WO2018142681A1 - Indoor unit of air conditioner and air conditioner provided with same - Google Patents

Indoor unit of air conditioner and air conditioner provided with same Download PDF

Info

Publication number
WO2018142681A1
WO2018142681A1 PCT/JP2017/037348 JP2017037348W WO2018142681A1 WO 2018142681 A1 WO2018142681 A1 WO 2018142681A1 JP 2017037348 W JP2017037348 W JP 2017037348W WO 2018142681 A1 WO2018142681 A1 WO 2018142681A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
air conditioner
flat
angle
indoor unit
Prior art date
Application number
PCT/JP2017/037348
Other languages
French (fr)
Japanese (ja)
Inventor
匠弥 平田
高藤 亮一
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Publication of WO2018142681A1 publication Critical patent/WO2018142681A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Definitions

  • the present invention relates to an indoor unit of an air conditioner and an air conditioner including the same.
  • Patent Document 1 in addition to the main heat exchanger, a sub heat exchanger having a shape different from that of the main heat exchanger is disposed, and the air heat pipe of the sub heat exchanger has a step pitch shorter than that of the main heat exchanger. A harmonic machine is described.
  • This invention solves the said conventional subject, and provides the indoor unit of the air conditioner which can perform heat exchange with high efficiency, and an air conditioner provided with the same.
  • the present invention provides a heat exchanger having a plurality of fins and a plurality of flat heat transfer tubes having a flat cross-sectional shape penetrating the plurality of fins, and air exchanged in the heat exchanger outside the casing
  • the plurality of flat heat transfer tubes are arranged in a plurality of rows side by side in the longitudinal direction of the fin, and are arranged on the windward flat tube arranged on the air introduction side and on the blower side. And the angle of the leeward flat tube and the angle of the leeward flat tube are at least partially different from each other.
  • Drawing 1 is a lineblock diagram showing the refrigerant circuit of the air harmony machine concerning a 1st embodiment.
  • an air conditioner 100 includes an outdoor unit 1 installed outside (non-air-conditioned space) on the heat source side, and an indoor unit 2 (air conditioner) installed indoors (air-conditioned space) on the use side.
  • the outdoor unit 1 and the indoor unit 2 are connected by the refrigerant pipes 3 and 3.
  • the outdoor unit 1 includes a compressor 4, a four-way valve 5, an outdoor heat exchanger 6, an outdoor fan 7, and an expansion valve 9.
  • the outdoor fan 7 is usually a propeller fan.
  • the indoor unit 2 includes an indoor heat exchanger 8 (8A, 8B, 8C, 8D, 8E) and a blower 10 including a cross-flow fan.
  • the refrigerant in the gas state compressed by the compressor 4 flows to the indoor heat exchanger 8 through the four-way valve 5 and exchanges heat with the indoor air by the air flow generated by the blower 10 so that the refrigerant is gas. It condenses from the state and changes to a liquid state.
  • the refrigerant in the liquid state flows to the outdoor heat exchanger 6 through the expansion valve 9, absorbs the heat of the outdoor air by the air flow generated by the outdoor fan 7, and performs heat exchange, so that the refrigerant is out of the liquid state. It evaporates into a gas state and flows to the compressor 4.
  • switching the four-way valve 5 reverses the direction in which the refrigerant flows as compared to the heating operation.
  • the refrigerant in the gas state compressed by the compressor 4 flows into the outdoor heat exchanger 6 through the four-way valve 5, releases the heat to the outdoor air by the air flow generated by the outdoor fan 7, and performs heat exchange. It condenses and changes to a liquid state.
  • the refrigerant in the liquid state flows to the indoor heat exchanger 8 through the expansion valve 9, absorbs heat from the indoor air with the air flow generated by the blower 10, and evaporates to become a gas state and flows to the compressor 4. .
  • the air conditioner 100 including the indoor unit 2 of the present embodiment is equipped with both the heating operation mode and the cooling operation mode, the one equipped only with the cooling operation mode, the heating operation mode and the cooling operation mode.
  • a dehumidifying operation mode may be installed.
  • FIG. 2 is a cross-sectional view showing the air conditioner according to the first embodiment.
  • the indoor unit 2 includes an indoor heat exchanger 8 ⁇ / b> A and a blower 10.
  • the indoor unit 2 includes a housing 11 molded into a horizontally long box shape with a synthetic resin, and houses the indoor heat exchanger 8A and the blower 10.
  • the blower 10 is configured by, for example, a once-through fan, and includes a plurality of fan blades 10a and an annular support plate 10b.
  • the fan blades 10a are arranged on the support plate 10b at equal intervals in the circumferential direction. ing.
  • the blower 10 has a substantially cylindrical shape, and extends along the indoor heat exchanger 8A (in the direction perpendicular to the plane of FIG. 2).
  • the blower 10 has one end in the axial direction supported rotatably on the housing 11 side, and the other end in the axial direction is connected to a motor (not shown).
  • the housing 11 includes air suction ports 11a and 11b that suck indoor air into the upper surface and the front surface, and an air outlet 11c that blows out air whose temperature and humidity are harmonized by heat exchange on the lower surface.
  • Filters 12a and 12b for purifying indoor air and taking it into the housing 11 are attached to the air suction ports 11a and 11b.
  • a left and right wind direction plate (not shown) for deflecting the left and right direction of the air flow and an up and down wind direction plate 13 for deflecting the air flow in the vertical direction are attached to the air outlet 11c.
  • the housing 11 includes a back casing 14 and a front casing 15.
  • a front panel 16 is rotatably attached to the front surface of the housing 11 so as to open and close the air suction port 11b by a driving force of a motor (not shown).
  • the back casing 14 is located on the back side of the blower 10, is formed continuously with the air outlet 11 c, and has a curved surface 14 a as an air flow path wall surface.
  • the curved surface 14 a is disposed so that the concave surface faces the front, and is curved so as to gradually approach the blower 10 from the edge of the air outlet 11 c.
  • the back casing 14 has a back nose portion 14b (also referred to as a rear guider) protruding between the blower 10 and a rear heat exchanger 23 described later.
  • the surface 14b1 on the blower 10 side of the back nose portion 14b extends so as to be a smooth continuous surface without a step difference from the curved surface 14a.
  • the front end of the back nose portion 14 b extends to the extent that it is located at the approximate center in the longitudinal direction of the rear heat exchanger 23.
  • the surface 14b2 on the opposite side to the blower 10 of the back nose portion 14b is formed substantially parallel to the rear heat exchanger 23.
  • the curved surface 14a and the back nose portion 14b of the back casing 14 extend along the axial direction (perpendicular to the paper surface) of the blower 10 so as to face from one end to the other end of the blower 10. Yes.
  • the back casing 14 has a channel wall surface 14c extending upward in the vertical direction behind the back nose portion 14b.
  • the back casing 14 is formed with a concave portion 14d into which a part (about the lower half) of the rear heat exchanger 23 is inserted between the back nose portion 14b and the channel wall surface 14c.
  • the front casing 15 is positioned substantially in front of the blower 10 and has a wall surface 15a extending toward the blower 10 continuously to the air outlet 11c in the vicinity below the front lower heat exchanger 22.
  • a front nose portion 15b also referred to as a stabilizer
  • the front nose portion 15b extends from the one end of the blower 10 to the other end along the axial direction (perpendicular to the paper surface) of the blower 10.
  • the indoor heat exchanger 8A is disposed on the upstream side of the blower 10 between the blower 10 and the air suction ports 11a and 11b.
  • the indoor heat exchanger 8A includes a front upper heat exchanger 21A located on the front side from the approximate center in the front-rear direction of the housing 11, and a front lower heat exchanger 22 located on the lower side of the front upper heat exchanger 21A.
  • the rear heat exchanger 23 is located on the rear side from the approximate center in the front-rear direction of the housing 11.
  • the front upper heat exchanger 21A and the rear heat exchanger 23 are combined above the blower 10 and arranged in an inverted V shape in a side view. Further, the front upper heat exchanger 21A and the front lower heat exchanger 22 are combined in front of the blower 10 and configured in a boomerang shape (in a square shape) in a side view.
  • the front upper heat exchanger 21A includes, for example, fins 31 (plural fins) configured by arranging a plurality of aluminum or aluminum alloy thin plates in the thickness direction, and aluminum having a flat cross-sectional shape that penetrates the fins 31. And a flat tube group 32 (a plurality of flat heat transfer tubes) formed of an aluminum alloy or the like.
  • fins 31 plural fins
  • aluminum having a flat cross-sectional shape that penetrates the fins 31.
  • a flat tube group 32 a plurality of flat heat transfer tubes formed of an aluminum alloy or the like.
  • the fin 31 has an elongated shape from the upper end 31a toward the lower end 31b in a side view from the direction of the rotation axis (rotation center O) of the blower 10.
  • the front end 31c and the rear end 31d of the fin 31 are inclined forward from the upper end 31a to the lower end 31b, and the front end 31c and the rear end 31d are parallel to each other.
  • the upper end 31a and the lower end 31b of the fin 31 extend in the horizontal direction, and the upper end 31a and the lower end 31b are parallel to each other.
  • the flat tube group 32 is configured in two rows (a plurality of rows) from the outside of the indoor heat exchanger 8A toward the blower 10 (in the air flow direction). That is, the flat tube group 32 has an upwind flat tube 32A disposed on the air introduction side (air introduction side) and a leeward flat tube 32B disposed on the blower 10 side.
  • the windward flat tube 32 ⁇ / b> A is configured by a plurality of flat heat transfer tubes 32 a arranged along the longitudinal direction s ⁇ b> 1 of the fins 31.
  • the leeward side flat tube 32 ⁇ / b> B is configured by a plurality of flat heat transfer tubes 32 b and 32 c arranged along the longitudinal direction s ⁇ b> 1 of the fin 31.
  • the flat heat transfer tube 32c is located on the upper end side in the direction in which the flat heat transfer tubes 32b and 32c are arranged.
  • the flat heat transfer tube 32a of the windward flat tube 32A and the flat heat transfer tubes 32b and 32c of the leeward flat tube 32B are respectively opposed to each other between one end and the other end of a flat portion (straight portion) and a flat portion (straight portion). And a bending portion that connects the two.
  • the flat heat transfer tubes 32a, 32b, and 32c are partitioned into a plurality of refrigerant flow paths by a plurality of partition walls that extend from the inner wall surface of one flat portion toward the inner wall surface of the other flat portion.
  • the flat heat transfer tubes 32 a are located outside the front upper heat exchanger 21 ⁇ / b> A and are arranged along the longitudinal direction s ⁇ b> 1 of the fins 31. Moreover, the space
  • the flat heat transfer tubes 32 b are located on the blower 10 side of the front upper heat exchanger 21 ⁇ / b> A and are arranged side by side along the longitudinal direction s ⁇ b> 1 of the fins 31. Moreover, the space
  • the flat heat transfer tube 32c is different from the flat heat transfer tube 32a in the direction of the major axis direction x2.
  • the angle of the flat heat transfer tube 32a of the windward flat tube 32A in the front upper heat exchanger 21A is different from the angle of the flat heat transfer tube 32c of the leeward flat tube 32B.
  • the angle ⁇ 10 of the flat heat transfer tube 32a of the windward flat tube 32A is larger than the angle ⁇ 20 of the flat heat transfer tube 32c of the leeward flat tube 32B. Is set.
  • the angle ⁇ 10 means an angle formed by the gravity direction G and the longitudinal direction x1 of the flat heat transfer tube 32a.
  • the angle ⁇ 20 means an angle formed by the gravity direction G and the longitudinal direction x2 of the flat heat transfer tube 32c. Specifically, the angle ⁇ 10 of the windward flat tube 32A is set to 45 degrees or more, and the angle ⁇ 20 of the flat heat transfer tube 32c of the leeward flat tube 32B is set to less than 45 degrees.
  • the direction of the flat heat transfer tube 32c (the direction of the long axis direction x2) is substantially parallel to the flow direction of the wind introduced from above the front upper heat exchanger 21A (the upper end 31a of the fin 31) (see arrow A1). It arrange
  • the air flow direction can pass through the front upper heat exchanger 21A without bending significantly.
  • the flat heat transfer tubes 32a, 32b, and 32c are inserted into flat holes formed in the fins 31 and joined to the fins 31 by brazing. Further, the flat heat transfer tubes 32a, 32b, and 32c may be mechanically expanded from the inside and the fins 31 may be caulked to fix the flat heat transfer tubes 32a, 32b, and 32c and the fins 31.
  • the fin 31 may have a U-shaped cutout at the front end 31c or the rear end 31d in the longitudinal direction s1, and the flat heat transfer tubes 32a, 32b, 32c may be inserted and joined by brazing.
  • the front lower heat exchanger 22 includes, for example, fins 33 and flat tube groups 34 made of the same material as the front upper heat exchanger 21A.
  • the fin 33 has an elongated shape from the upper end 33a toward the lower end 33b in a side view from the direction of the rotation axis (rotation center O) of the blower 10.
  • the front end 33c and the rear end 33d of the fin 33 are inclined rearward from the upper end 33a toward the lower end 33b, and the front end 33c and the rear end 33d are parallel to each other.
  • the upper end 33a and the lower end 33b of the fin 33 extend in the horizontal direction, and the upper end 33a and the lower end 33b are parallel to each other.
  • the lower end 31b of the fin 31 and the upper end 33a of the fin 33 are combined so as to be in linear contact with each other.
  • the flat tube group 34 is configured in two rows (a plurality of rows) by a plurality of flat heat transfer tubes 34a and 34b from the outside of the indoor heat exchanger 8A toward the blower 10 (toward the air flow direction). Yes. That is, the flat tube group 34 has an upwind flat tube 34A disposed on the air introduction side (air introduction side) and a leeward flat tube 34B disposed on the blower 10 side.
  • the windward flat tube 34 ⁇ / b> A includes a plurality of flat heat transfer tubes 34 a arranged along the longitudinal direction s ⁇ b> 2 of the fin 31.
  • the leeward side flat tube 34 ⁇ / b> B is configured by a plurality of flat heat transfer tubes 34 b disposed along the longitudinal direction s ⁇ b> 2 of the fin 31.
  • the flat heat transfer tubes 34a, 34b are configured in the same manner as the flat heat transfer tubes 32a, 32b, 32c described above.
  • the flat heat transfer tubes 34 a are located in the outer row of the front lower heat exchanger 22 and are arranged along the longitudinal direction s ⁇ b> 2 of the fins 33. Moreover, the space
  • the flat heat transfer tube 34a faces the direction in which the long axis direction x3 of the flat heat transfer tube 34a is orthogonal to the longitudinal direction s2.
  • the flat heat transfer tubes 34 b are located on the blower 10 side of the front lower heat exchanger 22 and are arranged side by side along the longitudinal direction s ⁇ b> 2 of the fins 33. Moreover, the space
  • the flat heat transfer tube 34b faces the direction in which the long axis direction x3 of the flat heat transfer tube 34b is orthogonal to the longitudinal direction s2.
  • the rear heat exchanger 23 is configured by, for example, fins 35 and flat tube groups 36 made of the same material as the front upper heat exchanger 21 ⁇ / b> A and the front lower heat exchanger 22. That is, the flat tube group 36 has an upwind flat tube 36A disposed on the air introduction side (air introduction side) and a leeward flat tube 36B disposed on the blower 10 side.
  • the windward flat tube 36 ⁇ / b> A is configured by a plurality of flat heat transfer tubes 36 a arranged along the longitudinal direction s ⁇ b> 3 of the fin 31.
  • the leeward side flat tube 36 ⁇ / b> B includes a plurality of flat heat transfer tubes 36 b disposed along the longitudinal direction s ⁇ b> 3 of the fin 31.
  • the flat heat transfer tubes 36a, 36b are configured in the same manner as the flat heat transfer tubes 32a, 32b, 32c described above.
  • the fin 35 has an elongated shape from the upper end 35a toward the lower end 35b in a side view from the direction of the rotation axis (rotation center O) of the blower 10.
  • the front end 35c and the rear end 35d of the fin 35 are inclined rearward from the upper end 35a toward the lower end 35b, and the front end 35c and the rear end 35d are parallel to each other.
  • the flat tube group 36 is configured in two rows (a plurality of rows) by a plurality of flat heat transfer tubes 36a and 36b from the outside of the indoor heat exchanger 8A toward the blower 10 (toward the air flow direction). Yes.
  • the flat heat transfer tubes 36 a are located outside the rear heat exchanger 23 and are arranged side by side along the longitudinal direction s 3 of the fins 35. Moreover, the space
  • the flat heat transfer tube 36a faces the direction in which the long axis direction x4 of the flat heat transfer tube 36a is orthogonal to the longitudinal direction s3.
  • the flat heat transfer tubes 36 b are located on the blower 10 side of the rear heat exchanger 23 and are arranged side by side along the longitudinal direction s 3 of the fins 35. Moreover, the space
  • the upper end 35a of the rear heat exchanger 23 and the upper end 31a of the front upper heat exchanger 21A are parallel to each other, and both are arranged at the same height position.
  • the indoor unit 2 configured as described above, when the blower 10 rotates in a state where the front panel 16 is opened, indoor air is introduced from the air suction ports 11a and 11b, and the filters 12a and 12b and the indoor heat exchanger are introduced. 8A passes through the blower 10 and is blown out from the air outlet 11c.
  • indoor air is sucked from above at the upper air suction port 11a.
  • the indoor air sucked from the air suction port 11a is sucked from the front of the front upper heat exchanger 21A, passes through the front upper heat exchanger 21A, and passes through the room air and the flat heat transfer tubes 32a, 32b, 32c.
  • Heat exchange with the The indoor air sucked from the air suction port 11a is sucked from the front of the front lower heat exchanger 22 and passes through the front lower heat exchanger 22, so that the refrigerant passes through the room air and the flat heat transfer tubes 34a and 34b.
  • the room air sucked from the air suction port 11b is sucked from the front of the front upper heat exchanger 21A and passes through the front upper heat exchanger 21A, thereby passing through the room air and the flat heat transfer tubes 32a, 32b, and 32c. Heat exchange is performed with the passing refrigerant.
  • the indoor air sucked from the air suction port 11b is sucked from the front of the front lower heat exchanger 22 and passes through the front lower heat exchanger 22 so that the refrigerant passes through the room air and the flat heat transfer tubes 34a and 34b. Heat exchange with the
  • FIG. 3 is a cross-sectional view showing an air conditioner according to Comparative Example 1.
  • FIG. 3 collectively shows comparative examples for the first embodiment, the third embodiment, the fourth embodiment, and the fifth embodiment.
  • white arrows A200 to A220 are comparative examples corresponding to the first embodiment
  • arrows A230 to A260 are comparative examples corresponding to the third embodiment
  • arrow A270 corresponds to the fourth embodiment.
  • the arrow A280 is a comparative example corresponding to the fifth embodiment.
  • the flat heat transfer tubes 32b have the same spacing and orientation as the flat heat transfer tubes 32b in the first embodiment.
  • Other configurations are the same as those of the first embodiment.
  • the indoor air sucked from above the front upper heat exchanger 21 is indicated by the white arrow A210.
  • the flow greatly changes in direction so as to pass between the flat heat transfer tube 32b and the flat heat transfer tube 32b.
  • the indoor air which flowed out from the front side upper heat exchanger 21 changes direction to the air blower 10 side, as shown by the white arrow A220.
  • the indoor heat exchanger 200 is often not a plate shape but a curved or bent shape due to restrictions on the shape of the indoor unit.
  • the flat heat transfer tubes are often arranged in parallel with each other at an angle so as to face the rotation center O of the cross-flow fan (blower 10).
  • the air flow path (see arrow A220) from the indoor heat exchanger 200 to the once-through fan (blower 10) does not change greatly, but the air entering the indoor heat exchanger 200 from the outside of the indoor heat exchanger 200
  • the ventilation flow path of this type has a large angle depending on the part, and this increases the ventilation resistance in the indoor heat exchanger 200.
  • a dead water region region P surrounded by ⁇ in FIG. 3 in which air stagnates occurs in a part of the flat heat transfer tube 32b, which may reduce the heat exchange efficiency.
  • the flat heat transfer tubes 32b are flattened so as to reduce the airflow resistance as compared with the case where they are arranged as flat heat transfer tubes 32b.
  • the direction of the heat transfer tubes 32c and 32c is changed by rotating with respect to the flat heat transfer tube 32b. That is, when the flow direction of the air in front of the front upper heat exchanger 21A is the arrow A1 (similar to A200), the flow direction of the air flowing between the flat heat transfer tubes 32c and 32c is the arrow A2, and the front upper heat exchanger After exiting 21A, it becomes arrow A3.
  • the direction of the flat heat transfer tubes 32c and 32c is changed so that the flow direction of the air passing through the front upper heat exchanger 21A is substantially along the air flow in front of the front upper heat exchanger 21A.
  • the heat exchange efficiency in the front upper heat exchanger 21A is improved by changing the orientation of the flat heat transfer tubes 32c and 32c, which are places where the ventilation resistance is increased as it is, so that the ventilation resistance is reduced.
  • the indoor unit 2 with improved performance of the indoor heat exchanger 8A can be realized.
  • the indoor unit 2 of the air conditioner has the fins 31, 33, 35 and the plurality of flat heat transfer tubes 32a, 32b having a flat cross-sectional shape penetrating the fins 31, 33, 35. , 32c, 34a, 34b, 36a, 36b, and an air blower 10 for discharging the air heat-exchanged in the indoor heat exchanger 8A to the outside of the casing 11.
  • the plurality of flat heat transfer tubes 32a, 32b, and 32c are arranged in a plurality of rows side by side in the longitudinal direction s1 of the fin 31, and are arranged on the windward flat tube 32A and the blower 10 side arranged on the air introduction side.
  • the angle ⁇ 10 of the windward flat tube 32A (flat heat transfer tube 32a) is different from the angle ⁇ 20 of a portion of the leeward flat tube 32B (flat heat transfer tube 32c). According to this, it becomes possible to reduce the flow resistance of air from above the indoor heat exchanger 8A (see arrow A2 in FIG. 2), and the heat exchange efficiency in the front upper heat exchanger 21A can be improved.
  • the front upper heat exchanger 32A has an angle ⁇ 20 of a part of the leeward flat tube 32B (flat heat transfer tube 32c) of the leeward flat tube 32A when the gravity direction G is 0 degree. It is smaller than the angle of (flat heat transfer tube 32a). Thereby, since it becomes easy to point the leeward side flat tube 32B (flat heat transfer tube 32c) in the upper part of the indoor heat exchanger 8A toward the blower 10, it is possible to reduce the ventilation resistance.
  • the angle of the leeward flat tube 32A is 45 degrees or more, and the angle of the leeward flat tube 32B (flat heat transfer tube 32c) is less than 45 degrees.
  • the indoor unit 2 of the first embodiment to the air conditioner 100, the air conditioner 100 having excellent operation efficiency can be realized.
  • the present invention is not limited to such a configuration.
  • the uppermost flat heat transfer tube 32a (windward flat tube 32A) in the outer row of the front upper heat exchanger 21A may be used.
  • the direction may be changed so as to reduce the ventilation resistance, or the top flat heat transfer tube 36b (leeward side flat tube 36B) in the row on the blower 10 side of the rear heat exchanger 23.
  • the direction of 36b may be changed so that the ventilation resistance is reduced in the same manner as the flat heat transfer tube 32c.
  • FIG. 4 is a cross-sectional view showing an air conditioner according to the second embodiment.
  • the indoor unit 2 of the second embodiment includes an indoor heat exchanger 8 ⁇ / b> B and a blower 10.
  • the indoor heat exchanger 8B includes a front upper heat exchanger 21, a front lower heat exchanger 22A, and a rear heat exchanger 23.
  • the front lower heat exchanger 22A includes, for example, fins 33 and flat tube groups 34 that are made of the same material as the front upper heat exchanger 21A.
  • the flat tube group 34 is configured in two rows (a plurality of rows) by a plurality of flat heat transfer tubes 34b and 34c from the outside of the indoor heat exchanger 8B toward the blower 10 (toward the air flow direction). Yes. That is, the flat tube group 34 has an upwind flat tube 34A disposed on the air introduction side (air introduction side) and a leeward flat tube 34B disposed on the blower 10 side.
  • the windward flat tube 34 ⁇ / b> A is configured by a plurality of flat heat transfer tubes 34 c disposed along the longitudinal direction s ⁇ b> 2 of the fin 33.
  • the leeward side flat tube 34 ⁇ / b> B includes a plurality of flat heat transfer tubes 34 b arranged along the longitudinal direction s ⁇ b> 2 of the fins 33.
  • the flat heat transfer tubes 34b and 34c are configured similarly to the flat heat transfer tubes 32a, 32b and 32c described above.
  • the long axis direction x3a of the flat heat transfer tube 34c is different from the direction of the long axis direction x3 of the flat heat transfer tube 34b.
  • the angle ⁇ 30 of the flat heat transfer tube 34c of the windward flat tube 34A and the angle ⁇ 40 of the flat heat transfer tube 34b of the leeward flat tube 34B in the front lower heat exchanger 22A are different.
  • the angle ⁇ 30 of the flat heat transfer tube 34c of the windward flat tube 34A is smaller than the angle ⁇ 40 of the flat heat transfer tube 34b of the leeward flat tube 34B.
  • the angle ⁇ 30 means an angle formed by the gravity direction G and the longitudinal direction x3a of the flat heat transfer tube 34c. Further, the angle ⁇ 40 means an angle formed by the gravity direction G and the longitudinal direction x3 of the flat heat transfer tube 34b. Specifically, the angle ⁇ 30 of the windward flat tube 34A is set to less than 90 degrees, and the angle ⁇ 40 of the flat heat transfer tube 34b of the leeward flat tube 34B is set to 90 degrees or more.
  • the flat heat transfer tubes 34 c are located in the outer row of the front lower heat exchanger 22 ⁇ / b> A, and are arranged along the longitudinal direction s ⁇ b> 2 of the fins 33. Moreover, the space
  • the direction (arrow A4) along the air flow in front of 22 A of front side lower heat exchangers becomes the flow direction (arrow A5) of the air which passes along the flat heat exchanger tubes 34c and 34c.
  • the angle when changing the direction from the arrow A4 to the arrow A5 is smaller than in the case where the flat heat transfer tube 34c is a flat heat transfer tube 34a1 indicated by a broken line.
  • the heat exchange efficiency in the front lower heat exchanger 22A is improved by changing the direction of the flat heat transfer tubes 34c and 34c, which are the places where the ventilation resistance is increased as it is, so that the ventilation resistance is reduced.
  • the indoor unit 2 with improved performance of the indoor heat exchanger 8B can be realized.
  • the wind flow here is likely to face the longitudinal direction s2 of the front lower heat exchanger 22A.
  • the air is supplied only from the top of the indoor unit 2.
  • the flow of wind is likely to face the longitudinal direction s2 of the front lower heat exchanger 22A. Therefore, as shown in FIG. 4, in the front lower heat exchanger 22 ⁇ / b> A, all the rows of the flat heat transfer tubes 34 c in the outer row are configured to face the same direction.
  • all the flat heat transfer tubes 34c in the same row are oriented in the same direction with respect to the longitudinal direction s2. According to this, in all of the adjacent flat heat transfer tubes 34c, 34c, the change in the angle of the wind direction from the front side of the front lower heat exchanger 22A toward the flat heat transfer tube 34c is reduced, so that the ventilation resistance can be reduced. As a result, the heat exchange efficiency in the front lower heat exchanger 22A can be further improved, and the indoor unit 2 with improved performance of the indoor heat exchanger 8B can be realized.
  • the angle ⁇ 30 is 90 degrees or more and the angle ⁇ 40 is less than 90 degrees, not only the ventilation resistance increases, but also the dead water area (see FIG. 3) is generated as described above due to the change of the wind direction, and the heat exchange efficiency. There is a risk of lowering. Therefore, it is preferable that the angle ⁇ 30 is less than 90 degrees and the angle ⁇ 40 is 90 degrees or more. Thereby, ventilation resistance can be reduced, suppressing generation
  • the case where the orientation of all the flat heat transfer tubes 34c in one row of the front lower heat exchanger 22A is changed has been described as an example, but the flat heat transfer in the outer row of the rear heat exchanger 23 is described.
  • the direction of all the rows of the heat tubes 36a may be changed so as to reduce the resistance from the wind direction passing in front of the rear heat exchanger 23 to the wind direction passing through the flat heat transfer tubes 36a.
  • FIG. 5 is a cross-sectional view showing an air conditioner according to the third embodiment.
  • the indoor unit 2 of the third embodiment includes an indoor heat exchanger 8 ⁇ / b> C and a blower 10.
  • the indoor heat exchanger 8C includes a front upper heat exchanger 21, a front lower heat exchanger 22, and a rear heat exchanger 23A.
  • the rear heat exchanger 23A is constituted by, for example, fins 33 and flat tube groups 36 made of the same material as the front upper heat exchanger 21A.
  • the flat tube group 36 is arranged in two rows by a plurality of flat heat transfer tubes 36a, 36b, 36c, and 36d from the outer side of the rear heat exchanger 23A to the inner side (toward the blower 10) (toward the air flow direction). (Multiple columns). That is, the flat tube group 36 has an upwind flat tube 36A disposed on the air introduction side (air introduction side) and a leeward flat tube 36B disposed on the blower 10 side.
  • the windward flat tube 36 ⁇ / b> A is configured by a plurality of flat heat transfer tubes 36 a and 36 c arranged along the longitudinal direction s ⁇ b> 3 of the fin 33.
  • the leeward side flat tube 36 ⁇ / b> B includes a plurality of flat heat transfer tubes 36 b and 36 d arranged along the longitudinal direction s ⁇ b> 3 of the fin 33.
  • the flat heat transfer tubes 36a, 36b, 36c, and 36d are configured in the same manner as the flat heat transfer tubes 32a, 32b, and 32c.
  • the outer row of the rear heat exchanger 23A includes five flat heat transfer tubes 36a and four flat heat transfer tubes 36c.
  • the inner row (row on the blower 10 side) of the rear heat exchanger 23A is configured by six flat heat transfer tubes 36b and three flat heat transfer tubes 36d.
  • the long axis direction x4 of the flat heat transfer tube 36a is different from the direction of the long axis direction x4a of the flat heat transfer tube 36c.
  • the major axis direction x4 of the flat heat transfer tube 36b is different from the direction of the major axis direction x4b of the flat heat transfer tube 36d.
  • the flat heat transfer tube 36a and the flat heat transfer tube 36b have the same major axis direction x4.
  • the angle ⁇ 70 of the windward flat tube 36A (flat heat transfer tube 36c) in the rear heat exchanger 23A is different from the angle ⁇ 80 of the leeward flat tube 36B (flat heat transfer tube 36d).
  • the angle ⁇ 80 of the flat heat transfer tube 36d of the leeward flat tube 36B is set larger than the angle ⁇ 70 of the flat heat transfer tube 36c of the windward flat tube 36A.
  • the angle ⁇ 70 means an angle formed by the gravity direction G and the longitudinal direction x4a of the flat heat transfer tube 36c.
  • the angle ⁇ 80 means an angle formed by the gravity direction G and the longitudinal direction x4b of the flat heat transfer tube 36d.
  • the angle ⁇ 30 of the windward flat tube 34A is set to less than 45 degrees
  • the angle ⁇ 80 of the leeward flat tube 34B is set to 45 degrees or more.
  • the flat heat transfer tubes 36 a are positioned in the outer row of the rear heat exchanger 23 ⁇ / b> A, and are arranged along the longitudinal direction s ⁇ b> 3 of the fins 35.
  • the flat heat transfer tubes 36 c are located in the outer row of the rear heat exchanger 23 ⁇ / b> A, and are arranged along the longitudinal direction s ⁇ b> 3 of the fins 35.
  • the flat heat transfer tube 36a is disposed at the upper portion of the rear heat exchanger 23A, and the flat heat transfer tube 36c is disposed at the lower portion of the rear heat exchanger 23A.
  • the flat heat exchanger tube 36c is located between the back nose part 14b and the flow-path wall surface 14c.
  • the intervals between adjacent flat heat transfer tubes 36a are formed to be equal, and the intervals between adjacent flat heat transfer tubes 36c are formed to be equal.
  • interval of the flat heat exchanger tubes 36a and 36c is not necessarily limited to an equal space
  • the flat heat transfer tubes 36b are located in a row on the inner side (blower 10 side) of the rear heat exchanger 23A, and are arranged side by side along the longitudinal direction s3 of the fins 35.
  • the flat heat transfer tubes 36d are located in a row on the inner side (blower 10 side) of the rear heat exchanger 23A, and are arranged side by side along the longitudinal direction s3 of the fins 35.
  • the flat heat transfer tube 36b is arranged at the upper part of the rear side heat exchanger 23A, and the flat heat transfer tube 36d is arranged at the lower side of the rear side heat exchanger 23A.
  • the flat heat transfer tube 36d is located between the back nose portion 14b and the flow path wall surface 14c.
  • the intervals between adjacent flat heat transfer tubes 36b are formed to be equal, and the intervals between adjacent flat heat transfer tubes 36d are formed to be equal.
  • interval of the flat heat exchanger tubes 36b and 36d is not necessarily limited to an equal space
  • the flat heat transfer tube 36 a faces the direction in which the long axis direction x 4 of the flat heat transfer tube 36 a is orthogonal to the longitudinal direction s 3 of the fin 35. Further, when the direction of gravity is 0 degree, the angle ⁇ 50 of the flat heat transfer tube 36a is set to 45 degrees. The angle ⁇ 50 is not limited to 45 degrees, and may be less than 45 degrees. Further, the flat heat transfer tube 36c is oriented in a different direction from the flat heat transfer tube 36a and more in the direction of reducing the ventilation resistance than when it is assumed that the flat heat transfer tube 36a is arranged.
  • the flat heat transfer tube 36 b faces the direction in which the long axis direction x 4 of the flat heat transfer tube 36 b is orthogonal to the longitudinal direction s 3 of the fin 35. Further, when the direction of gravity is 0 degree, the angle ⁇ 60 of the flat heat transfer tube 36b is set to 45 degrees. Note that the angle ⁇ 60 is not limited to 45 degrees, and may be less than 45 degrees. Further, the flat heat transfer tube 36d has a different direction from the flat heat transfer tube 36b, and is directed to reduce the ventilation resistance as compared with the case where it is assumed that the flat heat transfer tube 36b is disposed.
  • a wall (channel wall surface 14 c) exists on the back side of the indoor heat exchanger 200.
  • the rear heat exchanger 23 of the indoor heat exchanger 200 shown in FIG. 3 includes a plurality of flat heat transfer tubes 36a and 36b, and all the flat heat transfer tubes 36a and 36b are orthogonal to the longitudinal direction s3 of the fins 35. Facing. Therefore, as indicated by white arrows A230 and A260 in FIG. 3, the wind direction is almost reversed before and after entering the rear heat exchanger 23, so that the air flows into the rear heat exchanger 23 and flows out. In the meantime, the direction of air flow changes greatly.
  • column outside the rear side heat exchanger 23 form ( The changing angle) is ⁇ 100.
  • the direction of the wind when passing through the flat heat transfer tubes 36a in the outer row of the rear heat exchanger 23 (arrow A240) and the time when passing through the flat heat transfer tubes 36b on the blower 10 side of the rear heat exchanger 23 The angle (change angle) formed by the wind direction (arrow A250) is defined as ⁇ 200.
  • the angle (change angle) formed by the wind direction (arrow A250) when passing through the flat heat transfer tube 36b on the blower 10 side and the wind direction (arrow A260) after flowing out from the rear heat exchanger 23 is ⁇ 300.
  • the angle ⁇ 100 can be reduced by changing the direction of the flat heat transfer tubes 36a in the row outside the rear heat exchanger 23, but the angle ⁇ 200 increases.
  • the angle ⁇ 300 does not change even if the orientation of the flat heat transfer tubes 36a in the outer row of the rear heat exchanger 23 is changed.
  • the angle ⁇ 70 of the windward flat tube 36A (flat heat transfer tube 36c) in the rear heat exchanger 23A and the angle ⁇ 80 of the leeward flat tube 36B (flat heat transfer tube 36d) are made different.
  • the angle ⁇ 80 of the flat heat transfer tube 36d of the leeward flat tube 36B is made larger than the angle ⁇ 70 of the flat heat transfer tube 36c of the windward flat tube 36A.
  • the angle ⁇ 70 of the windward flat tube 34A is set to less than 45 degrees
  • the angle ⁇ 80 of the leeward flat tube 34B is set to 45 degrees or more.
  • the flat heat transfer tubes 36c face the same direction, but the flat heat transfer tubes 36c may face different directions (the same applies to the flat heat transfer tubes 36d).
  • FIG. 6 is a cross-sectional view showing an air conditioner according to Comparative Example 2.
  • the indoor heat exchanger 300 shown as a comparative example in FIG. 6 is configured such that the flat heat transfer tubes 340 in the outer row of the front lower heat exchanger 22 face the horizontal direction (substantially horizontal direction).
  • the flat heat transfer tube 340 having such a direction is provided, when the air conditioner 100 (see FIG. 1) is in a cooling operation, condensed water is formed on the upper portion (flat portion) of the flat heat transfer tube 340. It becomes easy to collect. If the condensed water easily accumulates, water droplets are likely to be discharged from the air outlet 11c of the indoor unit during the cooling operation, causing a so-called “water jump”.
  • the direction of the flat heat transfer tube 34a in the indoor heat exchanger 8A of the first embodiment, the direction of the flat heat transfer tube 34a, in the indoor heat exchanger 8B of the second embodiment, the direction of the flat heat transfer tube 34c, the indoor heat exchanger 8C of the third embodiment. Then, the direction of the flat heat exchanger tube 34a is made not to face the horizontal direction (substantially horizontal direction).
  • the flat heat transfer tubes 34a and 34c not only the flat heat transfer tubes 34a and 34c, but also the flat heat transfer tubes 32a, 32b, 34b, 36a and 36b of the indoor heat exchanger 8A, the flat heat transfer tubes 32a, 32b, 34b and 36a of the indoor heat exchanger 8B, It is preferable that the orientation of 36b and the orientation of the flat heat transfer tubes 32a, 32b, 34b, 36a, 36b, 36c, 36d of the indoor heat exchanger 8C do not face the horizontal direction (substantially horizontal direction). This makes it difficult for the condensed water to accumulate in the flat heat transfer tubes 32a, 32b, 34a to 34c, and 36a to 36d, thereby suppressing "water jumping".
  • the air flow in the portion where the front upper heat exchanger 21 and the front lower heat exchanger 22 are combined is indicated by the front upper heat at a white arrow A270.
  • the flow of air at the portion where the exchanger 21 and the rear heat exchanger 23 are combined is indicated by a white arrow A280.
  • the ventilation resistance is small. Therefore, if the air flow is concentrated here, the amount of air flowing to the indoor heat exchanger 200 in other parts is reduced, and the performance of the indoor heat exchanger 200 is reduced. May decrease.
  • the direction of a part of the flat heat transfer tube in the portion where the air flow is likely to concentrate in this way is set so as to prevent the air flow.
  • the flow concentration is prevented and the performance as a heat exchanger can be improved.
  • FIG. 7 is a cross-sectional view showing an air conditioner according to the fourth embodiment.
  • the indoor unit 2 of the fourth embodiment includes an indoor heat exchanger 8D and a blower 10.
  • the indoor heat exchanger 8D includes a front upper heat exchanger 21B, a front lower heat exchanger 22B, and a rear heat exchanger 23.
  • the front upper heat exchanger 21B is configured by fins 31 (a plurality of fins) and a flat tube group 32. That is, the flat tube group 32 has an upwind flat tube 32A disposed on the air introduction side (air introduction side) and a leeward flat tube 32B disposed on the blower 10 side.
  • the windward flat tube 32 ⁇ / b> A is configured by a plurality of flat heat transfer tubes 32 a and 32 d arranged along the longitudinal direction s ⁇ b> 1 of the fin 31.
  • the leeward side flat tube 32 ⁇ / b> B includes a plurality of flat heat transfer tubes 32 b arranged along the longitudinal direction s ⁇ b> 1 of the fin 31.
  • the plurality of flat heat transfer tubes 32 a and 32 d are arranged side by side in the longitudinal direction s 1 of the fin 31.
  • the direction of the long-axis direction x1 of the flat heat transfer tube 32a is the direction orthogonal to the longitudinal direction s1.
  • the direction of the long-axis direction x5 of the flat heat transfer tube 32d is different from the direction of the flat heat transfer tube 32a, and the ventilation resistance is greater than when assuming that the flat heat transfer tube 32a is disposed (see the flat heat transfer tube 32a1 indicated by a broken line). It is facing the direction of raising.
  • the flat heat transfer tube 32d is configured to be oriented in a direction perpendicular to the air flow (arrow A270, see FIG. 3).
  • the front lower heat exchanger 22B is composed of fins 33 (a plurality of fins) and a heat transfer tube group 34. That is, the flat tube group 34 has an upwind flat tube 34A disposed on the air introduction side (air introduction side) and a leeward flat tube 34B disposed on the blower 10 side.
  • the windward flat tube 34 ⁇ / b> A is configured by a plurality of flat heat transfer tubes 34 a and 34 d disposed along the longitudinal direction s ⁇ b> 2 of the fin 33.
  • the leeward side flat tube 34 ⁇ / b> B includes a plurality of flat heat transfer tubes 34 b arranged along the longitudinal direction s ⁇ b> 2 of the fins 33.
  • the plurality of flat heat transfer tubes 34 a and 34 d are arranged side by side in the longitudinal direction s 2 of the fins 33.
  • the direction of the long-axis direction x3 of the flat heat transfer tube 34a faces the direction orthogonal to the longitudinal direction s2.
  • the direction of the long-axis direction x6 of the flat heat transfer tube 32d is different from the direction of the flat heat transfer tube 34a, and the ventilation resistance is greater than when assuming that the flat heat transfer tube 34a is disposed (see the flat heat transfer tube 34a1 indicated by a broken line). It is facing the direction of raising.
  • the flat heat transfer tube 34d is configured to be oriented in a direction perpendicular to the air flow (arrow A270, see FIG. 3).
  • the angle ⁇ 91 of the flat heat transfer tube 32d of the windward flat tube 32A and the angle ⁇ 10 of the flat heat transfer tube 32b of the leeward flat tube 32B at the boundary between the front upper heat exchanger 21B and the front lower heat exchanger 22B is different.
  • the angle ⁇ 92 of the flat heat transfer tube 34d of the windward flat tube 34A and the angle ⁇ 40 of the flat heat transfer tube 34b of the leeward flat tube 34B at the boundary between the front upper heat exchanger 21B and the front lower heat exchanger 22B are different. Yes.
  • the angle ⁇ 10 of the flat heat transfer tube 32b of the leeward flat tube 32B is larger than the angle ⁇ 91 of the flat heat transfer tube 32d of the windward flat tube 32A. Furthermore, the angle ⁇ 91 of the windward flat tube 32A (flat heat transfer tube 32d) is less than 45 degrees, and the angle of the leeward flat tube 32B (flat heat transfer tube 32b) is 45 degrees or more.
  • the angle ⁇ 40 of the flat heat transfer tube 34b of the leeward flat tube 34B is larger than the angle ⁇ 92 of the flat heat transfer tube 34d of the windward flat tube 34A. Further, the angle ⁇ 92 of the windward flat tube 34A (flat heat transfer tube 34d) is less than 45 degrees, and the angle of the leeward flat tube 34B (flat heat transfer tube 34b) is 45 degrees or more.
  • the airflow resistance is low as it is, and at the boundary of the bent portion (combination portion) between the front upper heat exchanger 21B and the front lower heat exchanger 22B, which is a place where the heat exchange efficiency is low, the flatness is flat.
  • the direction of the heat transfer tubes 32d and 34d is changed so that the ventilation resistance is increased.
  • FIG. 8 is a cross-sectional view showing an air conditioner according to the fifth embodiment.
  • the indoor unit 2 of 5th Embodiment is provided with the indoor heat exchanger 8E and the air blower 10.
  • the indoor heat exchanger 8E includes a front upper heat exchanger 21C, a front lower heat exchanger 22, and a rear heat exchanger 23B.
  • the front upper heat exchanger 21 ⁇ / b> C includes, for example, fins 31 and flat tube groups 32 made of the same material as the front upper heat exchanger 21 ⁇ / b> A.
  • the front upper heat exchanger 21 ⁇ / b> C includes fins 31 (plural fins) and a flat tube group 32. That is, the flat tube group 32 has an upwind flat tube 32A disposed on the air introduction side (air introduction side) and a leeward flat tube 32B disposed on the blower 10 side.
  • the windward flat tube 32 ⁇ / b> A is configured by a plurality of flat heat transfer tubes 32 a arranged along the longitudinal direction s ⁇ b> 1 of the fins 31.
  • the leeward flat tube 32 ⁇ / b> B is configured by a plurality of flat heat transfer tubes 32 b and 32 e arranged along the longitudinal direction s ⁇ b> 1 of the fin 31.
  • the front upper heat exchanger 21C includes fins 31 (a plurality of fins) and a plurality of flat heat transfer tubes 32a, ..., 32b, ..., 32e, from the outside of the front upper heat exchanger 21C. It consists of two rows toward the inside (blower 10 side).
  • the flat heat transfer tubes 32 b and 32 e are arranged side by side in the longitudinal direction s 1 of the fin 31.
  • the direction of the major axis direction x1 of the flat heat transfer tubes 32a and 32b is the direction orthogonal to the longitudinal direction s1.
  • the direction of the long-axis direction x7 of the flat heat transfer tube 32e is different from the direction of the flat heat transfer tube 32b, and it is assumed that the flat heat transfer tube 32b is disposed (see the flat heat transfer tube 32b1 indicated by a virtual line).
  • the direction is to raise. In other words, the direction is perpendicular to the air flow indicated by arrow A280 in FIG.
  • the flat heat transfer tube 32e is first rotated with respect to the flat heat transfer tube 32b so as to increase the ventilation resistance as indicated by the flat heat transfer tube 32b1 in the broken line, and is further indicated by the flat heat transfer tube 32b2 in the broken line. As described above, the air flow resistance is translated to further increase.
  • the rear heat exchanger 23B is constituted by fins 35 (a plurality of fins) and a flat tube group 36. That is, the flat tube group 36 has an upwind flat tube 36A disposed on the air introduction side (air introduction side) and a leeward flat tube 36B disposed on the blower 10 side.
  • the windward flat tube 36 ⁇ / b> A includes a plurality of flat heat transfer tubes 36 a disposed along the longitudinal direction s ⁇ b> 3 of the fin 35.
  • the leeward side flat tube 36 ⁇ / b> B includes a plurality of flat heat transfer tubes 36 b and 36 e arranged along the longitudinal direction s ⁇ b> 3 of the fin 35.
  • the rear heat exchanger 23B has fins 35 (a plurality of fins) and a plurality of flat heat transfer tubes 36a, ..., 36b, ..., 36e, from the outside of the rear front heat exchanger 23B. It consists of two rows toward the inside (blower 10 side).
  • the flat heat transfer tubes 36 a are arranged side by side in the longitudinal direction s 3 of the fins 33.
  • the direction of the major axis direction x4 of the flat heat transfer tubes 36a, 36b is oriented in a direction orthogonal to the longitudinal direction s3.
  • the direction of the long-axis direction x8 of the flat heat transfer tube 36e is different from the direction of the flat heat transfer tubes 36a and 36b, and it is assumed that the flat heat transfer tube 36b is disposed (see the flat heat transfer tube 36b1 indicated by a broken line). It faces the direction of increasing resistance. In other words, the direction is perpendicular to the air flow indicated by arrow A280 in FIG.
  • the flat heat transfer tube 36e is rotated so as to increase the ventilation resistance as shown by the flat heat transfer tube 36b1 on the basis of the flat heat transfer tube 36b, and changes its direction. As indicated by the heat transfer tube 36b2, it is translated so that the ventilation resistance is further increased.
  • the directions (rotation and translation) of 32e and 34g are changed so as to increase the ventilation resistance.
  • the directions of some of the flat heat transfer tubes 32a and 32b are orthogonal to the longitudinal direction s1 of the fin 31, and some of the flat heat transfer tubes 34a.
  • 34b is a direction perpendicular to the longitudinal direction s2 of the fin 33
  • some flat heat transfer tubes 36a, 36b are oriented to the fin 35 in a direction perpendicular to the longitudinal direction s3. In the range where the effect of the invention is exerted, it may be deviated from orthogonal.
  • the indoor heat exchangers 8A to 8E have been described by taking the example in which the flat heat transfer tubes are configured in two rows, but may be in one row, There may be three or more rows.
  • indoor heat exchangers 8A to 8C of the plurality of embodiments of the first to third embodiments may be combined. Further, the first to third embodiments and the fourth and fifth embodiments may be combined.
  • the case where the front upper heat exchanger and the front lower heat exchanger are configured as separate bodies has been described as an example. It may be configured.
  • the front upper heat exchanger and the rear heat exchanger may be integrated.
  • blower 10 a cross-flow fan is taken as an example, but another type of blower such as a propeller fan may be used.
  • the case where the front upper heat exchanger and the rear heat exchanger do not overlap in the vertical direction has been described as an example.
  • the end 31d and the upper end 35a of the rear heat exchanger 23 may be configured to be in line contact with each other.

Abstract

This invention is provided with: an indoor heat exchanger (8A) having a fin (31) and a plurality of flat heat transfer tubes (32a, 32b, 32c) penetrating through the fin (31) and having a flat cross-sectional shape; and a blower (10) for discharging air that has been heat-exchanged in the indoor heat exchanger (8A) to the exterior of a casing (11). The plurality of flat heat transfer tubes (32a, 32b, 32c) is arranged in the longitudinal direction (s1) of the fin (31) in a plurality of rows, and comprise upwind-side flat tubes (32A) disposed on the air inlet side and downwind-side flat tubes (32B) disposed on the blower (10) side. The angle of the upwind-side flat tubes (32A), and the angle of flat heat transfer tubes (32c) constituting some of the downwind-side flat tubes (32B), differ.

Description

空気調和機の室内機およびこれを備えた空気調和機Air conditioner indoor unit and air conditioner equipped with the same
 本発明は、空気調和機の室内機およびこれを備えた空気調和機に関する。 The present invention relates to an indoor unit of an air conditioner and an air conditioner including the same.
 特許文献1には、メイン熱交換器に加えて、メイン熱交換器と形状が異なるサブ熱交換器を配置し、サブ熱交換器の伝熱管の段ピッチをメイン熱交換器よりも短くした空気調和機が記載されている。 In Patent Document 1, in addition to the main heat exchanger, a sub heat exchanger having a shape different from that of the main heat exchanger is disposed, and the air heat pipe of the sub heat exchanger has a step pitch shorter than that of the main heat exchanger. A harmonic machine is described.
特開2000-337652号公報JP 2000-337652 A
 しかしながら、特許文献1に記載の空気調和機の熱交換器では、サブ熱交換器を設けることにより、サブ熱交換器の下部(空気流れ方向の上流側)にあるメイン熱交換器に空気が通り難くなり、熱交換効率が損なわれる課題がある。 However, in the heat exchanger of the air conditioner described in Patent Document 1, by providing the sub heat exchanger, air passes through the main heat exchanger at the lower portion (upstream side in the air flow direction) of the sub heat exchanger. There is a problem that heat exchange efficiency is impaired.
 本発明は、前記従来の課題を解決するものであり、高効率で熱交換を行うことが可能な空気調和機の室内機およびこれを備えた空気調和機を提供することにある。 This invention solves the said conventional subject, and provides the indoor unit of the air conditioner which can perform heat exchange with high efficiency, and an air conditioner provided with the same.
 本発明は、複数のフィンと、前記複数のフィンを貫通する断面形状が扁平な複数の扁平伝熱管と、を有する熱交換器と、前記熱交換器において熱交換された空気を筐体の外部に排出する送風機と、を備え、前記複数の扁平伝熱管は、前記フィンの長手方向に並んで且つ複数列に配置され、空気導入側に配置される風上側扁平管および前記送風機側に配置される風下側扁平管から成り、前記風上側扁平管の角度と前記風下側扁平管の角度とが少なくとも一部において互いに異なることを特徴とする。 The present invention provides a heat exchanger having a plurality of fins and a plurality of flat heat transfer tubes having a flat cross-sectional shape penetrating the plurality of fins, and air exchanged in the heat exchanger outside the casing The plurality of flat heat transfer tubes are arranged in a plurality of rows side by side in the longitudinal direction of the fin, and are arranged on the windward flat tube arranged on the air introduction side and on the blower side. And the angle of the leeward flat tube and the angle of the leeward flat tube are at least partially different from each other.
 本発明によれば、高効率で熱交換を行うことが可能な空気調和機の室内機およびこれを備えた空気調和機を提供できる。 According to the present invention, it is possible to provide an indoor unit of an air conditioner capable of performing heat exchange with high efficiency and an air conditioner including the same.
第1実施形態に係る空気調和機の冷媒回路を示す構成図である。It is a block diagram which shows the refrigerant circuit of the air conditioner which concerns on 1st Embodiment. 第1実施形態に係る空気調和機の室内機を示す断面図である。It is sectional drawing which shows the indoor unit of the air conditioner which concerns on 1st Embodiment. 比較例1に係る空気調和機の室内機を示す断面図である。It is sectional drawing which shows the indoor unit of the air conditioner concerning the comparative example 1. 第2実施形態に係る空気調和機の室内機を示す断面図である。It is sectional drawing which shows the indoor unit of the air conditioner which concerns on 2nd Embodiment. 第3実施形態に係る空気調和機の室内機を示す断面図である。It is sectional drawing which shows the indoor unit of the air conditioner which concerns on 3rd Embodiment. 比較例2に係る空気調和機の室内機を示す断面図である。It is sectional drawing which shows the indoor unit of the air conditioner concerning the comparative example 2. 第4実施形態に係る空気調和機の室内機を示す断面図である。It is sectional drawing which shows the indoor unit of the air conditioner which concerns on 4th Embodiment. 第5実施形態に係る空気調和機の室内機を示す断面図である。It is sectional drawing which shows the indoor unit of the air conditioner which concerns on 5th Embodiment.
 以下、本発明の実施形態にについて図面を参照して説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。
(第1実施形態)
 図1は、第1実施形態に係る空気調和機の冷媒回路を示す構成図である。
 図1に示すように、空気調和機100は、熱源側で室外(非空調空間)に設置される室外機1と、利用側で室内(空調空間)に設置される室内機2(空気調和機の室内機)と、を備え、室外機1と室内機2とが冷媒配管3,3によって繋がれることで構成されている。
Embodiments of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.
(First embodiment)
Drawing 1 is a lineblock diagram showing the refrigerant circuit of the air harmony machine concerning a 1st embodiment.
As shown in FIG. 1, an air conditioner 100 includes an outdoor unit 1 installed outside (non-air-conditioned space) on the heat source side, and an indoor unit 2 (air conditioner) installed indoors (air-conditioned space) on the use side. The outdoor unit 1 and the indoor unit 2 are connected by the refrigerant pipes 3 and 3.
 室外機1は、圧縮機4と、四方弁5と、室外熱交換器6と、室外ファン7と、膨張弁9と、を備えて構成されている。なお、室外ファン7は、通常、プロペラファンが用いられる。室内機2は、室内熱交換器8(8A,8B,8C,8D,8E)と、貫流ファンからなる送風機10と、を備えて構成されている。 The outdoor unit 1 includes a compressor 4, a four-way valve 5, an outdoor heat exchanger 6, an outdoor fan 7, and an expansion valve 9. The outdoor fan 7 is usually a propeller fan. The indoor unit 2 includes an indoor heat exchanger 8 (8A, 8B, 8C, 8D, 8E) and a blower 10 including a cross-flow fan.
 次に、空気調和機100の基本的な動作について暖房運転、冷房運転に分けて説明する。
 暖房運転の場合、圧縮機4により圧縮されたガス状態の冷媒が四方弁5を介して室内熱交換器8へ流れ、送風機10により発生した気流で室内空気と熱交換を行うことで冷媒はガス状態から凝縮して液状態に変化する。液状態となった冷媒は、膨張弁9を介して室外熱交換器6へと流れ、室外ファン7により発生した気流によって室外空気の熱を吸収し熱交換を行うことで、冷媒は液状態から蒸発してガス状態となり圧縮機4に流れる。
Next, the basic operation of the air conditioner 100 will be described separately for heating operation and cooling operation.
In the case of heating operation, the refrigerant in the gas state compressed by the compressor 4 flows to the indoor heat exchanger 8 through the four-way valve 5 and exchanges heat with the indoor air by the air flow generated by the blower 10 so that the refrigerant is gas. It condenses from the state and changes to a liquid state. The refrigerant in the liquid state flows to the outdoor heat exchanger 6 through the expansion valve 9, absorbs the heat of the outdoor air by the air flow generated by the outdoor fan 7, and performs heat exchange, so that the refrigerant is out of the liquid state. It evaporates into a gas state and flows to the compressor 4.
 冷房運転の場合、四方弁5を切り替えることで冷媒の流れる方向が暖房運転と逆になる。圧縮機4により圧縮されたガス状態の冷媒は四方弁5を介して室外熱交換器6へと流れ込み、室外ファン7により発生した気流で室外空気に熱を放出し熱交換を行うことでガス状態から凝縮して液状態に変化する。液状態となった冷媒は、膨張弁9を介して室内熱交換器8へと流れ、送風機10により発生した気流で室内空気から熱を吸収し、蒸発することでガス状態となり圧縮機4に流れる。 In the cooling operation, switching the four-way valve 5 reverses the direction in which the refrigerant flows as compared to the heating operation. The refrigerant in the gas state compressed by the compressor 4 flows into the outdoor heat exchanger 6 through the four-way valve 5, releases the heat to the outdoor air by the air flow generated by the outdoor fan 7, and performs heat exchange. It condenses and changes to a liquid state. The refrigerant in the liquid state flows to the indoor heat exchanger 8 through the expansion valve 9, absorbs heat from the indoor air with the air flow generated by the blower 10, and evaporates to become a gas state and flows to the compressor 4. .
 なお、本実施形態の室内機2を備えた空気調和機100は、暖房運転モードと冷房運転モードの双方が搭載されたもの、冷房運転モードのみが搭載されたもの、暖房運転モードと冷房運転モードに加えて除湿運転モードが搭載されたものであってもよい。 Note that the air conditioner 100 including the indoor unit 2 of the present embodiment is equipped with both the heating operation mode and the cooling operation mode, the one equipped only with the cooling operation mode, the heating operation mode and the cooling operation mode. In addition to the above, a dehumidifying operation mode may be installed.
 図2は、第1実施形態に係る空気調和機を示す断面図である。
 図2に示すように、室内機2は、室内熱交換器8Aと、送風機10と、を備えて構成されている。また、室内機2は、合成樹脂によって横長箱状に成形加工した筐体11を備え、室内熱交換器8Aおよび送風機10を収容している。
FIG. 2 is a cross-sectional view showing the air conditioner according to the first embodiment.
As shown in FIG. 2, the indoor unit 2 includes an indoor heat exchanger 8 </ b> A and a blower 10. In addition, the indoor unit 2 includes a housing 11 molded into a horizontally long box shape with a synthetic resin, and houses the indoor heat exchanger 8A and the blower 10.
 送風機10は、例えば貫流ファンで構成され、複数枚のファンブレード10aと円環状の支持板10bとを有し、支持板10bにファンブレード10aが周方向に等間隔に配置されることで構成されている。また、送風機10は、略筒形状を呈し、室内熱交換器8Aに沿って(図2の紙面垂直方向に沿って)延びている。また、送風機10は、軸方向の一端が筺体11側に回転自在に支持され、軸方向の他端が図示しないモータと接続されている。 The blower 10 is configured by, for example, a once-through fan, and includes a plurality of fan blades 10a and an annular support plate 10b. The fan blades 10a are arranged on the support plate 10b at equal intervals in the circumferential direction. ing. The blower 10 has a substantially cylindrical shape, and extends along the indoor heat exchanger 8A (in the direction perpendicular to the plane of FIG. 2). The blower 10 has one end in the axial direction supported rotatably on the housing 11 side, and the other end in the axial direction is connected to a motor (not shown).
 筐体11は、上面と前面に室内空気を吸い込む空気吸込口11a,11bと、下面に熱交換により温度および湿度が調和された空気を吹き出す空気吹出口11cと、を備えている。空気吸込口11a,11bには、室内空気を清浄化して筺体11内に取り込むためのフィルタ12a,12bが取り付けられている。空気吹出口11cには、気流の左右方向を偏向させる図示しない左右風向板と、上下方向に偏向させる上下風向板13とが取り付けられている。 The housing 11 includes air suction ports 11a and 11b that suck indoor air into the upper surface and the front surface, and an air outlet 11c that blows out air whose temperature and humidity are harmonized by heat exchange on the lower surface. Filters 12a and 12b for purifying indoor air and taking it into the housing 11 are attached to the air suction ports 11a and 11b. A left and right wind direction plate (not shown) for deflecting the left and right direction of the air flow and an up and down wind direction plate 13 for deflecting the air flow in the vertical direction are attached to the air outlet 11c.
 また、筐体11は、バックケーシング14およびフロントケーシング15を備えている。また、筐体11の前面には、図示しないモータの駆動力によって、フロントパネル16が空気吸込口11bを開閉するように回動自在に取り付けられている。 The housing 11 includes a back casing 14 and a front casing 15. A front panel 16 is rotatably attached to the front surface of the housing 11 so as to open and close the air suction port 11b by a driving force of a motor (not shown).
 バックケーシング14は、送風機10の背面側に位置するとともに、空気吹出口11cに連続して形成され、空気の流路壁面としての湾曲面14aを有している。この湾曲面14aは、凹面が前方を向くように配設され、空気吹出口11cの縁部から送風機10に向けて徐々に近づくように湾曲している。 The back casing 14 is located on the back side of the blower 10, is formed continuously with the air outlet 11 c, and has a curved surface 14 a as an air flow path wall surface. The curved surface 14 a is disposed so that the concave surface faces the front, and is curved so as to gradually approach the blower 10 from the edge of the air outlet 11 c.
 また、バックケーシング14は、送風機10と後記する後側熱交換器23との間に突出するバックノーズ部14b(リアガイダともいう)を有している。また、バックノーズ部14bの送風機10側の面14b1は、湾曲面14aと段差無くなだらかな連続面となるように延びている。また、バックノーズ部14bの先端は、後側熱交換器23の長手方向の略中央に位置する程度まで延びている。また、バックノーズ部14bの送風機10とは逆側の面14b2は、後側熱交換器23と略平行に形成されている。 Further, the back casing 14 has a back nose portion 14b (also referred to as a rear guider) protruding between the blower 10 and a rear heat exchanger 23 described later. Further, the surface 14b1 on the blower 10 side of the back nose portion 14b extends so as to be a smooth continuous surface without a step difference from the curved surface 14a. Further, the front end of the back nose portion 14 b extends to the extent that it is located at the approximate center in the longitudinal direction of the rear heat exchanger 23. Moreover, the surface 14b2 on the opposite side to the blower 10 of the back nose portion 14b is formed substantially parallel to the rear heat exchanger 23.
 なお、図示していないが、バックケーシング14の湾曲面14aおよびバックノーズ部14bは、送風機10の軸方向(紙面垂直方向)に沿って、送風機10の一端から他端まで対向するように延びている。 Although not shown, the curved surface 14a and the back nose portion 14b of the back casing 14 extend along the axial direction (perpendicular to the paper surface) of the blower 10 so as to face from one end to the other end of the blower 10. Yes.
 また、バックケーシング14は、バックノーズ部14bの後方に、鉛直方向上方に延びる流路壁面14cが形成されている。また、バックケーシング14は、バックノーズ部14bと流路壁面14cとの間に、後側熱交換器23の一部(下半分程)が挿入される凹部14dが形成されている。 Further, the back casing 14 has a channel wall surface 14c extending upward in the vertical direction behind the back nose portion 14b. In addition, the back casing 14 is formed with a concave portion 14d into which a part (about the lower half) of the rear heat exchanger 23 is inserted between the back nose portion 14b and the channel wall surface 14c.
 フロントケーシング15は、送風機10の略前方に位置し、前側下部熱交換器22の下方近傍において、空気吹出口11cに連続して送風機10に向けて延びる壁面15aを有している。また、フロントケーシング15の先端には、略矩形状に曲げ形成されたフロントノーズ部15b(スタビライザともいう)が一体に形成されている。このフロントノーズ部15bは、図示していないが、送風機10の軸方向(紙面垂直方向)に沿って、送風機10の一端から他端まで対向するように延びている。 The front casing 15 is positioned substantially in front of the blower 10 and has a wall surface 15a extending toward the blower 10 continuously to the air outlet 11c in the vicinity below the front lower heat exchanger 22. In addition, a front nose portion 15b (also referred to as a stabilizer) that is bent into a substantially rectangular shape is integrally formed at the front end of the front casing 15. Although not shown, the front nose portion 15b extends from the one end of the blower 10 to the other end along the axial direction (perpendicular to the paper surface) of the blower 10.
 図2に示すように、室内熱交換器8Aは、送風機10と、空気吸込口11a、11bとの間で該送風機10の上流側に配置されている。また、室内熱交換器8Aは、筺体11の前後方向の略中央から前側に位置する前側上部熱交換器21Aと、この前側上部熱交換器21Aの下側に位置する前側下部熱交換器22と、筺体11の前後方向の略中央から後側に位置する後側熱交換器23と、を備えて構成されている。 As shown in FIG. 2, the indoor heat exchanger 8A is disposed on the upstream side of the blower 10 between the blower 10 and the air suction ports 11a and 11b. The indoor heat exchanger 8A includes a front upper heat exchanger 21A located on the front side from the approximate center in the front-rear direction of the housing 11, and a front lower heat exchanger 22 located on the lower side of the front upper heat exchanger 21A. The rear heat exchanger 23 is located on the rear side from the approximate center in the front-rear direction of the housing 11.
 前側上部熱交換器21Aと後側熱交換器23は、送風機10の上方で組み合わされて側面視において逆V字状に配置されている。また、前側上部熱交換器21Aと前側下部熱交換器22は、送風機10の前方で組み合わされて側面視においてブーメラン状(く字状)に構成されている。 The front upper heat exchanger 21A and the rear heat exchanger 23 are combined above the blower 10 and arranged in an inverted V shape in a side view. Further, the front upper heat exchanger 21A and the front lower heat exchanger 22 are combined in front of the blower 10 and configured in a boomerang shape (in a square shape) in a side view.
 前側上部熱交換器21Aは、例えば、アルミニウム製またはアルミニウム合金製の薄板を板厚方向に複数枚並べて構成されたフィン31(複数のフィン)と、フィン31を貫通する断面形状が扁平なアルミニウム製、アルミニウム合金製などで形成された扁平管群32(複数の扁平伝熱管)と、によって構成されている。このように、アルミニウムは、従来の銅製に比べて材料費が安価であり、押出加工性に優れている。 The front upper heat exchanger 21A includes, for example, fins 31 (plural fins) configured by arranging a plurality of aluminum or aluminum alloy thin plates in the thickness direction, and aluminum having a flat cross-sectional shape that penetrates the fins 31. And a flat tube group 32 (a plurality of flat heat transfer tubes) formed of an aluminum alloy or the like. Thus, aluminum has a lower material cost than that of conventional copper, and is excellent in extrusion processability.
 フィン31は、送風機10の回転軸(回転中心O)方向からの側面視において、上端31aから下端31bに向けて細長い形状を有している。また、フィン31の前端31cおよび後端31dは、上端31aから下端31bまで前方に向けて傾斜するとともに、前端31cと後端31dとが互いに平行である。また、フィン31の上端31aおよび下端31bは、水平方向に延びるとともに、上端31aと下端31bとが互いに平行である。 The fin 31 has an elongated shape from the upper end 31a toward the lower end 31b in a side view from the direction of the rotation axis (rotation center O) of the blower 10. The front end 31c and the rear end 31d of the fin 31 are inclined forward from the upper end 31a to the lower end 31b, and the front end 31c and the rear end 31d are parallel to each other. Further, the upper end 31a and the lower end 31b of the fin 31 extend in the horizontal direction, and the upper end 31a and the lower end 31b are parallel to each other.
 扁平管群32は、室内熱交換器8Aの外側から送風機10の側に向けて(空気の流れ方向に向けて)、2列(複数列)に構成されている。すなわち、扁平管群32は、空気が導入される側(空気導入側)に配置される風上側扁平管32Aと、送風機10側に配置される風下側扁平管32Bと、を有している。風上側扁平管32Aは、フィン31の長手方向s1に沿って配置される複数の扁平伝熱管32aによって構成されている。風下側扁平管32Bは、フィン31の長手方向s1に沿って配置される複数の扁平伝熱管32b,32cによって構成されている。扁平伝熱管32cは、扁平伝熱管32b,32cの並び方向の上端側に位置するものである。 The flat tube group 32 is configured in two rows (a plurality of rows) from the outside of the indoor heat exchanger 8A toward the blower 10 (in the air flow direction). That is, the flat tube group 32 has an upwind flat tube 32A disposed on the air introduction side (air introduction side) and a leeward flat tube 32B disposed on the blower 10 side. The windward flat tube 32 </ b> A is configured by a plurality of flat heat transfer tubes 32 a arranged along the longitudinal direction s <b> 1 of the fins 31. The leeward side flat tube 32 </ b> B is configured by a plurality of flat heat transfer tubes 32 b and 32 c arranged along the longitudinal direction s <b> 1 of the fin 31. The flat heat transfer tube 32c is located on the upper end side in the direction in which the flat heat transfer tubes 32b and 32c are arranged.
 風上側扁平管32Aの扁平伝熱管32aおよび風下側扁平管32Bの扁平伝熱管32b,32cは、それぞれ、対向する平坦部(直線部)と、平坦部(直線部)の一端同士および他端同士を接続する湾曲部と、を備えて構成されている。また、扁平伝熱管32a,32b,32cの内部は、一方の平坦部の内壁面から他方の平坦部の内壁面に向けて延びる複数の隔壁によって複数の冷媒流路に区画されている。このように、扁平伝熱管32a,32b,32cの管内を隔壁で区画することで、管内の伝熱面積の拡大が図れ、伝熱性能の向上が図れる。 The flat heat transfer tube 32a of the windward flat tube 32A and the flat heat transfer tubes 32b and 32c of the leeward flat tube 32B are respectively opposed to each other between one end and the other end of a flat portion (straight portion) and a flat portion (straight portion). And a bending portion that connects the two. The flat heat transfer tubes 32a, 32b, and 32c are partitioned into a plurality of refrigerant flow paths by a plurality of partition walls that extend from the inner wall surface of one flat portion toward the inner wall surface of the other flat portion. Thus, by dividing the inside of the flat heat transfer tubes 32a, 32b, and 32c by the partition walls, the heat transfer area in the tubes can be expanded and the heat transfer performance can be improved.
 扁平伝熱管32aは、前側上部熱交換器21Aの外側に位置し、フィン31の長手方向s1に沿って並んで配置されている。また、複数の扁平伝熱管32aは、隣り合う扁平伝熱管32aの間隔がそれぞれ等しく形成されている。なお、隣り合う扁平伝熱管32aの間隔は、必ずしも等間隔でなくてもよい。また、複数の扁平伝熱管32aは、扁平伝熱管32aの長軸方向x1が長手方向s1に対して直交する方向を向いている。 The flat heat transfer tubes 32 a are located outside the front upper heat exchanger 21 </ b> A and are arranged along the longitudinal direction s <b> 1 of the fins 31. Moreover, the space | interval of the adjacent flat heat exchanger tube 32a is each formed equally in the some flat heat exchanger tube 32a. In addition, the space | interval of the adjacent flat heat exchanger tube 32a does not necessarily need to be equal intervals. Further, the plurality of flat heat transfer tubes 32a face the direction in which the long axis direction x1 of the flat heat transfer tubes 32a is orthogonal to the longitudinal direction s1.
 扁平伝熱管32bは、前側上部熱交換器21Aの送風機10側に位置し、フィン31の長手方向s1に沿って並んで配置されている。また、複数の扁平伝熱管32bは、隣り合う扁平伝熱管32bの間隔が等しく形成されている。なお、隣り合う扁平伝熱管32bの間隔は、必ずしも等間隔でなくてもよい。また、複数の扁平伝熱管32bは、扁平伝熱管32bの長軸方向x1が長手方向s1に対して直交する方向を向いている。 The flat heat transfer tubes 32 b are located on the blower 10 side of the front upper heat exchanger 21 </ b> A and are arranged side by side along the longitudinal direction s <b> 1 of the fins 31. Moreover, the space | interval of the adjacent flat heat exchanger tube 32b is formed equally in the some flat heat exchanger tube 32b. In addition, the space | interval of the adjacent flat heat exchanger tube 32b does not necessarily need to be equal intervals. Further, the plurality of flat heat transfer tubes 32b face the direction in which the long axis direction x1 of the flat heat transfer tubes 32b is orthogonal to the longitudinal direction s1.
 扁平伝熱管32cは、前記した扁平伝熱管32aとは長軸方向x2の向きが異なっている。このように、前側上部熱交換器21Aにおける風上側扁平管32Aの扁平伝熱管32aの角度と、風下側扁平管32Bの扁平伝熱管32cの角度とが異なっている。さらに、前側上部熱交換器21Aでは、重力方向Gを0度とした場合、風上側扁平管32Aの扁平伝熱管32aの角度θ10が、風下側扁平管32Bの扁平伝熱管32cの角度θ20より大きく設定されている。なお、角度θ10は、重力方向Gと扁平伝熱管32aの長手方向x1とで成す角度を意味している。また、角度θ20は、重力方向Gと扁平伝熱管32cの長手方向x2とで成す角度を意味している。具体的には、風上側扁平管32Aの角度θ10は、45度以上、風下側扁平管32Bの扁平伝熱管32cの角度θ20は、45度未満に設定される。 The flat heat transfer tube 32c is different from the flat heat transfer tube 32a in the direction of the major axis direction x2. Thus, the angle of the flat heat transfer tube 32a of the windward flat tube 32A in the front upper heat exchanger 21A is different from the angle of the flat heat transfer tube 32c of the leeward flat tube 32B. Further, in the front upper heat exchanger 21A, when the gravity direction G is 0 degree, the angle θ10 of the flat heat transfer tube 32a of the windward flat tube 32A is larger than the angle θ20 of the flat heat transfer tube 32c of the leeward flat tube 32B. Is set. The angle θ10 means an angle formed by the gravity direction G and the longitudinal direction x1 of the flat heat transfer tube 32a. Further, the angle θ20 means an angle formed by the gravity direction G and the longitudinal direction x2 of the flat heat transfer tube 32c. Specifically, the angle θ10 of the windward flat tube 32A is set to 45 degrees or more, and the angle θ20 of the flat heat transfer tube 32c of the leeward flat tube 32B is set to less than 45 degrees.
 これにより、扁平伝熱管32cの向き(長軸方向x2の向き)が前側上部熱交換器21A(フィン31の上端31a)の上方から導入される風の流れ方向(矢印A1参照)と略平行に近い向き(矢印A2参照)となるように配置され、空気の流れの曲がり(A1→A2)が小さくなることで抵抗がより小さくなるように構成されている。 Thereby, the direction of the flat heat transfer tube 32c (the direction of the long axis direction x2) is substantially parallel to the flow direction of the wind introduced from above the front upper heat exchanger 21A (the upper end 31a of the fin 31) (see arrow A1). It arrange | positions so that it may become a near direction (refer arrow A2), and it is comprised so that resistance may become smaller because the curvature (A1-> A2) of an air flow becomes small.
 また、白抜きの矢印A1,矢印A2および矢印A3で示すように、空気の流れ方向が大きく曲がることなく、前側上部熱交換器21Aを通過することができる。 Also, as indicated by the white arrow A1, arrow A2, and arrow A3, the air flow direction can pass through the front upper heat exchanger 21A without bending significantly.
 また、扁平伝熱管32a,32b,32cは、フィン31に形成された扁平形状の孔に挿通し、ろう付けによってフィン31に接合される。また、扁平伝熱管32a,32b,32cを内側から機械的に拡管し、フィン31をかしめることによって、扁平伝熱管32a,32b,32cとフィン31を固定してもよい。なお、フィン31の長手方向s1の前端31cまたは後端31dにU字状に切り欠きを形成して、扁平伝熱管32a,32b,32cを差し込み、ろう付けによって接合する構成であってもよい。 The flat heat transfer tubes 32a, 32b, and 32c are inserted into flat holes formed in the fins 31 and joined to the fins 31 by brazing. Further, the flat heat transfer tubes 32a, 32b, and 32c may be mechanically expanded from the inside and the fins 31 may be caulked to fix the flat heat transfer tubes 32a, 32b, and 32c and the fins 31. The fin 31 may have a U-shaped cutout at the front end 31c or the rear end 31d in the longitudinal direction s1, and the flat heat transfer tubes 32a, 32b, 32c may be inserted and joined by brazing.
 前側下部熱交換器22は、例えば、前側上部熱交換器21Aと同様な材料で構成された、フィン33および扁平管群34によって構成されている。 The front lower heat exchanger 22 includes, for example, fins 33 and flat tube groups 34 made of the same material as the front upper heat exchanger 21A.
 フィン33は、送風機10の回転軸(回転中心O)の方向からの側面視において、上端33aから下端33bに向けて細長い形状を有している。また、フィン33の前端33cおよび後端33dは、上端33aから下端33bに向けて後方に傾斜するとともに、前端33cと後端33dとが互いに平行である。また、フィン33の上端33aおよび下端33bは、水平方向に延びるとともに、上端33aと下端33bとが互いに平行である。また、前記したフィン31の下端31bと、フィン33の上端33aとは、互いに線状に接するように組み合わされている。 The fin 33 has an elongated shape from the upper end 33a toward the lower end 33b in a side view from the direction of the rotation axis (rotation center O) of the blower 10. The front end 33c and the rear end 33d of the fin 33 are inclined rearward from the upper end 33a toward the lower end 33b, and the front end 33c and the rear end 33d are parallel to each other. The upper end 33a and the lower end 33b of the fin 33 extend in the horizontal direction, and the upper end 33a and the lower end 33b are parallel to each other. The lower end 31b of the fin 31 and the upper end 33a of the fin 33 are combined so as to be in linear contact with each other.
 扁平管群34は、室内熱交換器8Aの外側から送風機10の側に向けて(空気の流れ方向に向けて)、複数の扁平伝熱管34a,34bによって2列(複数列)に構成されている。すなわち、扁平管群34は、空気が導入される側(空気導入側)に配置される風上側扁平管34Aと、送風機10側に配置される風下側扁平管34Bと、を有している。風上側扁平管34Aは、フィン31の長手方向s2に沿って配置される複数の扁平伝熱管34aによって構成されている。風下側扁平管34Bは、フィン31の長手方向s2に沿って配置される複数の扁平伝熱管34bによって構成されている。なお、扁平伝熱管34a,34bは、前記した扁平伝熱管32a,32b,32cと同様に構成されている。 The flat tube group 34 is configured in two rows (a plurality of rows) by a plurality of flat heat transfer tubes 34a and 34b from the outside of the indoor heat exchanger 8A toward the blower 10 (toward the air flow direction). Yes. That is, the flat tube group 34 has an upwind flat tube 34A disposed on the air introduction side (air introduction side) and a leeward flat tube 34B disposed on the blower 10 side. The windward flat tube 34 </ b> A includes a plurality of flat heat transfer tubes 34 a arranged along the longitudinal direction s <b> 2 of the fin 31. The leeward side flat tube 34 </ b> B is configured by a plurality of flat heat transfer tubes 34 b disposed along the longitudinal direction s <b> 2 of the fin 31. The flat heat transfer tubes 34a, 34b are configured in the same manner as the flat heat transfer tubes 32a, 32b, 32c described above.
 扁平伝熱管34aは、前側下部熱交換器22の外側の列に位置し、フィン33の長手方向s2に沿って並んで配置されている。また、隣り合う扁平伝熱管34aの間隔がそれぞれ等しく形成されている。なお、隣り合う扁平伝熱管34aの間隔は、必ずしも等間隔でなくてもよい。また、扁平伝熱管34aは、扁平伝熱管34aの長軸方向x3が長手方向s2に対して直交する方向を向いている。 The flat heat transfer tubes 34 a are located in the outer row of the front lower heat exchanger 22 and are arranged along the longitudinal direction s <b> 2 of the fins 33. Moreover, the space | interval of the adjacent flat heat exchanger tube 34a is formed equally, respectively. In addition, the space | interval of the adjacent flat heat exchanger tube 34a does not necessarily need to be equal intervals. The flat heat transfer tube 34a faces the direction in which the long axis direction x3 of the flat heat transfer tube 34a is orthogonal to the longitudinal direction s2.
 扁平伝熱管34bは、前側下部熱交換器22の送風機10側に位置し、フィン33の長手方向s2に沿って並んで配置されている。また、隣り合う扁平伝熱管34bの間隔が等しく形成されている。なお、隣り合う扁平伝熱管34bの間隔は、必ずしも等間隔でなくてもよい。扁平伝熱管34bは、扁平伝熱管34bの長軸方向x3が長手方向s2に対して直交する方向を向いている。 The flat heat transfer tubes 34 b are located on the blower 10 side of the front lower heat exchanger 22 and are arranged side by side along the longitudinal direction s <b> 2 of the fins 33. Moreover, the space | interval of the adjacent flat heat exchanger tube 34b is formed equally. In addition, the space | interval of the adjacent flat heat exchanger tube 34b does not necessarily need to be equal intervals. The flat heat transfer tube 34b faces the direction in which the long axis direction x3 of the flat heat transfer tube 34b is orthogonal to the longitudinal direction s2.
 後側熱交換器23は、例えば、前側上部熱交換器21Aおよび前側下部熱交換器22と同様な材料で構成された、フィン35および扁平管群36によって構成されている。すなわち、扁平管群36は、空気が導入される側(空気導入側)に配置される風上側扁平管36Aと、送風機10側に配置される風下側扁平管36Bと、を有している。風上側扁平管36Aは、フィン31の長手方向s3に沿って配置される複数の扁平伝熱管36aによって構成されている。風下側扁平管36Bは、フィン31の長手方向s3に沿って配置される複数の扁平伝熱管36bによって構成されている。なお、扁平伝熱管36a,36bは、前記した扁平伝熱管32a,32b,32cと同様に構成されている。 The rear heat exchanger 23 is configured by, for example, fins 35 and flat tube groups 36 made of the same material as the front upper heat exchanger 21 </ b> A and the front lower heat exchanger 22. That is, the flat tube group 36 has an upwind flat tube 36A disposed on the air introduction side (air introduction side) and a leeward flat tube 36B disposed on the blower 10 side. The windward flat tube 36 </ b> A is configured by a plurality of flat heat transfer tubes 36 a arranged along the longitudinal direction s <b> 3 of the fin 31. The leeward side flat tube 36 </ b> B includes a plurality of flat heat transfer tubes 36 b disposed along the longitudinal direction s <b> 3 of the fin 31. The flat heat transfer tubes 36a, 36b are configured in the same manner as the flat heat transfer tubes 32a, 32b, 32c described above.
 フィン35は、送風機10の回転軸(回転中心O)方向からの側面視において、上端35aから下端35bに向けて細長い形状を有している。また、フィン35の前端35cおよび後端35dは、上端35aから下端35bに向けて後方に傾斜するとともに、前端35cと後端35dとが互いに平行である。 The fin 35 has an elongated shape from the upper end 35a toward the lower end 35b in a side view from the direction of the rotation axis (rotation center O) of the blower 10. The front end 35c and the rear end 35d of the fin 35 are inclined rearward from the upper end 35a toward the lower end 35b, and the front end 35c and the rear end 35d are parallel to each other.
 扁平管群36は、室内熱交換器8Aの外側から送風機10の側に向けて(空気の流れ方向に向けて)、複数の扁平伝熱管36a,36bによって2列(複数列)に構成されている。 The flat tube group 36 is configured in two rows (a plurality of rows) by a plurality of flat heat transfer tubes 36a and 36b from the outside of the indoor heat exchanger 8A toward the blower 10 (toward the air flow direction). Yes.
 扁平伝熱管36aは、後側熱交換器23の外側に位置し、フィン35の長手方向s3に沿って並んで配置されている。また、隣り合う扁平伝熱管36aの間隔がそれぞれ等しく形成されている。なお、隣り合う扁平伝熱管36aの間隔は、必ずしも等間隔でなくてもよい。また、扁平伝熱管36aは、扁平伝熱管36aの長軸方向x4が長手方向s3に対して直交する方向を向いている。 The flat heat transfer tubes 36 a are located outside the rear heat exchanger 23 and are arranged side by side along the longitudinal direction s 3 of the fins 35. Moreover, the space | interval of the adjacent flat heat exchanger tube 36a is formed equally, respectively. In addition, the space | interval of the adjacent flat heat exchanger tube 36a does not necessarily need to be equal intervals. The flat heat transfer tube 36a faces the direction in which the long axis direction x4 of the flat heat transfer tube 36a is orthogonal to the longitudinal direction s3.
 扁平伝熱管36bは、後側熱交換器23の送風機10側に位置し、フィン35の長手方向s3に沿って並んで配置されている。また、複数の扁平伝熱管36bは、隣り合う扁平伝熱管36bの間隔が等しく形成されている。なお、隣り合う扁平伝熱管36bの間隔は、必ずしも等間隔でなくてもよい。また、扁平伝熱管36bは、扁平伝熱管36bの長軸方向x4が長手方向s3に対して直交する方向を向いている。 The flat heat transfer tubes 36 b are located on the blower 10 side of the rear heat exchanger 23 and are arranged side by side along the longitudinal direction s 3 of the fins 35. Moreover, the space | interval of the adjacent flat heat exchanger tube 36b is formed equally in the some flat heat exchanger tube 36b. In addition, the space | interval of the adjacent flat heat exchanger tube 36b does not necessarily need to be equal intervals. Further, the flat heat transfer tube 36b faces the direction in which the long axis direction x4 of the flat heat transfer tube 36b is orthogonal to the longitudinal direction s3.
 また、後側熱交換器23の上端35aと、前側上部熱交換器21Aの上端31aとは互いに平行であり、いずれも同じ高さ位置に配置されている。 Also, the upper end 35a of the rear heat exchanger 23 and the upper end 31a of the front upper heat exchanger 21A are parallel to each other, and both are arranged at the same height position.
 このように構成された室内機2では、フロントパネル16が開いた状態において、送風機10が回転することによって、室内空気が空気吸込口11a,11bから導入され、フィルタ12a,12b、室内熱交換器8A、送風機10を通って、空気吹出口11cから吹き出される。 In the indoor unit 2 configured as described above, when the blower 10 rotates in a state where the front panel 16 is opened, indoor air is introduced from the air suction ports 11a and 11b, and the filters 12a and 12b and the indoor heat exchanger are introduced. 8A passes through the blower 10 and is blown out from the air outlet 11c.
 このとき、上部の空気吸込口11aでは、室内空気が上方から吸い込まれる。空気吸込口11aから吸い込まれた室内空気は、前側上部熱交換器21Aの前方から吸い込まれ、前側上部熱交換器21Aを通ることで、室内空気と扁平伝熱管32a,32b,32c内を通る冷媒との間で熱交換が行われる。また、空気吸込口11aから吸い込まれた室内空気は、前側下部熱交換器22の前方から吸い込まれ、前側下部熱交換器22を通ることで、室内空気と扁平伝熱管34a,34b内を通る冷媒との間で熱交換が行われる。また、空気吸込口11aから吸い込まれた室内空気は、後側熱交換器23の後方から後側熱交換器23内に吸い込まれ、室内空気と扁平伝熱管36a,36b内を通る冷媒との間で熱交換が行われる。 At this time, indoor air is sucked from above at the upper air suction port 11a. The indoor air sucked from the air suction port 11a is sucked from the front of the front upper heat exchanger 21A, passes through the front upper heat exchanger 21A, and passes through the room air and the flat heat transfer tubes 32a, 32b, 32c. Heat exchange with the The indoor air sucked from the air suction port 11a is sucked from the front of the front lower heat exchanger 22 and passes through the front lower heat exchanger 22, so that the refrigerant passes through the room air and the flat heat transfer tubes 34a and 34b. Heat exchange with the The room air sucked from the air suction port 11a is sucked into the rear heat exchanger 23 from the rear of the rear heat exchanger 23, and between the room air and the refrigerant passing through the flat heat transfer tubes 36a and 36b. Heat exchange takes place at.
 また、空気吸込口11bから吸い込まれた室内空気は、前側上部熱交換器21Aの前方から吸い込まれ、前側上部熱交換器21Aを通ることで、室内空気と扁平伝熱管32a,32b,32c内を通る冷媒との間で熱交換が行われる。また、空気吸込口11bから吸い込まれた室内空気は、前側下部熱交換器22の前方から吸い込まれ、前側下部熱交換器22を通ることで、室内空気と扁平伝熱管34a,34b内を通る冷媒との間で熱交換が行われる。 The room air sucked from the air suction port 11b is sucked from the front of the front upper heat exchanger 21A and passes through the front upper heat exchanger 21A, thereby passing through the room air and the flat heat transfer tubes 32a, 32b, and 32c. Heat exchange is performed with the passing refrigerant. The indoor air sucked from the air suction port 11b is sucked from the front of the front lower heat exchanger 22 and passes through the front lower heat exchanger 22 so that the refrigerant passes through the room air and the flat heat transfer tubes 34a and 34b. Heat exchange with the
 図3は、比較例1に係る空気調和機を示す断面図である。なお、図3は、第1実施形態、第3実施形態、第4実施形態および第5実施形態に対する比較例をまとめて示している。図3において、白抜きの矢印A200~A220は第1実施形態に対応する比較例であり、矢印A230~A260は第3実施形態に対応する比較例であり、矢印A270は第4実施形態に対応する比較例であり、矢印A280は第5実施形態に対応する比較例である。 FIG. 3 is a cross-sectional view showing an air conditioner according to Comparative Example 1. FIG. 3 collectively shows comparative examples for the first embodiment, the third embodiment, the fourth embodiment, and the fifth embodiment. In FIG. 3, white arrows A200 to A220 are comparative examples corresponding to the first embodiment, arrows A230 to A260 are comparative examples corresponding to the third embodiment, and arrow A270 corresponds to the fourth embodiment. The arrow A280 is a comparative example corresponding to the fifth embodiment.
 図3に示す室内機200は、第1実施形態の前側上部熱交換器21Aの扁平伝熱管32c,32c(図2参照)に替えて、扁平伝熱管32b,32bを備えたものである。なお、扁平伝熱管32bは、第1実施形態における扁平伝熱管32bと同様な間隔および向きである。その他の構成は、第1実施形態と同様である。 3 is provided with flat heat transfer tubes 32b and 32b instead of the flat heat transfer tubes 32c and 32c (see FIG. 2) of the front upper heat exchanger 21A of the first embodiment. The flat heat transfer tubes 32b have the same spacing and orientation as the flat heat transfer tubes 32b in the first embodiment. Other configurations are the same as those of the first embodiment.
 ところで、図3に示すように、比較例として示す室内熱交換器200では、前側上部熱交換器21の上方から吸い込まれた室内空気(白抜き矢印A200参照)が、白抜き矢印A210で示すように、扁平伝熱管32bと扁平伝熱管32bとの間を通るように向きを大きく変えて流れる。そして、前側上部熱交換器21から流出した室内空気は、白抜き矢印A220で示すように、送風機10側に向きを変えて流れる。 By the way, as shown in FIG. 3, in the indoor heat exchanger 200 shown as a comparative example, the indoor air sucked from above the front upper heat exchanger 21 (see the white arrow A200) is indicated by the white arrow A210. In addition, the flow greatly changes in direction so as to pass between the flat heat transfer tube 32b and the flat heat transfer tube 32b. And the indoor air which flowed out from the front side upper heat exchanger 21 changes direction to the air blower 10 side, as shown by the white arrow A220.
 また、室内熱交換器200は、室内機の形状の制約から、板状の形状ではなく、湾曲したり、折れ曲がったりした形状である場合が多い。室内熱交換器200に扁平伝熱管を適用した場合、扁平伝熱管は、貫流ファン(送風機10)の回転中心Oを向くように角度を揃えて互いに平行に配置される場合が多い。しかし、このとき室内熱交換器200から貫流ファン(送風機10)への通風流路(矢印A220参照)は角度が大きく変わらないが、室内熱交換器200の外から室内熱交換器200に入る空気の通風流路は部位によって大きな角度がつき、これにより室内熱交換器200での通風抵抗が上昇する。さらに、これだけでなく、扁平伝熱管32bの一部に空気が澱む死水域(図3の○で囲む領域P)が生じ、熱交換効率が低下する可能性がある。 Also, the indoor heat exchanger 200 is often not a plate shape but a curved or bent shape due to restrictions on the shape of the indoor unit. When flat heat transfer tubes are applied to the indoor heat exchanger 200, the flat heat transfer tubes are often arranged in parallel with each other at an angle so as to face the rotation center O of the cross-flow fan (blower 10). However, at this time, the air flow path (see arrow A220) from the indoor heat exchanger 200 to the once-through fan (blower 10) does not change greatly, but the air entering the indoor heat exchanger 200 from the outside of the indoor heat exchanger 200 The ventilation flow path of this type has a large angle depending on the part, and this increases the ventilation resistance in the indoor heat exchanger 200. In addition to this, a dead water region (region P surrounded by ◯ in FIG. 3) in which air stagnates occurs in a part of the flat heat transfer tube 32b, which may reduce the heat exchange efficiency.
 前記したように、室内空気が前側上部熱交換器21に入る前(矢印A200)、熱交換中(矢印A210)、前側上部熱交換器21Aから出た後(矢印A220)において、それぞれ空気の流れの向きが大きく変化している。矢印A200から矢印A210の部分、矢印A210から矢印A220の部分において、圧力損失が大きくなり、前側上部熱交換器21の性能低下につながるおそれがある。 As described above, before the indoor air enters the front upper heat exchanger 21 (arrow A200), during heat exchange (arrow A210), and after leaving the front upper heat exchanger 21A (arrow A220), the flow of air respectively. The direction of has changed greatly. The pressure loss increases in the portion from the arrow A200 to the arrow A210 and the portion from the arrow A210 to the arrow A220, which may lead to a decrease in the performance of the front upper heat exchanger 21.
 そこで、第1実施形態では、図2において扁平伝熱管32c,32c(風下側扁平管32Bの一部)として示すように、扁平伝熱管32bとして配置した場合よりも通風抵抗が低減するように扁平伝熱管32c,32cの向きを扁平伝熱管32bに対して回転させることで変更している。すなわち、前側上部熱交換器21Aの手前の空気の流れ方向が矢印A1(A200と同様)である場合、扁平伝熱管32c,32c間を流れる空気の流れ方向が矢印A2となり、前側上部熱交換器21Aから出た後では、矢印A3なる。このように、前側上部熱交換器21A内を通る空気の流れ方向が、前側上部熱交換器21Aの手前における空気流れに略沿った方向となるように、扁平伝熱管32c,32cの向きを変更する。このように、そのままでは通風抵抗が高くなる場所である扁平伝熱管32c,32cの向きを、通風抵抗が低減するように向きを変えることで、前側上部熱交換器21Aにおける熱交換効率を向上させることができ、その結果として、室内熱交換器8Aの性能を向上した室内機2を実現できる。 Therefore, in the first embodiment, as shown as flat heat transfer tubes 32c and 32c (a part of the leeward flat tube 32B) in FIG. 2, the flat heat transfer tubes 32b are flattened so as to reduce the airflow resistance as compared with the case where they are arranged as flat heat transfer tubes 32b. The direction of the heat transfer tubes 32c and 32c is changed by rotating with respect to the flat heat transfer tube 32b. That is, when the flow direction of the air in front of the front upper heat exchanger 21A is the arrow A1 (similar to A200), the flow direction of the air flowing between the flat heat transfer tubes 32c and 32c is the arrow A2, and the front upper heat exchanger After exiting 21A, it becomes arrow A3. As described above, the direction of the flat heat transfer tubes 32c and 32c is changed so that the flow direction of the air passing through the front upper heat exchanger 21A is substantially along the air flow in front of the front upper heat exchanger 21A. To do. Thus, the heat exchange efficiency in the front upper heat exchanger 21A is improved by changing the orientation of the flat heat transfer tubes 32c and 32c, which are places where the ventilation resistance is increased as it is, so that the ventilation resistance is reduced. As a result, the indoor unit 2 with improved performance of the indoor heat exchanger 8A can be realized.
 以上説明したように、第1実施形態の空気調和機の室内機2は、フィン31,33,35と、フィン31,33,35を貫通する断面形状が扁平な複数の扁平伝熱管32a,32b,32c,34a,34b,36a,36bと、を有する室内熱交換器8Aと、室内熱交換器8Aにおいて熱交換された空気を筐体11の外部に排出する送風機10と、を備える。また、複数の扁平伝熱管32a,32b,32cは、フィン31の長手方向s1に並んで且つ複数列に配置され、空気導入側に配置される風上側扁平管32Aおよび送風機10側に配置される風下側扁平管32Bから成り、風上側扁平管32A(扁平伝熱管32a)の角度θ10と風下側扁平管32Bの一部(扁平伝熱管32c)の角度θ20とが異なる。これによれば、室内熱交換器8Aの上方からの空気の流れ抵抗を低減することが可能になり(図2の矢印A2参照)、前側上部熱交換器21Aにおける熱交換効率を向上できる。 As described above, the indoor unit 2 of the air conditioner according to the first embodiment has the fins 31, 33, 35 and the plurality of flat heat transfer tubes 32a, 32b having a flat cross-sectional shape penetrating the fins 31, 33, 35. , 32c, 34a, 34b, 36a, 36b, and an air blower 10 for discharging the air heat-exchanged in the indoor heat exchanger 8A to the outside of the casing 11. Further, the plurality of flat heat transfer tubes 32a, 32b, and 32c are arranged in a plurality of rows side by side in the longitudinal direction s1 of the fin 31, and are arranged on the windward flat tube 32A and the blower 10 side arranged on the air introduction side. The angle θ10 of the windward flat tube 32A (flat heat transfer tube 32a) is different from the angle θ20 of a portion of the leeward flat tube 32B (flat heat transfer tube 32c). According to this, it becomes possible to reduce the flow resistance of air from above the indoor heat exchanger 8A (see arrow A2 in FIG. 2), and the heat exchange efficiency in the front upper heat exchanger 21A can be improved.
 また、第1実施形態では、前側上部熱交換器32Aは、重力方向Gを0度とした場合、風下側扁平管32Bの一部(扁平伝熱管32c)の角度θ20が風上側扁平管32Aの(扁平伝熱管32a)の角度より小さい。これにより、室内熱交換器8Aの上部における風下側扁平管32B(扁平伝熱管32c)を送風機10側に向けることが容易になるので、通風抵抗を低減することが可能になる。 In the first embodiment, the front upper heat exchanger 32A has an angle θ20 of a part of the leeward flat tube 32B (flat heat transfer tube 32c) of the leeward flat tube 32A when the gravity direction G is 0 degree. It is smaller than the angle of (flat heat transfer tube 32a). Thereby, since it becomes easy to point the leeward side flat tube 32B (flat heat transfer tube 32c) in the upper part of the indoor heat exchanger 8A toward the blower 10, it is possible to reduce the ventilation resistance.
 また、第1実施形態では、風上側扁平管32Aの角度は45度以上、かつ、風下側扁平管32B(扁平伝熱管32c)の角度は45度未満である。これにより、室内熱交換器8Aの上部における風下側扁平管32B(扁平伝熱管32c)を送風機10側に向けることが容易になるので、通風抵抗を低減し易くなる。 Further, in the first embodiment, the angle of the leeward flat tube 32A is 45 degrees or more, and the angle of the leeward flat tube 32B (flat heat transfer tube 32c) is less than 45 degrees. Thereby, since it becomes easy to point the leeward side flat tube 32B (flat heat transfer tube 32c) in the upper part of indoor heat exchanger 8A to the air blower 10 side, it becomes easy to reduce ventilation resistance.
 また、第1実施形態の室内機2を空気調和機100に適用することにより、運転効率に優れた空気調和機100を実現できる。 Further, by applying the indoor unit 2 of the first embodiment to the air conditioner 100, the air conditioner 100 having excellent operation efficiency can be realized.
 なお、第1実施形態では、前側上部熱交換器21Aの送風機10側の列の扁平伝熱管32b(風下側扁平管32B)の向きを変えた場合(向きを変えて32c,32cとした場合)を例に挙げて説明したが、このような構成に限定されるものではなく、例えば、前側上部熱交換器21Aの外側の列の一番上の扁平伝熱管32a(風上側扁平管32A)の向きを、通風抵抗が低減するように向きを変えてもよく、または後側熱交換器23の送風機10側の列の扁平伝熱管36b(風下側扁平管36B)の一番上の扁平伝熱管36bの向きを、扁平伝熱管32cと同様に通風抵抗が低減するように向きを変えてもよい。 In the first embodiment, when the direction of the flat heat transfer tubes 32b (leeward side flat tubes 32B) in the row on the blower 10 side of the front upper heat exchanger 21A is changed (when the directions are changed to 32c and 32c). However, the present invention is not limited to such a configuration. For example, the uppermost flat heat transfer tube 32a (windward flat tube 32A) in the outer row of the front upper heat exchanger 21A may be used. The direction may be changed so as to reduce the ventilation resistance, or the top flat heat transfer tube 36b (leeward side flat tube 36B) in the row on the blower 10 side of the rear heat exchanger 23. The direction of 36b may be changed so that the ventilation resistance is reduced in the same manner as the flat heat transfer tube 32c.
(第2実施形態)
 図4は、第2実施形態に係る空気調和機を示す断面図である。
 図4に示すように、第2実施形態の室内機2は、室内熱交換器8Bと送風機10とを備えている。室内熱交換器8Bは、前側上部熱交換器21、前側下部熱交換器22Aおよび後側熱交換器23を備えている。前側下部熱交換器22Aは、例えば、前側上部熱交換器21Aと同様な材料で構成された、フィン33および扁平管群34によって構成されている。
(Second Embodiment)
FIG. 4 is a cross-sectional view showing an air conditioner according to the second embodiment.
As shown in FIG. 4, the indoor unit 2 of the second embodiment includes an indoor heat exchanger 8 </ b> B and a blower 10. The indoor heat exchanger 8B includes a front upper heat exchanger 21, a front lower heat exchanger 22A, and a rear heat exchanger 23. The front lower heat exchanger 22A includes, for example, fins 33 and flat tube groups 34 that are made of the same material as the front upper heat exchanger 21A.
 扁平管群34は、室内熱交換器8Bの外側から送風機10の側に向けて(空気の流れ方向に向けて)、複数の扁平伝熱管34b,34cによって2列(複数列)で構成されている。すなわち、扁平管群34は、空気が導入される側(空気導入側)に配置される風上側扁平管34Aと、送風機10側に配置される風下側扁平管34Bと、を有している。風上側扁平管34Aは、フィン33の長手方向s2に沿って配置される複数の扁平伝熱管34cによって構成されている。風下側扁平管34Bは、フィン33の長手方向s2に沿って配置される複数の扁平伝熱管34bによって構成されている。なお、扁平伝熱管34b,34cは、前記した扁平伝熱管32a,32b,32cと同様に構成されている。 The flat tube group 34 is configured in two rows (a plurality of rows) by a plurality of flat heat transfer tubes 34b and 34c from the outside of the indoor heat exchanger 8B toward the blower 10 (toward the air flow direction). Yes. That is, the flat tube group 34 has an upwind flat tube 34A disposed on the air introduction side (air introduction side) and a leeward flat tube 34B disposed on the blower 10 side. The windward flat tube 34 </ b> A is configured by a plurality of flat heat transfer tubes 34 c disposed along the longitudinal direction s <b> 2 of the fin 33. The leeward side flat tube 34 </ b> B includes a plurality of flat heat transfer tubes 34 b arranged along the longitudinal direction s <b> 2 of the fins 33. The flat heat transfer tubes 34b and 34c are configured similarly to the flat heat transfer tubes 32a, 32b and 32c described above.
 扁平伝熱管34cの長軸方向x3aは、扁平伝熱管34bの長軸方向x3の向きと異なっている。このように、前側下部熱交換器22Aにおける風上側扁平管34Aの扁平伝熱管34cの角度θ30と、風下側扁平管34Bの扁平伝熱管34bの角度θ40とが異なっている。さらに、前側下部熱交換器22Aは、重力方向Gを0度とした場合、風上側扁平管34Aの扁平伝熱管34cの角度θ30が、風下側扁平管34Bの扁平伝熱管34bの角度θ40より小さい。なお、角度θ30は、重力方向Gと扁平伝熱管34cの長手方向x3aとで成す角度を意味している。また、角度θ40は、重力方向Gと扁平伝熱管34bの長手方向x3とで成す角度を意味している。具体的には、風上側扁平管34Aの角度θ30は、90度未満、風下側扁平管34Bの扁平伝熱管34bの角度θ40は、90度以上に設定される。 The long axis direction x3a of the flat heat transfer tube 34c is different from the direction of the long axis direction x3 of the flat heat transfer tube 34b. Thus, the angle θ30 of the flat heat transfer tube 34c of the windward flat tube 34A and the angle θ40 of the flat heat transfer tube 34b of the leeward flat tube 34B in the front lower heat exchanger 22A are different. Further, in the front lower heat exchanger 22A, when the gravity direction G is 0 degree, the angle θ30 of the flat heat transfer tube 34c of the windward flat tube 34A is smaller than the angle θ40 of the flat heat transfer tube 34b of the leeward flat tube 34B. . The angle θ30 means an angle formed by the gravity direction G and the longitudinal direction x3a of the flat heat transfer tube 34c. Further, the angle θ40 means an angle formed by the gravity direction G and the longitudinal direction x3 of the flat heat transfer tube 34b. Specifically, the angle θ30 of the windward flat tube 34A is set to less than 90 degrees, and the angle θ40 of the flat heat transfer tube 34b of the leeward flat tube 34B is set to 90 degrees or more.
 扁平伝熱管34cは、前側下部熱交換器22Aの外側の列に位置し、フィン33の長手方向s2に沿って並んで配置されている。また、隣り合う扁平伝熱管34cの間隔がそれぞれ等しく形成されている。また、扁平伝熱管34cは、扁平伝熱管34bと向きが異なり、かつ、扁平伝熱管34bを配置したと仮定した場合(破線で示す扁平伝熱管34a1参照)よりも通風抵抗が低減する方向を向いている。すなわち、図4に示すように、前側下部熱交換器22Aの手前側の空気の流れ方向が矢印A4である場合、扁平伝熱管34c,34c間を流れる空気の流れ方向が矢印A5であり、扁平伝熱管34b,34b間を流れる空気の流れ方向が矢印A6である。 The flat heat transfer tubes 34 c are located in the outer row of the front lower heat exchanger 22 </ b> A, and are arranged along the longitudinal direction s <b> 2 of the fins 33. Moreover, the space | interval of the adjacent flat heat exchanger tube 34c is formed equally, respectively. Further, the flat heat transfer tube 34c has a different direction from the flat heat transfer tube 34b and faces a direction in which the ventilation resistance is reduced as compared with the case where it is assumed that the flat heat transfer tube 34b is disposed (see the flat heat transfer tube 34a1 indicated by a broken line). ing. That is, as shown in FIG. 4, when the flow direction of the air on the front side of the front lower heat exchanger 22A is the arrow A4, the flow direction of the air flowing between the flat heat transfer tubes 34c and 34c is the arrow A5, The flow direction of the air flowing between the heat transfer tubes 34b and 34b is an arrow A6.
 このように、第2実施形態では、前側下部熱交換器22Aの手前における空気流れに沿う方向(矢印A4)が、扁平伝熱管34c,34cを通る空気の流れ方向(矢印A5)になることで、扁平伝熱管34cが破線で示す扁平伝熱管34a1の場合よりも、矢印A4から矢印A5に向きを変えるときの角度が小さくなる。これにより、通風抵抗が低減されるので、死水域(すなわち、熱交換器として効率の悪い部分)の発生を抑えることができ、前側下部熱交換器22Aにおける熱交換効率を向上できる。このように、そのままでは通風抵抗が高くなる場所である扁平伝熱管34c,34cの向きを、通風抵抗が低減するように向きを変えることで、前側下部熱交換器22Aにおける熱交換効率を向上させることができ、その結果として、室内熱交換器8Bの性能を向上した室内機2を実現できる。 Thus, in 2nd Embodiment, the direction (arrow A4) along the air flow in front of 22 A of front side lower heat exchangers becomes the flow direction (arrow A5) of the air which passes along the flat heat exchanger tubes 34c and 34c. The angle when changing the direction from the arrow A4 to the arrow A5 is smaller than in the case where the flat heat transfer tube 34c is a flat heat transfer tube 34a1 indicated by a broken line. Thereby, since ventilation resistance is reduced, generation | occurrence | production of a dead water area (namely, part with low efficiency as a heat exchanger) can be suppressed, and the heat exchange efficiency in 22 A of front side lower heat exchangers can be improved. Thus, the heat exchange efficiency in the front lower heat exchanger 22A is improved by changing the direction of the flat heat transfer tubes 34c and 34c, which are the places where the ventilation resistance is increased as it is, so that the ventilation resistance is reduced. As a result, the indoor unit 2 with improved performance of the indoor heat exchanger 8B can be realized.
 ところで、図4において矢印A4で示すように、ここでの風の流れは、前側下部熱交換器22Aの長手方向s2を向き易い。特に、室内機2の筐体11(図2参照)の形状の制限により、室内機2の正面から空気が供給されない場合は、空気が室内機2の上部からのみ供給される形となるため、特に風の流れが前側下部熱交換器22Aの長手方向s2を向き易くなる。そこで、図4に示すように、前側下部熱交換器22Aにおいて、外側の列の扁平伝熱管34cの一列すべてを同じ方向を向くように構成したものである。 Incidentally, as indicated by an arrow A4 in FIG. 4, the wind flow here is likely to face the longitudinal direction s2 of the front lower heat exchanger 22A. In particular, due to restrictions on the shape of the casing 11 of the indoor unit 2 (see FIG. 2), when air is not supplied from the front of the indoor unit 2, the air is supplied only from the top of the indoor unit 2. In particular, the flow of wind is likely to face the longitudinal direction s2 of the front lower heat exchanger 22A. Therefore, as shown in FIG. 4, in the front lower heat exchanger 22 </ b> A, all the rows of the flat heat transfer tubes 34 c in the outer row are configured to face the same direction.
 このように、第2実施形態では、同一列の扁平伝熱管34cのすべてが長手方向s2に対して同じ方向を向いている。これによれば、隣り合う扁平伝熱管34c,34cのすべてにおいて、前側下部熱交換器22Aの手前から扁平伝熱管34cに向かう風向きの角度変化が小さくなるので、通風抵抗を低減することができる。その結果、前側下部熱交換器22Aにおける熱交換効率をさらに向上でき、室内熱交換器8Bの性能を向上した室内機2を実現できる。 Thus, in the second embodiment, all the flat heat transfer tubes 34c in the same row are oriented in the same direction with respect to the longitudinal direction s2. According to this, in all of the adjacent flat heat transfer tubes 34c, 34c, the change in the angle of the wind direction from the front side of the front lower heat exchanger 22A toward the flat heat transfer tube 34c is reduced, so that the ventilation resistance can be reduced. As a result, the heat exchange efficiency in the front lower heat exchanger 22A can be further improved, and the indoor unit 2 with improved performance of the indoor heat exchanger 8B can be realized.
 また、角度θ30が90度以上、角度θ40が90度未満になると、通風抵抗が増加するだけでなく、風向きの変化により、前記したように死水域(図3参照)が発生し、熱交換効率の低下を引き起こすおそれがある。そこで、角度θ30を90度未満、角度θ40を90度以上にすることが好ましい。これにより、死水域の発生を抑えつつ、通風抵抗を低減することができる。これにより、前側下部熱交換器22Aにおける熱交換効率を向上でき、その結果として、室内熱交換器8Bの性能を向上した室内機2を実現できる。 Further, when the angle θ30 is 90 degrees or more and the angle θ40 is less than 90 degrees, not only the ventilation resistance increases, but also the dead water area (see FIG. 3) is generated as described above due to the change of the wind direction, and the heat exchange efficiency. There is a risk of lowering. Therefore, it is preferable that the angle θ30 is less than 90 degrees and the angle θ40 is 90 degrees or more. Thereby, ventilation resistance can be reduced, suppressing generation | occurrence | production of a dead water area. Thereby, the heat exchange efficiency in 22 A of front side lower heat exchangers can be improved, As a result, the indoor unit 2 which improved the performance of the indoor heat exchanger 8B is realizable.
 なお、第2実施形態では、前側下部熱交換器22Aの一列すべての扁平伝熱管34cの向きを変えた場合を例に挙げて説明したが、後側熱交換器23の外側の列の扁平伝熱管36aの一列すべての向きを、後側熱交換器23の手前を通る風向きから扁平伝熱管36aを通る風向きとなる抵抗を低減するように変更してもよい。 In the second embodiment, the case where the orientation of all the flat heat transfer tubes 34c in one row of the front lower heat exchanger 22A is changed has been described as an example, but the flat heat transfer in the outer row of the rear heat exchanger 23 is described. The direction of all the rows of the heat tubes 36a may be changed so as to reduce the resistance from the wind direction passing in front of the rear heat exchanger 23 to the wind direction passing through the flat heat transfer tubes 36a.
(第3実施形態)
 図5は、第3実施形態に係る空気調和機を示す断面図である。
 図5に示すように、第3実施形態の室内機2は、室内熱交換器8Cおよび送風機10を備えている。室内熱交換器8Cは、前側上部熱交換器21、前側下部熱交換器22および後側熱交換器23Aを備えて構成されている。後側熱交換器23Aは、例えば、前側上部熱交換器21Aと同様な材料で構成された、フィン33および扁平管群36によって構成されている。
(Third embodiment)
FIG. 5 is a cross-sectional view showing an air conditioner according to the third embodiment.
As shown in FIG. 5, the indoor unit 2 of the third embodiment includes an indoor heat exchanger 8 </ b> C and a blower 10. The indoor heat exchanger 8C includes a front upper heat exchanger 21, a front lower heat exchanger 22, and a rear heat exchanger 23A. The rear heat exchanger 23A is constituted by, for example, fins 33 and flat tube groups 36 made of the same material as the front upper heat exchanger 21A.
 扁平管群36は、後側熱交換器23Aの外側から内側(送風機10の側)に向けて(空気の流れ方向に向けて)、複数の扁平伝熱管36a,36b,36c,36dによって2列(複数列)に構成されている。すなわち、扁平管群36は、空気が導入される側(空気導入側)に配置される風上側扁平管36Aと、送風機10側に配置される風下側扁平管36Bと、を有している。風上側扁平管36Aは、フィン33の長手方向s3に沿って配置される複数の扁平伝熱管36a,36cによって構成されている。風下側扁平管36Bは、フィン33の長手方向s3に沿って配置される複数の扁平伝熱管36b,36dによって構成されている。なお、扁平伝熱管36a,36b,36c,36dは、前記した扁平伝熱管32a,32b,32cと同様に構成されている。なお、後側熱交換器23Aの外側の列は、5本の扁平伝熱管36aと4本の扁平伝熱管36cとで構成されている。後側熱交換器23Aの内側の列(送風機10側の列)は、6本の扁平伝熱管36bと3本の扁平伝熱管36dとで構成されている。 The flat tube group 36 is arranged in two rows by a plurality of flat heat transfer tubes 36a, 36b, 36c, and 36d from the outer side of the rear heat exchanger 23A to the inner side (toward the blower 10) (toward the air flow direction). (Multiple columns). That is, the flat tube group 36 has an upwind flat tube 36A disposed on the air introduction side (air introduction side) and a leeward flat tube 36B disposed on the blower 10 side. The windward flat tube 36 </ b> A is configured by a plurality of flat heat transfer tubes 36 a and 36 c arranged along the longitudinal direction s <b> 3 of the fin 33. The leeward side flat tube 36 </ b> B includes a plurality of flat heat transfer tubes 36 b and 36 d arranged along the longitudinal direction s <b> 3 of the fin 33. The flat heat transfer tubes 36a, 36b, 36c, and 36d are configured in the same manner as the flat heat transfer tubes 32a, 32b, and 32c. The outer row of the rear heat exchanger 23A includes five flat heat transfer tubes 36a and four flat heat transfer tubes 36c. The inner row (row on the blower 10 side) of the rear heat exchanger 23A is configured by six flat heat transfer tubes 36b and three flat heat transfer tubes 36d.
 扁平伝熱管36aの長軸方向x4は、扁平伝熱管36cの長軸方向x4aの向きと異なっている。また、扁平伝熱管36bの長軸方向x4は、扁平伝熱管36dの長軸方向x4bの向きと異なっている。また、扁平伝熱管36aと扁平伝熱管36bは、長軸方向x4が一致している。このように、後側熱交換器23Aにおける風上側扁平管36A(扁平伝熱管36c)の角度θ70と、風下側扁平管36B(扁平伝熱管36d)の角度θ80とが異なっている。さらに、後側熱交換器23Aは、重力方向を0度とした場合、風上側扁平管36Aの扁平伝熱管36cの角度θ70より風下側扁平管36Bの扁平伝熱管36dの角度θ80が大きく設定されている。なお、角度θ70は、重力方向Gと扁平伝熱管36cの長手方向x4aとで成す角度を意味している。また、角度θ80は、重力方向Gと扁平伝熱管36dの長手方向x4bとで成す角度を意味している。具体的には、風上側扁平管34Aの角度θ30は、45度未満、風下側扁平管34Bの角度θ80は、45度以上に設定される。 The long axis direction x4 of the flat heat transfer tube 36a is different from the direction of the long axis direction x4a of the flat heat transfer tube 36c. The major axis direction x4 of the flat heat transfer tube 36b is different from the direction of the major axis direction x4b of the flat heat transfer tube 36d. Further, the flat heat transfer tube 36a and the flat heat transfer tube 36b have the same major axis direction x4. Thus, the angle θ70 of the windward flat tube 36A (flat heat transfer tube 36c) in the rear heat exchanger 23A is different from the angle θ80 of the leeward flat tube 36B (flat heat transfer tube 36d). Further, in the rear heat exchanger 23A, when the gravity direction is set to 0 degree, the angle θ80 of the flat heat transfer tube 36d of the leeward flat tube 36B is set larger than the angle θ70 of the flat heat transfer tube 36c of the windward flat tube 36A. ing. The angle θ70 means an angle formed by the gravity direction G and the longitudinal direction x4a of the flat heat transfer tube 36c. Further, the angle θ80 means an angle formed by the gravity direction G and the longitudinal direction x4b of the flat heat transfer tube 36d. Specifically, the angle θ30 of the windward flat tube 34A is set to less than 45 degrees, and the angle θ80 of the leeward flat tube 34B is set to 45 degrees or more.
 扁平伝熱管36aは、後側熱交換器23Aの外側の列に位置し、フィン35の長手方向s3に沿って並んで配置されている。扁平伝熱管36cは、後側熱交換器23Aの外側の列に位置し、フィン35の長手方向s3に沿って並んで配置されている。扁平伝熱管36aは、後側熱交換器23Aの上部に配置され、扁平伝熱管36cは、後側熱交換器23Aの下部に配置されている。また、扁平伝熱管36cは、バックノーズ部14bと流路壁面14cとの間に位置している。隣り合う扁平伝熱管36aの間隔が等しく形成され、隣り合う扁平伝熱管36cの間隔が等しく形成されている。なお、扁平伝熱管36a,36cの間隔は、必ずしも等間隔に限定されない。 The flat heat transfer tubes 36 a are positioned in the outer row of the rear heat exchanger 23 </ b> A, and are arranged along the longitudinal direction s <b> 3 of the fins 35. The flat heat transfer tubes 36 c are located in the outer row of the rear heat exchanger 23 </ b> A, and are arranged along the longitudinal direction s <b> 3 of the fins 35. The flat heat transfer tube 36a is disposed at the upper portion of the rear heat exchanger 23A, and the flat heat transfer tube 36c is disposed at the lower portion of the rear heat exchanger 23A. Moreover, the flat heat exchanger tube 36c is located between the back nose part 14b and the flow-path wall surface 14c. The intervals between adjacent flat heat transfer tubes 36a are formed to be equal, and the intervals between adjacent flat heat transfer tubes 36c are formed to be equal. In addition, the space | interval of the flat heat exchanger tubes 36a and 36c is not necessarily limited to an equal space | interval.
 扁平伝熱管36bは、後側熱交換器23Aの内側(送風機10側)の列に位置し、フィン35の長手方向s3に沿って並んで配置されている。扁平伝熱管36dは、後側熱交換器23Aの内側(送風機10側)の列に位置し、フィン35の長手方向s3に沿って並んで配置されている。扁平伝熱管36bは、後側熱交換器23Aの上部に配置され、扁平伝熱管36dは、後側熱交換器23Aの下部に配置されている。また、扁平伝熱管36dは、バックノーズ部14bと流路壁面14cとの間に位置している。隣り合う扁平伝熱管36bの間隔が等しく形成され、隣り合う扁平伝熱管36dの間隔が等しく形成されている。なお、扁平伝熱管36b,36dの間隔は、必ずしも等間隔に限定されない。 The flat heat transfer tubes 36b are located in a row on the inner side (blower 10 side) of the rear heat exchanger 23A, and are arranged side by side along the longitudinal direction s3 of the fins 35. The flat heat transfer tubes 36d are located in a row on the inner side (blower 10 side) of the rear heat exchanger 23A, and are arranged side by side along the longitudinal direction s3 of the fins 35. The flat heat transfer tube 36b is arranged at the upper part of the rear side heat exchanger 23A, and the flat heat transfer tube 36d is arranged at the lower side of the rear side heat exchanger 23A. The flat heat transfer tube 36d is located between the back nose portion 14b and the flow path wall surface 14c. The intervals between adjacent flat heat transfer tubes 36b are formed to be equal, and the intervals between adjacent flat heat transfer tubes 36d are formed to be equal. In addition, the space | interval of the flat heat exchanger tubes 36b and 36d is not necessarily limited to an equal space | interval.
 また、扁平伝熱管36aは、扁平伝熱管36aの長軸方向x4がフィン35の長手方向s3に対して直交する方向を向いている。また、重力方向を0度とした場合、扁平伝熱管36aの角度θ50は、45度に設定されている。なお、角度θ50は、45度に限定されるものではなく、45度未満であってもよい。また、扁平伝熱管36cは、扁平伝熱管36aと向きが異なり、かつ、扁平伝熱管36aを配置したと仮定した場合よりも通風抵抗を低減する方向を向いている。 Further, the flat heat transfer tube 36 a faces the direction in which the long axis direction x 4 of the flat heat transfer tube 36 a is orthogonal to the longitudinal direction s 3 of the fin 35. Further, when the direction of gravity is 0 degree, the angle θ50 of the flat heat transfer tube 36a is set to 45 degrees. The angle θ50 is not limited to 45 degrees, and may be less than 45 degrees. Further, the flat heat transfer tube 36c is oriented in a different direction from the flat heat transfer tube 36a and more in the direction of reducing the ventilation resistance than when it is assumed that the flat heat transfer tube 36a is arranged.
 また、扁平伝熱管36bは、扁平伝熱管36bの長軸方向x4がフィン35の長手方向s3に対して直交する方向を向いている。また、重力方向を0度とした場合、扁平伝熱管36bの角度θ60は、45度に設定されている。なお、角度θ60は、45度に限定されるものではなく、45度未満であってもよい。また、扁平伝熱管36dは、扁平伝熱管36bと向きが異なり、かつ、扁平伝熱管36bを配置したと仮定した場合よりも通風抵抗を低減する方向を向いている。 Further, the flat heat transfer tube 36 b faces the direction in which the long axis direction x 4 of the flat heat transfer tube 36 b is orthogonal to the longitudinal direction s 3 of the fin 35. Further, when the direction of gravity is 0 degree, the angle θ60 of the flat heat transfer tube 36b is set to 45 degrees. Note that the angle θ60 is not limited to 45 degrees, and may be less than 45 degrees. Further, the flat heat transfer tube 36d has a different direction from the flat heat transfer tube 36b, and is directed to reduce the ventilation resistance as compared with the case where it is assumed that the flat heat transfer tube 36b is disposed.
 ところで、図3の比較例1に示すように、室内熱交換器200の背面側には、壁(流路壁面14c)が存在する。これにより、室内熱交換器200の外側の空気の流路が制限され、さらに、送風機10(貫流ファン)による気流を発生させるためのバックノーズ部14bが存在することにより、送風機10側の空気も制限され易い。図3に示す室内熱交換器200の後側熱交換器23は、複数の扁平伝熱管36a,36bを備え、すべての扁平伝熱管36a,36bがフィン35の長手方向s3に対して直交する方向を向いている。このため、図3の白抜きの矢印A230と矢印A260で示すように、後側熱交換器23に入る前後で風向きがほぼ逆方向を向くので、後側熱交換器23に流入して流出するまでの間に、空気の流れの向きが大きく変化する。 Incidentally, as shown in Comparative Example 1 in FIG. 3, a wall (channel wall surface 14 c) exists on the back side of the indoor heat exchanger 200. Thereby, the flow path of the air outside the indoor heat exchanger 200 is restricted, and further, the air on the blower 10 side is also present due to the presence of the back nose portion 14b for generating an air flow by the blower 10 (cross-flow fan). It is easy to be restricted. The rear heat exchanger 23 of the indoor heat exchanger 200 shown in FIG. 3 includes a plurality of flat heat transfer tubes 36a and 36b, and all the flat heat transfer tubes 36a and 36b are orthogonal to the longitudinal direction s3 of the fins 35. Facing. Therefore, as indicated by white arrows A230 and A260 in FIG. 3, the wind direction is almost reversed before and after entering the rear heat exchanger 23, so that the air flows into the rear heat exchanger 23 and flows out. In the meantime, the direction of air flow changes greatly.
 仮に、後側熱交換器23に流入する前の風向き(矢印A230)と、後側熱交換器23の外側の列の扁平伝熱管36aを通過するときの風向き(矢印A240)とが成す角度(変化する角度)をθ100とする。また、後側熱交換器23の外側の列の扁平伝熱管36aを通過するときの風向き(矢印A240)と、後側熱交換器23の送風機10の側の扁平伝熱管36bを通過するときの風向き(矢印A250)とが成す角度(変化する角度)をθ200とする。また、送風機10の側の扁平伝熱管36bを通過するときの風向き(矢印A250)と、後側熱交換器23から流出した後の風向き(矢印A260)とが成す角度(変化する角度)をθ300とする。このとき、角度θ100≒90度、角度θ200≒0度、角度θ300≒90度となる。ここで、後側熱交換器23の外側の列の扁平伝熱管36aの向きを変えることで、角度θ100を小さくすることができるが、角度θ200が増大する。また、角度θ300は、後側熱交換器23の外側の列の扁平伝熱管36aの向きを変えても変化しない。 Temporarily, the angle (arrow A230) which the wind direction before flowing into the rear side heat exchanger 23 (arrow A230) and the wind direction (arrow A240) when passing the flat heat exchanger tube 36a of the row | line | column outside the rear side heat exchanger 23 form ( The changing angle) is θ100. Also, the direction of the wind when passing through the flat heat transfer tubes 36a in the outer row of the rear heat exchanger 23 (arrow A240) and the time when passing through the flat heat transfer tubes 36b on the blower 10 side of the rear heat exchanger 23 The angle (change angle) formed by the wind direction (arrow A250) is defined as θ200. Further, the angle (change angle) formed by the wind direction (arrow A250) when passing through the flat heat transfer tube 36b on the blower 10 side and the wind direction (arrow A260) after flowing out from the rear heat exchanger 23 is θ300. And At this time, the angle θ100≈90 degrees, the angle θ200≈0 degrees, and the angle θ300≈90 degrees. Here, the angle θ100 can be reduced by changing the direction of the flat heat transfer tubes 36a in the row outside the rear heat exchanger 23, but the angle θ200 increases. Further, the angle θ300 does not change even if the orientation of the flat heat transfer tubes 36a in the outer row of the rear heat exchanger 23 is changed.
 そこで、このような場合には、後側熱交換器23の外側の列の扁平伝熱管36aの向きを変えるだけではなく、送風機10側の列の扁平伝熱管36bの向きを変えることで、空気の流れの向きが成す角度を小さくでき、通風抵抗を低減することができる。 Therefore, in such a case, not only changing the direction of the flat heat transfer tubes 36a in the outer row of the rear heat exchanger 23, but also changing the direction of the flat heat transfer tubes 36b in the row on the blower 10 side, The angle formed by the flow direction can be reduced, and the ventilation resistance can be reduced.
 すなわち、図5に示すように、後側熱交換器23Aにおける風上側扁平管36A(扁平伝熱管36c)の角度θ70と、風下側扁平管36B(扁平伝熱管36d)の角度θ80とを異ならせる。さらに、重力方向を0度とした場合、風上側扁平管36Aの扁平伝熱管36cの角度θ70より風下側扁平管36Bの扁平伝熱管36dの角度θ80を大きくする。具体的には、風上側扁平管34Aの角度θ70を45度未満、風下側扁平管34Bの角度θ80を45度以上に設定する。 That is, as shown in FIG. 5, the angle θ70 of the windward flat tube 36A (flat heat transfer tube 36c) in the rear heat exchanger 23A and the angle θ80 of the leeward flat tube 36B (flat heat transfer tube 36d) are made different. . Further, when the direction of gravity is 0 degree, the angle θ80 of the flat heat transfer tube 36d of the leeward flat tube 36B is made larger than the angle θ70 of the flat heat transfer tube 36c of the windward flat tube 36A. Specifically, the angle θ70 of the windward flat tube 34A is set to less than 45 degrees, and the angle θ80 of the leeward flat tube 34B is set to 45 degrees or more.
 これにより、風向き(矢印A7)から風向き(矢印A8)に向かう際の通風抵抗を低減することができる。また、風向き(矢印A9)から風向き(矢印A10)に向かう際の通風抵抗を低減することができる。よって、後前熱交換器23Aにおける熱交換効率をさらに向上でき、その結果として、室内熱交換器8Cの性能を向上した室内機2を実現できる。 This makes it possible to reduce the draft resistance when moving from the wind direction (arrow A7) to the wind direction (arrow A8). Moreover, the ventilation resistance at the time of heading from a wind direction (arrow A9) to a wind direction (arrow A10) can be reduced. Therefore, the heat exchange efficiency in the rear pre-heat exchanger 23A can be further improved, and as a result, the indoor unit 2 with improved performance of the indoor heat exchanger 8C can be realized.
 なお、第3実施形態では、それぞれの扁平伝熱管36cが同じ方向を向いているが、扁平伝熱管36cが異なる方向を向いていてもよい(扁平伝熱管36dについても同様)。 In the third embodiment, the flat heat transfer tubes 36c face the same direction, but the flat heat transfer tubes 36c may face different directions (the same applies to the flat heat transfer tubes 36d).
 図6は、比較例2に係る空気調和機を示す断面図である。
 図6に比較例として示す室内熱交換器300は、前側下部熱交換器22の外側の列の扁平伝熱管340を水平方向(略水平方向)に向くように構成したものである。ところで、このような向きの扁平伝熱管340を備えたものである場合、空気調和機100(図1参照)を冷房運転させた際に、扁平伝熱管340の上部(平坦部)に凝縮水が溜まり易くなる。凝縮水が溜まり易くなると、冷房運転時に室内機の空気吹出口11cから水滴が放出され易くなり、いわゆる「水とび」の原因となる。
FIG. 6 is a cross-sectional view showing an air conditioner according to Comparative Example 2.
The indoor heat exchanger 300 shown as a comparative example in FIG. 6 is configured such that the flat heat transfer tubes 340 in the outer row of the front lower heat exchanger 22 face the horizontal direction (substantially horizontal direction). By the way, in the case where the flat heat transfer tube 340 having such a direction is provided, when the air conditioner 100 (see FIG. 1) is in a cooling operation, condensed water is formed on the upper portion (flat portion) of the flat heat transfer tube 340. It becomes easy to collect. If the condensed water easily accumulates, water droplets are likely to be discharged from the air outlet 11c of the indoor unit during the cooling operation, causing a so-called “water jump”.
 そこで、第1実施形態の室内熱交換器8Aでは、扁平伝熱管34aの向き、第2実施形態の室内熱交換器8Bでは、扁平伝熱管34cの向き、第3実施形態の室内熱交換器8Cでは、扁平伝熱管34aの向きが、水平方向(略水平方向)を向かないようにしている。また、扁平伝熱管34a,34cだけではなく、室内熱交換器8Aの扁平伝熱管32a,32b,34b,36a,36bの向き、室内熱交換器8Bの扁平伝熱管32a,32b,34b,36a,36bの向き、室内熱交換器8Cの扁平伝熱管32a,32b,34b,36a,36b,36c,36dの向きが、それぞれ水平方向(略水平方向)を向かないようにすることが好ましい。これにより、扁平伝熱管32a,32b,34a~34c,36a~36dに凝縮水が溜り難くなり、「水とび」を抑制することが可能になる。 Therefore, in the indoor heat exchanger 8A of the first embodiment, the direction of the flat heat transfer tube 34a, in the indoor heat exchanger 8B of the second embodiment, the direction of the flat heat transfer tube 34c, the indoor heat exchanger 8C of the third embodiment. Then, the direction of the flat heat exchanger tube 34a is made not to face the horizontal direction (substantially horizontal direction). Further, not only the flat heat transfer tubes 34a and 34c, but also the flat heat transfer tubes 32a, 32b, 34b, 36a and 36b of the indoor heat exchanger 8A, the flat heat transfer tubes 32a, 32b, 34b and 36a of the indoor heat exchanger 8B, It is preferable that the orientation of 36b and the orientation of the flat heat transfer tubes 32a, 32b, 34b, 36a, 36b, 36c, 36d of the indoor heat exchanger 8C do not face the horizontal direction (substantially horizontal direction). This makes it difficult for the condensed water to accumulate in the flat heat transfer tubes 32a, 32b, 34a to 34c, and 36a to 36d, thereby suppressing "water jumping".
 ところで、図3では、比較例として示す室内熱交換器200において、前側上部熱交換器21と前側下部熱交換器22とが組み合わされた部位における空気の流れを白抜き矢印A270において、前側上部熱交換器21と後側熱交換器23とが組み合わされた部位における空気の流れを白抜き矢印A280において示している。矢印A270,A280で示す部位では、通風抵抗が小さくなるので、ここに空気の流れが集中すると、他の部位の室内熱交換器200に流れる空気の量が減少し、室内熱交換器200の性能が低下するおそれがある。そこで、第4実施形態および第5実施形態では、このように空気の流れが集中し易い部位の扁平伝熱管の一部の向きを、空気の流れを妨げるような向きにすることで、空気の流れの集中を防ぎ、熱交換器としての性能を向上させることができるようにしている。 By the way, in FIG. 3, in the indoor heat exchanger 200 shown as a comparative example, the air flow in the portion where the front upper heat exchanger 21 and the front lower heat exchanger 22 are combined is indicated by the front upper heat at a white arrow A270. The flow of air at the portion where the exchanger 21 and the rear heat exchanger 23 are combined is indicated by a white arrow A280. In the parts indicated by arrows A270 and A280, the ventilation resistance is small. Therefore, if the air flow is concentrated here, the amount of air flowing to the indoor heat exchanger 200 in other parts is reduced, and the performance of the indoor heat exchanger 200 is reduced. May decrease. Therefore, in the fourth embodiment and the fifth embodiment, the direction of a part of the flat heat transfer tube in the portion where the air flow is likely to concentrate in this way is set so as to prevent the air flow. The flow concentration is prevented and the performance as a heat exchanger can be improved.
(第4実施形態)
 図7は、第4実施形態に係る空気調和機を示す断面図である。
 図7に示すように、第4実施形態の室内機2は、室内熱交換器8Dと、送風機10とを備えている。室内熱交換器8Dは、前側上部熱交換器21B、前側下部熱交換器22Bおよび後側熱交換器23を備えている。
(Fourth embodiment)
FIG. 7 is a cross-sectional view showing an air conditioner according to the fourth embodiment.
As shown in FIG. 7, the indoor unit 2 of the fourth embodiment includes an indoor heat exchanger 8D and a blower 10. The indoor heat exchanger 8D includes a front upper heat exchanger 21B, a front lower heat exchanger 22B, and a rear heat exchanger 23.
 前側上部熱交換器21Bは、フィン31(複数のフィン)および扁平管群32によって構成されている。すなわち、扁平管群32は、空気が導入される側(空気導入側)に配置される風上側扁平管32Aと、送風機10側に配置される風下側扁平管32Bと、を有している。風上側扁平管32Aは、フィン31の長手方向s1に沿って配置される複数の扁平伝熱管32a,32dによって構成されている。風下側扁平管32Bは、フィン31の長手方向s1に沿って配置される複数の扁平伝熱管32bによって構成されている。 The front upper heat exchanger 21B is configured by fins 31 (a plurality of fins) and a flat tube group 32. That is, the flat tube group 32 has an upwind flat tube 32A disposed on the air introduction side (air introduction side) and a leeward flat tube 32B disposed on the blower 10 side. The windward flat tube 32 </ b> A is configured by a plurality of flat heat transfer tubes 32 a and 32 d arranged along the longitudinal direction s <b> 1 of the fin 31. The leeward side flat tube 32 </ b> B includes a plurality of flat heat transfer tubes 32 b arranged along the longitudinal direction s <b> 1 of the fin 31.
 複数の扁平伝熱管32a,32dは、フィン31の長手方向s1に並んで配置されている。扁平伝熱管32aの長軸方向x1の向きは、長手方向s1に対して直交する方向を向いている。扁平伝熱管32dの長軸方向x5の向きは、扁平伝熱管32aの向きと異なり、かつ、扁平伝熱管32aを配置したと仮定した場合(破線で示す扁平伝熱管32a1参照)よりも通風抵抗を高める方向を向いている。換言すると、扁平伝熱管32dは、空気の流れ(矢印A270、図3参照)に対して直交する方向に近づく向きとなるように構成されている。 The plurality of flat heat transfer tubes 32 a and 32 d are arranged side by side in the longitudinal direction s 1 of the fin 31. The direction of the long-axis direction x1 of the flat heat transfer tube 32a is the direction orthogonal to the longitudinal direction s1. The direction of the long-axis direction x5 of the flat heat transfer tube 32d is different from the direction of the flat heat transfer tube 32a, and the ventilation resistance is greater than when assuming that the flat heat transfer tube 32a is disposed (see the flat heat transfer tube 32a1 indicated by a broken line). It is facing the direction of raising. In other words, the flat heat transfer tube 32d is configured to be oriented in a direction perpendicular to the air flow (arrow A270, see FIG. 3).
 前側下部熱交換器22Bは、フィン33(複数のフィン)および伝熱管群34によって構成されている。すなわち、扁平管群34は、空気が導入される側(空気導入側)に配置される風上側扁平管34Aと、送風機10側に配置される風下側扁平管34Bと、を有している。風上側扁平管34Aは、フィン33の長手方向s2に沿って配置される複数の扁平伝熱管34a,34dによって構成されている。風下側扁平管34Bは、フィン33の長手方向s2に沿って配置される複数の扁平伝熱管34bによって構成されている。 The front lower heat exchanger 22B is composed of fins 33 (a plurality of fins) and a heat transfer tube group 34. That is, the flat tube group 34 has an upwind flat tube 34A disposed on the air introduction side (air introduction side) and a leeward flat tube 34B disposed on the blower 10 side. The windward flat tube 34 </ b> A is configured by a plurality of flat heat transfer tubes 34 a and 34 d disposed along the longitudinal direction s <b> 2 of the fin 33. The leeward side flat tube 34 </ b> B includes a plurality of flat heat transfer tubes 34 b arranged along the longitudinal direction s <b> 2 of the fins 33.
 複数の扁平伝熱管34a,34dは、フィン33の長手方向s2に並んで配置されている。扁平伝熱管34aの長軸方向x3の向きは、長手方向s2に対して直交する方向を向いている。扁平伝熱管32dの長軸方向x6の向きは、扁平伝熱管34aの向きと異なり、かつ、扁平伝熱管34aを配置したと仮定した場合(破線で示す扁平伝熱管34a1参照)よりも通風抵抗を高める方向を向いている。換言すると、扁平伝熱管34dは、空気の流れ(矢印A270、図3参照)に対して直交する方向に近づく向きとなるように構成されている。 The plurality of flat heat transfer tubes 34 a and 34 d are arranged side by side in the longitudinal direction s 2 of the fins 33. The direction of the long-axis direction x3 of the flat heat transfer tube 34a faces the direction orthogonal to the longitudinal direction s2. The direction of the long-axis direction x6 of the flat heat transfer tube 32d is different from the direction of the flat heat transfer tube 34a, and the ventilation resistance is greater than when assuming that the flat heat transfer tube 34a is disposed (see the flat heat transfer tube 34a1 indicated by a broken line). It is facing the direction of raising. In other words, the flat heat transfer tube 34d is configured to be oriented in a direction perpendicular to the air flow (arrow A270, see FIG. 3).
 このように、前側上部熱交換器21Bと前側下部熱交換器22Bとの境界における風上側扁平管32Aの扁平伝熱管32dの角度θ91と風下側扁平管32Bの扁平伝熱管32bの角度θ10とが異なっている。また、前側上部熱交換器21Bと前側下部熱交換器22Bとの境界における風上側扁平管34Aの扁平伝熱管34dの角度θ92と風下側扁平管34Bの扁平伝熱管34bの角度θ40とが異なっている。また、重力方向Gを0度とした場合、風上側扁平管32Aの扁平伝熱管32dの角度θ91より風下側扁平管32Bの扁平伝熱管32bの角度θ10が大きい。さらに、風上側扁平管32A(扁平伝熱管32d)の角度θ91は、45度未満、風下側扁平管32B(扁平伝熱管32b)の角度は、45度以上である。また、重力方向Gを0度とした場合、風上側扁平管34Aの扁平伝熱管34dの角度θ92より風下側扁平管34Bの扁平伝熱管34bの角度θ40が大きい。さらに、風上側扁平管34A(扁平伝熱管34d)の角度θ92は、45度未満、風下側扁平管34B(扁平伝熱管34b)の角度は、45度以上である。 Thus, the angle θ91 of the flat heat transfer tube 32d of the windward flat tube 32A and the angle θ10 of the flat heat transfer tube 32b of the leeward flat tube 32B at the boundary between the front upper heat exchanger 21B and the front lower heat exchanger 22B. Is different. Further, the angle θ92 of the flat heat transfer tube 34d of the windward flat tube 34A and the angle θ40 of the flat heat transfer tube 34b of the leeward flat tube 34B at the boundary between the front upper heat exchanger 21B and the front lower heat exchanger 22B are different. Yes. When the gravity direction G is 0 degree, the angle θ10 of the flat heat transfer tube 32b of the leeward flat tube 32B is larger than the angle θ91 of the flat heat transfer tube 32d of the windward flat tube 32A. Furthermore, the angle θ91 of the windward flat tube 32A (flat heat transfer tube 32d) is less than 45 degrees, and the angle of the leeward flat tube 32B (flat heat transfer tube 32b) is 45 degrees or more. When the gravity direction G is 0 degree, the angle θ40 of the flat heat transfer tube 34b of the leeward flat tube 34B is larger than the angle θ92 of the flat heat transfer tube 34d of the windward flat tube 34A. Further, the angle θ92 of the windward flat tube 34A (flat heat transfer tube 34d) is less than 45 degrees, and the angle of the leeward flat tube 34B (flat heat transfer tube 34b) is 45 degrees or more.
 第4実施形態によれば、そのままでは通風抵抗が低く、熱交換効率が低くなる場所である前側上部熱交換器21Bと前側下部熱交換器22Bとの曲げ部(組み合わせ部)の境界において、扁平伝熱管32d,34dの向きを、通風抵抗が逆に高まるように向きを変えている。これにより、前側上部熱交換器21Bおよび前側下部熱交換器22Bにおける熱交換効率の低下を抑制することができ、その結果として、室内熱交換器8Dの性能を向上した室内機2を実現できる。 According to the fourth embodiment, the airflow resistance is low as it is, and at the boundary of the bent portion (combination portion) between the front upper heat exchanger 21B and the front lower heat exchanger 22B, which is a place where the heat exchange efficiency is low, the flatness is flat. The direction of the heat transfer tubes 32d and 34d is changed so that the ventilation resistance is increased. Thereby, the fall of the heat exchange efficiency in the front side upper heat exchanger 21B and the front side lower heat exchanger 22B can be suppressed, As a result, the indoor unit 2 which improved the performance of the indoor heat exchanger 8D is realizable.
(第5実施形態)
 図8は、第5実施形態に係る空気調和機を示す断面図である。
 図8に示すように、第5実施形態の室内機2は、室内熱交換器8Eと、送風機10とを備えている。室内熱交換器8Eは、前側上部熱交換器21C、前側下部熱交換器22および後側熱交換器23Bを備えている。前側上部熱交換器21Cは、例えば、前側上部熱交換器21Aと同様な材料で構成された、フィン31および扁平管群32によって構成されている。
(Fifth embodiment)
FIG. 8 is a cross-sectional view showing an air conditioner according to the fifth embodiment.
As shown in FIG. 8, the indoor unit 2 of 5th Embodiment is provided with the indoor heat exchanger 8E and the air blower 10. As shown in FIG. The indoor heat exchanger 8E includes a front upper heat exchanger 21C, a front lower heat exchanger 22, and a rear heat exchanger 23B. The front upper heat exchanger 21 </ b> C includes, for example, fins 31 and flat tube groups 32 made of the same material as the front upper heat exchanger 21 </ b> A.
 前側上部熱交換器21Cは、フィン31(複数のフィン)および扁平管群32によって構成されている。すなわち、扁平管群32は、空気が導入される側(空気導入側)に配置される風上側扁平管32Aと、送風機10側に配置される風下側扁平管32Bと、を有している。風上側扁平管32Aは、フィン31の長手方向s1に沿って配置される複数の扁平伝熱管32aによって構成されている。風下側扁平管32Bは、フィン31の長手方向s1に沿って配置される複数の扁平伝熱管32b,32eによって構成されている。 The front upper heat exchanger 21 </ b> C includes fins 31 (plural fins) and a flat tube group 32. That is, the flat tube group 32 has an upwind flat tube 32A disposed on the air introduction side (air introduction side) and a leeward flat tube 32B disposed on the blower 10 side. The windward flat tube 32 </ b> A is configured by a plurality of flat heat transfer tubes 32 a arranged along the longitudinal direction s <b> 1 of the fins 31. The leeward flat tube 32 </ b> B is configured by a plurality of flat heat transfer tubes 32 b and 32 e arranged along the longitudinal direction s <b> 1 of the fin 31.
 また、前側上部熱交換器21Cは、フィン31(複数のフィン)と、複数の扁平伝熱管32a・・・,32b・・・,32eと、を有し、前側上部熱交換器21Cの外側から内側(送風機10側)に向けて2列で構成されている。扁平伝熱管32b,32eは、フィン31の長手方向s1に並んで配置されている。扁平伝熱管32a,32bの長軸方向x1の向きは、長手方向s1に対して直交する方向を向いている。扁平伝熱管32eの長軸方向x7の向きは、扁平伝熱管32bの向きと異なり、かつ、扁平伝熱管32bを配置したと仮定した場合(仮想線で示す扁平伝熱管32b1参照)よりも通風抵抗を高める方向を向いている。換言すると、図3の矢印A280で示す空気の流れに対して直交する方向を向いている。 The front upper heat exchanger 21C includes fins 31 (a plurality of fins) and a plurality of flat heat transfer tubes 32a, ..., 32b, ..., 32e, from the outside of the front upper heat exchanger 21C. It consists of two rows toward the inside (blower 10 side). The flat heat transfer tubes 32 b and 32 e are arranged side by side in the longitudinal direction s 1 of the fin 31. The direction of the major axis direction x1 of the flat heat transfer tubes 32a and 32b is the direction orthogonal to the longitudinal direction s1. The direction of the long-axis direction x7 of the flat heat transfer tube 32e is different from the direction of the flat heat transfer tube 32b, and it is assumed that the flat heat transfer tube 32b is disposed (see the flat heat transfer tube 32b1 indicated by a virtual line). The direction is to raise. In other words, the direction is perpendicular to the air flow indicated by arrow A280 in FIG.
 すなわち、扁平伝熱管32eは、まず扁平伝熱管32bを基準として、破線において扁平伝熱管32b1で示すように通風抵抗が高まるように回転させて向きを変え、さらに、破線において扁平伝熱管32b2で示すように、通風抵抗がさらに高まるように平行移動したものである。 That is, the flat heat transfer tube 32e is first rotated with respect to the flat heat transfer tube 32b so as to increase the ventilation resistance as indicated by the flat heat transfer tube 32b1 in the broken line, and is further indicated by the flat heat transfer tube 32b2 in the broken line. As described above, the air flow resistance is translated to further increase.
 後側熱交換器23Bは、フィン35(複数のフィン)および扁平管群36によって構成されている。すなわち、扁平管群36は、空気が導入される側(空気導入側)に配置される風上側扁平管36Aと、送風機10側に配置される風下側扁平管36Bと、を有している。風上側扁平管36Aは、フィン35の長手方向s3に沿って配置される複数の扁平伝熱管36aによって構成されている。風下側扁平管36Bは、フィン35の長手方向s3に沿って配置される複数の扁平伝熱管36b,36eによって構成されている。 The rear heat exchanger 23B is constituted by fins 35 (a plurality of fins) and a flat tube group 36. That is, the flat tube group 36 has an upwind flat tube 36A disposed on the air introduction side (air introduction side) and a leeward flat tube 36B disposed on the blower 10 side. The windward flat tube 36 </ b> A includes a plurality of flat heat transfer tubes 36 a disposed along the longitudinal direction s <b> 3 of the fin 35. The leeward side flat tube 36 </ b> B includes a plurality of flat heat transfer tubes 36 b and 36 e arranged along the longitudinal direction s <b> 3 of the fin 35.
 また、後側熱交換器23Bは、フィン35(複数のフィン)と、複数の扁平伝熱管36a・・・,36b・・・,36eと、を有し、後前熱交換器23Bの外側から内側(送風機10側)に向けて2列で構成されている。扁平伝熱管36aは、フィン33の長手方向s3に並んで配置されている。扁平伝熱管36a,36bの長軸方向x4の向きは、長手方向s3に対して直交する方向を向いている。扁平伝熱管36eの長軸方向x8の向きは、扁平伝熱管36a,36bの向きと異なり、かつ、扁平伝熱管36bを配置したと仮定した場合(破線で示す扁平伝熱管36b1参照)よりも通風抵抗を高める方向を向いている。換言すると、図3の矢印A280で示す空気の流れに対して直交する方向を向いている。 The rear heat exchanger 23B has fins 35 (a plurality of fins) and a plurality of flat heat transfer tubes 36a, ..., 36b, ..., 36e, from the outside of the rear front heat exchanger 23B. It consists of two rows toward the inside (blower 10 side). The flat heat transfer tubes 36 a are arranged side by side in the longitudinal direction s 3 of the fins 33. The direction of the major axis direction x4 of the flat heat transfer tubes 36a, 36b is oriented in a direction orthogonal to the longitudinal direction s3. The direction of the long-axis direction x8 of the flat heat transfer tube 36e is different from the direction of the flat heat transfer tubes 36a and 36b, and it is assumed that the flat heat transfer tube 36b is disposed (see the flat heat transfer tube 36b1 indicated by a broken line). It faces the direction of increasing resistance. In other words, the direction is perpendicular to the air flow indicated by arrow A280 in FIG.
 扁平伝熱管36eは、扁平伝熱管32eと同様に、扁平伝熱管36bを基準として、破線において扁平伝熱管36b1で示すように通風抵抗が高まるように回転させて向きを変え、さらに、破線において扁平伝熱管36b2で示すように、通風抵抗がさらに高まるように平行移動したものである。 As with the flat heat transfer tube 32e, the flat heat transfer tube 36e is rotated so as to increase the ventilation resistance as shown by the flat heat transfer tube 36b1 on the basis of the flat heat transfer tube 36b, and changes its direction. As indicated by the heat transfer tube 36b2, it is translated so that the ventilation resistance is further increased.
 第5実施形態によれば、そのままでは通風抵抗が低く、熱交換効率が低くなる場所である前側上部熱交換器21Cと後側熱交換器23Bとの組み合わせ部の境界において、上端の扁平伝熱管32e,34gの向きを、通風抵抗が高まるように向き(回転および平行移動)を変えている。これにより、前側上部熱交換器21Cと後側熱交換器23Bとの組み合わせ部における熱交換効率の低下を抑制することができ、その結果として、室内熱交換器8Eの性能を向上した室内機2を実現できる。 According to the fifth embodiment, the flat heat transfer tube at the upper end at the boundary of the combined portion of the front upper heat exchanger 21C and the rear heat exchanger 23B, where the ventilation resistance is low as it is and the heat exchange efficiency is low. The directions (rotation and translation) of 32e and 34g are changed so as to increase the ventilation resistance. Thereby, the fall of the heat exchange efficiency in the combination part of 21 C of front side upper heat exchangers and the rear side heat exchanger 23B can be suppressed, As a result, the indoor unit 2 which improved the performance of the indoor heat exchanger 8E Can be realized.
 なお、本発明は、前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、第1ないし第5実施形態では、室内熱交換器8A~8Eとして、一部の扁平伝熱管32a,32bの向きをフィン31の長手方向s1に直交する方向、一部の扁平伝熱管34a,34bの向きをフィン33の長手方向s2に直交する方向、一部の扁平伝熱管36a,36bの向きをフィン35に長手方向s3に直交する方向としたが、厳密な直交でなくとも、本発明の効果を奏する範囲において、直交からずれていてもよい。 In addition, this invention is not limited to above-described embodiment, Various modifications are included. For example, in the first to fifth embodiments, as the indoor heat exchangers 8A to 8E, the directions of some of the flat heat transfer tubes 32a and 32b are orthogonal to the longitudinal direction s1 of the fin 31, and some of the flat heat transfer tubes 34a. , 34b is a direction perpendicular to the longitudinal direction s2 of the fin 33, and some flat heat transfer tubes 36a, 36b are oriented to the fin 35 in a direction perpendicular to the longitudinal direction s3. In the range where the effect of the invention is exerted, it may be deviated from orthogonal.
 また、前記した第1ないし第5実施形態では、室内熱交換器8A~8Eとして、扁平伝熱管が2列で構成されたものを例に挙げて説明したが、1列であってもよく、3列以上であってもよい。 In the first to fifth embodiments described above, the indoor heat exchangers 8A to 8E have been described by taking the example in which the flat heat transfer tubes are configured in two rows, but may be in one row, There may be three or more rows.
 また、第1ないし第3実施形態の複数の実施形態の室内熱交換器8A~8Cを組み合わせて構成してもよい。また、第1ないし第3実施形態と、第4,5実施形態を組み合わせて構成してもよい。 Further, the indoor heat exchangers 8A to 8C of the plurality of embodiments of the first to third embodiments may be combined. Further, the first to third embodiments and the fourth and fifth embodiments may be combined.
 また、第1ないし第5実施形態では、前側上部熱交換器と前側下部熱交換器が別体で構成された場合を例に挙げて説明したが、ブーメラン状(くの字状)で一体に構成されたものでもよい。また、前側上部熱交換器と後側熱交換器とが一体の構成であってもよい。 In the first to fifth embodiments, the case where the front upper heat exchanger and the front lower heat exchanger are configured as separate bodies has been described as an example. It may be configured. The front upper heat exchanger and the rear heat exchanger may be integrated.
 また、送風機10としては、貫流ファンを例に挙げたが、プロペラファンなどの他の種類の送風機であってもよい。 In addition, as the blower 10, a cross-flow fan is taken as an example, but another type of blower such as a propeller fan may be used.
 また、第1ないし第5実施形態では、前側上部熱交換器と後側熱交換器とが上下方向において重なっていない場合を例に挙げて説明したが、例えば、前側上部熱交換器21の後端31dと後側熱交換器23の上端35aとが線状に接して重なる構成であってもよい。 Further, in the first to fifth embodiments, the case where the front upper heat exchanger and the rear heat exchanger do not overlap in the vertical direction has been described as an example. The end 31d and the upper end 35a of the rear heat exchanger 23 may be configured to be in line contact with each other.
 2   室内機(空気調和機の室内機)
 8,8A,8B,8C,8D,8E 室内熱交換器(熱交換器)
 10  送風機
 14b バックノーズ部
 21A,21B,21C 前側上部熱交換器
 22A,22B 前側下部熱交換器
 23A,23B 後側熱交換器
 32A,34A,36A 風上側扁平管
 32B,34B,36B 風下側扁平管
 100 空気調和機
 s1,s2,s3 長手方向
 x1,x2,x3,x3a,x4,x4a,x4b,x5,x6,x7,x8 長軸方向
2 Indoor unit (air conditioner indoor unit)
8, 8A, 8B, 8C, 8D, 8E Indoor heat exchanger (heat exchanger)
DESCRIPTION OF SYMBOLS 10 Blower 14b Back nose part 21A, 21B, 21C Front upper heat exchanger 22A, 22B Front lower heat exchanger 23A, 23B Rear heat exchanger 32A, 34A, 36A Windward side flat tube 32B, 34B, 36B Downward side flat tube 100 Air conditioner s1, s2, s3 Longitudinal direction x1, x2, x3, x3a, x4, x4a, x4b, x5, x6, x7, x8 Long axis direction

Claims (18)

  1.  複数のフィンと、前記複数のフィンを貫通する断面形状が扁平な複数の扁平伝熱管と、を有する熱交換器と、
     前記熱交換器において熱交換された空気を筐体の外部に排出する送風機と、を備え、
     前記複数の扁平伝熱管は、前記フィンの長手方向に並んで且つ複数列に配置され、空気導入側に配置される風上側扁平管および前記送風機側に配置される風下側扁平管から成り、
     前記風上側扁平管の角度と前記風下側扁平管の角度とが少なくとも一部において異なることを特徴とする空気調和機の室内機。
    A heat exchanger having a plurality of fins and a plurality of flat heat transfer tubes having a flat cross-sectional shape penetrating the plurality of fins;
    A fan for discharging the air heat-exchanged in the heat exchanger to the outside of the housing,
    The plurality of flat heat transfer tubes are arranged in a plurality of rows side by side in the longitudinal direction of the fins, and are composed of an upwind flat tube disposed on the air introduction side and a leeward flat tube disposed on the blower side,
    An indoor unit of an air conditioner, wherein an angle of the windward flat tube and an angle of the leeward flat tube are different at least in part.
  2.  請求項1に記載の空気調和機の室内機において、
     前記熱交換器は、前記送風機の前側に配置される前側上部熱交換器と、前記前側上部熱交換器の下側に配置される前側下部熱交換器と、を備え、
     前記前側上部熱交換器における、前記風上側扁平管の角度と、前記風下側扁平管の一部の角度とが異なることを特徴とする空気調和機の室内機。
    In the indoor unit of the air conditioner according to claim 1,
    The heat exchanger includes a front upper heat exchanger disposed on the front side of the blower, and a front lower heat exchanger disposed on the lower side of the front upper heat exchanger,
    An indoor unit of an air conditioner, wherein an angle of the windward flat tube and a partial angle of the leeward flat tube in the front upper heat exchanger are different.
  3.  請求項2に記載の空気調和機の室内機において、
     前記前側上部熱交換器は、重力方向を0度とした場合、前記風下側扁平管の一部の角度が、前記風下側扁平管の角度より小さいことを特徴とする空気調和機の室内機。
    The indoor unit of the air conditioner according to claim 2,
    The indoor unit of an air conditioner, wherein the front upper heat exchanger has a part of an angle of the leeward flat tube smaller than an angle of the leeward flat tube when the direction of gravity is 0 degree.
  4.  請求項3に記載の空気調和機の室内機において、
     前記風下側扁平管の一部の角度は、45度未満であることを特徴とする空気調和機の室内機。
    In the indoor unit of the air conditioner according to claim 3,
    An indoor unit of an air conditioner, wherein an angle of a part of the leeward flat tube is less than 45 degrees.
  5.  請求項1に記載の空気調和機の室内機において、
     前記熱交換器は、前記送風機の前側に配置される前側上部熱交換器と、前記前側上部熱交換器の下方に配置される前側下部熱交換器と、を備え、
     前記前側下部熱交換器における前記風上側扁平管の少なくとも一部の角度と前記風下側扁平管の角度とが異なることを特徴とする空気調和機の室内機。
    In the indoor unit of the air conditioner according to claim 1,
    The heat exchanger includes a front upper heat exchanger disposed on the front side of the blower, and a front lower heat exchanger disposed on the lower side of the front upper heat exchanger,
    An indoor unit of an air conditioner, wherein an angle of at least a part of the windward flat tube in the front lower heat exchanger is different from an angle of the leeward flat tube.
  6.  請求項5に記載の空気調和機の室内機において、
     前記前側下部熱交換器は、重力方向を0度とした場合、前記風上側扁平管の少なくとも一部の角度より前記風下側扁平管の角度が大きいことを特徴とする空気調和機の室内機。
    In the indoor unit of the air conditioner according to claim 5,
    An indoor unit of an air conditioner, wherein the front lower heat exchanger has an angle of the leeward flat tube larger than an angle of at least a part of the windward flat tube when the direction of gravity is 0 degree.
  7.  請求項6に記載の空気調和機の室内機において、
     前記風上側扁平管の角度は90度未満、前記風下側扁平管の角度は90度以上であることを特徴とする空気調和機の室内機。
    The indoor unit of the air conditioner according to claim 6,
    An air conditioner indoor unit characterized in that the angle of the windward flat tube is less than 90 degrees, and the angle of the leeward flat tube is 90 degrees or more.
  8.  請求項1に記載の空気調和機の室内機において、
     前記熱交換器は、前記送風機の後側に配置され、一部がバックノーズ部に沿って配置される後側熱交換器を備え、
     前記後側熱交換器における前記バックノーズ部に対向する前記風上側扁平管の角度と前記風下側扁平管の角度とが互いに異なることを特徴とする空気調和機の室内機。
    In the indoor unit of the air conditioner according to claim 1,
    The heat exchanger is disposed on the rear side of the blower, and includes a rear heat exchanger in which a part is disposed along a back nose portion,
    An indoor unit of an air conditioner, wherein an angle of the windward flat tube facing the back nose portion in the rear heat exchanger and an angle of the leeward flat tube are different from each other.
  9.  請求項8に記載の空気調和機の室内機において、
     前記後側熱交換器は、重力方向を0度とした場合、前記風上側扁平管の角度より前記風下側扁平管の方が角度が大きいことを特徴とする空気調和機の室内機。
    The indoor unit of the air conditioner according to claim 8,
    The indoor unit of an air conditioner, wherein the rear heat exchanger has an angle of the leeward flat tube larger than that of the windward flat tube when the direction of gravity is 0 degree.
  10.  請求項9に記載の空気調和機の室内機において、
     前記風上側扁平管の角度は45度未満、前記風下側扁平管の角度は45度以上であることを特徴とする空気調和機の室内機。
    The indoor unit of the air conditioner according to claim 9,
    An air conditioner indoor unit characterized in that the angle of the windward flat tube is less than 45 degrees, and the angle of the leeward flat tube is 45 degrees or more.
  11.  請求項1に記載の空気調和機の室内機において、
     前記熱交換器は、前記送風機の前側に配置される前側上部熱交換器と、前記前側上部熱交換器の下側に配置される前側下部熱交換器と、を備え、
     前記前側上部熱交換器と前記前側下部熱交換器との境界における前記風上側扁平管の一部の角度と前記風下側扁平管の角度とが異なることを特徴とする空気調和機の室内機。
    In the indoor unit of the air conditioner according to claim 1,
    The heat exchanger includes a front upper heat exchanger disposed on the front side of the blower, and a front lower heat exchanger disposed on the lower side of the front upper heat exchanger,
    An indoor unit of an air conditioner, wherein an angle of a part of the windward flat tube and an angle of the leeward flat tube at a boundary between the front upper heat exchanger and the front lower heat exchanger are different.
  12.  請求項11に記載の空気調和機の室内機において、
     重力方向を0度とした場合、前記風上側扁平管の一部の角度より前記風下側扁平管の角度が大きいことを特徴とする空気調和機の室内機。
    In the indoor unit of the air conditioner according to claim 11,
    An indoor unit of an air conditioner, wherein the angle of the leeward flat tube is larger than the angle of a part of the windward flat tube when the direction of gravity is 0 degree.
  13.  請求項12に記載の空気調和機の室内機において、
     前記風上側扁平管の角度は45度未満、前記風下側扁平管の角度は45度以上であることを特徴とする空気調和機の室内機。
    The indoor unit of the air conditioner according to claim 12,
    An air conditioner indoor unit characterized in that the angle of the windward flat tube is less than 45 degrees, and the angle of the leeward flat tube is 45 degrees or more.
  14.  請求項1に記載の空気調和機の室内機において、
     前記熱交換器は、前記送風機の前側上部に配置される前側上部熱交換器と、前記送風機の後側上部に配置される後側熱交換器と、を備え、
     前記前側上部熱交換器と前記後側熱交換器との境界における前記風下側扁平管の一部の角度と前記風上側扁平管の角度とが異なることを特徴とする空気調和機の室内機。
    In the indoor unit of the air conditioner according to claim 1,
    The heat exchanger includes a front upper heat exchanger disposed at a front upper portion of the blower, and a rear heat exchanger disposed at a rear upper portion of the blower,
    An indoor unit of an air conditioner, wherein an angle of a part of the leeward flat tube and an angle of the windward flat tube at a boundary between the front upper heat exchanger and the rear heat exchanger are different.
  15.  請求項14に記載の空気調和機の室内機において、
     重力方向を0度とした場合、前記風上側扁平管の角度より前記風下側扁平管の一部の角度が大きいことを特徴とする空気調和機の室内機。
    The indoor unit of the air conditioner according to claim 14,
    An indoor unit of an air conditioner, wherein an angle of a part of the leeward flat tube is larger than an angle of the windward flat tube when the direction of gravity is 0 degree.
  16.  請求項15に記載の空気調和機の室内機において、
     前記前側上部熱交換器および前記後側熱交換器のそれぞれの前記風下側扁平管の一部は、互いに近づく方向に移動していることを特徴とする空気調和機の室内機。
    The indoor unit of the air conditioner according to claim 15,
    An indoor unit of an air conditioner, wherein a part of the leeward flat tube of each of the front upper heat exchanger and the rear heat exchanger moves in a direction approaching each other.
  17.  請求項1から請求項16のいずれか1項に記載の空気調和機の室内機において、
     前記扁平伝熱管の向きは、いずれも水平方向ではないことを特徴とする空気調和機の室内機。
    The indoor unit of the air conditioner according to any one of claims 1 to 16,
    An indoor unit of an air conditioner characterized in that none of the flat heat transfer tubes are oriented horizontally.
  18.  請求項1から請求項16のいずれか1項に記載の空気調和機の室内機を備えることを特徴とする空気調和機。 An air conditioner comprising the indoor unit of an air conditioner according to any one of claims 1 to 16.
PCT/JP2017/037348 2017-02-06 2017-10-16 Indoor unit of air conditioner and air conditioner provided with same WO2018142681A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017019262A JP6807766B2 (en) 2017-02-06 2017-02-06 Indoor unit of air conditioner and air conditioner equipped with this
JP2017-019262 2017-02-06

Publications (1)

Publication Number Publication Date
WO2018142681A1 true WO2018142681A1 (en) 2018-08-09

Family

ID=63039630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037348 WO2018142681A1 (en) 2017-02-06 2017-10-16 Indoor unit of air conditioner and air conditioner provided with same

Country Status (2)

Country Link
JP (1) JP6807766B2 (en)
WO (1) WO2018142681A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56117287U (en) * 1980-01-31 1981-09-08
JPS63233225A (en) * 1987-03-20 1988-09-28 Matsushita Electric Ind Co Ltd Air conditioner
JP2007183088A (en) * 2005-12-07 2007-07-19 Matsushita Electric Ind Co Ltd Heat exchanger
JP2009281693A (en) * 2008-05-26 2009-12-03 Mitsubishi Electric Corp Heat exchanger, its manufacturing method, and air-conditioning/refrigerating device using the heat exchanger
JP2011021884A (en) * 2010-11-05 2011-02-03 Mitsubishi Electric Corp Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56117287U (en) * 1980-01-31 1981-09-08
JPS63233225A (en) * 1987-03-20 1988-09-28 Matsushita Electric Ind Co Ltd Air conditioner
JP2007183088A (en) * 2005-12-07 2007-07-19 Matsushita Electric Ind Co Ltd Heat exchanger
JP2009281693A (en) * 2008-05-26 2009-12-03 Mitsubishi Electric Corp Heat exchanger, its manufacturing method, and air-conditioning/refrigerating device using the heat exchanger
JP2011021884A (en) * 2010-11-05 2011-02-03 Mitsubishi Electric Corp Air conditioner

Also Published As

Publication number Publication date
JP2018128149A (en) 2018-08-16
JP6807766B2 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
JP4848256B2 (en) Air conditioner outdoor unit
JP2007113802A (en) Evaporator
JP6223596B2 (en) Air conditioner indoor unit
WO2014181398A1 (en) Air conditioner indoor unit and air conditioner
JP2016200338A (en) Air conditioner
JPWO2018131121A1 (en) Dehumidifier
US9863651B2 (en) Outdoor unit for air-conditioning apparatus
WO2014188526A1 (en) Outdoor unit for air conditioning device, and air conditioning device with same
JP2010281548A (en) Air conditioner
JP5081881B2 (en) Air conditioner
JP6253513B2 (en) Air conditioner indoor unit
CN103574774A (en) Air conditioner
WO2018142681A1 (en) Indoor unit of air conditioner and air conditioner provided with same
JP6771321B2 (en) Indoor unit of air conditioner
JP2010019500A (en) Heat exchanger with fin
JP2008138939A (en) Air conditioning unit and outdoor unit of air conditioner
JP2006275376A (en) Heat exchanger and outdoor unit of air conditioner
JP5932966B2 (en) Air conditioner outdoor unit
JP4734915B2 (en) Indoor unit of heat exchanger and air conditioner equipped with the same
JP5818984B2 (en) Outdoor unit of air conditioner and air conditioner provided with the same
WO2024084832A1 (en) Flat pipe heat exchanger
JP2010266099A (en) Heat exchanger
JP2024046157A (en) Heat exchanger and outdoor unit
JP2023168987A (en) Heat exchanger
JP2023168988A (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894961

Country of ref document: EP

Kind code of ref document: A1