WO2018141129A1 - 一种涡轮叶片主导边双面异步激光冲击强化方法 - Google Patents

一种涡轮叶片主导边双面异步激光冲击强化方法 Download PDF

Info

Publication number
WO2018141129A1
WO2018141129A1 PCT/CN2017/078520 CN2017078520W WO2018141129A1 WO 2018141129 A1 WO2018141129 A1 WO 2018141129A1 CN 2017078520 W CN2017078520 W CN 2017078520W WO 2018141129 A1 WO2018141129 A1 WO 2018141129A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
blade
leading edge
shock
impact
Prior art date
Application number
PCT/CN2017/078520
Other languages
English (en)
French (fr)
Inventor
鲁金忠
段海峰
卢海飞
罗开玉
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Publication of WO2018141129A1 publication Critical patent/WO2018141129A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing

Definitions

  • the invention relates to the field of laser processing, in particular to a method for designing an asynchronous double-sided laser impact strengthening method to achieve a better strengthening effect of a leading edge of a turbine blade.
  • Laser shock peening/processing is a new type of surface strengthening technology with the characteristics of “three highs and one fast”: high energy (tens of J), high pressure (GPa-TPa), high strain rate (10) 7 S -1 ) and super fast (ns).
  • the main action process is that the high-energy and ultra-fast laser is irradiated through the transparent constraining layer on the surface of the metal material with the absorbing layer, and the absorbing layer absorbs the laser energy to rapidly form explosive vaporization and evaporation, generating high-temperature and high-pressure plasma, plasma.
  • the laser energy is absorbed to form an outwardly expanding shock wave.
  • the high-pressure shock wave propagates into the interior of the material, and the force effect of the shock wave is plastically deformed in the surface layer of the material, so that the microstructure of the surface material changes, and is introduced in the impact region.
  • Residual compressive stress improves the strength, hardness, wear resistance and stress corrosion resistance of the material, especially improves the fatigue fracture resistance of the material and improves the fatigue life of the material.
  • the present invention proposes a double-sided asynchronous laser impact strengthening method for a leading edge of a turbine blade.
  • Two laser beams of the same wavelength, pulse width, spot diameter, and pulse energy are used to asynchronously double-strength the laser blade to the main edge of the blade, that is, a laser beam is used to perform laser shock enhancement along the front side of the blade leading edge, delaying for a period of time.
  • another laser beam with the same parameters is used for laser shock peening on the back side.
  • the starting point and the impact path of the front and back laser shock enhancement of the leading side of the blade are the same; the time difference between the front and back lasers at the same position of the leading edge is smaller than that of the front side.
  • the laser impact reinforcement is continuously performed according to the double-sided asynchronous impact method until the impact of all the impact regions on the front and back sides of the leading edge of the blade is completed.
  • the peak pressure P satisfies 2V HEL ⁇ P ⁇ 2.5V HEL
  • the maximum plastic deformation can be obtained inside the target.
  • the front side laser beam of the leading edge of the blade is mainly used for plastic deformation
  • the delayed back laser beam is mainly used to cancel the shock wave pressure which generates macroscopic deformation, thereby obtaining the maximum plastic deformation, and at the same time, avoiding the front side of the leading edge of the blade due to the shock wave pressure. Too large to cause macroscopic deformation of the leading edge of the blade.
  • Laser beam reinforcement is applied to the front side of the leading edge of the turbine blade by laser beam.
  • E is the laser energy (J)
  • d is the spot diameter (cm)
  • is the laser pulse width (ns)
  • Z is the folded acoustic impedance
  • Z target is the target acoustic impedance
  • Z overlay is the constrained layer acoustic impedance, which satisfies
  • R is the spot radius; studies have shown that when the peak pressure P satisfies 2V HEL ⁇ P ⁇ 2.5V HEL , the workpiece can obtain the maximum plastic deformation, in order to obtain better laser shock strengthening effect, the shock wave peak pressure is satisfied. 2V HEL ⁇ P ⁇ 2.5V HEL , and the pressure value of the edge of the spot P(R)>V
  • the starting point of the laser impact enhancement on the front side of the blade begins to count after the impact. After a delay of t seconds, the second laser beam begins to laser-strengthen the same position on the back side of the leading edge of the blade; the front and back laser impact enhancement of the leading side of the blade The parameters of the laser beam used are the same.
  • the front and back laser impact enhancement starting points and impact paths of the leading side of the blade are the same, and the horizontal and vertical overlap ratios are both 50%.
  • the blade main edge is continuously subjected to laser shock strengthening until the impact of all the impact areas on the front and back sides of the leading side of the blade is completed, and the entire laser impact strengthening process is completed.
  • Figure 1 is a schematic diagram of double-sided asynchronous laser shock enhancement of the leading edge of the turbine blade.
  • Figure 2 is a plan view of an aircraft turbine blade.
  • Fig. 3 is a schematic diagram of the waveform of double-sided asynchronous laser shock enhancement of the leading edge of the turbine blade (the laser beam 2 is delayed by t seconds after the laser beam 1 is emitted, and the shock wave induced by the laser beam 1 first propagates inside the leading edge of the blade, and then with the laser Beam 2 induced shock wave inside the leading edge of the blade from the front of the blade At the meeting, where L is the thickness of the blade, C 0 is the wave velocity of the stress wave, and the shock waves in opposite directions cancel each other out).
  • Table 1 compares the residual stress of materials under different experimental parameters.
  • Figure 2 4A, blade front; 4B, blade back.
  • Figure 3 1, laser beam; 3, second beam of laser beam; 4, blade; 5, absorption layer; 6, constraining layer; 7, plasma shock wave.
  • the double-sided asynchronous double-sided laser impact strengthening method of the turbine blade used in this embodiment is shown in FIG. 1 , and the sample material is TC4.
  • a double-sided asynchronous laser impact strengthening method for a leading edge of a turbine blade the specific steps of which are:
  • the laser beam 1 is used to perform laser shock peening on the front side of the leading edge of the turbine blade.
  • the starting point of the laser impact enhancement on the front side of the blade begins to count after the impact. After a delay of 10 ns, the second laser beam 3 begins to laser-strengthen the same position on the back side of the leading edge of the blade; the front and back laser impact enhancement of the leading edge of the blade
  • the parameters of the laser beam used (such as wavelength, pulse width, spot diameter, laser energy, etc.) are the same.
  • the front and back laser impact enhancement starting points and impact paths of the blade leading edge are the same, and the horizontal and vertical overlap ratios are both 50%.
  • the blade main edge is continuously subjected to laser shock strengthening until the impact of all the impact areas on the front and back sides of the leading side of the blade is completed, and the entire laser impact strengthening process is completed.
  • Table 1 shows the comparison of residual stress under different experimental parameters. It is divided into single-sided laser shock enhancement, double-sided synchronous laser shock enhancement and double-sided asynchronous laser shock enhancement designed by this method.
  • the residual stress at each point is the residual stress at the surface at the surface L/4, L/2, 3L/4, L.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laser Beam Processing (AREA)

Abstract

涉及一种涡轮叶片(4)主导边双面异步激光冲击强化方法。采用相同波长、脉宽、光斑直径、脉冲能量的两束激光束(1,3)异步对涡轮叶片(4)主导边进行双面激光冲击强化,即用一束激光束(1)沿叶片主导边正面(4A)进行激光冲击强化,延迟一段时间在相同位置采用另一束相同参数的激光束(3)在背面(4B)进行激光冲击强化,叶片主导边正面(4A)和背面(4B)激光冲击强化的起始点和冲击路径相同;对于主导边同一位置正面(4A)和背面(4B)两束激光(1,3)的时间差小于正面冲击波(7)传播到叶片背面(4B)所需的时间且正面激光束(1)在先,依照这种双面异步冲击方法连续对叶片(4)进行激光冲击强化,直至叶片主导边正面(4A)和背面(4B)全部冲击区域冲击完成。

Description

一种涡轮叶片主导边双面异步激光冲击强化方法 技术领域
本发明涉及激光加工领域,特指一种利用设计的异步双面激光冲击强化方法来实现更好的涡轮叶片主导边强化效果。
技术背景
激光冲击强化(laser shock peening/processing,LSP)是一种新型的表面强化技术,具有“三高一快”的特点:高能(几十J)、高压(GPa-TPa)、高应变率(107S-1)和超快(ns)。其主要作用过程是高能、超快的激光穿过透明的约束层辐照在贴有吸收层的金属材料表面,吸收层吸收激光能量迅速形成爆炸性气化蒸发,产生高温高压的等离子体,等离子体吸收激光能量形成向外扩张的冲击波,由于外层约束层的约束,高压冲击波向材料内部传播,利用冲击波的力效应在材料表层发生塑性变形,使得表层材料微观组织发生变化,同时在冲击区域引入残余压应力,提高材料的强度、硬度、耐磨性和耐应力腐蚀等性能,尤其能有效改善材料的抗疲劳断裂性能,提高材料的疲劳寿命。
对涡轮叶片主导边进行激光冲击强化时,由于叶片主导边较薄,激光能量较大时,诱导产生的冲击波压力过大容易使叶片主导边产生宏观变形,导致叶片破坏,激光能量较小时,诱导产生的冲击波压力过小则不能在叶片内部形成稳定的、最大的塑性变形,强化效果不佳。因此,如何在叶片内部产生最大的塑性变形,获得最好的强化效果同时又不产生宏观变形导致叶片破坏成为一个亟需解决的问题。
发明内容
针对上述问题,本发明提出了一种涡轮叶片主导边双面异步激光冲击强化方法。采用相同波长、脉宽、光斑直径、脉冲能量的两束激光束异步对涡轮叶片主导边进行双面激光冲击强化,即用一束激光束沿叶片主导边正面进行激光冲击强化,延迟一段时间在相同位置采用另一束相同参数的激光束在背面进行激光冲击强化,叶片主导边正面和背面激光冲击强化的起始点和冲击路径相同;对于主导边同一位置正面和背面两束激光的时间差小于正面冲击波传播到叶片背面所需时间且正面激光束在先,依照这种双面异步冲击方法连续对叶片进行激光冲击强化,直至叶片主导边正面和背面全部冲击区域冲击完成。研究表明,当峰值压力P满足2VHEL<P<2.5VHEL时,靶材内部可以获得最大的塑性变形。本发明中叶片主导边正面激光束主要用来产生塑性变形,延迟的背面激光束主要用来抵消产生宏观变形的冲击波压力,从而获得最大的塑性变形,同时,避免了叶片主导边正面由于冲击波压力太大而造成叶片主导边产生宏观变形。
具体实施步骤如下:
(1)根据涡轮叶片的材料和厚度确定其主导边双面异步激光冲击强化的延迟时间t,t0为材料内部产生的应力波传播到材料底部的时间,由t0=L/C0
Figure PCTCN2017078520-appb-000001
计算得出,式中,L为叶片厚度,C0为应力波的波速,E为弹性模量,υ为泊松比,ρ为材料密度,涡轮叶片主导边双面异步激光冲击强化的延迟时间t取为0<t<t0,从而使得激光在正面和背面诱导的冲击波在叶片内部距叶片正面
Figure PCTCN2017078520-appb-000002
处相遇,叶片材料在动态载荷下的屈服强度为
Figure PCTCN2017078520-appb-000003
要发生永久的塑性变形,激光冲击强化所产生的峰值压力必须大于材料的Hugoniot弹性极限(HEL)VHEL,VHEL满足公式:
Figure PCTCN2017078520-appb-000004
式中,υ为泊松比。
(2)用激光束对涡轮叶片主导边正面进行激光冲击强化,激光冲击强化加工参数为:激光脉冲能量为1-50J、激光脉宽为10-40ns、重复频率为0.5-10Hz;光斑直径D=1-6mm,激光冲击强化峰值压力由
Figure PCTCN2017078520-appb-000005
得出,其中,α为内能的分配系数,取为0.1,I0为激光功率密度,
Figure PCTCN2017078520-appb-000006
E为激光能量(J),d为光斑直径(cm),τ为激光脉宽(ns),Z为折合声阻抗,Ztarget为靶材声阻抗,Zoverlay为约束层声阻抗,满足
Figure PCTCN2017078520-appb-000007
激光光强服从高斯分布,压力脉冲的时空分布情况用如下准高斯公式表示:P(x,y,t)=Pexp[-(x2+y2)/2R2],式中,x,y为表面坐标,R为光斑半径;研究表明,当峰值压力P满足2VHEL<P<2.5VHEL时,工件可以获得最大的塑性变形,为获得更好的激光冲击强化效果,使冲击波峰值压力满足2VHEL<P<2.5VHEL,且光斑边缘的压力值P(R)>VHEL,从而使叶片获得最大的塑性变形,激光冲击强化的横向、纵向搭接率为50%。
(3)叶片主导边正面激光冲击强化的起始点冲击后开始计时,延迟t秒后,第二束激光束开始对叶片主导边背面相同位置进行激光冲击强化;叶片主导边正面和背面激光冲击强化所用激光束的参数相同,叶片主导边正面和背面激光冲击强化起始点和冲击路径相同,横向、纵向搭接率均为50%。
(4)依照这种双面异步冲击方法连续对叶片主导边进行激光冲击强化,直至叶片主导边正面和背面全部冲击区域冲击完成,整个激光冲击强化过程结束。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实例或现有技术描述中所需要使用的附图作简单地介绍。
图1为涡轮叶片主导边双面异步激光冲击强化示意图。
图2为飞机涡轮叶片平面图。
图3为涡轮叶片主导边双面异步激光冲击强化的波形示意图(图中激光束2在激光束1发出后延迟t秒发出,激光束1诱导的冲击波先在叶片主导边内部传播,然后与激光束2诱导的冲击波在叶片主导边内部距叶片正面
Figure PCTCN2017078520-appb-000008
处相遇,其中L为叶片厚度,C0为应力波的波速,方向相反的冲击波相互抵消)。
表1为不同实验参数下材料残余应力的对比
图中各标号的含义如下:
图1:1、激光束;2、喷水系统;3、第二束激光束;4、叶片。
图2:4A、叶片正面;4B、叶片背面。
图3:1、激光束;3、第二束激光束;4、叶片;5、吸收层;6、约束层;7、等离子体冲击波。
具体实施方式
下面结合附图对本发明作详细说明,但本发明不应仅限于实施例。
本实施例所采用的涡轮叶片双面异步双面激光冲击强化方法如图1所示,试样材料为TC4。
一种涡轮叶片主导边双面异步激光冲击强化方法,其具体步骤为:
(1)选取TC4为实施例试样,叶片厚度为1mm,TC4的弹性模量为110GPa,泊松比为0.34,密度为4.5g·cm-3,由公式
Figure PCTCN2017078520-appb-000009
计算得,C0=6132m/s,代入公式t0=L/C0,得t0=16ns,式中,L为叶片厚度,C0为应力波的波速,E为弹性模量,υ为泊松比,ρ为材料密度,取延迟时间t=8ns,则激光在正面和背面诱导的冲击波在叶片内部距叶片正面3L/4处相遇,TC4泊松比为υ=0.34,动态屈服强度为1.43GPa,得TC4的Hugoniot弹性极限:
Figure PCTCN2017078520-appb-000010
(2)用激光束1对涡轮叶片主导边正面进行激光冲击强化,激光冲击强化加工参数为: 激光脉冲能量为7J、激光脉宽为10ns、重复频率为1Hz;光斑直径d=3mm;激光冲击强化峰值功率由下式得出:
Figure PCTCN2017078520-appb-000011
其中,
Figure PCTCN2017078520-appb-000012
代入,E=10J,d=3mm,τ=10ns,α取0.1,Zwater=1.14×106g·cm-2·s-1,Ztarget=2.75×106g·cm-2·s-1,解得P的值为7.02GPa,满足5.9GPa=2VHEL<P<2.5VHEL=7.375GPa。
光斑边缘的冲击波压力P=7.02×exp(-R2/2R2)=4.26GPa>2.95GPa=VHEL,满足条件,激光冲击强化的横向、纵向搭接率为50%。
(3)叶片主导边正面激光冲击强化的起始点冲击后开始计时,延迟10ns后,第二束激光束3开始对叶片主导边背面相同位置进行激光冲击强化;叶片主导边正面和背面激光冲击强化所用激光束的参数(如波长、脉宽、光斑直径、激光能量等)相同,叶片主导边正面和背面激光冲击强化起始点和冲击路径相同,横向、纵向搭接率均为50%。
(4)依照这种双面异步冲击方法连续对叶片主导边进行激光冲击强化,直至叶片主导边正面和背面全部冲击区域冲击完成,整个激光冲击强化过程结束。
表1为不同实验参数下残余应力的对比,分为单面激光冲击强化,双面同步激光冲击强化和本方法设计的双面异步激光冲击强化,三种激光冲击强化所用的参数均为:激光脉冲能量为7J、激光脉宽为10ns、重复频率为1Hz;光斑直径d=3mm;双面异步激光冲击强化的延迟时间为8ns,激光冲击强化后进行残余应力测试,每个试样测试了5个点处的残余应力,分别为表面处,距表面L/4,L/2,3L/4,L处的残余应力值。
从表1中的残余应力对比可以看出,单面激光冲击强化时,表面处为残余压应力,且残余压应力的值随离表面深度的增加而逐渐减小;双面激光冲击强化时,表面和深度L处的残余压应力最大,L/4和3L/4处的应力大致相同,均小于表面处的残余压应力值,而L/2处出现了残余拉应力,即在冲击波相遇的位置出现了残余拉应力;双面异步激光冲击强化时,表面和深度L处存在最大的残余压应力,深度L/4,L/2,3L/4处均表现为残余压应力;相比于单面激光冲击强化,该方法在表面和深度L处均产生了较大的残余压应力,相比于双面同步激光冲击强化,该方法在冲击波相遇的区域没有残余拉应力产生,因此,可以看出该方法可以产生更好的残余压应力场,残余压应力与叶片疲劳寿命的提高有直接的关系,所以经过该方法处理的叶片可以获得更好的疲劳寿命。 表1
状态 表面 L/4 L/2 3L/4 L
单面冲击 -703MPa -501MPa -201MPa -90MPa 12MPa
双面同时冲击 -712MPa -493MPa 73MPa -482MPa -707MPa
双面异步冲击 -709MPa -512MPa -287MPa -334MPa -720MPa

Claims (7)

  1. 一种涡轮叶片主导边双面异步激光冲击强化方法,其特征在于:采用相同波长、脉宽、光斑直径、脉冲能量的两束激光束异步对涡轮叶片主导边进行双面激光冲击强化,即用一束激光束沿叶片主导边正面进行激光冲击强化,延迟一段时间t后在相同位置采用另一束相同参数的激光束在背面进行激光冲击强化,叶片主导边正面和背面激光冲击强化的起始点和冲击路径相同;对于主导边同一位置正面和背面两束激光的时间差小于正面冲击波传播到叶片背面所需的时间且正面激光束在先,依照这种双面异步冲击方法连续对叶片进行激光冲击强化,直至叶片主导边正面和背面全部冲击区域冲击完成。
  2. 如权利要求1所述的一种涡轮叶片主导边双面异步激光冲击强化方法,其特征在于,具体步骤如下:
    (1)根据涡轮叶片的材料和厚度确定其主导边双面异步激光冲击强化的延迟时间t;
    (2)用激光束对涡轮叶片主导边正面进行激光冲击强化;
    (3)叶片主导边正面激光冲击强化的起始点冲击后开始计时,延迟t秒后,第二束激光束开始对叶片主导边背面相同位置进行激光冲击强化;
    (4)依照这种双面异步冲击方法连续对叶片主导边进行激光冲击强化,直至叶片主导边正面和背面全部冲击区域冲击完成,整个激光冲击强化过程结束。
  3. 如权利要求2所述的一种涡轮叶片主导边双面异步激光冲击强化方法,其特征在于:步骤(1)中,涡轮叶片主导边双面异步激光冲击强化的延迟时间t取为0<t<t0,从而使得激光在正面和背面诱导的冲击波在叶片内部距叶片正面
    Figure PCTCN2017078520-appb-100001
    处相遇,其中L为叶片厚度,C0为应力波的波速;t0为材料内部产生的应力波传播到材料底部的时间,t0=L/C0
    Figure PCTCN2017078520-appb-100002
    式中E为弹性模量,υ为泊松比,ρ为涡轮叶片材料密度。
  4. 如权利要求2所述的一种涡轮叶片主导边双面异步激光冲击强化方法,其特征在于:步骤(2)中,激光冲击强化加工参数为:激光能量1-50J,激光脉宽10-40ns、重复频率0.5-10Hz;光斑直径D=1-6mm;激光冲击强化峰值压力P满足2VHEL<P<2.5VHEL时,工件可以获得最大的塑性变形,为获得更好的激光冲击强化效果,使冲击波峰值压力满足2VHEL<P<2.5VHEL,且光斑边缘的压力值P(R)>VHEL,从而使叶片获得最大的塑性变形;VHEL为叶片材料的Hugoniot弹性极限(HEL),VHEL满足公式:
    Figure PCTCN2017078520-appb-100003
    式中,υ为泊松比;
    Figure PCTCN2017078520-appb-100004
    为叶片材料在动态载荷下的屈服强度。
  5. 如权利要求4所述的一种涡轮叶片主导边双面异步激光冲击强化方法,其特征在于:激光冲击强化峰值压力由下式得出
    Figure PCTCN2017078520-appb-100005
    其中,α为内能的分配系数,取为0.1,I0为激光功率密度,
    Figure PCTCN2017078520-appb-100006
    E为激光能量(J),d为光斑直径(cm),τ为激光脉宽(ns),Z为折合声阻抗,Ztarget为靶材声阻抗,Zoverlay为约束层声阻抗,满足
    Figure PCTCN2017078520-appb-100007
  6. 如权利要求1或2所述的一种涡轮叶片主导边双面异步激光冲击强化方法,其特征在于:激光光强服从高斯分布,压力脉冲的时空分布情况用如下准高斯公式表示:P(x,y,t)=Pexp[-(x2+y2)/2R2],式中,x,y为表面坐标,R为光斑半径。
  7. 如权利要求1或2所述的一种涡轮叶片主导边双面异步激光冲击强化方法,其特征在于:叶片主导边正面和背面激光冲击强化的横向、纵向搭接率均为50%。
PCT/CN2017/078520 2017-02-06 2017-03-29 一种涡轮叶片主导边双面异步激光冲击强化方法 WO2018141129A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710065831.0A CN106893855B (zh) 2017-02-06 2017-02-06 一种涡轮叶片主导边双面异步激光冲击强化方法
CN201710065831.0 2017-02-06

Publications (1)

Publication Number Publication Date
WO2018141129A1 true WO2018141129A1 (zh) 2018-08-09

Family

ID=59197929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078520 WO2018141129A1 (zh) 2017-02-06 2017-03-29 一种涡轮叶片主导边双面异步激光冲击强化方法

Country Status (2)

Country Link
CN (1) CN106893855B (zh)
WO (1) WO2018141129A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088674A (zh) * 2021-03-30 2021-07-09 武汉大学 基于激光冲击强化的增材制造金属表面强化方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110205477B (zh) * 2019-07-02 2021-03-30 哈尔滨工业大学 采用时序双激光脉冲提升激光诱导冲击波强度的激光冲击强化方法
CN110369861B (zh) * 2019-07-23 2021-01-26 广东工业大学 一种制备复合材料层合板预埋分层缺陷的方法
CN110704972B (zh) * 2019-09-27 2023-02-24 华东理工大学 一种叶片表面双侧超声滚压加工轨迹协调方法
CN111310375B (zh) * 2020-02-14 2023-05-16 广东工业大学 一种优化激光双面同时对冲钛合金叶片冲击波压力的加工方法
CN114318195A (zh) * 2020-09-30 2022-04-12 中信戴卡股份有限公司 一种无牺牲层的铝合金车轮的激光冲击延寿方法
CN112760584A (zh) * 2020-09-30 2021-05-07 中信戴卡股份有限公司 一种用于铝合金车轮的激光喷丸强化方法
CN112593071A (zh) * 2020-11-25 2021-04-02 中国科学院宁波材料技术与工程研究所 一种能量可调谐的单双面激光冲击强化系统
CN114277244B (zh) * 2022-01-07 2023-01-06 北京航空航天大学 变形可控的航空发动机叶片激光冲击强化方法、装置
CN114406476A (zh) * 2022-01-21 2022-04-29 南昌航空大学 一种激光冲击强化标印方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020096503A1 (en) * 2001-01-25 2002-07-25 The Regents Of The University Of California Laser peening of components of thin cross-section
US20030026700A1 (en) * 2001-08-01 2003-02-06 Clauer Allan H. Articles having improved residual stress profile characteristics produced by laser shock peening
EP1088903B1 (en) * 1999-09-30 2005-07-20 General Electric Company Simultaneous offset dual sided laser shock peening
CN101249588A (zh) * 2008-03-14 2008-08-27 江苏大学 一种基于激光冲击波效应的板材双面精密成形方法及装置
CN105127665A (zh) * 2015-09-01 2015-12-09 广东工业大学 一种叶片类零件再制造的激光预处理方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5932120A (en) * 1997-12-18 1999-08-03 General Electric Company Laser shock peening using low energy laser
CN101474723A (zh) * 2009-01-21 2009-07-08 西安天瑞达光电技术发展有限公司 一种光隔离激光冲击强化双面对冲装置
CN103255268B (zh) * 2013-06-07 2014-08-20 江苏大学 一种优化双面激光同时冲击合金厚度的方法
CN103320579B (zh) * 2013-06-07 2014-07-30 江苏大学 一种激光冲击飞机涡轮叶片的方法和装置
CN104962722B (zh) * 2015-05-25 2017-06-20 中国南方航空工业(集团)有限公司 涡轮转子叶片榫齿激光冲击强化方法
CN104862468B (zh) * 2015-06-11 2017-03-22 温州大学 基于激光双面冲击技术提高涡轮叶片寿命的方法
CN105002349B (zh) * 2015-07-21 2017-05-03 江苏大学 一种变光斑多层交错激光冲击均匀强化叶片的方法
CN106048143B (zh) * 2016-07-12 2018-12-21 广东工业大学 一种航空发动机叶片边缘预变形激光喷丸强化的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1088903B1 (en) * 1999-09-30 2005-07-20 General Electric Company Simultaneous offset dual sided laser shock peening
US20020096503A1 (en) * 2001-01-25 2002-07-25 The Regents Of The University Of California Laser peening of components of thin cross-section
US20030026700A1 (en) * 2001-08-01 2003-02-06 Clauer Allan H. Articles having improved residual stress profile characteristics produced by laser shock peening
CN101249588A (zh) * 2008-03-14 2008-08-27 江苏大学 一种基于激光冲击波效应的板材双面精密成形方法及装置
CN105127665A (zh) * 2015-09-01 2015-12-09 广东工业大学 一种叶片类零件再制造的激光预处理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG, CHANGY U: "R esearch on Residual Stress And Tensile Properties of Die Casting Magnesium Alloy during Two-sided Laser Shock Processing", CHINESE MASTER'S THESES FULL-TEXT DATABASE ENGINEERING SCIENCE AND TECHNOLOGY I, 15 November 2016 (2016-11-15), pages 5, 8, 18, 19, 25, 26, 29, 41 *
WANG, CHANGYU ET AL.: "Effect of Advancing Direction on Residual Stress Fields of AM 50 Mg Alloy Specimens Treated by Double-Sided Laser Shock Peening", CHINESE JOURNAL OF LASERS, vol. 43, no. 3, 31 March 2016 (2016-03-31), pages 0303002 - 2; 03003002-3, XP055533157 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088674A (zh) * 2021-03-30 2021-07-09 武汉大学 基于激光冲击强化的增材制造金属表面强化方法

Also Published As

Publication number Publication date
CN106893855B (zh) 2018-08-21
CN106893855A (zh) 2017-06-27

Similar Documents

Publication Publication Date Title
WO2018141129A1 (zh) 一种涡轮叶片主导边双面异步激光冲击强化方法
Mostafa et al. Effect of laser shock peening on the hardness of AL-7075 alloy
Zhang et al. Effects of different shocked paths on fatigue property of 7050-T7451 aluminum alloy during two-sided laser shock processing
US11103956B2 (en) Double-side synchronous laser shock peening method for leading edge of turbine blade
US10640844B2 (en) Kind of uniform strengthening methods of turbine blade subjected to varied square-spot laser shock peening with stagger multiple-layer
Zhang et al. Modeling of residual stress field induced in Ti–6Al–4V alloy plate by two sided laser shock processing
CN105177273B (zh) 一种提高关键重要构件疲劳强度的激光冲击强化方法
Ren et al. Effect of laser shock processing on the fatigue crack initiation and propagation of 7050-T7451 aluminum alloy
CN107267742B (zh) 一种不同厚度小孔构件激光冲击强化方法
He et al. Laser shock peening regulating aluminum alloy surface residual stresses for enhancing the mechanical properties: Roles of shock number and energy
Zhang et al. Investigation on residual stress distribution in thin plate subjected to two sided laser shock processing
CN106493121B (zh) 一种基于活性液体和激光的纳米清洗方法
Dai et al. Effect of laser spot size on the residual stress field of pure Al treated by laser shock processing: Simulations
CN111074061B (zh) 一种基于激光冲击波的均匀表面强化方法
Wang et al. Experimental and numerical study on the laser shock welding of aluminum to stainless steel
CN104862468A (zh) 基于激光双面冲击技术提高涡轮叶片寿命的方法
Fang et al. Numerical simulation of residual stresses fields of DD6 blade during laser shock processing
Nath et al. Effect of focusing conditions on laser-induced shock waves at titanium–water interface
Jiang et al. Fatigue life and fracture evolution of small-hole specimens by laser shock processing
Zhang et al. Effects of laser shock processing on mechanical properties of laser welded ANSI 304 stainless steel joint
Yadav et al. Laser shock processing: process physics, parameters, and applications
Yang et al. Investigation on surface “residual stress hole” of thin plate subjected to two sided laser shock processing
Fang Strengthening characteristics in TC17 titanium alloy treated during LSP
Sakhvadze et al. Two-sided laser shock processing
JP2012510918A (ja) レーザ衝撃光によって金属航空機構造内における亀裂形成を防止するため及び亀裂の増進を遅らせるための方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894746

Country of ref document: EP

Kind code of ref document: A1