WO2018139601A1 - Method and kit for cryopreserving xenopus laevis egg extract, concentrated xenopus laevis egg extract, and method for analyzing cell cycle - Google Patents

Method and kit for cryopreserving xenopus laevis egg extract, concentrated xenopus laevis egg extract, and method for analyzing cell cycle Download PDF

Info

Publication number
WO2018139601A1
WO2018139601A1 PCT/JP2018/002546 JP2018002546W WO2018139601A1 WO 2018139601 A1 WO2018139601 A1 WO 2018139601A1 JP 2018002546 W JP2018002546 W JP 2018002546W WO 2018139601 A1 WO2018139601 A1 WO 2018139601A1
Authority
WO
WIPO (PCT)
Prior art keywords
extract
xenopus
egg extract
xenopus egg
water
Prior art date
Application number
PCT/JP2018/002546
Other languages
French (fr)
Japanese (ja)
Inventor
勇太 島本
高木 潤
Original Assignee
大学共同利用機関法人情報・システム研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大学共同利用機関法人情報・システム研究機構 filed Critical 大学共同利用機関法人情報・システム研究機構
Priority to JP2018564660A priority Critical patent/JP7023519B2/en
Publication of WO2018139601A1 publication Critical patent/WO2018139601A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/34Extraction; Separation; Purification by filtration, ultrafiltration or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/24Apparatus for enzymology or microbiology tube or bottle type
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms

Definitions

  • the present invention relates to a method for cryopreserving Xenopus egg extract, a cryopreservation kit, a Xenopus egg concentrate extract, and a method for analyzing the cell cycle.
  • Xenopus egg extract is the only experimental system that can achieve a highly synchronized cell cycle in a cell-free system (extract without cell membrane). In this experimental system, by removing specific factors from the system using specific antibodies (immune elimination), factors necessary for cell cycle progression and control, and DNA replication and distribution control can be clearly identified.
  • the cell-free system using Xenopus egg extract is superior to yeast in the following points.
  • (2) Partial reconfiguration is possible in the test tube.
  • the frog is a multicellular animal and is a model closer to humans. So far, the cell cycle control mechanism specific to multicellular animals has been clarified by a cell-free system using Xenopus egg extract.
  • Xenopus laevis egg extract must be prepared at the time of use because, when frozen, the components in the cytoplasm are damaged due to crystallization of water and lose its activity.
  • the present invention has been made in view of the above circumstances, and provides a method for cryopreservation of a Xenopus egg extract that can be stored for a long period of time and retains cytoplasmic activity, and a kit for cryopreservation.
  • a Xenopus egg extract comprising: a fractionation step of fractionating water and solids from the Xenopus egg extract; and a freezing step of separately freezing the water and solids. Frozen storage method.
  • a Xenopus egg extract comprising: a fractionation step of fractionating water and solids from the Xenopus egg extract; and a freezing step of separately freezing the water and solids. Frozen storage method.
  • a filtration membrane having a molecular weight cut off of 10,000 or more is used in the fractionation step.
  • the protein concentration is 83 mg / mL or more and 103 mg / mL or less, the content of the protein having a molecular weight of 20000 or more and 30000 or less is 20% by mass or less with respect to the total protein amount, and the molecular weight is 100000 or more.
  • the present invention it is possible to provide a method for cryopreserving a Xenopus egg extract that can be stored for a long period of time and that retains cytoplasmic activity, and a kit for cryopreservation.
  • Threshold values for each extract fresh extract, extract that had been subjected to cold thawing with an unfractionated extract, and an extract reconstructed in Example 1 in a state where the cell cycle was stopped in the metaphase in Test Example 1 It is a graph which shows the ratio of the sperm DNA which has a microtubule signal exceeding. Bipolar in each extract (fresh extract, extract that has been subjected to cold thawing with an unfractionated fraction, and an extract reconstructed in Example 1) in a state where the cell cycle is stopped at the metaphase in Test Example 1 It is a graph which shows the ratio of the spindle which has a structure.
  • Bipolar in each extract fresh extract, extract that has been subjected to cold thawing with an unfractionated fraction, and an extract reconstructed in Example 1 in a state where the cell cycle is stopped at the metaphase in Test Example 1 It is a graph which shows the length of the spindle which has a structure. Bipolar in each extract (fresh extract, extract that has been subjected to cold thawing with an unfractionated fraction, and an extract reconstructed in Example 1) in a state where the cell cycle is stopped at the metaphase in Test Example 1 It is a graph which shows the width
  • the threshold value in each extract (the fresh extract, the extract reconstructed in Example 1, and the extract reconstructed in Example 2) in a state in which the cell cycle is stopped in the metaphase in Test Example 2 It is a graph which shows the ratio of the sperm DNA which has the microtubule signal exceeded.
  • Bipolar structure in each extract (fresh extract, extract reconstructed in Example 1, and extract reconstructed in Example 2) in a state in which the cell cycle is stopped at the metaphase in Test Example 2 It is a graph which shows the ratio of the spindle which has.
  • Bipolar structure in each extract fresh extract, extract reconstructed in Example 1, and extract reconstructed in Example 2 in a state in which the cell cycle is stopped at the metaphase in Test Example 2 It is a graph which shows the length of the spindle which has. Bipolar structure in each extract (fresh extract, extract reconstructed in Example 1, and extract reconstructed in Example 2) in a state in which the cell cycle is stopped at the metaphase in Test Example 2 It is a graph which shows the width
  • Each extract with a cell cycle stopped at the metaphase in Test Example 3 fresh extract, extract reconstructed in Example 1, extract reconstructed in Example 3, and Example 4 It is a graph which shows the ratio of the sperm DNA which has the microtubule signal exceeding the threshold value in the (reconstructed extract).
  • Each extract with a cell cycle stopped at the metaphase in Test Example 3 fresh extract, extract reconstructed in Example 1, extract reconstructed in Example 3, and Example 4
  • Each extract with a cell cycle stopped at the metaphase in Test Example 3 fresh extract, extract reconstructed in Example 1, extract reconstructed in Example 3, and Example 4 It is a graph which shows the length of the spindle which has a bipolar structure in the reconstructed extract).
  • Each extract with a cell cycle stopped at the metaphase in Test Example 3 fresh extract, extract reconstructed in Example 1, extract reconstructed in Example 3, and Example 4
  • the present embodiment a mode for carrying out the present invention (hereinafter, sometimes simply referred to as “the present embodiment”). ) Will be described in detail.
  • the following embodiment is an example for explaining the present invention, and is not intended to limit the present invention to the following contents.
  • the present invention can be implemented with appropriate modifications within the scope of the gist thereof.
  • the present invention provides a Xenopus egg extraction comprising: a fractionation step of fractionating water and solids from Xenopus egg extract; and a freezing step of freezing the water and solids separately.
  • a method for freezing and storing a liquid is provided.
  • the conventional Xenopus egg extract solution must be prepared at the time of use because, when frozen, the components in the cytoplasm are damaged due to crystallization of water and lose its activity.
  • the cryopreservation method of the Xenopus egg extract of the present embodiment is less affected by crystallization of water by fractionating moisture and solid content and storing it in a frozen state, and is a constituent component in the cytoplasm. Therefore, even if thawed frozen Xenopus egg extract is thawed, the cytoplasmic activity is not lost and can be used for analysis of the cell cycle and the like.
  • the Xenopus egg extract can be stored frozen for a long period of time (eg, about 3 months to 1 year).
  • egg used for Xenopus egg extract means a matured oocyte, that is, an unfertilized egg.
  • intracytoplasmic activity refers to proteins such as enzymes contained in the cytoplasm, or organelles (eg, nucleus, mitochondria, Golgi apparatus, endoplasmic reticulum, lysosome, peroxisome, vacuole, ribosome) Etc.).
  • the temperature condition in the fractionation step may be 0 ° C. or more and 16 ° C. or less (preferably about 4 ° C.).
  • the fractionation method is not particularly limited. For example, chromatography, immunoprecipitation method, separation method by change in solution composition, sucrose density gradient centrifugation method, vacuum drying method, centrifugation method using a filtration membrane, etc. Is mentioned. Among them, it is preferable to use a centrifugal separation method using a filtration membrane because water and solids can be fractionated very easily.
  • the conditions for centrifugation are, for example, 0 ° C. or more and 16 ° C. or less (preferably 4 ° C.), 10000 g or more and 20000 g or less, and may be 5 minutes or more and less than 20 minutes.
  • FIG. 1 is a schematic process diagram showing an embodiment of the method for cryopreserving Xenopus egg extract of the present invention.
  • the fractionation method by the centrifugation method using a filtration membrane is illustrated.
  • the molecular weight cut off of the filtration membrane used is 1000 or more, preferably 3000 or more, more preferably 10,000 or more, and further preferably 100,000 or more.
  • the water fraction of the Xenopus egg extract obtained in the fractionation step has a protein concentration of 3.0 mg / mL or less (preferably 2.5 mg / mL, more preferably 2.0 mg / mL or less, more preferably 1. 8 mg / mL).
  • the content of the protein having a molecular weight of 20000 or more and 30000 or less in the water fraction is 10% by mass or more, preferably 15% by mass or more and 25% by mass or less, and 18% by mass with respect to the total protein amount. It is more preferable that the content is not less than 22% and not more than 22% by mass.
  • the content of a protein having a molecular weight of 100,000 to 150,000 is 5% by mass or less, preferably 1% by mass to 5% by mass, and preferably 2% by mass to 4% by mass with respect to the total protein amount. The following is more preferable.
  • the solid fraction of the Xenopus egg extract obtained in the fractionation step preferably has a protein concentration of 83 mg / mL to 103 mg / mL, 86 mg / mL More preferably, it is not less than mL and not more than 100 mg / mL, more preferably not less than 88 mg / mL and not more than 98 mg / mL, and particularly preferably not less than 90 mg / mL and not more than 96 mg / mL.
  • the content of the protein having a molecular weight of 20000 or more and 30000 or less in the solid fraction is preferably 20% by mass or less based on the total protein amount, and 12% by mass. % To 20% by mass, more preferably 14% to 18% by mass.
  • the content of a protein having a molecular weight of 100,000 or more and 150,000 or less is preferably 3% by mass or more, more preferably 3% by mass or more and 7% by mass or less, more preferably 4% by mass with respect to the total protein amount. More preferably, it is 6 mass% or less.
  • a method for measuring the protein concentration for example, a method using an antibody antigen reaction (for example, ELISA method), a colorimetric method (for example, a bicinchoninic acid (BCA) method using a reaction between a protein and a reagent). , Bradford method, Raleigh method, Biuret method, etc.).
  • a colorimetric method for example, a bicinchoninic acid (BCA) method using a reaction between a protein and a reagent.
  • Bradford method for example, Raleigh method, Biuret method, etc.
  • Examples of the method for measuring the molecular weight include SDS-PAGE, mass spectrometry (for example, MALDI-Tof MS, ESI-QTof, etc.), gel filtration column chromatography, and the like.
  • the water and solid content of the obtained Xenopus egg extract are frozen separately.
  • a freezing method it is preferable to slowly freeze moisture and solid content. Specifically, using a programmable freezer, etc., at a rate of ⁇ 0.5 ° C./min to ⁇ 1.5 ° C./min (preferably ⁇ 1 ° C./min) until it reaches ⁇ 80 ° C. Frozen.
  • the frozen water and solids retain the cytoplasmic activity even after a storage period of, for example, 1 day to 12 months, and reconstitute the Xenopus egg extract by thawing and mixing. Can be used for the desired analysis.
  • the extract preparation process which prepares the Xenopus egg extract may be provided before the fractionation process.
  • Xenopus egg extract For the preparation of Xenopus egg extract, see the known methods (eg, “Murray AW,“ Cell cycle extracts ”, Methods Cell Biol., Vol. 36, p581-605, 1991.) using Xenopus laevis. ), And may be prepared from an unfertilized egg whose cell cycle has been stopped by a mitogen. Specifically, first, placental gonadotropin is injected into Xenopus to induce ovulation and obtain eggs.
  • the egg is immersed in MMR solution (100 mM NaCl, 2 mM KCl, 1 mM MgCl 2 , 2 mM CaCl 2 , 0.1 mM EDTA, 5 mM HEPES) or the like, and the jelly-like membrane is removed by enzyme treatment such as collagenase.
  • MMR solution 100 mM NaCl, 2 mM KCl, 1 mM MgCl 2 , 2 mM CaCl 2 , 0.1 mM EDTA, 5 mM HEPES
  • an extraction buffer containing 100 mM KCl, 0.1 mM CaCl 2 , 1 mM MgCl 2 , 5 mM EGTA, 50 mM sucrose, and 10 mM potassium HEPES, pH 7.7 or the like. And prepare the eggs.
  • the egg crushing method is not particularly limited, and examples thereof include a method using a homogenizer, an ultrasonic treatment method, and a centrifugal separation method. Among them, it is preferable to use a centrifugal separation method because a cytoplasmic fraction can be collected very easily. The collected cytoplasmic fraction may be further filtered through a porous membrane or the like to remove cell debris and the like.
  • the egg extract used in the present embodiment can be prepared from an arbitrary number of eggs, but it is preferable to use a certain number or more of eggs in order to facilitate crushing treatment and addition of a stabilizer, and at least 100 More preferably, it is prepared from individual eggs.
  • the obtained egg extract is fresh, for example, within about 8 hours after preparation, preferably within about 3 hours in the fractionation step, thereby obtaining high cytoplasmic activity.
  • the present invention provides a kit for cryopreservation of Xenopus egg extract comprising a centrifuge tube with a water separation filtration membrane.
  • kit for cryopreservation of Xenopus egg extract of the present embodiment it is stored frozen for a long period (for example, about 3 months or more and about 1 year or less) while maintaining the activity in the cytoplasm contained in the Xenopus egg extract. be able to.
  • the centrifuge tube in the present embodiment is composed of a filter cup and a collection tube, and the filter cup is a container that is provided with a filtration membrane for water fractionation and into which Xenopus egg extract is charged.
  • the collection tube is a container for collecting the filtrate that has passed through the water fractionation filtration membrane provided in the filter cup during centrifugation.
  • the fractional molecular weight of the filtration membrane for water fractionation is preferably 1000 or more, more preferably 3000 or more, still more preferably 10,000 or more, and particularly preferably 100,000 or more.
  • Examples of the material for the water fraction filtration membrane include, but are not limited to, nonwoven fabrics such as polyester, polyethylene terephthalate, polyethersulfone, and polypropylene, porous materials such as polyurethane, and combinations thereof.
  • the shape of the centrifuge tube examples include, but are not limited to, a columnar shape, a weight shape, and the like. Moreover, as a material of a centrifuge tube, a metal, glass, a ceramic, a synthetic polymer etc. are mentioned, for example, It is not limited to these.
  • the kit for cryopreservation of Xenopus egg extract of this embodiment further comprises an MMR solution (100 mM NaCl, 2 mM KCl, 1 mM MgCl 2 , 2 mM CaCl 2 , 0.1 mM EDTA, 5 mM HEPES), placental gonadotropin, collagenase, extraction buffer (including 100 mM KCl, 0.1 mM CaCl 2 , 1 mM MgCl 2 , 5 mM EGTA, 50 mM sucrose, and 10 mM HEPES potassium, pH 7.7), etc. May be.
  • MMR solution 100 mM NaCl, 2 mM KCl, 1 mM MgCl 2 , 2 mM CaCl 2 , 0.1 mM EDTA, 5 mM HEPES
  • placental gonadotropin collagenase
  • extraction buffer including 100 mM KCl, 0.1 mM CaCl 2
  • the present invention provides a protein concentration of 83 mg / mL or more and 103 mg / mL or less, and the content of a protein having a molecular weight of 20000 or more and 30000 or less is 20% by mass or less with respect to the total protein amount.
  • a Xenopus laevis egg concentrate extract having a protein with a molecular weight of 100,000 to 150,000 is 3% by mass or more based on the total protein amount.
  • the Xenopus laevis concentrated egg extract of this embodiment is hardly affected by water crystallization even if it is stored frozen, and the components in the cytoplasm are retained. Therefore, the Xenopus egg concentrate extract of the present embodiment that has been stored frozen is thawed and mixed with the water fraction produced when the Xenopus egg concentrate extract is produced to reconstitute the Xenopus egg extract. Can be built.
  • the reconstituted Xenopus egg extract retains cytoplasmic activity, studies DNA replication, transcription, transcript processing, translation, and modification of translated proteins, introduced foreign genes Expression analysis, cell cycle analysis, protein production by a cell-free protein synthesis system using the extract.
  • the Xenopus laevis egg concentrate extract of this embodiment has a protein concentration of 83 mg / mL or more and 103 mg / mL or less (preferably 86 mg / mL or more and 100 mg / mL or less, more preferably 88 mg / mL or more and 98 mg / mL or less, more preferably 90 mg / mL or more and 96 mg / mL or less).
  • the content of the protein having a molecular weight of 20000 or more and 30000 or less is 20% by mass or less and 12% by mass or more and 20% by mass or less with respect to the total protein amount.
  • the content of a protein having a molecular weight of 100000 to 150,000 is 3% by mass or more, preferably 3% by mass or more and 7% by mass or less, and preferably 4% by mass or more and 6% by mass with respect to the total protein amount. The following is more preferable.
  • Examples of the method for producing the concentrated Xenopus egg extract of the present embodiment include the method described in [Fractionation step] in ⁇ Method for cryopreserving Xenopus egg extract> described above.
  • the present invention relates to a Xenopus egg extract reconstituted by thawing and mixing the water and solid content of the Xenopus egg extract frozen and stored in the process of the method of cryopreserving Xenopus egg extract.
  • a method for analyzing a cell cycle using a liquid is provided.
  • the water content and solid content of the frozen Xenopus egg extract are stored in a frozen state.
  • a thawing method it is preferable to thaw slowly.
  • the tube may be left on ice and thawed.
  • Such a thawing step can prevent damage to the components in the cytoplasm due to a rapid temperature change.
  • the thawed Xenopus egg extract is reconstructed by mixing the thawed water and solids and incubating under conditions of 0 to 16 ° C. (preferably about 4 ° C.) and 5 to 60 minutes. To do.
  • the reconstituted Xenopus egg extract has a cytoplasmic activity comparable to that of fresh Xenopus egg extract (eg, Xenopus egg extract within about 8 hours, preferably within about 3 hours after preparation). Therefore, it can be used for cell cycle analysis.
  • Xenopus egg extract is prepared using a known method (for example, “Murray AW,“ Cell cycle extracts ”, Methods Cell Biol., Vol. 36, p581-605, 1991. ", etc.)) and prepared from unfertilized eggs whose cell cycle was stopped by a cytostatic factor. Specifically, Xenopus laevis was first injected with placental gonadotropin to induce ovulation and obtain eggs.
  • the eggs were immersed in MMR solution (100 mM NaCl, 2 mM KCl, 1 mM MgCl 2 , 2 mM CaCl 2 , 0.1 mM EDTA, 5 mM HEPES) or the like, and the jelly-like membrane was removed by reduction treatment with cysteine or the like.
  • the eggs were then washed with extraction buffer (containing 100 mM KCl, 0.1 mM CaCl 2 , 1 mM MgCl 2 , 5 mM EGTA, 50 mM sucrose, and 10 mM HEPES potassium, pH 7.7).
  • the egg was crushed by a centrifugation method, and the cytoplasm of the egg was collected, that is, an egg extract was prepared.
  • additives such as cytokinesis inhibitors, protease inhibitors, and energy substances were added to the extraction buffer.
  • the protein concentration of the egg extract measured using the Bradford method was 70 mg / mL.
  • the protein concentration of the concentrated extract (solid fraction) measured using the Bradford method is 93 mg / mL, and the content of the protein having a molecular weight of 20000 or more and 30000 or less is 16 masses based on the total protein amount.
  • the content of the protein having a molecular weight of 100,000 to 150,000 was 5% by mass with respect to the total protein amount.
  • the protein concentration of the flow-through fraction (water fraction) measured using the Bradford method is 1.8 mg / mL, and the content of the protein having a molecular weight of 20000 or more and 30000 or less is based on the total protein amount.
  • the content of the protein having a molecular weight of 100000 to 150,000 was 3% by mass with respect to the total protein amount.
  • Example 1 Confirmation of spindle formation (1) Transition from interphase to metaphase metaphase Next, the Xenopus egg extract reconstructed in Example 1 was added to Xenopus sperm nuclei (final concentration: ⁇ 400 / ⁇ L) was added, and the phase was shifted from interphase to metaphase under a temperature condition of 16 ° C. In addition, as a control group, a fresh extract within about 8 hours after preparation and an extract subjected to cold thawing with an unfractionated fraction were also prepared, and the same operation as described above was performed to shift from the interphase to the mid-phase. .
  • “Fresh” means a fresh extract within about 8 hours after preparation
  • “Non-filtered” means an extract that has been subjected to cold thawing in an unfractionated state
  • “Filtered” means the extract reconstituted in Example 1.
  • the length of the scale bar is 10 ⁇ m.
  • the spindle length, width, and total microtubule signal intensity in the spindle having a bipolar structure are the same in the fresh extract and the extract reconstructed in Example 1. there were. From the above, it was confirmed that the extract using the cryopreservation method of the present invention can form a highly active medium-term spindle assembly.
  • Example 2 Preparation of Xenopus egg extract Using the same method as in Example 1, Xenopus egg extract was prepared.
  • the protein concentration of the concentrated extract (solid fraction) measured using the Bradford method is 72 mg / mL, and the content of the protein having a molecular weight of 20000 or more and 30000 or less is 16 masses relative to the total protein amount.
  • the content of the protein having a molecular weight of 100,000 to 150,000 was 5% by mass with respect to the total protein amount.
  • the protein concentration of the flow-through fraction (water fraction) measured using the Bradford method was less than 0.2 mg / mL.
  • FIG. 3A is a graph showing the volume of the flow-through fraction (water fraction) obtained in Example 1 and Example 2. From FIG.
  • the flow-through fraction (moisture fraction) obtained in Example 1 having a fractional molecular weight of 100 k is more flow-through fraction (water content) obtained in Example 2 having a fractional molecular weight of 10 k. There was more capacity than (fraction).
  • Test Example 2 1. Confirmation of spindle formation (1) Transition from interphase to metaphase Metastasis in Example 1 and Example 2 using the same method as in (1) of “1. Confirmation of spindle formation” in Test Example 1. The constructed extract was moved from interphase to metaphase. In addition, as a control group, a fresh extract within about 8 hours after preparation was prepared, and the same operation as described above was performed to shift from the interphase to the mid-phase.
  • the spindle length, width, and total microtubule signal intensity in the spindle having a bipolar structure were reconstructed in the extract reconstructed in Example 1 and in Example 2.
  • the same extract was equivalent. From the above, in the case of using a centrifugal filter device having a fractional molecular weight of 10k, the proportion of spindles having a bipolar structure is lower than in the case of using a centrifugal filter device having a fractional molecular weight of 100k. It was confirmed that even a molecular weight can form a highly active metaphase spindle assembly.
  • Example 3 Preparation of Xenopus egg extract Using the same method as in Example 1, Xenopus egg extract was prepared.
  • Example 4 Preparation of Xenopus egg extract Using the same method as in Example 1, Xenopus egg extract was prepared.
  • FIG. 3G is a graph showing the volume of the flow-through fraction (moisture fraction) obtained in Examples 1, 3 and 4. From FIG. 3G, it became clear that the capacity
  • “Centrifume time (centrifugation time) 5 min” means the extract reconstituted in Example 3 in which the fractionation step was performed with a centrifuge time of 5 minutes
  • “Centrifuge time 10 min” It means the extract reconstituted in Example 1 where the fractionation process was performed at a centrifugation time of 10 minutes
  • “Centrifuge time” “20 min” means the extraction reconstructed in Example 4 in which the fractionation step was performed with a centrifugation time of 20 minutes.
  • “mean ⁇ SD” in FIGS. 3H and I is a value calculated from two independent test samples.
  • the box plots in FIGS. 3J to 3L were created using Origin 2016 (OriginLab).
  • Example 3 the spindle length, width, and total microtubule signal intensity in the spindle having a bipolar structure were reconstructed in Example 3, the extract reconstructed in Example 1. And the extract reconstructed in Example 4 were equivalent. From the above, it was confirmed that long-term centrifugation over 10 minutes reduced the activity of the extract and reduced the formation efficiency of the mid-term spindle.
  • cryopreservation method and cryopreservation kit of the Xenopus egg extract of the present invention while maintaining the cytoplasmic activity contained in the Xenopus egg extract, a long period (for example, about 3 months to 1 year) Can be stored frozen.
  • the Xenopus laevis concentrated egg extract of the present invention is hardly affected by crystallization of water even if it is stored frozen, and the components in the cytoplasm are retained. Therefore, the Xenopus egg concentrate extract of the present embodiment that has been stored frozen is thawed and mixed with the water fraction produced when the Xenopus egg concentrate extract is produced to reconstitute the Xenopus egg extract.
  • the reconstructed Xenopus egg extract retains cytoplasmic activity and can be used for cell cycle analysis and the like.

Abstract

A method for cryopreserving a Xenopus laevis egg extract, characterized by comprising a partition step for partitioning the Xenopus laevis egg extract into water and solid matters and a freezing step for separately freezing the water and the solid matters.

Description

アフリカツメガエル卵抽出液の冷凍保存方法及び冷凍保存用キット、アフリカツメガエル卵濃縮抽出液、並びに細胞周期の分析方法Xenopus egg extract frozen storage method, cryopreservation kit, Xenopus egg concentrate extract, and cell cycle analysis method
 本発明は、アフリカツメガエル卵抽出液の冷凍保存方法及び冷凍保存用キット、アフリカツメガエル卵濃縮抽出液、並びに細胞周期の分析方法に関する。
本願は、2017年1月30日に、日本に出願された特願2017-014441号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for cryopreserving Xenopus egg extract, a cryopreservation kit, a Xenopus egg concentrate extract, and a method for analyzing the cell cycle.
This application claims priority based on Japanese Patent Application No. 2017-014441 filed in Japan on January 30, 2017, the contents of which are incorporated herein by reference.
 アフリカツメガエル卵抽出液は、高度に同調された細胞周期を無細胞系(細胞膜の無い抽出液)で実現できる唯一の実験系である。この実験系では、特異的な抗体を用いて特定の因子を系から除くこと(免疫除去)により細胞周期の進行及び制御、並びにDNA複製及び分配制御に必要な因子を明確に同定するができる。 Xenopus egg extract is the only experimental system that can achieve a highly synchronized cell cycle in a cell-free system (extract without cell membrane). In this experimental system, by removing specific factors from the system using specific antibodies (immune elimination), factors necessary for cell cycle progression and control, and DNA replication and distribution control can be clearly identified.
 また、細胞周期制御機構の解明では、単細胞である酵母を用いた研究が強力な手段となっており、これらの過程に関わる遺伝子が次々に同定されてきた。しかしながら、アフリカツメガエル卵抽出液を用いた無細胞系は、酵母と比較して以下の点で優れている。
 (1)生化学的、生理学的な研究に適していること:例えば、M期促進因子MPFの実体であるcyclinB/Cdk1複合体は、アフリカツメガエル卵抽出液を用いた無細胞系により、初めて同定された(例えば、非特許文献1参照。)。(2)試験管内で部分的な再構成が可能であること。(3)酵母と異なりカエルは多細胞動物であり、ヒトにより近いモデルであること。
 これまで、アフリカツメガエル卵抽出液を用いた無細胞系により、多細胞動物に特異的な細胞周期の制御機構が明らかにされてきた。
In addition, research using single-cell yeast has become a powerful means in elucidating the cell cycle control mechanism, and genes involved in these processes have been identified one after another. However, the cell-free system using Xenopus egg extract is superior to yeast in the following points.
(1) Suitable for biochemical and physiological studies: For example, the cyclinB / Cdk1 complex, which is the substance of the M phase promoting factor MPF, is identified for the first time by a cell-free system using Xenopus egg extract. (For example, see Non-Patent Document 1). (2) Partial reconfiguration is possible in the test tube. (3) Unlike yeast, the frog is a multicellular animal and is a model closer to humans.
So far, the cell cycle control mechanism specific to multicellular animals has been clarified by a cell-free system using Xenopus egg extract.
 しかしながら、アフリカツメガエル卵抽出液は、冷凍保存すると、水の結晶化により、細胞質内の構成成分が損傷を受け、活性を失うため、用時調製する必要があった。 However, Xenopus laevis egg extract must be prepared at the time of use because, when frozen, the components in the cytoplasm are damaged due to crystallization of water and lose its activity.
 本発明は、上記事情に鑑みてなされたものであって、長期間保存可能であり、細胞質内の活性が保持されたアフリカツメガエル卵抽出液の冷凍保存方法及び冷凍保存用キットを提供する。 The present invention has been made in view of the above circumstances, and provides a method for cryopreservation of a Xenopus egg extract that can be stored for a long period of time and retains cytoplasmic activity, and a kit for cryopreservation.
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、ことを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have found that the present invention has been completed.
 すなわち、本発明は、以下の態様を含む。
[1]アフリカツメガエル卵抽出液から水分と固形分とを分画する分画工程と、前記水分及び前記固形分を別々に冷凍する冷凍工程と、を備えることを特徴とするアフリカツメガエル卵抽出液の冷凍保存方法。
[2]前記分画工程において、分画分子量が1000以上のろ過膜を用いる[1]に記載のアフリカツメガエル卵抽出液の冷凍保存方法。
[3]前記分画工程において、分画分子量が10000以上のろ過膜を用いる[1]又は[2]に記載のアフリカツメガエル卵抽出液の冷凍保存方法。
[4]前記冷凍工程において、-0.5℃/分以上-1.5℃/分以下の速度で前記水分及び前記固形分を冷凍する[1]~[3]のいずれか一つに記載のアフリカツメガエル卵抽出液の冷凍保存方法。
[5]水分分画用ろ過膜を備える遠心チューブを含むことを特徴とするアフリカツメガエル卵抽出液の冷凍保存用キット。
[6]前記水分分画用ろ過膜の分画分子量が1000以上である[5]に記載のアフリカツメガエル卵抽出液の冷凍保存用キット。
[7]前記水分分画用ろ過膜の分画分子量が10000以上である[5]又は[6]に記載のアフリカツメガエル卵抽出液の冷凍保存用キット。
[8]タンパク質濃度が83mg/mL以上103mg/mL以下であり、分子量が20000以上30000以下のタンパク質の含有量が、総タンパク質量に対して、20質量%以下であり、且つ、分子量が100000以上150000以下のタンパク質の含有量が、総タンパク質量に対して、3質量%以上であることを特徴とするアフリカツメガエル卵濃縮抽出液。
[9][1]~[4]のいずれか一つに記載のアフリカツメガエル卵抽出液の冷凍保存方法の工程で冷凍保存されたアフリカツメガエル卵抽出液の水分及び固形分を解凍し、混合して再構築されたアフリカツメガエル卵抽出液を用いることを特徴とする細胞周期の分析方法。
That is, the present invention includes the following aspects.
[1] A Xenopus egg extract comprising: a fractionation step of fractionating water and solids from the Xenopus egg extract; and a freezing step of separately freezing the water and solids. Frozen storage method.
[2] The method for cryopreserving a Xenopus egg extract according to [1], wherein a filtration membrane having a fractional molecular weight of 1000 or more is used in the fractionation step.
[3] The method for cryopreserving a Xenopus egg extract according to [1] or [2], wherein a filtration membrane having a molecular weight cut off of 10,000 or more is used in the fractionation step.
[4] The method according to any one of [1] to [3], wherein in the freezing step, the moisture and the solid content are frozen at a rate of not less than −0.5 ° C./min and not more than −1.5 ° C./min. Method for cryopreservation of Xenopus laevis egg extract.
[5] A kit for cryopreservation of Xenopus egg extract, comprising a centrifuge tube equipped with a filtration membrane for water fractionation.
[6] The kit for cryopreservation of Xenopus egg extract according to [5], wherein the molecular weight cut-off of the filtration membrane for water fraction is 1000 or more.
[7] The kit for cryopreservation of the Xenopus egg extract according to [5] or [6], wherein the fractional molecular weight of the filtration membrane for water fraction is 10,000 or more.
[8] The protein concentration is 83 mg / mL or more and 103 mg / mL or less, the content of the protein having a molecular weight of 20000 or more and 30000 or less is 20% by mass or less with respect to the total protein amount, and the molecular weight is 100000 or more. The Xenopus laevis egg concentrate extract, wherein the content of protein of 150,000 or less is 3% by mass or more with respect to the total protein amount.
[9] Thaw and mix the water and solid content of the Xenopus egg extract frozen and stored in the process of cryopreservation of the Xenopus egg extract according to any one of [1] to [4]. A cell cycle analysis method comprising using a reconstructed Xenopus egg extract.
 本発明によれば、長期間保存可能であり、細胞質内の活性が保持されたアフリカツメガエル卵抽出液の冷凍保存方法及び冷凍保存用キットを提供することができる。 According to the present invention, it is possible to provide a method for cryopreserving a Xenopus egg extract that can be stored for a long period of time and that retains cytoplasmic activity, and a kit for cryopreservation.
本発明のアフリカツメガエル卵抽出液の冷凍保存方法の一実施形態を示す概略工程図である。It is a schematic process drawing which shows one Embodiment of the cryopreservation method of the Xenopus egg extract of this invention. 本発明のアフリカツメガエル卵抽出液の再構築方法の一実施形態を示す概略工程図である。It is a schematic process drawing which shows one Embodiment of the reconstruction method of the Xenopus egg extract of this invention. 試験例1における分裂中期で細胞周期が停止した状態の各抽出液(新鮮な抽出液、未分画で冷解凍を施した抽出液、及び実施例1で再構築された抽出液)での微小管及び染色体を蛍光染色した蛍光画像である。A small amount of each extract (fresh extract, extract that had been subjected to cold thawing with an unfractionated fraction, and an extract reconstructed in Example 1) in a state where the cell cycle was stopped in the metaphase in Test Example 1 It is the fluorescence image which fluorescently stained the tube | pipe and the chromosome. 試験例1における分裂中期で細胞周期が停止した状態の各抽出液(新鮮な抽出液、未分画で冷解凍を施した抽出液、及び実施例1で再構築された抽出液)での閾値を超えた微小管シグナルを有する精子DNAの割合を示すグラフである。Threshold values for each extract (fresh extract, extract that had been subjected to cold thawing with an unfractionated extract, and an extract reconstructed in Example 1) in a state where the cell cycle was stopped in the metaphase in Test Example 1 It is a graph which shows the ratio of the sperm DNA which has a microtubule signal exceeding. 試験例1における分裂中期で細胞周期が停止した状態の各抽出液(新鮮な抽出液、未分画で冷解凍を施した抽出液、及び実施例1で再構築された抽出液)での双極構造を有する紡錘体の割合を示すグラフである。Bipolar in each extract (fresh extract, extract that has been subjected to cold thawing with an unfractionated fraction, and an extract reconstructed in Example 1) in a state where the cell cycle is stopped at the metaphase in Test Example 1 It is a graph which shows the ratio of the spindle which has a structure. 試験例1における分裂中期で細胞周期が停止した状態の各抽出液(新鮮な抽出液、未分画で冷解凍を施した抽出液、及び実施例1で再構築された抽出液)での双極構造を有する紡錘体の長さを示すグラフである。Bipolar in each extract (fresh extract, extract that has been subjected to cold thawing with an unfractionated fraction, and an extract reconstructed in Example 1) in a state where the cell cycle is stopped at the metaphase in Test Example 1 It is a graph which shows the length of the spindle which has a structure. 試験例1における分裂中期で細胞周期が停止した状態の各抽出液(新鮮な抽出液、未分画で冷解凍を施した抽出液、及び実施例1で再構築された抽出液)での双極構造を有する紡錘体の幅を示すグラフである。Bipolar in each extract (fresh extract, extract that has been subjected to cold thawing with an unfractionated fraction, and an extract reconstructed in Example 1) in a state where the cell cycle is stopped at the metaphase in Test Example 1 It is a graph which shows the width | variety of the spindle which has a structure. 試験例1における分裂中期で細胞周期が停止した状態の各抽出液(新鮮な抽出液、未分画で冷解凍を施した抽出液、及び実施例1で再構築された抽出液)での双極構造を有する紡錘体の総微小管シグナル強度を示すグラフである。Bipolar in each extract (fresh extract, extract that has been subjected to cold thawing with an unfractionated fraction, and an extract reconstructed in Example 1) in a state where the cell cycle is stopped at the metaphase in Test Example 1 It is a graph which shows the total microtubule signal intensity | strength of the spindle which has a structure. 異なる分画分子量の遠心フィルター装置を用いた実施例1(分画分子量100k)及び実施例2(分画分子量10k)で得られたフロースルー画分(水分画分)の容量を示すグラフである。It is a graph which shows the capacity | capacitance of the flow-through fraction (water | moisture fraction) obtained in Example 1 (fraction molecular weight 100k) and Example 2 (fraction molecular weight 10k) using the centrifugal filter apparatus of a different fraction molecular weight. . 試験例2における分裂中期で細胞周期が停止した状態の各抽出液(新鮮な抽出液、実施例1で再構築された抽出液、及び実施例2で再構築された抽出液)での閾値を超えた微小管シグナルを有する精子DNAの割合を示すグラフである。The threshold value in each extract (the fresh extract, the extract reconstructed in Example 1, and the extract reconstructed in Example 2) in a state in which the cell cycle is stopped in the metaphase in Test Example 2 It is a graph which shows the ratio of the sperm DNA which has the microtubule signal exceeded. 試験例2における分裂中期で細胞周期が停止した状態の各抽出液(新鮮な抽出液、実施例1で再構築された抽出液、及び実施例2で再構築された抽出液)での双極構造を有する紡錘体の割合を示すグラフである。Bipolar structure in each extract (fresh extract, extract reconstructed in Example 1, and extract reconstructed in Example 2) in a state in which the cell cycle is stopped at the metaphase in Test Example 2 It is a graph which shows the ratio of the spindle which has. 試験例2における分裂中期で細胞周期が停止した状態の各抽出液(新鮮な抽出液、実施例1で再構築された抽出液、及び実施例2で再構築された抽出液)での双極構造を有する紡錘体の長さを示すグラフである。Bipolar structure in each extract (fresh extract, extract reconstructed in Example 1, and extract reconstructed in Example 2) in a state in which the cell cycle is stopped at the metaphase in Test Example 2 It is a graph which shows the length of the spindle which has. 試験例2における分裂中期で細胞周期が停止した状態の各抽出液(新鮮な抽出液、実施例1で再構築された抽出液、及び実施例2で再構築された抽出液)での双極構造を有する紡錘体の幅を示すグラフである。Bipolar structure in each extract (fresh extract, extract reconstructed in Example 1, and extract reconstructed in Example 2) in a state in which the cell cycle is stopped at the metaphase in Test Example 2 It is a graph which shows the width | variety of the spindle which has. 試験例2における分裂中期で細胞周期が停止した状態の各抽出液(新鮮な抽出液、実施例1で再構築された抽出液、及び実施例2で再構築された抽出液)での双極構造を有する紡錘体の総微小管シグナル強度を示すグラフである。Bipolar structure in each extract (fresh extract, extract reconstructed in Example 1, and extract reconstructed in Example 2) in a state in which the cell cycle is stopped at the metaphase in Test Example 2 It is a graph which shows the total microtubule signal intensity | strength of the spindle which has a. 異なる遠心分離時間である実施例1(10分)、実施例3(5分)、及び実施例4(20分)で得られたフロースルー画分(水分画分)の容量を示すグラフである。It is a graph which shows the capacity | capacitance of the flow through fraction (water | moisture fraction) obtained in Example 1 (10 minutes), Example 3 (5 minutes), and Example 4 (20 minutes) which are different centrifugation time. . 試験例3における分裂中期で細胞周期が停止した状態の各抽出液(新鮮な抽出液、実施例1で再構築された抽出液、実施例3で再構築された抽出液、及び実施例4で再構築された抽出液)での閾値を超えた微小管シグナルを有する精子DNAの割合を示すグラフである。Each extract with a cell cycle stopped at the metaphase in Test Example 3 (fresh extract, extract reconstructed in Example 1, extract reconstructed in Example 3, and Example 4) It is a graph which shows the ratio of the sperm DNA which has the microtubule signal exceeding the threshold value in the (reconstructed extract). 試験例3における分裂中期で細胞周期が停止した状態の各抽出液(新鮮な抽出液、実施例1で再構築された抽出液、実施例3で再構築された抽出液、及び実施例4で再構築された抽出液)での双極構造を有する紡錘体の割合を示すグラフである。Each extract with a cell cycle stopped at the metaphase in Test Example 3 (fresh extract, extract reconstructed in Example 1, extract reconstructed in Example 3, and Example 4) It is a graph which shows the ratio of the spindle which has a bipolar structure in the reconstructed extract). 試験例3における分裂中期で細胞周期が停止した状態の各抽出液(新鮮な抽出液、実施例1で再構築された抽出液、実施例3で再構築された抽出液、及び実施例4で再構築された抽出液)での双極構造を有する紡錘体の長さを示すグラフである。Each extract with a cell cycle stopped at the metaphase in Test Example 3 (fresh extract, extract reconstructed in Example 1, extract reconstructed in Example 3, and Example 4) It is a graph which shows the length of the spindle which has a bipolar structure in the reconstructed extract). 試験例3における分裂中期で細胞周期が停止した状態の各抽出液(新鮮な抽出液、実施例1で再構築された抽出液、実施例3で再構築された抽出液、及び実施例4で再構築された抽出液)での双極構造を有する紡錘体の幅を示すグラフである。Each extract with a cell cycle stopped at the metaphase in Test Example 3 (fresh extract, extract reconstructed in Example 1, extract reconstructed in Example 3, and Example 4) It is a graph which shows the width | variety of the spindle which has a bipolar structure in the (reconstructed extract). 試験例3における分裂中期で細胞周期が停止した状態の各抽出液(新鮮な抽出液、実施例1で再構築された抽出液、実施例3で再構築された抽出液、及び実施例4で再構築された抽出液)での双極構造を有する紡錘体の総微小管シグナル強度を示すグラフである。Each extract with a cell cycle stopped at the metaphase in Test Example 3 (fresh extract, extract reconstructed in Example 1, extract reconstructed in Example 3, and Example 4) It is a graph which shows the total microtubule signal intensity | strength of the spindle which has a bipolar structure in the reconstructed extract).
 以下、本発明を実施するための形態(以下、単に「本実施形態」と称する場合がある。
)について詳細に説明する。以下に示す本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。
Hereinafter, a mode for carrying out the present invention (hereinafter, sometimes simply referred to as “the present embodiment”).
) Will be described in detail. The following embodiment is an example for explaining the present invention, and is not intended to limit the present invention to the following contents. The present invention can be implemented with appropriate modifications within the scope of the gist thereof.
<アフリカツメガエル卵抽出液の冷凍保存方法>
 一実施形態において、本発明は、アフリカツメガエル卵抽出液から水分と固形分とを分画する分画工程と、前記水分及び前記固形分を別々に冷凍する冷凍工程と、を備えるアフリカツメガエル卵抽出液の冷凍保存方法を提供する。
<Frozen preservation method of Xenopus egg extract>
In one embodiment, the present invention provides a Xenopus egg extraction comprising: a fractionation step of fractionating water and solids from Xenopus egg extract; and a freezing step of freezing the water and solids separately. A method for freezing and storing a liquid is provided.
 従来のアフリカツメガエル卵抽出液は、冷凍保存すると、水の結晶化により、細胞質内の構成成分が損傷を受け、活性を失うため、用時調製する必要があった。
 これに対し、本実施形態のアフリカツメガエル卵抽出液の冷凍保存方法は、水分と固形分とを分画して冷凍保存することにより、水の結晶化による影響を受けにくく、細胞質内の構成成分が保持されるため、冷凍保存したアフリカツメガエル卵抽出液を解凍しても細胞質内の活性が失われず、細胞周期の分析等に用いることができる。また、本実施形態のアフリカツメガエル卵抽出液の冷凍保存方法によれば、アフリカツメガエル卵抽出液を長期間(例えば、3ヶ月以上1年以下程度)冷凍保存することができる。
The conventional Xenopus egg extract solution must be prepared at the time of use because, when frozen, the components in the cytoplasm are damaged due to crystallization of water and lose its activity.
On the other hand, the cryopreservation method of the Xenopus egg extract of the present embodiment is less affected by crystallization of water by fractionating moisture and solid content and storing it in a frozen state, and is a constituent component in the cytoplasm. Therefore, even if thawed frozen Xenopus egg extract is thawed, the cytoplasmic activity is not lost and can be used for analysis of the cell cycle and the like. Moreover, according to the method for cryopreserving the Xenopus egg extract of this embodiment, the Xenopus egg extract can be stored frozen for a long period of time (eg, about 3 months to 1 year).
 なお、本明細書において、アフリカツメガエル卵抽出液に用いられる「卵」は、成熟した卵母細胞、すなわち、未受精卵を意味する。
 また、本明細書において、「細胞質内の活性」とは、細胞質内に含まれる酵素等のタンパク質、又はオルガネラ(例えば、核、ミトコンドリア、ゴルジ体、小胞体、リゾソーム、ペルオキシゾーム、液胞、リボソーム等)の活性を意味する。
 本実施形態のアフリカツメガエル卵抽出液の冷凍保存方法の各工程について、図を参照しながら、以下に詳細に説明する。
In the present specification, “egg” used for Xenopus egg extract means a matured oocyte, that is, an unfertilized egg.
In this specification, “intracytoplasmic activity” refers to proteins such as enzymes contained in the cytoplasm, or organelles (eg, nucleus, mitochondria, Golgi apparatus, endoplasmic reticulum, lysosome, peroxisome, vacuole, ribosome) Etc.).
Each step of the method for cryopreserving the Xenopus egg extract of the present embodiment will be described in detail below with reference to the drawings.
[分画工程]
 まず、アフリカツメガエル卵抽出液から水分と固形分とを分画する。分画工程における温度条件は、0℃以上16℃以下(好ましくは4℃程度)にて行えばよい。
 分画方法としては、特別な限定はなく、例えば、クロマトグラフィー、免疫沈降法、溶液組成の変化による分離法、ショ糖密度勾配遠心分離法、真空乾燥法、ろ過膜を用いた遠心分離法等が挙げられる。中でも、極めて容易に水分と固形分とを分画できることから、ろ過膜を用いた遠心分離法を用いることが好ましい。
 遠心分離の条件は、例えば、0℃以上16℃以下(好ましくは4℃)、10000g以上20000g以下で、5分以上20分未満であればよい。
[Fractionation process]
First, water and solid content are fractionated from Xenopus egg extract. The temperature condition in the fractionation step may be 0 ° C. or more and 16 ° C. or less (preferably about 4 ° C.).
The fractionation method is not particularly limited. For example, chromatography, immunoprecipitation method, separation method by change in solution composition, sucrose density gradient centrifugation method, vacuum drying method, centrifugation method using a filtration membrane, etc. Is mentioned. Among them, it is preferable to use a centrifugal separation method using a filtration membrane because water and solids can be fractionated very easily.
The conditions for centrifugation are, for example, 0 ° C. or more and 16 ° C. or less (preferably 4 ° C.), 10000 g or more and 20000 g or less, and may be 5 minutes or more and less than 20 minutes.
 図1は、本発明のアフリカツメガエル卵抽出液の冷凍保存方法の一実施形態を示す概略工程図である。図1では、ろ過膜を用いた遠心分離法による分画方法が例示されている。
 用いられるろ過膜の分画分子量は、1000以上であり、3000以上であることが好ましく、10000以上であることがより好ましく、100000以上であることがさらに好ましい。
FIG. 1 is a schematic process diagram showing an embodiment of the method for cryopreserving Xenopus egg extract of the present invention. In FIG. 1, the fractionation method by the centrifugation method using a filtration membrane is illustrated.
The molecular weight cut off of the filtration membrane used is 1000 or more, preferably 3000 or more, more preferably 10,000 or more, and further preferably 100,000 or more.
 分画工程において得られたアフリカツメガエル卵抽出液の水分画分は、タンパク質濃度が3.0mg/mL以下(好ましくは2.5mg/mL、より好ましい2.0mg/mL以下、さらに好ましくは1.8mg/mL)である。
 また、前記水分画分における分子量が20000以上30000以下のタンパク質の含有量が、総タンパク質量に対して、10質量%以上であり、15質量%以上25質量%以下であることが好ましく、18質量%以上22質量%以下であることがより好ましい。一方、分子量が100000以上150000以下のタンパク質の含有量が、総タンパク質量に対して、5質量%以下であり、1質量%以上5質量%以下であることが好ましく、2質量%以上4質量%以下であることがより好ましい。
The water fraction of the Xenopus egg extract obtained in the fractionation step has a protein concentration of 3.0 mg / mL or less (preferably 2.5 mg / mL, more preferably 2.0 mg / mL or less, more preferably 1. 8 mg / mL).
The content of the protein having a molecular weight of 20000 or more and 30000 or less in the water fraction is 10% by mass or more, preferably 15% by mass or more and 25% by mass or less, and 18% by mass with respect to the total protein amount. It is more preferable that the content is not less than 22% and not more than 22% by mass. On the other hand, the content of a protein having a molecular weight of 100,000 to 150,000 is 5% by mass or less, preferably 1% by mass to 5% by mass, and preferably 2% by mass to 4% by mass with respect to the total protein amount. The following is more preferable.
 また、分画工程において得られたアフリカツメガエル卵抽出液の固形分画分(すなわち、アフリカツメガエル卵濃縮抽出液)は、タンパク質濃度が83mg/mL以上103mg/mL以下であることが好ましく、86mg/mL以上100mg/mL以下であることがより好ましく、88mg/mL以上98mg/mL以下であることがさらに好ましく、90mg/mL以上96mg/mL以下であることが特に好ましい。
 また、前記固形分画分(すなわち、アフリカツメガエル卵濃縮抽出液)における分子量が20000以上30000以下のタンパク質の含有量が、総タンパク質量に対して、20質量%以下であることが好ましく、12質量%以上20質量%以下であることがより好ましく、14質量%以上18質量%以下であることがさらに好ましい。一方、分子量が100000以上150000以下のタンパク質の含有量が、総タンパク質量に対して、3質量%以上であることが好ましく、3質量%以上7質量%以下であることがより好ましく、4質量%以上6質量%以下であることが更に好ましい。
 ここで、タンパク質濃度を測定する方法としては、例えば、抗体抗原反応を利用した方法(例えば、ELISA法等)、タンパク質と試薬との反応を利用した比色法(例えば、ビシンコニン酸(BCA)法、ブラッドフォード法、ローリー法、ビウレット法等)等が挙げられる。
 また、分子量を測定する方法としては、例えば、SDS-PAGE法、質量分析法(例えば、MALDI-Tof MS、ESI-QTof等)、ゲルろ過カラムクロマトグラフィー等が挙げられる。
In addition, the solid fraction of the Xenopus egg extract obtained in the fractionation step (ie, Xenopus egg concentrate extract) preferably has a protein concentration of 83 mg / mL to 103 mg / mL, 86 mg / mL More preferably, it is not less than mL and not more than 100 mg / mL, more preferably not less than 88 mg / mL and not more than 98 mg / mL, and particularly preferably not less than 90 mg / mL and not more than 96 mg / mL.
Further, the content of the protein having a molecular weight of 20000 or more and 30000 or less in the solid fraction (ie, Xenopus laevis egg concentrate extract) is preferably 20% by mass or less based on the total protein amount, and 12% by mass. % To 20% by mass, more preferably 14% to 18% by mass. On the other hand, the content of a protein having a molecular weight of 100,000 or more and 150,000 or less is preferably 3% by mass or more, more preferably 3% by mass or more and 7% by mass or less, more preferably 4% by mass with respect to the total protein amount. More preferably, it is 6 mass% or less.
Here, as a method for measuring the protein concentration, for example, a method using an antibody antigen reaction (for example, ELISA method), a colorimetric method (for example, a bicinchoninic acid (BCA) method using a reaction between a protein and a reagent). , Bradford method, Raleigh method, Biuret method, etc.).
Examples of the method for measuring the molecular weight include SDS-PAGE, mass spectrometry (for example, MALDI-Tof MS, ESI-QTof, etc.), gel filtration column chromatography, and the like.
[冷凍工程]
 次いで、得られたアフリカツメガエル卵抽出液の水分及び固形分を別々に冷凍する。
 冷凍方法としては、水分及び固形分をゆっくりと冷凍することが好ましい。具体的には、プログラム可能なフリーザー等を使用して、-0.5℃/分以上-1.5℃/分以下(好ましくは-1℃/分)の速度で、-80℃になるまで冷凍すればよい。
 上記範囲の速度で冷凍することで、急激な温度変化による細胞質内の構成成分の損傷を防止することができる。
[Freezing process]
Next, the water and solid content of the obtained Xenopus egg extract are frozen separately.
As a freezing method, it is preferable to slowly freeze moisture and solid content. Specifically, using a programmable freezer, etc., at a rate of −0.5 ° C./min to −1.5 ° C./min (preferably −1 ° C./min) until it reaches −80 ° C. Frozen.
By freezing at a speed in the above range, damage to the components in the cytoplasm due to a rapid temperature change can be prevented.
 冷凍された水分及び固形分は、例えば1日以上12ヶ月以下の保存期間を経ても、細胞質内の活性が保持されており、解凍後、混合することで、アフリカツメガエル卵抽出液を再構築して、所望の分析に使用することができる。 The frozen water and solids retain the cytoplasmic activity even after a storage period of, for example, 1 day to 12 months, and reconstitute the Xenopus egg extract by thawing and mixing. Can be used for the desired analysis.
[抽出液調製工程]
 また、本実施形態のアフリカツメガエル卵抽出液の冷凍保存方法において、分画工程の前に、アフリカツメガエル卵抽出液を調製する抽出液調製工程を備えていてもよい。
[Extract preparation process]
Moreover, in the frozen storage method of the Xenopus egg extract of this embodiment, the extract preparation process which prepares the Xenopus egg extract may be provided before the fractionation process.
 アフリカツメガエル卵抽出液の調製は、アフリカツメガエルを用いて、公知の方法(例えば、「Murray A. W., “Cell cycle extracts”, Methods Cell Biol., vol. 36,p581-605, 1991.」等参照。)に従い、細胞分裂停止因子によって細胞周期の停止した未受精卵から調製すればよい。
 具体的には、まず、アフリカツメガエルに胎盤性性腺刺激ホルモンを注射し、排卵を誘導し、卵を得る。次いで、MMR液(100mM NaCl、2mM KCl、1mM MgCl、2mM CaCl、0.1mM EDTA、5mM HEPES)等に卵を浸し、コラゲナーゼ等の酵素処理によりゼリー状の膜を除去する。次いで、必要に応じて、抽出用バッファー(100mM KCl、0.1mM CaCl、1mM MgCl、5mM EGTA、50mM スクロース、及び10mM HEPESカリウム、pH7.7を含む)等を用いて、卵を洗浄して、卵の準備を行う。
For the preparation of Xenopus egg extract, see the known methods (eg, “Murray AW,“ Cell cycle extracts ”, Methods Cell Biol., Vol. 36, p581-605, 1991.) using Xenopus laevis. ), And may be prepared from an unfertilized egg whose cell cycle has been stopped by a mitogen.
Specifically, first, placental gonadotropin is injected into Xenopus to induce ovulation and obtain eggs. Next, the egg is immersed in MMR solution (100 mM NaCl, 2 mM KCl, 1 mM MgCl 2 , 2 mM CaCl 2 , 0.1 mM EDTA, 5 mM HEPES) or the like, and the jelly-like membrane is removed by enzyme treatment such as collagenase. Next, if necessary, the eggs are washed using an extraction buffer (containing 100 mM KCl, 0.1 mM CaCl 2 , 1 mM MgCl 2 , 5 mM EGTA, 50 mM sucrose, and 10 mM potassium HEPES, pH 7.7) or the like. And prepare the eggs.
 次いで、前記卵を破砕して、卵の細胞質を回収、すなわち、卵抽出液を調製する。このとき、得られた抽出液の安定性とタンパク質の発現効率を上げるため、細胞質分裂阻害剤、プロテアーゼ阻害剤、及びエネルギー物質等の添加物を抽出用バッファーに添加してもよい。
 卵の破砕方法としては、特別な限定はなく、例えば、ホモゲナイザーを用いた方法、超音波処理法、遠心分離法等が挙げられる。中でも、極めて容易に細胞質画分を回収できることから、遠心分離法を用いることが好ましい。
 回収された細胞質画分は、さらに多孔性の膜等でろ過して細胞の破砕片等を除去してもよい。
 本実施形態において用いられる卵抽出液は、任意の数の卵から調製することができるが、破砕処理や安定化剤の添加を容易にするため一定数量以上の卵を用いることが好ましく、少なくとも100個の卵から調製されることがより好ましい。
 得られた卵抽出液は、新鮮なもの、例えば、調製後約8時間以内、好ましくは約3時間以内のものを上記分画工程において用いることにより、高い細胞質内の活性が得られる。
Next, the egg is crushed and the cytoplasm of the egg is recovered, that is, an egg extract is prepared. At this time, in order to increase the stability of the obtained extract and the protein expression efficiency, additives such as cytokinesis inhibitors, protease inhibitors, and energy substances may be added to the extraction buffer.
The egg crushing method is not particularly limited, and examples thereof include a method using a homogenizer, an ultrasonic treatment method, and a centrifugal separation method. Among them, it is preferable to use a centrifugal separation method because a cytoplasmic fraction can be collected very easily.
The collected cytoplasmic fraction may be further filtered through a porous membrane or the like to remove cell debris and the like.
The egg extract used in the present embodiment can be prepared from an arbitrary number of eggs, but it is preferable to use a certain number or more of eggs in order to facilitate crushing treatment and addition of a stabilizer, and at least 100 More preferably, it is prepared from individual eggs.
The obtained egg extract is fresh, for example, within about 8 hours after preparation, preferably within about 3 hours in the fractionation step, thereby obtaining high cytoplasmic activity.
<アフリカツメガエル卵抽出液の冷凍保存用キット>
 一実施形態において、本発明は、水分分画用ろ過膜を備える遠心チューブを含むアフリカツメガエル卵抽出液の冷凍保存用キットを提供する。
<Frozen storage kit for Xenopus egg extract>
In one embodiment, the present invention provides a kit for cryopreservation of Xenopus egg extract comprising a centrifuge tube with a water separation filtration membrane.
 本実施形態のアフリカツメガエル卵抽出液の冷凍保存用キットによれば、アフリカツメガエル卵抽出液に含まれる細胞質内の活性を保ちながら、長期間(例えば、3ヶ月以上1年以下程度)冷凍保存することができる。 According to the kit for cryopreservation of Xenopus egg extract of the present embodiment, it is stored frozen for a long period (for example, about 3 months or more and about 1 year or less) while maintaining the activity in the cytoplasm contained in the Xenopus egg extract. be able to.
[遠心チューブ]
 本実施形態における遠心チューブは、フィルターカップと回収チューブとからなり、フィルターカップは、水分分画用ろ過膜を備え、アフリカツメガエル卵抽出液が投入される容器である。また、回収チューブは、遠心時に当該抽出液がフィルターカップに備えられた水分分画用ろ過膜を通過したろ液を回収するための容器である。
[Centrifuge tube]
The centrifuge tube in the present embodiment is composed of a filter cup and a collection tube, and the filter cup is a container that is provided with a filtration membrane for water fractionation and into which Xenopus egg extract is charged. The collection tube is a container for collecting the filtrate that has passed through the water fractionation filtration membrane provided in the filter cup during centrifugation.
 水分分画用ろ過膜の分画分子量は、1000以上であることが好ましく、3000以上であることがより好ましく、10000以上であることが更に好ましく、100000以上であることが特に好ましい。 The fractional molecular weight of the filtration membrane for water fractionation is preferably 1000 or more, more preferably 3000 or more, still more preferably 10,000 or more, and particularly preferably 100,000 or more.
 水分分画用ろ過膜の材質としては、例えば、ポリエステル、ポリエチレンテレフタレート、ポリエーテルスルホン、ポリプロピレン等の不織布、ポリウレタン等の多孔質材料、及びこれらの組み合わせ等が挙げられるが、これらに限定されない。 Examples of the material for the water fraction filtration membrane include, but are not limited to, nonwoven fabrics such as polyester, polyethylene terephthalate, polyethersulfone, and polypropylene, porous materials such as polyurethane, and combinations thereof.
 遠心チューブの形状としては、例えば、柱状、錘状等が挙げられ、これらに限定されない。
 また、遠心チューブの材質としては、例えば、金属、ガラス、セラミック、合成ポリマー等が挙げられ、これらに限定されない。
Examples of the shape of the centrifuge tube include, but are not limited to, a columnar shape, a weight shape, and the like.
Moreover, as a material of a centrifuge tube, a metal, glass, a ceramic, a synthetic polymer etc. are mentioned, for example, It is not limited to these.
[その他]
 本実施形態のアフリカツメガエル卵抽出液の冷凍保存用キットは、さらに、アフリカツメガエル卵抽出液を調製するためのMMR液(100mM NaCl、2mM KCl、1mM MgCl、2mM CaCl、0.1mM EDTA、5mM HEPES)、胎盤性性腺刺激ホルモン、コラゲナーゼ、抽出用バッファー(100mM KCl、0.1mM CaCl、1mM MgCl、5mM EGTA、50mM スクロース、及び10mM HEPESカリウム、pH7.7を含む)等を備えていてもよい。
[Others]
The kit for cryopreservation of Xenopus egg extract of this embodiment further comprises an MMR solution (100 mM NaCl, 2 mM KCl, 1 mM MgCl 2 , 2 mM CaCl 2 , 0.1 mM EDTA, 5 mM HEPES), placental gonadotropin, collagenase, extraction buffer (including 100 mM KCl, 0.1 mM CaCl 2 , 1 mM MgCl 2 , 5 mM EGTA, 50 mM sucrose, and 10 mM HEPES potassium, pH 7.7), etc. May be.
<アフリカツメガエル卵濃縮抽出液>
 一実施形態によれば、本発明は、タンパク質濃度が83mg/mL以上103mg/mL以下であり、分子量が20000以上30000以下のタンパク質の含有量が、総タンパク質量に対して、20質量%以下であり、且つ、分子量が100000以上150000以下のタンパク質の含有量が、総タンパク質量に対して、3質量%以上であるアフリカツメガエル卵濃縮抽出液を提供する。
<Xenopus concentrated egg extract>
According to one embodiment, the present invention provides a protein concentration of 83 mg / mL or more and 103 mg / mL or less, and the content of a protein having a molecular weight of 20000 or more and 30000 or less is 20% by mass or less with respect to the total protein amount. A Xenopus laevis egg concentrate extract having a protein with a molecular weight of 100,000 to 150,000 is 3% by mass or more based on the total protein amount.
 本実施形態のアフリカツメガエル卵濃縮抽出液は、冷凍保存しても、水の結晶化による影響を受けにくく、細胞質内の構成成分が保持されている。そのため、冷凍保存した本実施形態のアフリカツメガエル卵濃縮抽出液を解凍し、当該アフリカツメガエル卵濃縮抽出液を製造する際に生成された水分画分と混合することで、アフリカツメガエル卵抽出液を再構築することができる。再構築されたアフリカツメガエル卵抽出液は、細胞質内の活性が保持されており、DNAの複製、転写、転写物のプロセッシング、翻訳、及び翻訳されたタンパク質の修飾等の研究、導入された外来遺伝子の発現解析、細胞周期の分析、当該抽出液を用いた無細胞タンパク質合成系によるタンパク質の製造等に用いることができる。 The Xenopus laevis concentrated egg extract of this embodiment is hardly affected by water crystallization even if it is stored frozen, and the components in the cytoplasm are retained. Therefore, the Xenopus egg concentrate extract of the present embodiment that has been stored frozen is thawed and mixed with the water fraction produced when the Xenopus egg concentrate extract is produced to reconstitute the Xenopus egg extract. Can be built. The reconstituted Xenopus egg extract retains cytoplasmic activity, studies DNA replication, transcription, transcript processing, translation, and modification of translated proteins, introduced foreign genes Expression analysis, cell cycle analysis, protein production by a cell-free protein synthesis system using the extract.
 本実施形態のアフリカツメガエル卵濃縮抽出液は、タンパク質濃度が83mg/mL以上103mg/mL以下(好ましくは86mg/mL以上100mg/mL以下、より好ましくは88mg/mL以上98mg/mL以下、さらに好ましくは90mg/mL以上96mg/mL以下)である。
 また、本実施形態のアフリカツメガエル卵濃縮抽出液は、分子量が20000以上30000以下のタンパク質の含有量が、総タンパク質量に対して、20質量%以下であり、12質量%以上20質量%以下であることが好ましく、14質量%以上18質量%以下であることがより好ましい。一方、分子量が100000以上150000以下のタンパク質の含有量が、総タンパク質量に対して、3質量%以上であり、3質量%以上7質量%以下であることが好ましく、4質量%以上6質量%以下であることがより好ましい。
The Xenopus laevis egg concentrate extract of this embodiment has a protein concentration of 83 mg / mL or more and 103 mg / mL or less (preferably 86 mg / mL or more and 100 mg / mL or less, more preferably 88 mg / mL or more and 98 mg / mL or less, more preferably 90 mg / mL or more and 96 mg / mL or less).
In addition, in the Xenopus laevis egg concentrated extract of this embodiment, the content of the protein having a molecular weight of 20000 or more and 30000 or less is 20% by mass or less and 12% by mass or more and 20% by mass or less with respect to the total protein amount. It is preferable that it is 14 mass% or more and 18 mass% or less. On the other hand, the content of a protein having a molecular weight of 100000 to 150,000 is 3% by mass or more, preferably 3% by mass or more and 7% by mass or less, and preferably 4% by mass or more and 6% by mass with respect to the total protein amount. The following is more preferable.
 本実施形態のアフリカツメガエル卵濃縮抽出液の製造方法としては、例えば、上述の<アフリカツメガエル卵抽出液の冷凍保存方法>の[分画工程]に記載の方法が挙げられる。 Examples of the method for producing the concentrated Xenopus egg extract of the present embodiment include the method described in [Fractionation step] in <Method for cryopreserving Xenopus egg extract> described above.
<細胞周期の分析方法>
 一実施形態において、本発明は、アフリカツメガエル卵抽出液の冷凍保存方法の工程で冷凍保存されたアフリカツメガエル卵抽出液の水分及び固形分を解凍し、混合して再構築されたアフリカツメガエル卵抽出液を用いる細胞周期の分析方法を提供する。
<Cell cycle analysis method>
In one embodiment, the present invention relates to a Xenopus egg extract reconstituted by thawing and mixing the water and solid content of the Xenopus egg extract frozen and stored in the process of the method of cryopreserving Xenopus egg extract. A method for analyzing a cell cycle using a liquid is provided.
 本実施形態の細胞周期の分析方法によれば、アフリカツメガエル卵抽出液を用時調製する必要がないため、簡便且つ同時に多量の分析を行うことができる。
 本実施形態において用いられるアフリカツメガエル卵抽出液の再構築方法の各工程について、図を参照しながら、以下に詳細に説明する。
According to the cell cycle analysis method of the present embodiment, since it is not necessary to prepare the Xenopus egg extract at the time of use, a large amount of analysis can be performed easily and simultaneously.
Each step of the method for reconstructing Xenopus egg extract used in the present embodiment will be described in detail below with reference to the drawings.
[解凍工程]
 まず、冷凍保存されたアフリカツメガエル卵抽出液の水分及び固形分をそれぞれ解凍する。解凍方法としては、ゆっくりと解凍することが好ましい。具体的には、チューブを氷上に静置して、解凍すればよい。
 係る解凍工程により、急激な温度変化による細胞質内の構成成分の損傷を防止することができる。
[Thawing process]
First, the water content and solid content of the frozen Xenopus egg extract are stored in a frozen state. As a thawing method, it is preferable to thaw slowly. Specifically, the tube may be left on ice and thawed.
Such a thawing step can prevent damage to the components in the cytoplasm due to a rapid temperature change.
[再構築工程]
 次いで、解凍された水分及び固形分を混合し、0℃以上16℃以下(好ましくは4℃程度)、5分以上60分以下の条件で、インキュベートすることで、アフリカツメガエル卵抽出液を再構築する。
[Reconstruction process]
Next, the thawed Xenopus egg extract is reconstructed by mixing the thawed water and solids and incubating under conditions of 0 to 16 ° C. (preferably about 4 ° C.) and 5 to 60 minutes. To do.
 再構築されたアフリカツメガエル卵抽出液は、新鮮なアフリカツメガエル卵抽出液(例えば、調製後約8時間以内、好ましくは約3時間以内のアフリカツメガエル卵抽出液)と同程度の細胞質内の活性を有するため、細胞周期の分析に用いることができる。 The reconstituted Xenopus egg extract has a cytoplasmic activity comparable to that of fresh Xenopus egg extract (eg, Xenopus egg extract within about 8 hours, preferably within about 3 hours after preparation). Therefore, it can be used for cell cycle analysis.
 本発明を下記の実施例により説明する。ただし、これらは本発明の範囲を制限するものではない。 The invention is illustrated by the following examples. However, these do not limit the scope of the present invention.
[実施例1]
1.アフリカツメガエル卵抽出液の調製
(1)アフリカツメガエル卵抽出液の調製は、アフリカツメガエルを用いて、公知の方法(例えば、「Murray A. W., “Cell cycle extracts”, Methods Cell Biol., vol. 36,p581-605, 1991.」等参照。)に従い、細胞分裂停止因子によって細胞周期の停止した未受精卵から調製した。
 具体的には、まず、アフリカツメガエルに胎盤性性腺刺激ホルモンを注射し、排卵を誘導し、卵を得た。次いで、MMR液(100mM NaCl、2mM KCl、1mM MgCl、2mM CaCl、0.1mM EDTA、5mM HEPES)等に卵を浸し、システイン等の還元処理によりゼリー状の膜を除去した。次いで、抽出用バッファー(100mM KCl、0.1mM CaCl、1mM MgCl、5mM EGTA、50mM スクロース、及び10mM HEPESカリウム、pH7.7を含む)を用いて、卵を洗浄した。
[Example 1]
1. Preparation of Xenopus egg extract (1) Xenopus egg extract is prepared using a known method (for example, “Murray AW,“ Cell cycle extracts ”, Methods Cell Biol., Vol. 36, p581-605, 1991. ", etc.)) and prepared from unfertilized eggs whose cell cycle was stopped by a cytostatic factor.
Specifically, Xenopus laevis was first injected with placental gonadotropin to induce ovulation and obtain eggs. Next, the eggs were immersed in MMR solution (100 mM NaCl, 2 mM KCl, 1 mM MgCl 2 , 2 mM CaCl 2 , 0.1 mM EDTA, 5 mM HEPES) or the like, and the jelly-like membrane was removed by reduction treatment with cysteine or the like. The eggs were then washed with extraction buffer (containing 100 mM KCl, 0.1 mM CaCl 2 , 1 mM MgCl 2 , 5 mM EGTA, 50 mM sucrose, and 10 mM HEPES potassium, pH 7.7).
(2)次いで、遠心分離法により、前記卵を破砕して、卵の細胞質を回収、すなわち、卵抽出液を調製した。得られた抽出液の安定性とタンパク質の発現効率を上げるため、細胞質分裂阻害剤、プロテアーゼ阻害剤、及びエネルギー物質等の添加物を抽出用バッファーに添加した。ブラッドフォード法を用いて測定された卵抽出液のタンパク質濃度は、70mg/mLであった。 (2) Next, the egg was crushed by a centrifugation method, and the cytoplasm of the egg was collected, that is, an egg extract was prepared. In order to increase the stability of the resulting extract and the protein expression efficiency, additives such as cytokinesis inhibitors, protease inhibitors, and energy substances were added to the extraction buffer. The protein concentration of the egg extract measured using the Bradford method was 70 mg / mL.
2.アフリカツメガエル卵抽出液の冷凍保存
(1)分画工程
 次いで、遠心フィルター装置(UFC510024、分画分子量100k、ミリポア社製)を用いて、冷却遠心機(5424R、エッペンドルフ社製)で17,000×g、4℃、10分間の条件にて、「1.アフリカツメガエル卵抽出液の調製」で得られた抽出液200μLを遠心分離した。遠心分離後の濃縮抽出液(固形分画分)150μLとフロースルー画分(水分画分)50μLとをそれぞれ1.5mLの試験チューブに移した。
 ブラッドフォード法を用いて測定された濃縮抽出液(固形分画分)のタンパク質濃度は93mg/mLであり、分子量が20000以上30000以下のタンパク質の含有量が、総タンパク質量に対して、16質量%であり、分子量が100000以上150000以下のタンパク質の含有量が、総タンパク質量に対して、5質量%であった。
 また、ブラッドフォード法を用いて測定されたフロースルー画分(水分画分)のタンパク質濃度は1.8mg/mLであり、分子量が20000以上30000以下のタンパク質の含有量が、総タンパク質量に対して、20質量%であり、分子量が100000以上150000以下のタンパク質の含有量が、総タンパク質量に対して、3質量%であった。
2. Frozen storage of Xenopus egg extract (1) Fractionation step Next, using a centrifugal filter device (UFC510024, molecular weight cut off 100 k, manufactured by Millipore), a cooling centrifuge (5424R, manufactured by Eppendorf) at 17,000 × g Under conditions of 4 ° C. and 10 minutes, 200 μL of the extract obtained in “1. Preparation of Xenopus laevis egg extract” was centrifuged. 150 μL of the concentrated extract (solid fraction) after centrifugation and 50 μL of the flow-through fraction (water fraction) were each transferred to a 1.5 mL test tube.
The protein concentration of the concentrated extract (solid fraction) measured using the Bradford method is 93 mg / mL, and the content of the protein having a molecular weight of 20000 or more and 30000 or less is 16 masses based on the total protein amount. The content of the protein having a molecular weight of 100,000 to 150,000 was 5% by mass with respect to the total protein amount.
The protein concentration of the flow-through fraction (water fraction) measured using the Bradford method is 1.8 mg / mL, and the content of the protein having a molecular weight of 20000 or more and 30000 or less is based on the total protein amount. The content of the protein having a molecular weight of 100000 to 150,000 was 3% by mass with respect to the total protein amount.
(2)冷凍工程
 次いで、Chillette(登録商標) 12 Portable Tube Cooler(デンビルサイエンティフィック社製)を用いて、-1℃/分の条件にて、濃縮抽出液(固形分画分)とフロースルー画分(水分画分)とをそれぞれクライオジェニック凍結した。
(2) Freezing step Next, a concentrated extract (solid fraction) and a flow were used under the condition of -1 ° C / min using a Chillette (registered trademark) 12 Portable Tube Cooler (manufactured by Denville Scientific). The through fraction (moisture fraction) was cryogenic frozen.
3.アフリカツメガエル卵抽出液の再構築
(1)解凍工程
 次いで、冷凍保存から7日後の濃縮抽出液(固形分画分)とフロースルー画分(水分画分)とを氷上で静置して、解凍した。
3. Reconstitution of Xenopus egg extract (1) Thawing step Next, the concentrated extract (solid fraction) and the flow-through fraction (water fraction) 7 days after frozen storage were left on ice and thawed. did.
(2)再構築工程
 次いで、解凍した濃縮抽出液(固形分画分)及びフロースルー画分(水分画分)を混合し、氷上にて20分間インキュベーションして、アフリカツメガエル卵抽出液を再構築した。
(2) Reconstruction step Next, the thawed concentrated extract (solid fraction) and the flow-through fraction (water fraction) are mixed and incubated on ice for 20 minutes to reconstruct the Xenopus egg extract. did.
[試験例1]
1.紡錘体形成の確認
(1)間期から分裂中期への移行
 次いで、実施例1において再構築されたアフリカツメガエル卵抽出液に、膜を除去したアフリカツメガエルの精子の核(最終濃度:~400/μL)を添加し、16℃の温度条件下で間期から分裂中期に移行させた。また、対照群として、調製後約8時間以内の新鮮な抽出液及び未分画で冷解凍を施した抽出液も準備し、上記と同様の操作を行い、間期から分裂中期に移行させた。
[Test Example 1]
1. Confirmation of spindle formation (1) Transition from interphase to metaphase metaphase Next, the Xenopus egg extract reconstructed in Example 1 was added to Xenopus sperm nuclei (final concentration: ~ 400 / μL) was added, and the phase was shifted from interphase to metaphase under a temperature condition of 16 ° C. In addition, as a control group, a fresh extract within about 8 hours after preparation and an extract subjected to cold thawing with an unfractionated fraction were also prepared, and the same operation as described above was performed to shift from the interphase to the mid-phase. .
(2)紡錘体の微小管の染色
 次いで、各抽出液に、テトラメチルローダミン標識チューブリン(最終濃度500nM)を添加して、紡錘体の微小管を染色した。
(2) Staining of spindle microtubules Next, tetramethylrhodamine labeled tubulin (final concentration 500 nM) was added to each extract to stain spindle microtubules.
(3)紡錘体の観察
 次いで、2μLの各抽出液をカバーガラス上に滴下し、4μLの固定用緩衝液(125mM Hepes、2.5mM EDTA、2.5M NaCl、50mM KCl、25mM MgCl、1μg/mL DAPI、10%ホルムアルデヒド、60%グリセロール含有)を用いて固定し、18mmのカバースリップを乗せた。精子添加から80分で、核を固定し、分裂中期への移行から90分で、分裂中期の紡錘体を固定した。20倍対物レンズ(Plan Apo、0.75NA、ニコン社製)、水銀ランプ(ニコン社製)、sCMOSカメラ(Neo sCMOS、Andor社製)、及び電動XYステージ(MS-2000、Applied Scientific Instrumentation社製)を装備した倒立落射蛍光顕微鏡を用いて、蛍光画像を撮像した。また、NIS-Elementsソフトウェア(バージョン4.50、ニコン社製)を使用して~10mm×~11mmの大きな画像を取得した。結果を図2Aに示す。図2Aにおいて、「Fresh」とは、調製後約8時間以内の新鮮な抽出液を意味し、「Non-filtered」とは、未分画で冷解凍を施した抽出液を意味し、「Filtered」とは、実施例1において再構築された抽出液を意味する。また、スケールバーの長さは10μmを示している。
(3) Observation of spindles Next, 2 μL of each extract was dropped on a cover glass, and 4 μL of a buffer solution for fixation (125 mM Hepes, 2.5 mM EDTA, 2.5 M NaCl, 50 mM KCl, 25 mM MgCl 2 , 1 μg) / ML DAPI, containing 10% formaldehyde and 60% glycerol), and placed an 18 mm cover slip. At 80 minutes after sperm addition, the nucleus was fixed, and at 90 minutes from the transition to metaphase, the metaphase spindle was fixed. 20x objective lens (Plan Apo, 0.75NA, Nikon), mercury lamp (Nikon), sCMOS camera (Neo sCMOS, Andor), and motorized XY stage (MS-2000, Applied Scientific Instrument) A fluorescence image was taken using an inverted epifluorescence microscope equipped with a). Also, large images of ˜10 mm × ˜11 mm were obtained using NIS-Elements software (version 4.50, manufactured by Nikon Corporation). The result is shown in FIG. 2A. In FIG. 2A, “Fresh” means a fresh extract within about 8 hours after preparation, “Non-filtered” means an extract that has been subjected to cold thawing in an unfractionated state, and “Filtered” "Means the extract reconstituted in Example 1. The length of the scale bar is 10 μm.
 図2Aから、実施例1において再構築された抽出液では、調製後約8時間以内の新鮮な抽出液と同様に、微小管と染色体とからなる分裂中期の紡錘体が形成されていることが確かめられた。これに対し、未分画で冷解凍を施した抽出液では、分裂中期の紡錘体の形成が見られなかった。 From FIG. 2A, in the extract reconstructed in Example 1, a metaphase spindle consisting of microtubules and chromosomes is formed as in the fresh extract within about 8 hours after preparation. It was confirmed. On the other hand, in the extract that had been subjected to cold thawing in an unfractionated form, no spindle formation was observed during metaphase.
(4)中期紡錘体形態分析
 次いで、DNAシグナルの大きな集合体を除いて得られた蛍光画像からDAPI染色されたDNAシグナルを検索し、画像解析パイプライン(Grenfell et al., 2016)を用いて、DNAシグナルの周辺の紡錘体形態及び微小管シグナル強度を分析した。結果を図2B~Fに示す。図2B~Fにおいて、「Fresh」とは、調製後約8時間以内の新鮮な抽出液を意味し、「Non-filtered」とは、未分画で冷解凍を施した抽出液を意味し、「Filtered」とは、実施例1において再構築された抽出液を意味する。
 なお、図2B、Cにおける「mean±SD」は、3つの独立した試験サンプルから算出された値である。
 また、図2D~FにおけるボックスプロットはOrigin 2016(OriginLab)を使用して作成した。
(4) Middle spindle morphological analysis Next, DAPI-stained DNA signals are searched from the fluorescence images obtained by removing large aggregates of DNA signals, and using the image analysis pipeline (Grenfell et al., 2016). Spindle morphology and microtubule signal intensity around the DNA signal was analyzed. The results are shown in FIGS. In FIGS. 2B to F, “Fresh” means a fresh extract within about 8 hours after preparation, “Non-filtered” means an extract that has been subjected to cold thawing in an unfractionated state, “Filtered” means the extract reconstructed in Example 1.
Note that “mean ± SD” in FIGS. 2B and 2C is a value calculated from three independent test samples.
In addition, the box plots in FIGS. 2D to 2F were created using Origin 2016 (OriginLab).
 図2Bから、閾値を超えた微小管シグナルを有する精子DNAの割合は、未分画で冷解凍を施した抽出液では非常に低かった(試験を行った全精子DNAの58%、N=229)。一方、閾値を超えた微小管シグナルを有する精子DNAの割合は、新鮮な抽出液(試験を行った全精子DNAの89%、N=227)及び実施例1において再構築された抽出液(試験を行った全精子DNAの94%、N=177)では有意に高かった。
 このことから、凍結融解により染色体周囲の微小管集合体の活性が減少するが、この減少は分画によって救済され得ることが示唆された。
From FIG. 2B, the percentage of sperm DNA with a microtubule signal that exceeded the threshold was very low in the unfractionated cold thawed extract (58% of the total sperm DNA tested, N = 229). ). On the other hand, the proportion of sperm DNA having a microtubule signal exceeding the threshold was determined by the fresh extract (89% of the total sperm DNA tested, N = 227) and the extract reconstituted in Example 1 (test 94% of the total sperm DNA, N = 177) was significantly higher.
This suggests that freeze-thaw reduces the activity of microtubule assemblies around the chromosome, but this reduction can be rescued by fractionation.
 また、図2Cから、新鮮な抽出液では紡錘体のうち約53%が双極構造を有する紡錘体であった(N=201)。これに対し、未分画で冷解凍を施した抽出液では、双極構造を有する紡錘体の割合が、紡錘体全体の約10%であった(N=132)。
 一方、実施例1において再構築された抽出液では、双極構造を有する紡錘体の割合が、紡錘体全体の約69%)であった(N=166)。
From FIG. 2C, about 53% of the spindles in the fresh extract were spindles having a bipolar structure (N = 201). On the other hand, in the extract that had been subjected to cold thawing without fractionation, the proportion of spindles having a bipolar structure was about 10% of the total spindles (N = 132).
On the other hand, in the extract reconstructed in Example 1, the ratio of spindles having a bipolar structure was approximately 69% of the total spindles (N = 166).
 また、図2D~Fから、双極構造を有する紡錘体での紡錘体の長さ、幅、及び総微小管シグナル強度は、新鮮な抽出液及び実施例1において再構築された抽出液では同等であった。
 以上のことから、本発明の冷凍保存方法を用いた抽出液は、高活性の中期紡錘体集合体を形成可能であることが確かめられた。
2D to F, the spindle length, width, and total microtubule signal intensity in the spindle having a bipolar structure are the same in the fresh extract and the extract reconstructed in Example 1. there were.
From the above, it was confirmed that the extract using the cryopreservation method of the present invention can form a highly active medium-term spindle assembly.
[実施例2]
1.アフリカツメガエル卵抽出液の調製
 実施例1と同様の方法を用いて、アフリカツメガエル卵抽出液を調製した。
[Example 2]
1. Preparation of Xenopus egg extract Using the same method as in Example 1, Xenopus egg extract was prepared.
2.アフリカツメガエル卵抽出液の冷凍保存
(1)分画工程
 次いで、遠心フィルター装置(UFC510024、分画分子量100k、ミリポア社製)の代わりに、遠心フィルター装置(UFC501024、分画分子量10k、ミリポア社製)を用いた以外は、実施例1の「2.アフリカツメガエル卵抽出液の冷凍保存」の(1)と同様の方法を用いて、遠心分離を行い、濃縮抽出液(固形分画分)160μLとフロースルー画分(水分画分)40μLとを得た。
 ブラッドフォード法を用いて測定された濃縮抽出液(固形分画分)のタンパク質濃度は72mg/mLであり、分子量が20000以上30000以下のタンパク質の含有量が、総タンパク質量に対して、16質量%であり、分子量が100000以上150000以下のタンパク質の含有量が、総タンパク質量に対して、5質量%であった。
 また、ブラッドフォード法を用いて測定されたフロースルー画分(水分画分)のタンパク質濃度は0.2mg/mL未満であった。
 図3Aは、実施例1及び実施例2で得られたフロースルー画分(水分画分)の容量を示すグラフである。
 図3Aから、分画分子量が100kである実施例1で得られたフロースルー画分(水分画分)のほうが、分画分子量が10kである実施例2で得られたフロースルー画分(水分画分)よりも、容量が多かった。
2. Frozen storage of Xenopus egg extract (1) Fractionation step Next, instead of the centrifugal filter device (UFC510024, fractional molecular weight 100k, manufactured by Millipore), the centrifugal filter device (UFC501024, fractional molecular weight 10k, manufactured by Millipore) Except that was used, centrifugation was performed using the same method as in (1) of “2. Xenopus egg extract frozen storage” in Example 1, and 160 μL of the concentrated extract (solid fraction) was obtained. A flow-through fraction (water fraction) of 40 μL was obtained.
The protein concentration of the concentrated extract (solid fraction) measured using the Bradford method is 72 mg / mL, and the content of the protein having a molecular weight of 20000 or more and 30000 or less is 16 masses relative to the total protein amount. The content of the protein having a molecular weight of 100,000 to 150,000 was 5% by mass with respect to the total protein amount.
Moreover, the protein concentration of the flow-through fraction (water fraction) measured using the Bradford method was less than 0.2 mg / mL.
FIG. 3A is a graph showing the volume of the flow-through fraction (water fraction) obtained in Example 1 and Example 2.
From FIG. 3A, the flow-through fraction (moisture fraction) obtained in Example 1 having a fractional molecular weight of 100 k is more flow-through fraction (water content) obtained in Example 2 having a fractional molecular weight of 10 k. There was more capacity than (fraction).
(2)冷凍工程
 次いで、実施例1の「2.アフリカツメガエル卵抽出液の冷凍保存」の(2)と同様の方法を用いて、濃縮抽出液(固形分画分)とフロースルー画分(水分画分)とをそれぞれ冷凍した。
(2) Freezing step Next, using the same method as (2) in “2. Frozen storage of Xenopus egg extract” in Example 1, the concentrated extract (solid fraction) and the flow-through fraction ( The water fraction) was frozen.
3.アフリカツメガエル卵抽出液の再構築
(1)解凍工程
 次いで、冷凍保存から7日後の実施例1の「3.アフリカツメガエル卵抽出液の再構築」の(1)と同様の方法を用いて、濃縮抽出液(固形分画分)とフロースルー画分(水分画分)とを解凍した。
3. Reconstitution of Xenopus egg extract (1) Thawing step Next, concentration was performed using the same method as in (1) of “3. Reconstruction of Xenopus egg extract” in Example 1 after 7 days of frozen storage. The extract (solid fraction) and the flow-through fraction (water fraction) were thawed.
(2)再構築工程
 次いで、実施例1の「3.アフリカツメガエル卵抽出液の再構築」の(2)と同様の方法を用いて、アフリカツメガエル卵抽出液を再構築した。
(2) Reconstruction Step Next, the Xenopus egg extract was reconstructed using the same method as in (2) of “3. Reconstruction of Xenopus egg extract” in Example 1.
[試験例2]
1.紡錘体形成の確認
(1)間期から分裂中期への移行
 試験例1の「1.紡錘体形成の確認」の(1)と同様の方法を用いて、実施例1及び実施例2で再構築された抽出液を間期から分裂中期へ移行させた。また、対照群として、調製後約8時間以内の新鮮な抽出液も準備し、上記と同様の操作を行い、間期から分裂中期に移行させた。
[Test Example 2]
1. Confirmation of spindle formation (1) Transition from interphase to metaphase Metastasis in Example 1 and Example 2 using the same method as in (1) of “1. Confirmation of spindle formation” in Test Example 1. The constructed extract was moved from interphase to metaphase. In addition, as a control group, a fresh extract within about 8 hours after preparation was prepared, and the same operation as described above was performed to shift from the interphase to the mid-phase.
(2)紡錘体の微小管の染色
 次いで、試験例1の「1.紡錘体形成の確認」の(2)と同様の方法を用いて、各抽出液に、テトラメチルローダミン標識チューブリン(最終濃度500nM)を添加して、紡錘体の微小管を染色した。
(2) Staining of spindle microtubules Next, tetramethylrhodamine labeled tubulin (final) was added to each extract using the same method as in (2) of “1. Confirmation of spindle formation” in Test Example 1. The concentration of 500 nM) was added to stain the spindle microtubules.
(3)中期紡錘体形態分析
 次いで、試験例1の「1.紡錘体形成の確認」の(4)と同様の方法を用いて、DNAシグナルの周辺の紡錘体形態及び微小管シグナル強度を分析した。結果を図3B~Fに示す。図3B~Fにおいて、「Fresh」とは、調製後約8時間以内の新鮮な抽出液を意味し、「10k」とは、分画分子量10kの遠心フィルター装置を用いて実施例2で再構築された抽出液を意味し、「100k」とは、分画分子量100kの遠心フィルター装置を用いて実施例1において再構築された抽出液を意味する。
 なお、図3B、Cにおける「mean±SD」は、2つの独立した試験サンプルから算出された値である。
 また、図3D~FにおけるボックスプロットはOrigin 2016(OriginLab)を使用して作成した。
(3) Mid-term spindle morphology analysis Next, the spindle morphology and microtubule signal intensity around the DNA signal were analyzed using the same method as in (4) of “1. Confirmation of spindle formation” in Test Example 1. did. The results are shown in FIGS. In FIG. 3B to F, “Fresh” means a fresh extract within about 8 hours after preparation, and “10k” is reconstructed in Example 2 using a centrifugal filter device with a molecular weight cut off of 10 k. "100k" means the extract reconstituted in Example 1 using a centrifugal filter device with a molecular weight cut off of 100k.
Note that “mean ± SD” in FIGS. 3B and 3C is a value calculated from two independent test samples.
In addition, the box plots in FIGS. 3D to 3F were created using Origin 2016 (OriginLab).
 図3Bから、閾値を超えた微小管シグナルを有する精子DNAの割合は、新鮮な抽出液(N=155)、実施例2において再構築された抽出液(N=211)、及び実施例1において再構築された抽出液(N=169)では同程度であった。
 また、図3Cから、双極構造を有する紡錘体の割合は、新鮮な抽出液(N=144)と比較して、実施例2において再構築された抽出液(N=190)ではやや低く、一方、実施例1において再構築された抽出液(N=149)では、有意に高かった。
From FIG. 3B, the percentage of sperm DNA with a microtubule signal that exceeded the threshold was determined in fresh extract (N = 155), reconstructed extract in Example 2 (N = 211), and Example 1. The reconstructed extract (N = 169) was similar.
From FIG. 3C, the ratio of spindles having a bipolar structure is slightly lower in the extract (N = 190) reconstructed in Example 2 than in the fresh extract (N = 144). The extract liquid reconstructed in Example 1 (N = 149) was significantly higher.
 また、図3D~Fから、双極構造を有する紡錘体での紡錘体の長さ、幅、及び総微小管シグナル強度は、実施例1において再構築された抽出液及び実施例2において再構築された抽出液では同等であった。
 以上のことから、分画分子量10kの遠心フィルター装置を用いた場合では、分画分子量100kの遠心フィルター装置を用いた場合よりも、双極構造を有する紡錘体の割合は低いが、いずれの分画分子量であっても、高活性の中期紡錘体集合体を形成可能であることが確かめられた。
Also, from FIGS. 3D to F, the spindle length, width, and total microtubule signal intensity in the spindle having a bipolar structure were reconstructed in the extract reconstructed in Example 1 and in Example 2. The same extract was equivalent.
From the above, in the case of using a centrifugal filter device having a fractional molecular weight of 10k, the proportion of spindles having a bipolar structure is lower than in the case of using a centrifugal filter device having a fractional molecular weight of 100k. It was confirmed that even a molecular weight can form a highly active metaphase spindle assembly.
[実施例3]
1.アフリカツメガエル卵抽出液の調製
 実施例1と同様の方法を用いて、アフリカツメガエル卵抽出液を調製した。
[Example 3]
1. Preparation of Xenopus egg extract Using the same method as in Example 1, Xenopus egg extract was prepared.
2.アフリカツメガエル卵抽出液の冷凍保存
(1)分画工程
 次いで、遠心時間を10分の代わりに5分とした以外は、実施例1の「2.アフリカツメガエル卵抽出液の冷凍保存」の(1)と同様の方法を用いて、遠心分離を行い、濃縮抽出液(固形分画分)170μLとフロースルー画分(水分画分)30μLとを得た。
2. Frozen storage of Xenopus egg extract (1) Fractionation step Next, (1. Frozen storage of Xenopus egg extract in Example 1) except that the centrifugation time was changed to 5 minutes instead of 10 minutes (1 Using the same method as in (2), centrifugation was performed to obtain 170 μL of a concentrated extract (solid fraction) and 30 μL of a flow-through fraction (water fraction).
(2)冷凍工程
 次いで、実施例1の「2.アフリカツメガエル卵抽出液の冷凍保存」の(2)と同様の方法を用いて、濃縮抽出液(固形分画分)とフロースルー画分(水分画分)とをそれぞれ冷凍した。
(2) Freezing step Next, using the same method as (2) in “2. Frozen storage of Xenopus egg extract” in Example 1, the concentrated extract (solid fraction) and the flow-through fraction ( The water fraction) was frozen.
3.アフリカツメガエル卵抽出液の再構築
(1)解凍工程
 次いで、冷凍保存から7日後の実施例1の「3.アフリカツメガエル卵抽出液の再構築」の(1)と同様の方法を用いて、濃縮抽出液(固形分画分)とフロースルー画分(水分画分)とを解凍した。
3. Reconstitution of Xenopus egg extract (1) Thawing step Next, concentration was performed using the same method as in (1) of “3. Reconstruction of Xenopus egg extract” in Example 1 after 7 days of frozen storage. The extract (solid fraction) and the flow-through fraction (water fraction) were thawed.
(2)再構築工程
 次いで、実施例1の「3.アフリカツメガエル卵抽出液の再構築」の(2)と同様の方法を用いて、アフリカツメガエル卵抽出液を再構築した。
(2) Reconstruction Step Next, the Xenopus egg extract was reconstructed using the same method as in (2) of “3. Reconstruction of Xenopus egg extract” in Example 1.
[実施例4]
1.アフリカツメガエル卵抽出液の調製
 実施例1と同様の方法を用いて、アフリカツメガエル卵抽出液を調製した。
[Example 4]
1. Preparation of Xenopus egg extract Using the same method as in Example 1, Xenopus egg extract was prepared.
2.アフリカツメガエル卵抽出液の冷凍保存
(1)分画工程
 次いで、遠心時間を10分の代わりに20分とした以外は、実施例1の「2.アフリカツメガエル卵抽出液の冷凍保存」の(1)と同様の方法を用いて、遠心分離を行い、濃縮抽出液(固形分画分)140μLとフロースルー画分(水分画分)60μLとを得た。
 図3Gは、実施例1、3及び4で得られたフロースルー画分(水分画分)の容量を示すグラフである。
 図3Gから、遠心時間が長くなるのに従い、フロースルー画分(水分画分)の容量が多くなることが明らかとなった。
2. Frozen storage of Xenopus egg extract (1) Fractionation step Next, (1. Frozen storage of Xenopus egg extract in Example 1) except that the centrifugation time was 20 minutes instead of 10 minutes (1 Using the same method as in (2), centrifugation was performed to obtain 140 μL of a concentrated extract (solid fraction) and 60 μL of a flow-through fraction (water fraction).
FIG. 3G is a graph showing the volume of the flow-through fraction (moisture fraction) obtained in Examples 1, 3 and 4.
From FIG. 3G, it became clear that the capacity | capacitance of a flow-through fraction (water | moisture fraction) increases as centrifugation time becomes long.
(2)冷凍工程
 次いで、実施例1の「2.アフリカツメガエル卵抽出液の冷凍保存」の(2)と同様の方法を用いて、濃縮抽出液(固形分画分)とフロースルー画分(水分画分)とをそれぞれ冷凍した。
(2) Freezing step Next, using the same method as (2) in “2. Frozen storage of Xenopus egg extract” in Example 1, the concentrated extract (solid fraction) and the flow-through fraction ( The water fraction) was frozen.
3.アフリカツメガエル卵抽出液の再構築
(1)解凍工程
 次いで、冷凍保存から7日後の実施例1の「3.アフリカツメガエル卵抽出液の再構築」の(1)と同様の方法を用いて、濃縮抽出液(固形分画分)とフロースルー画分(水分画分)とを解凍した。
3. Reconstitution of Xenopus egg extract (1) Thawing step Next, concentration was performed using the same method as in (1) of “3. Reconstruction of Xenopus egg extract” in Example 1 after 7 days of frozen storage. The extract (solid fraction) and the flow-through fraction (water fraction) were thawed.
(2)再構築工程
 次いで、実施例1の「3.アフリカツメガエル卵抽出液の再構築」の(2)と同様の方法を用いて、アフリカツメガエル卵抽出液を再構築した。
(2) Reconstruction Step Next, the Xenopus egg extract was reconstructed using the same method as in (2) of “3. Reconstruction of Xenopus egg extract” in Example 1.
[試験例3]
1.紡錘体形成の確認
(1)間期から分裂中期への移行
 試験例1の「1.紡錘体形成の確認」の(1)と同様の方法を用いて、実施例1、実施例3、及び実施例4で再構築された抽出液を間期から分裂中期へ移行させた。
[Test Example 3]
1. Confirmation of spindle formation (1) Transition from interphase to metaphase stage Using the same method as in (1) of “1. Confirmation of spindle formation” in Test Example 1, Example 1, Example 3, and The extract reconstructed in Example 4 was transferred from the interphase to the metaphase.
(2)紡錘体の微小管の染色
 次いで、試験例1の「1.紡錘体形成の確認」の(2)と同様の方法を用いて、各抽出液に、テトラメチルローダミン標識チューブリン(最終濃度500nM)を添加して、紡錘体の微小管を染色した。
(2) Staining of spindle microtubules Next, tetramethylrhodamine labeled tubulin (final) was added to each extract using the same method as in (2) of “1. Confirmation of spindle formation” in Test Example 1. The concentration of 500 nM) was added to stain the spindle microtubules.
(3)中期紡錘体形態分析
 次いで、試験例1の「1.紡錘体形成の確認」の(4)と同様の方法を用いて、DNAシグナルの周辺の紡錘体形態及び微小管シグナル強度を分析した。結果を図3H~Lに示す。図3H~Lにおいて、「Centrifuge time(遠心時間) 5min」は、遠心時間5分で分画工程を行った実施例3において再構築された抽出液を意味し、「Centrifuge time 10min」とは、遠心時間10分で分画工程を行った実施例1において再構築された抽出液を意味し、「Centrifuge time 
20min」とは、遠心時間20分で分画工程を行った実施例4において再構築された抽出を意味する。
 なお、図3H、Iにおける「mean±SD」は、2つの独立した試験サンプルから算出された値である。
 また、図3J~LにおけるボックスプロットはOrigin 2016(OriginLab)を使用して作成した。
(3) Mid-term spindle morphology analysis Next, the spindle morphology and microtubule signal intensity around the DNA signal were analyzed using the same method as in (4) of “1. Confirmation of spindle formation” in Test Example 1. did. The results are shown in FIGS. 3H to L. In FIG. 3H to L, “Centrifume time (centrifugation time) 5 min” means the extract reconstituted in Example 3 in which the fractionation step was performed with a centrifuge time of 5 minutes, and “Centrifuge time 10 min” It means the extract reconstituted in Example 1 where the fractionation process was performed at a centrifugation time of 10 minutes, and “Centrifuge time”
“20 min” means the extraction reconstructed in Example 4 in which the fractionation step was performed with a centrifugation time of 20 minutes.
Note that “mean ± SD” in FIGS. 3H and I is a value calculated from two independent test samples.
In addition, the box plots in FIGS. 3J to 3L were created using Origin 2016 (OriginLab).
 図3Hから、閾値を超えた微小管シグナルを有する精子DNAの割合は、実施例1において再構築された抽出液(N=134)、及び実施例3において再構築された抽出液(N=174)では同程度であり、実施例4において再構築された抽出液(N=177)ではやや低かった。
 また、図3Iから、双極構造を有する紡錘体の割合は、実施例1において再構築された抽出液(N=126)と比較して、実施例3において再構築された抽出液(N=155)ではやや低く、実施例4において再構築された抽出液(N=123)では、有意に低かった。
From FIG. 3H, the percentage of sperm DNA having a microtubule signal exceeding the threshold is determined by the extract reconstructed in Example 1 (N = 134) and the extract reconstructed in Example 3 (N = 174). ) And the same level, and the extract reconstructed in Example 4 (N = 177) was slightly lower.
Further, from FIG. 3I, the ratio of spindles having a bipolar structure is compared with the extract (N = 155) reconstructed in Example 3, compared to the extract reconstructed in Example 1 (N = 126). ) Was slightly lower, and the extract reconstructed in Example 4 (N = 123) was significantly lower.
 また、図3J~Lから、双極構造を有する紡錘体での紡錘体の長さ、幅、及び総微小管シグナル強度は、実施例1において再構築された抽出液、実施例3において再構築された抽出液、及び実施例4において再構築された抽出液では同等であった。
 以上のことから、10分を超える長時間の遠心分離により、抽出液の活性が低下し、中期紡錘体の形成効率が低下することが確認された。
Also, from FIGS. 3J to 3L, the spindle length, width, and total microtubule signal intensity in the spindle having a bipolar structure were reconstructed in Example 3, the extract reconstructed in Example 1. And the extract reconstructed in Example 4 were equivalent.
From the above, it was confirmed that long-term centrifugation over 10 minutes reduced the activity of the extract and reduced the formation efficiency of the mid-term spindle.
 本発明のアフリカツメガエル卵抽出液の冷凍保存方法及び冷凍保存用キットによれば、アフリカツメガエル卵抽出液に含まれる細胞質内の活性を保ちながら、長期間(例えば、3ヶ月以上1年以下程度)冷凍保存することができる。
 また、本発明のアフリカツメガエル卵濃縮抽出液は、冷凍保存しても、水の結晶化による影響を受けにくく、細胞質内の構成成分が保持されている。そのため、冷凍保存した本実施形態のアフリカツメガエル卵濃縮抽出液を解凍し、当該アフリカツメガエル卵濃縮抽出液を製造する際に生成された水分画分と混合することで、アフリカツメガエル卵抽出液を再構築することができる。再構築されたアフリカツメガエル卵抽出液は、細胞質内の活性が保持されており、細胞周期の分析等に用いることができる。
According to the cryopreservation method and cryopreservation kit of the Xenopus egg extract of the present invention, while maintaining the cytoplasmic activity contained in the Xenopus egg extract, a long period (for example, about 3 months to 1 year) Can be stored frozen.
In addition, the Xenopus laevis concentrated egg extract of the present invention is hardly affected by crystallization of water even if it is stored frozen, and the components in the cytoplasm are retained. Therefore, the Xenopus egg concentrate extract of the present embodiment that has been stored frozen is thawed and mixed with the water fraction produced when the Xenopus egg concentrate extract is produced to reconstitute the Xenopus egg extract. Can be built. The reconstructed Xenopus egg extract retains cytoplasmic activity and can be used for cell cycle analysis and the like.
 1…アフリカツメガエル卵抽出液、2…水分分画用ろ過膜、3…固形分、3a…冷凍した固形分、3b…解凍した固形分、4…水分、4a…冷凍した水分、4b…解凍した水分、5…再構築されたアフリカツメガエル卵抽出液、10…遠心チューブ。 DESCRIPTION OF SYMBOLS 1 ... Xenopus egg extract, 2 ... Filter membrane for water fractionation, 3 ... Solid content, 3a ... Frozen solid content, 3b ... Thawed solid content, 4 ... Water, 4a ... Frozen water, 4b ... Thawed Water, 5 ... Reconstituted Xenopus egg extract, 10 ... Centrifuge tube.

Claims (9)

  1.  アフリカツメガエル卵抽出液から水分と固形分とを分画する分画工程と、
     前記水分及び前記固形分を別々に冷凍する冷凍工程と、を備えることを特徴とするアフリカツメガエル卵抽出液の冷凍保存方法。
    A fractionation step of fractionating water and solids from Xenopus egg extract;
    A freezing step of separately freezing the water and the solid content, and a method for freezing and storing the Xenopus egg extract.
  2.  前記分画工程において、分画分子量が1000以上のろ過膜を用いる請求項1に記載のアフリカツメガエル卵抽出液の冷凍保存方法。 The method for freezing and storing a Xenopus egg extract according to claim 1, wherein a filtration membrane having a fractional molecular weight of 1000 or more is used in the fractionation step.
  3.  前記分画工程において、分画分子量が10000以上のろ過膜を用いる請求項1又は2に記載のアフリカツメガエル卵抽出液の冷凍保存方法。 The method for freezing and storing a Xenopus egg extract according to claim 1 or 2, wherein a filtration membrane having a molecular weight cut off of 10,000 or more is used in the fractionation step.
  4.  前記冷凍工程において、-0.5℃/分以上-1.5℃/分以下の速度で前記水分及び前記固形分を冷凍する請求項1~3のいずれか一項に記載のアフリカツメガエル卵抽出液の冷凍保存方法。 The Xenopus egg extraction according to any one of claims 1 to 3, wherein in the freezing step, the water and the solid content are frozen at a rate of -0.5 ° C / min or more and -1.5 ° C / min or less. Freezing storage method of liquid.
  5.  水分分画用ろ過膜を備える遠心チューブを含むことを特徴とするアフリカツメガエル卵抽出液の冷凍保存用キット。 A cryopreservation kit for Xenopus laevis egg extract characterized by including a centrifuge tube equipped with a filtration membrane for moisture fractionation.
  6.  前記水分分画用ろ過膜の分画分子量が1000以上である請求項5に記載のアフリカツメガエル卵抽出液の冷凍保存用キット。 The kit for cryopreservation of Xenopus egg extract according to claim 5, wherein the molecular weight cut-off of the membrane for water fractionation is 1000 or more.
  7.  前記水分分画用ろ過膜の分画分子量が10000以上である請求項5又は6に記載のアフリカツメガエル卵抽出液の冷凍保存用キット。 The kit for cryopreservation of the Xenopus laevis egg extract according to claim 5 or 6, wherein the molecular weight of the filtration membrane for water fractionation is 10,000 or more.
  8.  タンパク質濃度が83mg/mL以上103mg/mL以下であり、
     分子量が20000以上30000以下のタンパク質の含有量が、総タンパク質量に対して、20質量%以下であり、且つ、
     分子量が100000以上150000以下のタンパク質の含有量が、総タンパク質量に対して、3質量%以上であることを特徴とするアフリカツメガエル卵濃縮抽出液。
    The protein concentration is 83 mg / mL or more and 103 mg / mL or less,
    The content of a protein having a molecular weight of 20000 or more and 30000 or less is 20% by mass or less based on the total protein amount, and
    The Xenopus laevis egg concentrate extract, wherein the content of a protein having a molecular weight of 100,000 or more and 150,000 or less is 3% by mass or more based on the total protein amount.
  9.  請求項1~4のいずれか一項に記載のアフリカツメガエル卵抽出液の冷凍保存方法の工程で冷凍保存されたアフリカツメガエル卵抽出液の水分及び固形分を解凍し、混合して再構築されたアフリカツメガエル卵抽出液を用いることを特徴とする細胞周期の分析方法。 The water and solid content of the Xenopus egg extract frozen and stored in the process of the cryopreservation method of the Xenopus egg extract according to any one of claims 1 to 4 were thawed, mixed and reconstituted. A method for analyzing a cell cycle, comprising using an Xenopus egg extract.
PCT/JP2018/002546 2017-01-30 2018-01-26 Method and kit for cryopreserving xenopus laevis egg extract, concentrated xenopus laevis egg extract, and method for analyzing cell cycle WO2018139601A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018564660A JP7023519B2 (en) 2017-01-30 2018-01-26 Xenopus egg extract cryopreservation and cryopreservation kit, Xenopus egg concentrate extract, and cell cycle analysis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017014441 2017-01-30
JP2017-014441 2017-01-30

Publications (1)

Publication Number Publication Date
WO2018139601A1 true WO2018139601A1 (en) 2018-08-02

Family

ID=62979418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002546 WO2018139601A1 (en) 2017-01-30 2018-01-26 Method and kit for cryopreserving xenopus laevis egg extract, concentrated xenopus laevis egg extract, and method for analyzing cell cycle

Country Status (2)

Country Link
JP (1) JP7023519B2 (en)
WO (1) WO2018139601A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770363A (en) * 1991-10-24 1998-06-23 Brown; David B. Methods for diagnosing human male infertility
US5863895A (en) * 1994-09-08 1999-01-26 Iowa State University Research Foundationv Inhibitor of chromosomal DNA replication in xenopus: the turhuter protein
JP2004135590A (en) * 2002-10-18 2004-05-13 Inst Of Physical & Chemical Res Protein synthesis system using xenopus oocyte extract

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770363A (en) * 1991-10-24 1998-06-23 Brown; David B. Methods for diagnosing human male infertility
US5863895A (en) * 1994-09-08 1999-01-26 Iowa State University Research Foundationv Inhibitor of chromosomal DNA replication in xenopus: the turhuter protein
JP2004135590A (en) * 2002-10-18 2004-05-13 Inst Of Physical & Chemical Res Protein synthesis system using xenopus oocyte extract

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Cell Cycle - Materials and Methods", 1995, article CLARKE, P. R.: "Preparation of Xenopus Egg Extracts and Their Utilization in Cell Cycle Studies", pages: 103 - 116 *
RICHTER, A. ET AL.: "Replication of SV 40 chromatin in extracts from eggs of Xenopus laevis", NUCLEIC ACIDS RESEARCH, vol. 9, no. 15, 1981, pages 3793 - 3807, XP055537615 *
RIEDEL, H. D. ET AL.: "Circular single stranded phase M13-DNA as a template for DNA synthesis in protein extracts from Xenopus laevis eggs: evidence for eukaryotic DNA priming activity", NUCLEIC ACIDS RESEARCH, vol. 10, no. 18, 1982, pages 5621 - 5635, XP055537610 *
TAKAGI, J. ET AL.: "Abstrac P1218. Board Number: B224. Preparing frozen Xenopus egg extracts for the study of spindle assembly mechanisms.", ASCB EMBO 2017 MEETING, December 2017 (2017-12-01), XP055537628, Retrieved from the Internet <URL:https://ascb-embo2017.ascb.org/wp-content/uploads/sites/8/2017/03/2017ASCB-EMBOMeeting-PosterAbstractsfinal.pdf> [retrieved on 20180418] *
TAKAGI, J. ET AL.: "High quality frozen extracts of Xenopus laevis eggs reveal size-dependent control of metaphase spindle micromechanics", BIORXIV, 28 February 2017 (2017-02-28), XP055537623, Retrieved from the Internet <URL:https://www.biorxiv.org/content/biorxiv/early/2017/02/28/112334.full.pdf> *

Also Published As

Publication number Publication date
JP7023519B2 (en) 2022-02-22
JPWO2018139601A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
Bloom et al. Partial purification of box jellyfish (Chironex fleckeri) nematocyst venom isolated at the beachside
Tissières et al. Amino acid incorporation into proteins by Escherichia coli ribosomes
Gillespie et al. Preparation and use of Xenopus egg extracts to study DNA replication and chromatin associated proteins
Theurkauf Immunofluorescence analysis of the cytoskeleton during oogenesis and early embryogenesis
Etlinger et al. M and Z band components and the assembly of myofibrils
Gillis et al. Isolation and characterization of membrane vesicles from human and boar spermatozoa: methods using nitrogen cavitation and ionophore induced vesiculation
Schmidt‐Schultz et al. Bone protects proteins over thousands of years: extraction, analysis, and interpretation of extracellular matrix proteins in archeological skeletal remains
Kierszenbaum et al. Ran, a GTP‐binding protein involved in nucleocytoplasmic transport and microtubule nucleation, relocates from the manchette to the centrosome region during rat spermiogenesis
Uhl et al. Preparation of decellularized lung matrices for cell culture and protein analysis
WO2016018465A1 (en) Urease purification from jack beans or other organisms
JP7286651B2 (en) Mesenchymal stromal cells and methods for obtaining mesenchymal stromal cells from umbilical cord
WO2019160519A2 (en) Exosome isolation method by two phase fluid system
Labella et al. ISOLATION OF NERVE ENDINGS FROM THE POSTERIOR PITUITARY GLAND: Electron Microscopy of Fractions Obtained by Centrifugation
Vacquier Handling, labeling, and fractionating sea urchin spermatozoa
Vacquier et al. The cytolytic isolation of the cortex of the sea urchin egg
JP2002521340A (en) Method for obtaining cartilage extract using solution containing or not containing organic solvent and extract separated therefrom
WO2018139601A1 (en) Method and kit for cryopreserving xenopus laevis egg extract, concentrated xenopus laevis egg extract, and method for analyzing cell cycle
Kinsey Purification and properties of the egg plasma membrane
Hell et al. Preparation of synaptic vesicles from mammalian brain
CN115651076B (en) Surface marker of human bone marrow mesenchymal stem cell-derived apoptosis vesicle and application thereof
KR20180006462A (en) Freeze-dried platelet lysate composition
Behki et al. Intracellular distribution of deoxyribosidic compounds in normal and regenerating liver and in Novikoff hepatoma
KR20210100449A (en) Lyophilized formulation comprising exosome derived from stem cell
Wessel et al. A cortical granule‐specific enzyme, B‐1, 3‐glucanase, in sea urchin eggs
Vacquier et al. Sea urchin spermatozoa

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744558

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564660

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18744558

Country of ref document: EP

Kind code of ref document: A1