F of this embodiment is arranged in an annular shape so as to surround the inner peripheral surface of the fuel nozzle 110.
- a rectifying unit 150 that locally reduces the cross-sectional area of the gas flow path 111 is provided.
- the rectifying unit 150 of the present embodiment agitates the passing pulverized fuel mixture, and eliminates the uneven concentration of pulverized coal in the cross section of the fuel gas channel 111.
- FIG. 9 an end view taken along the line III-III of the combustion burner 100F shown in FIG. 7
- a plurality of rectangular rectifying portions 150A are spaced so as to surround the inner peripheral surface of the fuel nozzle 110. You may arrange.
- the pulverized coal is prevented from drifting in the fuel gas passage 111, and the secondary air and the pulverized fuel mixture have a more uniform concentration distribution.
- the flame holder 140 can ignite or hold the flame.
- the secondary air introduction channel 130 passes through the rectifying unit 150 and the rectifying unit 150A downstream of the first position P1 where the secondary air is introduced into the fuel gas channel 111 in the gas flow direction.
- the rectifying unit 150 and the rectifying unit 150 ⁇ / b> A are arranged on the upstream side in the gas flow direction from the first position P ⁇ b> 1 where the secondary air introduction channel 130 introduces a part of the secondary air into the fuel gas channel 111. You may make it provide in the nozzle 110b.
- the rectification unit may be provided inside the pulverized coal supply pipes 26, 27, 28, 29, 30.
- the rectifying unit may have an annular shape so as to be along the inner peripheral surface of the pulverized coal supply pipe having a circular sectional view. In this way, a sufficient distance in the gas flow direction from the rectifying unit to the flame holder 140 is ensured, and the pulverized fuel mixture stirred in the rectifying unit is supplied to the flame holder 140 without any disturbance. can do.
- the pulverized coal burning boiler according to the fourth embodiment is a modification of the pulverized coal burning boiler 10 according to the first embodiment, and is the same as the pulverized coal burning boiler 10 according to the first embodiment, unless otherwise described below. The description below will be omitted.
- the combustion burner 100G provided in the pulverized coal burning boiler of the present embodiment is different from the combustion burner 100A provided in the pulverized coal burning boiler 10 of the first embodiment in that a secondary air introduction pipe 26A is provided.
- the combustion burner 100G of the present embodiment is a modification of the combustion burner 100A of the first embodiment, and is the same as the combustion burner 100A of the first embodiment except for the case described below. Is omitted.
- the combustion burner 100 ⁇ / b> A of the present embodiment is composed of combustion burners 100 ⁇ / b> Ga, 100 ⁇ / b> Gb, 100 ⁇ / b> Gc, and 100 ⁇ / b> Gd provided on four wall surfaces in the furnace 11.
- the combustion burner 100 ⁇ / b> G of the present embodiment includes a secondary air introduction pipe 26 ⁇ / b> A that supplies a part of the secondary air flowing through the air duct 37 to the pulverized coal supply pipe (fuel supply pipe) 26. .
- Part of the secondary air flowing through the air duct 37 is supplied to the pulverized coal supply pipe 26 from the secondary air introduction pipe 26A. Therefore, the amount of air supplied to the fuel gas passage 111 of the combustion burner 100G of the present embodiment is larger than the amount of air supplied to the fuel gas passage 111 of the combustion burner 100A of the first embodiment.
- the amount of air supplied to the secondary air flow path 121 of the combustion burner 100G of the present embodiment is smaller than the amount of air supplied to the secondary air flow path 121 of the combustion burner 100A of the first embodiment.
- the fuel gas can be produced without increasing the flow rate of the pulverized fuel mixture in the flow path from the pulverized coal machine (pulverizer) 31 for pulverizing the pulverized coal to the pulverized coal supply pipe 26.
- the amount of primary air supplied to the flow path 111 can be increased. Therefore, it is possible to suppress problems such as an increase in the power of the ventilator that ventilates the primary air to the pulverized coal machine 31, a decrease in classification accuracy of the pulverized coal machine 31, and an increase in the wear amount of the transfer pipe that conveys fuel.
- the amount of air supplied to the fuel gas passage 111 is larger than that of the pulverized coal fired boiler of the first embodiment and supplied to the secondary air passage 121. There is little air quantity. Therefore, the speed difference between the flow rate of the pulverized fuel mixture jetted from the fuel gas channel 111 to the furnace 11 and the flow rate of the secondary air jetted from the secondary air channel 121 to the furnace 11 is reduced. It is possible to suppress a problem that the outer periphery flame holding and the outer periphery ignition are performed due to the turbulence of the air flow.
- the combustion device 12 is configured by arranging the four combustion burners 100A, 100B, 100C, 100D, and 100E provided on the wall surface of the furnace 11 along the vertical direction in five stages. It is not limited to. That is, the combustion burner may be arranged at the corner without being arranged on the wall surface.
- the combustion apparatus is not limited to the swirl combustion method, and may be a front combustion method in which the combustion burner is disposed on one wall surface, or an opposed combustion method in which the combustion burner is disposed opposite to the two wall surfaces.
- the combustion burners 100A, 100B, 100C, 100D, and 100E of the combustion device 12 are not limited to the rectangular tube shape, and may be, for example, a cylindrical shape.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Air Supply (AREA)
Abstract
Provided is a combustion burner (100A) provided with a fuel nozzle (110), a secondary air nozzle (120), a secondary air flow channel (121) formed between the secondary air nozzle (120) and the fuel nozzle (110), a secondary air introduction flow channel (130) that introduces at least some of secondary air flowing through the secondary air flow channel (121) into a fuel gas flow channel (111), and a flame stabilizer (140) disposed within the fuel nozzle (110), the relationship 2 ≤ L/W ≤ 5 being satisfied, where L is a gas-flow-direction distance along an axis (X1) from an introduction position (P1) where the at least some of the secondary air is introduced from the secondary air introduction flow channel (130) into the fuel gas flow channel (111) to an installation position (P4) where the flame stabilizer (140) is installed, and W is the minimum width of the fuel gas flow channel (111) extending from the introduction position (P1) to the installation position (P4).
Description
本発明は、発電用または工場用などのために蒸気を生成するためのボイラに適用される燃焼バーナ及びこれを備えたボイラに関するものである。
The present invention relates to a combustion burner applied to a boiler for generating steam for power generation or factory use, and a boiler equipped with the combustion burner.
従来、微粉炭等の炭素含有固体燃料を粉砕したものと搬送気体とを混合した燃料ガスを火炉へ供給する燃料ノズルと、燃料ノズルの外側から火炉へ空気を供給する空気ノズルとを備えた燃焼バーナが知られている(例えば、特許文献1,特許文献2参照)。
特許文献1の燃焼バーナは、燃料ノズルの周方向の速度成分を持つ追加空気を噴出させる追加空気ノズルを設け、低酸素濃度の搬送気体で搬送された燃料と空気との混合を促進するものである。また、特許文献2の燃焼バーナは、燃料ノズルの中心軸付近に発散円錐を配置して中心軸に沿って流れる燃料量を減少させ、加熱ガスを燃料ノズル内に導入して一次流の中央部分における燃料に対する化学量論比を高めることで燃料のガス化を促進するものである。 Conventionally, combustion provided with a fuel nozzle for supplying a fuel gas, which is a mixture of a pulverized carbon-containing solid fuel such as pulverized coal, and a carrier gas to the furnace, and an air nozzle for supplying air to the furnace from the outside of the fuel nozzle A burner is known (see, for example, Patent Document 1 and Patent Document 2).
The combustion burner of Patent Document 1 is provided with an additional air nozzle that ejects additional air having a velocity component in the circumferential direction of the fuel nozzle, and promotes mixing of the fuel and air conveyed by a low oxygen concentration carrier gas. is there. Further, the combustion burner of Patent Document 2 arranges a divergence cone near the center axis of the fuel nozzle to reduce the amount of fuel flowing along the center axis, and introduces heated gas into the fuel nozzle so that the central portion of the primary flow The fuel gasification is promoted by increasing the stoichiometric ratio of the fuel to the fuel.
特許文献1の燃焼バーナは、燃料ノズルの周方向の速度成分を持つ追加空気を噴出させる追加空気ノズルを設け、低酸素濃度の搬送気体で搬送された燃料と空気との混合を促進するものである。また、特許文献2の燃焼バーナは、燃料ノズルの中心軸付近に発散円錐を配置して中心軸に沿って流れる燃料量を減少させ、加熱ガスを燃料ノズル内に導入して一次流の中央部分における燃料に対する化学量論比を高めることで燃料のガス化を促進するものである。 Conventionally, combustion provided with a fuel nozzle for supplying a fuel gas, which is a mixture of a pulverized carbon-containing solid fuel such as pulverized coal, and a carrier gas to the furnace, and an air nozzle for supplying air to the furnace from the outside of the fuel nozzle A burner is known (see, for example, Patent Document 1 and Patent Document 2).
The combustion burner of Patent Document 1 is provided with an additional air nozzle that ejects additional air having a velocity component in the circumferential direction of the fuel nozzle, and promotes mixing of the fuel and air conveyed by a low oxygen concentration carrier gas. is there. Further, the combustion burner of Patent Document 2 arranges a divergence cone near the center axis of the fuel nozzle to reduce the amount of fuel flowing along the center axis, and introduces heated gas into the fuel nozzle so that the central portion of the primary flow The fuel gasification is promoted by increasing the stoichiometric ratio of the fuel to the fuel.
燃焼バーナにおいては、燃料ノズルの先端部より燃料ガス流れの上流部分で燃料ノズルの中心軸付近に再循環流れを形成する保炎器を設置したものが知られている。保炎器が設置された燃料ノズルにおいては、燃料が隣接火炎からの輻射を受けて着火し、着火により生成された高温ガスが保炎器により再循環流れとなって着火部近傍に保たれて保炎が行われる。この保炎器が、微粉炭と1次空気の混合流の外周に設置される場合を外周着火ないし外部保炎といい、混合流の断面内部に設置されている場合を内部着火ないし内部保炎という。燃焼により発生した窒素酸化物(NOx)を空気不足の還元雰囲気において還元することで低NOx化を実現することができる。
そして、火炉に隣接した燃料ノズルの先端における燃料の着火性を高めるためには、炭素含有固体燃料とした例えば石炭(微粉炭)の質量に対する空気の質量の割合(以下、「A/C比」という。)を低くして、周囲の火炎の輻射による着火を促進させるのが望ましい。 A combustion burner is known in which a flame holder that forms a recirculation flow in the vicinity of the central axis of the fuel nozzle in the upstream portion of the fuel gas flow from the tip of the fuel nozzle is known. In the fuel nozzle where the flame holder is installed, the fuel is ignited by receiving radiation from the adjacent flame, and the high-temperature gas generated by the ignition is kept in the vicinity of the ignition part as a recirculation flow by the flame holder. Flame holding is performed. The case where this flame stabilizer is installed on the outer periphery of the mixed flow of pulverized coal and primary air is called outer periphery ignition or external flame holding, and the case where it is installed inside the cross section of the mixed flow is internal ignition or internal flame holding. That's it. Reduction of NOx can be realized by reducing nitrogen oxide (NOx) generated by combustion in a reducing atmosphere with insufficient air.
In order to improve the ignitability of the fuel at the tip of the fuel nozzle adjacent to the furnace, the ratio of the mass of air to the mass of, for example, coal (pulverized coal) as the carbon-containing solid fuel (hereinafter referred to as “A / C ratio”) It is desirable to promote ignition by surrounding flame radiation.
そして、火炉に隣接した燃料ノズルの先端における燃料の着火性を高めるためには、炭素含有固体燃料とした例えば石炭(微粉炭)の質量に対する空気の質量の割合(以下、「A/C比」という。)を低くして、周囲の火炎の輻射による着火を促進させるのが望ましい。 A combustion burner is known in which a flame holder that forms a recirculation flow in the vicinity of the central axis of the fuel nozzle in the upstream portion of the fuel gas flow from the tip of the fuel nozzle is known. In the fuel nozzle where the flame holder is installed, the fuel is ignited by receiving radiation from the adjacent flame, and the high-temperature gas generated by the ignition is kept in the vicinity of the ignition part as a recirculation flow by the flame holder. Flame holding is performed. The case where this flame stabilizer is installed on the outer periphery of the mixed flow of pulverized coal and primary air is called outer periphery ignition or external flame holding, and the case where it is installed inside the cross section of the mixed flow is internal ignition or internal flame holding. That's it. Reduction of NOx can be realized by reducing nitrogen oxide (NOx) generated by combustion in a reducing atmosphere with insufficient air.
In order to improve the ignitability of the fuel at the tip of the fuel nozzle adjacent to the furnace, the ratio of the mass of air to the mass of, for example, coal (pulverized coal) as the carbon-containing solid fuel (hereinafter referred to as “A / C ratio”) It is desirable to promote ignition by surrounding flame radiation.
しかしながら、A/C比を低くしすぎると、燃料の未燃分の増加に伴って火炉内の燃料ノズルの先端付近での燃料の酸化燃焼が増加し、高い火炎温度によってNOxの発生量が増大する可能性がある。
一方、燃料ガスにおけるA/C比を高くしすぎると、周囲の火炎の輻射を受けにくくなることにより燃料に含まれる可燃性の揮発分の放出が遅れ、2次空気との接触部分で遅れて放出された揮発分の酸化燃焼による高い火炎温度によってNOxの発生量が増大する可能性がある。 However, if the A / C ratio is too low, the oxidative combustion of the fuel near the tip of the fuel nozzle in the furnace increases with an increase in the unburned fuel, and the amount of NOx generated increases due to the high flame temperature. there's a possibility that.
On the other hand, if the A / C ratio in the fuel gas is too high, the release of combustible volatiles contained in the fuel is delayed due to the difficulty of receiving the radiation of the surrounding flame, and the delay in contact with the secondary air. There is a possibility that the amount of NOx generated increases due to the high flame temperature due to the oxidative combustion of the released volatile matter.
一方、燃料ガスにおけるA/C比を高くしすぎると、周囲の火炎の輻射を受けにくくなることにより燃料に含まれる可燃性の揮発分の放出が遅れ、2次空気との接触部分で遅れて放出された揮発分の酸化燃焼による高い火炎温度によってNOxの発生量が増大する可能性がある。 However, if the A / C ratio is too low, the oxidative combustion of the fuel near the tip of the fuel nozzle in the furnace increases with an increase in the unburned fuel, and the amount of NOx generated increases due to the high flame temperature. there's a possibility that.
On the other hand, if the A / C ratio in the fuel gas is too high, the release of combustible volatiles contained in the fuel is delayed due to the difficulty of receiving the radiation of the surrounding flame, and the delay in contact with the secondary air. There is a possibility that the amount of NOx generated increases due to the high flame temperature due to the oxidative combustion of the released volatile matter.
前述した特許文献1においては、低酸素濃度の搬送気体で搬送された燃料の着火を早めるために、燃料ノズル出口近傍に追加空気を噴出させている。しかしながら、特許文献1では、濃縮器によって燃料粒子の多くが燃料ノズルの外側隔壁に沿って流れるため、外部着火ないし外部保炎が行われる。ノズルの外周に保炎器がある外部着火方式では、A/C比が増えると微粉炭流の噴流速度が増大するだけで、保炎器周囲の再循環域は変わらないため、結果として、着火は離れてしまう。そのため、特許文献1では、外部着火ないし外部保炎によりNOxの発生量が増大してしまう。
In the above-mentioned Patent Document 1, additional air is jetted in the vicinity of the fuel nozzle outlet in order to accelerate the ignition of the fuel conveyed by the carrier gas having a low oxygen concentration. However, in Patent Document 1, since many of the fuel particles flow along the outer partition wall of the fuel nozzle by the concentrator, external ignition or external flame holding is performed. In the external ignition method with a flame holder on the outer periphery of the nozzle, if the A / C ratio increases, the jet velocity of the pulverized coal flow only increases and the recirculation zone around the flame holder does not change. Will leave. Therefore, in Patent Document 1, the amount of NOx generated increases due to external ignition or external flame holding.
また、特許文献2においては、一次流の中央部分における化学量論比を高めるために、燃料噴射器の出口端の上流部分に二次流を導入している。しかしながら、特許文献2では、燃料噴射器に設けられた発散円錐によって中心軸の外周側に流れる燃料量が増大するため、外部着火ないし外部保炎が行われる。そのため、特許文献2では、外部着火ないし外部保炎によりNOxの発生量が増大してしまう。
In Patent Document 2, a secondary flow is introduced into the upstream portion of the outlet end of the fuel injector in order to increase the stoichiometric ratio in the central portion of the primary flow. However, in Patent Document 2, the amount of fuel flowing to the outer peripheral side of the central shaft is increased by the diverging cone provided in the fuel injector, so external ignition or external flame holding is performed. Therefore, in Patent Document 2, the amount of NOx generated increases due to external ignition or external flame holding.
本開示は、上述した課題を解決するものであり、燃料の未燃分の火炉への放出を抑制しつつ燃料に含まれる可燃性の揮発分の放出を促進してNOx発生量を低減可能とする燃焼バーナ及びこれを備えたボイラを提供することを目的とする。
The present disclosure solves the above-described problem, and can reduce the amount of NOx generated by promoting the release of combustible volatiles contained in the fuel while suppressing the release of unburned fuel to the furnace. An object of the present invention is to provide a combustion burner and a boiler including the combustion burner.
上記の目的を達成するための本開示の燃焼バーナは、軸線に沿って筒状に延びるとともに炭素含有固体燃料を粉砕した燃料と1次空気とを混合した燃料ガスを火炉へ供給する燃料ガス流路を形成する燃料ノズルと、前記軸線に沿って筒状に延びるとともに前記燃料ガスより温度の高い2次空気が流通する2次空気ノズルと、前記2次空気ノズルと前記燃料ノズルの間に形成され前記火炉へ前記2次空気を供給する2次空気流路と、前記2次空気流路を流通する前記2次空気の少なくとも一部を前記燃料ガス流路へ導入する2次空気導入流路と、前記燃料ノズル内の前記火炉へ開口する先端部の近傍に配置される保炎器と、を備え、前記2次空気導入流路が前記燃料ガス流路へ前記2次空気の少なくとも一部を導入する導入位置から前記保炎器の設置位置までの前記軸線に沿ったガス流通方向の距離をLとし、前記導入位置から前記設置位置へ至る前記燃料ガス流路の最小幅をWとした場合に2≦L/W≦5を満たす。
In order to achieve the above object, a combustion burner according to the present disclosure includes a fuel gas flow that extends in a cylindrical shape along an axis and supplies a fuel gas obtained by mixing a fuel containing pulverized carbon-containing solid fuel and primary air to a furnace. A fuel nozzle that forms a path, a secondary air nozzle that extends in a cylindrical shape along the axis and through which secondary air having a higher temperature than the fuel gas flows, and is formed between the secondary air nozzle and the fuel nozzle A secondary air flow path for supplying the secondary air to the furnace, and a secondary air introduction flow path for introducing at least part of the secondary air flowing through the secondary air flow path into the fuel gas flow path And a flame holder disposed in the vicinity of a tip portion opened to the furnace in the fuel nozzle, wherein the secondary air introduction flow path is at least part of the secondary air to the fuel gas flow path. From the introduction position to introduce the flame holding 2 ≦ L / W ≦ 5, where L is the distance in the gas flow direction along the axis to the installation position, and W is the minimum width of the fuel gas flow path from the introduction position to the installation position. Fulfill.
本開示の燃焼バーナによれば、2次空気流路を流通する燃料ガスより温度の高い2次空気の少なくとも一部が、2次空気導入流路によって2次空気流路から、炭素含有固体燃料を粉砕した燃料と1次空気とを混合した燃料ガスが流通する燃料ガス流路へ導かれる。燃料ノズル内の火炉へ開口する先端部の近傍に保炎器が配置されているため、燃料ガス流路の出口における燃料の着火性が向上するとともに燃料に含まれる可燃性の揮発分の放出及び固定炭素の燃焼が促進されてNOxの還元が促進されるため、NOx発生量が低減する。
According to the combustion burner of the present disclosure, at least a part of the secondary air having a temperature higher than that of the fuel gas flowing through the secondary air flow path is generated from the secondary air flow path by the secondary air introduction flow path. The fuel gas, which is a mixture of the pulverized fuel and the primary air, is guided to the fuel gas flow path. Since the flame holder is disposed in the vicinity of the tip of the fuel nozzle that opens to the furnace, the ignitability of the fuel at the outlet of the fuel gas passage is improved and the flammable volatile matter contained in the fuel is released. Since the combustion of fixed carbon is promoted and the reduction of NOx is promoted, the amount of NOx generated is reduced.
なお、保炎器では1次空気側で保炎するため、2次空気の少なくとも一部を燃料ガス流路側に導いて2次空気流路を流通する2次空気の流量が減少しても、良好な保炎を実現することができる。また、保炎器が構造物である場合には、2次空気が混合されて内部保炎器の周囲の流速が増加することで、保炎器の周囲に形成される再循環域も強化され、着火を強く保つことができる。着火が強く保つことができれば、燃料と1次空気の混合流は、空気不足で供給され、微粉炭の揮発分や未燃分はNOx還元効果を有していることから、発生したNOxを燃料噴流内で十分に還元することができる。一方、2次空気は噴流の外側に供給されるため、空気が過剰な状態であり、NOx還元物質も少ないことから、外周で生成されたNOxは還元されにくく、NOx発生量の増加につながる。
In addition, since the flame holder holds the flame on the primary air side, even if the flow rate of the secondary air flowing through the secondary air flow path is reduced by guiding at least a part of the secondary air to the fuel gas flow path side, Good flame holding can be realized. In addition, when the flame holder is a structure, the recirculation zone formed around the flame holder is strengthened by mixing the secondary air and increasing the flow velocity around the internal flame holder. Can keep ignition strong. If ignition can be kept strong, the mixed flow of fuel and primary air will be supplied in a shortage of air, and the volatile matter and unburned matter of pulverized coal will have a NOx reduction effect. It can be fully reduced in the jet. On the other hand, since secondary air is supplied to the outside of the jet, the air is in an excessive state and the amount of NOx reducing substance is small, so that NOx produced on the outer periphery is difficult to be reduced, leading to an increase in the amount of NOx generated.
このため、保炎器を有する燃焼バーナでA/C比を増加させたことで着火を保つことができれば、燃料ガス流路の出口においては、炭素含有固体燃料を粉砕した燃料の未燃分が減少するとともに、粉砕した燃料に含まれる可燃性の揮発分の放出及び固定炭素の燃焼が促進されてNOxが一度発生し・その還元が促進される。また、NOxが還元されにくい燃料噴流外周の2次空気が減少するため、NOx発生量を低減することができる。
For this reason, if ignition can be maintained by increasing the A / C ratio with a combustion burner having a flame holder, the unburned portion of the fuel obtained by pulverizing the carbon-containing solid fuel is present at the outlet of the fuel gas passage. In addition to the reduction, the release of combustible volatiles contained in the pulverized fuel and the combustion of fixed carbon are promoted, and NOx is generated once and its reduction is promoted. Further, since the secondary air around the outer periphery of the fuel jet that is difficult to reduce NOx is reduced, the amount of NOx generated can be reduced.
また、本発明の燃焼バーナにおいては、2次空気の少なくとも一部を燃料ガス流路へ導くため、燃料ガスのA/C比を増加させるために1次空気の流量を増加させる必要がない。そのため、1次空気の流量が増加することによる通風機の動力増加、粉砕機の分級精度の低下、燃料を搬送する搬送管の摩耗量の増加等の不具合を抑制することができる。
In the combustion burner of the present invention, since at least a part of the secondary air is guided to the fuel gas flow path, it is not necessary to increase the flow rate of the primary air in order to increase the A / C ratio of the fuel gas. Therefore, it is possible to suppress problems such as an increase in the power of the ventilator due to an increase in the flow rate of the primary air, a decrease in the classification accuracy of the pulverizer, and an increase in the wear amount of the transport pipe that transports the fuel.
また、本発明の燃焼バーナにおいては、2次空気の導入位置から保炎器の設置位置までの軸線に沿ったガス流通方向の距離をLとし、導入位置から設置位置へ至る燃料ガス流路の最小幅をWとした場合に2≦L/W≦5を満たす。2≦L/Wとしているのは、保炎器を通過する燃料ガスを2次空気と均一に混合するために十分な距離を確保するためである。また、L/W1≦5としているのは、燃焼バーナの大型化を防止するためである。
このようにすることで、2次空気が燃料ガス流路へ導入されてから保炎器に到達するまでのガス流通方向の距離を十分に確保しつつ燃焼バーナの大型化を防止し、導入された2次空気と燃料ガスとがより均一な濃度分布となった状態で保炎器による着火ないし保炎を行うことができる。 In the combustion burner of the present invention, the distance in the gas flow direction along the axis from the introduction position of the secondary air to the installation position of the flame stabilizer is L, and the fuel gas flow path from the introduction position to the installation position When the minimum width is W, 2 ≦ L / W ≦ 5 is satisfied. The reason why 2 ≦ L / W is set is to secure a sufficient distance for uniformly mixing the fuel gas passing through the flame holder with the secondary air. Moreover, L / W1 ≦ 5 is set to prevent an increase in the size of the combustion burner.
In this way, the combustion burner is prevented from being enlarged while ensuring a sufficient distance in the gas flow direction from when the secondary air is introduced into the fuel gas passage until it reaches the flame holder. In addition, ignition or flame holding by the flame holder can be performed in a state where the secondary air and the fuel gas have a more uniform concentration distribution.
このようにすることで、2次空気が燃料ガス流路へ導入されてから保炎器に到達するまでのガス流通方向の距離を十分に確保しつつ燃焼バーナの大型化を防止し、導入された2次空気と燃料ガスとがより均一な濃度分布となった状態で保炎器による着火ないし保炎を行うことができる。 In the combustion burner of the present invention, the distance in the gas flow direction along the axis from the introduction position of the secondary air to the installation position of the flame stabilizer is L, and the fuel gas flow path from the introduction position to the installation position When the minimum width is W, 2 ≦ L / W ≦ 5 is satisfied. The reason why 2 ≦ L / W is set is to secure a sufficient distance for uniformly mixing the fuel gas passing through the flame holder with the secondary air. Moreover, L / W1 ≦ 5 is set to prevent an increase in the size of the combustion burner.
In this way, the combustion burner is prevented from being enlarged while ensuring a sufficient distance in the gas flow direction from when the secondary air is introduced into the fuel gas passage until it reaches the flame holder. In addition, ignition or flame holding by the flame holder can be performed in a state where the secondary air and the fuel gas have a more uniform concentration distribution.
本開示によれば、燃料の未燃分の火炉への放出を抑制しつつ燃料に含まれる可燃性の揮発分の放出を促進してNOx発生量を低減可能とする燃焼バーナ及びこれを備えたボイラを提供することができる。
According to the present disclosure, there is provided a combustion burner capable of reducing the amount of NOx generated by promoting the release of combustible volatile components contained in the fuel while suppressing the release of unburned fuel to the furnace. A boiler can be provided.
以下に添付図面を参照して、本開示の燃焼バーナの好適な実施例を詳細に説明する。なお、この実施例により本開示が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。
Hereinafter, preferred embodiments of the combustion burner of the present disclosure will be described in detail with reference to the accompanying drawings. It should be noted that the present disclosure is not limited by this embodiment, and when there are a plurality of embodiments, the embodiment includes a combination of the embodiments.
<第1実施形態>
第1実施形態の燃焼バーナが適用された微粉炭焚きボイラは、炭素含有固体燃料として石炭を粉砕した微粉炭を用い、この微粉炭を燃焼バーナにより燃焼させ、この燃焼により発生した熱を回収することが可能なボイラである。 <First Embodiment>
The pulverized coal fired boiler to which the combustion burner of the first embodiment is applied uses pulverized coal obtained by pulverizing coal as a carbon-containing solid fuel, burns the pulverized coal with a combustion burner, and recovers heat generated by the combustion. It is a possible boiler.
第1実施形態の燃焼バーナが適用された微粉炭焚きボイラは、炭素含有固体燃料として石炭を粉砕した微粉炭を用い、この微粉炭を燃焼バーナにより燃焼させ、この燃焼により発生した熱を回収することが可能なボイラである。 <First Embodiment>
The pulverized coal fired boiler to which the combustion burner of the first embodiment is applied uses pulverized coal obtained by pulverizing coal as a carbon-containing solid fuel, burns the pulverized coal with a combustion burner, and recovers heat generated by the combustion. It is a possible boiler.
図1に示すように、本実施形態の微粉炭焚きボイラ10は、コンベンショナルボイラであって、火炉11と燃焼装置12と煙道13を有している。火炉11は、四角筒の中空形状をなして鉛直方向に沿って設置され、この火炉11を構成する火炉壁の下部に燃焼装置12が設けられている。
As shown in FIG. 1, the pulverized coal fired boiler 10 of the present embodiment is a conventional boiler, and includes a furnace 11, a combustion device 12, and a flue 13. The furnace 11 has a rectangular hollow shape and is installed along the vertical direction. A combustion device 12 is provided at the lower part of the furnace wall constituting the furnace 11.
燃焼装置12は、火炉壁に装着された複数の燃焼バーナ100A,100B,100C,100D,100Eを有している。本実施例にて、この燃焼バーナ100A,100B,100C,100D,100Eは、火炉11が延びる鉛直方向を中心軸とした周方向に沿って4個均等間隔で配設されたものが1セットとして、鉛直方向に沿って5セット(5段)配置されている。なお、ここでは5セットとしたが、6セットあるいはその他の任意のセット数とすることができる。
The combustion apparatus 12 has a plurality of combustion burners 100A, 100B, 100C, 100D, and 100E mounted on the furnace wall. In this embodiment, the combustion burners 100A, 100B, 100C, 100D, and 100E are arranged as a set having four equal intervals along the circumferential direction with the vertical direction in which the furnace 11 extends as the central axis. 5 sets (5 stages) are arranged along the vertical direction. In addition, although it was set as 5 sets here, it can be set to 6 sets or other arbitrary sets.
そして、各燃焼バーナ100A,100B,100C,100D,100Eは、微粉炭供給管26,27,28,29,30を介して微粉炭機(ミル;粉砕機)31,32,33,34,35に連結されている。この微粉炭機31,32,33,34,35は、図示しないが、ハウジング内に鉛直方向に沿った回転軸心をもって粉砕テーブルが駆動回転可能に支持され、この粉砕テーブルの上方に対向して複数の粉砕ローラが粉砕テーブルの回転に連動して回転可能に支持されて構成されている。従って、石炭が複数の粉砕ローラと粉砕テーブルとの間に投入されると、ここで所定の大きさまで粉砕され、搬送用空気(1次空気)により分級された微粉炭が微粉炭供給管26,27,28,29,30から燃焼バーナ100A,100B,100C,100D,100Eに供給される。
Each combustion burner 100A, 100B, 100C, 100D, 100E is supplied to a pulverized coal machine (mill; pulverizer) 31, 32, 33, 34, 35 via a pulverized coal supply pipe 26, 27, 28, 29, 30. It is connected to. Although not shown, the pulverized coal machines 31, 32, 33, 34, and 35 are supported in a housing so that the pulverization table can be driven to rotate with a rotation axis along the vertical direction, and face the upper side of the pulverization table. A plurality of crushing rollers are configured to be rotatably supported in conjunction with the rotation of the crushing table. Accordingly, when coal is introduced between a plurality of crushing rollers and a crushing table, pulverized coal that has been crushed to a predetermined size and classified by air for transportation (primary air) is supplied to the pulverized coal supply pipe 26, 27, 28, 29, 30 are supplied to the combustion burners 100A, 100B, 100C, 100D, 100E.
また、火炉11は、各燃焼バーナ100A,100B,100C,100D,100Eの装着位置に風箱36が設けられており、この風箱36に空気ダクト(2次空気供給管)37の一端部が連結されており、この空気ダクト37には、他端部に送風機38が装着されている。更に、火炉11は、各燃焼バーナ100A,100B,100C,100D,100Eの装着位置より鉛直方向上方にアディショナル空気ノズル39が設けられている。このアディショナル空気ノズル39には、空気ダクト37から分岐した分岐空気ダクト40の端部が連結されている。従って、送風機38により送られた燃焼用空気(2次空気)を、空気ダクト37から風箱36に供給し、この風箱36から各燃焼バーナ100A,100B,100C,100D,100Eに供給することができると共に、送風機38により送られた燃焼用空気(追加空気)を分岐空気ダクト40からアディショナル空気ノズル39に供給することができる。
Further, the furnace 11 is provided with a wind box 36 at a mounting position of each combustion burner 100A, 100B, 100C, 100D, 100E, and one end portion of an air duct (secondary air supply pipe) 37 is provided in the wind box 36. The air duct 37 is connected to a blower 38 at the other end. Furthermore, the furnace 11 is provided with an additional air nozzle 39 vertically above the mounting position of each combustion burner 100A, 100B, 100C, 100D, 100E. The additional air nozzle 39 is connected to an end of a branched air duct 40 branched from the air duct 37. Therefore, the combustion air (secondary air) sent by the blower 38 is supplied from the air duct 37 to the wind box 36 and supplied from the wind box 36 to the combustion burners 100A, 100B, 100C, 100D, and 100E. In addition, combustion air (additional air) sent by the blower 38 can be supplied from the branch air duct 40 to the additional air nozzle 39.
そのため、燃焼装置12にて、各燃焼バーナ100A,100B,100C,100D,100Eは、微粉炭と搬送用空気(1次空気)とを混合した微粉燃料混合気(燃料ガス)を火炉11内に吹き込み可能であると共に、燃焼用空気を火炉11内に吹き込み可能となっている。燃焼装置12は、点火トーチ(図示略)により微粉燃料混合気に点火することで、火炎を形成することができる。
Therefore, in the combustion apparatus 12, each combustion burner 100 </ b> A, 100 </ b> B, 100 </ b> C, 100 </ b> D, 100 </ b> E has a pulverized fuel mixture (fuel gas) obtained by mixing pulverized coal and carrier air (primary air) in the furnace 11. In addition to being able to blow, combustion air can be blown into the furnace 11. The combustion device 12 can form a flame by igniting the pulverized fuel mixture with an ignition torch (not shown).
火炉11は、鉛直方向上部に煙道13が連結されており、この煙道13に、対流伝熱部として燃焼ガスの熱を回収するための熱交換器である過熱器(スーパーヒータ)41,42、再熱器43,44及び節炭器(エコノマイザ)45,46,47が設けられており、火炉11での燃焼で発生した燃焼ガスと水や蒸気との間で熱交換が行われる。
In the furnace 11, a flue 13 is connected to an upper part in the vertical direction, and a superheater (super heater) 41, which is a heat exchanger for recovering heat of combustion gas as a convection heat transfer section, is connected to the flue 13. 42, reheaters 43 and 44, and economizers 45, 46, and 47 are provided, and heat exchange is performed between the combustion gas generated by the combustion in the furnace 11 and water or steam.
煙道13は、そのガス流れ下流側に熱交換を行った燃焼ガスが排ガスとして排出される排ガス管48が連結されている。この排ガス管48は、空気ダクト37との間にエアヒータ49が設けられ、空気ダクト37を流れる空気と、排ガス管48を流れる排ガスとの間で熱交換を行い、燃焼バーナ100A,100B,100C,100D,100Eに供給する燃焼用空気を昇温することができる。燃焼用空気は、例えば、280℃~320℃まで昇温する。
なお、排ガス管48は、図示しないが、脱硝装置、電気集塵機、誘引送風機、脱硫装置が設けられ、下流端部に煙突が設けられている。 Theflue 13 is connected to an exhaust gas pipe 48 through which the combustion gas subjected to heat exchange is discharged as exhaust gas on the downstream side of the gas flow. The exhaust gas pipe 48 is provided with an air heater 49 between the air duct 37 and performs heat exchange between the air flowing through the air duct 37 and the exhaust gas flowing through the exhaust gas pipe 48, and the combustion burners 100A, 100B, 100C, The temperature of combustion air supplied to 100D and 100E can be raised. The combustion air is heated to 280 ° C. to 320 ° C., for example.
Although not shown, theexhaust gas pipe 48 is provided with a denitration device, an electrostatic precipitator, an induction blower, and a desulfurization device, and a chimney is provided at the downstream end.
なお、排ガス管48は、図示しないが、脱硝装置、電気集塵機、誘引送風機、脱硫装置が設けられ、下流端部に煙突が設けられている。 The
Although not shown, the
従って、微粉炭機31,32,33,34,35が駆動すると、生成された微粉炭が搬送用空気(1次空気)と共に微粉炭供給管(燃料供給管)26,27,28,29,30を通して燃焼バーナ100A,100B,100C,100D,100Eに供給される。また、加熱された燃焼用空気(2次空気)が空気ダクト37から風箱36を介して各燃焼バーナ100A,100B,100C,100D,100Eに供給される共に、分岐空気ダクト40からアディショナル空気ノズル39に供給される。搬送用空気(1次空気)は微粉炭が着火しないよう温度が低く、燃焼用空気(2次空気)はエアヒータ49で加熱されているので、1次空気および微粉燃料混合気よりも温度が高い。
Therefore, when the pulverized coal machines 31, 32, 33, 34, and 35 are driven, the generated pulverized coal together with the air for conveyance (primary air), the pulverized coal supply pipes (fuel supply pipes) 26, 27, 28, 29, 30 is supplied to the combustion burners 100A, 100B, 100C, 100D, and 100E. Also, heated combustion air (secondary air) is supplied from the air duct 37 to the combustion burners 100A, 100B, 100C, 100D, and 100E through the wind box 36, and an additional air nozzle is supplied from the branch air duct 40. 39. The temperature of the carrier air (primary air) is low so that the pulverized coal does not ignite, and the combustion air (secondary air) is heated by the air heater 49, so the temperature is higher than the primary air and the pulverized fuel mixture. .
すると、燃焼バーナ100A,100B,100C,100D,100Eは、微粉炭と搬送用空気とが混合した微粉燃料混合気(燃料ガス)を火炉11に吹き込むと共に燃焼用空気を火炉11に吹き込み、このときに着火することで火炎を形成することができる。また、アディショナル空気ノズル39は、追加空気を火炉11に吹き込み、微粉炭に対する空気の量を適正化させる燃焼制御を行うことができる。この火炉11では、微粉燃料混合気と燃焼用空気とが燃焼して火炎が生じ、この火炉11内の鉛直方向下部の領域で火炎が生じると、燃焼ガス(排ガス)がこの火炉11内を上昇し、煙道13に排出される。
Then, the combustion burners 100A, 100B, 100C, 100D, and 100E blow the pulverized fuel mixture (fuel gas), which is a mixture of pulverized coal and carrier air, into the furnace 11 and the combustion air into the furnace 11. By igniting, a flame can be formed. Further, the additional air nozzle 39 can perform combustion control for blowing additional air into the furnace 11 and optimizing the amount of air with respect to the pulverized coal. In the furnace 11, the pulverized fuel mixture and the combustion air are burned to generate a flame. When a flame is generated in a region in the lower vertical direction in the furnace 11, the combustion gas (exhaust gas) rises in the furnace 11. And discharged to the flue 13.
即ち、燃焼バーナ100A,100B,100C,100D,100Eは、微粉炭混合気と燃焼用空気(2次空気)を火炉11における燃焼領域に吹き込み、このときに着火することで燃焼領域に火炎旋回流が形成される。そして、この火炎旋回流は、旋回しながら上昇して還元領域に至る。アディショナル空気ノズル39は、追加空気を火炉11における還元領域の鉛直上方に吹き込む。この火炉11では、空気の供給量が微粉炭の供給量に対して理論空気量未満となるように設定されることで、内部が還元雰囲気に保持される。そして、微粉炭の燃焼により発生したNOxが火炉11で還元され、その後、追加空気(アディショナルエア)が供給されることで微粉炭の酸化燃焼が完結され、微粉炭の燃焼によるNOxの発生量が低減される。
That is, the combustion burners 100A, 100B, 100C, 100D, and 100E blow the pulverized coal mixture and the combustion air (secondary air) into the combustion region in the furnace 11, and ignite at this time, so that the flame swirls in the combustion region. Is formed. This flame swirl rises while swirling and reaches the reduction region. The additional air nozzle 39 blows additional air vertically above the reduction region in the furnace 11. In the furnace 11, the interior is maintained in a reducing atmosphere by setting the air supply amount to be less than the theoretical air amount with respect to the pulverized coal supply amount. The NOx generated by the combustion of the pulverized coal is reduced in the furnace 11, and then additional air (additional air) is supplied to complete the oxidation combustion of the pulverized coal, and the amount of NOx generated by the combustion of the pulverized coal is reduced. Reduced.
このとき、給水ポンプ(図示略)から供給された水は、節炭器45,46,47によって予熱された後、蒸気ドラム(図示略)に供給され火炉壁の各水管(図示略)に供給される間に加熱されて飽和蒸気となり、蒸気ドラムに送り込まれる。更に、蒸気ドラムの飽和蒸気は過熱器41,42に導入され、燃焼ガスによって過熱される。過熱器41,42で生成された過熱蒸気は、発電プラントのタービン(図示略)に供給される。また、タービンでの供給した水蒸気の膨張過程の中途で取り出した蒸気は、再熱器43,44に導入され、再度過熱されてタービンに戻され膨張して、タービンが回転駆動する。なお、火炉11をドラム型(蒸気ドラム)として説明したが、この構造に限定されるものではない。
At this time, the water supplied from the water supply pump (not shown) is preheated by the economizers 45, 46 and 47, then supplied to the steam drum (not shown) and supplied to each water pipe (not shown) on the furnace wall. In the meantime, it is heated to become saturated steam and fed into a steam drum. Further, the saturated steam of the steam drum is introduced into the superheaters 41 and 42 and is heated by the combustion gas. The superheated steam generated by the superheaters 41 and 42 is supplied to a turbine (not shown) of the power plant. Further, the steam taken out in the middle of the expansion process of the steam supplied by the turbine is introduced into the reheaters 43 and 44, is again superheated, is returned to the turbine and expands, and the turbine is rotationally driven. In addition, although the furnace 11 was demonstrated as a drum type | mold (steam drum), it is not limited to this structure.
その後、煙道13の節炭器45,46,47を通過した排ガスは、排ガス管48にて、脱硝装置(図示略)にて、供給したアンモニアと触媒によりNOxなどの有害物質が除去され、電気集塵機で粒子状物質が除去され、脱硫装置により硫黄分が除去された後、煙突から大気中に排出される。
Thereafter, the exhaust gas that has passed through the economizers 45, 46, and 47 of the flue 13 is subjected to removal of harmful substances such as NOx by the supplied ammonia and catalyst in the denitration device (not shown) in the exhaust gas pipe 48, Particulate matter is removed with an electric dust collector, sulfur content is removed with a desulfurizer, and then discharged from the chimney into the atmosphere.
ここで、燃焼装置12について詳細に説明するが、この燃焼装置12を構成する各燃焼バーナ100A,100B,100C,100D,100Eは、ほぼ同様の構成をなしていることから、最上段に位置する燃焼バーナ100Aについてのみ説明する。
Here, although the combustion apparatus 12 is demonstrated in detail, since each combustion burner 100A, 100B, 100C, 100D, 100E which comprises this combustion apparatus 12 has comprised the substantially the same structure, it is located in the uppermost stage. Only the combustion burner 100A will be described.
燃焼バーナ100Aは、図2に示すように、火炉11における4つの壁面に設けられる燃焼バーナ100Aa,100Ab,100Ac,100Adから構成されている。各燃焼バーナ100Aa,100Ab,100Ac,100Adは、微粉炭供給管26から分岐した各分岐管26a,26b,26c,26dが連結されると共に、空気ダクト37から分岐した各分岐管37a,37b,37c,37dが連結されている。
As shown in FIG. 2, the combustion burner 100 </ b> A includes combustion burners 100 </ b> Aa, 100 </ b> Ab, 100 </ b> Ac, 100 </ b> Ad provided on four wall surfaces in the furnace 11. Each combustion burner 100Aa, 100Ab, 100Ac, 100Ad is connected to each branch pipe 26a, 26b, 26c, 26d branched from the pulverized coal supply pipe 26, and each branch pipe 37a, 37b, 37c branched from the air duct 37. , 37d are connected.
従って、火炉11の各壁面にある各燃焼バーナ100Aa,100Ab,100Ac,100Adは、火炉11に対して、微粉炭と搬送用空気(1次空気)が混合した微粉燃料混合気を火炉11中心に対して僅かな偏角を設けて吹き込むと共に、その微粉燃料混合気の外側に燃焼用空気(2次空気)を吹き込む。そして、各燃焼バーナ100Aa,100Ab,100Ac,100Adからの微粉燃料混合気に着火することで、4つの火炎F1,F2,F3,F4を形成することができ、この火炎F1,F2,F3,F4は、火炉11の上方から見て(図2にて)反時計周り方向に旋回する火炎旋回流となる。ここでは、反時計回り方向に旋回するものとしたが、時計回りに旋回する火炎旋回流となるように各燃焼バーナ100Aa,100Ab,100Ac,100Adを配置してもよい。
Therefore, each combustion burner 100Aa, 100Ab, 100Ac, 100Ad on each wall surface of the furnace 11 has a pulverized fuel mixture in which pulverized coal and transport air (primary air) are mixed with the furnace 11 in the center of the furnace 11. In contrast, the air is blown with a slight deviation angle, and combustion air (secondary air) is blown to the outside of the pulverized fuel mixture. Then, by igniting the pulverized fuel mixture from each combustion burner 100Aa, 100Ab, 100Ac, 100Ad, four flames F1, F2, F3, F4 can be formed, and this flame F1, F2, F3, F4 Is a flame swirl flow swirling counterclockwise as viewed from above the furnace 11 (in FIG. 2). In this example, the combustion burners 100Aa, 100Ab, 100Ac, and 100Ad may be arranged so as to form a flame swirl flow that rotates clockwise.
次に、燃焼バーナ100Aについて詳細に説明する。
図3の縦断面図に示すように、本実施形態の燃焼バーナ100Aは、燃料ノズル110と、2次空気ノズル120と、2次空気導入流路130と、保炎器140と、を備える。なお、図3の縦断面図は、後述する図4に示す燃焼バーナ100AのII-II矢視断面図となっている。 Next, thecombustion burner 100A will be described in detail.
As shown in the longitudinal sectional view of FIG. 3, thecombustion burner 100 </ b> A of the present embodiment includes a fuel nozzle 110, a secondary air nozzle 120, a secondary air introduction flow path 130, and a flame holder 140. 3 is a cross-sectional view taken along the line II-II of a combustion burner 100A shown in FIG. 4 to be described later.
図3の縦断面図に示すように、本実施形態の燃焼バーナ100Aは、燃料ノズル110と、2次空気ノズル120と、2次空気導入流路130と、保炎器140と、を備える。なお、図3の縦断面図は、後述する図4に示す燃焼バーナ100AのII-II矢視断面図となっている。 Next, the
As shown in the longitudinal sectional view of FIG. 3, the
燃料ノズル110は、軸線X1に沿って筒状に延びるように形成される部材である。燃料ノズル110は、その内部に微粉炭供給管26から供給される微粉燃料混合気を火炉11へ供給する燃料ガス流路111を形成する。
燃料ノズル110は、火炉11に隣接して配置される先端側ノズル110aと、先端側ノズル110aの上流側に配置される基端側ノズル110bとを有する。先端側ノズル110aと基端側ノズル110bとは、2次空気導入流路130を間に配置した状態で連結されている。 Thefuel nozzle 110 is a member formed to extend in a cylindrical shape along the axis X1. The fuel nozzle 110 forms therein a fuel gas passage 111 for supplying the pulverized fuel mixture supplied from the pulverized coal supply pipe 26 to the furnace 11.
Thefuel nozzle 110 includes a distal end side nozzle 110a disposed adjacent to the furnace 11, and a proximal end side nozzle 110b disposed upstream of the distal end side nozzle 110a. The distal end side nozzle 110a and the proximal end side nozzle 110b are connected in a state where the secondary air introduction flow path 130 is disposed therebetween.
燃料ノズル110は、火炉11に隣接して配置される先端側ノズル110aと、先端側ノズル110aの上流側に配置される基端側ノズル110bとを有する。先端側ノズル110aと基端側ノズル110bとは、2次空気導入流路130を間に配置した状態で連結されている。 The
The
先端側ノズル110aが火炉11に面する部分の形状は、微粉燃料混合気のガス流通方向と同方向に直管状に延びる形状となっている。これは、微粉燃料混合気に含まれる微粉炭が燃料ガス流路111の中心軸(軸線X1)に対して外周側へ導かれることを抑制するためである。微粉燃料混合気に含まれた微粉炭が外周側へ導かれると、高温かつ高酸素濃度の火炉11内の領域において微粉炭が燃焼し、NOxが還元されない領域でNOxの発生量が増加してしまう。したがって、先端側ノズル110aが火炉11に面する部分の形状は、外部保炎ないし外部着火を抑制する形状として内部保炎ないし内部着火を行なっている。
The shape of the portion of the tip side nozzle 110a facing the furnace 11 is a shape extending straight in the same direction as the gas flow direction of the pulverized fuel mixture. This is to prevent the pulverized coal contained in the pulverized fuel mixture from being guided to the outer peripheral side with respect to the central axis (axis line X1) of the fuel gas passage 111. When the pulverized coal contained in the pulverized fuel mixture is led to the outer peripheral side, the pulverized coal burns in the region in the high-temperature and high-oxygen concentration furnace 11, and the amount of NOx generated increases in the region where NOx is not reduced. End up. Therefore, the shape of the part where the tip side nozzle 110a faces the furnace 11 performs internal flame holding or internal ignition as a shape that suppresses external flame holding or external ignition.
図3および図4に示すように、燃料ガス流路111の先端側ノズル110aにおける最小幅W1は、燃料ガス流路111の基端側ノズル110bにおける最小幅W2よりも大きくなっている。これは、2次空気導入流路130から燃料ガス流路111へ導入される2次空気で流量が増加することにより、先端側ノズル110aを流通する微粉燃料混合気の流速が基端側ノズル110bを流通する微粉燃料混合気の流速よりも増加しないようにするためである。
そのため、最小幅W1および最小幅W2の関係は、第1位置P1よりもガス流れ下流側の第2位置P2における先端側ノズル110aの断面積が、第1位置P1よりもガス流れ上流側の第3位置P3における基端側ノズル110bの断面積よりも大きくなるように設定される。2次空気の一部を2次空気導入流路130から燃料ガス流路111へ導入することにより燃料ガス流路111を流通する微粉燃料混合気の流速が上昇することによる不具合を抑制して、内部保炎を安定化することができる。 As shown in FIGS. 3 and 4, the minimum width W1 of the frontend side nozzle 110a of the fuel gas flow path 111 is larger than the minimum width W2 of the base end side nozzle 110b of the fuel gas flow path 111. This is because the flow rate of secondary air introduced from the secondary air introduction passage 130 to the fuel gas passage 111 increases, so that the flow rate of the pulverized fuel mixture flowing through the front end side nozzle 110a becomes the base end side nozzle 110b. This is so as not to increase more than the flow rate of the pulverized fuel mixture flowing through the fuel cell.
Therefore, the relationship between the minimum width W1 and the minimum width W2 is that the cross-sectional area of thetip nozzle 110a at the second position P2 on the downstream side of the gas flow with respect to the first position P1 is It is set to be larger than the cross-sectional area of the base end side nozzle 110b at the third position P3. Introducing a part of the secondary air from the secondary air introduction flow path 130 to the fuel gas flow path 111 suppresses problems due to an increase in the flow rate of the finely divided fuel mixture flowing through the fuel gas flow path 111, The internal flame holding can be stabilized.
そのため、最小幅W1および最小幅W2の関係は、第1位置P1よりもガス流れ下流側の第2位置P2における先端側ノズル110aの断面積が、第1位置P1よりもガス流れ上流側の第3位置P3における基端側ノズル110bの断面積よりも大きくなるように設定される。2次空気の一部を2次空気導入流路130から燃料ガス流路111へ導入することにより燃料ガス流路111を流通する微粉燃料混合気の流速が上昇することによる不具合を抑制して、内部保炎を安定化することができる。 As shown in FIGS. 3 and 4, the minimum width W1 of the front
Therefore, the relationship between the minimum width W1 and the minimum width W2 is that the cross-sectional area of the
2次空気ノズル120は、軸線X1に沿って筒状に延びるように形成されるとともに燃料ノズル110の軸線X1に対して外側を取り囲むように配置される部材である。2次空気ノズル120は、その内周面と燃料ノズル110の外周面との間に火炉11へ2次空気を供給する環状の2次空気流路121を形成する。なお、2次空気ノズル120へ流入した燃焼用空気(2次空気)は、その一部が2次空気導入流路130から燃料ガス流路111へ導入され、その他が2次空気流路121の先端から火炉11へ供給される。
The secondary air nozzle 120 is a member that is formed so as to extend in a cylindrical shape along the axis X1 and is disposed so as to surround the outside with respect to the axis X1 of the fuel nozzle 110. The secondary air nozzle 120 forms an annular secondary air flow path 121 that supplies secondary air to the furnace 11 between its inner peripheral surface and the outer peripheral surface of the fuel nozzle 110. A part of the combustion air (secondary air) flowing into the secondary air nozzle 120 is introduced from the secondary air introduction flow path 130 to the fuel gas flow path 111, and the other is in the secondary air flow path 121. It is supplied to the furnace 11 from the tip.
2次空気導入流路130は、2次空気流路121を流通する2次空気の一部を燃料ガス流路111へ導入する流路である。図4(図3に示す燃焼バーナのI-I矢視端面図)および図5に示すように、2次空気導入流路130は、燃料ガス流路111の鉛直上方に配置された上方導入部131,132,133,134と、燃料ガス流路111の鉛直下方に配置された下方導入部135,136,137,138とを有する。
The secondary air introduction flow path 130 is a flow path for introducing a part of the secondary air flowing through the secondary air flow path 121 to the fuel gas flow path 111. 4 (end view of the combustion burner shown in FIG. 3 as viewed in the direction of arrow II) and FIG. 5, the secondary air introduction flow path 130 includes an upper introduction portion 131 disposed vertically above the fuel gas flow path 111. 132, 133, 134 and lower introduction portions 135, 136, 137, 138 disposed vertically below the fuel gas passage 111.
図5は、図3に示す燃焼バーナ100Aから2次空気ノズル120を除去した一部を示す斜視図である。図5においては、2次空気導入流路130のうち燃料ノズル110の内部に配置される部分を破線で示している。
図5において、実線で示す矢印は2次空気流路121から燃料ガス流路111へ導入される2次空気と、燃料ガス流路111へ導かれずに2次空気流路121を流通する2次空気とを示す。一方、破線で示す矢印は燃料ガス流路111を流通する微粉燃料混合気を示す。 FIG. 5 is a perspective view showing a part of thecombustion burner 100A shown in FIG. 3 with the secondary air nozzle 120 removed. In FIG. 5, the part arrange | positioned inside the fuel nozzle 110 among the secondary air introduction flow paths 130 is shown with the broken line.
In FIG. 5, arrows indicated by solid lines indicate the secondary air introduced from thesecondary air passage 121 to the fuel gas passage 111 and the secondary air flowing through the secondary air passage 121 without being guided to the fuel gas passage 111. Indicates air. On the other hand, an arrow indicated by a broken line indicates a pulverized fuel mixture flowing through the fuel gas passage 111.
図5において、実線で示す矢印は2次空気流路121から燃料ガス流路111へ導入される2次空気と、燃料ガス流路111へ導かれずに2次空気流路121を流通する2次空気とを示す。一方、破線で示す矢印は燃料ガス流路111を流通する微粉燃料混合気を示す。 FIG. 5 is a perspective view showing a part of the
In FIG. 5, arrows indicated by solid lines indicate the secondary air introduced from the
上方導入部131,132,133,134は、軸線X1に沿った微粉燃料混合気のガス流通方向と直交する水平方向に沿って一定の間隔を空けて分散して配置されている。同様に、下方導入部135,136,137,138は、軸線X1に沿った微粉燃料混合気のガス流通方向と直交する水平方向に沿って一定の間隔を空けて分散して配置されている。ここでは、上方導入部131,132,133,134および下方導入部135,136,137,138を配置する間隔を水平方向に沿って一定としたが、任意の間隔で配置するようにしてもよい。
The upper introduction portions 131, 132, 133, and 134 are arranged in a dispersed manner at a certain interval along a horizontal direction perpendicular to the gas flow direction of the pulverized fuel mixture along the axis X1. Similarly, the lower introduction parts 135, 136, 137, and 138 are dispersed and arranged at a constant interval along a horizontal direction perpendicular to the gas flow direction of the pulverized fuel mixture along the axis X 1. Here, the intervals at which the upper introduction portions 131, 132, 133, and 134 and the lower introduction portions 135, 136, 137, and 138 are arranged are constant along the horizontal direction, but they may be arranged at arbitrary intervals. .
図4に示すように、上方導入部131,132,133,134が配置される鉛直方向の位置において、上方導入部131と上方導入部132との間に微粉燃料混合気が流通する空間が設けられ、上方導入部132と上方導入部133との間に微粉燃料混合気が流通する空間が設けられ、上方導入部133と上方導入部134との間に微粉燃料混合気が流通する空間が設けられている。
As shown in FIG. 4, a space in which the pulverized fuel mixture flows is provided between the upper introduction portion 131 and the upper introduction portion 132 at the vertical position where the upper introduction portions 131, 132, 133, and 134 are disposed. A space through which the pulverized fuel mixture flows is provided between the upper introduction portion 132 and the upper introduction portion 133, and a space through which the pulverized fuel mixture flows is provided between the upper introduction portion 133 and the upper introduction portion 134. It has been.
また、下方導入部135,136,137,138が配置される鉛直方向の位置において、下方導入部135と下方導入部136との間に微粉燃料混合気が流通する空間が設けられ、下方導入部136と下方導入部137との間に微粉燃料混合気が流通する空間が設けられ、下方導入部137と下方導入部138との間に微粉燃料混合気が流通する空間が設けられている。
このように、鉛直方向の同位置において微粉燃料混合気と導入する2次空気とが隣接した状態で流通するため、微粉燃料混合気と導入した2次空気とを良好に混合することができる。 In addition, at the position in the vertical direction where the lower introduction portions 135, 136, 137, and 138 are arranged, a space is provided between the lower introduction portion 135 and the lower introduction portion 136 to allow the pulverized fuel mixture to flow therethrough. A space in which the pulverized fuel mixture flows is provided between 136 and the lower introduction portion 137, and a space in which the pulverized fuel mixture flows is provided between the lower introduction portion 137 and the lower introduction portion 138.
Thus, since the pulverized fuel mixture and the introduced secondary air circulate at the same position in the vertical direction, the pulverized fuel mixture and the introduced secondary air can be mixed well.
このように、鉛直方向の同位置において微粉燃料混合気と導入する2次空気とが隣接した状態で流通するため、微粉燃料混合気と導入した2次空気とを良好に混合することができる。 In addition, at the position in the vertical direction where the
Thus, since the pulverized fuel mixture and the introduced secondary air circulate at the same position in the vertical direction, the pulverized fuel mixture and the introduced secondary air can be mixed well.
なお、図3に示すように、2次空気導入流路130を形成する部材の一部(裏側となる背面)は、燃料ガス流路111の一部を形成している。特に、第3位置P3から第1位置P1へ至る燃料ガス流路111において、上方導入部133の下面133aと下方導入部137の上面137aが配置される部分は、燃料ガス流路111の断面積が漸次縮小する形状となっている。そのため、下面133aと上面137aは、微粉燃料混合気の微粉炭の流れが直接接触することにより摩耗しやすい。そこで、下面133aと上面137aの燃料ガス流路111に面する部分には、摩耗を抑制するために摩耗防止用の部材(例えば、セラミックス製の板状部材)を設置するのが好ましい。
Note that, as shown in FIG. 3, a part of the member forming the secondary air introduction flow path 130 (the back side as the back side) forms a part of the fuel gas flow path 111. In particular, in the fuel gas flow path 111 from the third position P3 to the first position P1, a portion where the lower surface 133a of the upper introduction portion 133 and the upper surface 137a of the lower introduction portion 137 are arranged is a cross-sectional area of the fuel gas flow passage 111. The shape is gradually reduced. Therefore, the lower surface 133a and the upper surface 137a are easily worn by direct contact with the flow of pulverized coal in the pulverized fuel mixture. Therefore, it is preferable to install a wear-preventing member (for example, a ceramic plate-like member) in the portions of the lower surface 133a and the upper surface 137a facing the fuel gas flow path 111 in order to suppress wear.
保炎器140は、火炉11に近接する燃料ノズル110の先端側ノズル110aに対して微粉燃料混合気の噴出し方向のガス流れ上流側に配置され、微粉燃料混合気の着火用及び保炎用として機能するものである。保炎器140は、水平方向に沿って延びるように形成される長尺状の拡幅部141,142,143を有する。図3に示すように、拡幅部141,142,143は、燃料ノズル110が火炉11に面する先端部110cの近傍に、鉛直方向に沿って間隔を空けて配置される。
The flame holder 140 is arranged on the upstream side of the gas flow in the ejection direction of the pulverized fuel mixture with respect to the tip side nozzle 110a of the fuel nozzle 110 adjacent to the furnace 11, and is used for ignition and flame holding of the pulverized fuel mixture. It functions as. The flame holder 140 has long widened portions 141, 142, and 143 that are formed to extend along the horizontal direction. As shown in FIG. 3, the widened portions 141, 142, and 143 are disposed in the vicinity of the tip portion 110 c where the fuel nozzle 110 faces the furnace 11, with an interval along the vertical direction.
本実施形態では、図3に示すように、拡幅部141,142,143は、断面が二等辺三角形状をなし、微粉燃料混合気のガス流通方向のガス流れ下流側に向ってガス流通方向に直交する断面の幅が広くなり、前端がこの微粉燃料混合気の流通方向に直交する平面上に配置される。なお、拡幅部141,142,143は、二等辺三角形状の断面に限定されるものではなく、微粉燃料混合気の流れを分離してガス流れ下流側に再循環領域を形成するスプリット形状であれば良く、例えば断面がY字形状とされていても良い。
In the present embodiment, as shown in FIG. 3, the widened portions 141, 142, and 143 have an isosceles triangular cross section, and in the gas flow direction toward the gas flow downstream side of the gas flow direction of the pulverized fuel mixture. The width of the orthogonal cross section is widened, and the front end is disposed on a plane orthogonal to the flow direction of the pulverized fuel mixture. The widened portions 141, 142, and 143 are not limited to the isosceles triangular cross section, and may have a split shape that separates the flow of the pulverized fuel mixture and forms a recirculation region downstream of the gas flow. For example, the cross section may be Y-shaped.
ここで、燃料ガス流路111を流通する微粉燃料混合気と2次空気流路121から導入される2次空気とが緩やかに拡散混合し、均一な濃度分布となって火炉11へ供給されることについて説明する。なお、以下の説明においては、2次空気導入流路130が有する上方導入部133について説明するが、上方導入部131,132,134についても同様であるため説明を省略する。同様に、2次空気導入流路130が有する下方導入部137について説明するが、下方導入部135,136,138についても同様であるため説明を省略する。
Here, the pulverized fuel mixture flowing through the fuel gas passage 111 and the secondary air introduced from the secondary air passage 121 are gently diffused and mixed to be supplied to the furnace 11 with a uniform concentration distribution. This will be explained. In addition, in the following description, although the upper introduction part 133 which the secondary air introduction flow path 130 has is demonstrated, since it is the same also about the upper introduction parts 131,132,134, description is abbreviate | omitted. Similarly, although the lower introduction part 137 which the secondary air introduction flow path 130 has is demonstrated, since it is the same also about the lower introduction parts 135,136,138, description is abbreviate | omitted.
微粉炭供給管26から燃料ガス流路111へ供給される微粉燃料混合気は、図3の矢印201に示す方向に沿って基端側ノズル110bから先端側ノズル110aへ流入し、軸線X1に沿ったガス流通方向の第3位置P3から第1位置P1へ向けて流通する。
一方、空気ダクト37から2次空気ノズル120へ供給される燃焼用空気(2次空気)は、図3の矢印301,302に示す方向に沿って2次空気流路121へ流入する。 The pulverized fuel mixture supplied from the pulverizedcoal supply pipe 26 to the fuel gas passage 111 flows from the proximal nozzle 110b to the distal nozzle 110a along the direction indicated by the arrow 201 in FIG. The gas flows from the third position P3 in the gas flow direction toward the first position P1.
On the other hand, combustion air (secondary air) supplied from theair duct 37 to the secondary air nozzle 120 flows into the secondary air flow path 121 along the directions indicated by arrows 301 and 302 in FIG.
一方、空気ダクト37から2次空気ノズル120へ供給される燃焼用空気(2次空気)は、図3の矢印301,302に示す方向に沿って2次空気流路121へ流入する。 The pulverized fuel mixture supplied from the pulverized
On the other hand, combustion air (secondary air) supplied from the
2次空気流路121へ流入した2次空気の一部は、矢印303に示す方向に沿って上方導入部133へ流入し、燃料ノズル110の中心軸である軸線X1に向けて鉛直下方へ導入され、矢印305に示す方向に沿って燃料ガス流路111へ流入する。また、2次空気流路121へ流入した2次空気の一部は、矢印304に示す方向に沿って下方導入部137へ流入し、燃料ノズル110の中心軸である軸線X1に向けて鉛直上方へ導入され、矢印306に示す方向に沿って燃料ガス流路111へ流入する。
A portion of the secondary air that has flowed into the secondary air flow path 121 flows into the upper introduction portion 133 along the direction indicated by the arrow 303 and is introduced vertically downward toward the axis X1 that is the central axis of the fuel nozzle 110. Then, it flows into the fuel gas flow path 111 along the direction indicated by the arrow 305. Further, part of the secondary air that has flowed into the secondary air flow path 121 flows into the lower introduction portion 137 along the direction indicated by the arrow 304, and vertically upwards toward the axis X 1 that is the central axis of the fuel nozzle 110. And flows into the fuel gas flow path 111 along the direction indicated by the arrow 306.
ここで、矢印305に示す軸線X2に沿った方向は軸線X1と同方向であり、矢印306に示す軸線X3に沿った方向は軸線X1と同方向である。そのため、上方導入部133および下方導入部137は、軸線X1に沿った微粉燃料混合気のガス流通方向の主成分を持つ流速で2次空気の一部を燃料ガス流路111へ導入する。導入された2次空気は、微粉燃料混合気のガス流通方向の主成分を持つ流速で2次空気導入流路130から燃料ガス流路111へ導入されるため、微粉燃料混合気との合流時に大きな乱れを生じさせることなく緩やかに拡散しながら混合する。
Here, the direction along the axis X2 indicated by the arrow 305 is the same direction as the axis X1, and the direction along the axis X3 indicated by the arrow 306 is the same direction as the axis X1. Therefore, the upper introduction part 133 and the lower introduction part 137 introduce a part of the secondary air into the fuel gas flow path 111 at a flow rate having a main component in the gas flow direction of the pulverized fuel mixture along the axis X1. The introduced secondary air is introduced from the secondary air introduction channel 130 to the fuel gas channel 111 at a flow velocity having a main component in the gas flow direction of the pulverized fuel mixture. Mix while gently diffusing without causing large disturbances.
また、上方導入部131,132,133,134が微粉燃料混合気のガス流通方向と直交する水平方向に沿って間隔を空けて分散して配置されているため、導入された2次空気と微粉燃料混合気とが、燃料ガス流路111において隣接した状態で混合される。同様に、下方導入部135,136,137,138が微粉燃料混合気のガス流通方向と直交する水平方向に沿って間隔を空けて離散して配置されているため、導入された2次空気と微粉燃料混合気とが、燃料ガス流路111において隣接した状態で混合される。導入された2次空気と微粉燃料混合気とが、燃料ガス流路111において隣接した状態で混合され、さらに2次空気導入流路130を複数の導入部へ分散したためガス拡散の機会を増加して拡散性向上と均一化ができる。これにより、単一の導入部から燃料ガス流路111へ2次空気を導入する場合に比べ、2次空気に接触した領域で着火することなく、2次空気と微粉燃料混合気とが良好に混合される。
Moreover, since the upper introduction parts 131, 132, 133, and 134 are arranged at intervals along the horizontal direction orthogonal to the gas flow direction of the pulverized fuel mixture, the introduced secondary air and the fine powder are arranged. The fuel mixture is mixed in a state adjacent to the fuel gas passage 111. Similarly, since the lower introduction portions 135, 136, 137, and 138 are discretely arranged along the horizontal direction orthogonal to the gas flow direction of the pulverized fuel mixture, the introduced secondary air and The pulverized fuel mixture is mixed in a state adjacent to the fuel gas flow path 111. The introduced secondary air and the pulverized fuel mixture are mixed in a state adjacent to each other in the fuel gas passage 111, and further, the secondary air introduction passage 130 is dispersed to a plurality of introduction portions, thereby increasing the chance of gas diffusion. Can improve diffusibility and make it uniform. Thereby, compared with the case where secondary air is introduced into the fuel gas flow path 111 from a single introduction part, the secondary air and the pulverized fuel mixture are better without being ignited in the region in contact with the secondary air. Mixed.
微粉燃料混合気と各々の導入された2次空気とのガス拡散で混合されて均一化させるためには、2次空気導入流路130の上方導入部131,132,133,134、および下方導入部135,136,137,138は、少なくとも軸線X1に対して対称になるよう同じ流量と同じ流速で2次空気を導入することが好ましい。このため上方導入部131,132,133,134、および下方導入部135,136,137,138の流路断面積は、少なくとも軸線X1に対して対称になることが好ましい。
また、燃焼バーナ100Aの運用にあたり、微粉燃料混合気と各々の導入された2次空気とのガス拡散で混合されて均一化でないことが保炎器140での保炎状況などから想定された場合は、上方導入部131,132,133,134、および下方導入部135,136,137,138の流路断面積を図示しないダンバなどで調整することで、軸線X1に対して対称にすることが可能である。 In order to mix and homogenize the gas mixture between the pulverized fuel mixture and each introduced secondary air, the upper introduction portions 131, 132, 133, and 134 of the secondary air introduction flow path 130, and the lower introduction It is preferable that the portions 135, 136, 137, and 138 introduce secondary air at the same flow rate and the same flow rate so as to be symmetrical with respect to at least the axis X1. For this reason, it is preferable that the flow path cross-sectional areas of the upper introduction parts 131, 132, 133, and 134 and the lower introduction parts 135, 136, 137, and 138 are at least symmetrical with respect to the axis X1.
Also, in the operation of thecombustion burner 100A, when it is assumed from the flame holding condition in the flame holder 140 that it is not mixed and homogenized by gas diffusion of the pulverized fuel mixture and each introduced secondary air Can be made symmetric with respect to the axis X1 by adjusting the cross-sectional areas of the upper introduction portions 131, 132, 133, and 134 and the lower introduction portions 135, 136, 137, and 138 with a damper (not shown). Is possible.
また、燃焼バーナ100Aの運用にあたり、微粉燃料混合気と各々の導入された2次空気とのガス拡散で混合されて均一化でないことが保炎器140での保炎状況などから想定された場合は、上方導入部131,132,133,134、および下方導入部135,136,137,138の流路断面積を図示しないダンバなどで調整することで、軸線X1に対して対称にすることが可能である。 In order to mix and homogenize the gas mixture between the pulverized fuel mixture and each introduced secondary air, the
Also, in the operation of the
また、図3および図4に示すように、軸線X1において2次空気導入流路130が燃料ガス流路111へ2次空気の一部を導入する第1位置P1(2次空気が導入される導入位置)から保炎器140の上流端の第4位置P4(保炎器140が設置される設置位置)までのガス流通方向の距離をLとし、燃料ガス流路111の先端側ノズル110aにおける最小幅をW1(W)とした場合、以下の式(1)を満たす。
2≦L/W1≦5 (1) Further, as shown in FIGS. 3 and 4, the first position P <b> 1 (secondary air is introduced) where the secondaryair introduction passage 130 introduces a part of the secondary air into the fuel gas passage 111 along the axis X <b> 1. The distance in the gas flow direction from the introduction position) to the fourth position P4 (installation position where the flame stabilizer 140 is installed) at the upstream end of the flame holder 140 is L, and the distance in the tip side nozzle 110a of the fuel gas passage 111 is When the minimum width is W1 (W), the following expression (1) is satisfied.
2 ≦ L / W1 ≦ 5 (1)
2≦L/W1≦5 (1) Further, as shown in FIGS. 3 and 4, the first position P <b> 1 (secondary air is introduced) where the secondary
2 ≦ L / W1 ≦ 5 (1)
式(1)に示すように第1位置P1から第4位置P4までの距離Lを先端側ノズル110aにおける最小幅W1よりも十分に大きくすることで、第1位置P1で燃料ガス流路111に導入された2次空気と微粉燃料混合気とを均一な濃度分布となるように十分に混合する。
また、導入された2次空気と微粉燃料混合気との混合には、2次空気導入流路130の形状や大きさを調整し適正化することで選定する。2≦L/W1としているのは、保炎器140を通過する微粉燃料混合気を、導入された2次空気と均一に混合された微粉燃料混合気とするためである。また、2次空気導入流路130の形状や大きさを大きくするように選定することで、導入された2次空気との混合が促進されるが、混合にあたり流れが乱されて、微粉燃料混合気より温度が高い2次空気との間で着火する場合があることから、2次空気導入流路130の形状や大きさの上限が存在する。2次空気導入流路130の形状や大きさの上限と、燃焼バーナ100Aの大型化を防止するために、L/W1≦5としている。
第1位置P1で2次空気と混合した微粉燃料混合気は、第1位置P1から第4位置P4へ向けて濃度分布を均一化しながら矢印202,203,204で示す方向に流通し、保炎器140の上流端へ到達する。 As shown in Expression (1), the distance L from the first position P1 to the fourth position P4 is made sufficiently larger than the minimum width W1 of thetip side nozzle 110a, so that the fuel gas flow path 111 is formed at the first position P1. The introduced secondary air and the pulverized fuel mixture are sufficiently mixed so as to obtain a uniform concentration distribution.
Further, the mixing of the introduced secondary air and the pulverized fuel mixture is selected by adjusting and optimizing the shape and size of the secondary airintroduction flow path 130. The reason why 2 ≦ L / W1 is set is that the pulverized fuel mixture passing through the flame holder 140 is a pulverized fuel mixture uniformly mixed with the introduced secondary air. In addition, by selecting to increase the shape and size of the secondary air introduction flow path 130, the mixing with the introduced secondary air is promoted. Since there is a case where ignition occurs between secondary air having a temperature higher than that of air, there is an upper limit of the shape and size of the secondary air introduction flow path 130. In order to prevent the upper limit of the shape and size of the secondary air introduction flow path 130 and the enlargement of the combustion burner 100A, L / W1 ≦ 5.
The pulverized fuel mixture mixed with the secondary air at the first position P1 circulates in the direction indicated by the arrows 202, 203, 204 from the first position P1 toward the fourth position P4 in the direction indicated by the arrows 202, 203, 204, and holds the flame. The upstream end of the vessel 140 is reached.
また、導入された2次空気と微粉燃料混合気との混合には、2次空気導入流路130の形状や大きさを調整し適正化することで選定する。2≦L/W1としているのは、保炎器140を通過する微粉燃料混合気を、導入された2次空気と均一に混合された微粉燃料混合気とするためである。また、2次空気導入流路130の形状や大きさを大きくするように選定することで、導入された2次空気との混合が促進されるが、混合にあたり流れが乱されて、微粉燃料混合気より温度が高い2次空気との間で着火する場合があることから、2次空気導入流路130の形状や大きさの上限が存在する。2次空気導入流路130の形状や大きさの上限と、燃焼バーナ100Aの大型化を防止するために、L/W1≦5としている。
第1位置P1で2次空気と混合した微粉燃料混合気は、第1位置P1から第4位置P4へ向けて濃度分布を均一化しながら矢印202,203,204で示す方向に流通し、保炎器140の上流端へ到達する。 As shown in Expression (1), the distance L from the first position P1 to the fourth position P4 is made sufficiently larger than the minimum width W1 of the
Further, the mixing of the introduced secondary air and the pulverized fuel mixture is selected by adjusting and optimizing the shape and size of the secondary air
The pulverized fuel mixture mixed with the secondary air at the first position P1 circulates in the direction indicated by the
微粉燃料混合気は、保炎器140の拡幅部141,142,143により鉛直方向の上方と下方に流れが分離し、拡幅部141,142,143のガス流通方向の下流側の直後に再循環領域を形成しながら火炉11へ流入する。保炎器140により分離してから再循環する微粉燃料混合気が燃焼し保炎される。この際に2次空気の一部を燃料ガス流路111へ導くことで、A/C比を増加させたことにより微粉燃料混合気中の微粉炭の燃焼が促進されて未燃分が減少する。この時にNOxが発生するが、微粉炭に含まれる可燃性の揮発分の放出が促進されて保炎器140の下流側が空気不足の還元雰囲気となっているため、発生したNOxが早期に還元されるため、NOx発生量を低減する。
The pulverized fuel mixture is separated by the widened portions 141, 142, and 143 of the flame stabilizer 140 into the upper and lower parts in the vertical direction and recirculated immediately after the widened portions 141, 142, and 143 are downstream in the gas flow direction. It flows into the furnace 11 while forming a region. The pulverized fuel mixture which is separated and then recirculated by the flame holder 140 is burned and flame-held. At this time, by introducing a part of the secondary air to the fuel gas passage 111, the combustion of the pulverized coal in the pulverized fuel mixture is promoted by increasing the A / C ratio, and the unburned portion decreases. . Although NOx is generated at this time, since the release of combustible volatiles contained in the pulverized coal is promoted and the downstream side of the flame holder 140 is in a reducing atmosphere with insufficient air, the generated NOx is reduced early. Therefore, the amount of NOx generated is reduced.
以上説明した本実施形態の燃焼バーナ100Aが奏する作用および効果について説明する。
The operation and effect of the combustion burner 100A of the present embodiment described above will be described.
本実施形態の燃焼バーナ100Aによれば、2次空気流路121を流通する燃料ガスより温度の高い2次空気の少なくとも一部が、2次空気導入流路130によって2次空気流路121から、微粉燃料混合気が流通する燃料ガス流路111へ導かれる。燃料ノズル110内の火炉11へ開口する先端部110cの近傍に保炎器140が配置されているため、燃料ガス流路111の出口における燃料の着火性が向上するとともに燃料に含まれる可燃性の揮発分の放出が促進されてNOxの還元が促進されるため、NOx発生量が低減する。
According to the combustion burner 100 </ b> A of the present embodiment, at least a part of the secondary air having a temperature higher than that of the fuel gas flowing through the secondary air flow path 121 is separated from the secondary air flow path 121 by the secondary air introduction flow path 130. The fuel gas passage 111 through which the fine fuel mixture is circulated is introduced. Since the flame holder 140 is disposed in the vicinity of the tip 110c that opens to the furnace 11 in the fuel nozzle 110, the ignitability of the fuel at the outlet of the fuel gas passage 111 is improved and the combustibility contained in the fuel is increased. Since the release of volatile matter is promoted and the reduction of NOx is promoted, the amount of NOx generated is reduced.
また、本実施形態の燃焼バーナ100Aにおいては、2次空気の少なくとも一部を燃料ガス流路111へ導くため、燃料ガスのA/C比を増加させるために1次空気の流量を増加させる必要がない。そのため、1次空気の流量が増加することによる通風機の動力増加、微粉炭機31,32,33,34,35の分級精度の低下、燃料を搬送する搬送管の摩耗量の増加等の不具合を抑制することができる。
Further, in the combustion burner 100A of this embodiment, since at least a part of the secondary air is guided to the fuel gas passage 111, it is necessary to increase the flow rate of the primary air in order to increase the A / C ratio of the fuel gas. There is no. For this reason, there are problems such as an increase in the power of the ventilator due to an increase in the flow rate of the primary air, a decrease in the classification accuracy of the pulverized coal machines 31, 32, 33, 34, and 35, and an increase in the amount of wear on the transport pipe that carries the fuel Can be suppressed.
また、本実施形態の燃焼バーナ100Aにおいては、2次空気の導入位置(第1位置P1)から保炎器140の設置位置(第4位置P4)までの軸線X1に沿ったガス流通方向の距離をLとし、導入位置から設置位置へ至る燃料ガス流路111の最小幅をWとした場合に2≦L/W≦5を満たす。2≦L/Wとしているのは、保炎器140を通過する燃料ガスを2次空気と均一に混合するために十分な距離を確保するためである。また、L/W1≦5としているのは、燃焼バーナ100Acの大型化を防止するためである。
このようにすることで、2次空気が燃料ガス流路111へ導入されてから保炎器140に到達するまでのガス流通方向の距離を十分に確保しつつ燃焼バーナ100Acの大型化を防止し、導入された2次空気と燃料ガスとがより均一な濃度分布となった状態で保炎器140による着火ないし保炎を行うことができる。 In thecombustion burner 100A of the present embodiment, the distance in the gas flow direction along the axis X1 from the secondary air introduction position (first position P1) to the flame holder 140 installation position (fourth position P4). Is L, and 2 ≦ L / W ≦ 5 is satisfied, where W is the minimum width of the fuel gas passage 111 from the introduction position to the installation position. The reason why 2 ≦ L / W is set is to ensure a sufficient distance for uniformly mixing the fuel gas passing through the flame holder 140 with the secondary air. Moreover, L / W1 ≦ 5 is set to prevent the combustion burner 100Ac from becoming large.
By doing so, the combustion burner 100Ac is prevented from being enlarged while a sufficient distance in the gas flow direction from when the secondary air is introduced into thefuel gas passage 111 to the flame holder 140 is secured. The flame holder 140 can perform ignition or flame holding in a state where the introduced secondary air and fuel gas have a more uniform concentration distribution.
このようにすることで、2次空気が燃料ガス流路111へ導入されてから保炎器140に到達するまでのガス流通方向の距離を十分に確保しつつ燃焼バーナ100Acの大型化を防止し、導入された2次空気と燃料ガスとがより均一な濃度分布となった状態で保炎器140による着火ないし保炎を行うことができる。 In the
By doing so, the combustion burner 100Ac is prevented from being enlarged while a sufficient distance in the gas flow direction from when the secondary air is introduced into the
本実施形態の燃焼バーナ100Aにおいて、2次空気導入流路130は、ガス流通方向の主成分を持つ流速で2次空気の少なくとも一部を燃料ガス流路111へ導入する。
本実施形態の燃焼バーナ100Aによれば、2次空気は、燃料ガスのガス流通方向の主成分の流速を持って2次空気導入流路130から燃料ガス流路111へ導入されるため、燃料ガスとの合流時に大きな乱れを生じさせることなく緩やかに拡散しながら混合する。 In thecombustion burner 100A of the present embodiment, the secondary air introduction channel 130 introduces at least part of the secondary air into the fuel gas channel 111 at a flow rate having a main component in the gas flow direction.
According to thecombustion burner 100A of the present embodiment, the secondary air is introduced from the secondary air introduction channel 130 to the fuel gas channel 111 with a flow velocity of the main component in the gas flow direction of the fuel gas. Mixing while gently diffusing without causing large turbulence when joining with gas.
本実施形態の燃焼バーナ100Aによれば、2次空気は、燃料ガスのガス流通方向の主成分の流速を持って2次空気導入流路130から燃料ガス流路111へ導入されるため、燃料ガスとの合流時に大きな乱れを生じさせることなく緩やかに拡散しながら混合する。 In the
According to the
本実施形態の燃焼バーナ100Aにおいて、保炎器140は、ガス流通方向と交差する方向に沿って延びるように形成されるとともにガス流通方向における下流側に向かってガス流通方向に直交する断面の幅が広くなる拡幅部141,142,143を有してもよい。保炎器140に拡幅部141,142,143を設けることで、好適に内部保炎を行うことができる。
In the combustion burner 100A of the present embodiment, the flame holder 140 is formed so as to extend along a direction intersecting with the gas flow direction and has a cross-sectional width orthogonal to the gas flow direction toward the downstream side in the gas flow direction. There may be widened portions 141, 142, 143 that become wider. By providing the flame stabilizer 140 with the widened portions 141, 142, and 143, it is possible to suitably perform internal flame holding.
<第2実施形態>
次に、本開示の第2実施形態の微粉炭焚きボイラについて説明する。
第2実施形態の微粉炭焚きボイラ10Aは、第1実施形態の微粉炭焚きボイラ10の変形例であり、以下で特に説明する場合を除き、第1実施形態の微粉炭焚きボイラ10と同様であるものとし、以下での説明を省略する。 Second Embodiment
Next, the pulverized coal burning boiler according to the second embodiment of the present disclosure will be described.
The pulverizedcoal burning boiler 10A of the second embodiment is a modification of the pulverized coal burning boiler 10 of the first embodiment, and is the same as the pulverized coal burning boiler 10 of the first embodiment, except as specifically described below. It is assumed that there is a description, and the description below is omitted.
次に、本開示の第2実施形態の微粉炭焚きボイラについて説明する。
第2実施形態の微粉炭焚きボイラ10Aは、第1実施形態の微粉炭焚きボイラ10の変形例であり、以下で特に説明する場合を除き、第1実施形態の微粉炭焚きボイラ10と同様であるものとし、以下での説明を省略する。 Second Embodiment
Next, the pulverized coal burning boiler according to the second embodiment of the present disclosure will be described.
The pulverized
第1実施形態の微粉炭焚きボイラ10は、送風機38が送風する空気(外気)の全量をエアヒータ(熱交換器)49を通過させ、空気ダクト37から風箱36に供給される燃焼用空気を280℃~320℃まで昇温するものであった。それに対して本実施形態の微粉炭焚きボイラ10Aは、送風機38が送風する空気の一部をエアヒータ(熱交換器)49を通過させる一方で、送風機38が送風する空気のその他をエアヒータ(熱交換器)49を通過させない。
The pulverized coal-fired boiler 10 according to the first embodiment allows the entire amount of air (outside air) blown by the blower 38 to pass through the air heater (heat exchanger) 49 and the combustion air supplied from the air duct 37 to the wind box 36. The temperature was raised to 280 ° C to 320 ° C. On the other hand, the pulverized coal fired boiler 10A of the present embodiment passes a part of the air blown by the blower 38 through the air heater (heat exchanger) 49, while the other of the air blown by the blower 38 is an air heater (heat exchange). Instrument) 49 is not allowed to pass.
本実施形態の微粉炭焚きボイラ10Aは、このようにして風箱36に供給される燃焼用空気を第1実施形態の微粉炭焚きボイラ10よりも低温となるように調整している。以下、本実施形態の微粉炭焚きボイラ10Aについて詳細に説明する。
The pulverized coal burning boiler 10A of the present embodiment is adjusted so that the combustion air supplied to the wind box 36 in this way is lower in temperature than the pulverized coal burning boiler 10 of the first embodiment. Hereinafter, the pulverized coal burning boiler 10A of the present embodiment will be described in detail.
図6に示すように、本実施形態の微粉炭焚きボイラ10Aは、送風機38により送風される空気を風箱36まで導く空気ダクトとして、空気ダクト37Aと、空気ダクト37Bと、空気ダクト39Cとを有する。
送風機38により送風される空気は、その一部が空気ダクト37Aへ供給され、その他が空気ダクト37Bへ供給される。 As shown in FIG. 6, the pulverizedcoal burning boiler 10A of the present embodiment includes an air duct 37A, an air duct 37B, and an air duct 39C as air ducts that guide the air blown by the blower 38 to the wind box 36. Have.
A part of the air blown by theblower 38 is supplied to the air duct 37A, and the other is supplied to the air duct 37B.
送風機38により送風される空気は、その一部が空気ダクト37Aへ供給され、その他が空気ダクト37Bへ供給される。 As shown in FIG. 6, the pulverized
A part of the air blown by the
空気ダクト37Cは、エアヒータ49を通過して高温(280℃以上かつ320℃以下)となった空気とエアヒータ49を通過していない常温(0℃以上かつ40℃以下)の空気とを混合して風箱36へ導くダクトである。空気ダクト37Cから風箱36へ導かれた空気は、2次空気ノズル120へ供給される。
The air duct 37C mixes air that has passed through the air heater 49 and has become high temperature (280 ° C. or higher and 320 ° C. or lower) and air that has not passed through the air heater 49 (0 ° C. or higher and 40 ° C. or lower). A duct leading to the wind box 36. The air guided from the air duct 37 </ b> C to the wind box 36 is supplied to the secondary air nozzle 120.
空気ダクト37Cから風箱36へ導かれる空気の温度は、所定温度となるように調整されている。ここで、所定温度とは、100℃以上かつ300℃以下の温度範囲の温度である。100℃以上とすることにより、空気ダクト37Cの内部で結露が発生することが抑制される。また、300℃以下とすることにより2次空気ノズル120から燃料ガス流路111へ導かれた2次空気によって微粉燃料混合気が発火する不具合が抑制される。なお、所定温度は、150℃以上かつ250℃以下の温度範囲の温度としてもよい。また、所定温度は、175℃以上かつ225℃以下の温度範囲の温度としてもよい。
The temperature of the air led from the air duct 37C to the wind box 36 is adjusted to be a predetermined temperature. Here, the predetermined temperature is a temperature in a temperature range of 100 ° C. or more and 300 ° C. or less. By setting it as 100 degreeC or more, it is suppressed that dew condensation arises inside the air duct 37C. Further, by setting the temperature to 300 ° C. or lower, the problem that the pulverized fuel mixture is ignited by the secondary air guided from the secondary air nozzle 120 to the fuel gas passage 111 is suppressed. The predetermined temperature may be a temperature in the temperature range of 150 ° C. or more and 250 ° C. or less. The predetermined temperature may be a temperature in the temperature range of 175 ° C. or more and 225 ° C. or less.
空気ダクト37Cから風箱36へ導かれる空気の温度は、送風機38から空気ダクト37Aへ導かれる空気の流量と、送風機38から空気ダクト37Bへ導かれる空気の流量との割合によって調整されている。送風機38から空気ダクト37Aへ導かれる空気の流量と送風機38から空気ダクト37Bへ導かれる空気の流量との割合は、予め固定された割合としても良い。また、空気ダクト37Aまたは空気ダクト37Bのいずれか一方にダンパ(図示略)を設け、ダンパの開度を調整することにより、送風機38から空気ダクト37Aへ導かれる空気の流量と送風機38から空気ダクト37Bへ導かれる空気の流量との割合を調整してもよい。
The temperature of the air guided from the air duct 37C to the wind box 36 is adjusted by the ratio between the flow rate of air guided from the blower 38 to the air duct 37A and the flow rate of air guided from the blower 38 to the air duct 37B. The ratio between the flow rate of air guided from the blower 38 to the air duct 37A and the flow rate of air guided from the blower 38 to the air duct 37B may be a fixed ratio. In addition, a damper (not shown) is provided in one of the air duct 37A and the air duct 37B, and by adjusting the opening of the damper, the flow rate of air guided from the blower 38 to the air duct 37A and the air duct from the blower 38 are adjusted. You may adjust a ratio with the flow volume of the air guide | induced to 37B.
以上説明した本実施形態の微粉炭焚きボイラ10Aによれば、エアヒータ49を通過した高温(280℃以上かつ320℃以下)の空気とエアヒータ49を通過していない常温(0℃以上かつ40℃以下)の空気とを適量で混合することにより、燃料ガス流路111へ導入される2次空気の温度を適温(例えば、100℃以上かつ300℃以下)まで低下させることができる。これにより、燃料ガス流路111へ導入された高温の2次空気により石炭を粉砕した燃料が発火する不具合を抑制することができる。
According to the pulverized coal burning boiler 10A of the present embodiment described above, high-temperature air (280 ° C. or higher and 320 ° C. or lower) that has passed through the air heater 49 and normal temperature (0 ° C. or higher and 40 ° C. or lower) that does not pass through the air heater 49. ) In an appropriate amount, the temperature of the secondary air introduced into the fuel gas channel 111 can be lowered to an appropriate temperature (for example, 100 ° C. or more and 300 ° C. or less). Thereby, the malfunction which the fuel which grind | pulverized coal with the high temperature secondary air introduce | transduced into the fuel gas flow path 111 ignites can be suppressed.
<第3実施形態>
次に、本開示の第3実施形態の微粉炭焚きボイラについて説明する。
第3実施形態の微粉炭焚きボイラは、第1実施形態の微粉炭焚きボイラ10の変形例であり、以下で特に説明する場合を除き、第1実施形態の微粉炭焚きボイラ10と同様であるものとし、以下での説明を省略する。本実施形態の微粉炭焚きボイラが備える燃焼バーナ100Fは、燃料ガス流路111の内部に整流部150が設けられている点で第1実施形態の微粉炭焚きボイラ10が備える燃焼バーナ100Aと異なる。 <Third Embodiment>
Next, a pulverized coal fired boiler according to a third embodiment of the present disclosure will be described.
The pulverized coal burning boiler according to the third embodiment is a modification of the pulverizedcoal burning boiler 10 according to the first embodiment, and is the same as the pulverized coal burning boiler 10 according to the first embodiment, unless otherwise described below. The description below will be omitted. The combustion burner 100F provided in the pulverized coal burning boiler of the present embodiment is different from the combustion burner 100A provided in the pulverized coal burning boiler 10 of the first embodiment in that a rectifying unit 150 is provided inside the fuel gas flow path 111. .
次に、本開示の第3実施形態の微粉炭焚きボイラについて説明する。
第3実施形態の微粉炭焚きボイラは、第1実施形態の微粉炭焚きボイラ10の変形例であり、以下で特に説明する場合を除き、第1実施形態の微粉炭焚きボイラ10と同様であるものとし、以下での説明を省略する。本実施形態の微粉炭焚きボイラが備える燃焼バーナ100Fは、燃料ガス流路111の内部に整流部150が設けられている点で第1実施形態の微粉炭焚きボイラ10が備える燃焼バーナ100Aと異なる。 <Third Embodiment>
Next, a pulverized coal fired boiler according to a third embodiment of the present disclosure will be described.
The pulverized coal burning boiler according to the third embodiment is a modification of the pulverized
以下、本実施形態の燃焼バーナ100Fについて、図面を参照して説明する。本実施形態の燃焼バーナ100Fは、第1実施形態の燃焼バーナ100Aの変形例であり、以下で説明する場合を除き、第1実施形態の燃焼バーナ100Aと同様であるものとし、以下での説明を省略する。
Hereinafter, the combustion burner 100F of the present embodiment will be described with reference to the drawings. The combustion burner 100F of the present embodiment is a modification of the combustion burner 100A of the first embodiment, and is the same as the combustion burner 100A of the first embodiment except for the case described below. Is omitted.
図7に示すように、本実施形態の燃焼バーナ100Fは、2次空気導入流路130が燃料ガス流路111へ2次空気の一部を導入する第1位置P1と保炎器140の上流端の第4位置P4との間に、整流部150を備える。
整流部150は、微粉燃料混合気を燃料ガス流路111内で攪拌し、微粉燃料混合気が微粉炭供給管26を流通する際に生じる微粉炭の偏流(流路断面における微粉炭の濃度の偏り)を解消するための部材である。整流部150は、燃料ノズル110内の保炎器140よりもガス流通方向の上流側に配置されている。 As shown in FIG. 7, in thecombustion burner 100 </ b> F of the present embodiment, the secondary air introduction flow path 130 introduces a part of the secondary air into the fuel gas flow path 111 and the upstream of the flame holder 140. A rectifying unit 150 is provided between the end and the fourth position P4.
The rectifyingunit 150 agitates the pulverized fuel mixture in the fuel gas flow path 111, and drifts of the pulverized coal generated when the pulverized fuel mixture flows through the pulverized coal supply pipe 26 (the concentration of the pulverized coal in the flow path cross section). This is a member for eliminating (bias). The rectification unit 150 is disposed upstream of the flame holder 140 in the fuel nozzle 110 in the gas flow direction.
整流部150は、微粉燃料混合気を燃料ガス流路111内で攪拌し、微粉燃料混合気が微粉炭供給管26を流通する際に生じる微粉炭の偏流(流路断面における微粉炭の濃度の偏り)を解消するための部材である。整流部150は、燃料ノズル110内の保炎器140よりもガス流通方向の上流側に配置されている。 As shown in FIG. 7, in the
The rectifying
図8(図7に示す燃焼バーナ100FのIII-III矢視端面図)に示すように、本実施形態の燃焼バーナ100Fは、燃料ノズル110の内周面を取り囲むように環状に配置されて燃料ガス流路111の流路断面積を局所的に小さくする整流部150を備えている。本実施形態の整流部150は、通過する微粉燃料混合気を攪拌し、燃料ガス流路111の流路断面における微粉炭の濃度の偏りを解消する。
As shown in FIG. 8 (an end view taken along the line III-III of the combustion burner 100F shown in FIG. 7), the combustion burner 100F of this embodiment is arranged in an annular shape so as to surround the inner peripheral surface of the fuel nozzle 110. A rectifying unit 150 that locally reduces the cross-sectional area of the gas flow path 111 is provided. The rectifying unit 150 of the present embodiment agitates the passing pulverized fuel mixture, and eliminates the uneven concentration of pulverized coal in the cross section of the fuel gas channel 111.
なお、図8に示す整流部150は、燃料ノズル110の内周面を取り囲むように環状に配置されるものであったが、他の態様であってもよい。
例えば、図9(図7に示す燃焼バーナ100FのIII-III矢視端面図)に示すように、矩形状の複数の整流部150Aを燃料ノズル110の内周面を取り囲むように間隔を空けて配置してもよい。 In addition, although the rectification | straighteningpart 150 shown in FIG. 8 was cyclically | annularly arranged so that the internal peripheral surface of the fuel nozzle 110 might be surrounded, another aspect may be sufficient.
For example, as shown in FIG. 9 (an end view taken along the line III-III of thecombustion burner 100F shown in FIG. 7), a plurality of rectangular rectifying portions 150A are spaced so as to surround the inner peripheral surface of the fuel nozzle 110. You may arrange.
例えば、図9(図7に示す燃焼バーナ100FのIII-III矢視端面図)に示すように、矩形状の複数の整流部150Aを燃料ノズル110の内周面を取り囲むように間隔を空けて配置してもよい。 In addition, although the rectification | straightening
For example, as shown in FIG. 9 (an end view taken along the line III-III of the
以上説明した本実施形態の微粉炭焚きボイラが備える燃焼バーナ100Fによれば、燃料ガス流路111における微粉炭の偏流を防止し、2次空気と微粉燃料混合気とがより均一な濃度分布となった状態で保炎器140による着火ないし保炎を行うことができる。
なお、以上の説明においては、整流部150および整流部150Aを2次空気導入流路130が燃料ガス流路111へ2次空気の一部を導入する第1位置P1よりもガス流通方向の下流側に設けることとしたが、他の態様であってもよい。 According to thecombustion burner 100F provided in the pulverized coal burning boiler of the present embodiment described above, the pulverized coal is prevented from drifting in the fuel gas passage 111, and the secondary air and the pulverized fuel mixture have a more uniform concentration distribution. In this state, the flame holder 140 can ignite or hold the flame.
In the above description, the secondaryair introduction channel 130 passes through the rectifying unit 150 and the rectifying unit 150A downstream of the first position P1 where the secondary air is introduced into the fuel gas channel 111 in the gas flow direction. Although provided on the side, other modes may be used.
なお、以上の説明においては、整流部150および整流部150Aを2次空気導入流路130が燃料ガス流路111へ2次空気の一部を導入する第1位置P1よりもガス流通方向の下流側に設けることとしたが、他の態様であってもよい。 According to the
In the above description, the secondary
例えば、整流部150および整流部150Aを、2次空気導入流路130が燃料ガス流路111へ2次空気の一部を導入する第1位置P1よりもガス流通方向の上流側の基端側ノズル110bに設けるようにしてもよい。
また、例えば、整流部を、微粉炭供給管26,27,28,29,30の内部に設けるようにしてもよい。この場合、整流部は、断面視が円形の微粉炭供給管の内周面に沿うように円環形状としてもよい。
このようにすることで、整流部から保炎器140までのガス流通方向の距離を十分に確保し、整流部で攪拌された微粉燃料混合気を、乱れのない状態で保炎器140へ供給することができる。 For example, the rectifyingunit 150 and the rectifying unit 150 </ b> A are arranged on the upstream side in the gas flow direction from the first position P <b> 1 where the secondary air introduction channel 130 introduces a part of the secondary air into the fuel gas channel 111. You may make it provide in the nozzle 110b.
Further, for example, the rectification unit may be provided inside the pulverized coal supply pipes 26, 27, 28, 29, 30. In this case, the rectifying unit may have an annular shape so as to be along the inner peripheral surface of the pulverized coal supply pipe having a circular sectional view.
In this way, a sufficient distance in the gas flow direction from the rectifying unit to theflame holder 140 is ensured, and the pulverized fuel mixture stirred in the rectifying unit is supplied to the flame holder 140 without any disturbance. can do.
また、例えば、整流部を、微粉炭供給管26,27,28,29,30の内部に設けるようにしてもよい。この場合、整流部は、断面視が円形の微粉炭供給管の内周面に沿うように円環形状としてもよい。
このようにすることで、整流部から保炎器140までのガス流通方向の距離を十分に確保し、整流部で攪拌された微粉燃料混合気を、乱れのない状態で保炎器140へ供給することができる。 For example, the rectifying
Further, for example, the rectification unit may be provided inside the pulverized
In this way, a sufficient distance in the gas flow direction from the rectifying unit to the
<第4実施形態>
次に、本開示の第4実施形態の微粉炭焚きボイラについて説明する。
第4実施形態の微粉炭焚きボイラは、第1実施形態の微粉炭焚きボイラ10の変形例であり、以下で特に説明する場合を除き、第1実施形態の微粉炭焚きボイラ10と同様であるものとし、以下での説明を省略する。本実施形態の微粉炭焚きボイラが備える燃焼バーナ100Gは、2次空気導入管26Aを備えている点で第1実施形態の微粉炭焚きボイラ10が備える燃焼バーナ100Aと異なる。 <Fourth embodiment>
Next, a pulverized coal fired boiler according to a fourth embodiment of the present disclosure will be described.
The pulverized coal burning boiler according to the fourth embodiment is a modification of the pulverizedcoal burning boiler 10 according to the first embodiment, and is the same as the pulverized coal burning boiler 10 according to the first embodiment, unless otherwise described below. The description below will be omitted. The combustion burner 100G provided in the pulverized coal burning boiler of the present embodiment is different from the combustion burner 100A provided in the pulverized coal burning boiler 10 of the first embodiment in that a secondary air introduction pipe 26A is provided.
次に、本開示の第4実施形態の微粉炭焚きボイラについて説明する。
第4実施形態の微粉炭焚きボイラは、第1実施形態の微粉炭焚きボイラ10の変形例であり、以下で特に説明する場合を除き、第1実施形態の微粉炭焚きボイラ10と同様であるものとし、以下での説明を省略する。本実施形態の微粉炭焚きボイラが備える燃焼バーナ100Gは、2次空気導入管26Aを備えている点で第1実施形態の微粉炭焚きボイラ10が備える燃焼バーナ100Aと異なる。 <Fourth embodiment>
Next, a pulverized coal fired boiler according to a fourth embodiment of the present disclosure will be described.
The pulverized coal burning boiler according to the fourth embodiment is a modification of the pulverized
以下、本実施形態の燃焼バーナ100Gについて、図面を参照して説明する。本実施形態の燃焼バーナ100Gは、第1実施形態の燃焼バーナ100Aの変形例であり、以下で説明する場合を除き、第1実施形態の燃焼バーナ100Aと同様であるものとし、以下での説明を省略する。
本実施形態の燃焼バーナ100Aは、図10に示すように、火炉11における4つの壁面に設けられる燃焼バーナ100Ga,100Gb,100Gc,100Gdから構成されている。 Hereinafter, thecombustion burner 100G of the present embodiment will be described with reference to the drawings. The combustion burner 100G of the present embodiment is a modification of the combustion burner 100A of the first embodiment, and is the same as the combustion burner 100A of the first embodiment except for the case described below. Is omitted.
As shown in FIG. 10, thecombustion burner 100 </ b> A of the present embodiment is composed of combustion burners 100 </ b> Ga, 100 </ b> Gb, 100 </ b> Gc, and 100 </ b> Gd provided on four wall surfaces in the furnace 11.
本実施形態の燃焼バーナ100Aは、図10に示すように、火炉11における4つの壁面に設けられる燃焼バーナ100Ga,100Gb,100Gc,100Gdから構成されている。 Hereinafter, the
As shown in FIG. 10, the
図10に示すように、本実施形態の燃焼バーナ100Gは、空気ダクト37を流通する2次空気の一部を微粉炭供給管(燃料供給管)26へ供給する2次空気導入管26Aを備える。空気ダクト37を流通する2次空気の一部は、2次空気導入管26Aから微粉炭供給管26へ供給される。そのため、本実施形態の燃焼バーナ100Gの燃料ガス流路111へ供給される空気量は、第1実施形態の燃焼バーナ100Aの燃料ガス流路111へ供給される空気量よりも多い。一方、本実施形態の燃焼バーナ100Gの2次空気流路121へ供給される空気量は、第1実施形態の燃焼バーナ100Aの2次空気流路121へ供給される空気量よりも少ない。
As shown in FIG. 10, the combustion burner 100 </ b> G of the present embodiment includes a secondary air introduction pipe 26 </ b> A that supplies a part of the secondary air flowing through the air duct 37 to the pulverized coal supply pipe (fuel supply pipe) 26. . Part of the secondary air flowing through the air duct 37 is supplied to the pulverized coal supply pipe 26 from the secondary air introduction pipe 26A. Therefore, the amount of air supplied to the fuel gas passage 111 of the combustion burner 100G of the present embodiment is larger than the amount of air supplied to the fuel gas passage 111 of the combustion burner 100A of the first embodiment. On the other hand, the amount of air supplied to the secondary air flow path 121 of the combustion burner 100G of the present embodiment is smaller than the amount of air supplied to the secondary air flow path 121 of the combustion burner 100A of the first embodiment.
本実施形態の微粉炭焚きボイラによれば、微粉炭を粉砕する微粉炭機(粉砕機)31から微粉炭供給管26へ至る流路における微粉燃料混合気の流量を増加させることなく、燃料ガス流路111へ供給される1次空気の量を増加させることができる。そのため、微粉炭機31へ1次空気を通風する通風機の動力増加、微粉炭機31の分級精度の低下、燃料を搬送する搬送管の摩耗量の増加等の不具合を抑制することができる。
According to the pulverized coal burning boiler of the present embodiment, the fuel gas can be produced without increasing the flow rate of the pulverized fuel mixture in the flow path from the pulverized coal machine (pulverizer) 31 for pulverizing the pulverized coal to the pulverized coal supply pipe 26. The amount of primary air supplied to the flow path 111 can be increased. Therefore, it is possible to suppress problems such as an increase in the power of the ventilator that ventilates the primary air to the pulverized coal machine 31, a decrease in classification accuracy of the pulverized coal machine 31, and an increase in the wear amount of the transfer pipe that conveys fuel.
また、本実施形態の微粉炭焚きボイラによれば、第1実施形態の微粉炭焚きボイラに比べ、燃料ガス流路111へ供給される空気量が多く、2次空気流路121へ供給される空気量が少ない。そのため、燃料ガス流路111から火炉11へ噴出する微粉燃料混合気の流速と、2次空気流路121から火炉11へ噴出する2次空気の流速との速度差が少なくなり、この速度差による気流の乱れによって外周保炎および外周着火が行われる不具合を抑制することができる。
Further, according to the pulverized coal fired boiler of the present embodiment, the amount of air supplied to the fuel gas passage 111 is larger than that of the pulverized coal fired boiler of the first embodiment and supplied to the secondary air passage 121. There is little air quantity. Therefore, the speed difference between the flow rate of the pulverized fuel mixture jetted from the fuel gas channel 111 to the furnace 11 and the flow rate of the secondary air jetted from the secondary air channel 121 to the furnace 11 is reduced. It is possible to suppress a problem that the outer periphery flame holding and the outer periphery ignition are performed due to the turbulence of the air flow.
<他の実施形態>
上述した各実施形態では、燃焼装置12として、火炉11の壁面に設けられる4つの各燃焼バーナ100A,100B,100C,100D,100Eを鉛直方向に沿って5段配置して構成したが、この構成に限定されるものではない。即ち、燃焼バーナを壁面に配置せずにコーナーに配置してもよい。また、燃焼装置は、旋回燃焼方式に限らず、燃焼バーナを一つの壁面に配置したフロント燃焼方式、燃焼バーナを二つの壁面に対向配置した対向燃焼方式としてもよい。また燃焼装置12の燃焼バーナ100A,100B,100C,100D,100Eは、角筒状のものに限定されず、例えば、円筒状のものであってもよい。 <Other embodiments>
In each of the above-described embodiments, thecombustion device 12 is configured by arranging the four combustion burners 100A, 100B, 100C, 100D, and 100E provided on the wall surface of the furnace 11 along the vertical direction in five stages. It is not limited to. That is, the combustion burner may be arranged at the corner without being arranged on the wall surface. The combustion apparatus is not limited to the swirl combustion method, and may be a front combustion method in which the combustion burner is disposed on one wall surface, or an opposed combustion method in which the combustion burner is disposed opposite to the two wall surfaces. Further, the combustion burners 100A, 100B, 100C, 100D, and 100E of the combustion device 12 are not limited to the rectangular tube shape, and may be, for example, a cylindrical shape.
上述した各実施形態では、燃焼装置12として、火炉11の壁面に設けられる4つの各燃焼バーナ100A,100B,100C,100D,100Eを鉛直方向に沿って5段配置して構成したが、この構成に限定されるものではない。即ち、燃焼バーナを壁面に配置せずにコーナーに配置してもよい。また、燃焼装置は、旋回燃焼方式に限らず、燃焼バーナを一つの壁面に配置したフロント燃焼方式、燃焼バーナを二つの壁面に対向配置した対向燃焼方式としてもよい。また燃焼装置12の燃焼バーナ100A,100B,100C,100D,100Eは、角筒状のものに限定されず、例えば、円筒状のものであってもよい。 <Other embodiments>
In each of the above-described embodiments, the
10,10A 微粉炭焚きボイラ
11 火炉
12 燃焼装置
26,27,28,29,30 微粉炭供給管(燃料供給管)
31,32,33,34,35 微粉炭機(粉砕機)
36 風箱
37 空気ダクト(2次空気供給管)
38 送風機
49 エアヒータ(熱交換器)
100A,100B,100C,100D,100E,100F,100G 燃焼バーナ
110 燃料ノズル
110a 先端側ノズル
110b 基端側ノズル
110c 先端部
111 燃料ガス流路
120 2次空気ノズル
121 2次空気流路
130 2次空気導入流路
131,132,133,134 上方導入部
135,136,137,138 下方導入部
140 保炎器
141,142,143 拡幅部
150 整流部 10, 10A Pulverized coal firedboiler 11 Furnace 12 Combustion device 26, 27, 28, 29, 30 Pulverized coal supply pipe (fuel supply pipe)
31, 32, 33, 34, 35 Pulverized coal machine (pulverizer)
36Wind box 37 Air duct (secondary air supply pipe)
38Blower 49 Air heater (heat exchanger)
100A, 100B, 100C, 100D, 100E, 100F,100G Combustion burner 110 Fuel nozzle 110a Tip side nozzle 110b Base end side nozzle 110c Tip portion 111 Fuel gas passage 120 Secondary air nozzle 121 Secondary air passage 130 Secondary air Introduction channel 131,132,133,134 Upper introduction part 135,136,137,138 Lower introduction part 140 Flame stabilizer 141,142,143 Widening part 150 Rectification part
11 火炉
12 燃焼装置
26,27,28,29,30 微粉炭供給管(燃料供給管)
31,32,33,34,35 微粉炭機(粉砕機)
36 風箱
37 空気ダクト(2次空気供給管)
38 送風機
49 エアヒータ(熱交換器)
100A,100B,100C,100D,100E,100F,100G 燃焼バーナ
110 燃料ノズル
110a 先端側ノズル
110b 基端側ノズル
110c 先端部
111 燃料ガス流路
120 2次空気ノズル
121 2次空気流路
130 2次空気導入流路
131,132,133,134 上方導入部
135,136,137,138 下方導入部
140 保炎器
141,142,143 拡幅部
150 整流部 10, 10A Pulverized coal fired
31, 32, 33, 34, 35 Pulverized coal machine (pulverizer)
36
38
100A, 100B, 100C, 100D, 100E, 100F,
Claims (7)
- 軸線に沿って筒状に延びるとともに炭素含有固体燃料を粉砕した燃料と1次空気とを混合した燃料ガスを火炉へ供給する燃料ガス流路を形成する燃料ノズルと、
前記軸線に沿って筒状に延びるとともに前記燃料ガスより温度の高い2次空気が流通する2次空気ノズルと、
前記2次空気ノズルと前記燃料ノズルの間に形成され前記火炉へ前記2次空気を供給する2次空気流路と、
前記2次空気流路を流通する前記2次空気の少なくとも一部を前記燃料ガス流路へ導入する2次空気導入流路と、
前記燃料ノズル内の前記火炉へ開口する先端部の近傍に配置される保炎器と、を備え、
前記2次空気導入流路が前記燃料ガス流路へ前記2次空気の少なくとも一部を導入する導入位置から前記保炎器の設置位置までの前記軸線に沿ったガス流通方向の距離をLとし、前記導入位置から前記設置位置へ至る前記燃料ガス流路の最小幅をWとした場合に2≦L/W≦5を満たす燃焼バーナ。 A fuel nozzle that forms a fuel gas passage that extends in a cylindrical shape along an axis and supplies a fuel gas obtained by mixing a fuel obtained by pulverizing a carbon-containing solid fuel and primary air to a furnace;
A secondary air nozzle that extends in a cylindrical shape along the axis and through which secondary air having a temperature higher than that of the fuel gas flows;
A secondary air flow path formed between the secondary air nozzle and the fuel nozzle for supplying the secondary air to the furnace;
A secondary air introduction flow path for introducing at least a part of the secondary air flowing through the secondary air flow path into the fuel gas flow path;
A flame holder disposed in the vicinity of a tip opening to the furnace in the fuel nozzle,
The distance in the gas flow direction along the axis from the introduction position where the secondary air introduction flow path introduces at least part of the secondary air into the fuel gas flow path to the installation position of the flame stabilizer is defined as L. A combustion burner satisfying 2 ≦ L / W ≦ 5, where W is the minimum width of the fuel gas flow path from the introduction position to the installation position. - 前記2次空気導入流路は、前記ガス流通方向の主成分を持つ流速で前記2次空気の少なくとも一部を前記燃料ガス流路へ導入する請求項1に記載の燃焼バーナ。 The combustion burner according to claim 1, wherein the secondary air introduction channel introduces at least a part of the secondary air into the fuel gas channel at a flow rate having a main component in the gas flow direction.
- 前記保炎器は、前記ガス流通方向と交差する方向に沿って延びるように形成されるとともに前記ガス流通方向における下流側に向かって前記ガス流通方向に直交する断面の幅が広くなる拡幅部を有する請求項1または請求項2に記載の燃焼バーナ。 The flame stabilizer is formed so as to extend along a direction intersecting with the gas flow direction, and has a widened portion in which a width of a cross section perpendicular to the gas flow direction is widened toward a downstream side in the gas flow direction. The combustion burner according to claim 1 or claim 2 having.
- 前記燃料ノズル内の前記保炎器よりも前記ガス流通方向の上流側に配置された整流部を備える請求項1または請求項2に記載の燃焼バーナ。 The combustion burner according to claim 1 or 2, further comprising a rectifier disposed upstream of the flame holder in the fuel nozzle in the gas flow direction.
- 火炉と、
該火炉に対して設置された請求項1または請求項2に記載の燃焼バーナと、を備えるボイラ。 A furnace,
A boiler provided with the combustion burner of Claim 1 or Claim 2 installed with respect to this furnace. - 炭素含有固体燃料を粉砕した燃料と1次空気とを混合した燃料ガスを前記燃料ガス流路へ供給する燃料供給管と、
送風機により送風される2次空気を前記2次空気流路へ供給する空気ダクトと、
前記空気ダクトを流通する前記2次空気の一部を前記燃料供給管へ供給する2次空気導入管と、を備える請求項5に記載のボイラ。 A fuel supply pipe for supplying a fuel gas obtained by mixing a fuel containing pulverized carbon-containing solid fuel and primary air to the fuel gas flow path;
An air duct for supplying secondary air blown by a blower to the secondary air flow path;
The boiler according to claim 5, further comprising: a secondary air introduction pipe that supplies a part of the secondary air flowing through the air duct to the fuel supply pipe. - 前記火炉にて前記燃焼バーナからの噴出する燃焼ガスのガス流れ下流側で前記燃焼ガスと空気との熱交換を行う熱交換器と、
前記熱交換器を通過した空気と該熱交換器を通過していない空気とを混合して前記2次空気ノズルへ供給する空気ダクトと、を備える請求項5に記載のボイラ。 A heat exchanger that performs heat exchange between the combustion gas and air on the downstream side of the gas flow of the combustion gas ejected from the combustion burner in the furnace;
The boiler according to claim 5, further comprising: an air duct that mixes air that has passed through the heat exchanger and air that has not passed through the heat exchanger and supplies the mixed air to the secondary air nozzle.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017016146A JP6804318B2 (en) | 2017-01-31 | 2017-01-31 | Combustion burner and boiler equipped with it |
JP2017-016146 | 2017-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018142772A1 true WO2018142772A1 (en) | 2018-08-09 |
Family
ID=63040393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/044446 WO2018142772A1 (en) | 2017-01-31 | 2017-12-11 | Combustion burner and boiler provided with same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6804318B2 (en) |
WO (1) | WO2018142772A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114777111B (en) * | 2022-05-17 | 2022-11-25 | 哈尔滨工业大学 | British bar type W flame boiler device and method for gasification coupled combustion |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6057104A (en) * | 1983-07-07 | 1985-04-02 | コンバツシヨン・エンヂニアリング・インコーポレーテツド | Nozzle chip for burner |
JPH03230003A (en) * | 1990-02-06 | 1991-10-14 | Mitsubishi Heavy Ind Ltd | Pulverized-coal combustion apparatus |
JP2000257855A (en) * | 1999-03-09 | 2000-09-22 | Ishikawajima Harima Heavy Ind Co Ltd | Method and device for controlling bypass damper for air preheater |
JP2003279006A (en) * | 2002-03-25 | 2003-10-02 | Mitsubishi Heavy Ind Ltd | Fine powder solid fuel combustion apparatus |
JP2005273973A (en) * | 2004-03-24 | 2005-10-06 | Hitachi Ltd | Burner, fuel combustion method, and boiler remodeling method |
JP2013194994A (en) * | 2012-03-21 | 2013-09-30 | Kawasaki Heavy Ind Ltd | Pulverized coal biomass dual fuel burner |
JP2014001908A (en) * | 2012-06-20 | 2014-01-09 | Babcock-Hitachi Co Ltd | Solid fuel burner and oxygen burning device with solid fuel burner |
WO2015037589A1 (en) * | 2013-09-11 | 2015-03-19 | 三菱日立パワーシステムズ株式会社 | Solid fuel burner |
JP2015180848A (en) * | 2015-06-11 | 2015-10-15 | 三菱重工業株式会社 | combustion burner |
JP2016194379A (en) * | 2015-03-31 | 2016-11-17 | 三菱日立パワーシステムズ株式会社 | Combustion burner and boiler |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6517039B2 (en) * | 2015-02-23 | 2019-05-22 | 三菱日立パワーシステムズ株式会社 | Combustion burner, boiler, and method of burning fuel gas |
-
2017
- 2017-01-31 JP JP2017016146A patent/JP6804318B2/en not_active Expired - Fee Related
- 2017-12-11 WO PCT/JP2017/044446 patent/WO2018142772A1/en active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6057104A (en) * | 1983-07-07 | 1985-04-02 | コンバツシヨン・エンヂニアリング・インコーポレーテツド | Nozzle chip for burner |
JPH03230003A (en) * | 1990-02-06 | 1991-10-14 | Mitsubishi Heavy Ind Ltd | Pulverized-coal combustion apparatus |
JP2000257855A (en) * | 1999-03-09 | 2000-09-22 | Ishikawajima Harima Heavy Ind Co Ltd | Method and device for controlling bypass damper for air preheater |
JP2003279006A (en) * | 2002-03-25 | 2003-10-02 | Mitsubishi Heavy Ind Ltd | Fine powder solid fuel combustion apparatus |
JP2005273973A (en) * | 2004-03-24 | 2005-10-06 | Hitachi Ltd | Burner, fuel combustion method, and boiler remodeling method |
JP2013194994A (en) * | 2012-03-21 | 2013-09-30 | Kawasaki Heavy Ind Ltd | Pulverized coal biomass dual fuel burner |
JP2014001908A (en) * | 2012-06-20 | 2014-01-09 | Babcock-Hitachi Co Ltd | Solid fuel burner and oxygen burning device with solid fuel burner |
WO2015037589A1 (en) * | 2013-09-11 | 2015-03-19 | 三菱日立パワーシステムズ株式会社 | Solid fuel burner |
JP2016194379A (en) * | 2015-03-31 | 2016-11-17 | 三菱日立パワーシステムズ株式会社 | Combustion burner and boiler |
JP2015180848A (en) * | 2015-06-11 | 2015-10-15 | 三菱重工業株式会社 | combustion burner |
Also Published As
Publication number | Publication date |
---|---|
JP6804318B2 (en) | 2020-12-23 |
JP2018124012A (en) | 2018-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100709849B1 (en) | Nox-reduced combustion of concentrated coal streams | |
US5799594A (en) | Method and apparatus for reducing nitrogen oxide emissions from burning pulverized fuel | |
AU2011310173B2 (en) | Combustion system and method for operating same | |
CZ293962B6 (en) | Pulverized coal combustion burner | |
JPH05507140A (en) | Collective concentric angular combustion system | |
GB2457565A (en) | Staged combustion of air and fuel with a burner that can inject just air in one mode | |
JP5386230B2 (en) | Fuel burner and swirl combustion boiler | |
US10458645B2 (en) | Combustion burner and boiler provided with same | |
JP2014001908A (en) | Solid fuel burner and oxygen burning device with solid fuel burner | |
WO2018142772A1 (en) | Combustion burner and boiler provided with same | |
JP5960022B2 (en) | boiler | |
JP5854620B2 (en) | Boiler and boiler operation method | |
WO2023120700A1 (en) | Burner, boiler equipped with same, and method for operating burner | |
WO2018143036A1 (en) | Combustion burner, boiler provided with same, and combustion method | |
US20230213185A1 (en) | Combustion system for a boiler with fuel stream distribution means in a burner and method of combustion | |
JP2018132278A (en) | Combustion burner and boiler including the same | |
CN111023083B (en) | W flame boiler adopting cyclone burner | |
JP2954628B2 (en) | Pulverized coal burner | |
JP2018132277A (en) | Combustion burner and boiler including the same | |
JPH0375403A (en) | Pulverized coal burner | |
TW202338259A (en) | Burner and boiler | |
TW202338263A (en) | Ammonia combustion burner and boiler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17895324 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17895324 Country of ref document: EP Kind code of ref document: A1 |