WO2018142501A1 - Antenna device - Google Patents

Antenna device Download PDF

Info

Publication number
WO2018142501A1
WO2018142501A1 PCT/JP2017/003591 JP2017003591W WO2018142501A1 WO 2018142501 A1 WO2018142501 A1 WO 2018142501A1 JP 2017003591 W JP2017003591 W JP 2017003591W WO 2018142501 A1 WO2018142501 A1 WO 2018142501A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
phase
amplitude
antenna
adjuster
Prior art date
Application number
PCT/JP2017/003591
Other languages
French (fr)
Japanese (ja)
Inventor
田中 泰
良夫 稲沢
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/003591 priority Critical patent/WO2018142501A1/en
Priority to JP2017533987A priority patent/JP6207800B1/en
Publication of WO2018142501A1 publication Critical patent/WO2018142501A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture

Definitions

  • the present invention relates to an antenna device that radiates a transmission signal having the same amplitude and opposite phase as an electromagnetic wave scattered by an antenna.
  • the electromagnetic wave When an electromagnetic wave arrives from space, the electromagnetic wave may be scattered by the antenna by being irradiated on the antenna. At this time, the ratio of the intensity of the electromagnetic wave arriving from the space to the intensity of the scattered wave, which is an electromagnetic wave scattered by the antenna, is called a radar cross section (RCS: Radar Cross Section).
  • RCS Radar Cross Section
  • the RCS in the arrival direction is large, there is a high possibility that the presence of a moving body or the like equipped with an antenna is detected, and thus the necessity for reducing the RCS in the arrival direction is high.
  • a typical method for reducing the RCS in the direction of arrival a method using a radio wave absorber is known.
  • the radio wave absorber can absorb the electromagnetic wave coming from the space and lose the power of the electromagnetic wave, thus preventing the scattering of the electromagnetic wave coming from the space and reducing the scattered wave returning to the arrival direction. Can do. Thereby, the RCS in the arrival direction is reduced.
  • the performance of the antenna device may be degraded.
  • the antenna device includes an antenna having strong directivity
  • the radio wave absorber is disposed in order to reduce RCS in the direction having strong directivity
  • RCS in the direction having strong directivity can be reduced.
  • the function of transmitting and receiving signals which is the original function of the antenna, is lost.
  • structural mode RCS only the RCS of the scattered wave determined by the shape of the antenna among the scattered waves scattered by the antenna.
  • Patent Document 1 discloses an antenna device that can solve the above-described problems.
  • the RCS reduction method used by this antenna apparatus is a method for preventing scattered waves from returning strongly in a specific direction in space by setting the plurality of antenna elements constituting the array antenna by shifting the phases.
  • the structural mode RCS and the antenna mode RCS can be reduced.
  • the original functions of the antenna such as transmission / reception of communication signals are lost during the period in which the structural mode RCS and the antenna mode RCS are reduced. Or the subject that the original function of an antenna was restricted occurred.
  • the present invention has been made to solve the above-described problems, and an antenna device capable of transmitting or receiving a communication signal even during a period in which the structural mode RCS and the antenna mode RCS are reduced is provided. Objective.
  • An antenna device radiates a transmission signal as an electromagnetic wave to space while receiving an electromagnetic wave arriving from space and outputting a reception signal of the electromagnetic wave, and an amplitude of the reception signal output from the antenna and A first adjuster that adjusts the phase; a signal distributor that distributes the received signal whose amplitude and phase are adjusted by the first adjuster; and the amplitude and phase of one received signal that is distributed by the signal distributor A second adjuster that adjusts and outputs the received signal, the amplitude and phase of which have been adjusted, to the antenna as a transmission signal.
  • the controller irradiates the antenna with the electromagnetic wave.
  • the other receiving signal distributed by the signal distributor so that a transmission signal having the same amplitude and opposite phase as the scattered wave, which is an electromagnetic wave scattered by the antenna, is radiated from the antenna. It is obtained so as to control the first regulator or a second regulator according to Patent.
  • the controller when the electromagnetic wave arrives from the space, the controller irradiates the antenna with the electromagnetic wave. Is configured to control the first adjuster or the second adjuster according to the other received signal distributed by the signal distributor such that the structural mode RCS and the antenna mode RCS are reduced. There is an effect that transmission or reception of a communication signal can be performed even during a period during which the communication signal is transmitted.
  • FIG. 1 It is a block diagram which shows the antenna apparatus by Embodiment 1 of this invention. It is a block diagram which shows the antenna apparatus by Embodiment 2 of this invention. It is a block diagram which shows the antenna apparatus by Embodiment 3 of this invention. It is a block diagram which shows the controller 20 of the antenna apparatus by Embodiment 4 of this invention. It is a hardware block diagram which shows the controller 20 of an antenna apparatus. It is a hardware block diagram of a computer in case the controller 20 is implement
  • FIG. 1 is a block diagram showing an antenna apparatus according to Embodiment 1 of the present invention.
  • an antenna 1 radiates a transmission signal output from a signal transmission / reception unit 2 or a communication signal to be transmitted as an electromagnetic wave to the space, while receiving an electromagnetic wave arriving from the space, and signals the received signal of the electromagnetic wave as a signal.
  • the antenna 1 may be any antenna as long as it satisfies the angle characteristics and input / output characteristics in a desired frequency band.
  • the electromagnetic wave that has arrived from the space may be an external unnecessary wave or an electromagnetic wave related to a communication signal to be received.
  • the transmission signal is a signal having the same amplitude and opposite phase as the scattered wave that is an electromagnetic wave scattered by the antenna 1.
  • the scattered wave scattered by the antenna 1 is a scattered wave determined by the shape of the antenna 1.
  • the scattered wave in which the electromagnetic wave arriving from the space is reflected by the antenna 1 and the electromagnetic wave arriving from the space are the antenna.
  • scattered waves re-radiated from the antenna 1 are included.
  • the RCS of the scattered wave determined by the shape of the antenna 1 is the structural mode RCS, and the scattered wave re-radiated from the antenna 1 when the electromagnetic wave arriving from the space excites the feeding point of the antenna 1.
  • RCS is an antenna mode RCS.
  • the signal transmission / reception unit 2 includes a transmission / reception switch 11, a first adjuster 12, a signal distributor 13, a receiver 14, an A / D converter 15 as an analog / digital converter, and a D / A conversion as a digital / analog converter. 16, a transmitter 17, and a second adjuster 18.
  • the receiver 14 is represented as “Rx” and the transmitter 17 is represented as “Tx”.
  • the transmission / reception switch 11 is realized by, for example, a circulator, and outputs a transmission signal output from the second adjuster 18 or a communication signal to be transmitted to the antenna 1, and receives a reception signal output from the antenna 1. Output to the first regulator 12.
  • the first adjuster 12 is a receiver-side adjuster, and includes a low noise amplifier (LNA: Low Noise Amplifier) 12a and a phase shifter 12b.
  • the first adjuster 12 adjusts the amplitude and phase of the reception signal output from the transmission / reception switch 11 and outputs the reception signal adjusted in amplitude and phase to the signal distributor 13.
  • the amount of adjustment of the amplitude which is a gain, is controlled by the controller 20, and the amplitude of the reception signal output from the transmission / reception switch 11 is adjusted.
  • the phase adjustment amount of the phase shifter 12b is controlled by the controller 20, and the phase of the reception signal whose amplitude is adjusted by the low noise amplifier 12a is adjusted.
  • the signal distributor 13 is realized by a directional coupler, for example.
  • the signal distributor 13 distributes the received signal whose amplitude and phase are adjusted by the first adjuster 12, and the second received signal is divided into two.
  • the other received signal divided into two is output to the receiver 14.
  • the receiver 14 performs a reception process on the reception signal output from the signal distributor 13 and outputs the reception signal after the reception process to the A / D converter 15 as an electric signal. Since the reception process itself is a known technique, a detailed description thereof will be omitted, but the reception process includes, for example, a received signal detection process, a demodulation process, a frequency conversion process, and the like.
  • the A / D converter 15 converts the electrical signal output from the receiver 14 from an analog signal to a digital signal, and outputs the converted digital signal to the controller 20.
  • the D / A converter 16 converts the communication signal to be transmitted output from the controller 20 from a digital signal to an analog signal, and outputs the communication signal that is the converted analog signal to the transmitter 17.
  • the transmitter 17 performs a transmission process on the communication signal output from the D / A converter 16 and outputs the communication signal after the transmission process to the second adjuster 18. Since the transmission process itself is a known technique and will not be described in detail, the transmission process includes, for example, a frequency conversion process and a modulation process of a communication signal.
  • the second adjuster 18 is a transmitter-side adjuster, and includes a phase shifter 18a and a variable amplifier (VGA: Variable Gain Amplifier) 18b.
  • the second adjuster 18 adjusts the amplitude and phase of the reception signal output from the signal distributor 13 or the communication signal output from the transmitter 17.
  • the second adjuster 18 outputs the reception signal adjusted in amplitude and phase to the transmission / reception switch 11 as a transmission signal, and outputs the communication signal adjusted in amplitude and phase to the transmission / reception switch 11.
  • the phase adjustment amount of the phase shifter 18 a is controlled by the controller 20 and adjusts the phase of the reception signal output from the signal distributor 13 or the communication signal output from the transmitter 17.
  • variable amplifier 18b the amount of adjustment of the amplitude, which is a gain, is controlled by the controller 20, and the amplitude of the reception signal or communication signal whose phase is adjusted by the phase shifter 18a is adjusted.
  • the variable amplifier 18b is not limited to the VGA, and may be realized by a combination of an amplifier and an attenuator.
  • the controller 20 is realized by, for example, a computer having a memory, a semiconductor integrated circuit on which a CPU (Central Processing Unit) is mounted, or a one-chip microcomputer. Controller 20 stores the scattered wave E s being scattered by the previously antenna 1, so that the transmission signal of the scattered wave E s and the same amplitude and opposite phases to be scattered by the antenna 1 is radiated from the antenna 1, The first regulator 12 or the second regulator 18 is controlled in accordance with the digital signal output from the A / D converter 15.
  • a computer having a memory, a semiconductor integrated circuit on which a CPU (Central Processing Unit) is mounted, or a one-chip microcomputer. Controller 20 stores the scattered wave E s being scattered by the previously antenna 1, so that the transmission signal of the scattered wave E s and the same amplitude and opposite phases to be scattered by the antenna 1 is radiated from the antenna 1,
  • the first regulator 12 or the second regulator 18 is controlled in accordance with the digital signal output from the A / D converter 15.
  • the controller 20 adjusts the phase by the phase adjuster 18 a included in the second adjuster 18 according to the digital signal output from the A / D converter 15.
  • the amount of amplitude and the amount of amplitude adjustment by the variable amplifier 18b are controlled.
  • the controller 20 determines the amplitude of the low noise amplifier 12a included in the first adjuster 12 according to the digital signal output from the A / D converter 15.
  • the adjustment amount and the adjustment amount of the phase by the phase shifter 12b are controlled.
  • Scattered wave E s scattered by the antenna 1 is a scattered wave which is determined by the shape of the antenna 1, knowing the shape of the antenna 1 can be grasped in advance by simulation calculation or the like.
  • the amplitude of A s is scattered wave E s
  • phi s is the phase of the scattered wave E s.
  • the operation will be described.
  • the amplitude adjustment amount ⁇ r2 by the low noise amplifier 12a included in the first adjuster 12 is set to a fixed adjustment amount by the controller 20.
  • the phase adjustment amount ⁇ r2 by the phase shifter 12b included in the first adjuster 12 is set to a fixed adjustment amount by the controller 20.
  • the antenna 1 receives an electromagnetic wave arriving from a space and outputs a reception signal Er 1 of the electromagnetic wave to the signal transmission / reception unit 2.
  • a r1 is the amplitude of the reception signal E r1
  • ⁇ r1 is the phase of the reception signal E r1 .
  • the transmission / reception switch 11 of the signal transmission / reception unit 2 When the transmission / reception switch 11 of the signal transmission / reception unit 2 receives the reception signal E r1 output from the antenna 1, the transmission / reception switch 11 outputs the reception signal E r1 to the first adjuster 12.
  • Low-noise amplifier 12a of the first regulator 12 receives the received signal E r1 output from the duplexer 11, by the adjustment amount gamma r2 amplitude being set by the controller 20, the received signal E r1 Adjust the amplitude.
  • the phase adjuster 12 b of the first adjuster 12 adjusts the phase of the received signal whose amplitude is adjusted by the low noise amplifier 12 a by the phase adjustment amount ⁇ r2 set by the controller 20.
  • the reception signal Er 2 after the amplitude and phase are adjusted by the first adjuster 12 is output to the signal distributor 13.
  • the signal distributor 13 When the signal distributor 13 receives the reception signal E r2 output from the first adjuster 12, the signal distributor 13 distributes the reception signal E r2 into two and distributes the two received signals E r2 into the second adjuster. The other received signal Er2 divided into two is output to the receiver 14.
  • Receiver 14 the signal when the distributor 13 receives the received signal E r2 output from, carried out reception processing for the received signal E r2, A / D converter receiving signal E r2 as an electric signal after reception processing 15 is output.
  • the A / D converter 15 converts the electrical signal output from the receiver 14 from an analog signal to a digital signal, and outputs the converted digital signal to the controller 20.
  • the reception signal whose amplitude and phase are adjusted by the second adjuster 18 is output to the transmission / reception switch 11 as a transmission signal Er3 .
  • the transmission / reception switch 11 When the transmission / reception switch 11 receives the transmission signal Er3 output from the second adjuster 18, the transmission / reception switch 11 outputs the transmission signal Er3 to the antenna 1. Accordingly, the transmission signal Er3 is radiated from the antenna 1 to the space as an electromagnetic wave.
  • the amplitude of the transmission signal E r3 radiated from the antenna 1 ( ⁇ r3 ⁇ r2 A r1 ) is the same as the amplitude A s of the scattered wave E s scattered by the antenna 1 and transmit signal E r3 If the phase ( ⁇ r1 + ⁇ r2 + ⁇ r3 ) is opposite to the phase ⁇ s of the scattered wave E s scattered by the antenna 1, the sum of the transmission signal E r3 and the scattered wave E s becomes zero. As a result, the scattered wave E s is canceled in the transmission signal E r3, reception of the scattered waves E s of the external becomes difficult.
  • the controller 20 When the controller 20 receives the digital signal output from the A / D converter 15 of the signal transmission / reception unit 2, the controller 20 analyzes the digital signal, and the electromagnetic wave received by the antenna 1 is related to the communication signal to be received. Or an electromagnetic wave related to an unnecessary wave coming from the outside. Since this electromagnetic wave determination method is a known technique, detailed description thereof is omitted.
  • Controller 20 when the electromagnetic waves received by the antenna 1 is an electromagnetic wave according to the unwanted wave, since it is highly necessary to reduce the radar cross section, the scattered wave E s and the same amplitude and opposite phase being scattered by the antenna 1
  • the phase adjustment amount ⁇ r3 by the phase shifter 18a and the amplitude adjustment amount ⁇ r3 by the variable amplifier 18b are controlled so that the transmission signal E r3 is radiated from the antenna 1.
  • the controller 20 is included in, for example, the second adjuster 18 because the necessity for reducing the radar cross-sectional area is low.
  • the variable amplifier 18b is controlled so that the gain of the variable amplifier 18b becomes zero.
  • the transmission signal E r3 scattered wave E s and the same amplitude and opposite phases to be scattered by the antenna 1 is radiated from the antenna 1.
  • Controller 20 analyzes the digital signal output from the A / D converter 15 of the signal transmitting and receiving unit 2, the received signal E r2 amplitude ( ⁇ r2 A r1) and of the received signal E r2 phase ( ⁇ r1 + ⁇ r2 ) is specified.
  • the controller 20 the amplitude A s of the scattered wave E s which is stored in advance, since the amplitude ( ⁇ r2 A r1) of the received signal E r2, the same amplitude and the amplitude A s of the scattered wave E s to calculate the adjustment amount gamma r3 amplitude for obtaining the amplitude ( ⁇ r3 ⁇ r2 a r1) of the transmission signal E r3 made.
  • the controller 20 is the phase phi s of the scattered wave E s stored in advance, because the phase ( ⁇ r1 + ⁇ r2) of the received signal E r2, the scattered wave E s phase phi s antiphase A phase adjustment amount ⁇ r3 for obtaining the phase ( ⁇ r1 + ⁇ r2 + ⁇ r3 ) of the transmission signal E r3 is calculated.
  • Controller 20 calculating the adjustment amount gamma r3 amplitude, as the adjustment amount of the amplitude by the variable amplifiers 18b of the second regulator 18, sets the adjustment amount gamma r3. Controller 20, calculating the adjustment amount phi r3 of phase, as the adjustment amount of the phase by phase shifter 18a of the second regulator 18, sets the adjustment amount phi r3.
  • the amplitude adjustment amount ⁇ r3 by the variable amplifier 18b included in the second adjuster 18 is set to a fixed adjustment amount by the controller 20.
  • the phase adjustment amount ⁇ r3 by the phase shifter 18a included in the second adjuster 18 is set to a fixed adjustment amount by the controller 20.
  • the controller 20 outputs a communication signal to be transmitted to the D / A converter 16 of the signal transmission / reception unit 2.
  • the D / A converter 16 converts the communication signal from a digital signal to an analog signal, and outputs the converted analog signal to the transmitter 17.
  • the transmitter 17 performs a transmission process on the communication signal that is an analog signal output from the D / A converter 16, and outputs the communication signal after the transmission process to the second adjuster 18.
  • the phase adjuster 18a of the second adjuster 18 receives the communication signal after transmission processing output from the transmitter 17, the communication after the transmission processing is performed by the phase adjustment amount ⁇ r3 set by the controller 20. Adjust the signal phase.
  • the variable amplifier 18b of the second adjuster 18 adjusts the amplitude of the communication signal whose phase is adjusted by the phase adjuster 18a by the amplitude adjustment amount ⁇ r3 set by the controller 20.
  • the communication signal whose amplitude and phase are adjusted by the second adjuster 18 is output to the transmission / reception switch 11.
  • the transmission / reception switch 11 outputs the communication signal to the antenna 1. Thereby, a communication signal is radiated
  • the antenna 1 receives an electromagnetic wave that has arrived from space, and outputs the received signal Er1 of the electromagnetic wave represented by the above formula (2) to the signal transmission / reception unit 2.
  • the transmission / reception switch 11 of the signal transmission / reception unit 2 receives the reception signal E r1 output from the antenna 1, the transmission / reception switch 11 outputs the reception signal E r1 to the first adjuster 12.
  • Low-noise amplifier 12a of the first regulator 12 receives the received signal E r1 output from the duplexer 11, the amplitude set by the controller 20 by the adjustment amount gamma r2, of the received signal E r1 Adjust the amplitude.
  • the phase adjuster 12 b of the first adjuster 12 adjusts the phase of the received signal whose amplitude is adjusted by the low noise amplifier 12 a by the phase adjustment amount ⁇ r2 set by the controller 20.
  • the reception signal Er 2 represented by the expression (3) after the amplitude and phase are adjusted by the first adjuster 12 is output to the signal distributor 13.
  • the signal distributor 13 When the signal distributor 13 receives the reception signal E r2 output from the first adjuster 12, the signal distributor 13 distributes the reception signal E r2 into two and distributes the two received signals E r2 into the second adjuster. The other received signal Er2 divided into two is output to the receiver 14.
  • Receiver 14 the signal when the distributor 13 receives the received signal E r2 output from, carried out reception processing for the received signal E r2, A / D converter receiving signal E r2 as an electric signal after reception processing 15 is output.
  • the A / D converter 15 converts the electrical signal output from the receiver 14 from an analog signal to a digital signal, and outputs the converted digital signal to the controller 20.
  • the reception signal whose amplitude and phase are adjusted by the second adjuster 18 is output to the transmission / reception switch 11 as the transmission signal Er3 represented by the above equation (4).
  • the transmission / reception switch 11 When the transmission / reception switch 11 receives the transmission signal Er3 output from the second adjuster 18, the transmission / reception switch 11 outputs the transmission signal Er3 to the antenna 1. Accordingly, the transmission signal Er3 is radiated from the antenna 1 to the space as an electromagnetic wave.
  • the amplitude of the transmission signal E r3 radiated from the antenna 1 ( ⁇ r3 ⁇ r2 A r1 ) is the same as the amplitude A s of the scattered wave E s scattered by the antenna 1 and transmit signal E r3 If the phase ( ⁇ r1 + ⁇ r2 + ⁇ r3 ) is opposite to the phase ⁇ s of the scattered wave E s scattered by the antenna 1, the sum of the transmission signal E r3 and the scattered wave E s becomes zero. As a result, the scattered wave E s is canceled in the transmission signal E r3, reception of the scattered waves E s of the external becomes difficult.
  • the controller 20 When the controller 20 receives the digital signal output from the A / D converter 15 of the signal transmission / reception unit 2, the controller 20 analyzes the digital signal and converts the electromagnetic wave received by the antenna 1 into an unnecessary wave that has arrived from the outside. It is determined whether the electromagnetic wave is such. Since this electromagnetic wave determination method is a known technique, detailed description thereof is omitted.
  • Controller 20 when the electromagnetic waves received by the antenna 1 is an electromagnetic wave according to the unwanted wave, since it is highly necessary to reduce the radar cross section, the scattered wave E s and the same amplitude and opposite phase being scattered by the antenna 1
  • the amount of amplitude adjustment ⁇ r2 by the low-noise amplifier 12a and the amount of phase adjustment ⁇ r2 by the phase shifter 12b are controlled so that the transmission signal E r3 is radiated from the antenna 1.
  • Controller 20 analyzes the digital signal output from the A / D converter 15 of the signal transmitting and receiving unit 2, the received signal E r2 amplitude ( ⁇ r2 A r1) and of the received signal E r2 phase ( ⁇ r1 + ⁇ r2 ) is specified. Next, the controller 20 calculates the amplitude A r1 of the reception signal E r1 by dividing the amplitude ( ⁇ r2 A r1 ) of the reception signal E r2 by the adjustment amount ⁇ r2 of the current amplitude.
  • the controller 20 the amplitude A s of the scattered wave E s stored in advance, and the amplitude A r1 of a received signal E r1, a fixed amount of adjustment gamma r3 Prefecture by the variable amplifier 18b, the scattered wave E s
  • An amplitude adjustment amount ⁇ r2 for obtaining the amplitude ( ⁇ r3 ⁇ r2 A r1 ) of the transmission signal E r3 having the same amplitude as the amplitude A s is calculated.
  • the controller 20 calculates the phase ⁇ r1 of the reception signal E r1 by subtracting the current phase adjustment amount ⁇ r2 from the phase ( ⁇ r1 + ⁇ r2 ) of the reception signal E r2 .
  • a phase adjustment amount ⁇ r2 for obtaining the phase ( ⁇ r1 + ⁇ r2 + ⁇ r3 ) of the transmission signal E r3 having a phase opposite to that of s is calculated.
  • Controller 20 calculating the adjustment amount gamma r2 amplitude, as the adjustment amount of the amplitude due to the low-noise amplifier 12a of the first regulator 12, sets the adjustment amount gamma r2. Controller 20, calculating the adjustment amount phi r2 of the phase, as an adjustment amount of the phase by the phase shifter 12b of the first regulator 12, sets the adjustment amount phi r2.
  • the controller 20 when the controller 20 receives an electromagnetic wave from the space, the electromagnetic wave is applied to the antenna 1 and thereby scattered by the antenna 1.
  • Embodiment 2 FIG. In the first embodiment, an example is shown in which the second adjuster 18 adjusts not only the transmission signal Er3 but also the amplitude and phase of the communication signal to be transmitted. In the second embodiment, the second adjuster 18 adjusts only the amplitude and phase of the transmission signal Er3 and separately provides a third adjuster 30 that adjusts the amplitude and phase of the communication signal to be transmitted. Will be explained.
  • the third adjuster 30 includes a phase shifter 30a and a high power amplifier (HPA) 30b.
  • the third adjuster 30 adjusts the amplitude and phase of the transmission target communication signal output from the transmitter 17.
  • the phase adjustment amount of the phase shifter 30 a is controlled by the controller 31 and adjusts the phase of the communication signal output from the transmitter 17.
  • the high output amplifier 30b is an amplifier capable of setting a gain larger than that of the variable amplifier 18b. In the high-power amplifier 30b, the amplitude adjustment amount, which is a gain, is controlled by the controller 31, and the amplitude of the communication signal whose phase is adjusted by the phase shifter 30a is adjusted.
  • the controller 31 is realized by, for example, a computer having a memory, a semiconductor integrated circuit on which a CPU is mounted, or a one-chip microcomputer.
  • the controller 31 like the controller 20 of FIG. 1, stores the scattered wave E s being scattered by the previously antenna 1, the scattered wave E s and the same amplitude and opposite phase transmission signals scattered by the antenna 1
  • the first regulator 12 or the second regulator 18 is controlled in accordance with the digital signal output from the A / D converter 15 so that Er3 is radiated from the antenna 1.
  • the controller 31 also controls the amplitude adjustment amount by the high-power amplifier 30b and the phase adjustment amount by the phase adjuster 30a included in the third adjuster 30 when the communication signal to be transmitted is radiated to the space. To do.
  • the amplitude adjustment amount by the high-power amplifier 30b and the phase adjustment amount by the phase shifter 30a are controlled by the controller 31 regardless of the reduction of the radar cross-sectional area, and are controlled according to the communication environment, for example. .
  • the operation when receiving the communication signal to be received is the same as in the first embodiment.
  • An operation when transmitting a communication signal to be transmitted will be described.
  • the controller 31 outputs a communication signal to be transmitted to the D / A converter 16 of the signal transmission / reception unit 2.
  • the D / A converter 16 converts the communication signal from a digital signal to an analog signal, and outputs the converted analog signal to the transmitter 17.
  • the transmitter 17 performs transmission processing on the communication signal that is an analog signal output from the D / A converter 16, and outputs the communication signal after the transmission processing to the third adjuster 30.
  • the phase adjuster 30a of the third adjuster 30 receives the communication signal after the transmission processing output from the transmitter 17, the communication after the transmission processing is performed by the phase adjustment amount ⁇ r4 set by the controller 31. Adjust the signal phase.
  • the high-power amplifier 30b of the third adjuster 30 adjusts the amplitude of the communication signal whose phase is adjusted by the phase adjuster 30a by the amplitude adjustment amount ⁇ r4 set by the controller 31.
  • the communication signal whose amplitude and phase are adjusted by the third adjuster 30 is output to the transmission / reception switch 11.
  • the transmission / reception switch 11 outputs the communication signal to the antenna 1. Thereby, a communication signal is radiated
  • the antenna 1 receives an electromagnetic wave that has arrived from space, and outputs the received signal Er1 of the electromagnetic wave represented by the above formula (2) to the signal transmission / reception unit 2.
  • the transmission / reception switch 11 of the signal transmission / reception unit 2 receives the reception signal E r1 output from the antenna 1, the transmission / reception switch 11 outputs the reception signal E r1 to the first adjuster 12.
  • Low-noise amplifier 12a of the first regulator 12 receives the received signal E r1 output from the duplexer 11, the amplitude set by the controller 31 by the adjustment amount gamma r2, of the received signal E r1 Adjust the amplitude.
  • the phase adjuster 12 b of the first adjuster 12 adjusts the phase of the received signal whose amplitude is adjusted by the low noise amplifier 12 a by the phase adjustment amount ⁇ r2 set by the controller 31.
  • the reception signal Er 2 represented by the expression (3) after the amplitude and phase are adjusted by the first adjuster 12 is output to the signal distributor 13.
  • the signal distributor 13 When receiving the reception signal Er2 output from the first adjuster 12, the signal distributor 13 distributes the reception signal Er2 into two and divides the reception signal Er2 into two as in the first embodiment.
  • the signal Er2 is output to the second adjuster 18, and the other received signal Er2 divided into two is output to the receiver 14.
  • the receiver 14 When receiving the reception signal E r2 output from the signal distributor 13, the receiver 14 performs a reception process on the reception signal E r2 as in the first embodiment, and receives the reception signal E r2 after the reception process. Is output to the A / D converter 15 as an electrical signal.
  • the A / D converter 15 converts the electrical signal output from the receiver 14 from an analog signal to a digital signal, and outputs the converted digital signal to the controller 31.
  • the variable amplifier 18b of the second adjuster 18 adjusts the amplitude of the reception signal E r2 whose phase is adjusted by the phase adjuster 18a by the amplitude adjustment amount ⁇ r3 set by the controller 31.
  • the reception signal whose amplitude and phase are adjusted by the second adjuster 18 is output to the transmission / reception switch 11 as the transmission signal Er3 represented by the above equation (4).
  • the transmission / reception switch 11 When the transmission / reception switch 11 receives the transmission signal Er3 output from the second adjuster 18, the transmission / reception switch 11 outputs the transmission signal Er3 to the antenna 1. Accordingly, the transmission signal Er3 is radiated from the antenna 1 to the space as an electromagnetic wave.
  • the controller 31 When the controller 31 receives the digital signal output from the A / D converter 15 of the signal transmission / reception unit 2, the controller 31 analyzes the digital signal and receives it by the antenna 1 as in the controller 20 of FIG. It is determined whether the electromagnetic wave is an electromagnetic wave related to an unnecessary wave that has come from the outside. When the electromagnetic wave received by the antenna 1 is an electromagnetic wave related to an unnecessary wave, the controller 31 has a high necessity for reducing the radar cross-sectional area, and therefore, like the controller 20 of FIG. To control. That is, the control unit 31, in the same manner as the control unit 20 of FIG.
  • the second embodiment as in the first embodiment, there is an effect that transmission or reception of a communication signal can be performed even during a period in which the structural mode RCS and the antenna mode RCS are reduced.
  • the third adjuster 30 that adjusts the amplitude and phase of the communication signal to be transmitted is provided, and the second adjuster 18 determines only the amplitude and phase of the transmission signal Er3. Since the adjustment is made, it is possible to increase the power in the communication signal to be transmitted while reducing the radar cross-sectional area.
  • Embodiment 3 In the second embodiment, an example in which the second adjuster 18 including the phase shifter 18a and the third adjuster 30 including the phase shifter 30a is provided. In the third embodiment, an example in which the phase shifter 18a included in the second adjuster 18 and the phase shifter 30a included in the third adjuster 30 are shared will be described.
  • FIG. 3 is a block diagram showing an antenna apparatus according to Embodiment 3 of the present invention.
  • the phase shifter 41 adjusts the phase of one received signal E r2 distributed by the signal distributor 13 by the phase adjustment amount ⁇ r3 set by the controller 44.
  • the phase shifter 41 adjusts the phase of the communication signal output from the transmitter 17 by the phase adjustment amount ⁇ r4 set by the controller 44.
  • the variable amplifier 18b corresponds to the first amplitude adjuster
  • the high output amplifier 30b corresponds to the second amplitude adjuster.
  • the variable amplifier 18b, the high-power amplifier 30b, and the phase shifter 41 correspond to the second adjuster.
  • the port A is connected to the variable amplifier 18b
  • the port B is connected to the phase shifter 41
  • one received signal Er2 distributed by the signal distributor 13 is transferred to the variable amplifier 18b or phase shifter.
  • 41 is a switch for switching the path to be output to 41.
  • the second changeover switch 43 has a port A connected to the high-power amplifier 30b and a port B connected to the variable amplifier 18b. The phase of the received signal Er2 or communication signal adjusted by the phase shifter 41 is changed to the variable amplifier 18b. Alternatively, it is a path switching switch that outputs to the high-power amplifier 30b.
  • the controller 44 is realized by, for example, a computer having a memory, a semiconductor integrated circuit on which a CPU is mounted, a one-chip microcomputer, or the like, similarly to the controller 20 in FIG. 1 and the controller 31 in FIG.
  • the controller 44 controls the first changeover switch 42 so that one received signal Er2 distributed by the signal distributor 13 is output to the phase shifter 41.
  • the second changeover switch 43 is controlled so that the reception signal Er2 whose phase is adjusted by the phase shifter 41 is output to the variable amplifier 18b.
  • the controller 44 controls the first changeover switch 42 so that one received signal Er2 distributed by the signal distributor 13 is output to the variable amplifier 18b.
  • the second changeover switch 43 is controlled so that the communication signal whose phase is adjusted by the phase shifter 41 is output to the high output amplifier 30b.
  • the controller 44 in the same manner as the control unit 31 of the controller 20 and 2 of Figure 1, stores the scattered wave E s scattered in advance by the antenna 1.
  • the controller 44 outputs from the A / D converter 15 so that the transmission signal E r3 having the same amplitude and opposite phase as the scattered wave E s is radiated from the antenna 1.
  • the amplitude adjustment amount ⁇ r3 by the variable amplifier 18b and the phase adjustment amount ⁇ r3 by the phase shifter 41 are controlled in accordance with the digital signal.
  • the controller 44 controls the amplitude adjustment amount ⁇ r4 by the high-power amplifier 30b and the phase adjustment amount ⁇ r4 by the phase shifter 41.
  • the controller 44 adjusts the first adjuster according to the digital signal output from the A / D converter 15 so that the transmission signal E r3 having the same amplitude and opposite phase as the scattered wave E s is radiated from the antenna 1.
  • 12 controls the amplitude adjustment amount ⁇ r2 by the low noise amplifier 12a and the phase adjustment amount ⁇ r2 by the phase shifter 12b.
  • the operation will be described.
  • the amplitude adjustment amount ⁇ r2 by the low noise amplifier 12a included in the first adjuster 12 is set to a fixed adjustment amount by the controller 44.
  • the phase adjustment amount ⁇ r2 by the phase shifter 12b included in the first adjuster 12 is set to a fixed adjustment amount by the controller 44.
  • the output port of the first changeover switch 42 is set to port B by the controller 44, and the output port of the second changeover switch 43 is set to port B by the controller 44.
  • the antenna 1 receives an electromagnetic wave that has arrived from space, and outputs the received signal Er1 of the electromagnetic wave represented by the above formula (2) to the signal transmission / reception unit 2.
  • the transmission / reception switch 11 of the signal transmission / reception unit 2 receives the reception signal E r1 output from the antenna 1, the transmission / reception switch 11 outputs the reception signal E r1 to the first adjuster 12.
  • Low-noise amplifier 12a of the first regulator 12 receives the received signal E r1 output from the duplexer 11, by the adjustment amount gamma r2 amplitude being set by the controller 44, the received signal E r1 Adjust the amplitude.
  • the phase adjuster 12 b of the first adjuster 12 adjusts the phase of the received signal whose amplitude is adjusted by the low noise amplifier 12 a by the phase adjustment amount ⁇ r2 set by the controller 44.
  • the reception signal Er 2 represented by the expression (3) after the amplitude and phase are adjusted by the first adjuster 12 is output to the signal distributor 13.
  • the signal distributor 13 When the signal distributor 13 receives the reception signal Er2 output from the first adjuster 12, the signal distributor 13 distributes the reception signal Er2 into two and distributes the one reception signal Er2 divided into two to the first changeover switch. The other received signal Er2 divided into two is output to the receiver 14.
  • Receiver 14 the signal when the distributor 13 receives the received signal E r2 output from, carried out reception processing for the received signal E r2, A / D converter receiving signal E r2 as an electric signal after reception processing 15 is output.
  • the A / D converter 15 converts the electrical signal output from the receiver 14 from an analog signal to a digital signal, and outputs the converted digital signal to the controller 20.
  • the output port is set to the port B by the controller 44, so that the reception signal Er 2 is transferred to the phase shifter 41.
  • Phaser 41 upon receiving the received signals E r2, which is output from the first selector switch 42, by adjusting the amount phi r3 of set phase by controller 44, adjusts the phase of the received signal E r2, phase The adjusted reception signal Er2 is output to the second changeover switch 43.
  • the output port is set to the port B by the controller 44, so that the reception signal Er2 is variable.
  • the reception signal represented by Expression (4) upon receiving the received signals E r2 output from the second selector switch 43, by the adjustment amount gamma r3 amplitude set by the controller 44, adjusts the amplitude of the received signal E r2.
  • the reception signal represented by Expression (4) after the amplitude is adjusted by the variable amplifier 18b is output to the transmission / reception switch 11 as the transmission signal Er3 .
  • the transmission / reception switch 11 Upon receiving the transmission signal Er3 output from the variable amplifier 18b, the transmission / reception switch 11 outputs the transmission signal Er3 to the antenna 1. Accordingly, the transmission signal Er3 is radiated from the antenna 1 to the space as an electromagnetic wave.
  • the amplitude of the transmission signal E r3 radiated from the antenna 1 ( ⁇ r3 ⁇ r2 A r1 ) is the same as the amplitude A s of the scattered wave E s scattered by the antenna 1 and transmit signal E r3
  • the phase ( ⁇ r1 + ⁇ r2 + ⁇ r3 ) is opposite to the phase ⁇ s of the scattered wave E s scattered by the antenna 1, the sum of the transmission signal E r3 and the scattered wave E s becomes zero.
  • the scattered wave E s is canceled in the transmission signal E r3, reception of the scattered waves E s of the external becomes difficult.
  • the controller 44 Upon receiving the digital signal output from the A / D converter 15 of the signal transmission / reception unit 2, the controller 44 analyzes the digital signal in the same manner as the controller 20 in FIG. 1 and the controller 31 in FIG. Then, it is determined whether the electromagnetic wave received by the antenna 1 is an electromagnetic wave related to a communication signal to be received or an electromagnetic wave related to an unnecessary wave coming from the outside.
  • the controller 44 when the electromagnetic waves received by the antenna 1 is an electromagnetic wave according to the unwanted wave, since it is highly necessary to reduce the radar cross section, the scattered wave E s and the same amplitude and opposite phase being scattered by the antenna 1
  • the phase adjustment amount ⁇ r3 by the phase shifter 41 and the amplitude adjustment amount ⁇ r3 by the variable amplifier 18b are controlled so that the transmission signal E r3 is radiated from the antenna 1.
  • the controller 44 is included in, for example, the second adjuster 18 because it is less necessary to reduce the radar cross-sectional area.
  • the variable amplifier 18b is controlled so that the gain of the variable amplifier 18b becomes zero.
  • the transmission signal E r3 scattered wave E s the same amplitude and opposite phases to be scattered by the antenna 1 is radiated from the antenna 1.
  • the transmission of the scattered wave E s and the same amplitude and opposite phases to be scattered by the antenna 1 signal E r3 May be radiated from the antenna 1.
  • the controller 44 analyzes the digital signal output from the A / D converter 15 of the signal transmitting and receiving unit 2, the received signal E r2 amplitude ( ⁇ r2 A r1) and of the received signal E r2 phase ( ⁇ r1 + ⁇ r2 ) is specified.
  • the controller 44 calculates the adjustment amount gamma r3 amplitude of formula (5) for obtaining a composed amplitude of the transmission signal E r3 ( ⁇ r3 ⁇ r2 a r1).
  • the control unit 44 is composed and phase phi s of the scattered wave E s stored in advance, because the phase ( ⁇ r1 + ⁇ r2) of the received signal E r2, the scattered wave E s phase phi s antiphase A phase adjustment amount ⁇ r3 represented by Expression (6) for obtaining the phase ( ⁇ r1 + ⁇ r2 + ⁇ r3 ) of the transmission signal E r3 is calculated.
  • the controller 44 calculating the adjustment amount gamma r3 amplitude, as the adjustment amount of the amplitude by the variable amplifiers 18b, sets an adjustment amount gamma r3.
  • the controller 44 calculating the adjustment amount phi r3 of phase, as the adjustment amount of the phase by the phase detector 41, sets the adjustment amount phi r3.
  • the output port of the first changeover switch 42 is set to port A by the controller 44
  • the output port of the second changeover switch 43 is set to port A by the controller 44.
  • the controller 44 outputs the communication signal to be transmitted to the D / A converter 16 of the signal transmission / reception unit 2.
  • the D / A converter 16 converts the communication signal from a digital signal to an analog signal, and outputs the converted analog signal to the transmitter 17.
  • the transmitter 17 performs transmission processing on the communication signal that is an analog signal output from the D / A converter 16, and outputs the communication signal after the transmission processing to the phase shifter 41.
  • the phase shifter 41 adjusts the phase of the communication signal after transmission processing by the phase adjustment amount ⁇ r4 set by the controller 44.
  • the communication signal after the phase adjustment is output to the second changeover switch 43.
  • the second changeover switch 43 receives the communication signal after the phase adjustment output from the phase shifter 41, the output port is set to the port A by the controller 44, so that the communication signal is sent to the high output amplifier 30b. Output.
  • the high-power amplifier 30b adjusts the amplitude of the communication signal output from the second switch 43 by the amplitude adjustment amount ⁇ r4 set by the controller 44.
  • the communication signal whose amplitude is adjusted by the high output amplifier 30 b is output to the transmission / reception switch 11.
  • the transmission / reception switch 11 receives the communication signal output from the high-power amplifier 30b, the transmission / reception switch 11 outputs the communication signal to the antenna 1. Thereby, a communication signal is radiated
  • the antenna 1 receives an electromagnetic wave that has arrived from space, and outputs the received signal Er1 of the electromagnetic wave represented by the above formula (2) to the signal transmission / reception unit 2.
  • the transmission / reception switch 11 of the signal transmission / reception unit 2 receives the reception signal E r1 output from the antenna 1, the transmission / reception switch 11 outputs the reception signal E r1 to the first adjuster 12.
  • Low-noise amplifier 12a of the first regulator 12 receives the received signal E r1 output from the duplexer 11, the amplitude set by the controller 44 by the adjustment amount gamma r2, of the received signal E r1 Adjust the amplitude.
  • the phase adjuster 12 b of the first adjuster 12 adjusts the phase of the received signal whose amplitude is adjusted by the low noise amplifier 12 a by the phase adjustment amount ⁇ r2 set by the controller 44.
  • the reception signal Er 2 represented by the expression (3) after the amplitude and phase are adjusted by the first adjuster 12 is output to the signal distributor 13.
  • the signal distributor 13 When the signal distributor 13 receives the reception signal Er2 output from the first adjuster 12, the signal distributor 13 distributes the reception signal Er2 into two and distributes the one reception signal Er2 divided into two to the first changeover switch. The other received signal Er2 divided into two is output to the receiver 14.
  • the receiver 14 When receiving the reception signal E r2 output from the signal distributor 13, the receiver 14 performs a reception process on the reception signal E r2 as in the first embodiment, and receives the reception signal E r2 after the reception process. Is output to the A / D converter 15 as an electrical signal.
  • the A / D converter 15 converts the electrical signal output from the receiver 14 from an analog signal to a digital signal, and outputs the converted digital signal to the controller 44.
  • the reception signal Er2 is sent to the variable amplifier 18b. Output.
  • the variable amplifier 18b adjusts the amplitude of the received signal E r2 by the amplitude adjustment amount ⁇ r3 set by the controller 44.
  • the reception signal whose amplitude has been adjusted by the variable amplifier 18b is output to the transmission / reception switch 11 as the transmission signal Er3 represented by the above equation (4).
  • the transmission / reception switch 11 Upon receiving the transmission signal Er3 output from the variable amplifier 18b, the transmission / reception switch 11 outputs the transmission signal Er3 to the antenna 1. Accordingly, the transmission signal Er3 is radiated from the antenna 1 to the space as an electromagnetic wave.
  • the controller 44 Upon receiving the digital signal output from the A / D converter 15 of the signal transmission / reception unit 2, the controller 44 analyzes the digital signal in the same manner as the controller 20 in FIG. 1 and the controller 31 in FIG. Then, it is determined whether the electromagnetic wave received by the antenna 1 is an electromagnetic wave related to an unnecessary wave that has come from the outside.
  • the controller 44 when the electromagnetic waves received by the antenna 1 is an electromagnetic wave according to the unwanted wave, since it is highly necessary to reduce the radar cross section, the scattered wave E s and the same amplitude and opposite phase being scattered by the antenna 1
  • the amount of amplitude adjustment ⁇ r2 by the low-noise amplifier 12a and the amount of phase adjustment ⁇ r2 by the phase shifter 12b are controlled so that the transmission signal E r3 is radiated from the antenna 1.
  • the controller 44 analyzes the digital signal output from the A / D converter 15 of the signal transmitting and receiving unit 2, the received signal E r2 amplitude ( ⁇ r2 A r1) and of the received signal E r2 phase ( ⁇ r1 + ⁇ r2 ) is specified. Next, the controller 44 calculates the amplitude A r1 of the reception signal E r1 by dividing the amplitude ( ⁇ r2 A r1 ) of the reception signal E r2 by the adjustment amount ⁇ r2 of the current amplitude.
  • the controller 44 the amplitude A s of the scattered wave E s stored in advance and the amplitude A r1 received signal E r1, fixed adjustment amount gamma r3 Prefecture by the variable amplifier 18b, the scattered wave E s calculating the amplitude a s and an amplitude ( ⁇ r3 ⁇ r2 a r1) adjustment amount gamma r2 amplitude of formula (7) for obtaining a transmission signal E r3 having the same amplitude.
  • the controller 44 calculates the phase ⁇ r1 of the received signal E r1 by subtracting the current phase adjustment amount ⁇ r2 from the phase ( ⁇ r1 + ⁇ r2 ) of the received signal E r2 .
  • the controller 44 includes a phase phi s of the scattered wave E s stored in advance, the phase phi r1 of the reception signal E r1, a fixed adjustment amount phi r3 Metropolitan by phase shifter 18a, the phase phi of the scattered wave E s
  • the phase adjustment amount ⁇ r2 represented by the equation (8) for obtaining the phase ( ⁇ r1 + ⁇ r2 + ⁇ r3 ) of the transmission signal E r3 having a phase opposite to s is calculated.
  • the controller 44 calculating the adjustment amount gamma r2 amplitude, as the adjustment amount of the amplitude due to the low-noise amplifier 12a of the first regulator 12, sets the adjustment amount gamma r2.
  • the controller 44 calculating the adjustment amount phi r2 of the phase, as an adjustment amount of the phase by the phase shifter 12b of the first regulator 12, sets the adjustment amount phi r2.
  • the communication signal can be transmitted or received even during the period in which the structural mode RCS and the antenna mode RCS are reduced.
  • the phase shifter 41 functions as the phase shifter 18 a included in the second adjuster 18 and the phase shifter 30 a included in the third adjuster 30. Therefore, the number of phase shifters can be reduced and the configuration can be simplified as compared with the second embodiment.
  • Embodiment 4 FIG. In the fourth embodiment, the components that determine the adjustment amounts of the amplitude and phase in the controllers 20, 31, 44 of FIGS. 1 to 3 will be specifically described.
  • FIG. 4 is a block diagram showing a controller 20 of an antenna apparatus according to Embodiment 4 of the present invention.
  • FIG. 4 shows a configuration diagram of the controller 20, but the controller 31 shown in FIG. 2 and the controller 44 shown in FIG. It becomes the same configuration diagram.
  • FIG. 5 is a hardware configuration diagram showing the controller 20 of the antenna apparatus.
  • the arrival direction estimation unit 51 is realized by, for example, the arrival direction estimation circuit 61 shown in FIG. 5, and performs processing for estimating the arrival direction ⁇ of the electromagnetic wave that has arrived from the digital signal output from the A / D converter 15. carry out.
  • Table storage unit 52 is intended to be implemented in the memory circuit 62 shown in FIG. 5, for example, the arrival direction ⁇ of the electromagnetic wave, the correspondence relationship between the amplitude A s and phase phi s of the scattered wave E s being scattered by the antenna 1 Is stored.
  • the scattered wave specifying unit 53 is realized by, for example, the scattered wave specifying circuit 63 shown in FIG. 5, and the arrival direction estimated by the arrival direction estimating unit 51 with reference to the table stored in the table storage unit 52. It carries out a process of specifying the amplitude a s and phase phi s of the scattered wave E s corresponding to theta.
  • the adjustment amount determination unit 54 is realized by, for example, the adjustment amount determination circuit 64 shown in FIG. Adjustment amount determination unit 54, when receiving the communication signal to be received is, the amplitude A s and phase phi s of the identified scattered wave E s by scattered wave identification unit 53, an amplitude adjustment by the low-noise amplifier 12a A process of determining the amplitude adjustment amount ⁇ r3 by the variable amplifier 18b and the phase adjustment amount ⁇ r3 by the phase shifter 18a from the amount ⁇ r2 and the phase adjustment amount ⁇ r2 by the phase shifter 12b is performed.
  • the adjustment amount determination unit 54 adjusts the amplitude A s and phase ⁇ s of the scattered wave E s specified by the scattered wave specification unit 53 and the amplitude adjustment amount by the variable amplifier 18b.
  • a process of determining an amplitude adjustment amount ⁇ r2 by the low noise amplifier 12a and a phase adjustment amount ⁇ r2 by the phase shifter 12b from ⁇ r3 and the phase adjustment amount ⁇ r3 by the phase shifter 18a is performed.
  • each of the arrival direction estimation unit 51, the table storage unit 52, the scattered wave identification unit 53, and the adjustment amount determination unit 54, which are components of the controller 20, includes dedicated hardware as shown in FIG. It is assumed that the arrival direction estimation circuit 61, the storage circuit 62, the scattered wave identification circuit 63, and the adjustment amount determination circuit 64 are realized.
  • the memory circuit 62 may be, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory Memory, or an EEPROM (Electrically Erasable Memory).
  • a volatile semiconductor memory a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disc), and the like are applicable.
  • the arrival direction estimation circuit 61, the scattered wave identification circuit 63, and the adjustment amount determination circuit 64 include, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), and an FPGA. (Field-Programmable Gate Array) or a combination thereof is applicable.
  • the components of the controller 20 are not limited to those realized by dedicated hardware, and the controller 20 may be realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are stored as programs in the memory of the computer.
  • the computer means hardware that executes a program, and includes, for example, a CPU, a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, a DSP (Digital Signal Processor), and the like.
  • FIG. 6 is a hardware configuration diagram of a computer when the controller 20 is realized by software or firmware.
  • the table storage unit 52 is configured on the memory 71 of the computer, and the processing procedures of the arrival direction estimation unit 51, the scattered wave identification unit 53, and the adjustment amount determination unit 54 are processed.
  • a program to be executed by the computer may be stored in the memory 71, and the processor 72 of the computer may execute the program stored in the memory 71.
  • FIG. 7 is a flowchart showing a processing procedure when the controller 20 is realized by software or firmware.
  • the arrival direction estimation unit 51 of the controller 20 receives the digital signal output from the A / D converter 15, the arrival direction estimation unit 51 estimates the arrival direction ⁇ of the electromagnetic wave arriving from the digital signal (step ST1 in FIG. 7). Since the process of estimating the arrival direction ⁇ of the electromagnetic wave from the digital signal is a known technique, detailed description thereof is omitted.
  • the arrival direction estimation unit 51 estimates the arrival direction ⁇ of the electromagnetic wave from the arrival direction ⁇ of the electromagnetic wave, the scattered waves E s scattered in the arrival direction ⁇ by the antenna 1 the amplitude A s and phase ⁇ s is specified (step ST2 in FIG. 7). That is, the scattered wave identification unit 53, from the table stored in the table storage unit 52, acquires the amplitude A s and phase phi s of the scattered wave E s corresponding to been arrival direction ⁇ estimated by the arrival direction estimation unit 51 To do.
  • FIG. 8 is an explanatory diagram illustrating an example of a table stored in the table storage unit 52. In the example of FIG.
  • the arrival direction of the electromagnetic wave theta is theta 1, as the amplitude A s and phase phi s of the scattered wave E s, of the scattered wave E s corresponding to the direction of arrival theta 1 amplitude A s1 and the phase phi Get s1 .
  • the arrival direction theta of electromagnetic waves if theta 2, the amplitude A s and phase phi s of the scattered wave E s, to obtain the amplitude A s2 and phase phi s2 scattered wave E s corresponding to the direction of arrival theta 2 .
  • the adjustment amount determination unit 54 uses the amplitude adjustment amount ⁇ r2 by the low noise amplifier 12a set to be fixed and the phase shifter 12b. The phase adjustment amount ⁇ r2 is acquired. Then, the adjustment amount determining unit 54, the amplitude A s and phase phi s of the identified scattered wave E s by scattered wave identification unit 53, a low noise amplifier 12a by the phase by the amplitude adjustment amount gamma r2 and phaser 12b From the adjustment amount ⁇ r2 , the amplitude adjustment amount ⁇ r3 by the variable amplifier 18b and the phase adjustment amount ⁇ r3 by the phase shifter 18a are determined (step ST4 in FIG.
  • the adjustment amount determining unit 54 the amplitude of the amplitude A s and receive signals E r2 of the scattered wave E s a (gamma r2 A r1)
  • the amplitude adjustment amount ⁇ r3 can be calculated.
  • the adjustment amount determining unit 54, the scattered wave E s of the phase phi s and the received signal E r2 phases (phi r1 + phi r2) By substituting the above equation (6), the phase adjustment of the by phase shifter 18a
  • the quantity ⁇ r3 can be calculated.
  • the adjustment amount determination unit 54 adjusts the amplitude adjustment amount ⁇ r3 by the variable amplifier 18b set to be fixed and the phase by the phase shifter 18a.
  • the adjustment amount ⁇ r3 is acquired.
  • the adjustment amount determining unit 54, the amplitude A s and phase phi s of the identified scattered wave E s by scattered wave identification unit 53, an amplitude by the variable amplifiers 18b adjustment amount gamma r3 and by phase shifter 18a phases of From the adjustment amount ⁇ r3 , the amplitude adjustment amount ⁇ r2 by the low noise amplifier 12a and the phase adjustment amount ⁇ r2 by the phase shifter 12b are determined (step ST5 in FIG.
  • the adjustment amount determining unit 54 calculates the amplitude A r1 of the reception signal E r1 by dividing the amplitude ( ⁇ r2 A r1 ) of the reception signal E r2 by the adjustment amount ⁇ r2 of the current amplitude. . Then, the adjustment amount determining unit 54, and the amplitude A s of the scattered wave E s, is substituted with the amplitude A r1 of a received signal E r1, the adjustment amount gamma r3 and the above equation fixed by the variable amplifier 18b (7) Thus, the amplitude adjustment amount ⁇ r2 by the low noise amplifier 12a can be calculated.
  • the adjustment amount determination unit 54 calculates the phase ⁇ r1 of the reception signal E r1 by subtracting the adjustment amount ⁇ r2 of the current phase from the phase ( ⁇ r1 + ⁇ r2 ) of the reception signal E r2 . Then, the adjustment amount determining unit 54, and the phase phi s of the scattered wave E s, substitutes the phase phi r1 of the reception signal E r1, the adjustment amount phi r3 and the above equation fixed by phase shifter 18a (8) Thus, the phase adjustment amount ⁇ r2 by the phase shifter 12b can be calculated.
  • the controller 20 estimates the arrival direction ⁇ of the incoming electromagnetic wave from the digital signal output from the A / D converter 15. 51, the arrival direction ⁇ estimated by the arrival direction estimation unit 51, a scattered wave identification unit 53 for identifying the amplitude a s and phase phi s of the scattered wave E s scattered in the arrival direction ⁇ by the antenna 1, the receiving when receiving a communication signal of interest, the amplitude a s and phase phi s of the identified scattered wave E s by scattered wave identification unit 53, according to the amplitude adjustment amount gamma r2 and phaser 12b by the low-noise amplifier 12a
  • the amplitude adjustment amount ⁇ r3 by the variable amplifier 18b and the phase adjustment amount ⁇ r3 by the phase shifter 18a are determined from the phase adjustment amount ⁇ r2 and the communication signal to be transmitted is transmitted, the scattered wave is specified.
  • the phase adjustment amount phi r3 Prefecture by the amplitude adjustment amount gamma r3 and phase shifter 18a by the variable amplifier 18b, the amplitude adjustment by the low-noise amplifier 12a Since the adjustment amount determining unit 54 for determining the amount ⁇ r2 and the phase adjustment amount ⁇ r2 by the phase shifter 12b is provided, the amplitude adjustment amount is determined from the digital signal output from the A / D converter 15. In addition, there is an effect that the adjustment amount of the phase can be determined.
  • Embodiment 5 FIG. In the first to fourth embodiments, an antenna apparatus including the antenna 1 and the signal transmission / reception unit 2 is illustrated. In the fifth embodiment, an antenna device in which a plurality of sets of antennas 1 and signal transmission / reception units 2 are mounted will be described.
  • FIG. 9 is a block diagram showing an antenna apparatus according to Embodiment 5 of the present invention.
  • N N is an integer of 2 or more sets of antennas 1 and signal transmission / reception units 2 are mounted.
  • antennas 1-1 to 1-N correspond to the antenna 1 of FIGS.
  • the signal transmission / reception units 2-1 to 2-N correspond to the signal transmission / reception unit 2 shown in FIGS.
  • the antenna device includes the controller 20, and the controller 20 controls the first adjuster 12 and the second adjuster 18 in the signal transmission / reception units 2-1 to 2-N.
  • the controller 31 of FIG. 2 or the controller 44 of FIG. 3 may be mounted.
  • an active phased array antenna can be constructed.
  • the APAA can set an amplitude and a phase capable of reducing the radar cross section without losing the function as an antenna in transmission / reception of communication signals. That is, the APAA includes a radiation array pattern that is an array pattern for the antennas 1-1 to 1-N to transmit and receive communication signals, and an RCS array pattern that is an array pattern for unnecessary waves to avoid transmission and reception of unnecessary waves. Can be formed simultaneously. Therefore, nulls can be formed in the arrival direction of unnecessary waves to avoid transmission / reception of unnecessary waves, and the period during which structural mode RCS and antenna mode RCS are reduced as in the first to fourth embodiments. Especially, there exists an effect which can perform transmission or reception of a communication signal.
  • the present invention is suitable for an antenna device that radiates a transmission signal having the same amplitude and opposite phase as an electromagnetic wave scattered by an antenna.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

When electromagnetic waves have arrived from a space, a controller (20) controls a first regulator (12) or a second regulator (18) in accordance with an other reception signal Er2 distributed by a signal distributor (13), so that an antenna (1) is irradiated with the electromagnetic waves, whereby a transmission signal E r3 having the same amplitude and the opposite phase as scattered waves Es scattered by the antenna (1) is emitted by the antenna (1).

Description

アンテナ装置Antenna device
 この発明は、アンテナにより散乱される電磁波と同振幅かつ逆位相の送信信号を放射するアンテナ装置に関するものである。 The present invention relates to an antenna device that radiates a transmission signal having the same amplitude and opposite phase as an electromagnetic wave scattered by an antenna.
 空間から電磁波が到来してきた際に、当該電磁波がアンテナに照射されることで、当該電磁波がアンテナによって散乱されることがある。
 このとき、空間から到来してきた電磁波の強度と、アンテナにより散乱される電磁波である散乱波の強度との比は、レーダ断面積(RCS:Radar Cross Section)と呼ばれる。
When an electromagnetic wave arrives from space, the electromagnetic wave may be scattered by the antenna by being irradiated on the antenna.
At this time, the ratio of the intensity of the electromagnetic wave arriving from the space to the intensity of the scattered wave, which is an electromagnetic wave scattered by the antenna, is called a radar cross section (RCS: Radar Cross Section).
 到来方向のRCSが大きい場合、アンテナを搭載している移動体等の存在が検出される可能性が高まるため、到来方向のRCSを低減する必要性が高い。
 到来方向のRCSを低減する代表的な方法として、電波吸収体を用いる方法が知られている。
 電波吸収体は、空間から到来してきた電磁波を吸収して、当該電磁波の電力を損失させることができるため、空間から到来してきた電磁波の散乱を防いで、到来方向に戻る散乱波を低減することができる。これにより、到来方向のRCSが低減される。
When the RCS in the arrival direction is large, there is a high possibility that the presence of a moving body or the like equipped with an antenna is detected, and thus the necessity for reducing the RCS in the arrival direction is high.
As a typical method for reducing the RCS in the direction of arrival, a method using a radio wave absorber is known.
The radio wave absorber can absorb the electromagnetic wave coming from the space and lose the power of the electromagnetic wave, thus preventing the scattering of the electromagnetic wave coming from the space and reducing the scattered wave returning to the arrival direction. Can do. Thereby, the RCS in the arrival direction is reduced.
 しかしながら、電波吸収体を用いる方法の場合、アンテナ装置の性能が低下する可能性がある。
 例えば、アンテナ装置が、強い指向性を有するアンテナを備えている場合において、強い指向性を有する方向のRCSを低減するために電波吸収体を配置すると、強い指向性を有する方向のRCSを低減できても、アンテナの本来の機能である信号を送受信する機能が失われるという問題点がある。
 また、電波吸収体を用いる方法の場合、アンテナにより散乱される散乱波のうち、アンテナの形状によって決定される散乱波のRCS(以下、「構造モードRCS」と称する)だけである。このため、空間から到来してきた電磁波がアンテナの給電点を励振することで、アンテナから再放射される散乱波のRCS(以下、「アンテナモードRCS」と称する)を低減することができないという問題点がある。
However, in the case of a method using a radio wave absorber, the performance of the antenna device may be degraded.
For example, in the case where the antenna device includes an antenna having strong directivity, if the radio wave absorber is disposed in order to reduce RCS in the direction having strong directivity, RCS in the direction having strong directivity can be reduced. However, there is a problem that the function of transmitting and receiving signals, which is the original function of the antenna, is lost.
In the case of the method using the radio wave absorber, only the RCS of the scattered wave determined by the shape of the antenna among the scattered waves scattered by the antenna (hereinafter referred to as “structural mode RCS”). For this reason, the electromagnetic wave arriving from the space excites the feeding point of the antenna, so that the RCS of the scattered wave re-radiated from the antenna (hereinafter referred to as “antenna mode RCS”) cannot be reduced. There is.
 以下の特許文献1には、上記の問題点を解決することが可能なアンテナ装置が開示されている。
 このアンテナ装置が用いるRCSの低減方法は、アレーアンテナを構成している複数のアンテナ素子の位相をずらして設定することにより、散乱波を空間の特定方向に強く返さないようにする方法である。
The following Patent Document 1 discloses an antenna device that can solve the above-described problems.
The RCS reduction method used by this antenna apparatus is a method for preventing scattered waves from returning strongly in a specific direction in space by setting the plurality of antenna elements constituting the array antenna by shifting the phases.
特開2016-167769号公報JP 2016-167769 A
 従来のアンテナ装置は以上のように構成されているので、構造モードRCS及びアンテナモードRCSを低減することができる。しかし、構造モードRCS及びアンテナモードRCSを低減している期間中は、通信信号を送受信するなどのアンテナの本来の機能が失われる。あるいは、アンテナの本来の機能が制限されるという課題があった。 Since the conventional antenna device is configured as described above, the structural mode RCS and the antenna mode RCS can be reduced. However, the original functions of the antenna such as transmission / reception of communication signals are lost during the period in which the structural mode RCS and the antenna mode RCS are reduced. Or the subject that the original function of an antenna was restricted occurred.
 この発明は上記のような課題を解決するためになされたもので、構造モードRCS及びアンテナモードRCSを低減している期間中でも、通信信号の送信又は受信を行うことができるアンテナ装置を得ることを目的とする。 The present invention has been made to solve the above-described problems, and an antenna device capable of transmitting or receiving a communication signal even during a period in which the structural mode RCS and the antenna mode RCS are reduced is provided. Objective.
 この発明に係るアンテナ装置は、送信信号を電磁波として空間に放射する一方、空間から到来してきた電磁波を受信して、電磁波の受信信号を出力するアンテナと、アンテナから出力された受信信号の振幅及び位相を調整する第1の調整器と、第1の調整器により振幅及び位相が調整された受信信号を分配する信号分配器と、信号分配器により分配された一方の受信信号の振幅及び位相を調整し、振幅及び位相を調整した受信信号を送信信号としてアンテナに出力する第2の調整器とを設け、制御器が、空間から電磁波が到来してきた際に、当該電磁波がアンテナに照射されることで、アンテナにより散乱される電磁波である散乱波と同振幅かつ逆位相の送信信号がアンテナから放射されるように、信号分配器により分配された他方の受信信号に従って第1の調整器又は第2の調整器を制御するようにしたものである。 An antenna device according to the present invention radiates a transmission signal as an electromagnetic wave to space while receiving an electromagnetic wave arriving from space and outputting a reception signal of the electromagnetic wave, and an amplitude of the reception signal output from the antenna and A first adjuster that adjusts the phase; a signal distributor that distributes the received signal whose amplitude and phase are adjusted by the first adjuster; and the amplitude and phase of one received signal that is distributed by the signal distributor A second adjuster that adjusts and outputs the received signal, the amplitude and phase of which have been adjusted, to the antenna as a transmission signal. When the electromagnetic wave arrives from the space, the controller irradiates the antenna with the electromagnetic wave. Thus, the other receiving signal distributed by the signal distributor so that a transmission signal having the same amplitude and opposite phase as the scattered wave, which is an electromagnetic wave scattered by the antenna, is radiated from the antenna. It is obtained so as to control the first regulator or a second regulator according to Patent.
 この発明によれば、制御器が、空間から電磁波が到来してきた際に、当該電磁波がアンテナに照射されることで、アンテナにより散乱される電磁波である散乱波と同振幅かつ逆位相の送信信号がアンテナから放射されるように、信号分配器により分配された他方の受信信号に従って第1の調整器又は第2の調整器を制御するように構成したので、構造モードRCS及びアンテナモードRCSを低減している期間中でも、通信信号の送信又は受信を行うことができる効果がある。 According to this invention, when the electromagnetic wave arrives from the space, the controller irradiates the antenna with the electromagnetic wave. Is configured to control the first adjuster or the second adjuster according to the other received signal distributed by the signal distributor such that the structural mode RCS and the antenna mode RCS are reduced. There is an effect that transmission or reception of a communication signal can be performed even during a period during which the communication signal is transmitted.
この発明の実施の形態1によるアンテナ装置を示す構成図である。It is a block diagram which shows the antenna apparatus by Embodiment 1 of this invention. この発明の実施の形態2によるアンテナ装置を示す構成図である。It is a block diagram which shows the antenna apparatus by Embodiment 2 of this invention. この発明の実施の形態3によるアンテナ装置を示す構成図である。It is a block diagram which shows the antenna apparatus by Embodiment 3 of this invention. この発明の実施の形態4によるアンテナ装置の制御器20を示す構成図である。It is a block diagram which shows the controller 20 of the antenna apparatus by Embodiment 4 of this invention. アンテナ装置の制御器20を示すハードウェア構成図である。It is a hardware block diagram which shows the controller 20 of an antenna apparatus. 制御器20がソフトウェア又はファームウェアなどで実現される場合のコンピュータのハードウェア構成図である。It is a hardware block diagram of a computer in case the controller 20 is implement | achieved by software or firmware. 制御器20がソフトウェア又はファームウェアなどで実現される場合の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence in case the controller 20 is implement | achieved by software or firmware. テーブル記憶部52に記憶されているテーブルの一例を示す説明図である。6 is an explanatory diagram illustrating an example of a table stored in a table storage unit 52. FIG. この発明の実施の形態5によるアンテナ装置を示す構成図である。It is a block diagram which shows the antenna apparatus by Embodiment 5 of this invention.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
実施の形態1.
 図1はこの発明の実施の形態1によるアンテナ装置を示す構成図である。
 図1において、アンテナ1は信号送受信ユニット2から出力された送信信号又は送信対象の通信信号を電磁波として空間に放射する一方、空間から到来してきた電磁波を受信して、その電磁波の受信信号を信号送受信ユニット2に出力する。
 アンテナ1としては、所望の周波数帯において、角度特性及び入出力特性を満たすものであれば、どのようなアンテナであってもよい。
Embodiment 1 FIG.
1 is a block diagram showing an antenna apparatus according to Embodiment 1 of the present invention.
In FIG. 1, an antenna 1 radiates a transmission signal output from a signal transmission / reception unit 2 or a communication signal to be transmitted as an electromagnetic wave to the space, while receiving an electromagnetic wave arriving from the space, and signals the received signal of the electromagnetic wave as a signal. Output to the transmission / reception unit 2.
The antenna 1 may be any antenna as long as it satisfies the angle characteristics and input / output characteristics in a desired frequency band.
 ここで、空間から到来してきた電磁波は、外来の不要波である場合と、受信対象の通信信号に係る電磁波の場合とがある。
 また、送信信号は、アンテナ1により散乱される電磁波である散乱波と同振幅かつ逆位相の信号である。
 アンテナ1により散乱される散乱波には、アンテナ1の形状によって決定される散乱波であって、空間から到来してきた電磁波がアンテナ1に反射される散乱波と、空間から到来してきた電磁波がアンテナ1の給電点を励振することで、アンテナ1から再放射される散乱波とが含まれる。
 なお、アンテナ1の形状によって決定される散乱波のRCSは、構造モードRCSであり、空間から到来してきた電磁波がアンテナ1の給電点を励振することで、アンテナ1から再放射される散乱波のRCSは、アンテナモードRCSである。
Here, the electromagnetic wave that has arrived from the space may be an external unnecessary wave or an electromagnetic wave related to a communication signal to be received.
The transmission signal is a signal having the same amplitude and opposite phase as the scattered wave that is an electromagnetic wave scattered by the antenna 1.
The scattered wave scattered by the antenna 1 is a scattered wave determined by the shape of the antenna 1. The scattered wave in which the electromagnetic wave arriving from the space is reflected by the antenna 1 and the electromagnetic wave arriving from the space are the antenna. By exciting one feeding point, scattered waves re-radiated from the antenna 1 are included.
Note that the RCS of the scattered wave determined by the shape of the antenna 1 is the structural mode RCS, and the scattered wave re-radiated from the antenna 1 when the electromagnetic wave arriving from the space excites the feeding point of the antenna 1. RCS is an antenna mode RCS.
 信号送受信ユニット2は、送受切替器11、第1の調整器12、信号分配器13、受信機14、アナログデジタル変換器であるA/D変換器15、デジタルアナログ変換器であるD/A変換器16、送信機17及び第2の調整器18を備えている。
 図1では、受信機14を「Rx」のように表記し、送信機17を「Tx」のように表記している。
 送受切替器11は例えばサーキュレータなどで実現されるものであり、第2の調整器18から出力された送信信号又は送信対象の通信信号をアンテナ1に出力し、アンテナ1から出力された受信信号を第1の調整器12に出力する。
The signal transmission / reception unit 2 includes a transmission / reception switch 11, a first adjuster 12, a signal distributor 13, a receiver 14, an A / D converter 15 as an analog / digital converter, and a D / A conversion as a digital / analog converter. 16, a transmitter 17, and a second adjuster 18.
In FIG. 1, the receiver 14 is represented as “Rx” and the transmitter 17 is represented as “Tx”.
The transmission / reception switch 11 is realized by, for example, a circulator, and outputs a transmission signal output from the second adjuster 18 or a communication signal to be transmitted to the antenna 1, and receives a reception signal output from the antenna 1. Output to the first regulator 12.
 第1の調整器12は受信側の調整器であり、低雑音増幅器(LNA:Low Noise Amplifier)12aと、位相器12bとを備えている。
 第1の調整器12は送受切替器11から出力された受信信号の振幅及び位相を調整し、振幅及び位相を調整した受信信号を信号分配器13に出力する。
 低雑音増幅器12aは利得である振幅の調整量が制御器20によって制御され、送受切替器11から出力された受信信号の振幅を調整する。
 位相器12bは位相の調整量が制御器20によって制御され、低雑音増幅器12aにより振幅が調整された受信信号の位相を調整する。
The first adjuster 12 is a receiver-side adjuster, and includes a low noise amplifier (LNA: Low Noise Amplifier) 12a and a phase shifter 12b.
The first adjuster 12 adjusts the amplitude and phase of the reception signal output from the transmission / reception switch 11 and outputs the reception signal adjusted in amplitude and phase to the signal distributor 13.
In the low noise amplifier 12a, the amount of adjustment of the amplitude, which is a gain, is controlled by the controller 20, and the amplitude of the reception signal output from the transmission / reception switch 11 is adjusted.
The phase adjustment amount of the phase shifter 12b is controlled by the controller 20, and the phase of the reception signal whose amplitude is adjusted by the low noise amplifier 12a is adjusted.
 信号分配器13は例えば方向性結合器などで実現されるものであり、第1の調整器12により振幅及び位相が調整された受信信号を2分配し、2分配した一方の受信信号を第2の調整器18に出力し、2分配した他方の受信信号を受信機14に出力する。
 受信機14は信号分配器13から出力された受信信号に対する受信処理を実施し、受信処理後の受信信号を電気信号としてA/D変換器15に出力する。受信処理自体は、公知の技術であるため詳細な説明を省略するが、受信処理は、例えば、受信信号の検波処理、復調処理、周波数変換処理などを含んでいる。
 A/D変換器15は受信機14から出力された電気信号をアナログ信号からデジタル信号に変換し、変換したデジタル信号を制御器20に出力する。
The signal distributor 13 is realized by a directional coupler, for example. The signal distributor 13 distributes the received signal whose amplitude and phase are adjusted by the first adjuster 12, and the second received signal is divided into two. The other received signal divided into two is output to the receiver 14.
The receiver 14 performs a reception process on the reception signal output from the signal distributor 13 and outputs the reception signal after the reception process to the A / D converter 15 as an electric signal. Since the reception process itself is a known technique, a detailed description thereof will be omitted, but the reception process includes, for example, a received signal detection process, a demodulation process, a frequency conversion process, and the like.
The A / D converter 15 converts the electrical signal output from the receiver 14 from an analog signal to a digital signal, and outputs the converted digital signal to the controller 20.
 D/A変換器16は制御器20から出力された送信対象の通信信号をデジタル信号からアナログ信号に変換し、変換したアナログ信号である通信信号を送信機17に出力する。
 送信機17はD/A変換器16から出力された通信信号に対する送信処理を実施し、送信処理後の通信信号を第2の調整器18に出力する。送信処理自体は、公知の技術であるため詳細な説明を省略するが、送信処理は、例えば、通信信号の周波数変換処理、変調処理などを含んでいる。
The D / A converter 16 converts the communication signal to be transmitted output from the controller 20 from a digital signal to an analog signal, and outputs the communication signal that is the converted analog signal to the transmitter 17.
The transmitter 17 performs a transmission process on the communication signal output from the D / A converter 16 and outputs the communication signal after the transmission process to the second adjuster 18. Since the transmission process itself is a known technique and will not be described in detail, the transmission process includes, for example, a frequency conversion process and a modulation process of a communication signal.
 第2の調整器18は送信側の調整器であり、位相器18aと、可変増幅器(VGA:Variable Gain Amplifier)18bとを備えている。
 第2の調整器18は信号分配器13から出力された受信信号又は送信機17から出力された通信信号の振幅及び位相を調整する。
 第2の調整器18は振幅及び位相を調整した受信信号を送信信号として送受切替器11に出力し、振幅及び位相を調整した通信信号を送受切替器11に出力する。
 位相器18aは位相の調整量が制御器20によって制御され、信号分配器13から出力された受信信号又は送信機17から出力された通信信号の位相を調整する。
 可変増幅器18bは利得である振幅の調整量が制御器20によって制御され、位相器18aにより位相が調整された受信信号又は通信信号の振幅を調整する。
 なお、可変増幅器18bはVGAに限るものではなく、増幅器と減衰器の組み合わせによって実現されるものであってもよい。
The second adjuster 18 is a transmitter-side adjuster, and includes a phase shifter 18a and a variable amplifier (VGA: Variable Gain Amplifier) 18b.
The second adjuster 18 adjusts the amplitude and phase of the reception signal output from the signal distributor 13 or the communication signal output from the transmitter 17.
The second adjuster 18 outputs the reception signal adjusted in amplitude and phase to the transmission / reception switch 11 as a transmission signal, and outputs the communication signal adjusted in amplitude and phase to the transmission / reception switch 11.
The phase adjustment amount of the phase shifter 18 a is controlled by the controller 20 and adjusts the phase of the reception signal output from the signal distributor 13 or the communication signal output from the transmitter 17.
In the variable amplifier 18b, the amount of adjustment of the amplitude, which is a gain, is controlled by the controller 20, and the amplitude of the reception signal or communication signal whose phase is adjusted by the phase shifter 18a is adjusted.
The variable amplifier 18b is not limited to the VGA, and may be realized by a combination of an amplifier and an attenuator.
 制御器20は例えばメモリを備える計算機、CPU(Central Processing Unit)を実装している半導体集積回路、あるいは、ワンチップマイコンなどで実現される。
 制御器20は予めアンテナ1により散乱される散乱波Eを記憶しており、アンテナ1により散乱される散乱波Eと同振幅かつ逆位相の送信信号がアンテナ1から放射されるように、A/D変換器15から出力されたデジタル信号に従って第1の調整器12又は第2の調整器18を制御する。
The controller 20 is realized by, for example, a computer having a memory, a semiconductor integrated circuit on which a CPU (Central Processing Unit) is mounted, or a one-chip microcomputer.
Controller 20 stores the scattered wave E s being scattered by the previously antenna 1, so that the transmission signal of the scattered wave E s and the same amplitude and opposite phases to be scattered by the antenna 1 is radiated from the antenna 1, The first regulator 12 or the second regulator 18 is controlled in accordance with the digital signal output from the A / D converter 15.
 即ち、制御器20は、受信対象の通信信号を受信する際には、A/D変換器15から出力されたデジタル信号に従って第2の調整器18に含まれている位相器18aによる位相の調整量及び可変増幅器18bによる振幅の調整量を制御する。
 また、制御器20は、送信対象の通信信号を送信する際には、A/D変換器15から出力されたデジタル信号に従って第1の調整器12に含まれている低雑音増幅器12aによる振幅の調整量及び位相器12bによる位相の調整量を制御する。
 アンテナ1により散乱される散乱波Eは、アンテナ1の形状によって決まる散乱波であり、アンテナ1の形状が分かれば、シミュレーション計算等によって事前に把握することができる。
Figure JPOXMLDOC01-appb-I000001
 式(1)において、Aは散乱波Eの振幅、φは散乱波Eの位相である。
That is, when receiving the communication signal to be received, the controller 20 adjusts the phase by the phase adjuster 18 a included in the second adjuster 18 according to the digital signal output from the A / D converter 15. The amount of amplitude and the amount of amplitude adjustment by the variable amplifier 18b are controlled.
Further, when transmitting the communication signal to be transmitted, the controller 20 determines the amplitude of the low noise amplifier 12a included in the first adjuster 12 according to the digital signal output from the A / D converter 15. The adjustment amount and the adjustment amount of the phase by the phase shifter 12b are controlled.
Scattered wave E s scattered by the antenna 1 is a scattered wave which is determined by the shape of the antenna 1, knowing the shape of the antenna 1 can be grasped in advance by simulation calculation or the like.
Figure JPOXMLDOC01-appb-I000001
In the formula (1), the amplitude of A s is scattered wave E s, phi s is the phase of the scattered wave E s.
 次に動作について説明する。
 最初に、受信対象の通信信号を受信する際の動作を説明する。
 通信信号の受信動作中においては、第1の調整器12に含まれている低雑音増幅器12aによる振幅の調整量Γr2は、制御器20によって固定の調整量に設定される。
 また、第1の調整器12に含まれている位相器12bによる位相の調整量φr2は、制御器20によって固定の調整量に設定される。
Next, the operation will be described.
First, an operation when receiving a communication signal to be received will be described.
During the communication signal receiving operation, the amplitude adjustment amount Γ r2 by the low noise amplifier 12a included in the first adjuster 12 is set to a fixed adjustment amount by the controller 20.
The phase adjustment amount φ r2 by the phase shifter 12b included in the first adjuster 12 is set to a fixed adjustment amount by the controller 20.
 アンテナ1は、空間から到来してきた電磁波を受信して、その電磁波の受信信号Er1を信号送受信ユニット2に出力する。
Figure JPOXMLDOC01-appb-I000002
 式(2)において、Ar1は受信信号Er1の振幅、φr1は受信信号Er1の位相である。
The antenna 1 receives an electromagnetic wave arriving from a space and outputs a reception signal Er 1 of the electromagnetic wave to the signal transmission / reception unit 2.
Figure JPOXMLDOC01-appb-I000002
In Expression (2), A r1 is the amplitude of the reception signal E r1 , and φ r1 is the phase of the reception signal E r1 .
 信号送受信ユニット2の送受切替器11は、アンテナ1から出力された受信信号Er1を受けると、その受信信号Er1を第1の調整器12に出力する。
 第1の調整器12の低雑音増幅器12aは、送受切替器11から出力された受信信号Er1を受けると、制御器20によって設定されている振幅の調整量Γr2だけ、その受信信号Er1の振幅を調整する。
 第1の調整器12の位相器12bは、制御器20によって設定されている位相の調整量φr2だけ、低雑音増幅器12aにより振幅が調整された受信信号の位相を調整する。
 第1の調整器12により振幅及び位相が調整された後の受信信号Er2は、信号分配器13に出力される。
Figure JPOXMLDOC01-appb-I000003
When the transmission / reception switch 11 of the signal transmission / reception unit 2 receives the reception signal E r1 output from the antenna 1, the transmission / reception switch 11 outputs the reception signal E r1 to the first adjuster 12.
Low-noise amplifier 12a of the first regulator 12 receives the received signal E r1 output from the duplexer 11, by the adjustment amount gamma r2 amplitude being set by the controller 20, the received signal E r1 Adjust the amplitude.
The phase adjuster 12 b of the first adjuster 12 adjusts the phase of the received signal whose amplitude is adjusted by the low noise amplifier 12 a by the phase adjustment amount φ r2 set by the controller 20.
The reception signal Er 2 after the amplitude and phase are adjusted by the first adjuster 12 is output to the signal distributor 13.
Figure JPOXMLDOC01-appb-I000003
 信号分配器13は、第1の調整器12から出力された受信信号Er2を受けると、その受信信号Er2を2分配して、2分配した一方の受信信号Er2を第2の調整器18に出力し、2分配した他方の受信信号Er2を受信機14に出力する。
 受信機14は、信号分配器13から出力された受信信号Er2を受けると、その受信信号Er2に対する受信処理を実施し、受信処理後の受信信号Er2を電気信号としてA/D変換器15に出力する。
 A/D変換器15は、受信機14から出力された電気信号をアナログ信号からデジタル信号に変換し、変換したデジタル信号を制御器20に出力する。
When the signal distributor 13 receives the reception signal E r2 output from the first adjuster 12, the signal distributor 13 distributes the reception signal E r2 into two and distributes the two received signals E r2 into the second adjuster. The other received signal Er2 divided into two is output to the receiver 14.
Receiver 14, the signal when the distributor 13 receives the received signal E r2 output from, carried out reception processing for the received signal E r2, A / D converter receiving signal E r2 as an electric signal after reception processing 15 is output.
The A / D converter 15 converts the electrical signal output from the receiver 14 from an analog signal to a digital signal, and outputs the converted digital signal to the controller 20.
 第2の調整器18の位相器18aは、信号分配器13から出力された受信信号Er2を受けると、制御器20によって設定された位相の調整量φr3だけ、その受信信号Er2の位相を調整する。
 第2の調整器18の可変増幅器18bは、制御器20によって設定された振幅の調整量Γr3だけ、位相器18aにより位相が調整された受信信号Er2の振幅を調整する。
 第2の調整器18により振幅及び位相が調整された後の受信信号は、送信信号Er3として、送受切替器11に出力される。
Figure JPOXMLDOC01-appb-I000004
Phaser 18a of the second regulator 18, upon receiving the received signals E r2 output from the signal divider 13, only the phase adjustment amount phi r3, which is set by the controller 20, the phase of the received signal E r2 Adjust.
Variable amplifier 18b of the second regulator 18, by the adjustment amount gamma r3 amplitude set by the controller 20 to adjust the amplitude of the received signal E r2 whose phase is adjusted by the phase shifter 18a.
The reception signal whose amplitude and phase are adjusted by the second adjuster 18 is output to the transmission / reception switch 11 as a transmission signal Er3 .
Figure JPOXMLDOC01-appb-I000004
 送受切替器11は、第2の調整器18から出力された送信信号Er3を受けると、その送信信号Er3をアンテナ1に出力する。これにより、アンテナ1から送信信号Er3が電磁波として空間に放射される。
 ここで、アンテナ1から放射される送信信号Er3の振幅(Γr3Γr2r1)が、アンテナ1により散乱される散乱波Eの振幅Aと同一であり、かつ、送信信号Er3の位相(φr1+φr2+φr3)が、アンテナ1により散乱される散乱波Eの位相φと逆位相であれば、送信信号Er3と散乱波Eの総和が零になる。この結果、散乱波Eが送信信号Er3に打ち消されて、外部での散乱波Eの受信が困難になる。
When the transmission / reception switch 11 receives the transmission signal Er3 output from the second adjuster 18, the transmission / reception switch 11 outputs the transmission signal Er3 to the antenna 1. Accordingly, the transmission signal Er3 is radiated from the antenna 1 to the space as an electromagnetic wave.
Here, the amplitude of the transmission signal E r3 radiated from the antenna 1 (Γ r3 Γ r2 A r1 ) is the same as the amplitude A s of the scattered wave E s scattered by the antenna 1 and transmit signal E r3 If the phase (φ r1 + φ r2 + φ r3 ) is opposite to the phase φ s of the scattered wave E s scattered by the antenna 1, the sum of the transmission signal E r3 and the scattered wave E s becomes zero. As a result, the scattered wave E s is canceled in the transmission signal E r3, reception of the scattered waves E s of the external becomes difficult.
 制御器20は、信号送受信ユニット2のA/D変換器15から出力されたデジタル信号を受けると、そのデジタル信号を解析して、アンテナ1により受信された電磁波が受信対象の通信信号に係る電磁波であるのか、外部から到来してきた不要波に係る電磁波であるのかを判定する。この電磁波の判定方法は、公知の技術であるため詳細な説明を省略する。
 制御器20は、アンテナ1により受信された電磁波が不要波に係る電磁波である場合、レーダ断面積を低減する必要性が高いため、アンテナ1により散乱される散乱波Eと同振幅かつ逆位相の送信信号Er3がアンテナ1から放射されるように、位相器18aによる位相の調整量φr3及び可変増幅器18bによる振幅の調整量Γr3を制御する。
When the controller 20 receives the digital signal output from the A / D converter 15 of the signal transmission / reception unit 2, the controller 20 analyzes the digital signal, and the electromagnetic wave received by the antenna 1 is related to the communication signal to be received. Or an electromagnetic wave related to an unnecessary wave coming from the outside. Since this electromagnetic wave determination method is a known technique, detailed description thereof is omitted.
Controller 20, when the electromagnetic waves received by the antenna 1 is an electromagnetic wave according to the unwanted wave, since it is highly necessary to reduce the radar cross section, the scattered wave E s and the same amplitude and opposite phase being scattered by the antenna 1 The phase adjustment amount φ r3 by the phase shifter 18a and the amplitude adjustment amount Γ r3 by the variable amplifier 18b are controlled so that the transmission signal E r3 is radiated from the antenna 1.
 制御器20は、アンテナ1により受信された電磁波が受信対象の通信信号に係る電磁波である場合、レーダ断面積を低減する必要性が低いため、例えば、第2の調整器18に含まれている可変増幅器18bの利得が零になるように、可変増幅器18bを制御する。この場合、アンテナ1により散乱される散乱波Eと同振幅かつ逆位相の送信信号Er3がアンテナ1から放射されることはない。
 ただし、これは一例に過ぎず、アンテナ1により受信された電磁波が不要波に係る電磁波である場合と同様に、アンテナ1により散乱される散乱波Eと同振幅かつ逆位相の送信信号Er3がアンテナ1から放射されるようにしてもよい。
When the electromagnetic wave received by the antenna 1 is an electromagnetic wave related to a communication signal to be received, the controller 20 is included in, for example, the second adjuster 18 because the necessity for reducing the radar cross-sectional area is low. The variable amplifier 18b is controlled so that the gain of the variable amplifier 18b becomes zero. In this case, there is no possibility that the transmission signal E r3 scattered wave E s and the same amplitude and opposite phases to be scattered by the antenna 1 is radiated from the antenna 1.
However, this is only an example, as in the case the electromagnetic waves received by the antenna 1 is an electromagnetic wave according to the unnecessary wave, the transmission of the scattered wave E s and the same amplitude and opposite phases to be scattered by the antenna 1 signal E r3 May be radiated from the antenna 1.
 以下、制御器20による位相の調整量φr3及び振幅の調整量Γr3の制御について具体的に説明する。
 制御器20は、信号送受信ユニット2のA/D変換器15から出力されたデジタル信号を解析して、受信信号Er2の振幅(Γr2r1)及び受信信号Er2の位相(φr1+φr2)を特定する。
 次に、制御器20は、予め記憶している散乱波Eの振幅Aと、受信信号Er2の振幅(Γr2r1)とから、散乱波Eの振幅Aと同一振幅となる送信信号Er3の振幅(Γr3Γr2r1)を得るための振幅の調整量Γr3を算出する。
Figure JPOXMLDOC01-appb-I000005
Hereinafter, the control of the phase adjustment amount φ r3 and the amplitude adjustment amount Γ r3 by the controller 20 will be specifically described.
Controller 20 analyzes the digital signal output from the A / D converter 15 of the signal transmitting and receiving unit 2, the received signal E r2 amplitude (Γ r2 A r1) and of the received signal E r2 phase (φ r1 + φ r2 ) is specified.
Next, the controller 20, the amplitude A s of the scattered wave E s which is stored in advance, since the amplitude (Γ r2 A r1) of the received signal E r2, the same amplitude and the amplitude A s of the scattered wave E s to calculate the adjustment amount gamma r3 amplitude for obtaining the amplitude (Γ r3 Γ r2 a r1) of the transmission signal E r3 made.
Figure JPOXMLDOC01-appb-I000005
 また、制御器20は、予め記憶している散乱波Eの位相φと、受信信号Er2の位相(φr1+φr2)とから、散乱波Eの位相φと逆位相となる送信信号Er3の位相(φr1+φr2+φr3)を得るための位相の調整量φr3を算出する。
Figure JPOXMLDOC01-appb-I000006
Further, the controller 20 is the phase phi s of the scattered wave E s stored in advance, because the phase (φ r1 + φ r2) of the received signal E r2, the scattered wave E s phase phi s antiphase A phase adjustment amount φ r3 for obtaining the phase (φ r1 + φ r2 + φ r3 ) of the transmission signal E r3 is calculated.
Figure JPOXMLDOC01-appb-I000006
 制御器20は、振幅の調整量Γr3を算出すると、第2の調整器18の可変増幅器18bによる振幅の調整量として、調整量Γr3を設定する。
 制御器20は、位相の調整量φr3を算出すると、第2の調整器18の位相器18aによる位相の調整量として、調整量φr3を設定する。
Controller 20, calculating the adjustment amount gamma r3 amplitude, as the adjustment amount of the amplitude by the variable amplifiers 18b of the second regulator 18, sets the adjustment amount gamma r3.
Controller 20, calculating the adjustment amount phi r3 of phase, as the adjustment amount of the phase by phase shifter 18a of the second regulator 18, sets the adjustment amount phi r3.
 次に、送信対象の通信信号を送信する際の動作を説明する。
 通信信号の送信動作中においては、第2の調整器18に含まれている可変増幅器18bによる振幅の調整量Γr3は、制御器20によって固定の調整量に設定される。
 また、第2の調整器18に含まれている位相器18aによる位相の調整量φr3は、制御器20によって固定の調整量に設定される。
Next, an operation when transmitting a communication signal to be transmitted will be described.
During the communication signal transmission operation, the amplitude adjustment amount Γ r3 by the variable amplifier 18b included in the second adjuster 18 is set to a fixed adjustment amount by the controller 20.
The phase adjustment amount φ r3 by the phase shifter 18a included in the second adjuster 18 is set to a fixed adjustment amount by the controller 20.
 制御器20は、送信対象の通信信号を信号送受信ユニット2のD/A変換器16に出力する。
 D/A変換器16は、制御器20から出力された送信対象の通信信号を受けると、その通信信号をデジタル信号からアナログ信号に変換し、変換したアナログ信号を送信機17に出力する。
 送信機17は、D/A変換器16から出力されたアナログ信号である通信信号に対する送信処理を実施し、送信処理後の通信信号を第2の調整器18に出力する。
The controller 20 outputs a communication signal to be transmitted to the D / A converter 16 of the signal transmission / reception unit 2.
Upon receiving the communication signal to be transmitted output from the controller 20, the D / A converter 16 converts the communication signal from a digital signal to an analog signal, and outputs the converted analog signal to the transmitter 17.
The transmitter 17 performs a transmission process on the communication signal that is an analog signal output from the D / A converter 16, and outputs the communication signal after the transmission process to the second adjuster 18.
 第2の調整器18の位相器18aは、送信機17から出力された送信処理後の通信信号を受けると、制御器20によって設定されている位相の調整量φr3だけ、送信処理後の通信信号の位相を調整する。
 第2の調整器18の可変増幅器18bは、制御器20によって設定されている振幅の調整量Γr3だけ、位相器18aにより位相が調整された通信信号の振幅を調整する。
 第2の調整器18により振幅及び位相が調整された通信信号は、送受切替器11に出力される。
 送受切替器11は、第2の調整器18から出力された通信信号を受けると、その通信信号をアンテナ1に出力する。これにより、アンテナ1から通信信号が電磁波として空間に放射される。
When the phase adjuster 18a of the second adjuster 18 receives the communication signal after transmission processing output from the transmitter 17, the communication after the transmission processing is performed by the phase adjustment amount φ r3 set by the controller 20. Adjust the signal phase.
The variable amplifier 18b of the second adjuster 18 adjusts the amplitude of the communication signal whose phase is adjusted by the phase adjuster 18a by the amplitude adjustment amount Γ r3 set by the controller 20.
The communication signal whose amplitude and phase are adjusted by the second adjuster 18 is output to the transmission / reception switch 11.
When receiving / transmitting the communication signal output from the second adjuster 18, the transmission / reception switch 11 outputs the communication signal to the antenna 1. Thereby, a communication signal is radiated | emitted to space from the antenna 1 as electromagnetic waves.
 通信信号の送信動作中でも、外部から不要波が到来してくることがある。
 アンテナ1は、空間から到来してきた電磁波を受信し、上記の式(2)で示される電磁波の受信信号Er1を信号送受信ユニット2に出力する。
 信号送受信ユニット2の送受切替器11は、アンテナ1から出力された受信信号Er1を受けると、その受信信号Er1を第1の調整器12に出力する。
Even during transmission of communication signals, unwanted waves may come from the outside.
The antenna 1 receives an electromagnetic wave that has arrived from space, and outputs the received signal Er1 of the electromagnetic wave represented by the above formula (2) to the signal transmission / reception unit 2.
When the transmission / reception switch 11 of the signal transmission / reception unit 2 receives the reception signal E r1 output from the antenna 1, the transmission / reception switch 11 outputs the reception signal E r1 to the first adjuster 12.
 第1の調整器12の低雑音増幅器12aは、送受切替器11から出力された受信信号Er1を受けると、制御器20によって設定された振幅の調整量Γr2だけ、その受信信号Er1の振幅を調整する。
 第1の調整器12の位相器12bは、制御器20によって設定された位相の調整量φr2だけ、低雑音増幅器12aにより振幅が調整された受信信号の位相を調整する。
 第1の調整器12により振幅及び位相が調整された後の式(3)で示される受信信号Er2は、信号分配器13に出力される。
Low-noise amplifier 12a of the first regulator 12 receives the received signal E r1 output from the duplexer 11, the amplitude set by the controller 20 by the adjustment amount gamma r2, of the received signal E r1 Adjust the amplitude.
The phase adjuster 12 b of the first adjuster 12 adjusts the phase of the received signal whose amplitude is adjusted by the low noise amplifier 12 a by the phase adjustment amount φ r2 set by the controller 20.
The reception signal Er 2 represented by the expression (3) after the amplitude and phase are adjusted by the first adjuster 12 is output to the signal distributor 13.
 信号分配器13は、第1の調整器12から出力された受信信号Er2を受けると、その受信信号Er2を2分配して、2分配した一方の受信信号Er2を第2の調整器18に出力し、2分配した他方の受信信号Er2を受信機14に出力する。
 受信機14は、信号分配器13から出力された受信信号Er2を受けると、その受信信号Er2に対する受信処理を実施し、受信処理後の受信信号Er2を電気信号としてA/D変換器15に出力する。
 A/D変換器15は、受信機14から出力された電気信号をアナログ信号からデジタル信号に変換し、変換したデジタル信号を制御器20に出力する。
When the signal distributor 13 receives the reception signal E r2 output from the first adjuster 12, the signal distributor 13 distributes the reception signal E r2 into two and distributes the two received signals E r2 into the second adjuster. The other received signal Er2 divided into two is output to the receiver 14.
Receiver 14, the signal when the distributor 13 receives the received signal E r2 output from, carried out reception processing for the received signal E r2, A / D converter receiving signal E r2 as an electric signal after reception processing 15 is output.
The A / D converter 15 converts the electrical signal output from the receiver 14 from an analog signal to a digital signal, and outputs the converted digital signal to the controller 20.
 第2の調整器18の位相器18aは、信号分配器13から出力された受信信号Er2を受けると、制御器20によって設定されている位相の調整量φr3だけ、その受信信号Er2の位相を調整する。
 第2の調整器18の可変増幅器18bは、制御器20によって設定されている振幅の調整量Γr3だけ、位相器18aにより位相が調整された受信信号Er2の振幅を調整する。
 第2の調整器18により振幅及び位相が調整された後の受信信号は、上記の式(4)で示される送信信号Er3として、送受切替器11に出力される。
Phaser 18a of the second regulator 18, upon receiving the received signals E r2 output from the signal divider 13, a phase which is set by the controller 20 by the adjustment amount phi r3, of the received signal E r2 Adjust the phase.
Variable amplifier 18b of the second regulator 18, by the adjustment amount gamma r3 amplitude being set by the controller 20 to adjust the amplitude of the received signal E r2 whose phase is adjusted by the phase shifter 18a.
The reception signal whose amplitude and phase are adjusted by the second adjuster 18 is output to the transmission / reception switch 11 as the transmission signal Er3 represented by the above equation (4).
 送受切替器11は、第2の調整器18から出力された送信信号Er3を受けると、その送信信号Er3をアンテナ1に出力する。これにより、アンテナ1から送信信号Er3が電磁波として空間に放射される。
 ここで、アンテナ1から放射される送信信号Er3の振幅(Γr3Γr2r1)が、アンテナ1により散乱される散乱波Eの振幅Aと同一であり、かつ、送信信号Er3の位相(φr1+φr2+φr3)が、アンテナ1により散乱される散乱波Eの位相φと逆位相であれば、送信信号Er3と散乱波Eの総和が零になる。この結果、散乱波Eが送信信号Er3に打ち消されて、外部での散乱波Eの受信が困難になる。
When the transmission / reception switch 11 receives the transmission signal Er3 output from the second adjuster 18, the transmission / reception switch 11 outputs the transmission signal Er3 to the antenna 1. Accordingly, the transmission signal Er3 is radiated from the antenna 1 to the space as an electromagnetic wave.
Here, the amplitude of the transmission signal E r3 radiated from the antenna 1 (Γ r3 Γ r2 A r1 ) is the same as the amplitude A s of the scattered wave E s scattered by the antenna 1 and transmit signal E r3 If the phase (φ r1 + φ r2 + φ r3 ) is opposite to the phase φ s of the scattered wave E s scattered by the antenna 1, the sum of the transmission signal E r3 and the scattered wave E s becomes zero. As a result, the scattered wave E s is canceled in the transmission signal E r3, reception of the scattered waves E s of the external becomes difficult.
 制御器20は、信号送受信ユニット2のA/D変換器15から出力されたデジタル信号を受けると、そのデジタル信号を解析して、アンテナ1により受信された電磁波が外部から到来してきた不要波に係る電磁波であるかを判定する。この電磁波の判定方法は、公知の技術であるため詳細な説明を省略する。
 制御器20は、アンテナ1により受信された電磁波が不要波に係る電磁波である場合、レーダ断面積を低減する必要性が高いため、アンテナ1により散乱される散乱波Eと同振幅かつ逆位相の送信信号Er3がアンテナ1から放射されるように、低雑音増幅器12aによる振幅の調整量Γr2及び位相器12bによる位相の調整量φr2を制御する。
When the controller 20 receives the digital signal output from the A / D converter 15 of the signal transmission / reception unit 2, the controller 20 analyzes the digital signal and converts the electromagnetic wave received by the antenna 1 into an unnecessary wave that has arrived from the outside. It is determined whether the electromagnetic wave is such. Since this electromagnetic wave determination method is a known technique, detailed description thereof is omitted.
Controller 20, when the electromagnetic waves received by the antenna 1 is an electromagnetic wave according to the unwanted wave, since it is highly necessary to reduce the radar cross section, the scattered wave E s and the same amplitude and opposite phase being scattered by the antenna 1 The amount of amplitude adjustment Γ r2 by the low-noise amplifier 12a and the amount of phase adjustment φ r2 by the phase shifter 12b are controlled so that the transmission signal E r3 is radiated from the antenna 1.
 以下、制御器20による振幅の調整量Γr2及び位相の調整量φr2の制御について具体的に説明する。
 制御器20は、信号送受信ユニット2のA/D変換器15から出力されたデジタル信号を解析して、受信信号Er2の振幅(Γr2r1)及び受信信号Er2の位相(φr1+φr2)を特定する。
 次に、制御器20は、受信信号Er2の振幅(Γr2r1)を現在の振幅の調整量Γr2で除算することで、受信信号Er1の振幅Ar1を算出する。
 次に、制御器20は、予め記憶している散乱波Eの振幅Aと、受信信号Er1の振幅Ar1と、可変増幅器18bによる固定の調整量Γr3とから、散乱波Eの振幅Aと同一振幅となる送信信号Er3の振幅(Γr3Γr2r1)を得るための振幅の調整量Γr2を算出する。
Figure JPOXMLDOC01-appb-I000007
Hereinafter, the control of the amplitude adjustment amount Γ r2 and the phase adjustment amount φ r2 by the controller 20 will be specifically described.
Controller 20 analyzes the digital signal output from the A / D converter 15 of the signal transmitting and receiving unit 2, the received signal E r2 amplitude (Γ r2 A r1) and of the received signal E r2 phase (φ r1 + φ r2 ) is specified.
Next, the controller 20 calculates the amplitude A r1 of the reception signal E r1 by dividing the amplitude (Γ r2 A r1 ) of the reception signal E r2 by the adjustment amount Γ r2 of the current amplitude.
Next, the controller 20, the amplitude A s of the scattered wave E s stored in advance, and the amplitude A r1 of a received signal E r1, a fixed amount of adjustment gamma r3 Prefecture by the variable amplifier 18b, the scattered wave E s An amplitude adjustment amount Γ r2 for obtaining the amplitude (Γ r3 Γ r2 A r1 ) of the transmission signal E r3 having the same amplitude as the amplitude A s is calculated.
Figure JPOXMLDOC01-appb-I000007
 また、制御器20は、受信信号Er2の位相(φr1+φr2)から現在の位相の調整量φr2を減算することで、受信信号Er1の位相φr1を算出する。
 制御器20は、予め記憶している散乱波Eの位相φと、受信信号Er1の位相φr1と、位相器18aによる固定の調整量φr3とから、散乱波Eの位相φと逆位相となる送信信号Er3の位相(φr1+φr2+φr3)を得るための位相の調整量φr2を算出する。
Figure JPOXMLDOC01-appb-I000008
Further, the controller 20 calculates the phase φ r1 of the reception signal E r1 by subtracting the current phase adjustment amount φ r2 from the phase (φ r1 + φ r2 ) of the reception signal E r2 .
Controller 20, the phase phi s of the scattered wave E s stored in advance, the phase phi r1 of the reception signal E r1, a fixed adjustment amount phi r3 Metropolitan by phase shifter 18a, the phase phi of the scattered wave E s A phase adjustment amount φ r2 for obtaining the phase (φ r1 + φ r2 + φ r3 ) of the transmission signal E r3 having a phase opposite to that of s is calculated.
Figure JPOXMLDOC01-appb-I000008
 制御器20は、振幅の調整量Γr2を算出すると、第1の調整器12の低雑音増幅器12aによる振幅の調整量として、調整量Γr2を設定する。
 制御器20は、位相の調整量φr2を算出すると、第1の調整器12の位相器12bによる位相の調整量として、調整量φr2を設定する。
Controller 20, calculating the adjustment amount gamma r2 amplitude, as the adjustment amount of the amplitude due to the low-noise amplifier 12a of the first regulator 12, sets the adjustment amount gamma r2.
Controller 20, calculating the adjustment amount phi r2 of the phase, as an adjustment amount of the phase by the phase shifter 12b of the first regulator 12, sets the adjustment amount phi r2.
 以上で明らかなように、この実施の形態1によれば、制御器20が、空間から電磁波が到来してきた際に、当該電磁波がアンテナ1に照射されることで、アンテナ1により散乱される散乱波Eと同振幅かつ逆位相の送信信号Er3がアンテナ1から放射されるように、信号分配器13により分配された他方の受信信号Er2に従って第1の調整器12又は第2の調整器18を制御するように構成したので、構造モードRCS及びアンテナモードRCSを低減している期間中でも、通信信号の送信又は受信を行うことができる効果を奏する。 As apparent from the above, according to the first embodiment, when the controller 20 receives an electromagnetic wave from the space, the electromagnetic wave is applied to the antenna 1 and thereby scattered by the antenna 1. The first regulator 12 or the second adjustment according to the other received signal E r2 distributed by the signal distributor 13 so that the transmission signal E r3 having the same amplitude and opposite phase as the wave E s is radiated from the antenna 1 Since the device 18 is configured to be controlled, the communication signal can be transmitted or received even while the structural mode RCS and the antenna mode RCS are reduced.
実施の形態2.
 上記実施の形態1では、第2の調整器18が、送信信号Er3だけでなく、送信対象の通信信号の振幅及び位相を調整する例を示している。
 この実施の形態2では、第2の調整器18が、送信信号Er3の振幅及び位相だけを調整し、送信対象の通信信号の振幅及び位相を調整する第3の調整器30を別途設ける例を説明する。
Embodiment 2. FIG.
In the first embodiment, an example is shown in which the second adjuster 18 adjusts not only the transmission signal Er3 but also the amplitude and phase of the communication signal to be transmitted.
In the second embodiment, the second adjuster 18 adjusts only the amplitude and phase of the transmission signal Er3 and separately provides a third adjuster 30 that adjusts the amplitude and phase of the communication signal to be transmitted. Will be explained.
 図2はこの発明の実施の形態2によるアンテナ装置を示す構成図であり、図2において、図1と同一符号は同一または相当部分を示すので説明を省略する。
 第3の調整器30は位相器30aと、高出力増幅器(HPA:High Power Amp)30bとを備えている。
 第3の調整器30は送信機17から出力された送信対象の通信信号の振幅及び位相を調整する。
 位相器30aは位相の調整量が制御器31によって制御され、送信機17から出力された通信信号の位相を調整する。
 高出力増幅器30bは可変増幅器18bよりも大きな利得の設定が可能な増幅器である。
 高出力増幅器30bは利得である振幅の調整量が制御器31によって制御され、位相器30aにより位相が調整された通信信号の振幅を調整する。
2 is a block diagram showing an antenna device according to Embodiment 2 of the present invention. In FIG. 2, the same reference numerals as those in FIG.
The third adjuster 30 includes a phase shifter 30a and a high power amplifier (HPA) 30b.
The third adjuster 30 adjusts the amplitude and phase of the transmission target communication signal output from the transmitter 17.
The phase adjustment amount of the phase shifter 30 a is controlled by the controller 31 and adjusts the phase of the communication signal output from the transmitter 17.
The high output amplifier 30b is an amplifier capable of setting a gain larger than that of the variable amplifier 18b.
In the high-power amplifier 30b, the amplitude adjustment amount, which is a gain, is controlled by the controller 31, and the amplitude of the communication signal whose phase is adjusted by the phase shifter 30a is adjusted.
 制御器31は図1の制御器20と同様に、例えばメモリを備える計算機、CPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどで実現される。
 制御器31は図1の制御器20と同様に、予めアンテナ1により散乱される散乱波Eを記憶しており、アンテナ1により散乱される散乱波Eと同振幅かつ逆位相の送信信号Er3がアンテナ1から放射されるように、A/D変換器15から出力されたデジタル信号に従って第1の調整器12又は第2の調整器18を制御する。
 また、制御器31は、送信対象の通信信号を空間に放射する際、第3の調整器30に含まれている高出力増幅器30bによる振幅の調整量及び位相器30aによる位相の調整量を制御する。
 高出力増幅器30bによる振幅の調整量及び位相器30aによる位相の調整量は、制御器31によってレーダ断面積の低減と無関係に制御されるものであり、例えば、通信環境などに応じて制御される。
As in the controller 20 of FIG. 1, the controller 31 is realized by, for example, a computer having a memory, a semiconductor integrated circuit on which a CPU is mounted, or a one-chip microcomputer.
The controller 31, like the controller 20 of FIG. 1, stores the scattered wave E s being scattered by the previously antenna 1, the scattered wave E s and the same amplitude and opposite phase transmission signals scattered by the antenna 1 The first regulator 12 or the second regulator 18 is controlled in accordance with the digital signal output from the A / D converter 15 so that Er3 is radiated from the antenna 1.
The controller 31 also controls the amplitude adjustment amount by the high-power amplifier 30b and the phase adjustment amount by the phase adjuster 30a included in the third adjuster 30 when the communication signal to be transmitted is radiated to the space. To do.
The amplitude adjustment amount by the high-power amplifier 30b and the phase adjustment amount by the phase shifter 30a are controlled by the controller 31 regardless of the reduction of the radar cross-sectional area, and are controlled according to the communication environment, for example. .
 次に動作について説明する。
 受信対象の通信信号を受信する際の動作は、上記実施の形態1と同様である。
 送信対象の通信信号を送信する際の動作を説明する。
Next, the operation will be described.
The operation when receiving the communication signal to be received is the same as in the first embodiment.
An operation when transmitting a communication signal to be transmitted will be described.
 制御器31は、送信対象の通信信号を信号送受信ユニット2のD/A変換器16に出力する。
 D/A変換器16は、制御器31から出力された送信対象の通信信号を受けると、その通信信号をデジタル信号からアナログ信号に変換し、変換したアナログ信号を送信機17に出力する。
 送信機17は、D/A変換器16から出力されたアナログ信号である通信信号に対する送信処理を実施し、送信処理後の通信信号を第3の調整器30に出力する。
The controller 31 outputs a communication signal to be transmitted to the D / A converter 16 of the signal transmission / reception unit 2.
Upon receiving the communication signal to be transmitted output from the controller 31, the D / A converter 16 converts the communication signal from a digital signal to an analog signal, and outputs the converted analog signal to the transmitter 17.
The transmitter 17 performs transmission processing on the communication signal that is an analog signal output from the D / A converter 16, and outputs the communication signal after the transmission processing to the third adjuster 30.
 第3の調整器30の位相器30aは、送信機17から出力された送信処理後の通信信号を受けると、制御器31によって設定されている位相の調整量φr4だけ、送信処理後の通信信号の位相を調整する。
 第3の調整器30の高出力増幅器30bは、制御器31によって設定されている振幅の調整量Γr4だけ、位相器30aにより位相が調整された通信信号の振幅を調整する。
 第3の調整器30により振幅及び位相が調整された通信信号は、送受切替器11に出力される。
 送受切替器11は、第3の調整器30から出力された通信信号を受けると、その通信信号をアンテナ1に出力する。これにより、アンテナ1から通信信号が電磁波として空間に放射される。
When the phase adjuster 30a of the third adjuster 30 receives the communication signal after the transmission processing output from the transmitter 17, the communication after the transmission processing is performed by the phase adjustment amount φ r4 set by the controller 31. Adjust the signal phase.
The high-power amplifier 30b of the third adjuster 30 adjusts the amplitude of the communication signal whose phase is adjusted by the phase adjuster 30a by the amplitude adjustment amount Γ r4 set by the controller 31.
The communication signal whose amplitude and phase are adjusted by the third adjuster 30 is output to the transmission / reception switch 11.
When receiving / transmitting the communication signal output from the third adjuster 30, the transmission / reception switch 11 outputs the communication signal to the antenna 1. Thereby, a communication signal is radiated | emitted to space from the antenna 1 as electromagnetic waves.
 アンテナ1は、空間から到来してきた電磁波を受信し、上記の式(2)で示される電磁波の受信信号Er1を信号送受信ユニット2に出力する。
 信号送受信ユニット2の送受切替器11は、アンテナ1から出力された受信信号Er1を受けると、その受信信号Er1を第1の調整器12に出力する。
The antenna 1 receives an electromagnetic wave that has arrived from space, and outputs the received signal Er1 of the electromagnetic wave represented by the above formula (2) to the signal transmission / reception unit 2.
When the transmission / reception switch 11 of the signal transmission / reception unit 2 receives the reception signal E r1 output from the antenna 1, the transmission / reception switch 11 outputs the reception signal E r1 to the first adjuster 12.
 第1の調整器12の低雑音増幅器12aは、送受切替器11から出力された受信信号Er1を受けると、制御器31によって設定された振幅の調整量Γr2だけ、その受信信号Er1の振幅を調整する。
 第1の調整器12の位相器12bは、制御器31によって設定された位相の調整量φr2だけ、低雑音増幅器12aにより振幅が調整された受信信号の位相を調整する。
 第1の調整器12により振幅及び位相が調整された後の式(3)で示される受信信号Er2は、信号分配器13に出力される。
Low-noise amplifier 12a of the first regulator 12 receives the received signal E r1 output from the duplexer 11, the amplitude set by the controller 31 by the adjustment amount gamma r2, of the received signal E r1 Adjust the amplitude.
The phase adjuster 12 b of the first adjuster 12 adjusts the phase of the received signal whose amplitude is adjusted by the low noise amplifier 12 a by the phase adjustment amount φ r2 set by the controller 31.
The reception signal Er 2 represented by the expression (3) after the amplitude and phase are adjusted by the first adjuster 12 is output to the signal distributor 13.
 信号分配器13は、第1の調整器12から出力された受信信号Er2を受けると、上記実施の形態1と同様に、その受信信号Er2を2分配して、2分配した一方の受信信号Er2を第2の調整器18に出力し、2分配した他方の受信信号Er2を受信機14に出力する。
 受信機14は、信号分配器13から出力された受信信号Er2を受けると、上記実施の形態1と同様に、その受信信号Er2に対する受信処理を実施し、受信処理後の受信信号Er2を電気信号としてA/D変換器15に出力する。
 A/D変換器15は、受信機14から出力された電気信号をアナログ信号からデジタル信号に変換し、変換したデジタル信号を制御器31に出力する。
When receiving the reception signal Er2 output from the first adjuster 12, the signal distributor 13 distributes the reception signal Er2 into two and divides the reception signal Er2 into two as in the first embodiment. The signal Er2 is output to the second adjuster 18, and the other received signal Er2 divided into two is output to the receiver 14.
When receiving the reception signal E r2 output from the signal distributor 13, the receiver 14 performs a reception process on the reception signal E r2 as in the first embodiment, and receives the reception signal E r2 after the reception process. Is output to the A / D converter 15 as an electrical signal.
The A / D converter 15 converts the electrical signal output from the receiver 14 from an analog signal to a digital signal, and outputs the converted digital signal to the controller 31.
 第2の調整器18の位相器18aは、信号分配器13から出力された受信信号Er2を受けると、制御器31によって設定されている位相の調整量φr3だけ、その受信信号Er2の位相を調整する。
 第2の調整器18の可変増幅器18bは、制御器31によって設定されている振幅の調整量Γr3だけ、位相器18aにより位相が調整された受信信号Er2の振幅を調整する。
 第2の調整器18により振幅及び位相が調整された後の受信信号は、上記の式(4)で示される送信信号Er3として、送受切替器11に出力される。
 送受切替器11は、第2の調整器18から出力された送信信号Er3を受けると、その送信信号Er3をアンテナ1に出力する。これにより、アンテナ1から送信信号Er3が電磁波として空間に放射される。
Phaser 18a of the second regulator 18, upon receiving the received signals E r2 output from the signal divider 13, a phase which is set by the controller 31 by the adjustment amount phi r3, of the received signal E r2 Adjust the phase.
The variable amplifier 18b of the second adjuster 18 adjusts the amplitude of the reception signal E r2 whose phase is adjusted by the phase adjuster 18a by the amplitude adjustment amount Γ r3 set by the controller 31.
The reception signal whose amplitude and phase are adjusted by the second adjuster 18 is output to the transmission / reception switch 11 as the transmission signal Er3 represented by the above equation (4).
When the transmission / reception switch 11 receives the transmission signal Er3 output from the second adjuster 18, the transmission / reception switch 11 outputs the transmission signal Er3 to the antenna 1. Accordingly, the transmission signal Er3 is radiated from the antenna 1 to the space as an electromagnetic wave.
 制御器31は、信号送受信ユニット2のA/D変換器15から出力されたデジタル信号を受けると、図1の制御器20と同様に、そのデジタル信号を解析して、アンテナ1により受信された電磁波が外部から到来してきた不要波に係る電磁波であるかを判定する。
 制御器31は、アンテナ1により受信された電磁波が不要波に係る電磁波である場合、レーダ断面積を低減する必要性が高いため、図1の制御器20と同様に、第1の調整器12を制御する。
 即ち、制御器31は、図1の制御器20と同様に、アンテナ1により散乱される散乱波Eと同振幅かつ逆位相の送信信号Er3がアンテナ1から放射されるように、低雑音増幅器12aによる振幅の調整量Γr2及び位相器12bによる位相の調整量φr2を制御する。
When the controller 31 receives the digital signal output from the A / D converter 15 of the signal transmission / reception unit 2, the controller 31 analyzes the digital signal and receives it by the antenna 1 as in the controller 20 of FIG. It is determined whether the electromagnetic wave is an electromagnetic wave related to an unnecessary wave that has come from the outside.
When the electromagnetic wave received by the antenna 1 is an electromagnetic wave related to an unnecessary wave, the controller 31 has a high necessity for reducing the radar cross-sectional area, and therefore, like the controller 20 of FIG. To control.
That is, the control unit 31, in the same manner as the control unit 20 of FIG. 1, such that the transmission signal E r3 scattered wave E s and the same amplitude and opposite phases to be scattered by the antenna 1 is radiated from the antenna 1, a low noise The amplitude adjustment amount Γ r2 by the amplifier 12a and the phase adjustment amount φ r2 by the phase shifter 12b are controlled.
 この実施の形態2によれば、上記実施の形態1と同様に、構造モードRCS及びアンテナモードRCSを低減している期間中でも、通信信号の送信又は受信を行うことができる効果を奏する。
 また、この実施の形態2によれば、送信対象の通信信号の振幅及び位相を調整する第3の調整器30を設け、第2の調整器18が、送信信号Er3の振幅及び位相だけを調整するように構成したので、レーダ断面積の低減を図りながら、送信対象の通信信号における電力の増大等を図ることができる効果を奏する。
According to the second embodiment, as in the first embodiment, there is an effect that transmission or reception of a communication signal can be performed even during a period in which the structural mode RCS and the antenna mode RCS are reduced.
Further, according to the second embodiment, the third adjuster 30 that adjusts the amplitude and phase of the communication signal to be transmitted is provided, and the second adjuster 18 determines only the amplitude and phase of the transmission signal Er3. Since the adjustment is made, it is possible to increase the power in the communication signal to be transmitted while reducing the radar cross-sectional area.
実施の形態3.
 上記実施の形態2では、位相器18aを含んでいる第2の調整器18と、位相器30aを含んでいる第3の調整器30とを備えている例を示している。
 この実施の形態3では、第2の調整器18に含まれている位相器18aと、第3の調整器30に含まれている位相器30aとが共通化されている例を説明する。
Embodiment 3 FIG.
In the second embodiment, an example in which the second adjuster 18 including the phase shifter 18a and the third adjuster 30 including the phase shifter 30a is provided.
In the third embodiment, an example in which the phase shifter 18a included in the second adjuster 18 and the phase shifter 30a included in the third adjuster 30 are shared will be described.
 図3はこの発明の実施の形態3によるアンテナ装置を示す構成図であり、図3において、図1及び図2と同一符号は同一または相当部分を示すので説明を省略する。
 位相器41は制御器44によって設定された位相の調整量φr3だけ、信号分配器13により分配された一方の受信信号Er2の位相を調整する。
 また、位相器41は制御器44によって設定された位相の調整量φr4だけ、送信機17から出力された通信信号の位相を調整する。
 この実施の形態3では、可変増幅器18bが第1の振幅調整器と対応し、高出力増幅器30bが第2の振幅調整器と対応する。
 また、この実施の形態3では、可変増幅器18b、高出力増幅器30b及び位相器41が、第2の調整器と対応する。
FIG. 3 is a block diagram showing an antenna apparatus according to Embodiment 3 of the present invention. In FIG. 3, the same reference numerals as those in FIGS.
The phase shifter 41 adjusts the phase of one received signal E r2 distributed by the signal distributor 13 by the phase adjustment amount φ r3 set by the controller 44.
The phase shifter 41 adjusts the phase of the communication signal output from the transmitter 17 by the phase adjustment amount φ r4 set by the controller 44.
In the third embodiment, the variable amplifier 18b corresponds to the first amplitude adjuster, and the high output amplifier 30b corresponds to the second amplitude adjuster.
In the third embodiment, the variable amplifier 18b, the high-power amplifier 30b, and the phase shifter 41 correspond to the second adjuster.
 第1の切替スイッチ42はポートAが可変増幅器18bと接続され、ポートBが位相器41と接続されており、信号分配器13により分配された一方の受信信号Er2を可変増幅器18b又は位相器41に出力する経路切替用のスイッチである。
 第2の切替スイッチ43はポートAが高出力増幅器30bと接続され、ポートBが可変増幅器18bと接続されており、位相器41により位相が調整された受信信号Er2又は通信信号を可変増幅器18b又は高出力増幅器30bに出力する経路切替用のスイッチである。
In the first changeover switch 42, the port A is connected to the variable amplifier 18b, the port B is connected to the phase shifter 41, and one received signal Er2 distributed by the signal distributor 13 is transferred to the variable amplifier 18b or phase shifter. 41 is a switch for switching the path to be output to 41.
The second changeover switch 43 has a port A connected to the high-power amplifier 30b and a port B connected to the variable amplifier 18b. The phase of the received signal Er2 or communication signal adjusted by the phase shifter 41 is changed to the variable amplifier 18b. Alternatively, it is a path switching switch that outputs to the high-power amplifier 30b.
 制御器44は図1の制御器20及び図2の制御器31と同様に、例えばメモリを備える計算機、CPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどで実現される。
 制御器44は、受信対象の通信信号を受信する際には、信号分配器13により分配された一方の受信信号Er2が位相器41に出力されるように、第1の切替スイッチ42を制御するとともに、位相器41により位相が調整された受信信号Er2が可変増幅器18bに出力されるように、第2の切替スイッチ43を制御する。
 制御器44は、送信対象の通信信号を送信する際には、信号分配器13により分配された一方の受信信号Er2が可変増幅器18bに出力されるように、第1の切替スイッチ42を制御するとともに、位相器41により位相が調整された通信信号が高出力増幅器30bに出力されるように、第2の切替スイッチ43を制御する。
The controller 44 is realized by, for example, a computer having a memory, a semiconductor integrated circuit on which a CPU is mounted, a one-chip microcomputer, or the like, similarly to the controller 20 in FIG. 1 and the controller 31 in FIG.
When receiving the communication signal to be received, the controller 44 controls the first changeover switch 42 so that one received signal Er2 distributed by the signal distributor 13 is output to the phase shifter 41. At the same time, the second changeover switch 43 is controlled so that the reception signal Er2 whose phase is adjusted by the phase shifter 41 is output to the variable amplifier 18b.
When transmitting the communication signal to be transmitted, the controller 44 controls the first changeover switch 42 so that one received signal Er2 distributed by the signal distributor 13 is output to the variable amplifier 18b. At the same time, the second changeover switch 43 is controlled so that the communication signal whose phase is adjusted by the phase shifter 41 is output to the high output amplifier 30b.
 制御器44は、図1の制御器20及び図2の制御器31と同様に、予めアンテナ1により散乱される散乱波Eを記憶している。
 制御器44は、受信対象の通信信号を受信する際には、散乱波Eと同振幅かつ逆位相の送信信号Er3がアンテナ1から放射されるように、A/D変換器15から出力されたデジタル信号に従って可変増幅器18bによる振幅の調整量Γr3及び位相器41による位相の調整量φr3を制御する。
 制御器44は、送信対象の通信信号を送信する際には、高出力増幅器30bによる振幅の調整量Γr4及び位相器41による位相の調整量φr4を制御する。
 また、制御器44は、散乱波Eと同振幅かつ逆位相の送信信号Er3がアンテナ1から放射されるように、A/D変換器15から出力されたデジタル信号に従って第1の調整器12に含まれている低雑音増幅器12aによる振幅の調整量Γr2及び位相器12bによる位相の調整量φr2を制御する。
The controller 44, in the same manner as the control unit 31 of the controller 20 and 2 of Figure 1, stores the scattered wave E s scattered in advance by the antenna 1.
When receiving the communication signal to be received, the controller 44 outputs from the A / D converter 15 so that the transmission signal E r3 having the same amplitude and opposite phase as the scattered wave E s is radiated from the antenna 1. The amplitude adjustment amount Γ r3 by the variable amplifier 18b and the phase adjustment amount φ r3 by the phase shifter 41 are controlled in accordance with the digital signal.
When transmitting the communication signal to be transmitted, the controller 44 controls the amplitude adjustment amount Γ r4 by the high-power amplifier 30b and the phase adjustment amount φ r4 by the phase shifter 41.
Further, the controller 44 adjusts the first adjuster according to the digital signal output from the A / D converter 15 so that the transmission signal E r3 having the same amplitude and opposite phase as the scattered wave E s is radiated from the antenna 1. 12 controls the amplitude adjustment amount Γ r2 by the low noise amplifier 12a and the phase adjustment amount φ r2 by the phase shifter 12b.
 次に動作について説明する。
 最初に、受信対象の通信信号を受信する際の動作を説明する。
 通信信号の受信動作中においては、第1の調整器12に含まれている低雑音増幅器12aによる振幅の調整量Γr2は、制御器44によって固定の調整量に設定される。
 また、第1の調整器12に含まれている位相器12bによる位相の調整量φr2は、制御器44によって固定の調整量に設定される。
 第1の切替スイッチ42の出力ポートは、制御器44によってポートBに設定され、第2の切替スイッチ43の出力ポートは、制御器44によってポートBに設定される。
Next, the operation will be described.
First, an operation when receiving a communication signal to be received will be described.
During the communication signal receiving operation, the amplitude adjustment amount Γ r2 by the low noise amplifier 12a included in the first adjuster 12 is set to a fixed adjustment amount by the controller 44.
The phase adjustment amount φ r2 by the phase shifter 12b included in the first adjuster 12 is set to a fixed adjustment amount by the controller 44.
The output port of the first changeover switch 42 is set to port B by the controller 44, and the output port of the second changeover switch 43 is set to port B by the controller 44.
 アンテナ1は、空間から到来してきた電磁波を受信し、上記の式(2)で示される電磁波の受信信号Er1を信号送受信ユニット2に出力する。
 信号送受信ユニット2の送受切替器11は、アンテナ1から出力された受信信号Er1を受けると、その受信信号Er1を第1の調整器12に出力する。
 第1の調整器12の低雑音増幅器12aは、送受切替器11から出力された受信信号Er1を受けると、制御器44によって設定されている振幅の調整量Γr2だけ、その受信信号Er1の振幅を調整する。
 第1の調整器12の位相器12bは、制御器44によって設定されている位相の調整量φr2だけ、低雑音増幅器12aにより振幅が調整された受信信号の位相を調整する。
 第1の調整器12により振幅及び位相が調整された後の式(3)で示される受信信号Er2は、信号分配器13に出力される。
The antenna 1 receives an electromagnetic wave that has arrived from space, and outputs the received signal Er1 of the electromagnetic wave represented by the above formula (2) to the signal transmission / reception unit 2.
When the transmission / reception switch 11 of the signal transmission / reception unit 2 receives the reception signal E r1 output from the antenna 1, the transmission / reception switch 11 outputs the reception signal E r1 to the first adjuster 12.
Low-noise amplifier 12a of the first regulator 12 receives the received signal E r1 output from the duplexer 11, by the adjustment amount gamma r2 amplitude being set by the controller 44, the received signal E r1 Adjust the amplitude.
The phase adjuster 12 b of the first adjuster 12 adjusts the phase of the received signal whose amplitude is adjusted by the low noise amplifier 12 a by the phase adjustment amount φ r2 set by the controller 44.
The reception signal Er 2 represented by the expression (3) after the amplitude and phase are adjusted by the first adjuster 12 is output to the signal distributor 13.
 信号分配器13は、第1の調整器12から出力された受信信号Er2を受けると、その受信信号Er2を2分配して、2分配した一方の受信信号Er2を第1の切替スイッチ42に出力し、2分配した他方の受信信号Er2を受信機14に出力する。
 受信機14は、信号分配器13から出力された受信信号Er2を受けると、その受信信号Er2に対する受信処理を実施し、受信処理後の受信信号Er2を電気信号としてA/D変換器15に出力する。
 A/D変換器15は、受信機14から出力された電気信号をアナログ信号からデジタル信号に変換し、変換したデジタル信号を制御器20に出力する。
When the signal distributor 13 receives the reception signal Er2 output from the first adjuster 12, the signal distributor 13 distributes the reception signal Er2 into two and distributes the one reception signal Er2 divided into two to the first changeover switch. The other received signal Er2 divided into two is output to the receiver 14.
Receiver 14, the signal when the distributor 13 receives the received signal E r2 output from, carried out reception processing for the received signal E r2, A / D converter receiving signal E r2 as an electric signal after reception processing 15 is output.
The A / D converter 15 converts the electrical signal output from the receiver 14 from an analog signal to a digital signal, and outputs the converted digital signal to the controller 20.
 第1の切替スイッチ42は、信号分配器13から出力された受信信号Er2を受けると、制御器44によって出力ポートがポートBに設定されているため、その受信信号Er2を位相器41に出力する。
 位相器41は、第1の切替スイッチ42から出力された受信信号Er2を受けると、制御器44によって設定された位相の調整量φr3だけ、その受信信号Er2の位相を調整し、位相調整後の受信信号Er2を第2の切替スイッチ43に出力する。
When the first changeover switch 42 receives the reception signal E r2 output from the signal distributor 13, the output port is set to the port B by the controller 44, so that the reception signal Er 2 is transferred to the phase shifter 41. Output.
Phaser 41, upon receiving the received signals E r2, which is output from the first selector switch 42, by adjusting the amount phi r3 of set phase by controller 44, adjusts the phase of the received signal E r2, phase The adjusted reception signal Er2 is output to the second changeover switch 43.
 第2の切替スイッチ43は、位相器41から出力された位相調整後の受信信号Er2を受けると、制御器44によって出力ポートがポートBに設定されているため、その受信信号Er2を可変増幅器18bに出力する。
 可変増幅器18bは、第2の切替スイッチ43から出力された受信信号Er2を受けると、制御器44によって設定された振幅の調整量Γr3だけ、その受信信号Er2の振幅を調整する。
 可変増幅器18bにより振幅が調整された後の式(4)で示される受信信号は、送信信号Er3として、送受切替器11に出力される。
When the second changeover switch 43 receives the phase-adjusted reception signal Er2 output from the phase shifter 41, the output port is set to the port B by the controller 44, so that the reception signal Er2 is variable. Output to amplifier 18b.
Variable amplifier 18b, upon receiving the received signals E r2 output from the second selector switch 43, by the adjustment amount gamma r3 amplitude set by the controller 44, adjusts the amplitude of the received signal E r2.
The reception signal represented by Expression (4) after the amplitude is adjusted by the variable amplifier 18b is output to the transmission / reception switch 11 as the transmission signal Er3 .
 送受切替器11は、可変増幅器18bから出力された送信信号Er3を受けると、その送信信号Er3をアンテナ1に出力する。これにより、アンテナ1から送信信号Er3が電磁波として空間に放射される。
 ここで、アンテナ1から放射される送信信号Er3の振幅(Γr3Γr2r1)が、アンテナ1により散乱される散乱波Eの振幅Aと同一であり、かつ、送信信号Er3の位相(φr1+φr2+φr3)が、アンテナ1により散乱される散乱波Eの位相φと逆位相であれば、送信信号Er3と散乱波Eの総和が零になる。この結果、散乱波Eが送信信号Er3に打ち消されて、外部での散乱波Eの受信が困難になる。
Upon receiving the transmission signal Er3 output from the variable amplifier 18b, the transmission / reception switch 11 outputs the transmission signal Er3 to the antenna 1. Accordingly, the transmission signal Er3 is radiated from the antenna 1 to the space as an electromagnetic wave.
Here, the amplitude of the transmission signal E r3 radiated from the antenna 1 (Γ r3 Γ r2 A r1 ) is the same as the amplitude A s of the scattered wave E s scattered by the antenna 1 and transmit signal E r3 If the phase (φ r1 + φ r2 + φ r3 ) is opposite to the phase φ s of the scattered wave E s scattered by the antenna 1, the sum of the transmission signal E r3 and the scattered wave E s becomes zero. As a result, the scattered wave E s is canceled in the transmission signal E r3, reception of the scattered waves E s of the external becomes difficult.
 制御器44は、信号送受信ユニット2のA/D変換器15から出力されたデジタル信号を受けると、図1の制御器20及び図2の制御器31と同様に、そのデジタル信号を解析して、アンテナ1により受信された電磁波が受信対象の通信信号に係る電磁波であるのか、外部から到来してきた不要波に係る電磁波であるのかを判定する。
 制御器44は、アンテナ1により受信された電磁波が不要波に係る電磁波である場合、レーダ断面積を低減する必要性が高いため、アンテナ1により散乱される散乱波Eと同振幅かつ逆位相の送信信号Er3がアンテナ1から放射されるように、位相器41による位相の調整量φr3及び可変増幅器18bによる振幅の調整量Γr3を制御する。
Upon receiving the digital signal output from the A / D converter 15 of the signal transmission / reception unit 2, the controller 44 analyzes the digital signal in the same manner as the controller 20 in FIG. 1 and the controller 31 in FIG. Then, it is determined whether the electromagnetic wave received by the antenna 1 is an electromagnetic wave related to a communication signal to be received or an electromagnetic wave related to an unnecessary wave coming from the outside.
The controller 44, when the electromagnetic waves received by the antenna 1 is an electromagnetic wave according to the unwanted wave, since it is highly necessary to reduce the radar cross section, the scattered wave E s and the same amplitude and opposite phase being scattered by the antenna 1 The phase adjustment amount φ r3 by the phase shifter 41 and the amplitude adjustment amount Γ r3 by the variable amplifier 18b are controlled so that the transmission signal E r3 is radiated from the antenna 1.
 制御器44は、アンテナ1により受信された電磁波が受信対象の通信信号に係る電磁波である場合、レーダ断面積を低減する必要性が低いため、例えば、第2の調整器18に含まれている可変増幅器18bの利得が零になるように、可変増幅器18bを制御する。この場合、アンテナ1により散乱される散乱波Eと同振幅かつ逆位相の送信信号Er3がアンテナ1から放射されることはない。
 ただし、これは一例に過ぎず、アンテナ1により受信された電磁波が不要波に係る電磁波である場合と同様に、アンテナ1により散乱される散乱波Eと同振幅かつ逆位相の送信信号Er3がアンテナ1から放射されるようにしてもよい。
When the electromagnetic wave received by the antenna 1 is an electromagnetic wave related to a communication signal to be received, the controller 44 is included in, for example, the second adjuster 18 because it is less necessary to reduce the radar cross-sectional area. The variable amplifier 18b is controlled so that the gain of the variable amplifier 18b becomes zero. In this case, there is no possibility that the transmission signal E r3 scattered wave E s the same amplitude and opposite phases to be scattered by the antenna 1 is radiated from the antenna 1.
However, this is only an example, as in the case the electromagnetic waves received by the antenna 1 is an electromagnetic wave according to the unnecessary wave, the transmission of the scattered wave E s and the same amplitude and opposite phases to be scattered by the antenna 1 signal E r3 May be radiated from the antenna 1.
 以下、制御器44による位相の調整量φr3及び振幅の調整量Γr3の制御について具体的に説明する。
 制御器44は、信号送受信ユニット2のA/D変換器15から出力されたデジタル信号を解析して、受信信号Er2の振幅(Γr2r1)及び受信信号Er2の位相(φr1+φr2)を特定する。
 次に、制御器44は、予め記憶している散乱波Eの振幅Aと、受信信号Er2の振幅(Γr2r1)とから、散乱波Eの振幅Aと同一振幅となる送信信号Er3の振幅(Γr3Γr2r1)を得るための式(5)で示される振幅の調整量Γr3を算出する。
 また、制御器44は、予め記憶している散乱波Eの位相φと、受信信号Er2の位相(φr1+φr2)とから、散乱波Eの位相φと逆位相となる送信信号Er3の位相(φr1+φr2+φr3)を得るための式(6)で示される位相の調整量φr3を算出する。
Hereinafter, the control of the phase adjustment amount φ r3 and the amplitude adjustment amount Γ r3 by the controller 44 will be described in detail.
The controller 44 analyzes the digital signal output from the A / D converter 15 of the signal transmitting and receiving unit 2, the received signal E r2 amplitude (Γ r2 A r1) and of the received signal E r2 phase (φ r1 + φ r2 ) is specified.
Next, the controller 44, the amplitude A s of the scattered wave E s stored in advance, since the amplitude (Γ r2 A r1) of the received signal E r2, the same amplitude and the amplitude A s of the scattered wave E s to calculate the adjustment amount gamma r3 amplitude of formula (5) for obtaining a composed amplitude of the transmission signal E r3 (Γ r3 Γ r2 a r1).
The control unit 44 is composed and phase phi s of the scattered wave E s stored in advance, because the phase (φ r1 + φ r2) of the received signal E r2, the scattered wave E s phase phi s antiphase A phase adjustment amount φ r3 represented by Expression (6) for obtaining the phase (φ r1 + φ r2 + φ r3 ) of the transmission signal E r3 is calculated.
 制御器44は、振幅の調整量Γr3を算出すると、可変増幅器18bによる振幅の調整量として、調整量Γr3を設定する。
 制御器44は、位相の調整量φr3を算出すると、位相器41による位相の調整量として、調整量φr3を設定する。
The controller 44, calculating the adjustment amount gamma r3 amplitude, as the adjustment amount of the amplitude by the variable amplifiers 18b, sets an adjustment amount gamma r3.
The controller 44, calculating the adjustment amount phi r3 of phase, as the adjustment amount of the phase by the phase detector 41, sets the adjustment amount phi r3.
 次に、送信対象の通信信号を送信する際の動作を説明する。
 通信信号の送信動作中においては、第1の切替スイッチ42の出力ポートは、制御器44によってポートAに設定され、第2の切替スイッチ43の出力ポートは、制御器44によってポートAに設定される。
Next, an operation when transmitting a communication signal to be transmitted will be described.
During the communication signal transmission operation, the output port of the first changeover switch 42 is set to port A by the controller 44, and the output port of the second changeover switch 43 is set to port A by the controller 44. The
 制御器44は、送信対象の通信信号を信号送受信ユニット2のD/A変換器16に出力する。
 D/A変換器16は、制御器44から出力された送信対象の通信信号を受けると、その通信信号をデジタル信号からアナログ信号に変換し、変換したアナログ信号を送信機17に出力する。
 送信機17は、D/A変換器16から出力されたアナログ信号である通信信号に対する送信処理を実施し、送信処理後の通信信号を位相器41に出力する。
The controller 44 outputs the communication signal to be transmitted to the D / A converter 16 of the signal transmission / reception unit 2.
Upon receiving the communication signal to be transmitted output from the controller 44, the D / A converter 16 converts the communication signal from a digital signal to an analog signal, and outputs the converted analog signal to the transmitter 17.
The transmitter 17 performs transmission processing on the communication signal that is an analog signal output from the D / A converter 16, and outputs the communication signal after the transmission processing to the phase shifter 41.
 位相器41は、送信機17から出力された送信処理後の通信信号を受けると、制御器44によって設定されている位相の調整量φr4だけ、送信処理後の通信信号の位相を調整し、位相調整後の通信信号を第2の切替スイッチ43に出力する。
 第2の切替スイッチ43は、位相器41から出力された位相調整後の通信信号を受けると、制御器44によって出力ポートがポートAに設定されているため、その通信信号を高出力増幅器30bに出力する。
When receiving the communication signal after transmission processing output from the transmitter 17, the phase shifter 41 adjusts the phase of the communication signal after transmission processing by the phase adjustment amount φ r4 set by the controller 44. The communication signal after the phase adjustment is output to the second changeover switch 43.
When the second changeover switch 43 receives the communication signal after the phase adjustment output from the phase shifter 41, the output port is set to the port A by the controller 44, so that the communication signal is sent to the high output amplifier 30b. Output.
 高出力増幅器30bは、制御器44によって設定されている振幅の調整量Γr4だけ、第2の切替スイッチ43から出力された通信信号の振幅を調整する。
 高出力増幅器30bにより振幅が調整された通信信号は、送受切替器11に出力される。
 送受切替器11は、高出力増幅器30bから出力された通信信号を受けると、その通信信号をアンテナ1に出力する。これにより、アンテナ1から通信信号が電磁波として空間に放射される。
The high-power amplifier 30b adjusts the amplitude of the communication signal output from the second switch 43 by the amplitude adjustment amount Γ r4 set by the controller 44.
The communication signal whose amplitude is adjusted by the high output amplifier 30 b is output to the transmission / reception switch 11.
When the transmission / reception switch 11 receives the communication signal output from the high-power amplifier 30b, the transmission / reception switch 11 outputs the communication signal to the antenna 1. Thereby, a communication signal is radiated | emitted to space from the antenna 1 as electromagnetic waves.
 アンテナ1は、空間から到来してきた電磁波を受信し、上記の式(2)で示される電磁波の受信信号Er1を信号送受信ユニット2に出力する。
 信号送受信ユニット2の送受切替器11は、アンテナ1から出力された受信信号Er1を受けると、その受信信号Er1を第1の調整器12に出力する。
The antenna 1 receives an electromagnetic wave that has arrived from space, and outputs the received signal Er1 of the electromagnetic wave represented by the above formula (2) to the signal transmission / reception unit 2.
When the transmission / reception switch 11 of the signal transmission / reception unit 2 receives the reception signal E r1 output from the antenna 1, the transmission / reception switch 11 outputs the reception signal E r1 to the first adjuster 12.
 第1の調整器12の低雑音増幅器12aは、送受切替器11から出力された受信信号Er1を受けると、制御器44によって設定された振幅の調整量Γr2だけ、その受信信号Er1の振幅を調整する。
 第1の調整器12の位相器12bは、制御器44によって設定された位相の調整量φr2だけ、低雑音増幅器12aにより振幅が調整された受信信号の位相を調整する。
 第1の調整器12により振幅及び位相が調整された後の式(3)で示される受信信号Er2は、信号分配器13に出力される。
Low-noise amplifier 12a of the first regulator 12 receives the received signal E r1 output from the duplexer 11, the amplitude set by the controller 44 by the adjustment amount gamma r2, of the received signal E r1 Adjust the amplitude.
The phase adjuster 12 b of the first adjuster 12 adjusts the phase of the received signal whose amplitude is adjusted by the low noise amplifier 12 a by the phase adjustment amount φ r2 set by the controller 44.
The reception signal Er 2 represented by the expression (3) after the amplitude and phase are adjusted by the first adjuster 12 is output to the signal distributor 13.
 信号分配器13は、第1の調整器12から出力された受信信号Er2を受けると、その受信信号Er2を2分配して、2分配した一方の受信信号Er2を第1の切替スイッチ42に出力し、2分配した他方の受信信号Er2を受信機14に出力する。
 受信機14は、信号分配器13から出力された受信信号Er2を受けると、上記実施の形態1と同様に、その受信信号Er2に対する受信処理を実施し、受信処理後の受信信号Er2を電気信号としてA/D変換器15に出力する。
 A/D変換器15は、受信機14から出力された電気信号をアナログ信号からデジタル信号に変換し、変換したデジタル信号を制御器44に出力する。
When the signal distributor 13 receives the reception signal Er2 output from the first adjuster 12, the signal distributor 13 distributes the reception signal Er2 into two and distributes the one reception signal Er2 divided into two to the first changeover switch. The other received signal Er2 divided into two is output to the receiver 14.
When receiving the reception signal E r2 output from the signal distributor 13, the receiver 14 performs a reception process on the reception signal E r2 as in the first embodiment, and receives the reception signal E r2 after the reception process. Is output to the A / D converter 15 as an electrical signal.
The A / D converter 15 converts the electrical signal output from the receiver 14 from an analog signal to a digital signal, and outputs the converted digital signal to the controller 44.
 第1の切替スイッチ42は、信号分配器13から出力された受信信号Er2を受けると、制御器44によって出力ポートがポートAに設定されているため、その受信信号Er2を可変増幅器18bに出力する。
 可変増幅器18bは、制御器44によって設定されている振幅の調整量Γr3だけ、その受信信号Er2の振幅を調整する。
 可変増幅器18bにより振幅が調整された後の受信信号は、上記の式(4)で示される送信信号Er3として、送受切替器11に出力される。
 送受切替器11は、可変増幅器18bから出力された送信信号Er3を受けると、その送信信号Er3をアンテナ1に出力する。これにより、アンテナ1から送信信号Er3が電磁波として空間に放射される。
When the first changeover switch 42 receives the reception signal Er2 output from the signal distributor 13, since the output port is set to the port A by the controller 44, the reception signal Er2 is sent to the variable amplifier 18b. Output.
The variable amplifier 18b adjusts the amplitude of the received signal E r2 by the amplitude adjustment amount Γ r3 set by the controller 44.
The reception signal whose amplitude has been adjusted by the variable amplifier 18b is output to the transmission / reception switch 11 as the transmission signal Er3 represented by the above equation (4).
Upon receiving the transmission signal Er3 output from the variable amplifier 18b, the transmission / reception switch 11 outputs the transmission signal Er3 to the antenna 1. Accordingly, the transmission signal Er3 is radiated from the antenna 1 to the space as an electromagnetic wave.
 制御器44は、信号送受信ユニット2のA/D変換器15から出力されたデジタル信号を受けると、図1の制御器20及び図2の制御器31と同様に、そのデジタル信号を解析して、アンテナ1により受信された電磁波が外部から到来してきた不要波に係る電磁波であるかを判定する。
 制御器44は、アンテナ1により受信された電磁波が不要波に係る電磁波である場合、レーダ断面積を低減する必要性が高いため、アンテナ1により散乱される散乱波Eと同振幅かつ逆位相の送信信号Er3がアンテナ1から放射されるように、低雑音増幅器12aによる振幅の調整量Γr2及び位相器12bによる位相の調整量φr2を制御する。
Upon receiving the digital signal output from the A / D converter 15 of the signal transmission / reception unit 2, the controller 44 analyzes the digital signal in the same manner as the controller 20 in FIG. 1 and the controller 31 in FIG. Then, it is determined whether the electromagnetic wave received by the antenna 1 is an electromagnetic wave related to an unnecessary wave that has come from the outside.
The controller 44, when the electromagnetic waves received by the antenna 1 is an electromagnetic wave according to the unwanted wave, since it is highly necessary to reduce the radar cross section, the scattered wave E s and the same amplitude and opposite phase being scattered by the antenna 1 The amount of amplitude adjustment Γ r2 by the low-noise amplifier 12a and the amount of phase adjustment φ r2 by the phase shifter 12b are controlled so that the transmission signal E r3 is radiated from the antenna 1.
 以下、制御器44による振幅の調整量Γr2及び位相の調整量φr2の制御について具体的に説明する。
 制御器44は、信号送受信ユニット2のA/D変換器15から出力されたデジタル信号を解析して、受信信号Er2の振幅(Γr2r1)及び受信信号Er2の位相(φr1+φr2)を特定する。
 次に、制御器44は、受信信号Er2の振幅(Γr2r1)を現在の振幅の調整量Γr2で除算することで、受信信号Er1の振幅Ar1を算出する。
 次に、制御器44は、予め記憶している散乱波Eの振幅Aと、受信信号Er1の振幅Ar1と、可変増幅器18bによる固定の調整量Γr3とから、散乱波Eの振幅Aと同一振幅となる送信信号Er3の振幅(Γr3Γr2r1)を得るための式(7)で示される振幅の調整量Γr2を算出する。
Hereinafter, the control of the amplitude adjustment amount Γ r2 and the phase adjustment amount φ r2 by the controller 44 will be specifically described.
The controller 44 analyzes the digital signal output from the A / D converter 15 of the signal transmitting and receiving unit 2, the received signal E r2 amplitude (Γ r2 A r1) and of the received signal E r2 phase (φ r1 + φ r2 ) is specified.
Next, the controller 44 calculates the amplitude A r1 of the reception signal E r1 by dividing the amplitude (Γ r2 A r1 ) of the reception signal E r2 by the adjustment amount Γ r2 of the current amplitude.
Next, the controller 44, the amplitude A s of the scattered wave E s stored in advance and the amplitude A r1 received signal E r1, fixed adjustment amount gamma r3 Prefecture by the variable amplifier 18b, the scattered wave E s calculating the amplitude a s and an amplitude (Γ r3 Γ r2 a r1) adjustment amount gamma r2 amplitude of formula (7) for obtaining a transmission signal E r3 having the same amplitude.
 また、制御器44は、受信信号Er2の位相(φr1+φr2)から現在の位相の調整量φr2を減算することで、受信信号Er1の位相φr1を算出する。
 制御器44は、予め記憶している散乱波Eの位相φと、受信信号Er1の位相φr1と、位相器18aによる固定の調整量φr3とから、散乱波Eの位相φと逆位相となる送信信号Er3の位相(φr1+φr2+φr3)を得るための式(8)で示される位相の調整量φr2を算出する。
Further, the controller 44 calculates the phase φ r1 of the received signal E r1 by subtracting the current phase adjustment amount φ r2 from the phase (φ r1 + φ r2 ) of the received signal E r2 .
The controller 44 includes a phase phi s of the scattered wave E s stored in advance, the phase phi r1 of the reception signal E r1, a fixed adjustment amount phi r3 Metropolitan by phase shifter 18a, the phase phi of the scattered wave E s The phase adjustment amount φ r2 represented by the equation (8) for obtaining the phase (φ r1 + φ r2 + φ r3 ) of the transmission signal E r3 having a phase opposite to s is calculated.
 制御器44は、振幅の調整量Γr2を算出すると、第1の調整器12の低雑音増幅器12aによる振幅の調整量として、調整量Γr2を設定する。
 制御器44は、位相の調整量φr2を算出すると、第1の調整器12の位相器12bによる位相の調整量として、調整量φr2を設定する。
The controller 44, calculating the adjustment amount gamma r2 amplitude, as the adjustment amount of the amplitude due to the low-noise amplifier 12a of the first regulator 12, sets the adjustment amount gamma r2.
The controller 44, calculating the adjustment amount phi r2 of the phase, as an adjustment amount of the phase by the phase shifter 12b of the first regulator 12, sets the adjustment amount phi r2.
 この実施の形態3によれば、上記実施の形態1,2と同様に、構造モードRCS及びアンテナモードRCSを低減している期間中でも、通信信号の送信又は受信を行うことができる効果を奏する。
 また、この実施の形態3によれば、位相器41が、第2の調整器18に含まれている位相器18aと、第3の調整器30に含まれている位相器30aとの役割を担うため、上記実施の形態2よりも、位相器の個数を減らして、構成の簡易化を図ることができる効果を奏する。
According to the third embodiment, as in the first and second embodiments, the communication signal can be transmitted or received even during the period in which the structural mode RCS and the antenna mode RCS are reduced.
Further, according to the third embodiment, the phase shifter 41 functions as the phase shifter 18 a included in the second adjuster 18 and the phase shifter 30 a included in the third adjuster 30. Therefore, the number of phase shifters can be reduced and the configuration can be simplified as compared with the second embodiment.
実施の形態4.
 この実施の形態4では、図1~3の制御器20,31,44において、振幅及び位相の調整量を決定する構成部分を具体的に説明する。
Embodiment 4 FIG.
In the fourth embodiment, the components that determine the adjustment amounts of the amplitude and phase in the controllers 20, 31, 44 of FIGS. 1 to 3 will be specifically described.
 図4はこの発明の実施の形態4によるアンテナ装置の制御器20を示す構成図である。
 図4は制御器20の構成図を示しているが、振幅及び位相の調整量を決定する構成部分については、図2の制御器31及び図3の制御器44も、図1の制御器20と同様の構成図となる。
 図5はアンテナ装置の制御器20を示すハードウェア構成図である。
 到来方向推定部51は例えば図5に示す到来方向推定回路61で実現されるものであり、A/D変換器15から出力されたデジタル信号から到来してきた電磁波の到来方向θを推定する処理を実施する。
4 is a block diagram showing a controller 20 of an antenna apparatus according to Embodiment 4 of the present invention.
FIG. 4 shows a configuration diagram of the controller 20, but the controller 31 shown in FIG. 2 and the controller 44 shown in FIG. It becomes the same configuration diagram.
FIG. 5 is a hardware configuration diagram showing the controller 20 of the antenna apparatus.
The arrival direction estimation unit 51 is realized by, for example, the arrival direction estimation circuit 61 shown in FIG. 5, and performs processing for estimating the arrival direction θ of the electromagnetic wave that has arrived from the digital signal output from the A / D converter 15. carry out.
 テーブル記憶部52は例えば図5に示す記憶回路62で実現されるものであり、電磁波の到来方向θと、アンテナ1により散乱される散乱波Eの振幅A及び位相φとの対応関係を示すテーブルを記憶している。
 散乱波特定部53は例えば図5に示す散乱波特定回路63で実現されるものであり、テーブル記憶部52に記憶されているテーブルを参照して、到来方向推定部51により推定された到来方向θに対応する散乱波Eの振幅A及び位相φを特定する処理を実施する。
Table storage unit 52 is intended to be implemented in the memory circuit 62 shown in FIG. 5, for example, the arrival direction θ of the electromagnetic wave, the correspondence relationship between the amplitude A s and phase phi s of the scattered wave E s being scattered by the antenna 1 Is stored.
The scattered wave specifying unit 53 is realized by, for example, the scattered wave specifying circuit 63 shown in FIG. 5, and the arrival direction estimated by the arrival direction estimating unit 51 with reference to the table stored in the table storage unit 52. It carries out a process of specifying the amplitude a s and phase phi s of the scattered wave E s corresponding to theta.
 調整量決定部54は例えば図5に示す調整量決定回路64で実現されるものである。
 調整量決定部54は、受信対象の通信信号を受信する際には、散乱波特定部53により特定された散乱波Eの振幅A及び位相φと、低雑音増幅器12aによる振幅の調整量Γr2及び位相器12bによる位相の調整量φr2とから、可変増幅器18bによる振幅の調整量Γr3及び位相器18aによる位相の調整量φr3とを決定する処理を実施する。
 調整量決定部54は、送信対象の通信信号を送信する際には、散乱波特定部53により特定された散乱波Eの振幅A及び位相φと、可変増幅器18bによる振幅の調整量Γr3及び位相器18aによる位相の調整量φr3とから、低雑音増幅器12aによる振幅の調整量Γr2及び位相器12bによる位相の調整量φr2とを決定する処理を実施する。
The adjustment amount determination unit 54 is realized by, for example, the adjustment amount determination circuit 64 shown in FIG.
Adjustment amount determination unit 54, when receiving the communication signal to be received is, the amplitude A s and phase phi s of the identified scattered wave E s by scattered wave identification unit 53, an amplitude adjustment by the low-noise amplifier 12a A process of determining the amplitude adjustment amount Γ r3 by the variable amplifier 18b and the phase adjustment amount φ r3 by the phase shifter 18a from the amount Γ r2 and the phase adjustment amount φ r2 by the phase shifter 12b is performed.
When transmitting the communication signal to be transmitted, the adjustment amount determination unit 54 adjusts the amplitude A s and phase φ s of the scattered wave E s specified by the scattered wave specification unit 53 and the amplitude adjustment amount by the variable amplifier 18b. A process of determining an amplitude adjustment amount Γ r2 by the low noise amplifier 12a and a phase adjustment amount φ r2 by the phase shifter 12b from Γ r3 and the phase adjustment amount φ r3 by the phase shifter 18a is performed.
 図4では、制御器20の構成要素である到来方向推定部51、テーブル記憶部52、散乱波特定部53及び調整量決定部54のそれぞれが、図5に示すような専用のハードウェア、即ち、到来方向推定回路61、記憶回路62、散乱波特定回路63及び調整量決定回路64で実現されるものを想定している。
 ここで、記憶回路62は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)などの不揮発性又は揮発性の半導体メモリや、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)などが該当する。
 また、到来方向推定回路61、散乱波特定回路63及び調整量決定回路64は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、または、これらを組み合わせたものが該当する。
In FIG. 4, each of the arrival direction estimation unit 51, the table storage unit 52, the scattered wave identification unit 53, and the adjustment amount determination unit 54, which are components of the controller 20, includes dedicated hardware as shown in FIG. It is assumed that the arrival direction estimation circuit 61, the storage circuit 62, the scattered wave identification circuit 63, and the adjustment amount determination circuit 64 are realized.
Here, the memory circuit 62 may be, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory Memory, or an EEPROM (Electrically Erasable Memory). A volatile semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disc), and the like are applicable.
The arrival direction estimation circuit 61, the scattered wave identification circuit 63, and the adjustment amount determination circuit 64 include, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), and an FPGA. (Field-Programmable Gate Array) or a combination thereof is applicable.
 制御器20の構成要素は、専用のハードウェアで実現されるものに限るものではなく、制御器20がソフトウェア、ファームウェア、または、ソフトウェアとファームウェアとの組み合わせで実現されるものであってもよい。
 ソフトウェアやファームウェアはプログラムとして、コンピュータのメモリに格納される。コンピュータは、プログラムを実行するハードウェアを意味し、例えば、CPU、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)などが該当する。
 図6は制御器20がソフトウェア又はファームウェアなどで実現される場合のコンピュータのハードウェア構成図である。
 制御器20がソフトウェア又はファームウェアなどで実現される場合、テーブル記憶部52をコンピュータのメモリ71上に構成するとともに、到来方向推定部51、散乱波特定部53及び調整量決定部54の処理手順をコンピュータに実行させるためのプログラムをメモリ71に格納し、コンピュータのプロセッサ72がメモリ71に格納されているプログラムを実行するようにすればよい。
 図7は制御器20がソフトウェア又はファームウェアなどで実現される場合の処理手順を示すフローチャートである。
The components of the controller 20 are not limited to those realized by dedicated hardware, and the controller 20 may be realized by software, firmware, or a combination of software and firmware.
Software and firmware are stored as programs in the memory of the computer. The computer means hardware that executes a program, and includes, for example, a CPU, a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, a DSP (Digital Signal Processor), and the like.
FIG. 6 is a hardware configuration diagram of a computer when the controller 20 is realized by software or firmware.
When the controller 20 is realized by software or firmware, the table storage unit 52 is configured on the memory 71 of the computer, and the processing procedures of the arrival direction estimation unit 51, the scattered wave identification unit 53, and the adjustment amount determination unit 54 are processed. A program to be executed by the computer may be stored in the memory 71, and the processor 72 of the computer may execute the program stored in the memory 71.
FIG. 7 is a flowchart showing a processing procedure when the controller 20 is realized by software or firmware.
 次に動作について説明する。
 制御器20の到来方向推定部51は、A/D変換器15から出力されたデジタル信号を受けると、そのデジタル信号から到来してきた電磁波の到来方向θを推定する(図7のステップST1)。
 デジタル信号から電磁波の到来方向θを推定する処理自体は公知の技術であるため詳細な説明を省略する。
Next, the operation will be described.
When the arrival direction estimation unit 51 of the controller 20 receives the digital signal output from the A / D converter 15, the arrival direction estimation unit 51 estimates the arrival direction θ of the electromagnetic wave arriving from the digital signal (step ST1 in FIG. 7).
Since the process of estimating the arrival direction θ of the electromagnetic wave from the digital signal is a known technique, detailed description thereof is omitted.
 散乱波特定部53は、到来方向推定部51が電磁波の到来方向θを推定すると、電磁波の到来方向θから、アンテナ1によって到来方向θに散乱される散乱波Eの振幅A及び位相φを特定する(図7のステップST2)。
 即ち、散乱波特定部53は、テーブル記憶部52に記憶されているテーブルから、到来方向推定部51により推定された到来方向θに対応する散乱波Eの振幅A及び位相φを取得する。
 図8はテーブル記憶部52に記憶されているテーブルの一例を示す説明図である。
 図8の例では、電磁波の到来方向θがθであれば、散乱波Eの振幅A及び位相φとして、到来方向θに対応する散乱波Eの振幅As1及び位相φs1を取得する。
 また、電磁波の到来方向θがθであれば、散乱波Eの振幅A及び位相φとして、到来方向θに対応する散乱波Eの振幅As2及び位相φs2を取得する。
Scattered wave identification unit 53, the arrival direction estimation unit 51 estimates the arrival direction θ of the electromagnetic wave from the arrival direction θ of the electromagnetic wave, the scattered waves E s scattered in the arrival direction θ by the antenna 1 the amplitude A s and phase φ s is specified (step ST2 in FIG. 7).
That is, the scattered wave identification unit 53, from the table stored in the table storage unit 52, acquires the amplitude A s and phase phi s of the scattered wave E s corresponding to been arrival direction θ estimated by the arrival direction estimation unit 51 To do.
FIG. 8 is an explanatory diagram illustrating an example of a table stored in the table storage unit 52.
In the example of FIG. 8, if the arrival direction of the electromagnetic wave theta is theta 1, as the amplitude A s and phase phi s of the scattered wave E s, of the scattered wave E s corresponding to the direction of arrival theta 1 amplitude A s1 and the phase phi Get s1 .
Moreover, the arrival direction theta of electromagnetic waves if theta 2, the amplitude A s and phase phi s of the scattered wave E s, to obtain the amplitude A s2 and phase phi s2 scattered wave E s corresponding to the direction of arrival theta 2 .
 調整量決定部54は、通信信号の受信動作中であれば(図7のステップST3:YESの場合)、固定に設定している低雑音増幅器12aによる振幅の調整量Γr2及び位相器12bによる位相の調整量φr2を取得する。
 次に、調整量決定部54は、散乱波特定部53により特定された散乱波Eの振幅A及び位相φと、低雑音増幅器12aによる振幅の調整量Γr2及び位相器12bによる位相の調整量φr2とから、可変増幅器18bによる振幅の調整量Γr3及び位相器18aによる位相の調整量φr3とを決定する(図7のステップST4)。
 具体的には、調整量決定部54が、散乱波Eの振幅A及び受信信号Er2の振幅(Γr2r1)を上記の式(5)に代入することで、可変増幅器18bによる振幅の調整量Γr3を算出することができる。
 また、調整量決定部54が、散乱波Eの位相φ及び受信信号Er2の位相(φr1+φr2)を上記の式(6)に代入することで、位相器18aによる位相の調整量φr3を算出することができる。
If the communication signal is being received (step ST3: YES in FIG. 7), the adjustment amount determination unit 54 uses the amplitude adjustment amount Γ r2 by the low noise amplifier 12a set to be fixed and the phase shifter 12b. The phase adjustment amount φ r2 is acquired.
Then, the adjustment amount determining unit 54, the amplitude A s and phase phi s of the identified scattered wave E s by scattered wave identification unit 53, a low noise amplifier 12a by the phase by the amplitude adjustment amount gamma r2 and phaser 12b From the adjustment amount φ r2 , the amplitude adjustment amount Γ r3 by the variable amplifier 18b and the phase adjustment amount φ r3 by the phase shifter 18a are determined (step ST4 in FIG. 7).
Specifically, the adjustment amount determining unit 54, the amplitude of the amplitude A s and receive signals E r2 of the scattered wave E s a (gamma r2 A r1) By substituting the above equation (5), according to the variable amplifier 18b The amplitude adjustment amount Γ r3 can be calculated.
Moreover, the adjustment amount determining unit 54, the scattered wave E s of the phase phi s and the received signal E r2 phases (phi r1 + phi r2) By substituting the above equation (6), the phase adjustment of the by phase shifter 18a The quantity φ r3 can be calculated.
 調整量決定部54は、通信信号の送信動作中であれば(図7のステップST3:NOの場合)、固定に設定している可変増幅器18bによる振幅の調整量Γr3及び位相器18aによる位相の調整量φr3を取得する。
 次に、調整量決定部54は、散乱波特定部53により特定された散乱波Eの振幅A及び位相φと、可変増幅器18bによる振幅の調整量Γr3及び位相器18aによる位相の調整量φr3とから、低雑音増幅器12aによる振幅の調整量Γr2及び位相器12bによる位相の調整量φr2とを決定する(図7のステップST5)。
 具体的には、調整量決定部54は、受信信号Er2の振幅(Γr2r1)を現在の振幅の調整量Γr2で除算することで、受信信号Er1の振幅Ar1を算出する。そして、調整量決定部54が、散乱波Eの振幅Aと、受信信号Er1の振幅Ar1と、可変増幅器18bによる固定の調整量Γr3とを上記の式(7)に代入することで、低雑音増幅器12aによる振幅の調整量Γr2を算出することができる。
 また、調整量決定部54は、受信信号Er2の位相(φr1+φr2)から現在の位相の調整量φr2を減算することで、受信信号Er1の位相φr1を算出する。そして、調整量決定部54が、散乱波Eの位相φと、受信信号Er1の位相φr1と、位相器18aによる固定の調整量φr3とを上記の式(8)に代入することで、位相器12bによる位相の調整量φr2を算出することができる。
When the communication signal is being transmitted (step ST3 in FIG. 7: NO), the adjustment amount determination unit 54 adjusts the amplitude adjustment amount Γ r3 by the variable amplifier 18b set to be fixed and the phase by the phase shifter 18a. The adjustment amount φ r3 is acquired.
Then, the adjustment amount determining unit 54, the amplitude A s and phase phi s of the identified scattered wave E s by scattered wave identification unit 53, an amplitude by the variable amplifiers 18b adjustment amount gamma r3 and by phase shifter 18a phases of From the adjustment amount φ r3 , the amplitude adjustment amount Γ r2 by the low noise amplifier 12a and the phase adjustment amount φ r2 by the phase shifter 12b are determined (step ST5 in FIG. 7).
Specifically, the adjustment amount determining unit 54 calculates the amplitude A r1 of the reception signal E r1 by dividing the amplitude (Γ r2 A r1 ) of the reception signal E r2 by the adjustment amount Γ r2 of the current amplitude. . Then, the adjustment amount determining unit 54, and the amplitude A s of the scattered wave E s, is substituted with the amplitude A r1 of a received signal E r1, the adjustment amount gamma r3 and the above equation fixed by the variable amplifier 18b (7) Thus, the amplitude adjustment amount Γ r2 by the low noise amplifier 12a can be calculated.
Further, the adjustment amount determination unit 54 calculates the phase φ r1 of the reception signal E r1 by subtracting the adjustment amount φ r2 of the current phase from the phase (φ r1 + φ r2 ) of the reception signal E r2 . Then, the adjustment amount determining unit 54, and the phase phi s of the scattered wave E s, substitutes the phase phi r1 of the reception signal E r1, the adjustment amount phi r3 and the above equation fixed by phase shifter 18a (8) Thus, the phase adjustment amount φ r2 by the phase shifter 12b can be calculated.
 以上で明らかなように、この実施の形態4によれば、制御器20が、A/D変換器15から出力されたデジタル信号から、到来してきた電磁波の到来方向θを推定する到来方向推定部51と、到来方向推定部51により推定された到来方向θから、アンテナ1によって到来方向θに散乱される散乱波Eの振幅A及び位相φを特定する散乱波特定部53と、受信対象の通信信号を受信する際には、散乱波特定部53により特定された散乱波Eの振幅A及び位相φと、低雑音増幅器12aによる振幅の調整量Γr2及び位相器12bによる位相の調整量φr2とから、可変増幅器18bによる振幅の調整量Γr3及び位相器18aによる位相の調整量φr3とを決定し、送信対象の通信信号を送信する際には、散乱波特定部53により特定された散乱波Eの振幅A及び位相φと、可変増幅器18bによる振幅の調整量Γr3及び位相器18aによる位相の調整量φr3とから、低雑音増幅器12aによる振幅の調整量Γr2及び位相器12bによる位相の調整量φr2とを決定する調整量決定部54とを備えるように構成したので、A/D変換器15から出力されたデジタル信号から、振幅の調整量及び位相の調整量を決定することができる効果を奏する。 As can be seen from the above, according to the fourth embodiment, the controller 20 estimates the arrival direction θ of the incoming electromagnetic wave from the digital signal output from the A / D converter 15. 51, the arrival direction θ estimated by the arrival direction estimation unit 51, a scattered wave identification unit 53 for identifying the amplitude a s and phase phi s of the scattered wave E s scattered in the arrival direction θ by the antenna 1, the receiving when receiving a communication signal of interest, the amplitude a s and phase phi s of the identified scattered wave E s by scattered wave identification unit 53, according to the amplitude adjustment amount gamma r2 and phaser 12b by the low-noise amplifier 12a When the amplitude adjustment amount Γ r3 by the variable amplifier 18b and the phase adjustment amount φ r3 by the phase shifter 18a are determined from the phase adjustment amount φ r2 and the communication signal to be transmitted is transmitted, the scattered wave is specified. According to part 53 Ri and amplitude A s and phase phi s of the identified scattered waves E s, the phase adjustment amount phi r3 Prefecture by the amplitude adjustment amount gamma r3 and phase shifter 18a by the variable amplifier 18b, the amplitude adjustment by the low-noise amplifier 12a Since the adjustment amount determining unit 54 for determining the amount Γ r2 and the phase adjustment amount φ r2 by the phase shifter 12b is provided, the amplitude adjustment amount is determined from the digital signal output from the A / D converter 15. In addition, there is an effect that the adjustment amount of the phase can be determined.
実施の形態5.
 上記実施の形態1~4では、アンテナ1及び信号送受信ユニット2を備えたアンテナ装置を例示している。
 この実施の形態5では、アンテナ1及び信号送受信ユニット2の組を複数実装しているアンテナ装置について説明する。
Embodiment 5 FIG.
In the first to fourth embodiments, an antenna apparatus including the antenna 1 and the signal transmission / reception unit 2 is illustrated.
In the fifth embodiment, an antenna device in which a plurality of sets of antennas 1 and signal transmission / reception units 2 are mounted will be described.
 図9はこの発明の実施の形態5によるアンテナ装置を示す構成図である。
 図9の例では、アンテナ1及び信号送受信ユニット2の組をN(Nは2以上の整数)個実装している。
 図9において、アンテナ1-1~1-Nは図1~図3のアンテナ1に対応している。
 信号送受信ユニット2-1~2-Nは図1~図3の信号送受信ユニット2に対応している。
 図9では、アンテナ装置が制御器20を実装し、制御器20が、信号送受信ユニット2-1~2-N内の第1の調整器12及び第2の調整器18を制御する例を想定しているが、制御器20の代わりに、図2の制御器31又は図3の制御器44が実装されているものであってもよい。
FIG. 9 is a block diagram showing an antenna apparatus according to Embodiment 5 of the present invention.
In the example of FIG. 9, N (N is an integer of 2 or more) sets of antennas 1 and signal transmission / reception units 2 are mounted.
In FIG. 9, antennas 1-1 to 1-N correspond to the antenna 1 of FIGS.
The signal transmission / reception units 2-1 to 2-N correspond to the signal transmission / reception unit 2 shown in FIGS.
In FIG. 9, it is assumed that the antenna device includes the controller 20, and the controller 20 controls the first adjuster 12 and the second adjuster 18 in the signal transmission / reception units 2-1 to 2-N. However, instead of the controller 20, the controller 31 of FIG. 2 or the controller 44 of FIG. 3 may be mounted.
 N個のアンテナ1-1~1-Nを備えることで、アクティブフェーズドアレーアンテナ(APAA:Active Phased Array Antenna)を構築することができる。
 APAAは、通信信号の送受信において、アンテナとしての機能を失わずに、レーダ断面積の低減を図ることが可能な振幅及び位相を設定することができる。
 即ち、APAAは、アンテナ1-1~1-Nが通信信号を送受信するためのアレーパターンである放射アレーパターンと、不要波の送受信を回避するための不要波に対するアレーパターンであるRCSアレーパターンとを同時に形成することができる。
 したがって、不要波の到来方向にヌルを形成して、不要波の送受信を回避することができるとともに、上記実施の形態1~4と同様に、構造モードRCS及びアンテナモードRCSを低減している期間中でも、通信信号の送信又は受信を行うことができる効果を奏する。
By providing N antennas 1-1 to 1-N, an active phased array antenna (APAA) can be constructed.
The APAA can set an amplitude and a phase capable of reducing the radar cross section without losing the function as an antenna in transmission / reception of communication signals.
That is, the APAA includes a radiation array pattern that is an array pattern for the antennas 1-1 to 1-N to transmit and receive communication signals, and an RCS array pattern that is an array pattern for unnecessary waves to avoid transmission and reception of unnecessary waves. Can be formed simultaneously.
Therefore, nulls can be formed in the arrival direction of unnecessary waves to avoid transmission / reception of unnecessary waves, and the period during which structural mode RCS and antenna mode RCS are reduced as in the first to fourth embodiments. Especially, there exists an effect which can perform transmission or reception of a communication signal.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, any combination of the embodiments, or any modification of any component in each embodiment, or omission of any component in each embodiment is possible. .
 この発明は、アンテナにより散乱される電磁波と同振幅かつ逆位相の送信信号を放射するアンテナ装置に適している。 The present invention is suitable for an antenna device that radiates a transmission signal having the same amplitude and opposite phase as an electromagnetic wave scattered by an antenna.
 1,1-1~1-N アンテナ、2,2-1~2-N 信号送受信ユニット、11 送受切替器、12 第1の調整器、12a 低雑音増幅器、12b 位相器、13 信号分配器、14 受信機、15 A/D変換器、16 D/A変換器、17 送信機、18 第2の調整器、18a 位相器、18b 可変増幅器(第1の振幅調整器)、20 制御器、30 第3の調整器、30a 位相器、30b 高出力増幅器(第2の振幅調整器)、31 制御器、41 位相器、42 第1の切替スイッチ、43 第2の切替スイッチ、44 制御器、51 到来方向推定部、52 テーブル記憶部、53 散乱波特定部、54 調整量決定部、61 到来方向推定回路、62 記憶回路、63 散乱波特定回路、64 調整量決定回路、71 メモリ、72 プロセッサ。 1,1-1 to 1-N antenna, 2,2-1 to 2-N signal transmission / reception unit, 11 transmission / reception switcher, 12 first adjuster, 12a low noise amplifier, 12b phase shifter, 13 signal distributor, 14 receiver, 15 A / D converter, 16 D / A converter, 17 transmitter, 18 second adjuster, 18a phase adjuster, 18b variable amplifier (first amplitude adjuster), 20 controller, 30 Third adjuster, 30a phase shifter, 30b high output amplifier (second amplitude adjuster), 31 controller, 41 phase shifter, 42 first changeover switch, 43 second changeover switch, 44 controller, 51 Arrival direction estimation unit, 52 Table storage unit, 53 Scattered wave identification unit, 54 Adjustment amount determination unit, 61 Arrival direction estimation circuit, 62 Storage circuit, 63 Scattered wave identification circuit, 64 Adjustment amount determination circuit, 7 Memory, 72 processor.

Claims (8)

  1.  送信信号を電磁波として空間に放射する一方、空間から到来してきた電磁波を受信して、前記電磁波の受信信号を出力するアンテナと、
     前記アンテナから出力された受信信号の振幅及び位相を調整する第1の調整器と、
     前記第1の調整器により振幅及び位相が調整された受信信号を分配する信号分配器と、
     前記信号分配器により分配された一方の受信信号の振幅及び位相を調整し、振幅及び位相を調整した受信信号を送信信号として前記アンテナに出力する第2の調整器と、
     空間から電磁波が到来してきた際に、当該電磁波が前記アンテナに照射されることで、前記アンテナにより散乱される電磁波である散乱波と同振幅かつ逆位相の送信信号が前記アンテナから放射されるように、前記信号分配器により分配された他方の受信信号に従って前記第1の調整器又は前記第2の調整器を制御する制御器と
     を備えたアンテナ装置。
    An antenna that radiates a transmission signal as an electromagnetic wave to space, receives an electromagnetic wave arriving from space, and outputs a reception signal of the electromagnetic wave;
    A first adjuster for adjusting the amplitude and phase of the received signal output from the antenna;
    A signal distributor for distributing the received signal whose amplitude and phase are adjusted by the first adjuster;
    A second adjuster that adjusts the amplitude and phase of one of the received signals distributed by the signal distributor and outputs the received signal adjusted in amplitude and phase to the antenna as a transmission signal;
    When an electromagnetic wave arrives from space, the electromagnetic wave is applied to the antenna, so that a transmission signal having the same amplitude and opposite phase as the scattered wave that is an electromagnetic wave scattered by the antenna is emitted from the antenna. And a controller for controlling the first adjustor or the second adjuster according to the other received signal distributed by the signal distributor.
  2.  前記制御器は、
     受信対象の通信信号を受信する際には、前記散乱波と同振幅かつ逆位相の送信信号が前記アンテナから放射されるように、前記信号分配器により分配された他方の受信信号に従って前記第2の調整器による振幅及び位相の調整量を制御し、
     送信対象の通信信号を送信する際には、前記散乱波と同振幅かつ逆位相の送信信号が前記アンテナから放射されるように、前記信号分配器により分配された他方の受信信号に従って前記第1の調整器による振幅及び位相の調整量を制御することを特徴とする請求項1記載のアンテナ装置。
    The controller is
    When receiving a communication signal to be received, the second received signal is distributed according to the other received signal distributed by the signal distributor so that a transmission signal having the same amplitude and opposite phase as the scattered wave is radiated from the antenna. Control the amount of amplitude and phase adjustment by the adjuster of
    When transmitting a communication signal to be transmitted, the first signal is transmitted according to the other received signal distributed by the signal distributor so that a transmission signal having the same amplitude and opposite phase as the scattered wave is radiated from the antenna. 2. The antenna device according to claim 1, wherein an adjustment amount of amplitude and phase by the adjuster is controlled.
  3.  送信対象の通信信号の振幅及び位相を調整し、振幅及び位相を調整した通信信号を前記アンテナに出力する第3の調整器を備えたことを特徴とする請求項1記載のアンテナ装置。 The antenna apparatus according to claim 1, further comprising a third adjuster that adjusts an amplitude and a phase of a communication signal to be transmitted and outputs the communication signal adjusted in amplitude and phase to the antenna.
  4.  前記第2の調整器は、
     前記信号分配器により分配された一方の受信信号の振幅を調整する第1の振幅調整器と、
     送信対象の通信信号の振幅を調整する第2の振幅調整器と、
     前記信号分配器により分配された一方の受信信号の位相又は前記送信対象の通信信号の位相を調整する位相器とを備えており、
     前記信号分配器により分配された一方の受信信号を前記第1の振幅調整器又は前記位相器に出力する第1の切替スイッチと、
     前記位相器により位相が調整された受信信号又は前記位相器により位相が調整された通信信号を前記第1の振幅調整器又は前記第2の振幅調整器に出力する第2の切替スイッチとを備えていることを特徴とする請求項1記載のアンテナ装置。
    The second regulator is
    A first amplitude adjuster for adjusting the amplitude of one received signal distributed by the signal distributor;
    A second amplitude adjuster for adjusting the amplitude of the communication signal to be transmitted;
    A phase shifter for adjusting the phase of one of the received signals distributed by the signal distributor or the phase of the communication signal to be transmitted;
    A first changeover switch for outputting one received signal distributed by the signal distributor to the first amplitude adjuster or the phase shifter;
    A second changeover switch for outputting a reception signal whose phase is adjusted by the phase shifter or a communication signal whose phase is adjusted by the phase shifter to the first amplitude adjuster or the second amplitude adjuster; The antenna device according to claim 1, wherein:
  5.  前記制御器は、
     受信対象の通信信号を受信する際には、前記信号分配器により分配された一方の受信信号が前記位相器に出力されるように、前記第1の切替スイッチを制御するとともに、前記位相器により位相が調整された受信信号が前記第1の振幅調整器に出力されるように、前記第2の切替スイッチを制御し、
     送信対象の通信信号を送信する際には、前記信号分配器により分配された一方の受信信号が前記第1の振幅調整器に出力されるように、前記第1の切替スイッチを制御するとともに、前記位相器により位相が調整された通信信号が前記第2の振幅調整器に出力されるように、前記第2の切替スイッチを制御することを特徴とする請求項4記載のアンテナ装置。
    The controller is
    When receiving a communication signal to be received, the first selector switch is controlled so that one received signal distributed by the signal distributor is output to the phase shifter, and the phase shifter Controlling the second changeover switch so that the phase-adjusted received signal is output to the first amplitude adjuster;
    When transmitting a communication signal to be transmitted, the first changeover switch is controlled so that one received signal distributed by the signal distributor is output to the first amplitude adjuster; 5. The antenna apparatus according to claim 4, wherein the second changeover switch is controlled so that a communication signal whose phase is adjusted by the phase shifter is output to the second amplitude adjuster.
  6.  前記制御器は、
     受信対象の通信信号を受信する際には、前記散乱波と同振幅かつ逆位相の送信信号が前記アンテナから放射されるように、前記信号分配器により分配された他方の受信信号に従って前記第1の振幅調整器による振幅の調整量及び前記位相器による位相の調整量を制御し、
     送信対象の通信信号を送信する際には、前記第2の振幅調整器による振幅の調整量及び前記位相器による位相の調整量を制御するとともに、前記散乱波と同振幅かつ逆位相の送信信号が前記アンテナから放射されるように、前記信号分配器により分配された他方の受信信号に従って前記第1の調整器による振幅及び位相の調整量を制御することを特徴とする請求項5記載のアンテナ装置。
    The controller is
    When receiving a communication signal to be received, the first received signal is distributed according to the other received signal distributed by the signal distributor so that a transmission signal having the same amplitude and opposite phase as the scattered wave is radiated from the antenna. Controlling the amplitude adjustment amount by the amplitude adjuster and the phase adjustment amount by the phase shifter,
    When transmitting a communication signal to be transmitted, the amplitude adjustment amount by the second amplitude adjuster and the phase adjustment amount by the phase shifter are controlled, and a transmission signal having the same amplitude and opposite phase as the scattered wave 6. The antenna according to claim 5, wherein an amount of adjustment of amplitude and phase by the first adjuster is controlled in accordance with the other received signal distributed by the signal distributor so that the signal is radiated from the antenna. apparatus.
  7.  前記制御器は、
     前記信号分配器により分配された他方の受信信号から前記到来してきた電磁波の到来方向を推定する到来方向推定部と、
     前記到来方向推定部により推定された到来方向から、前記アンテナによって前記到来方向に散乱される散乱波の振幅及び位相を特定する散乱波特定部と、
     受信対象の通信信号を受信する際には、前記散乱波特定部により特定された散乱波の振幅及び位相と、前記第1の調整器における振幅及び位相の調整量とから、前記第2の調整器による振幅及び位相の調整量を決定し、送信対象の通信信号を送信する際には、前記散乱波特定部により特定された散乱波の振幅及び位相と、前記第2の調整器における振幅及び位相の調整量とから、前記第1の調整器による振幅及び位相の調整量を決定する調整量決定部とを備えていることを特徴とする請求項1記載のアンテナ装置。
    The controller is
    A direction-of-arrival estimation unit that estimates the direction of arrival of the electromagnetic wave that has arrived from the other received signal distributed by the signal distributor;
    From the arrival direction estimated by the arrival direction estimation unit, a scattered wave identification unit that identifies the amplitude and phase of the scattered wave scattered by the antenna in the arrival direction;
    When receiving the communication signal to be received, the second adjustment is performed based on the amplitude and phase of the scattered wave specified by the scattered wave specifying unit and the adjustment amount of the amplitude and phase in the first adjuster. When determining the amount of adjustment of the amplitude and phase by the detector and transmitting the communication signal to be transmitted, the amplitude and phase of the scattered wave specified by the scattered wave specifying unit, the amplitude and phase of the second adjuster The antenna apparatus according to claim 1, further comprising: an adjustment amount determination unit that determines an adjustment amount of an amplitude and a phase by the first adjuster from a phase adjustment amount.
  8.  前記アンテナ、前記第1の調整器、前記信号分配器及び前記第2の調整器の組が複数用意されており、
     前記制御器は、複数の組に含まれている前記第1の調整器又は前記第2の調整器を制御することを特徴とする請求項1記載のアンテナ装置。
    A plurality of sets of the antenna, the first adjuster, the signal distributor, and the second adjuster are prepared,
    The antenna device according to claim 1, wherein the controller controls the first adjustor or the second adjuster included in a plurality of sets.
PCT/JP2017/003591 2017-02-01 2017-02-01 Antenna device WO2018142501A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/003591 WO2018142501A1 (en) 2017-02-01 2017-02-01 Antenna device
JP2017533987A JP6207800B1 (en) 2017-02-01 2017-02-01 Antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/003591 WO2018142501A1 (en) 2017-02-01 2017-02-01 Antenna device

Publications (1)

Publication Number Publication Date
WO2018142501A1 true WO2018142501A1 (en) 2018-08-09

Family

ID=59997677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003591 WO2018142501A1 (en) 2017-02-01 2017-02-01 Antenna device

Country Status (2)

Country Link
JP (1) JP6207800B1 (en)
WO (1) WO2018142501A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345624A (en) * 2000-06-05 2001-12-14 Mitsubishi Electric Corp Array antenna device
JP2011193133A (en) * 2010-03-12 2011-09-29 Mitsubishi Electric Corp Antenna device
JP2013179526A (en) * 2012-02-29 2013-09-09 Mitsubishi Electric Corp Antenna device and phase adjustment method of the same
JP2013179527A (en) * 2012-02-29 2013-09-09 Mitsubishi Electric Corp Array antenna device
JP2014187584A (en) * 2013-03-25 2014-10-02 Mitsubishi Electric Corp Antenna device
JP2016167769A (en) * 2015-03-10 2016-09-15 株式会社東芝 Antenna array device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345624A (en) * 2000-06-05 2001-12-14 Mitsubishi Electric Corp Array antenna device
JP2011193133A (en) * 2010-03-12 2011-09-29 Mitsubishi Electric Corp Antenna device
JP2013179526A (en) * 2012-02-29 2013-09-09 Mitsubishi Electric Corp Antenna device and phase adjustment method of the same
JP2013179527A (en) * 2012-02-29 2013-09-09 Mitsubishi Electric Corp Array antenna device
JP2014187584A (en) * 2013-03-25 2014-10-02 Mitsubishi Electric Corp Antenna device
JP2016167769A (en) * 2015-03-10 2016-09-15 株式会社東芝 Antenna array device

Also Published As

Publication number Publication date
JPWO2018142501A1 (en) 2019-02-14
JP6207800B1 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
US7327802B2 (en) Method and apparatus for canceling the transmitted signal in a homodyne duplex transceiver
WO2014141705A1 (en) Phased array transmission device
JP4528567B2 (en) Method for reducing depolarization of signal passing through radome, antenna system, and antenna apparatus
US9031163B2 (en) Phased array transmission device
JP4844663B2 (en) Radar equipment
JP7150068B2 (en) Antenna device and radar device
US7561099B2 (en) Radar device
JP5815448B2 (en) Phased array transmitter
Bechter et al. Digital beamforming to mitigate automotive radar interference
US20120063550A1 (en) Receiver with Orthogonal Beam Forming Technique
US10330775B2 (en) Transmitter, transmission method, phase adjustment device, and phase adjustment method
US10469183B1 (en) Antenna device and method for calibrating antenna device
US20110115665A1 (en) Beam steering system of phased array antenna using frequency
JP5347120B2 (en) ANTENNA DEVICE AND RECEIVER HAVING THE SAME
KR20190049198A (en) Vehicle radar sensor extended Field Of View
JP5810971B2 (en) ANTENNA DEVICE AND PHASE ADJUSTING METHOD FOR ANTENNA DEVICE
US20210050668A1 (en) Wireless communication device and wireless communication method
JP2006267036A (en) Interference wave suppressor
JP6207800B1 (en) Antenna device
JP2635503B2 (en) Array antenna control method and control device
KR101557823B1 (en) Protection circuit for transceiver module
JP4850222B2 (en) Correction method of offset amount in phased array radar
JP5506513B2 (en) Guidance device
US11081791B2 (en) Wireless communication device, control method, and program
WO2020240667A1 (en) Signal processing device, radar system, and signal processing program

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017533987

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894820

Country of ref document: EP

Kind code of ref document: A1