WO2018142722A1 - Light-diffusing particles, light-diffusing and -transmitting sheet, and method for producing light-diffusing particles - Google Patents

Light-diffusing particles, light-diffusing and -transmitting sheet, and method for producing light-diffusing particles Download PDF

Info

Publication number
WO2018142722A1
WO2018142722A1 PCT/JP2017/041171 JP2017041171W WO2018142722A1 WO 2018142722 A1 WO2018142722 A1 WO 2018142722A1 JP 2017041171 W JP2017041171 W JP 2017041171W WO 2018142722 A1 WO2018142722 A1 WO 2018142722A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
particles
light diffusing
light
fine particles
Prior art date
Application number
PCT/JP2017/041171
Other languages
French (fr)
Japanese (ja)
Inventor
多佳子 岩井
耕一郎 壹岐
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to JP2018565952A priority Critical patent/JP6793211B2/en
Publication of WO2018142722A1 publication Critical patent/WO2018142722A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a light diffusing particle, a light diffusing and transmitting sheet, and a method for producing the light diffusing particle.
  • Patent Document 1 describes a light diffusing and transmitting sheet provided with a resin as a base material and silica composite particles dispersed in the resin.
  • the silica composite particles include titanium oxide fine particles having an average particle diameter of 100 nm or less.
  • the light diffusion transmission sheet described in Patent Literature 1 exhibits high total light transmittance and haze ratio.
  • the refractive index of titanium oxide is larger than that of silica.
  • Patent Document 2 describes a transmissive screen for visually recognizing an image projected from a projector.
  • the transmission screen has a light diffusion layer containing light diffusion fine particles and xerogel. It is described that as the light diffusing fine particles, composite particles composed of organic fine particles and a small amount of inorganic fine particles or composite particles composed of inorganic fine particles and a small amount of organic polymer can be used.
  • the composite particles composed of organic fine particles and a small amount of inorganic fine particles include composite particles in which the surface of fine particles such as melamine resin or acrylic resin is coated with inorganic fine particles such as silica.
  • the refractive index of melamine resin and the refractive index of acrylic resin are higher than the refractive index of silica.
  • Patent Document 3 describes an optical laminate having a light-transmitting substrate and an internal scattering layer. Patent Document 3 describes that this optical laminate exhibits excellent contrast and antiglare effect while maintaining good antiglare properties.
  • the internal scattering layer contains internal scattering particles.
  • the internal scattering particles include fine particles having an average particle diameter of 5 to 300 nm.
  • the refractive index n A of the fine particles encapsulated in the internal scattering particles is larger than the refractive index n B of components other than the fine particles encapsulated in the internal scattering particles.
  • Patent Document 4 describes a light diffusing plate having a light diffusing layer made of a transparent base material containing a transparent resin.
  • the light diffusion layer includes first light diffusion particles and second light diffusion particles present inside the transparent substrate.
  • the refractive index of the second light diffusing particles is larger than the refractive index of the first light diffusing particles.
  • the refractive index of the first light diffusing particles is 1.4 to 1.7, and the refractive index of the second light diffusing particles is larger than 2.
  • Patent Documents 1 to 4 are not necessarily advantageous in providing high luminance characteristics to a product including a layer or sheet in which particles described in Patent Documents 1 to 4 are dispersed.
  • Patent Documents 1 to 4 specifically, whether or not the layer or sheet in which particles described in Patent Documents 1 to 4 are in contact with another member is likely to damage the other member. Not considered.
  • the present invention is advantageous for imparting high luminance characteristics to the light diffusing and transmitting sheet, and is also advantageous for imparting the light diffusing and transmitting sheet with characteristics that hardly damage the members in contact with the light diffusing and transmitting sheet.
  • the present invention A first binder, and core fine particles having a refractive index lower than the refractive index of the first binder, a circularity of 0.85 or more, and a particle diameter of 0.1 ⁇ m to 4 ⁇ m, wherein the first binder is the core A core in contact with the outer surface of the fine particles; A shell that contacts the outer surface of the core and covers the core; Provide light diffusing particles.
  • the present invention also provides: With the base material, The light diffusion particles dispersed in the base material, A light diffusing and transmitting sheet is provided.
  • the present invention provides: A method for producing light diffusing particles having a core-shell structure, A first dispersion in which a raw material of the first binder and core fine particles having a refractive index lower than the refractive index of the first binder, a circularity of 0.85 or more, and a particle diameter of 0.1 ⁇ m to 4 ⁇ m are dispersed.
  • a core is formed by adding a crosslinking agent for crosslinking the raw material of the first binder to the first dispersion to crosslink the raw material of the first binder, Preparing a second dispersion in which the core and shell material are dispersed; Spray drying the second dispersion; Provide a method.
  • the light diffusing particles described above are advantageous for imparting high luminance characteristics to the light diffusing and transmitting sheet in which the light diffusing particles are dispersed, and exhibiting characteristics that hardly damage the member that contacts the light diffusing and transmitting sheet. It is advantageous to apply to a sheet. Moreover, according to said method, said light-diffusion particle
  • grains can be manufactured by one spray drying.
  • FIG. 1A is a cross-sectional view schematically showing the structure of a light diffusing particle according to an example of the present invention.
  • FIG. 1B is a cross-sectional view schematically showing the structure of a light diffusing particle according to another example of the present invention.
  • FIG. 2 is a diagram schematically showing an optical path of light incident on a fine particle having a high refractive index.
  • FIG. 3 is a diagram schematically showing the optical path of light incident on the low refractive index fine particles.
  • FIG. 4 is a cross-sectional view showing a light diffusing and transmitting sheet according to an example of the present invention.
  • FIG. 5 is a side view of an apparatus for evaluating the scratch imparting characteristics of samples of light diffusing and transmitting sheets according to Examples and Comparative Examples.
  • the light diffusion particle 10 includes a core 10c and a shell 10s.
  • the core 10 c includes a first binder 11 and core fine particles 12.
  • the core fine particles 12 have (i) a refractive index lower than that of the first binder 11, (ii) a circularity of 0.85 or more, and (iii) a particle diameter of 0.1 ⁇ m to 4 ⁇ m.
  • the first binder 11 is in contact with the outer surface of the core fine particle 12.
  • the shell 10s contacts the outer surface of the core 10c and covers the core 10c.
  • particle diameter means the maximum diameter.
  • the “circularity” of the particles can be obtained by the following equation (1).
  • the projected area of the particle and the peripheral length of the projected particle are determined by image processing software (for example, National Institutes of Health (NIH)) using an image of the particle obtained by observing the particle with an optical microscope or a transmission electron microscope. It can be determined by processing using the provided Image J).
  • Circularity 4 ⁇ ⁇ (particle projection area) / (peripheral length of particle projection) 2 (1)
  • the silica composite particles described in Patent Document 1 include titanium oxide fine particles having an average particle diameter of 100 nm or less.
  • the refractive index of titanium oxide is larger than that of silica.
  • titanium oxide fine particles having a high refractive index are encapsulated in silica having a low refractive index.
  • FIG. 2 when light enters a high refractive index fine particle PH from a relatively low refractive index medium, a part of the light incident on the fine particle PH is repeatedly reflected inside the fine particle PH and inside the fine particle PH. It is easy to be trapped in. In this specification, such a phenomenon is called an “optical confinement phenomenon”.
  • the “light confinement phenomenon” hardly occurs in the fine particles PL.
  • the difference obtained by subtracting the refractive index of the fine particles PL from the refractive index of the medium around the fine particles PL is 0.01.
  • the core fine particle 12 has a refractive index lower than that of the first binder 11 and is covered in contact with the first binder 11. For this reason, the light confinement phenomenon hardly occurs in the core fine particles 12, and the light diffusing particles 10 are advantageous for imparting high luminance characteristics to the light diffusing and transmitting sheet in which the light diffusing particles 10 are dispersed.
  • the present inventor has studied light diffusion particles having a core-shell structure using various low refractive index fine particles. As a result, the present inventors have found that the susceptibility of the member contacting the light diffusing and transmitting sheet in which the light diffusing particles are dispersed differs depending on the difference in the circularity of the fine particles to be arranged in the core. .
  • the present inventors provide a member in which the light diffusing particles 10 are in contact with the light diffusing and transmitting sheet, because the core fine particles 12 in the core 10c have a circularity of 0.85 or more and a particle diameter of 0.1 ⁇ m to 4 ⁇ m. It has been found that the light diffusive transmission sheet can be imparted with characteristics that are difficult to damage.
  • the single core fine particles 12 are easily arranged at the center of the core 10 c, and The core 10c is easily formed.
  • FIG. 1B when the particle diameter of the core fine particles 12 is in the range of 0.1 ⁇ m to 0.5 ⁇ m, a plurality (seven in FIG. 1B) of the core fine particles 12 aggregate to form the center of the core 10c.
  • the core 10c is easily formed based on the aggregated core fine particles 12.
  • the arrangement state of the core fine particles 12 in the core 10c can be either the state shown in FIG. 1A or FIG. 1B depending on conditions.
  • the light diffusing and transmitting sheet 100 can be manufactured using the light diffusing particles 10.
  • the light diffusion transmission sheet 100 includes a base material 20 and light diffusion particles 10 dispersed in the base material 20. Since the light diffusing and transmitting sheet 100 includes the light diffusing particles 10, the light diffusing and transmitting sheet 100 can exhibit high luminance characteristics and has a characteristic that the member that contacts the light diffusing and transmitting sheet 100 is hardly damaged.
  • the base material 20 is not particularly limited, but is, for example, a resin having excellent dispersibility of the light diffusing particles 10 and having transparency to visible light, weather resistance, moisture resistance, and heat resistance.
  • a resin having excellent dispersibility of the light diffusing particles 10 and having transparency to visible light, weather resistance, moisture resistance, and heat resistance.
  • polyester polyol linear polyester, acrylic resin, amino resin, epoxy resin, melamine resin, silicone resin, urethane resin, vinyl acetate resin, norbornene resin, and polycarbonate resin And the like.
  • Various thermosetting resins and various ultraviolet curable resins can also be used. These resins may be appropriately added with an isocyanate-based curing agent and various dispersants.
  • the light diffusing and transmitting sheet 100 may further include a substrate (not shown) such as a PET (polyethylene terephthalate) film, and the base material 20 in which the light diffusing particles 10 are dispersed may be formed in layers on the substrate.
  • the average particle diameter of the light diffusing particles 10 be within a predetermined range so that the light diffusing particles 10 can be uniformly dispersed in the base material 20.
  • the average particle diameter of the light diffusing particles 10 is, for example, 4 ⁇ m to 10 ⁇ m, desirably 4 ⁇ m to 8 ⁇ m, and more desirably 4 ⁇ m to 7 ⁇ m.
  • variation in the optical characteristic in the light diffusion transmission sheet 100 can be prevented.
  • the “average particle diameter” of the light diffusing particles 10 is D50 based on mass (volume) measured by a laser diffraction method.
  • the shape of the light diffusing particles 10 is preferably granular having an aspect ratio of 1 to 2 from the viewpoint of imparting spatially uniform light diffusing characteristics to the light diffusing and transmitting sheet 100.
  • the core fine particles 12 may be made of an organic material or may be made of an inorganic material such as silica as long as it has the characteristics (i) to (iii) described above. In order to more reliably prevent damage to the member that contacts the light diffusing and transmitting sheet, it is desirable that the core fine particles 12 be soft (easy to be deformed by an external force). For this reason, the core fine particles 12 are preferably made of a polymer. When the core fine particles 12 are made of a polymer, the core fine particles 12 are easily deformed by an external force due to the viscoelasticity of the polymer.
  • the polymer forming the core fine particles 12 is, for example, an acrylic resin, a silicone resin, or a fluororesin.
  • the light diffusing particles 10 can more reliably impart the light diffusing and transmitting sheet 100 with the property of hardly damaging the member that contacts the light diffusing and transmitting sheet 100.
  • the refractive index of the first binder 11 is, for example, 1.49 to 1.60, and preferably 1.50 to 1.55. Further, the refractive index of the core fine particles 12 is, for example, 1.35 to 1.59, and preferably 1.35 to 1.49. Desirably, the difference n B ⁇ n F obtained by subtracting the refractive index n F of the core fine particles 12 from the refractive index n B of the first binder 11 is 0.01 or more. Thereby, the refractive index difference between the first binder 11 and the core fine particles 12 becomes large, and the light incident on the core fine particles 12 is likely to diffuse (scatter). For this reason, the light diffusion transmission sheet 100 has high luminance characteristics and good light diffusion characteristics.
  • the first binder 11 can cover the outer surface of the core fine particles 12 and has transparency to visible light.
  • the first binder 11 is preferably selected from the group consisting of an acrylic resin, a polyurethane resin, and nylon from the viewpoint of reducing the hardness of the light diffusing particles 10 and reducing the possibility of damaging a member that contacts the light diffusing and transmitting sheet 100. At least one polymer.
  • the first binder 11 is preferably a polyurethane resin.
  • the core 10 c may include fine particles 14 of a different type from the core fine particles 12.
  • the core 10c is selected from the group consisting of silica, silicone, fluororesin, titanium dioxide, zinc oxide, zirconium oxide, calcium carbonate, barium sulfate, zinc sulfide, aluminum hydroxide, glass, and extender as the fine particles 14. It may further contain at least one kind of fine particles. Thereby, a light diffusion transmission sheet having higher luminance characteristics or a light diffusion transmission sheet having various optical characteristics can be provided.
  • the particle diameter of the fine particles 14 other than the core fine particles 12 included in the core 10c is, for example, 4 nm to 100 nm, desirably 4 nm to 20 nm, and more desirably 4 nm to 10 nm. Thereby, the fine particles 14 other than the core fine particles 12 included in the core 10 c are easily dispersed uniformly in the first binder 11.
  • the fine particles 14 desirably have a refractive index lower than that of the first binder 11. Thereby, since it is difficult to confine light inside the fine particles 14, it is possible to impart high luminance characteristics to the light diffusion transmission sheet 100 more reliably.
  • the shell 10 s is formed of, for example, shell fine particles 13 and a second binder 15.
  • the shell fine particles 13 have a particle diameter of 4 nm to 20 nm, for example.
  • the second binder 15 is in contact with the outer surface of the shell fine particles 13 and covers the shell fine particles 13. Since the particle size of the shell fine particles 13 is smaller than that of the core fine particles 12, the shell fine particles 13 have a characteristic that hardly damages a member that comes into contact with the light diffusion transmission sheet 100 provided to the light diffusion transmission sheet 100 by the light diffusion particles 10. Has little effect.
  • the light diffusing particle 10 can more reliably impart the light diffusing and transmitting sheet 100 with a characteristic that hardly damages the member that contacts the light diffusing and transmitting sheet 100.
  • the shell 10 s may contain particles having a particle diameter of more than 20 nm as long as the characteristics that hardly damage the member that contacts the light diffusing and transmitting sheet 100 are not impaired. Further, when the shell fine particles 13 have a particle diameter of 4 nm to 20 nm, the light diffusing particles 10 and thus the light diffusing and transmitting sheet 100 have high light diffusing characteristics.
  • the refractive index of the second binder 15 is, for example, 1.49 to 1.60, and preferably 1.50 to 1.55.
  • the refractive index of the second binder 15 is desirably greater than or equal to the refractive index of the first binder 11.
  • the refractive index of the shell fine particles 13 is, for example, 1.35 to 1.59, and preferably 1.35 to 1.49.
  • the refractive index of the shell fine particles 13 is desirably lower than the refractive index of the second binder 15. In this case, the light confinement phenomenon hardly occurs in the shell fine particles 13.
  • the second binder 15 is, for example, a resin having transparency with respect to visible light.
  • the second binder 15 is preferably selected from the group consisting of acrylic resin, polyurethane resin, and nylon from the viewpoint of reducing the hardness of the light diffusing particles 10 and reducing the possibility of damaging the member that contacts the light diffusing and transmitting sheet 100.
  • At least one polymer At least one polymer.
  • the second binder 15 is preferably a polyurethane resin.
  • the content of the light diffusing particles 10 in the light diffusing and transmitting sheet 100 is, for example, 55% by mass or more, desirably 60% by mass or more, and more desirably 64% by mass or more. Thereby, the light diffusion transmission sheet 100 surely has high luminance characteristics and has good light diffusion characteristics. Moreover, the content rate of the light-diffusion particle
  • grains 10 in the light-diffusion transmission sheet 100 is 70 mass% or less, for example, desirably 68 mass% or less, More desirably, it is 66 mass% or less. Thereby, the light diffusing particles 10 are well dispersed in the base material 20 and, for example, the light diffusing particles 10 can be prevented from being exposed on the surface of the light diffusing and transmitting sheet 100.
  • the ratio of the mass of the core 10c to the mass of the light diffusion particle 10 is, for example, 8% to 30%, desirably 9% to 20%, and more desirably 9% to 15%.
  • the ratio of the mass of the shell 10s to the total mass of the light diffusing particles 10 is, for example, 70% to 92%, desirably 80% to 91%, and more desirably 85% to 91%.
  • the content of the core fine particles 12 in the core 10c is, for example, 4% by mass to 71% by mass, desirably 4% by mass to 10% by mass, and more desirably 5% by mass to 7% by mass.
  • the content of the first binder 11 in the core 10c is, for example, 29% by mass to 50% by mass, desirably 29% by mass to 40% by mass, and more desirably 30% by mass to 31% by mass.
  • the content of the fine particles 14 in the core 10c is, for example, 20% by mass to 67% by mass, desirably 40% by mass to 67% by mass, and more desirably 53% by mass to 66% by mass.
  • the content of the shell fine particles 13 in the shell 10 s is, for example, 71% by mass to 79% by mass, desirably 73% by mass to 79% by mass, and more desirably 77% by mass to 79% by mass.
  • a dispersion liquid in which the raw material of the first binder 11 and the core fine particles 12 are dispersed is prepared.
  • the dispersion is prepared, for example, by mixing an emulsion containing the raw material of the first binder 11 and a dispersion containing the core fine particles 12. You may disperse
  • the core 10c can be obtained by performing spray drying using the prepared dispersion. By adjusting the content of the solid component in the dispersion and the spraying conditions in the spray drying, aggregation of primary particles can be suppressed and the particle diameter of the core 10c can be adjusted to an appropriate range.
  • the core 10c may be formed by adding a predetermined crosslinking agent to the dispersion and heating to crosslink the raw material of the first binder 11.
  • the core fine particles 12 are added to the resin used as the raw material of the first binder 11, and if necessary, the fine particles 14, the fluorescent dye, the fluorescent brightening agent, the dye, or the pigment are added and kneaded. Mix the additive uniformly into the molten resin.
  • the core 10c can also be obtained by crushing the lump of resin obtained in this way and adjusting it to a predetermined particle diameter.
  • the core is prepared by preparing a dispersion and spray drying or adding a crosslinking agent. It is desirable to make 10c.
  • a dispersion liquid in which the core 10c and the raw material of the shell 10s are dispersed is prepared. If necessary, additives such as fluorescent dyes, fluorescent brighteners, dyes, and pigments may be added to the dispersion.
  • the light diffusing particles 10 having a core-shell structure can be produced.
  • the light diffusing particles 10 having a desired particle size and desired characteristics can be produced.
  • the core 10c is formed by adding a predetermined crosslinking agent, the raw material of the first binder 11, the refractive index lower than the refractive index of the first binder 11, a circularity of 0.85 or more, and 0.1 ⁇ m to 4 ⁇ m
  • a first dispersion in which core fine particles 12 having a particle diameter are dispersed is prepared.
  • the core 10c is formed by adding a crosslinking agent for crosslinking the raw material of the first binder 11 to the first dispersion to cross-link the raw material of the first binder 11.
  • a second dispersion in which the core 10c and the raw material of the shell 10s are dispersed is prepared, and the second dispersion is spray-dried.
  • the light-diffusion particle 10 which has a core-shell structure can be manufactured.
  • the raw material of the second binder 15 and the shell fine particles 13 are added to the second dispersion.
  • additives such as a fluorescent dye, a fluorescent brightener, a dye, and a pigment may be added to the second dispersion.
  • the light diffusion particles 10 produced as described above are uniformly dispersed in a fluid containing the raw material of the base material 20. In this manner, an ink containing the light diffusing particles 10 and the base material 20 is prepared.
  • the light diffusing and transmitting sheet 100 can be manufactured by applying this ink on a substrate such as a PET film and solidifying the ink.
  • a weight 32 was attached to the upper part of the planar friction element 31 so that a load of 150 g was applied to the film PF.
  • the plane friction element 31 was reciprocated 10 times with a stroke of 80 mm on the film PF at an average speed of 8.7 m / min, and the film PF was rubbed with the sample Sa.
  • the degree of scratching of the film PF after rubbing with the sample Sa was visually evaluated in the following three stages. A: The film PF is shallowly scratched and has few scratches. B: The film PF is shallow but has many scratches C: The film PF is deeply scratched
  • ⁇ Average particle size> Using a laser diffraction / scattering particle size distribution measuring device (Microtrac MT3000, manufactured by Nikkiso Co., Ltd.), the particle size distribution of the light diffusing particles according to each Example and each Comparative Example was measured. The mass-based (volume-based) D50 obtained from the measurement result of the particle size distribution was determined as the average particle diameter of the light diffusing particles according to each Example and each Comparative Example.
  • Example 1 An aqueous dispersion of fine particles made of cross-linked acrylic resin (manufactured by Soken Chemical Co., Ltd., KMR-3TA, refractive index: 1.49, average particle diameter: 3 ⁇ m, typical value of circularity: 0.87) was prepared by colloidal silica A (Nissan Chemical Industries, Snowtex XS, silica refractive index: about 1.45, silica fine particles average particle diameter: 4-6 nm), colloidal silica B (Nippon Chemical Industry Co., Ltd., silica doll 30S, silica refractive index: About 1.45, average particle size of silica fine particles: 7 to 10 nm), and polyurethane emulsion (Mitsui Chemicals Takelac W-6020: Refractive index 1.50 to 1.55 and Takelac WS-6021: Refractive index 1.50) To 1.55).
  • colloidal silica A Non- Chemical Industries, Snowtex XS, silica refractive index: about 1.45, silic
  • the core dispersion was prepared so that the solid content of the crosslinked acrylic resin fine particles was 6% by mass and the solid content of the polyurethane was 30% by mass.
  • the image of 10 cross-linked acrylic resin particles obtained using an optical microscope is processed by image processing software (Image J ver.1.48) provided by NIH, and the projected area of the particle and the surroundings of the projected particle The length was decided.
  • the circularity of each crosslinked acrylic resin fine particle was determined based on the formula (1).
  • the arithmetic average value of the circularity of 10 particles was determined as the representative value of the circularity of fine particles made of crosslinked acrylic resin.
  • the core dispersion After adding a cross-linking agent (Nisshinbo Chemical Co., Ltd., Carbodilite E-05) to the core dispersion, the core dispersion was heated in an environment of 80 ° C. for 2 hours. Thereby, the dispersion liquid in which the polyurethane was crosslinked to form the core was obtained. 33 mass parts of crosslinking agents were added with respect to 100 mass parts of solid content of polyurethane.
  • a cross-linking agent Nishinbo Chemical Co., Ltd., Carbodilite E-05
  • colloidal silica B manufactured by Nippon Chemical Industry Co., Ltd., silica doll 30S, silica refractive index: about 1.45, silica fine particle average particle size: 7 to 10 nm
  • polyurethane Emulsions Mitsubishi Chemicals Takelac W-6020: Refractive index 1.50 to 1.55
  • Takelac WS-6021 Refractive index 1.50 to 1.55
  • a dispersion for light diffusing particles was prepared so that the solid content of the core was 10% by mass and the solid content of polyurethane other than the core was 20% by mass.
  • the dispersion liquid for light diffusion particles was spray-dried using a micro mist spray dryer (product name: MDL-050, manufactured by Fujisaki Electric Co., Ltd.) to obtain light diffusion particles according to Example 1 having a core-shell structure.
  • the average particle diameter (D50) of the light diffusing particles according to Example 1 was 6.0 ⁇ m.
  • the ink was prepared by dispersing the light diffusing particles according to Example 1 in an acrylic resin. This ink was applied to a PET film having a thickness of 20 ⁇ m by a doctor blade method and solidified to prepare a sample of a light diffusing and transmitting sheet according to Example 1.
  • the thickness of the coating film in the sample was 10 to 17 ⁇ m, and the content of light diffusing particles in the coating film of the sample was 65% by mass.
  • Example 2 instead of the crosslinked acrylic resin fine particles used in Example 1, crosslinked acrylic resin fine particles having a representative circularity different from the representative circularity of the particles (KMR-3TA, manufactured by Soken Chemical Co., Ltd.) Example 1 except that the refractive index is 1.49, the average particle size is 3 ⁇ m, the typical value of circularity is 0.93), and the solid content of the polyurethane is 50% by mass.
  • a dispersion for the core was prepared. Thereafter, a dispersion having a core formed therein was obtained in the same manner as in Example 1.
  • Light diffusing particles according to Example 2 having a core-shell structure were obtained in the same manner as in Example 1 except that a dispersion liquid for light diffusing particles was prepared so that the solid content of the core was 30% by mass.
  • the average particle diameter (D50) of the light diffusing particles according to Example 2 was 4.7 ⁇ m.
  • the circularity of the crosslinked acrylic resin fine particles was determined in the same manner as in Example 1.
  • a sample of the light diffusing and transmitting sheet according to Example 2 was produced in the same manner as Example 1 except that the light diffusing particles according to Example 2 were used instead of the light diffusing particles according to Example 1.
  • the thickness of the coating film in this sample was 10 to 17 ⁇ m, and the content of the light diffusing particles in the coating film of the sample was 65% by mass.
  • the core dispersion After adding a crosslinking agent (Nisshinbo Chemical Co., Ltd. Carbodilite E-05) to the core dispersion, the core dispersion was heated in an environment of 80 ° C. for 2 hours. Thereby, the dispersion liquid in which the polyurethane was crosslinked to form the core was obtained. 33 mass parts of crosslinking agents were added with respect to 100 mass parts of solid content of polyurethane.
  • a crosslinking agent Nishinbo Chemical Co., Ltd. Carbodilite E-05
  • a dispersion for light diffusing particles was prepared so that the solid content of the core was 10% by mass and the solid content of polyurethane other than the core was 20% by mass.
  • the dispersion liquid for light diffusion particles was spray-dried using a micro mist spray dryer (product name: MDL-050, manufactured by Fujisaki Electric Co., Ltd.) to obtain light diffusion particles according to Comparative Example 1 having a core-shell structure.
  • the average particle diameter (D50) of the light diffusing particles according to Comparative Example 1 was 5.0 ⁇ m.
  • a sample of the light diffusing / transmitting sheet according to Comparative Example 1 was produced in the same manner as in Example 1 except that the light diffusing particles according to Comparative Example 1 were used instead of the light diffusing particles according to Example 1.
  • the thickness of the coating film in this sample was 10 to 17 ⁇ m, and the content of the light diffusing particles in the coating film of the sample was 65% by mass.
  • An aqueous dispersion of magnesium fluoride particles (manufactured by Kanto Chemical Co., Inc., refractive index: 1.38, average particle size: 0.2 to 0.3 ⁇ m, typical value of circularity: 0.71) is colloidal silica A (Nissan) Chemical Industries, Snowtex XS, silica refractive index: about 1.45, silica fine particles average particle diameter: 4-6 nm), colloidal silica B (Nippon Chemical Industry Co., Ltd., silica doll 30S, silica refractive index: About 1.45, average particle size of silica fine particles: 7 to 10 nm), and polyurethane emulsion (Mitsui Chemicals Takelac W-6020: Refractive index 1.50 to 1.55 and Takelac WS-6021: Refractive index 1.50) To 1.55).
  • the core dispersion was prepared so that the solid content of the crosslinked acrylic resin fine particles was 8% by mass and the solid content of the polyurethane was 50% by mass.
  • the image of the 10 magnesium fluoride particles obtained using a transmission electron microscope (TEM) was processed by image processing software (Image J ver.1.48) provided by NIH, and the projected area of the particles and the particle The perimeter of the projection was determined.
  • the circularity of each magnesium fluoride particle was determined based on the formula (1).
  • the arithmetic average value of the circularity of 10 particles was determined as the representative value of the circularity of the magnesium fluoride particles.
  • the core dispersion After adding a crosslinking agent (Nisshinbo Chemical Co., Ltd. Carbodilite E-05) to the core dispersion, the core dispersion was heated in an environment of 80 ° C. for 2 hours. Thereby, the dispersion liquid in which the polyurethane was crosslinked to form the core was obtained. 20 mass parts of crosslinking agents were added with respect to 100 mass parts of solid content of polyurethane.
  • a crosslinking agent Nishinbo Chemical Co., Ltd. Carbodilite E-05
  • the dispersion for light diffusing particles was prepared so that the solid content of the core was 30% by mass and the solid content of polyurethane other than the core was 20% by mass.
  • the dispersion liquid for light diffusion particles was spray-dried using a micro mist spray dryer (product name: MDL-050, manufactured by Fujisaki Electric Co., Ltd.) to obtain light diffusion particles according to Comparative Example 2 having a core-shell structure.
  • the average particle diameter (D50) of the light diffusing particles according to Comparative Example 2 was 5.2 ⁇ m.
  • a sample of the light diffusing / transmitting sheet according to Comparative Example 2 was prepared in the same manner as in Example 1 except that the light diffusing particles according to Comparative Example 2 were used instead of the light diffusing particles according to Example 1.
  • the thickness of the coating film in this sample was 10 to 17 ⁇ m, and the content of the light diffusing particles in the coating film of the sample was 65% by mass.
  • Example 1 and Example 2 have the same high luminance characteristics as the sample in which the light diffusion particles according to Comparative Example 2 having magnesium fluoride particles having a refractive index of 1.38 in the core are dispersed.
  • Example 2 having magnesium fluoride particles having a refractive index of 1.38 in the core are dispersed.
  • the samples according to Example 1 and Example 2 were more difficult to damage other members in contact than those of Comparative Examples 1 and 2.
  • the samples according to Example 1 and Example 2 have such characteristics because the light diffusion particles according to Example 1 and Example 2 have a core containing fine particles made of a crosslinked acrylic resin having a high degree of circularity. It is thought.
  • the core does not contain particles having a particle diameter of 0.1 ⁇ m to 4 ⁇ m, an irregular core is easily formed, and the shape of the light diffusing particles is likely to be irregular. Conceivable. For this reason, it is thought that the sample which concerns on the comparative example 1 was easy to damage other members which contact compared with the sample which concerns on Example 1 and Example 2.
  • the magnesium fluoride particles contained in the core had a low circularity and an angular shape. For this reason, it is thought that the sample which concerns on the comparative example 2 was easy to damage other members which contact compared with the sample which concerns on Example 1 and Example 2.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Light-diffusing particles (10) that comprises a core (10c) and a shell (10s). The core (10c) includes a first binder (11) and a core fine particle (12). The first binder (11) contacts an outer surface of the core fine particle (12). The core fine particle (12) has a lower refractive index than the first binder (11), a circularity of at least 0.85, and a particle diameter of 0.1–4 μm. The core (10c) contacts an outer surface of the core (10c) and covers the core (10c).

Description

光拡散粒子、光拡散透過シート、及び光拡散粒子を製造する方法Light diffusing particles, light diffusing and transmitting sheet, and method for producing light diffusing particles
 本発明は、光拡散粒子、光拡散透過シート、及び光拡散粒子を製造する方法に関する。 The present invention relates to a light diffusing particle, a light diffusing and transmitting sheet, and a method for producing the light diffusing particle.
 液晶ディスプレイの高画質化に伴い、液晶ディスプレイのバックライトから出射される光を空間的に均質化するために、光拡散特性の高い光拡散透過シートに対する需要が高まっている。加えて、消費エネルギーを低減する観点から、輝度特性の高い光拡散透過シートに対する需要も高まっている。 Demand for light diffusing and transmitting sheets having high light diffusing characteristics is increasing in order to spatially homogenize the light emitted from the backlight of the liquid crystal display as the image quality of the liquid crystal display increases. In addition, from the viewpoint of reducing energy consumption, there is an increasing demand for light diffusing and transmitting sheets having high luminance characteristics.
 特許文献1には、母材である樹脂と、樹脂に分散されたシリカ複合粒子とを備えた光拡散透過シートが記載されている。シリカ複合粒子は、平均粒径が100nm以下である酸化チタン微粒子を内包している。特許文献1に記載の光拡散透過シートは、高い全光線透過率及びヘイズ率を示す。なお、酸化チタンの屈折率はシリカの屈折率より大きい。 Patent Document 1 describes a light diffusing and transmitting sheet provided with a resin as a base material and silica composite particles dispersed in the resin. The silica composite particles include titanium oxide fine particles having an average particle diameter of 100 nm or less. The light diffusion transmission sheet described in Patent Literature 1 exhibits high total light transmittance and haze ratio. The refractive index of titanium oxide is larger than that of silica.
 特許文献2には、プロジェクターから投影された映像を視認するための透過型スクリーンが記載されている。透過型スクリーンは、光拡散微粒子とキセロゲルとを含有する光拡散層を有する。光拡散微粒子として、有機微粒子と少量の無機微粒子とによる複合粒子又は無機微粒子と少量の有機高分子による複合粒子が使用可能であることが記載されている。有機微粒子と少量の無機微粒子とによる複合粒子としては、メラミン樹脂又はアクリル樹脂等の微粒子の表面がシリカ等の無機微粒子で被覆された複合粒子が例示されている。なお、通常、メラミン樹脂の屈折率及びアクリル樹脂の屈折率はシリカの屈折率よりも高い。 Patent Document 2 describes a transmissive screen for visually recognizing an image projected from a projector. The transmission screen has a light diffusion layer containing light diffusion fine particles and xerogel. It is described that as the light diffusing fine particles, composite particles composed of organic fine particles and a small amount of inorganic fine particles or composite particles composed of inorganic fine particles and a small amount of organic polymer can be used. Examples of the composite particles composed of organic fine particles and a small amount of inorganic fine particles include composite particles in which the surface of fine particles such as melamine resin or acrylic resin is coated with inorganic fine particles such as silica. In general, the refractive index of melamine resin and the refractive index of acrylic resin are higher than the refractive index of silica.
 特許文献3には、光透過性基材と、内部散乱層とを有する光学積層体が記載されている。特許文献3には、この光学積層体が良好な防眩性を保ちつつ、優れたコントラストとギラツキ防止効果を発揮すると記載されている。内部散乱層は、内部散乱粒子を含有する。内部散乱粒子は、5~300nmの平均粒径を有する微粒子を内包している。内部散乱粒子に内包された微粒子の屈折率nAは、内部散乱粒子に内包された微粒子以外の成分の屈折率nBより大きい。 Patent Document 3 describes an optical laminate having a light-transmitting substrate and an internal scattering layer. Patent Document 3 describes that this optical laminate exhibits excellent contrast and antiglare effect while maintaining good antiglare properties. The internal scattering layer contains internal scattering particles. The internal scattering particles include fine particles having an average particle diameter of 5 to 300 nm. The refractive index n A of the fine particles encapsulated in the internal scattering particles is larger than the refractive index n B of components other than the fine particles encapsulated in the internal scattering particles.
 特許文献4には、透明樹脂を含む透明基材からなる光拡散層を具備する光拡散板が記載されている。光拡散層は透明基材の内部に存在する、第一光拡散粒子及び第二光拡散粒子を含む。第二光拡散粒子の屈折率は、第一光拡散粒子の屈折率よりも大きい。第一光拡散粒子の屈折率は1.4~1.7であり、第二光拡散粒子の屈折率は2より大きい。 Patent Document 4 describes a light diffusing plate having a light diffusing layer made of a transparent base material containing a transparent resin. The light diffusion layer includes first light diffusion particles and second light diffusion particles present inside the transparent substrate. The refractive index of the second light diffusing particles is larger than the refractive index of the first light diffusing particles. The refractive index of the first light diffusing particles is 1.4 to 1.7, and the refractive index of the second light diffusing particles is larger than 2.
特開2014-48427号公報JP 2014-48427 A 特開2013-195548号公報JP 2013-195548 A 特開2009-42554号公報JP 2009-42554 A 特開2008-40479号公報JP 2008-40479 A
 特許文献1~4に記載の技術は、特許文献1~4に記載の粒子が分散した層又はシートを備えた製品に高い輝度特性をもたらすうえで、必ずしも有利であるとはいえない。加えて、特許文献1~4において、特許文献1~4に記載の粒子が分散した層又はシートが他の部材と接触するときにその層又はシートが他の部材を傷付けやすいかどうか具体的に検討されていない。 The techniques described in Patent Documents 1 to 4 are not necessarily advantageous in providing high luminance characteristics to a product including a layer or sheet in which particles described in Patent Documents 1 to 4 are dispersed. In addition, in Patent Documents 1 to 4, specifically, whether or not the layer or sheet in which particles described in Patent Documents 1 to 4 are in contact with another member is likely to damage the other member. Not considered.
 そこで、本発明は、高い輝度特性を光拡散透過シートに付与するのに有利であり、かつ、光拡散透過シートに接触する部材を傷付けにくい特性を光拡散透過シートに付与するのに有利な光拡散粒子を提供する。 Therefore, the present invention is advantageous for imparting high luminance characteristics to the light diffusing and transmitting sheet, and is also advantageous for imparting the light diffusing and transmitting sheet with characteristics that hardly damage the members in contact with the light diffusing and transmitting sheet. Provides diffusing particles.
 本発明は、
 第一バインダーと、前記第一バインダーの屈折率よりも低い屈折率、0.85以上の円形度、及び0.1μm~4μmの粒子径を有するコア微粒子とを含み、前記第一バインダーが前記コア微粒子の外面に接触しているコアと、
 前記コアの外面に接触して前記コアを覆うシェルと、を備えた、
 光拡散粒子を提供する。
The present invention
A first binder, and core fine particles having a refractive index lower than the refractive index of the first binder, a circularity of 0.85 or more, and a particle diameter of 0.1 μm to 4 μm, wherein the first binder is the core A core in contact with the outer surface of the fine particles;
A shell that contacts the outer surface of the core and covers the core;
Provide light diffusing particles.
 また、本発明は、
 母材と、
 前記母材に分散している上記の光拡散粒子と、を備えた、
 光拡散透過シートを提供する。
The present invention also provides:
With the base material,
The light diffusion particles dispersed in the base material,
A light diffusing and transmitting sheet is provided.
 さらに、本発明は、
 コアシェル構造を有する光拡散粒子を製造する方法であって、
 第一バインダーの原料と、前記第一バインダーの屈折率よりも低い屈折率、0.85以上の円形度、及び0.1μm~4μmの粒子径を有するコア微粒子とが分散している第一分散液を調製し、
 前記第一分散液に前記第一バインダーの原料を架橋させるための架橋剤を添加して前記第一バインダーの原料を架橋させてコアを形成し、
 前記コアと、シェルの原料とが分散している第二分散液を調製し、
 前記第二分散液を噴霧乾燥する、
 方法を提供する。
Furthermore, the present invention provides:
A method for producing light diffusing particles having a core-shell structure,
A first dispersion in which a raw material of the first binder and core fine particles having a refractive index lower than the refractive index of the first binder, a circularity of 0.85 or more, and a particle diameter of 0.1 μm to 4 μm are dispersed. Prepare the liquid,
A core is formed by adding a crosslinking agent for crosslinking the raw material of the first binder to the first dispersion to crosslink the raw material of the first binder,
Preparing a second dispersion in which the core and shell material are dispersed;
Spray drying the second dispersion;
Provide a method.
 上記の光拡散粒子は、光拡散粒子が分散している光拡散透過シートに高い輝度特性を付与するのに有利であり、かつ、光拡散透過シートに接触する部材を傷付けにくい特性を光拡散透過シートに付与するのに有利である。また、上記の方法によれば、上記の光拡散粒子を1回の噴霧乾燥で製造できる。 The light diffusing particles described above are advantageous for imparting high luminance characteristics to the light diffusing and transmitting sheet in which the light diffusing particles are dispersed, and exhibiting characteristics that hardly damage the member that contacts the light diffusing and transmitting sheet. It is advantageous to apply to a sheet. Moreover, according to said method, said light-diffusion particle | grains can be manufactured by one spray drying.
図1Aは、本発明の一例に係る光拡散粒子の構造を模式的に示す断面図である。FIG. 1A is a cross-sectional view schematically showing the structure of a light diffusing particle according to an example of the present invention. 図1Bは、本発明の別の一例に係る光拡散粒子の構造を模式的に示す断面図である。FIG. 1B is a cross-sectional view schematically showing the structure of a light diffusing particle according to another example of the present invention. 図2は、高屈折率の微粒子に入射する光の光路を模式的に示す図である。FIG. 2 is a diagram schematically showing an optical path of light incident on a fine particle having a high refractive index. 図3は、低屈折率の微粒子に入射する光の光路を模式的に示す図である。FIG. 3 is a diagram schematically showing the optical path of light incident on the low refractive index fine particles. 図4は、本発明の一例に係る光拡散透過シートを示す断面図である。FIG. 4 is a cross-sectional view showing a light diffusing and transmitting sheet according to an example of the present invention. 図5は、実施例及び比較例に係る光拡散透過シートのサンプルの傷付与特性を評価するための装置の側面図である。FIG. 5 is a side view of an apparatus for evaluating the scratch imparting characteristics of samples of light diffusing and transmitting sheets according to Examples and Comparative Examples.
 以下、本発明の実施形態について図面を参照しながら説明する。なお、以下の説明は、本発明の一例に関するものであり、本発明はこれらによって限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description relates to an example of the present invention, and the present invention is not limited to these.
 図1A及び図1Bに示す通り、光拡散粒子10は、コア10cと、シェル10sとを備えている。コア10cは、第一バインダー11と、コア微粒子12とを含んでいる。コア微粒子12は、(i)第一バインダー11の屈折率よりも低い屈折率、(ii)0.85以上の円形度、及び(iii)0.1μm~4μmの粒子径を有する。第一バインダー11がコア微粒子12の外面に接触している。シェル10sは、コア10cの外面に接触してコア10cを覆っている。本明細書で「粒子径」とは、最大径を意味する。粒子の「円形度」は、以下の式(1)により求めることができる。ここで、粒子の投影面積及び粒子の投影の周囲長は、粒子を光学顕微鏡又は透過型電子顕微鏡で観察して得られた粒子の画像を画像処理ソフトウェア(例えば、National Institutes of Health (NIH)が提供するImage J)を用いて処理することにより決定できる。
 円形度=4π×(粒子の投影面積)/(粒子の投影の周囲長)2  (1)
As shown in FIGS. 1A and 1B, the light diffusion particle 10 includes a core 10c and a shell 10s. The core 10 c includes a first binder 11 and core fine particles 12. The core fine particles 12 have (i) a refractive index lower than that of the first binder 11, (ii) a circularity of 0.85 or more, and (iii) a particle diameter of 0.1 μm to 4 μm. The first binder 11 is in contact with the outer surface of the core fine particle 12. The shell 10s contacts the outer surface of the core 10c and covers the core 10c. As used herein, “particle diameter” means the maximum diameter. The “circularity” of the particles can be obtained by the following equation (1). Here, the projected area of the particle and the peripheral length of the projected particle are determined by image processing software (for example, National Institutes of Health (NIH)) using an image of the particle obtained by observing the particle with an optical microscope or a transmission electron microscope. It can be determined by processing using the provided Image J).
Circularity = 4π × (particle projection area) / (peripheral length of particle projection) 2 (1)
 特許文献1に記載のシリカ複合粒子は、平均粒径が100nm以下である酸化チタン微粒子を内包している。酸化チタンの屈折率はシリカの屈折率よりも大きい。このため、シリカ複合粒子において高屈折率の酸化チタン微粒子が低屈折率のシリカに内包されている。図2に示す通り、相対的に低い屈折率の媒質から高屈折率の微粒子PHに光が入射する場合、微粒子PHに入射した光の一部が微粒子PHの内部で反射を繰り返し微粒子PHの内部に閉じ込められやすい。本明細書では、このような現象を「光閉じ込め現象」と呼ぶ。特許文献1に記載のシリカ複合粒子の内部では、光閉じ込め現象が起こりやすく、特許文献1に記載の技術は光拡散透過シートに高い輝度特性を付与するのに有利であるとは言い難い。特許文献2及び3に記載の技術についても同様である。また、特許文献4には、複合粒子は記載されていないが、第二光拡散粒子の屈折率は2より大きいため、第二光拡散粒子において光閉じ込め現象が起こりやすいと考えられる。 The silica composite particles described in Patent Document 1 include titanium oxide fine particles having an average particle diameter of 100 nm or less. The refractive index of titanium oxide is larger than that of silica. For this reason, in the silica composite particles, titanium oxide fine particles having a high refractive index are encapsulated in silica having a low refractive index. As shown in FIG. 2, when light enters a high refractive index fine particle PH from a relatively low refractive index medium, a part of the light incident on the fine particle PH is repeatedly reflected inside the fine particle PH and inside the fine particle PH. It is easy to be trapped in. In this specification, such a phenomenon is called an “optical confinement phenomenon”. In the silica composite particles described in Patent Document 1, a light confinement phenomenon is likely to occur, and it is difficult to say that the technique described in Patent Document 1 is advantageous for imparting high luminance characteristics to the light diffusion transmission sheet. The same applies to the techniques described in Patent Documents 2 and 3. Moreover, although the composite particle is not described in Patent Document 4, since the refractive index of the second light diffusion particle is larger than 2, it is considered that the light confinement phenomenon is likely to occur in the second light diffusion particle.
 これに対し、例えば、図3に示す通り、相対的に高い屈折率の媒質から低屈折率の微粒子PLに光が入射する場合、微粒子PLにおいて「光閉じ込め現象」が起こりにくい。なお、図3において、微粒子PLの周囲の媒質の屈折率から微粒子PLの屈折率を差し引いた差が0.01である。光拡散粒子10において、コア微粒子12は、第一バインダー11の屈折率よりも低い屈折率を有し、第一バインダー11に接触して覆われている。このため、コア微粒子12において光閉じ込め現象が起こりにくく、光拡散粒子10は、光拡散粒子10が分散している光拡散透過シートに高い輝度特性を付与するのに有利である。 On the other hand, for example, as shown in FIG. 3, when light is incident on the low-refractive index fine particles PL from a medium having a relatively high refractive index, the “light confinement phenomenon” hardly occurs in the fine particles PL. In FIG. 3, the difference obtained by subtracting the refractive index of the fine particles PL from the refractive index of the medium around the fine particles PL is 0.01. In the light diffusing particle 10, the core fine particle 12 has a refractive index lower than that of the first binder 11 and is covered in contact with the first binder 11. For this reason, the light confinement phenomenon hardly occurs in the core fine particles 12, and the light diffusing particles 10 are advantageous for imparting high luminance characteristics to the light diffusing and transmitting sheet in which the light diffusing particles 10 are dispersed.
 このように、コア微粒子12が低い屈折率を有すると、光拡散透過シートに高い輝度特性を付与するのに有利である。そこで、本発明者は、様々な低屈折率の微粒子を用いてコアシェル構造を有する光拡散粒子に関する検討を行った。その結果、本発明者らは、コアに配置されるべき微粒子の円形度の違いによって、光拡散粒子が分散している光拡散透過シートに接触する部材の傷付きやすさが異なることを見出した。すなわち、本発明者らは、コア10cにおけるコア微粒子12が0.85以上の円形度及び0.1μm~4μmの粒子径を有することにより、光拡散粒子10が光拡散透過シートに接触する部材を傷付けにくい特性を光拡散透過シートに付与できることを見出した。 Thus, when the core fine particles 12 have a low refractive index, it is advantageous for imparting high luminance characteristics to the light diffusion transmission sheet. Therefore, the present inventor has studied light diffusion particles having a core-shell structure using various low refractive index fine particles. As a result, the present inventors have found that the susceptibility of the member contacting the light diffusing and transmitting sheet in which the light diffusing particles are dispersed differs depending on the difference in the circularity of the fine particles to be arranged in the core. . That is, the present inventors provide a member in which the light diffusing particles 10 are in contact with the light diffusing and transmitting sheet, because the core fine particles 12 in the core 10c have a circularity of 0.85 or more and a particle diameter of 0.1 μm to 4 μm. It has been found that the light diffusive transmission sheet can be imparted with characteristics that are difficult to damage.
 図1Aに示す通り、コア微粒子12の粒子径が1μm~4μmであると、光拡散粒子10において、単一のコア微粒子12がコア10cの中央に配置されやすく、単一のコア微粒子12を基にコア10cが形成されやすい。これに対し、図1Bに示す通り、コア微粒子12の粒子径が0.1μm~0.5μmの範囲にあると、複数(図1Bでは7個)のコア微粒子12が凝集してコア10cの中央に配置されやすく、凝集した複数のコア微粒子12を基にコア10cが形成されやすい。コア微粒子12の粒子径が0.5μm~1μmの範囲にある場合、コア10cにおけるコア微粒子12の配置の状態は条件によって図1A及び図1Bに示す状態のどちらにもなりうる。 As shown in FIG. 1A, when the particle diameter of the core fine particles 12 is 1 μm to 4 μm, in the light diffusing particle 10, the single core fine particles 12 are easily arranged at the center of the core 10 c, and The core 10c is easily formed. On the other hand, as shown in FIG. 1B, when the particle diameter of the core fine particles 12 is in the range of 0.1 μm to 0.5 μm, a plurality (seven in FIG. 1B) of the core fine particles 12 aggregate to form the center of the core 10c. The core 10c is easily formed based on the aggregated core fine particles 12. When the particle diameter of the core fine particles 12 is in the range of 0.5 μm to 1 μm, the arrangement state of the core fine particles 12 in the core 10c can be either the state shown in FIG. 1A or FIG. 1B depending on conditions.
 図4に示す通り、光拡散粒子10を用いて光拡散透過シート100を製造できる。光拡散透過シート100は、母材20と、母材20に分散している光拡散粒子10とを備えている。光拡散透過シート100は、光拡散粒子10を備えているので、高い輝度特性を発揮でき、かつ、光拡散透過シート100に接触する部材を傷付けにくい特性を有する。 As shown in FIG. 4, the light diffusing and transmitting sheet 100 can be manufactured using the light diffusing particles 10. The light diffusion transmission sheet 100 includes a base material 20 and light diffusion particles 10 dispersed in the base material 20. Since the light diffusing and transmitting sheet 100 includes the light diffusing particles 10, the light diffusing and transmitting sheet 100 can exhibit high luminance characteristics and has a characteristic that the member that contacts the light diffusing and transmitting sheet 100 is hardly damaged.
 母材20は、特に限定されないが、例えば、光拡散粒子10の分散性に優れ、可視光に対する透明性、耐候性、耐湿性、及び耐熱性を有する樹脂である。例えば、母材20としては、ポリエステルポリオール、線状ポリエステル、アクリル系樹脂、アミノ樹脂、エポキシ系樹脂、メラミン系樹脂、シリコーン系樹脂、ウレタン系樹脂、酢酸ビニル系樹脂、ノルボルネン系樹脂、及びポリカーボネート樹脂等の材料が挙げられる。また、各種の熱硬化型樹脂、各種の紫外線硬化型樹脂を用いることもできる。これらの樹脂にはイソシアネート系等の硬化剤、各種の分散剤が適宜添加されていてもよい。光拡散透過シート100において、PET(ポリエチレンテレフタレート)フィルム等の基板(図示省略)をさらに備え、その基板上に光拡散粒子10が分散している母材20が層状に形成されていてもよい。 The base material 20 is not particularly limited, but is, for example, a resin having excellent dispersibility of the light diffusing particles 10 and having transparency to visible light, weather resistance, moisture resistance, and heat resistance. For example, as the base material 20, polyester polyol, linear polyester, acrylic resin, amino resin, epoxy resin, melamine resin, silicone resin, urethane resin, vinyl acetate resin, norbornene resin, and polycarbonate resin And the like. Various thermosetting resins and various ultraviolet curable resins can also be used. These resins may be appropriately added with an isocyanate-based curing agent and various dispersants. The light diffusing and transmitting sheet 100 may further include a substrate (not shown) such as a PET (polyethylene terephthalate) film, and the base material 20 in which the light diffusing particles 10 are dispersed may be formed in layers on the substrate.
 光拡散粒子10が母材20に均一に分散できるように、光拡散粒子10の平均粒子径が所定の範囲に収まっていることが望ましい。このような観点から、光拡散粒子10の平均粒子径は、例えば4μm~10μmであり、望ましくは4μm~8μmであり、より望ましくは4μm~7μmである。これにより、光拡散透過シート100における光学特性の空間的なばらつきを防止できる。また、光拡散粒子10が凝集したときに生じる一次粒子同士の間の空隙に光が進入することによる光の反射ロスを低減できる。その結果、光拡散透過シート100の輝度特性を向上させることができる。さらに、光拡散透過シート100において光が屈折する界面を十分に確保できる。これにより、光拡散透過シート100の光拡散特性を高めることができる。なお、光拡散粒子10の「平均粒子径」は、レーザー回折法で測定される質量(体積)基準のD50である。 It is desirable that the average particle diameter of the light diffusing particles 10 be within a predetermined range so that the light diffusing particles 10 can be uniformly dispersed in the base material 20. From such a viewpoint, the average particle diameter of the light diffusing particles 10 is, for example, 4 μm to 10 μm, desirably 4 μm to 8 μm, and more desirably 4 μm to 7 μm. Thereby, the spatial dispersion | variation in the optical characteristic in the light diffusion transmission sheet 100 can be prevented. In addition, it is possible to reduce light reflection loss due to light entering a gap between primary particles generated when the light diffusion particles 10 aggregate. As a result, the luminance characteristics of the light diffusing and transmitting sheet 100 can be improved. Furthermore, it is possible to sufficiently secure an interface where light is refracted in the light diffusing and transmitting sheet 100. Thereby, the light-diffusion characteristic of the light-diffusion transmission sheet 100 can be improved. The “average particle diameter” of the light diffusing particles 10 is D50 based on mass (volume) measured by a laser diffraction method.
 光拡散粒子10の形状は、光拡散透過シート100に空間的に均一な光拡散特性を付与する観点から、1~2のアスペクト比を有する粒状であることが望ましい。 The shape of the light diffusing particles 10 is preferably granular having an aspect ratio of 1 to 2 from the viewpoint of imparting spatially uniform light diffusing characteristics to the light diffusing and transmitting sheet 100.
 コア微粒子12は、上記の(i)~(iii)の特性を有する限り、有機材料でできていてもよいし、シリカ等の無機材料でできていてもよい。光拡散透過シートに接触する部材をより確実に傷付けにくくするためには、コア微粒子12が柔らかい(外力によって変形しやすい)ことが望ましい。このため、コア微粒子12は、望ましくは高分子でできている。コア微粒子12が高分子でできていると、高分子が有する粘弾性によりコア微粒子12が外力によって変形しやすい。 The core fine particles 12 may be made of an organic material or may be made of an inorganic material such as silica as long as it has the characteristics (i) to (iii) described above. In order to more reliably prevent damage to the member that contacts the light diffusing and transmitting sheet, it is desirable that the core fine particles 12 be soft (easy to be deformed by an external force). For this reason, the core fine particles 12 are preferably made of a polymer. When the core fine particles 12 are made of a polymer, the core fine particles 12 are easily deformed by an external force due to the viscoelasticity of the polymer.
 コア微粒子12を形成する高分子は、例えば、アクリル樹脂、シリコーン樹脂、又はフッ素樹脂である。この場合、光拡散粒子10によって、光拡散透過シート100に接触する部材を傷付けにくい特性をより確実に光拡散透過シート100に付与できる。 The polymer forming the core fine particles 12 is, for example, an acrylic resin, a silicone resin, or a fluororesin. In this case, the light diffusing particles 10 can more reliably impart the light diffusing and transmitting sheet 100 with the property of hardly damaging the member that contacts the light diffusing and transmitting sheet 100.
 第一バインダー11の屈折率は、例えば1.49~1.60であり、望ましくは1.50~1.55である。また、コア微粒子12の屈折率は、例えば1.35~1.59であり、望ましくは1.35~1.49である。望ましくは、第一バインダー11の屈折率nBからコア微粒子12の屈折率nFを差し引いた差nB-nFが0.01以上である。これにより、第一バインダー11とコア微粒子12との屈折率差が大きくなり、コア微粒子12に入射した光が拡散(散乱)しやすい。このため、光拡散透過シート100が高い輝度特性を有するとともに良好な光拡散特性を有する。 The refractive index of the first binder 11 is, for example, 1.49 to 1.60, and preferably 1.50 to 1.55. Further, the refractive index of the core fine particles 12 is, for example, 1.35 to 1.59, and preferably 1.35 to 1.49. Desirably, the difference n B −n F obtained by subtracting the refractive index n F of the core fine particles 12 from the refractive index n B of the first binder 11 is 0.01 or more. Thereby, the refractive index difference between the first binder 11 and the core fine particles 12 becomes large, and the light incident on the core fine particles 12 is likely to diffuse (scatter). For this reason, the light diffusion transmission sheet 100 has high luminance characteristics and good light diffusion characteristics.
 第一バインダー11は、コア微粒子12の外面を覆うことができ、可視光に対する透明性を有する。光拡散粒子10の硬度を低下させて光拡散透過シート100に接する部材を傷付ける可能性を低減する観点から、第一バインダー11は、望ましくは、アクリル樹脂、ポリウレタン樹脂、及びナイロンからなる群から選ばれる少なくとも1種の高分子を含む。中でも、第一バインダー11はポリウレタン樹脂であることが望ましい。 The first binder 11 can cover the outer surface of the core fine particles 12 and has transparency to visible light. The first binder 11 is preferably selected from the group consisting of an acrylic resin, a polyurethane resin, and nylon from the viewpoint of reducing the hardness of the light diffusing particles 10 and reducing the possibility of damaging a member that contacts the light diffusing and transmitting sheet 100. At least one polymer. Among these, the first binder 11 is preferably a polyurethane resin.
 図1A及び図1Bに示す通り、コア10cは、コア微粒子12とは異なる種類の微粒子14を含んでいてもよい。例えば、コア10cは、微粒子14として、シリカ、シリコーン、フッ素樹脂、二酸化チタン、酸化亜鉛、酸化ジルコニウム、炭酸カルシウム、硫酸バリウム、硫化亜鉛、水酸化アルミニウム、ガラス、及び体質顔料からなる群から選ばれる少なくとも1種の微粒子をさらに含んでいてもよい。これにより、より高い輝度特性を有する光拡散透過シート又は多様な光学特性を有する光拡散透過シートを提供できる。 As shown in FIG. 1A and FIG. 1B, the core 10 c may include fine particles 14 of a different type from the core fine particles 12. For example, the core 10c is selected from the group consisting of silica, silicone, fluororesin, titanium dioxide, zinc oxide, zirconium oxide, calcium carbonate, barium sulfate, zinc sulfide, aluminum hydroxide, glass, and extender as the fine particles 14. It may further contain at least one kind of fine particles. Thereby, a light diffusion transmission sheet having higher luminance characteristics or a light diffusion transmission sheet having various optical characteristics can be provided.
 コア10cに含まれるコア微粒子12以外の微粒子14の粒子径は、例えば4nm~100nmであり、望ましくは4nm~20nmであり、より望ましくは4nm~10nmである。これにより、コア10cに含まれる、コア微粒子12以外の微粒子14が第一バインダー11の内部で均一に分散しやすい。 The particle diameter of the fine particles 14 other than the core fine particles 12 included in the core 10c is, for example, 4 nm to 100 nm, desirably 4 nm to 20 nm, and more desirably 4 nm to 10 nm. Thereby, the fine particles 14 other than the core fine particles 12 included in the core 10 c are easily dispersed uniformly in the first binder 11.
 微粒子14は、望ましくは、第一バインダー11の屈折率よりも低い屈折率を有する。これにより、微粒子14の内部に光が閉じ込められにくいので、より確実に光拡散透過シート100に高い輝度特性を付与できる。 The fine particles 14 desirably have a refractive index lower than that of the first binder 11. Thereby, since it is difficult to confine light inside the fine particles 14, it is possible to impart high luminance characteristics to the light diffusion transmission sheet 100 more reliably.
 図1A及び図1Bに示す通り、シェル10sは、例えば、シェル微粒子13と、第二バインダー15とによって形成されている。シェル微粒子13は、例えば、4nm~20nmの粒子径を有する。第二バインダー15は、シェル微粒子13の外面に接触してシェル微粒子13を覆っている。シェル微粒子13の粒子径は、コア微粒子12と比べると小さいので、シェル微粒子13は、光拡散粒子10によって光拡散透過シート100に付与される光拡散透過シート100に接触する部材を傷付けにくい特性にほとんど影響を及ぼさない。このため、光拡散粒子10が、より確実に、光拡散透過シート100に接触する部材を傷付けにくい特性を光拡散透過シート100に付与できる。光拡散透過シート100に接触する部材を傷付けにくい特性が損なわれない程度であれば、シェル10sには20nmを超える粒子径を有する粒子が含まれていてもよい。また、シェル微粒子13が4nm~20nmの粒子径を有していると、光拡散粒子10、ひいては光拡散透過シート100が高い光拡散特性を有する。 As shown in FIGS. 1A and 1B, the shell 10 s is formed of, for example, shell fine particles 13 and a second binder 15. The shell fine particles 13 have a particle diameter of 4 nm to 20 nm, for example. The second binder 15 is in contact with the outer surface of the shell fine particles 13 and covers the shell fine particles 13. Since the particle size of the shell fine particles 13 is smaller than that of the core fine particles 12, the shell fine particles 13 have a characteristic that hardly damages a member that comes into contact with the light diffusion transmission sheet 100 provided to the light diffusion transmission sheet 100 by the light diffusion particles 10. Has little effect. For this reason, the light diffusing particle 10 can more reliably impart the light diffusing and transmitting sheet 100 with a characteristic that hardly damages the member that contacts the light diffusing and transmitting sheet 100. The shell 10 s may contain particles having a particle diameter of more than 20 nm as long as the characteristics that hardly damage the member that contacts the light diffusing and transmitting sheet 100 are not impaired. Further, when the shell fine particles 13 have a particle diameter of 4 nm to 20 nm, the light diffusing particles 10 and thus the light diffusing and transmitting sheet 100 have high light diffusing characteristics.
 第二バインダー15の屈折率は、例えば1.49~1.60であり、望ましくは1.50~1.55である。第二バインダー15の屈折率は、望ましくは、第一バインダー11の屈折率以上である。これにより、光拡散粒子10が所望の光学特性を発揮しやすい。シェル微粒子13の屈折率は、例えば1.35~1.59であり、望ましくは1.35~1.49である。シェル微粒子13の屈折率は、望ましくは第二バインダー15の屈折率よりも低い。この場合、シェル微粒子13において光閉じ込め現象が起こりにくい。 The refractive index of the second binder 15 is, for example, 1.49 to 1.60, and preferably 1.50 to 1.55. The refractive index of the second binder 15 is desirably greater than or equal to the refractive index of the first binder 11. Thereby, the light-diffusion particle 10 tends to exhibit a desired optical characteristic. The refractive index of the shell fine particles 13 is, for example, 1.35 to 1.59, and preferably 1.35 to 1.49. The refractive index of the shell fine particles 13 is desirably lower than the refractive index of the second binder 15. In this case, the light confinement phenomenon hardly occurs in the shell fine particles 13.
 第二バインダー15は、例えば、可視光に対して透明性を有する樹脂である。光拡散粒子10の硬度を低下させて光拡散透過シート100に接する部材を傷付ける可能性を低減する観点から、第二バインダー15は、望ましくは、アクリル樹脂、ポリウレタン樹脂、及びナイロンからなる群から選ばれる少なくとも1種の高分子を含む。中でも、第二バインダー15はポリウレタン樹脂であることが望ましい。 The second binder 15 is, for example, a resin having transparency with respect to visible light. The second binder 15 is preferably selected from the group consisting of acrylic resin, polyurethane resin, and nylon from the viewpoint of reducing the hardness of the light diffusing particles 10 and reducing the possibility of damaging the member that contacts the light diffusing and transmitting sheet 100. At least one polymer. Among these, the second binder 15 is preferably a polyurethane resin.
 光拡散透過シート100における光拡散粒子10の含有率は、例えば55質量%以上であり、望ましくは60質量%以上であり、より望ましくは64質量%以上である。これにより、光拡散透過シート100が高い輝度特性を確実に有し、良好な光拡散特性を有する。また、光拡散透過シート100における光拡散粒子10の含有率は、例えば70質量%以下であり、望ましくは68質量%以下であり、より望ましくは66質量%以下である。これにより、光拡散粒子10が母材20に良好に分散し、例えば光拡散透過シート100の表面に光拡散粒子10が露出することを抑制できる。 The content of the light diffusing particles 10 in the light diffusing and transmitting sheet 100 is, for example, 55% by mass or more, desirably 60% by mass or more, and more desirably 64% by mass or more. Thereby, the light diffusion transmission sheet 100 surely has high luminance characteristics and has good light diffusion characteristics. Moreover, the content rate of the light-diffusion particle | grains 10 in the light-diffusion transmission sheet 100 is 70 mass% or less, for example, desirably 68 mass% or less, More desirably, it is 66 mass% or less. Thereby, the light diffusing particles 10 are well dispersed in the base material 20 and, for example, the light diffusing particles 10 can be prevented from being exposed on the surface of the light diffusing and transmitting sheet 100.
 コア10cの質量が光拡散粒子10の質量に占める割合は、例えば8%~30%であり、望ましくは9%~20%であり、より望ましくは9%~15%である。一方、シェル10sの質量が光拡散粒子10の質量全体に占める割合は、例えば70%~92%であり、望ましくは80%~91%であり、より望ましくは85%~91%である。これにより、光拡散透過シート100がより確実に高い輝度特性を発揮できる。 The ratio of the mass of the core 10c to the mass of the light diffusion particle 10 is, for example, 8% to 30%, desirably 9% to 20%, and more desirably 9% to 15%. On the other hand, the ratio of the mass of the shell 10s to the total mass of the light diffusing particles 10 is, for example, 70% to 92%, desirably 80% to 91%, and more desirably 85% to 91%. Thereby, the light-diffusion transmission sheet 100 can exhibit a high luminance characteristic more reliably.
 コア10cにおけるコア微粒子12の含有率は、例えば4質量%~71質量%であり、望ましくは4質量%~10質量%であり、より望ましくは5質量%~7質量%である。コア10cにおける第一バインダー11の含有率は、例えば29質量%~50質量%であり、望ましくは29質量%~40質量%であり、より望ましくは30質量%~31質量%である。コア10cにおける微粒子14の含有率は、例えば20質量%~67質量%であり、望ましくは40質量%~67質量%であり、より望ましくは53質量%~66質量%である。これにより、光拡散透過シート100がより確実に高い輝度特性を発揮できる。 The content of the core fine particles 12 in the core 10c is, for example, 4% by mass to 71% by mass, desirably 4% by mass to 10% by mass, and more desirably 5% by mass to 7% by mass. The content of the first binder 11 in the core 10c is, for example, 29% by mass to 50% by mass, desirably 29% by mass to 40% by mass, and more desirably 30% by mass to 31% by mass. The content of the fine particles 14 in the core 10c is, for example, 20% by mass to 67% by mass, desirably 40% by mass to 67% by mass, and more desirably 53% by mass to 66% by mass. Thereby, the light-diffusion transmission sheet 100 can exhibit a high luminance characteristic more reliably.
 シェル10sにおけるシェル微粒子13の含有率は、例えば71質量%~79質量%であり、望ましくは73質量%~79質量%であり、より望ましくは77質量%~79質量%である。 The content of the shell fine particles 13 in the shell 10 s is, for example, 71% by mass to 79% by mass, desirably 73% by mass to 79% by mass, and more desirably 77% by mass to 79% by mass.
 次に、光拡散粒子10及び光拡散透過シート100の製造方法の一例を説明する。第一バインダー11の原料と、コア微粒子12とが分散している分散液を調製する。分散液は、例えば、第一バインダー11の原料を含むエマルジョンとコア微粒子12を含む分散体とを混合することによって調製される。分散液には、必要に応じて、微粒子14、蛍光染料、蛍光増白剤、染料、又は顔料を分散させてもよい。調製した分散液を用いて噴霧乾燥を行うことによりコア10cを得ることができる。分散液における固体成分の含有量及び噴霧乾燥における噴霧条件を調整することにより、一次粒子の凝集を抑制してコア10cの粒子径を適切な範囲に調節できる。 Next, an example of a method for manufacturing the light diffusing particles 10 and the light diffusing and transmitting sheet 100 will be described. A dispersion liquid in which the raw material of the first binder 11 and the core fine particles 12 are dispersed is prepared. The dispersion is prepared, for example, by mixing an emulsion containing the raw material of the first binder 11 and a dispersion containing the core fine particles 12. You may disperse | distribute the microparticles | fine-particles 14, a fluorescent dye, a fluorescent whitening agent, dye, or a pigment to a dispersion liquid as needed. The core 10c can be obtained by performing spray drying using the prepared dispersion. By adjusting the content of the solid component in the dispersion and the spraying conditions in the spray drying, aggregation of primary particles can be suppressed and the particle diameter of the core 10c can be adjusted to an appropriate range.
 また、噴霧乾燥を行う代わりに、分散液に所定の架橋剤を添加して加熱することにより第一バインダー11の原料を架橋させて、コア10cを形成してもよい。 Further, instead of performing spray drying, the core 10c may be formed by adding a predetermined crosslinking agent to the dispersion and heating to crosslink the raw material of the first binder 11.
 また、第一バインダー11の原料となる樹脂に、コア微粒子12を添加し、必要に応じて、微粒子14、蛍光染料、蛍光増白剤、染料、又は顔料を添加して混錬し、これらの添加物を溶融樹脂に均一に混ぜ合わせる。このようにして得られた樹脂の塊を粉砕して所定の粒子径に調節することによってもコア10cを得ることができる。ただし、コア微粒子12を第一バインダー11に均一に分散させ、又は、所望の粒子径及び形状のコア10cを効率的に製造する観点から、分散液の調製及び噴霧乾燥又は架橋剤の添加によってコア10cを作製することが望ましい。 Further, the core fine particles 12 are added to the resin used as the raw material of the first binder 11, and if necessary, the fine particles 14, the fluorescent dye, the fluorescent brightening agent, the dye, or the pigment are added and kneaded. Mix the additive uniformly into the molten resin. The core 10c can also be obtained by crushing the lump of resin obtained in this way and adjusting it to a predetermined particle diameter. However, from the viewpoint of uniformly dispersing the core fine particles 12 in the first binder 11 or efficiently producing the core 10c having a desired particle diameter and shape, the core is prepared by preparing a dispersion and spray drying or adding a crosslinking agent. It is desirable to make 10c.
 次に、コア10cと、シェル10sの原料とが分散している分散液を調製する。この分散液には、必要に応じて、蛍光染料、蛍光増白剤、染料、及び顔料等の添加剤が加えられてもよい。調製した分散液を用いて噴霧乾燥を行うことにより、コアシェル構造を有する光拡散粒子10を製造できる。分散液における固体成分の含有量及び噴霧乾燥における噴霧条件を調整することにより、所望の粒径及び所望の特性を有する光拡散粒子10を製造できる。 Next, a dispersion liquid in which the core 10c and the raw material of the shell 10s are dispersed is prepared. If necessary, additives such as fluorescent dyes, fluorescent brighteners, dyes, and pigments may be added to the dispersion. By performing spray drying using the prepared dispersion, the light diffusing particles 10 having a core-shell structure can be produced. By adjusting the content of the solid component in the dispersion and the spraying conditions in the spray drying, the light diffusing particles 10 having a desired particle size and desired characteristics can be produced.
 所定の架橋剤の添加によりコア10cを形成する場合、第一バインダー11の原料と、第一バインダー11の屈折率よりも低い屈折率、0.85以上の円形度、及び0.1μm~4μmの粒子径を有するコア微粒子12とが分散している第一分散液を調製する。次に、第一分散液に第一バインダー11の原料を架橋させるための架橋剤を添加して第一バインダー11の原料を架橋させてコア10cを形成する。そのうえで、コア10cと、シェル10sの原料とが分散している第二分散液を調製し、第二分散液を噴霧乾燥する。これにより、コアシェル構造を有する光拡散粒子10を製造できる。第二分散液には、典型的には第二バインダー15の原料及びシェル微粒子13が添加される。第二分散液には、必要に応じて、蛍光染料、蛍光増白剤、染料、及び顔料等の添加剤が加えられてもよい。 When the core 10c is formed by adding a predetermined crosslinking agent, the raw material of the first binder 11, the refractive index lower than the refractive index of the first binder 11, a circularity of 0.85 or more, and 0.1 μm to 4 μm A first dispersion in which core fine particles 12 having a particle diameter are dispersed is prepared. Next, the core 10c is formed by adding a crosslinking agent for crosslinking the raw material of the first binder 11 to the first dispersion to cross-link the raw material of the first binder 11. Then, a second dispersion in which the core 10c and the raw material of the shell 10s are dispersed is prepared, and the second dispersion is spray-dried. Thereby, the light-diffusion particle 10 which has a core-shell structure can be manufactured. Typically, the raw material of the second binder 15 and the shell fine particles 13 are added to the second dispersion. If necessary, additives such as a fluorescent dye, a fluorescent brightener, a dye, and a pigment may be added to the second dispersion.
 上記のようにして作製した光拡散粒子10を、母材20の原料を含有している流動体に均一に分散させる。このようにして、光拡散粒子10及び母材20の原料を含有するインクを調製する。このインクをPETフィルム等の基板上に塗布してインクを固化させることにより光拡散透過シート100を製造できる。 The light diffusion particles 10 produced as described above are uniformly dispersed in a fluid containing the raw material of the base material 20. In this manner, an ink containing the light diffusing particles 10 and the base material 20 is prepared. The light diffusing and transmitting sheet 100 can be manufactured by applying this ink on a substrate such as a PET film and solidifying the ink.
 実施例を用いて本発明を詳細に説明する。ただし、本発明は以下の実施例に限定されない。まず、各実施例及び比較例の評価方法について説明する。 The present invention will be described in detail using examples. However, the present invention is not limited to the following examples. First, an evaluation method for each example and comparative example will be described.
 <傷付与特性の評価>
 図5に示す装置を用いて、各実施例及び各比較例の光拡散透過シートのサンプルが接触により他の部材をどの程度傷付けてしまうかを評価した。長さ100mm、幅30mm、及び厚み0.8mmの市販の透明ポリカーボネートフィルムPFを両面テープにより支持台40上に貼り付けた。次に、長さ20mm、幅15mmの光拡散透過シートのサンプルSaを平面摩擦子31に両面テープを用いて貼り付けた。さらに、図5に示す通り、サンプルSaがフィルムPFに接触するようにサンプルSaを配置した。この際に、平面摩擦子31の上部にはおもり32を取り付けて、フィルムPFに150gの荷重がかかるようにした。この状態で、平面摩擦子31を平均速度8.7m/分でフィルムPF上を80mmのストロークで10回往復運動させて、サンプルSaによってフィルムPFを擦った。サンプルSaで擦った後のフィルムPFの傷付き具合を目視により下記の3段階で評価した。
 A:フィルムPFの傷付きが浅く、かつ、傷が少ない。
 B:フィルムPFの傷付きが浅いが傷が多い
 C:フィルムPFの傷付きが深い
<Evaluation of scratch imparting characteristics>
Using the apparatus shown in FIG. 5, it was evaluated how much the samples of the light diffusing and transmitting sheets of each Example and each Comparative Example damaged other members due to contact. A commercially available transparent polycarbonate film PF having a length of 100 mm, a width of 30 mm, and a thickness of 0.8 mm was attached on the support base 40 with a double-sided tape. Next, a sample Sa of a light diffusing and transmitting sheet having a length of 20 mm and a width of 15 mm was attached to the planar friction element 31 using a double-sided tape. Further, as shown in FIG. 5, the sample Sa was arranged so that the sample Sa was in contact with the film PF. At this time, a weight 32 was attached to the upper part of the planar friction element 31 so that a load of 150 g was applied to the film PF. In this state, the plane friction element 31 was reciprocated 10 times with a stroke of 80 mm on the film PF at an average speed of 8.7 m / min, and the film PF was rubbed with the sample Sa. The degree of scratching of the film PF after rubbing with the sample Sa was visually evaluated in the following three stages.
A: The film PF is shallowly scratched and has few scratches.
B: The film PF is shallow but has many scratches C: The film PF is deeply scratched
 <輝度特性及び色度の測定>
 輝度計測装置(ハイランド社製、製品名:RISA-COLOR ONE)を用いて各実施例に係るサンプル及び比較例に係る光拡散透過シートのサンプルの輝度特性及び色度を測定した。光源としてApple社製のiPhone 5のバックライトを用いた。なお、「iPhone」はApple社の登録商標である。また、輝度及び色度の測定位置はサンプルの光源と反対側に位置し、輝度及び色度の測定位置とサンプルとの距離は100cmであった。各サンプルの評価結果を表1に示す。なお、表1において輝度の相対値が100%であるときの輝度の値は104cd/cm2である。
<Measurement of luminance characteristics and chromaticity>
Using a luminance measuring device (product name: RISA-COLOR ONE, manufactured by Highland Co., Ltd.), the luminance characteristics and chromaticity of the sample according to each example and the sample of the light diffusion transmission sheet according to the comparative example were measured. The backlight of Apple's iPhone 5 was used as the light source. “IPhone” is a registered trademark of Apple Inc. Moreover, the measurement position of brightness | luminance and chromaticity was located on the opposite side to the light source of a sample, and the distance of the measurement position of brightness | luminance and chromaticity and a sample was 100 cm. The evaluation results of each sample are shown in Table 1. In Table 1, the luminance value when the relative luminance value is 100% is 10 4 cd / cm 2 .
 <ヘイズ率の測定>
 分光光度計(島津製作所社製、製品名:UV-3600)及び積分球を用いて、各実施例及び各比較例に係る光拡散透過シートのサンプルの波長555nmの入射光に対するヘイズ率を測定した。結果を表1に示す。
<Measurement of haze ratio>
Using a spectrophotometer (manufactured by Shimadzu Corporation, product name: UV-3600) and an integrating sphere, the haze ratio with respect to incident light having a wavelength of 555 nm of the sample of the light diffusion transmission sheet according to each example and each comparative example was measured. . The results are shown in Table 1.
 <平均粒子径>
 レーザー回折・散乱式粒子径分布測定装置(マイクロトラックMT3000、日機装社製)を用いて、各実施例及び各比較例に係る光拡散粒子の粒度分布を測定した。粒度分布の測定の結果から得られた質量基準(体積基準)のD50を各実施例及び各比較例に係る光拡散粒子の平均粒子径と定めた。
<Average particle size>
Using a laser diffraction / scattering particle size distribution measuring device (Microtrac MT3000, manufactured by Nikkiso Co., Ltd.), the particle size distribution of the light diffusing particles according to each Example and each Comparative Example was measured. The mass-based (volume-based) D50 obtained from the measurement result of the particle size distribution was determined as the average particle diameter of the light diffusing particles according to each Example and each Comparative Example.
 (実施例1)
 架橋アクリル樹脂製の微粒子(綜研化学社製、KMR‐3TA、屈折率:1.49、平均粒子径:3μm、円形度の代表値:0.87)の水分散体を、コロイダルシリカA(日産化学工業社製、スノーテックスXS、シリカの屈折率:約1.45、シリカ微粒子の平均粒子径:4~6nm)、コロイダルシリカB(日本化学工業社製、シリカドール30S、シリカの屈折率:約1.45、シリカ微粒子の平均粒子径:7~10nm)、及びポリウレタンエマルジョン(三井化学社製タケラックW‐6020:屈折率1.50~1.55及びタケラックWS‐6021:屈折率1.50~1.55)と混合した。これにより、コア用の分散液が作製された。コア用の分散液において、架橋アクリル樹脂製の微粒子の固形分が6質量%になるように、かつ、ポリウレタンの固形分が30質量%になるように調製した。なお、光学顕微鏡を用いて得られた10個の架橋アクリル樹脂製の微粒子の画像をNIHが提供する画像処理ソフトウェア(Image J ver.1.48)によって処理して粒子の投影面積及び粒子の投影の周囲長を決定した。そのうえで、式(1)に基づいて各架橋アクリル樹脂製の微粒子の円形度を決定した。10個の粒子の円形度の算術平均値を架橋アクリル樹脂製の微粒子の円形度の代表値と定めた。
Example 1
An aqueous dispersion of fine particles made of cross-linked acrylic resin (manufactured by Soken Chemical Co., Ltd., KMR-3TA, refractive index: 1.49, average particle diameter: 3 μm, typical value of circularity: 0.87) was prepared by colloidal silica A (Nissan Chemical Industries, Snowtex XS, silica refractive index: about 1.45, silica fine particles average particle diameter: 4-6 nm), colloidal silica B (Nippon Chemical Industry Co., Ltd., silica doll 30S, silica refractive index: About 1.45, average particle size of silica fine particles: 7 to 10 nm), and polyurethane emulsion (Mitsui Chemicals Takelac W-6020: Refractive index 1.50 to 1.55 and Takelac WS-6021: Refractive index 1.50) To 1.55). Thereby, the dispersion liquid for cores was produced. The core dispersion was prepared so that the solid content of the crosslinked acrylic resin fine particles was 6% by mass and the solid content of the polyurethane was 30% by mass. In addition, the image of 10 cross-linked acrylic resin particles obtained using an optical microscope is processed by image processing software (Image J ver.1.48) provided by NIH, and the projected area of the particle and the surroundings of the projected particle The length was decided. Then, the circularity of each crosslinked acrylic resin fine particle was determined based on the formula (1). The arithmetic average value of the circularity of 10 particles was determined as the representative value of the circularity of fine particles made of crosslinked acrylic resin.
 上記のコア用の分散液に、架橋剤(日清紡ケミカル社製、カルボジライトE-05)を添加した後、コア用の分散液を80℃の環境で2時間加熱した。これにより、ポリウレタンを架橋させてコアが形成された分散液を得た。架橋剤は、ポリウレタンの固形分100質量部に対して33質量部添加した。次に、コアが形成された分散液と、コロイダルシリカB(日本化学工業社製、シリカドール30S、シリカの屈折率:約1.45、シリカ微粒子の平均粒子径:7~10nm)と、ポリウレタンエマルジョン(三井化学社製タケラックW‐6020:屈折率1.50~1.55及びタケラックWS‐6021:屈折率1.50~1.55)とを混合し、さらに10ppm(parts per million)の青色顔料を添加して、光拡散粒子用の分散液を調製した。光拡散粒子用の分散液において、コアの固形分が10質量%であり、コア以外のポリウレタンの固形分が20質量%となるように、光拡散粒子用の分散液を調製した。光拡散粒子用の分散液をマイクロミストスプレードライヤー(藤崎電機社製、製品名:MDL-050)を用いて噴霧乾燥させ、コアシェル構造を有する実施例1に係る光拡散粒子を得た。実施例1に係る光拡散粒子の平均粒子径(D50)は、6.0μmであった。 After adding a cross-linking agent (Nisshinbo Chemical Co., Ltd., Carbodilite E-05) to the core dispersion, the core dispersion was heated in an environment of 80 ° C. for 2 hours. Thereby, the dispersion liquid in which the polyurethane was crosslinked to form the core was obtained. 33 mass parts of crosslinking agents were added with respect to 100 mass parts of solid content of polyurethane. Next, the core-formed dispersion, colloidal silica B (manufactured by Nippon Chemical Industry Co., Ltd., silica doll 30S, silica refractive index: about 1.45, silica fine particle average particle size: 7 to 10 nm), polyurethane Emulsions (Mitsui Chemicals Takelac W-6020: Refractive index 1.50 to 1.55 and Takelac WS-6021: Refractive index 1.50 to 1.55) are mixed, and further 10ppm (parts per million) blue A pigment was added to prepare a dispersion for light diffusing particles. In the dispersion for light diffusing particles, a dispersion for light diffusing particles was prepared so that the solid content of the core was 10% by mass and the solid content of polyurethane other than the core was 20% by mass. The dispersion liquid for light diffusion particles was spray-dried using a micro mist spray dryer (product name: MDL-050, manufactured by Fujisaki Electric Co., Ltd.) to obtain light diffusion particles according to Example 1 having a core-shell structure. The average particle diameter (D50) of the light diffusing particles according to Example 1 was 6.0 μm.
 実施例1に係る光拡散粒子をアクリル樹脂に分散させてインクを作製した。このインクをドクターブレード法によって20μmの厚みを有するPETフィルムに塗布して固化させ、実施例1に係る光拡散透過シートのサンプルを作製した。サンプルにおける塗膜の厚みは10~17μmであり、サンプルの塗膜における光拡散粒子の含有率は65質量%であった。 The ink was prepared by dispersing the light diffusing particles according to Example 1 in an acrylic resin. This ink was applied to a PET film having a thickness of 20 μm by a doctor blade method and solidified to prepare a sample of a light diffusing and transmitting sheet according to Example 1. The thickness of the coating film in the sample was 10 to 17 μm, and the content of light diffusing particles in the coating film of the sample was 65% by mass.
 (実施例2)
 実施例1で使用した架橋アクリル樹脂製の微粒子に代えて、この粒子の円形度の代表値とは異なる円形度の代表値を有する架橋アクリル樹脂製の微粒子(綜研化学社製、KMR‐3TA、屈折率:1.49、平均粒子径:3μm、円形度の代表値:0.93)を用い、かつ、ポリウレタンの固形分が50質量%となるようにした以外は、実施例1と同様にしてコア用の分散液を調製した。その後、実施例1と同様にしてコアが形成された分散液を得た。コアの固形分が30質量%となるように光拡散粒子用の分散液を調製した以外は実施例1と同様にして、コアシェル構造を有する実施例2に係る光拡散粒子を得た。実施例2に係る光拡散粒子の平均粒子径(D50)は4.7μmであった。架橋アクリル樹脂製の微粒子の円形度は実施例1と同様にして決定した。
(Example 2)
Instead of the crosslinked acrylic resin fine particles used in Example 1, crosslinked acrylic resin fine particles having a representative circularity different from the representative circularity of the particles (KMR-3TA, manufactured by Soken Chemical Co., Ltd.) Example 1 except that the refractive index is 1.49, the average particle size is 3 μm, the typical value of circularity is 0.93), and the solid content of the polyurethane is 50% by mass. A dispersion for the core was prepared. Thereafter, a dispersion having a core formed therein was obtained in the same manner as in Example 1. Light diffusing particles according to Example 2 having a core-shell structure were obtained in the same manner as in Example 1 except that a dispersion liquid for light diffusing particles was prepared so that the solid content of the core was 30% by mass. The average particle diameter (D50) of the light diffusing particles according to Example 2 was 4.7 μm. The circularity of the crosslinked acrylic resin fine particles was determined in the same manner as in Example 1.
 実施例1に係る光拡散粒子に代えて、実施例2に係る光拡散粒子を使用した以外は、実施例1と同様にして実施例2に係る光拡散透過シートのサンプルを作製した。このサンプルにおける塗膜の厚みは10~17μmであり、サンプルの塗膜における光拡散粒子の含有率は65質量%であった。 A sample of the light diffusing and transmitting sheet according to Example 2 was produced in the same manner as Example 1 except that the light diffusing particles according to Example 2 were used instead of the light diffusing particles according to Example 1. The thickness of the coating film in this sample was 10 to 17 μm, and the content of the light diffusing particles in the coating film of the sample was 65% by mass.
 (比較例1)
 コロイダルシリカA(日産化学工業社製、スノーテックスXS、シリカの屈折率:約1.45、シリカ微粒子の平均粒子径:4~6nm)と、コロイダルシリカB(日本化学工業社製、シリカドール30S、シリカの屈折率:約1.45、シリカ微粒子の平均粒子径:7~10nm)と、ポリウレタンエマルジョン(三井化学社製タケラックW‐6020:屈折率1.50~1.55及びタケラックWS‐6021:屈折率1.50~1.55)とを混合して、コア用の分散液を調製した。コア用の分散液において、ポリウレタンの固形分が30質量%になるように調整された。
(Comparative Example 1)
Colloidal silica A (Nissan Chemical Industry Co., Ltd., Snowtex XS, silica refractive index: about 1.45, silica fine particle average particle diameter: 4 to 6 nm) and colloidal silica B (Nippon Chemical Industry Co., Ltd., Silica Doll 30S) , Silica refractive index: about 1.45, silica fine particle average particle size: 7-10 nm) and polyurethane emulsion (Mitsui Chemicals Takelac W-6020: Refractive index 1.50-1.55 and Takelac WS-6021) : A refractive index of 1.50 to 1.55) to prepare a core dispersion. In the core dispersion liquid, the solid content of the polyurethane was adjusted to 30% by mass.
 コア用の分散液に架橋剤(日清紡ケミカル社製、カルボジライトE-05)を添加した後、コア用の分散液を80℃の環境で2時間加熱した。これにより、ポリウレタンを架橋させてコアが形成された分散液を得た。架橋剤は、ポリウレタンの固形分100質量部に対して33質量部添加した。次に、コアが形成された分散液と、コロイダルシリカB(日本化学工業社製、シリカドール30S、シリカの屈折率:約1.45、シリカ微粒子の平均粒子径:7~10nm)と、ポリウレタンエマルジョン(三井化学社製タケラックW‐6020:屈折率1.50~1.55及びタケラックWS‐6021:屈折率1.50~1.55)とを混合し、さらに10ppmの青色顔料を添加して、光拡散粒子用の分散液を調製した。光拡散粒子用の分散液において、コアの固形分が10質量%であり、コア以外のポリウレタンの固形分が20質量%となるように、光拡散粒子用の分散液を調製した。光拡散粒子用の分散液をマイクロミストスプレードライヤー(藤崎電機社製、製品名:MDL-050)を用いて噴霧乾燥させ、コアシェル構造を有する比較例1に係る光拡散粒子を得た。比較例1に係る光拡散粒子の平均粒子径(D50)は、5.0μmであった。 After adding a crosslinking agent (Nisshinbo Chemical Co., Ltd. Carbodilite E-05) to the core dispersion, the core dispersion was heated in an environment of 80 ° C. for 2 hours. Thereby, the dispersion liquid in which the polyurethane was crosslinked to form the core was obtained. 33 mass parts of crosslinking agents were added with respect to 100 mass parts of solid content of polyurethane. Next, the core-formed dispersion, colloidal silica B (manufactured by Nippon Chemical Industry Co., Ltd., silica doll 30S, silica refractive index: about 1.45, silica fine particle average particle size: 7 to 10 nm), polyurethane Emulsions (Mitsui Chemicals' Takelac W-6020: Refractive index 1.50 to 1.55 and Takelac WS-6021: Refractive index 1.50 to 1.55) are mixed, and further 10 ppm of blue pigment is added. A dispersion for light diffusing particles was prepared. In the dispersion for light diffusing particles, a dispersion for light diffusing particles was prepared so that the solid content of the core was 10% by mass and the solid content of polyurethane other than the core was 20% by mass. The dispersion liquid for light diffusion particles was spray-dried using a micro mist spray dryer (product name: MDL-050, manufactured by Fujisaki Electric Co., Ltd.) to obtain light diffusion particles according to Comparative Example 1 having a core-shell structure. The average particle diameter (D50) of the light diffusing particles according to Comparative Example 1 was 5.0 μm.
 実施例1に係る光拡散粒子に代えて、比較例1に係る光拡散粒子を使用した以外は、実施例1と同様にして比較例1に係る光拡散透過シートのサンプルを作製した。このサンプルにおける塗膜の厚みは10~17μmであり、サンプルの塗膜における光拡散粒子の含有率は65質量%であった。 A sample of the light diffusing / transmitting sheet according to Comparative Example 1 was produced in the same manner as in Example 1 except that the light diffusing particles according to Comparative Example 1 were used instead of the light diffusing particles according to Example 1. The thickness of the coating film in this sample was 10 to 17 μm, and the content of the light diffusing particles in the coating film of the sample was 65% by mass.
 (比較例2)
 フッ化マグネシウム粒子(関東化学社製、屈折率:1.38、平均粒子径:0.2~0.3μm、円形度の代表値:0.71)の水分散体を、コロイダルシリカA(日産化学工業社製、スノーテックスXS、シリカの屈折率:約1.45、シリカ微粒子の平均粒子径:4~6nm)、コロイダルシリカB(日本化学工業社製、シリカドール30S、シリカの屈折率:約1.45、シリカ微粒子の平均粒子径:7~10nm)、及びポリウレタンエマルジョン(三井化学社製タケラックW‐6020:屈折率1.50~1.55及びタケラックWS‐6021:屈折率1.50~1.55)と混合した。これにより、コア用の分散液が作製された。コア用の分散液において、架橋アクリル樹脂製の微粒子の固形分が8質量%になるように、かつ、ポリウレタンの固形分が50質量%になるように調製した。なお、透過型電子顕微鏡(TEM)を用いて得られた10個のフッ化マグネシウム粒子の画像をNIHが提供する画像処理ソフトウェア(Image J ver.1.48)によって処理して粒子の投影面積及び粒子の投影の周囲長を決定した。そのうえで、式(1)に基づいて各フッ化マグネシウム粒子の円形度を決定した。10個の粒子の円形度の算術平均値をフッ化マグネシウム粒子の円形度の代表値と定めた。
(Comparative Example 2)
An aqueous dispersion of magnesium fluoride particles (manufactured by Kanto Chemical Co., Inc., refractive index: 1.38, average particle size: 0.2 to 0.3 μm, typical value of circularity: 0.71) is colloidal silica A (Nissan) Chemical Industries, Snowtex XS, silica refractive index: about 1.45, silica fine particles average particle diameter: 4-6 nm), colloidal silica B (Nippon Chemical Industry Co., Ltd., silica doll 30S, silica refractive index: About 1.45, average particle size of silica fine particles: 7 to 10 nm), and polyurethane emulsion (Mitsui Chemicals Takelac W-6020: Refractive index 1.50 to 1.55 and Takelac WS-6021: Refractive index 1.50) To 1.55). Thereby, the dispersion liquid for cores was produced. The core dispersion was prepared so that the solid content of the crosslinked acrylic resin fine particles was 8% by mass and the solid content of the polyurethane was 50% by mass. The image of the 10 magnesium fluoride particles obtained using a transmission electron microscope (TEM) was processed by image processing software (Image J ver.1.48) provided by NIH, and the projected area of the particles and the particle The perimeter of the projection was determined. Then, the circularity of each magnesium fluoride particle was determined based on the formula (1). The arithmetic average value of the circularity of 10 particles was determined as the representative value of the circularity of the magnesium fluoride particles.
 コア用の分散液に架橋剤(日清紡ケミカル社製、カルボジライトE-05)を添加した後、コア用の分散液を80℃の環境で2時間加熱した。これにより、ポリウレタンを架橋させてコアが形成された分散液を得た。架橋剤は、ポリウレタンの固形分100質量部に対して20質量部添加した。次に、コアが形成された分散液と、コロイダルシリカB(日本化学工業社製、シリカドール30S、シリカの屈折率:約1.45、シリカ微粒子の平均粒子径:7~10nm)と、ポリウレタンエマルジョン(三井化学社製タケラックW‐6020:屈折率1.50~1.55及びタケラックWS‐6021:屈折率1.50~1.55)とを混合し、さらに10ppmの青色顔料を添加して、光拡散粒子用の分散液を調製した。光拡散粒子用の分散液において、コアの固形分が30質量%であり、コア以外のポリウレタンの固形分が20質量%となるように、光拡散粒子用の分散液を調製した。光拡散粒子用の分散液をマイクロミストスプレードライヤー(藤崎電機社製、製品名:MDL-050)を用いて噴霧乾燥させ、コアシェル構造を有する比較例2に係る光拡散粒子を得た。比較例2に係る光拡散粒子の平均粒子径(D50)は、5.2μmであった。 After adding a crosslinking agent (Nisshinbo Chemical Co., Ltd. Carbodilite E-05) to the core dispersion, the core dispersion was heated in an environment of 80 ° C. for 2 hours. Thereby, the dispersion liquid in which the polyurethane was crosslinked to form the core was obtained. 20 mass parts of crosslinking agents were added with respect to 100 mass parts of solid content of polyurethane. Next, the core-formed dispersion, colloidal silica B (manufactured by Nippon Chemical Industry Co., Ltd., silica doll 30S, silica refractive index: about 1.45, silica fine particle average particle size: 7 to 10 nm), polyurethane Emulsions (Mitsui Chemicals' Takelac W-6020: Refractive index 1.50 to 1.55 and Takelac WS-6021: Refractive index 1.50 to 1.55) are mixed, and further 10 ppm of blue pigment is added. A dispersion for light diffusing particles was prepared. In the dispersion for light diffusing particles, the dispersion for light diffusing particles was prepared so that the solid content of the core was 30% by mass and the solid content of polyurethane other than the core was 20% by mass. The dispersion liquid for light diffusion particles was spray-dried using a micro mist spray dryer (product name: MDL-050, manufactured by Fujisaki Electric Co., Ltd.) to obtain light diffusion particles according to Comparative Example 2 having a core-shell structure. The average particle diameter (D50) of the light diffusing particles according to Comparative Example 2 was 5.2 μm.
 実施例1に係る光拡散粒子に代えて、比較例2に係る光拡散粒子を使用した以外は、実施例1と同様にして比較例2に係る光拡散透過シートのサンプルを作製した。このサンプルにおける塗膜の厚みは10~17μmであり、サンプルの塗膜における光拡散粒子の含有率は65質量%であった。 A sample of the light diffusing / transmitting sheet according to Comparative Example 2 was prepared in the same manner as in Example 1 except that the light diffusing particles according to Comparative Example 2 were used instead of the light diffusing particles according to Example 1. The thickness of the coating film in this sample was 10 to 17 μm, and the content of the light diffusing particles in the coating film of the sample was 65% by mass.
 実施例1及び実施例2に係るサンプルは、屈折率が1.38であるフッ化マグネシウム粒子をコアに有する比較例2に係る光拡散粒子が分散しているサンプルと同等の高い輝度特性を有していた。 The samples according to Example 1 and Example 2 have the same high luminance characteristics as the sample in which the light diffusion particles according to Comparative Example 2 having magnesium fluoride particles having a refractive index of 1.38 in the core are dispersed. Was.
 実施例1及び実施例2に係るサンプルは、比較例1及び2と比べて、接触する他の部材を傷付けにくい特性を有していた。実施例1及び実施例2に係る光拡散粒子が円形度の高い架橋アクリル樹脂製の微粒子を含むコアを有することにより、実施例1及び実施例2に係るサンプルがこのような特性を有していたと考えられる。比較例1に係る光拡散粒子において、コアに0.1μm~4μmの粒子径を有する粒子が含まれないことによりいびつな形状のコアが形成されやすく、光拡散粒子の形状もいびつになりやすかったと考えられる。このため、比較例1に係るサンプルは、実施例1及び実施例2に係るサンプルに比べて、接触する他の部材を傷付けやすかったと考えられる。比較例2に係る光拡散粒子において、コアに含まれるフッ化マグネシウム粒子は円形度が低く角ばった形状を有していた。このため、比較例2に係るサンプルは、実施例1及び実施例2に係るサンプルに比べて、接触する他の部材を傷付けやすかったと考えられる。 The samples according to Example 1 and Example 2 were more difficult to damage other members in contact than those of Comparative Examples 1 and 2. The samples according to Example 1 and Example 2 have such characteristics because the light diffusion particles according to Example 1 and Example 2 have a core containing fine particles made of a crosslinked acrylic resin having a high degree of circularity. It is thought. In the light diffusing particles according to Comparative Example 1, since the core does not contain particles having a particle diameter of 0.1 μm to 4 μm, an irregular core is easily formed, and the shape of the light diffusing particles is likely to be irregular. Conceivable. For this reason, it is thought that the sample which concerns on the comparative example 1 was easy to damage other members which contact compared with the sample which concerns on Example 1 and Example 2. In the light diffusing particles according to Comparative Example 2, the magnesium fluoride particles contained in the core had a low circularity and an angular shape. For this reason, it is thought that the sample which concerns on the comparative example 2 was easy to damage other members which contact compared with the sample which concerns on Example 1 and Example 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (9)

  1.  第一バインダーと、前記第一バインダーの屈折率よりも低い屈折率、0.85以上の円形度、及び0.1μm~4μmの粒子径を有するコア微粒子とを含み、前記第一バインダーが前記コア微粒子の外面に接触しているコアと、
     前記コアの外面に接触して前記コアを覆うシェルと、を備えた、
     光拡散粒子。
    A first binder, and core fine particles having a refractive index lower than the refractive index of the first binder, a circularity of 0.85 or more, and a particle diameter of 0.1 μm to 4 μm, wherein the first binder is the core A core in contact with the outer surface of the fine particles;
    A shell that contacts the outer surface of the core and covers the core;
    Light diffusing particles.
  2.  前記コア微粒子は、高分子でできている、請求項1に記載の光拡散粒子。 The light diffusion particle according to claim 1, wherein the core fine particle is made of a polymer.
  3.  前記高分子は、アクリル樹脂、シリコーン樹脂、又はフッ素樹脂である、請求項1又は2に記載の光拡散粒子。 The light diffusing particles according to claim 1 or 2, wherein the polymer is an acrylic resin, a silicone resin, or a fluororesin.
  4.  前記第一バインダーは、アクリル樹脂、ウレタン樹脂、及びナイロンからなる群から選ばれる少なくとも1種の高分子でできている、請求項1~3のいずれか1項に記載の光拡散粒子。 The light diffusing particle according to any one of claims 1 to 3, wherein the first binder is made of at least one polymer selected from the group consisting of an acrylic resin, a urethane resin, and nylon.
  5.  前記シェルは、4nm~20nmの粒子径を有するシェル微粒子と、前記シェル微粒子の外面に接触して前記シェル微粒子を覆う第二バインダーとによって形成されている、請求項1~4のいずれか1項に記載の光拡散粒子。 The shell is formed by shell fine particles having a particle diameter of 4 nm to 20 nm and a second binder that covers the shell fine particles in contact with an outer surface of the shell fine particles. The light diffusing particles described in 1.
  6.  前記第二バインダーは、アクリル樹脂、ウレタン樹脂、及びナイロンからなる群から選ばれる少なくとも1種の高分子でできている、請求項5に記載の光拡散粒子。 The light diffusing particle according to claim 5, wherein the second binder is made of at least one polymer selected from the group consisting of acrylic resin, urethane resin, and nylon.
  7.  4μm~10μmの平均粒子径を有する、請求項1~6のいずれか1項に記載の光拡散粒子。 The light diffusing particle according to any one of claims 1 to 6, which has an average particle diameter of 4 to 10 袖 m.
  8.  母材と、
     前記母材に分散している請求項1~7のいずれか1項に記載の光拡散粒子と、を備えた、
     光拡散透過シート。
    With the base material,
    The light diffusing particles according to any one of claims 1 to 7, which are dispersed in the base material.
    Light diffusion transmission sheet.
  9.  コアシェル構造を有する光拡散粒子を製造する方法であって、
     第一バインダーの原料と、前記第一バインダーの屈折率よりも低い屈折率、0.85以上の円形度、及び0.1μm~4μmの粒子径を有するコア微粒子とが分散している第一分散液を調製し、
     前記第一分散液に前記第一バインダーの原料を架橋させるための架橋剤を添加して前記第一バインダーの原料を架橋させてコアを形成し、
     前記コアと、シェルの原料とが分散している第二分散液を調製し、
     前記第二分散液を噴霧乾燥する、
     方法。
    A method for producing light diffusing particles having a core-shell structure,
    A first dispersion in which a raw material of the first binder and core fine particles having a refractive index lower than the refractive index of the first binder, a circularity of 0.85 or more, and a particle diameter of 0.1 μm to 4 μm are dispersed. Prepare the liquid,
    A core is formed by adding a crosslinking agent for crosslinking the raw material of the first binder to the first dispersion to crosslink the raw material of the first binder,
    Preparing a second dispersion in which the core and shell material are dispersed;
    Spray drying the second dispersion;
    Method.
PCT/JP2017/041171 2017-01-31 2017-11-16 Light-diffusing particles, light-diffusing and -transmitting sheet, and method for producing light-diffusing particles WO2018142722A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018565952A JP6793211B2 (en) 2017-01-31 2017-11-16 Methods for Producing Light Diffusing Particles, Light Diffusing Transmission Sheets, and Light Diffusing Particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017016071 2017-01-31
JP2017-016071 2017-07-25

Publications (1)

Publication Number Publication Date
WO2018142722A1 true WO2018142722A1 (en) 2018-08-09

Family

ID=63040473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041171 WO2018142722A1 (en) 2017-01-31 2017-11-16 Light-diffusing particles, light-diffusing and -transmitting sheet, and method for producing light-diffusing particles

Country Status (2)

Country Link
JP (1) JP6793211B2 (en)
WO (1) WO2018142722A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022075292A1 (en) * 2020-10-05 2022-04-14 シャープ株式会社 Wavelength conversion element and light emission system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11237506A (en) * 1998-02-20 1999-08-31 Nippon Shokubai Co Ltd Light-selective transmissible film
JP2001233611A (en) * 2000-02-24 2001-08-28 Catalysts & Chem Ind Co Ltd Silica-based microparticle, method for producing dispersion with the same, and base material with coating film
JP2003107217A (en) * 2001-09-28 2003-04-09 Fuji Photo Film Co Ltd Light diffusion plate and its manufacturing method
JP2006084927A (en) * 2004-09-17 2006-03-30 Gantsu Kasei Kk Light diffusing agent and its manufacturing method
JP2008291253A (en) * 2007-04-27 2008-12-04 Daicel Chem Ind Ltd Composite resin particle containing inorganic particle
JP2009080256A (en) * 2007-09-26 2009-04-16 Dainippon Printing Co Ltd Antiglare film
JP2010078886A (en) * 2008-09-25 2010-04-08 Fujifilm Corp Anti-glare film, anti-reflection film, polarizing plate, and image display device
JP2015128762A (en) * 2013-12-06 2015-07-16 花王株式会社 Production method of microcapsule
JP2016532162A (en) * 2013-09-16 2016-10-13 コエルクス・エッセ・エッレ・エッレCoeLux S.r.l. COMPOSITE MATERIAL COMPRISING POLYMER MATRIX AND NANOPARTICLES, PROCESS FOR PRODUCING THE SAME AND USE
WO2017047055A1 (en) * 2015-09-15 2017-03-23 日本板硝子株式会社 Light-diffusing and -transmitting sheet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4681791B2 (en) * 2002-08-22 2011-05-11 恵和株式会社 Reflective sheet and backlight unit using the same
JP2010527045A (en) * 2007-05-16 2010-08-05 エルジー・ケム・リミテッド Anti-glare film composition and anti-glare film produced using the same
JP2009251190A (en) * 2008-04-03 2009-10-29 Fujifilm Corp Optical film, polarizing plate and image display apparatus
JP5824678B2 (en) * 2011-04-05 2015-11-25 パナソニックIpマネジメント株式会社 Organic electroluminescence device
JP6009241B2 (en) * 2012-06-25 2016-10-19 早川ゴム株式会社 Method for producing core-shell fine particles
US10563097B2 (en) * 2015-03-18 2020-02-18 Coelux S.R.L. Composite system comprising a matrix and scattering elements, process for preparing it and use thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11237506A (en) * 1998-02-20 1999-08-31 Nippon Shokubai Co Ltd Light-selective transmissible film
JP2001233611A (en) * 2000-02-24 2001-08-28 Catalysts & Chem Ind Co Ltd Silica-based microparticle, method for producing dispersion with the same, and base material with coating film
JP2003107217A (en) * 2001-09-28 2003-04-09 Fuji Photo Film Co Ltd Light diffusion plate and its manufacturing method
JP2006084927A (en) * 2004-09-17 2006-03-30 Gantsu Kasei Kk Light diffusing agent and its manufacturing method
JP2008291253A (en) * 2007-04-27 2008-12-04 Daicel Chem Ind Ltd Composite resin particle containing inorganic particle
JP2009080256A (en) * 2007-09-26 2009-04-16 Dainippon Printing Co Ltd Antiglare film
JP2010078886A (en) * 2008-09-25 2010-04-08 Fujifilm Corp Anti-glare film, anti-reflection film, polarizing plate, and image display device
JP2016532162A (en) * 2013-09-16 2016-10-13 コエルクス・エッセ・エッレ・エッレCoeLux S.r.l. COMPOSITE MATERIAL COMPRISING POLYMER MATRIX AND NANOPARTICLES, PROCESS FOR PRODUCING THE SAME AND USE
JP2015128762A (en) * 2013-12-06 2015-07-16 花王株式会社 Production method of microcapsule
WO2017047055A1 (en) * 2015-09-15 2017-03-23 日本板硝子株式会社 Light-diffusing and -transmitting sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022075292A1 (en) * 2020-10-05 2022-04-14 シャープ株式会社 Wavelength conversion element and light emission system

Also Published As

Publication number Publication date
JP6793211B2 (en) 2020-12-02
JPWO2018142722A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
KR101795119B1 (en) Anti-glare sheet for image display device
TWI437274B (en) Anti-glare film, method for manufacturing the same, and display device using the same
KR101934607B1 (en) Anti-glare sheet for image display device
WO2016203915A1 (en) Transparent screen and image projection system provided with same
JPWO2016104112A1 (en) Sheet-like transparent molded body, transparent screen including the same, and image projection apparatus including the same
TWI460475B (en) Optical sheet
JP6414173B2 (en) Antiglare antireflection hard coat film, image display device, and method for producing antiglare antireflection hard coat film
JP2004139013A (en) Antiglare film
WO2015146143A1 (en) Light diffusing and transmitting sheet
KR20130041344A (en) Light-diffusing element and polarizing plate provided therewith
KR101858305B1 (en) Antiglare sheet for image display device, manufacturing method thereof, method of improving black tint and image sharpness of an image display device using said antiglare sheet and suited for use with both moving images and still images
KR20160031033A (en) Light-diffusing element, polarizer having light-diffusing element, and liquid crystal display device having same
JP2007249038A (en) Optical element, polarizing plate using the same, and liquid crystal display
WO2011122379A1 (en) Light-diffusing film for led lamp
WO2012036273A1 (en) Methods for manufacturing light-diffusing element and polarizing plate with light-diffusing element, and light-diffusing element and polarizing plate with light-diffusing element obtained by same methods
TWI468739B (en) Optical sheet
JP6475849B2 (en) Light diffusing and transmitting sheet and method for producing composite particles
JP2010211010A (en) Light diffusion film, and backlight unit and liquid crystal display device using the same
JP6793211B2 (en) Methods for Producing Light Diffusing Particles, Light Diffusing Transmission Sheets, and Light Diffusing Particles
WO2012036275A1 (en) Optical diffusion element
JP5488430B2 (en) Method for improving blackness and cutout of liquid crystal display device suitable for mixed use of moving image and still image
TW201814005A (en) Light diffusion transmission sheet capable of improving illuminance properties of the light diffusion transmission sheet by providing high illuminance composite particles
JP6793210B2 (en) Methods for Producing Light Diffusing Particles, Light Diffusing Transmission Sheets, and Light Diffusing Particles
WO2017047056A1 (en) Light-diffusing and -transmitting sheet
TW409196B (en) Transmission-type screen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895106

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565952

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895106

Country of ref document: EP

Kind code of ref document: A1