WO2018139444A1 - Production method for stereoscopic-image-forming device - Google Patents

Production method for stereoscopic-image-forming device Download PDF

Info

Publication number
WO2018139444A1
WO2018139444A1 PCT/JP2018/001962 JP2018001962W WO2018139444A1 WO 2018139444 A1 WO2018139444 A1 WO 2018139444A1 JP 2018001962 W JP2018001962 W JP 2018001962W WO 2018139444 A1 WO2018139444 A1 WO 2018139444A1
Authority
WO
WIPO (PCT)
Prior art keywords
image forming
forming apparatus
stereoscopic image
manufacturing
light control
Prior art date
Application number
PCT/JP2018/001962
Other languages
French (fr)
Japanese (ja)
Inventor
誠 大坪
Original Assignee
株式会社アスカネット
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アスカネット filed Critical 株式会社アスカネット
Priority to JP2018564578A priority Critical patent/JP6686184B2/en
Publication of WO2018139444A1 publication Critical patent/WO2018139444A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C69/00Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/09Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors

Definitions

  • the present invention relates to a method for manufacturing a stereoscopic image forming apparatus in which a plurality of strip-shaped metal reflecting surfaces (mirror surfaces) arranged in parallel in an upright state are arranged orthogonally in plan view.
  • first and second light reflecting surfaces each made up of a large number of strip-shaped metal reflecting surfaces are arranged at a constant pitch in two transparent flat plates perpendicularly to one surface of the transparent flat plate.
  • first and second light control panels face each other so that the light reflecting surfaces of the first and second light control panels are orthogonal to each other. It is.
  • a plate-shaped transparent synthetic resin plate or glass plate (hereinafter referred to as a “transparent plate”) having a metal reflection surface formed on one surface side.
  • a transparent plate having a metal reflection surface formed on one surface side.
  • a laminated body is manufactured, and cut out from the laminated body so that a cut surface perpendicular to each metal reflecting surface is formed.
  • a large-sized vapor deposition furnace is required in the operation of forming a metal reflecting surface on the transparent plate, and one or a small number of transparent plates are put into the vapor deposition furnace and deaerated to a high vacuum, and then the vapor deposition process.
  • a laminated body is formed by laminating metal-deposited transparent plates, and an operation of cutting with a very thin predetermined thickness is performed, and the first and second light control panels are cut out from the laminated body. Since it is necessary to perform the grinding
  • a light control panel including a concavo-convex plate material in which a groove having a rectangular cross section formed by parallel banks is formed on one surface, and a light reflecting portion is formed on the opposite parallel side surfaces of the groove. 2 are prepared, and a method is proposed in which the two light control panels face each other in a state where the respective light reflecting portions are orthogonal or intersecting.
  • the two light control panels face each other in a state where the respective light reflecting portions are orthogonal or intersecting.
  • Patent Document 3 as a device for forming a stereoscopic image, a two-surface corner reflector array optical element (that is, light control) in which a plurality of cylindrical bodies each having two orthogonal side surfaces are projected on a base made of a transparent material.
  • a reflector array optical device is disclosed in which panels are vertically stacked on top of each other so that each orthogonal side surface is on the same plane.
  • the first and second reflecting surfaces since the upper and lower cylindrical bodies are connected, the length of the orthogonal reflecting surfaces (hereinafter referred to as the first and second reflecting surfaces) is increased, and the collection from the object is performed.
  • the gap between adjacent cylindrical bodies is air, and the gap is filled with a transparent resin, and the resin to be filled has a refractive index that is the same as or similar to that of the transparent synthetic resin that is the base. The technical idea of preventing the generation of a rainbow due to the difference in refractive index is not disclosed.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a manufacturing method of a stereoscopic image forming apparatus that can be easily manufactured and can obtain a clearer stereoscopic image.
  • a method for manufacturing a stereoscopic image forming apparatus comprising: a groove having a cross-sectional triangle having an inclined surface and a vertical surface on the front side of a plate material made of a first transparent resin; A first step of producing a molding base material in which ridges having triangular cross-sections are arranged in parallel by any one of press molding, injection molding, and roll molding; A second step of selectively forming a metal reflecting surface on a vertical surface of the groove; The first and second light control panels manufactured through the first step and the second step, respectively, in a state where the metal reflecting surfaces are arranged orthogonally in plan view, the grooves facing each other, and Filling the grooves of the first and second light control panels with an adhesive made of a second transparent resin having a refractive index ⁇ 2 that is 0.9 to 1.1 times the refractive index ⁇ 1 of the first transparent resin, And a third step of joining the first and second light control panels in a deae
  • the first light control panel is located above the first light control panel with the first light control panel facing down and the second light control panel facing up. And the second light control panel is pressed against the first light control panel with a press so that the adhesive fills the grooves of the first and second light control panels. It is preferable to do this.
  • a manufacturing method of a stereoscopic image forming apparatus wherein the first and second grooves having a cross-sectional triangle having a vertical surface and an inclined surface on both sides of a first transparent resin plate, and the adjacent first First and second protrusions having a triangular cross section formed by the first and second grooves are formed, and the first and second grooves formed on both sides of the plate material are orthogonal in plan view.
  • the width w1 of the first microplanar portion is in a range of 0.01 to 0.2 times the pitch p on which the metal reflecting surface is formed, and the width w2 of the second microplanar portion is The pitch p is preferably in the range of 0.01 to 0.3 times the pitch p.
  • the second transparent resin is any one of an ultraviolet curing type, a thermosetting type, a two-component curing type, and a room temperature curing type. Is preferred.
  • the inclined surface is recessed with respect to a virtual plane connecting the upper end and the lower end of the inclined surface.
  • the ratio (h / p) of the height h of the metal reflecting surface to the pitch p of the metal reflecting surface is 0.8-5. It is preferable that it exists in the range.
  • the metal reflecting surface is formed on the vertical surface so that the inclined surface becomes a shadow from a direction along the inclined surface. It is preferably performed by sputtering, metal vapor deposition, metal fine particle spraying, or ion beam irradiation. Moreover, when metal plating (metal vapor deposition) is performed on the inclined surface and the vertical surface, the metal plating on the inclined surface can be removed with a laser or a chemical. In the above invention, metal vapor deposition is preferably performed only on the vertical surface, but if a metal reflective surface is also formed on the micro-planar portion formed at the tip of the ridge, it is preferably removed by post-processing. .
  • a method for manufacturing a stereoscopic image forming apparatus uses a molding base material manufactured by any one of press molding, injection molding, and roll molding, and a plurality of grooves formed in parallel. Since the (first and second grooves) have an inclined surface and a vertical surface and have a cross-sectional triangle and become wider on the open side of the groove, the pressing or demolding is easy, and (groove height) / (groove) 3D) can be manufactured at low cost. In addition, the generation of rainbows and image distortion due to the difference in refractive index can be suppressed and further prevented.
  • the first and second light control panels are overlapped so that the grooves face each other.
  • the reflection surface approaches, the degree of light collection from the object is improved, and a clearer image can be obtained.
  • the first and second grooves having a triangular section and the first and second ridges having a triangular section are formed on both sides of the plate material. Since the molded base material is manufactured, the first and second grooves and the first and second protrusions can be manufactured integrally, and the manufacturing of the stereoscopic image forming apparatus is facilitated.
  • (A) and (B) are a front sectional view and a side sectional view, respectively, of a stereoscopic image forming apparatus manufactured by the manufacturing method of the stereoscopic image forming apparatus according to the first embodiment of the present invention.
  • (A) is a partially enlarged side view of the projections and grooves of the molding base material in the second step of the manufacturing method of the stereoscopic image forming apparatus
  • (B) and (C) are projections of the molding base material according to the modified examples, respectively. It is a partial enlarged side view of a strip and a groove.
  • (A)-(D) are explanatory drawings of the manufacturing method of the same three-dimensional image formation device.
  • (A) and (B) are a front sectional view and a side sectional view, respectively, of a stereoscopic image forming apparatus manufactured by a manufacturing method of a stereoscopic image forming apparatus according to a second embodiment of the present invention.
  • (A)-(D) are explanatory drawings of the manufacturing method of the same three-dimensional image formation device.
  • the stereoscopic image forming apparatus 10 includes first and second light control panels (parallel light reflection panels) 11 that form a pair.
  • first light control panel 11 is disposed on the lower side
  • second light control panel 11 is disposed on the upper side. Since the first light control panel 11 and the second light control panel 11 have the same configuration, the same numbers are assigned.
  • Each of the first and second light control panels 11 has one side (front side) (on the upper side in the first light control panel 11 and on the lower side in the second light control panel 11), and has a gap in the standing state.
  • a number of strip-shaped metal reflecting surfaces 13 (mirror surfaces) arranged in parallel are provided.
  • each of the first and second light control panels 11 has a vertical surface 14 and an inclined surface (a non-light reflecting surface that transmits light) on the front side of a plate material (transparent plate material) 12 made of a first transparent resin.
  • line 17 of the 1st, 2nd light control panel 11 are each provided in parallel with a fixed pitch.
  • the first and second light control panels 11 have a state in which the metal reflecting surfaces 13 are arranged orthogonally in a plan view (for example, 85 to 95 degrees, more preferably 88 to 92 degrees). In other words, the grooves 16 are joined together so as to face each other.
  • An adhesive 18 made of a second transparent resin is disposed between the first light control panel 11 and the second light control panel 11 facing each other, and the inside of the groove 16 is filled with the adhesive 18. (Filled).
  • the upper surface of the ridge 17 of the first light control panel 11 and the lower surface of the ridge 17 of the second light control panel 11 are separated by an interval S (for example, Although it is shown in a state of being close to each other with a value exceeding 0 and not more than 5 mm, it may be in a state of being in contact with each other (no gap: 0 mm).
  • This spacing S is also filled with the adhesive 18 (the spacing S is the layer thickness of the adhesive 18).
  • the first transparent resin that forms the shape of the first and second light control panels 11 and the second transparent resin that becomes the adhesive 18 that fills the groove 16 are the same type of resin with high transparency. However, different types of transparent resins with high transparency may be used. Examples of the first transparent resin include ZEONEX (registered trademark, glass transition temperature: 120 to 160 ° C., refractive index ⁇ 1: 1.535, cyclohexane, which is a thermoplastic resin having a melting point higher than that of the second transparent resin. Olefin polymers) can be used.
  • the second transparent resin for example, ZEONOR (ZEONOR: registered trademark, glass transition temperature: 100 to 102 ° C., refractive index ⁇ 2: 1.53, cycloolefin polymer) can be used.
  • ZEONOR registered trademark, glass transition temperature: 100 to 102 ° C., refractive index ⁇ 2: 1.53, cycloolefin polymer
  • the first transparent resin in the contact portion with the second transparent resin of the first and second light control panels 11 may be partially softened (melted). Since the two transparent resins are mixed at the boundary portion, for example, the refractive index can be averaged and the bonding strength between the first transparent resin and the second transparent resin can be increased.
  • the refractive indexes are preferably the same or similar. That is, a refractive index ⁇ 2 that is the same as or substantially equal to the refractive index ⁇ 1 of the first transparent resin (for example, a range of ⁇ 10%, ie, a range of (0.9 to 1.1) ⁇ ⁇ 1, preferably a lower limit of 0.95).
  • a second transparent resin having ⁇ ⁇ 1 and an upper limit of 1.05 ⁇ ⁇ 1) can be used.
  • two or more different resins are used as a method of matching the refractive index of the second transparent resin with the refractive index of the first transparent resin constituting the first and second light control panels 11.
  • the adhesive 18 made of the second transparent resin is an ultraviolet curable type (for example, urethane (meth) acrylate, (meth) acrylate having a polyisoprene skeleton, (meth) acrylate having a polybutadiene skeleton, (meth) acrylate monomer) (Meth) acrylate), thermosetting type, two-component curable type, and normal temperature curable type.
  • ultraviolet curable type for example, urethane (meth) acrylate, (meth) acrylate having a polyisoprene skeleton, (meth) acrylate having a polybutadiene skeleton, (meth) acrylate monomer) (Meth) acrylate
  • thermosetting type for example, two-component curable type, and normal temperature curable type.
  • thermoplastic resins such as polymethyl methacrylate (PMMA: acrylic resin), amorphous fluororesin, cycloolefin polymer (COP), optical polycarbonate, fluorene polyester, polyethersulfone, etc. can also be used. The same applies to transparent resin).
  • PMMA polymethyl methacrylate
  • COP cycloolefin polymer
  • optical polycarbonate fluorene polyester
  • polyethersulfone polyethersulfone
  • the first and second light control panels 11 have t / h in the range of 0.5 to 10, for example, where t is the thickness of the plate 12 and h is the height of the metal reflecting surface 13 (projection strip 17). Is preferred. Here, it is practical that (t + h) is in the range of 0.5 to 5 mm and h is in the range of 0.03 to 3 mm, for example, but the present invention is not limited to this value.
  • the angle ⁇ 1 between the metal reflecting surface 13 (vertical surface 14) and the inclined surface 15 is preferably in the range of 15 to 60 degrees (preferably, the upper limit is 45 degrees), depending on the thickness t and the height h. Can be changed.
  • the aspect ratio (h / p), which is the ratio of the height h of the metal reflecting surface 13 to the pitch (width of the groove 16) p of the metal reflecting surface 13, is 0.8 to 5 (preferably, the lower limit is 2, the upper limit is Is preferably in the range of 3.5), whereby a metal reflecting surface 13 having a higher height is obtained.
  • First and second micro-planar portions 19 and 20 are respectively provided at the corners (tips and tops) of the ridges 17 forming an acute angle of the cross-sectional triangle and the corners (bottoms) of the grooves 16 forming the acute angle of the cross-sectional triangles. Is provided.
  • the width w1 of the first microplanar portion 19 is in the range of 0.01 to 0.2 times (preferably, the lower limit is 0.02 times) the pitch p on which the metal reflecting surface 13 is formed
  • the width w2 of the second microplanar portion 20 is in the range of 0.01 to 0.3 times (preferably the lower limit is 0.02 times and the upper limit is 0.2 times) the above-described pitch p, and w2 ⁇ Preferably it is w1.
  • first and second minute flat surface portions 19 and 20 makes it difficult for the product to be wrinkled and further increases the product accuracy.
  • the widths of the first and second microplanar portions 19 and 20 are small, they are ignored and the cross-sectional shapes of the grooves 16 and the ridges 17 are described as cross-sectional triangles (the following examples) The same applies to the above).
  • the metal reflecting surface 13 is selectively mirror-finished on the vertical surface 14 of the groove 16 of the molding base material (described later) 21 formed of the first transparent resin. Is formed.
  • the mirror surface treatment is performed such that the inclined surface 15 is shaded from the direction along the inclined surface 15 and the sputtering is performed toward the vertical surface 14 by metal sputtering, metal vapor deposition, metal fine particle spraying, or ion beam irradiation (hereinafter referred to as these). (Sometimes referred to as “sputtering, etc.”).
  • This mirror surface treatment uses a metal having high reflectivity (for example, Ag (silver), Al (aluminum), Ni (nickel), Ti (titanium), Cr (chromium), etc.).
  • the surface of the formed metal film 25 becomes the metal reflecting surface 13. Thereby, it is possible to prevent the mirror surface from being formed on the inclined surface 15 of the groove 16 as much as possible, and to selectively form the mirror surface on the vertical surface 14 of the groove 16.
  • the inclined surface 15 may remain the transparent molding base material 21 and has a uniform flat surface with good light transmittance.
  • a satin treatment an example of a demolding surface treatment
  • the inclined surface 15 is a flat surface as shown in FIG. 2 (A).
  • the inclined surfaces 22 and 23 are formed on the upper first minute flat surface.
  • the inclined surface 22 shown in FIG. 2B is configured by a curved cross section or an arcuate curved surface.
  • the inclined surface 23 shown in FIG. 2 (C) is composed of a flat surface formed on the upper side and a curved surface (cross-sectionally curved or arcuate) formed on the lower side connected thereto.
  • the inclined surface is not limited to the above-described shape as long as it is a concave surface.
  • the inclined surface can be composed of two or more planes. In this case, the angle formed by the adjacent planes is 180 degrees. It can also be configured to be less than (for example, 120 to 175 degrees, preferably the lower limit is 150 degrees and the upper limit is 170 degrees).
  • the vertical surface 14 extends along the inclined surface 15 at an angle exceeding the cross-sectional inclination angle ⁇ 1 of the planar inclined surface 15 (for example, ⁇ 1 + (1 to 10 degrees)).
  • the light L1 and L2 from the object obliquely incident from the lower left side of the stereoscopic image forming apparatus 10 are P1 and P2 of the lower metal reflecting surface 13, respectively.
  • Q1 and Q2 of the upper metal reflecting surface 13 are reflected by Q1 and Q2 of the upper metal reflecting surface 13 to form a stereoscopic image on the upper side of the stereoscopic image forming apparatus 10.
  • the metal reflection of the first and second light control panels 11 is the back side (the left side in FIGS. 1A and 1B) of the metal film 25 formed on the vertical surface 14 by the mirror treatment.
  • the front side of the metal coating 25 (the right side in FIGS. 1A and 1B) can also be used as the metal reflecting surface.
  • the inclined surface 15 becomes a light passage surface as it is.
  • FIGS. 3A to 3D a manufacturing method of the stereoscopic image forming apparatus 10 according to the first embodiment of the present invention will be described with reference to FIGS. 3A to 3D.
  • the manufacturing of the first light control panel 11 will be described. Since the method and the manufacturing method of the second light control panel 11 are the same, the manufacturing method of the first light control panel 11 will be mainly described.
  • a triangular cross-section groove 16 having an inclined surface 15 and a vertical surface 14 and a triangular cross-section 17 formed by adjacent grooves 16 are parallel to each other.
  • the arranged molding base material 21 made of the first transparent resin is manufactured by any one of press molding, injection molding, and roll molding.
  • the first transparent resin forming the molding base material 21 it is preferable to use any one of an ultraviolet curable type, a thermosetting type, a two-component curable type, and a room temperature curable type, and polymethyl methacrylate,
  • Thermoplastic resins such as amorphous fluororesin, cycloolefin polymer, optical polycarbonate, fluorene polyester, and polyethersulfone can also be used.
  • the dimensions of the molded base material 21 are substantially the same as the dimensions of the first and second light control panels 11, but as described above, the groove 16 is tapered outwardly, and therefore further inclined. Since the surface 15 is subjected to a satin treatment, the demolding property is good and the long vertical surface 14 can be easily obtained. In addition, as a method of performing the satin treatment on the inclined surface 15, there is a method of forming a plurality of irregularities on the contact surface of the mold for manufacturing the molded base material 21 with the inclined surface 15. Furthermore, it is preferable that the molding base material 21 is subjected to an annealing process for removing residual stress generated during molding. This annealing process is performed, for example, by placing the molding base material 21 in an electric furnace, hot air dryer, or hot water tank (heating solvent) for a predetermined time (the same applies to the following examples).
  • the vertical surface 14 is selectively made into a mirror surface (metal reflection surface 13) by sputtering, for example.
  • sputtering means that an inert gas (mainly argon) is introduced in a vacuum, a negative voltage is applied to the target to cause glow discharge, and the inert gas is ionized (or not ionized).
  • gas ions collide with the surface of the target at high speed, and the metal particles of the film forming material (eg, Ag, Al, Ni, etc.) constituting the target are ejected, and the substrate (here, the vertical surface) 14) is a technique of adhering and depositing.
  • the gas flow 26 is sputtered toward the vertical surface 14 along the inclined surface 15 (from the direction along the inclined surface 15 (specific direction)) and in such a manner that the inclined surface 15 becomes a shadow.
  • the film forming material hardly adheres to the inclined surface 15 and adheres to the vertical surface 14.
  • the smaller the angle ⁇ 1 of the inclined surface 15 is, and the more the inclined surfaces 22 and 23 shown in FIGS.
  • metal vapor deposition, metal fine particle spraying, or ion beam irradiation is used to perform metal irradiation from a specific direction to form a metal film 25 on the vertical surface 14.
  • the metal reflecting surface 13 can also be used.
  • a metal film (metal reflection film) 25 is formed on the surface of the vertical surface 14, and the surface becomes the metal reflection surface 13 to obtain the first light control panel 11 (the same applies to the second light control panel 11). ).
  • the first light control panel 11 manufactured through the first step and the second step is disposed on the support base 27 with the groove 16 opened upward.
  • the adhesive 18 made of the second transparent resin described above is placed on one light control panel 11.
  • the adhesive 18 is liquid (jelly-like).
  • the adhesive 18 it is preferable to use any one of an ultraviolet curing type, a thermosetting type, a two-component curing type, and a room temperature curing type, and polymethyl methacrylate, an amorphous fluororesin, and a cycloolefin polymer.
  • thermoplastic resins such as optical polycarbonate, fluorene polyester, and polyethersulfone can be used.
  • the second light control panel 11 is disposed on the first light control panel 11 with the grooves 16 facing each other in a state where the respective metal reflection surfaces 13 are arranged orthogonally in plan view.
  • the second light control panel 11 is pressed against the first light control panel 11 with a press 28 in a deaerated state (depressurized state, and further in a vacuum state), and the first and second light control panels 11 are pressed.
  • the groove 16 is filled with the adhesive 18 (the groove 16 is filled with the adhesive 18), and the first and second light control panels 11 are joined.
  • the adhesive 18 may be a plate (sheet) made of a thermoplastic resin.
  • the plate-like adhesive 18 is placed on the first light control panel 11, and the second light control panel 11 is placed on the adhesive 18.
  • the adhesive 18 is heated and softened (and further melted) to form the groove. 16 is filled with adhesive 18 and then cooled.
  • the adhesive 18 can be injected between the first light control panel 11 and the second light control panel 11 that are disposed to face each other with the grooves 16 facing each other. In this case, the parts other than the injection part of the adhesive 18 are sealed.
  • a stereoscopic image imaging apparatus 30 manufactured by the manufacturing method of the stereoscopic image imaging apparatus according to the second embodiment of the present invention.
  • the same members as those of the three-dimensional image forming apparatus 10 are denoted by the same reference numerals and detailed description thereof is omitted.
  • the stereoscopic image forming apparatus 10 described above is formed by separately manufacturing the first and second light control panels 11 and superimposing the grooves 16 in a state of facing each other.
  • the stereoscopic image forming apparatus 30 includes grooves (32, 33) and protrusions (34, 35) formed on the front and back sides (both sides) of a plate material (transparent plate material) 31 made of a first transparent resin. No)) and is formed by integral molding.
  • the stereoscopic image forming apparatus 30 includes a groove (first groove) 32 having a vertical surface 36 and an inclined surface 37 on the front side (one side) of a plate member 31 located in the center, and an adjacent groove 32.
  • the formed triangular ridges (first ridges) 34 are arranged in parallel to each other, and on the back side (the other side) of the plate 31, the cross-sectional triangular grooves (second grooves) having the vertical surface 38 and the inclined surface 39.
  • (Grooves) 33 and ridges (second ridges) 35 having a triangular cross section formed by adjacent grooves 33 each have a molding base material 40 made of a first transparent resin and arranged in parallel. .
  • the groove 32 formed on the front side of the plate material 31 and the groove 33 formed on the back side of the plate material 31 intersect at right angles (for example, 85 to 95 degrees, more preferably 88 to 92 degrees in a plan view). (Including the state that was done).
  • the grooves 32 and 33 have the same configuration as the groove 16 of the stereoscopic image forming apparatus 10, and the ridges 34 and 35 have the same configuration as the protruding line 17 of the stereoscopic image imaging apparatus 10.
  • the metal reflecting surface 13 is formed on the vertical surfaces 36 and 38 of the grooves 32 and 33.
  • the thickness T of the plate 31 is preferably in the range of, for example, 0.5 ⁇ h1 to 3 ⁇ h1 (and the upper limit is 1 ⁇ h1).
  • the aspect ratio (h1 / p) of the height h1 of the metal reflecting surface 13 with respect to the pitch p of the metal reflecting surface 13 is preferably in the range of 0.8-5.
  • the interiors of the grooves 32 and 33 are filled (filled) with a filler 18a (the same component as the adhesive 18 described above) made of a second transparent resin.
  • the surface of the filler (filler) 18a filling the grooves 32 and 33 may be left as it is without being treated, or may be ground (polished) after curing as necessary.
  • the transparent flat plate which consists of 1st transparent resin or 2nd transparent resin can also be arrange
  • the transparent flat plate may abut on the tops of the ridges 34 and 35 (the first micro-planar part 19), and may have a gap with the tops of the ridges 34 and 35.
  • (First step) As shown in FIG. 5 (A), on both sides of the plate material 31 are formed triangular cross-section ridges 34 and 35 formed by triangular cross-section grooves 32 and 33 and adjacent grooves 32 and 33, respectively.
  • a molding base material 40 in which grooves 32 and 33 formed on both sides of 31 are arranged orthogonally in plan view is manufactured by any one of press molding, injection molding, and roll molding.
  • the molding base material 40 is formed of a first transparent resin, like the molding base material 21 of the stereoscopic image forming apparatus 10 described above.
  • the vertical surface 36 is selectively made into a mirror surface (metal reflecting surface 13) by sputtering, for example.
  • the gas flow 26 is sputtered along the inclined surface 37 (from the direction (specific direction) along the inclined surface 37) toward the vertical surface 36 so that the inclined surface 37 becomes a shadow. Do the ring.
  • the vertical surface 38 is also mirror-finished by the same method. In this mirror treatment, metal vapor deposition, metal fine particle spraying, or ion beam irradiation can be used instead of sputtering.
  • the metal film (metal reflection film) 25 is formed on the surface of the vertical surface 36, and the surface becomes the metal reflection surface 13, and the stereoscopic image forming apparatus main body 41 is obtained (the same applies to the vertical surface 38).
  • the filler 18a made of the second transparent resin is placed on the stereoscopic image forming apparatus main body 41, and the groove 32 is filled with the filler 18a to be cured. Then, the stereoscopic image forming apparatus main body 41 is inverted, and the filler 18a made of the second transparent resin is placed on the stereoscopic image forming apparatus main body 41, and the groove 33 is filled with the filler 18a and cured.
  • the filler 18a to be used is a liquid (jelly form).
  • the filling of the fillers 18a into the grooves 32 and 33 is preferably performed in a deaerated state.
  • This flattening treatment includes not only the case of pressing with a press or the like, the case of molding with a mold, the case of cutting or polishing, and the case of arranging a transparent flat plate on the liquid filler 18a. As a result, the flat stereoscopic image forming apparatus 30 having a flat exposed surface shown in FIG. 5D is obtained.
  • the method for manufacturing a stereoscopic image forming apparatus according to the present invention can easily and inexpensively manufacture a stereoscopic image forming apparatus having a relatively high aspect ratio. Accordingly, the stereoscopic image forming apparatus can be effectively used in devices that require images (for example, medical devices, home appliances, automobiles, airplanes, ships, etc.).
  • 10 stereoscopic image forming apparatus
  • 11 first and second light control panels
  • 12 plate material
  • 13 metal reflecting surface
  • 14 vertical surface
  • 15 inclined surface
  • 16 groove
  • 17 ridge
  • 18 Adhesive
  • 18a Filler
  • 19 First microplanar portion
  • 20 Second microplanar portion
  • 21 Molding base material
  • 22, 23 Inclined surface
  • 24 Virtual plane
  • 25 Metal coating
  • 26 Gas flow
  • 27 Support base
  • 28 Press
  • 30 Stereoscopic image forming device
  • 31 Plate material
  • 32, 33 Groove
  • 34 35: Projection
  • 36 Vertical surface
  • 37 Inclined surface
  • 38 Vertical surface
  • 39 Inclined surface
  • 40 Molding base material
  • 41 Stereoscopic image forming apparatus main body

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

The present invention has: a first step in which press molding, injection molding, or roll molding is used to produce a molded parent material 21 that has, in a top side of a plate material 12 that comprises a first transparent resin, parallel triangular ridges 17 that are each formed by a triangular groove 16 and an adjacent triangular groove 16 that have an inclined surface 15 and a vertical surface 14; a second step in which metal reflection surfaces 13 are selectively formed on the vertical surfaces 14 of the grooves 16; and a third step in which, when first and second light control panels 11 produced in the first and second steps have been arranged such that the metal reflection surfaces 13 are orthogonal in plan view and the grooves 16 face, the first and second light control panels 11 are joined in a deaerated state by means of an adhesive 18 that comprises a second transparent resin that has a refractive index η2 that is 0.9–1.1 times the refractive index η1 of the first transparent resin.

Description

立体像結像装置の製造方法Method for manufacturing stereoscopic image forming apparatus
 本発明は、立設状態で平行配置された多数の帯状の金属反射面(鏡面)群が平面視して直交配置された立体像結像装置の製造方法に関する。 The present invention relates to a method for manufacturing a stereoscopic image forming apparatus in which a plurality of strip-shaped metal reflecting surfaces (mirror surfaces) arranged in parallel in an upright state are arranged orthogonally in plan view.
 物体表面から発する光(散乱光)を用いて立体像を形成する装置として、例えば、特許文献1に記載の立体像結像装置(光学結像装置)がある。
 この結像装置は、2枚の透明平板の内部に、この透明平板の一方の面に垂直に多数かつ帯状の金属反射面からなる光反射面を一定のピッチで並べて形成した第1、第2の光制御パネルを有し、この第1、第2の光制御パネルのそれぞれの光反射面が直交するように、第1、第2の光制御パネルの一面側を向い合わせて密着させたものである。
As an apparatus for forming a stereoscopic image using light (scattered light) emitted from the object surface, for example, there is a stereoscopic image imaging apparatus (optical imaging apparatus) described in Patent Document 1.
In this imaging apparatus, first and second light reflecting surfaces each made up of a large number of strip-shaped metal reflecting surfaces are arranged at a constant pitch in two transparent flat plates perpendicularly to one surface of the transparent flat plate. In which the first and second light control panels face each other so that the light reflecting surfaces of the first and second light control panels are orthogonal to each other. It is.
国際公開第2009/131128号公報International Publication No. 2009/131128 国際公開第2015/033645号公報International Publication No. 2015/033645 特開2012-247459号公報JP 2012-247459 A
 特許文献1における、第1、第2の光制御パネルの製造に際しては、金属反射面が一面側に形成された一定厚みの板状の透明合成樹脂板やガラス板(以下、「透明板」ともいう)を、金属反射面が一方側に配置されるように多数枚積層して積層体を作製し、この積層体から各金属反射面に対して垂直な切り出し面が形成されるように切り出している。
 このため、透明板に金属反射面を形成する作業において大型の蒸着炉を必要とし、しかも、1枚又は少数枚の透明板を蒸着炉に入れて脱気して高真空にした後、蒸着処理を行い、大気圧に開放して蒸着した透明板を取り出すという作業を百回以上繰り返す必要があり、極めて手間と時間のかかる作業であった。また、金属蒸着された透明板を積層して積層体を形成し、極めて薄い所定厚で切断する作業を行って、この積層体から第1、第2の光制御パネルを切り出し、更にこれら第1、第2の光制御パネルの切り出し面(両面)の研磨作業等を行う必要があるため、作業性や製造効率が悪かった。
In manufacturing the first and second light control panels in Patent Document 1, a plate-shaped transparent synthetic resin plate or glass plate (hereinafter referred to as a “transparent plate”) having a metal reflection surface formed on one surface side. Are laminated so that the metal reflecting surface is arranged on one side, and a laminated body is manufactured, and cut out from the laminated body so that a cut surface perpendicular to each metal reflecting surface is formed. Yes.
For this reason, a large-sized vapor deposition furnace is required in the operation of forming a metal reflecting surface on the transparent plate, and one or a small number of transparent plates are put into the vapor deposition furnace and deaerated to a high vacuum, and then the vapor deposition process. It was necessary to repeat the operation of removing the vapor-deposited transparent plate opened to atmospheric pressure more than 100 times, which was extremely time-consuming and time-consuming. In addition, a laminated body is formed by laminating metal-deposited transparent plates, and an operation of cutting with a very thin predetermined thickness is performed, and the first and second light control panels are cut out from the laminated body. Since it is necessary to perform the grinding | polishing operation | work etc. of the cut surface (both sides) of the 2nd light control panel, workability | operativity and manufacturing efficiency were bad.
 そこで、特許文献2のように、平行な土手によって形成される断面四角形の溝が一面に形成され、この溝の対向する平行な側面に光反射部が形成された凹凸板材を備えた光制御パネルを2つ用意し、この2つの光制御パネルを、それぞれの光反射部を直交又は交差させた状態で向い合わせる方法が提案されている。
 しかしながら、インジェクション成型時に、凹凸板材の土手の高さを高くすると(即ち、溝の深さを深くすると)脱型が極めて困難となるという問題があった。更に、平行溝の側面を鏡面化するのは、特許文献2の技術を使用しても難しく、製品にバラツキが多いという問題があった。
Therefore, as in Patent Document 2, a light control panel including a concavo-convex plate material in which a groove having a rectangular cross section formed by parallel banks is formed on one surface, and a light reflecting portion is formed on the opposite parallel side surfaces of the groove. 2 are prepared, and a method is proposed in which the two light control panels face each other in a state where the respective light reflecting portions are orthogonal or intersecting.
However, at the time of injection molding, there is a problem that when the height of the bank of the concavo-convex plate material is increased (that is, when the depth of the groove is increased), demolding becomes extremely difficult. Further, it is difficult to mirror the side surfaces of the parallel grooves even if the technique of Patent Document 2 is used, and there is a problem that the products have many variations.
 また、特許文献3には、立体像を形成する装置として、透明材料からなる基盤にそれぞれ2つの直交側面を有する複数の筒状体を突出させた2面コーナーリフレクタアレイ光学素子(即ち、光制御パネル)を、各直交側面が同一平面上にあるように筒状体の各々の上面同士にて上下に重ね合わせたリフレクタアレイ光学装置が開示されている。
 特許文献3の光学装置においては、上下の筒状体を連接しているので、直交する反射面(以下、第1、第2の反射面という)の長さが長くなり、対象物からの集光範囲が広がるが、第1の反射面で反射した光は、第2の反射面で反射し、筒状体の端部から抜ける必要があるので、第1の反射面に有効に入光する光線の角度は限定され、明るい実像を形成することは困難であった。
 また、隣り合う筒状体の隙間は空気であって、その隙間に透明樹脂で隙間を充填すること、また充填する樹脂に基盤となる透明合成樹脂と同一又は近似した屈折率のものを使用して、屈折率の相違による虹の発生を防止するという技術的思想は開示されていない。
Further, in Patent Document 3, as a device for forming a stereoscopic image, a two-surface corner reflector array optical element (that is, light control) in which a plurality of cylindrical bodies each having two orthogonal side surfaces are projected on a base made of a transparent material. A reflector array optical device is disclosed in which panels are vertically stacked on top of each other so that each orthogonal side surface is on the same plane.
In the optical device of Patent Document 3, since the upper and lower cylindrical bodies are connected, the length of the orthogonal reflecting surfaces (hereinafter referred to as the first and second reflecting surfaces) is increased, and the collection from the object is performed. Although the light range is widened, the light reflected by the first reflecting surface needs to be reflected from the second reflecting surface and escape from the end of the cylindrical body, so that it effectively enters the first reflecting surface. The angle of the light beam was limited, and it was difficult to form a bright real image.
The gap between adjacent cylindrical bodies is air, and the gap is filled with a transparent resin, and the resin to be filled has a refractive index that is the same as or similar to that of the transparent synthetic resin that is the base. The technical idea of preventing the generation of a rainbow due to the difference in refractive index is not disclosed.
 本発明はかかる事情に鑑みてなされたもので、製造が容易でより鮮明な立体像を得ることが可能な立体像結像装置の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a manufacturing method of a stereoscopic image forming apparatus that can be easily manufactured and can obtain a clearer stereoscopic image.
 第1の発明に係る立体像結像装置の製造方法は、第1の透明樹脂からなる板材の表側に、傾斜面と垂直面とを有する断面三角形の溝、及び隣り合う前記溝によって形成される断面三角形の凸条がそれぞれ平行配置された成型母材を、プレス成型、インジェクション成型、及びロール成型のいずれか1の方法で製造する第1工程と、
 前記溝の垂直面に選択的に金属反射面を形成する第2工程と、
 前記第1工程及び前記第2工程を経てそれぞれ製造された第1、第2の光制御パネルを、前記金属反射面が平面視して直交配置された状態で、前記溝を向かい合わせ、かつ前記第1の透明樹脂の屈折率η1の0.9~1.1倍の屈折率η2を有する第2の透明樹脂からなる接着剤で前記第1、第2の光制御パネルの溝を埋めて、該第1、第2の光制御パネルを脱気状態で接合する第3工程とを有する。
According to a first aspect of the present invention, there is provided a method for manufacturing a stereoscopic image forming apparatus, comprising: a groove having a cross-sectional triangle having an inclined surface and a vertical surface on the front side of a plate material made of a first transparent resin; A first step of producing a molding base material in which ridges having triangular cross-sections are arranged in parallel by any one of press molding, injection molding, and roll molding;
A second step of selectively forming a metal reflecting surface on a vertical surface of the groove;
The first and second light control panels manufactured through the first step and the second step, respectively, in a state where the metal reflecting surfaces are arranged orthogonally in plan view, the grooves facing each other, and Filling the grooves of the first and second light control panels with an adhesive made of a second transparent resin having a refractive index η2 that is 0.9 to 1.1 times the refractive index η1 of the first transparent resin, And a third step of joining the first and second light control panels in a deaerated state.
 第1の発明に係る立体像結像装置の製造方法において、前記第1の光制御パネルを下に、前記第2の光制御パネルを上にした状態で、前記第1の光制御パネルの上に前記接着剤を載せて、前記第2の光制御パネルをプレスで前記第1の光制御パネルに対して押圧して前記第1、第2の光制御パネルの溝内に前記接着剤が充填するのが好ましい。 In the method for manufacturing a three-dimensional image forming apparatus according to the first invention, the first light control panel is located above the first light control panel with the first light control panel facing down and the second light control panel facing up. And the second light control panel is pressed against the first light control panel with a press so that the adhesive fills the grooves of the first and second light control panels. It is preferable to do this.
第2の発明に係る立体像結像装置の製造方法は、第1の透明樹脂からなる板材の両側に垂直面と傾斜面を有する断面三角形の第1、第2の溝、及び隣り合う前記第1、第2の溝によって形成される断面三角形の第1、第2の凸条がそれぞれ形成され、かつ前記板材の両側にそれぞれ形成された前記第1、第2の溝が平面視して直交配置される成型母材を、プレス成型、インジェクション成型、及びロール成型のいずれか1の方法で製造する第1工程と、
 前記成型母材の両側にある前記第1、第2の溝の前記垂直面に、選択的に金属反射面を形成する第2工程と、
 前記第1の透明樹脂の屈折率η1の0.9~1.1倍の屈折率η2を有する第2の透明樹脂からなる充填剤で前記第1、第2の溝を埋める第3工程とを有する。
According to a second aspect of the present invention, there is provided a manufacturing method of a stereoscopic image forming apparatus, wherein the first and second grooves having a cross-sectional triangle having a vertical surface and an inclined surface on both sides of a first transparent resin plate, and the adjacent first First and second protrusions having a triangular cross section formed by the first and second grooves are formed, and the first and second grooves formed on both sides of the plate material are orthogonal in plan view. A first step of producing a molding base material to be arranged by any one of press molding, injection molding, and roll molding;
A second step of selectively forming a metal reflecting surface on the vertical surfaces of the first and second grooves on both sides of the molding base material;
A third step of filling the first and second grooves with a filler made of a second transparent resin having a refractive index η2 of 0.9 to 1.1 times the refractive index η1 of the first transparent resin; Have.
第1、第2の立体像結像装置の製造方法において、前記断面三角形の凸条(又は第1、第2の凸条)の先部及び前記断面三角形の溝(又は第1、第2の溝)の底部にはそれぞれ第1、第2の微小平面部が設けられているのが好ましい。ここで、前記第1の微小平面部の幅w1は、前記金属反射面が形成されるピッチpの0.01~0.2倍の範囲にあり、前記第2の微小平面部の幅w2は、前記ピッチpの0.01~0.3倍の範囲にあるのが好ましい。 In the first and second methods for manufacturing a stereoscopic image forming apparatus, the tip of the ridge (or the first and second ridges) having the triangular section and the groove (or the first and second grooves) having the triangular section. It is preferable that first and second minute plane portions are respectively provided at the bottom of the groove). Here, the width w1 of the first microplanar portion is in a range of 0.01 to 0.2 times the pitch p on which the metal reflecting surface is formed, and the width w2 of the second microplanar portion is The pitch p is preferably in the range of 0.01 to 0.3 times the pitch p.
第1、第2の発明に係る立体像結像装置の製造方法において、前記第2の透明樹脂は、紫外線硬化型、熱硬化型、2液硬化型、及び常温硬化型のいずれか1であるのが好ましい。 In the method for manufacturing a stereoscopic image forming apparatus according to the first and second inventions, the second transparent resin is any one of an ultraviolet curing type, a thermosetting type, a two-component curing type, and a room temperature curing type. Is preferred.
また、第1、第2の発明に係る立体像結像装置の製造方法において、前記傾斜面は、該傾斜面の上端と下端を結ぶ仮想平面に対して窪んでいるのが好ましい。 In the manufacturing method of the stereoscopic image forming apparatus according to the first and second inventions, it is preferable that the inclined surface is recessed with respect to a virtual plane connecting the upper end and the lower end of the inclined surface.
そして、第1、第2の発明に係る立体像結像装置の製造方法において、前記金属反射面のピッチpに対する前記金属反射面の高さhの比(h/p)は0.8~5の範囲にあることのが好ましい。 In the method for manufacturing a stereoscopic image forming apparatus according to the first and second inventions, the ratio (h / p) of the height h of the metal reflecting surface to the pitch p of the metal reflecting surface is 0.8-5. It is preferable that it exists in the range.
 第1、第2の発明に係る立体像結像装置の製造方法において、前記金属反射面の形成は、前記傾斜面に沿った方向から該傾斜面が影になるようにして、前記垂直面に向けてスパッターリング、金属蒸着、金属微小粒子の吹き付け、又はイオンビームの照射をすることにより行うのが好ましい。また、傾斜面及び垂直面に金属めっき(金属蒸着)を行った場合、傾斜面の金属めっきをレーザー又は薬品等で除去することもできる。なお、以上の発明において、金属蒸着は垂直面にのみ行うのが好ましいが、凸条先端に形成された微小平面部にも金属反射面が形成された場合は、後処理で除去するのが好ましい。 In the method for manufacturing a stereoscopic image forming apparatus according to the first and second inventions, the metal reflecting surface is formed on the vertical surface so that the inclined surface becomes a shadow from a direction along the inclined surface. It is preferably performed by sputtering, metal vapor deposition, metal fine particle spraying, or ion beam irradiation. Moreover, when metal plating (metal vapor deposition) is performed on the inclined surface and the vertical surface, the metal plating on the inclined surface can be removed with a laser or a chemical. In the above invention, metal vapor deposition is preferably performed only on the vertical surface, but if a metal reflective surface is also formed on the micro-planar portion formed at the tip of the ridge, it is preferably removed by post-processing. .
 第1、第2の発明に係る立体像結像装置の製造方法は、プレス成型、インジェクション成型、及びロール成型のいずれか1で製造された成型母材を使用し、平行に多数形成された溝(第1、第2の溝)が傾斜面と垂直面を有し断面三角形となって、溝の開放側に広くなるので、押型又は脱型が容易となり、(溝の高さ)/(溝の幅)で定義されるアスペクト比が比較的高い立体像結像装置を安価に製造できる。また、屈折率の相違による虹の発生や画像の歪を抑制、更には防止できる。
 特に、第1の発明に係る立体像結像装置の製造方法は、第1、第2の光制御パネルを、溝が向かい合うようにして重ね合わせるので、第1、第2の光制御パネルの金属反射面が近づき、対象物からの光の集光度合いが向上し、より鮮明な画像を得ることができる。
 また、第2の発明に係る立体像結像装置の製造方法は、板材の両側に、断面三角形の第1、第2の溝、及び断面三角形の第1、第2の凸条がそれぞれ形成された成型母材を製造するので、第1、第2の溝及び第1、第2の凸条を一体的に製造でき、立体像結像装置の製造が容易になる。
A method for manufacturing a stereoscopic image forming apparatus according to the first and second inventions uses a molding base material manufactured by any one of press molding, injection molding, and roll molding, and a plurality of grooves formed in parallel. Since the (first and second grooves) have an inclined surface and a vertical surface and have a cross-sectional triangle and become wider on the open side of the groove, the pressing or demolding is easy, and (groove height) / (groove) 3D) can be manufactured at low cost. In addition, the generation of rainbows and image distortion due to the difference in refractive index can be suppressed and further prevented.
In particular, in the manufacturing method of the stereoscopic image forming apparatus according to the first invention, the first and second light control panels are overlapped so that the grooves face each other. The reflection surface approaches, the degree of light collection from the object is improved, and a clearer image can be obtained.
In the method for manufacturing a stereoscopic image forming apparatus according to the second invention, the first and second grooves having a triangular section and the first and second ridges having a triangular section are formed on both sides of the plate material. Since the molded base material is manufactured, the first and second grooves and the first and second protrusions can be manufactured integrally, and the manufacturing of the stereoscopic image forming apparatus is facilitated.
(A)、(B)はそれぞれ本発明の第1の実施例に係る立体像結像装置の製造方法により製造した立体像結像装置の正断面図及び側断面図である。(A) and (B) are a front sectional view and a side sectional view, respectively, of a stereoscopic image forming apparatus manufactured by the manufacturing method of the stereoscopic image forming apparatus according to the first embodiment of the present invention. (A)は同立体像結像装置の製造方法の第2工程における成型母材の凸条及び溝の部分拡大側面図、(B)、(C)はそれぞれ変形例に係る成型母材の凸条及び溝の部分拡大側面図である。(A) is a partially enlarged side view of the projections and grooves of the molding base material in the second step of the manufacturing method of the stereoscopic image forming apparatus, and (B) and (C) are projections of the molding base material according to the modified examples, respectively. It is a partial enlarged side view of a strip and a groove. (A)~(D)は同立体像結像装置の製造方法の説明図である。(A)-(D) are explanatory drawings of the manufacturing method of the same three-dimensional image formation device. (A)、(B)はそれぞれ本発明の第2の実施例に係る立体像結像装置の製造方法により製造した立体像結像装置の正断面図及び側断面図である。(A) and (B) are a front sectional view and a side sectional view, respectively, of a stereoscopic image forming apparatus manufactured by a manufacturing method of a stereoscopic image forming apparatus according to a second embodiment of the present invention. (A)~(D)は同立体像結像装置の製造方法の説明図である。(A)-(D) are explanatory drawings of the manufacturing method of the same three-dimensional image formation device.
 続いて、添付した図面を参照しつつ、本発明を具体化した実施例につき説明し、本発明の理解に供する。
 まず、図1(A)、(B)を参照しながら、本発明の第1の実施例に係る立体像結像装置の製造方法により製造した立体像結像装置10について説明する。
 立体像結像装置10は、対となる第1、第2の光制御パネル(平行光反射パネル)11を有している。なお、図1(A)、(B)においては、第1の光制御パネル11を下側に、第2の光制御パネル11を上側に、それぞれ配置している。この第1の光制御パネル11と第2の光制御パネル11は同一の構成を有しているので、同一の番号を付与する。
Subsequently, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
First, with reference to FIGS. 1A and 1B, a stereoscopic image imaging apparatus 10 manufactured by a manufacturing method of a stereoscopic image imaging apparatus according to a first embodiment of the present invention will be described.
The stereoscopic image forming apparatus 10 includes first and second light control panels (parallel light reflection panels) 11 that form a pair. In FIGS. 1A and 1B, the first light control panel 11 is disposed on the lower side, and the second light control panel 11 is disposed on the upper side. Since the first light control panel 11 and the second light control panel 11 have the same configuration, the same numbers are assigned.
 第1、第2の光制御パネル11はそれぞれ片側(表側)に(第1の光制御パネル11では上部に、第2の光制御パネル11では下部に)、立設状態で隙間を有して平行配置された多数の帯状の金属反射面13(鏡面)を備えている。具体的には、第1、第2の光制御パネル11はそれぞれ、第1の透明樹脂からなる板材(透明板材)12の表側に垂直面14及び傾斜面(非光反射面であって光透過面とするのが好ましい)15を有する断面三角形の溝16、及び隣り合う溝16によって形成される断面三角形の凸条17を備え、溝16の垂直面14に、金属反射面13が形成されている。なお、第1、第2の光制御パネル11の溝16及び凸条17はそれぞれ一定のピッチで平行に多数設けられている。 Each of the first and second light control panels 11 has one side (front side) (on the upper side in the first light control panel 11 and on the lower side in the second light control panel 11), and has a gap in the standing state. A number of strip-shaped metal reflecting surfaces 13 (mirror surfaces) arranged in parallel are provided. Specifically, each of the first and second light control panels 11 has a vertical surface 14 and an inclined surface (a non-light reflecting surface that transmits light) on the front side of a plate material (transparent plate material) 12 made of a first transparent resin. A groove 16 having a triangular cross section having 15 and a ridge 17 having a triangular cross section formed by adjacent grooves 16, and a metal reflecting surface 13 is formed on the vertical surface 14 of the groove 16. Yes. In addition, the groove | channel 16 and the protruding item | line 17 of the 1st, 2nd light control panel 11 are each provided in parallel with a fixed pitch.
 第1、第2の光制御パネル11は、金属反射面13が平面視して直交配置された状態(例えば、85~95度、より好ましくは88~92度の範囲で交差配置された状態を含む)で、溝16を向かい合わせて接合され一体化されている。この向かい合わせた第1の光制御パネル11と第2の光制御パネル11との間には、第2の透明樹脂からなる接着剤18が配置されて、溝16の内部が接着剤18で埋められている(充填されている)。
 なお、図1(A)、(B)においては、第1の光制御パネル11の凸条17の上面と、第2の光制御パネル11の凸条17の下面とが、間隔S(例えば、0を超え5mm以下程度)を有して近接配置された状態を示しているが、当接配置された状態(隙間がない:0mm)でもよい。この間隔Sにも接着剤18が充填されている(間隔Sが接着剤18の層厚)。
The first and second light control panels 11 have a state in which the metal reflecting surfaces 13 are arranged orthogonally in a plan view (for example, 85 to 95 degrees, more preferably 88 to 92 degrees). In other words, the grooves 16 are joined together so as to face each other. An adhesive 18 made of a second transparent resin is disposed between the first light control panel 11 and the second light control panel 11 facing each other, and the inside of the groove 16 is filled with the adhesive 18. (Filled).
In FIGS. 1A and 1B, the upper surface of the ridge 17 of the first light control panel 11 and the lower surface of the ridge 17 of the second light control panel 11 are separated by an interval S (for example, Although it is shown in a state of being close to each other with a value exceeding 0 and not more than 5 mm, it may be in a state of being in contact with each other (no gap: 0 mm). This spacing S is also filled with the adhesive 18 (the spacing S is the layer thickness of the adhesive 18).
 この第1、第2の光制御パネル11の形状を構成する第1の透明樹脂と、溝16に充填する接着剤18となる第2の透明樹脂は、透明度の高い同じ種類の樹脂であることが好ましいが、透明度の高い異なる種類の透明樹脂であってもよい。
 第1の透明樹脂としては、例えば、第2の透明樹脂よりも融点の高い熱可塑性樹脂であるゼオネックス(ZEONEX:登録商標、ガラス転移温度:120~160℃、屈折率η1:1.535、シクロオレフィンポリマー)を使用できる。また、第2の透明樹脂としては、例えば、ゼオノア(ZEONOR:登録商標、ガラス転移温度:100~102℃、屈折率η2:1.53、シクロオレフィンポリマー)を使用できる。
 ここで、第1、第2の透明樹脂に同じ種類の熱可塑性樹脂を使用する場合、融点が同じであるため、第1の光制御パネル11と第2の光制御パネル11の間に、溶融状態の第2の透明樹脂が流し込まれることになる。このとき、第1、第2の光制御パネル11の第2の透明樹脂との接触部分の第1の透明樹脂が部分的に軟化(溶融)するおそれもあるが、第1の透明樹脂と第2の透明樹脂が境界部分で混ざり合うため、例えば、屈折率の平均化や、第1の透明樹脂と第2の透明樹脂の結合力を高めることができる。
The first transparent resin that forms the shape of the first and second light control panels 11 and the second transparent resin that becomes the adhesive 18 that fills the groove 16 are the same type of resin with high transparency. However, different types of transparent resins with high transparency may be used.
Examples of the first transparent resin include ZEONEX (registered trademark, glass transition temperature: 120 to 160 ° C., refractive index η1: 1.535, cyclohexane, which is a thermoplastic resin having a melting point higher than that of the second transparent resin. Olefin polymers) can be used. Further, as the second transparent resin, for example, ZEONOR (ZEONOR: registered trademark, glass transition temperature: 100 to 102 ° C., refractive index η2: 1.53, cycloolefin polymer) can be used.
Here, when the same kind of thermoplastic resin is used for the first and second transparent resins, since the melting points are the same, the first light control panel 11 and the second light control panel 11 are melted. The second transparent resin in a state is poured. At this time, there is a possibility that the first transparent resin in the contact portion with the second transparent resin of the first and second light control panels 11 may be partially softened (melted). Since the two transparent resins are mixed at the boundary portion, for example, the refractive index can be averaged and the bonding strength between the first transparent resin and the second transparent resin can be increased.
 また、第1、第2の透明樹脂に異なる種類の透明樹脂を使用する場合、屈折率が同一又は近似しているのが好ましい。即ち、第1の透明樹脂の屈折率η1と同一又は略等しい屈折率η2(例えば、±10%の範囲、即ち(0.9~1.1)×η1の範囲、好ましくは下限が0.95×η1、上限が1.05×η1)を有する第2の透明樹脂を使用できる。
 ここで、第1、第2の光制御パネル11を構成する第1の透明樹脂の屈折率に対し、第2の透明樹脂の屈折率を合わせる方法としては、例えば、異なる2種以上の樹脂を混合して屈折率を調整する方法がある(第1の透明樹脂も同様の方法で屈折率を調整できる)。
 なお、第2の透明樹脂からなる接着剤18は、紫外線硬化型(例えば、ウレタン(メタ)アクリレート、ポリイソプレン骨格を有する(メタ)アクリレート、ポリブタジエン骨格を有する(メタ)アクリレート、(メタ)アクリレートモノマー等の(メタ)アクリレート)、熱硬化型、2液硬化型、及び常温硬化型のいずれか1であることが好ましい。また、例えば、ポリメチルメタクリレート(PMMA:アクリル系樹脂)、非晶質フッ素樹脂、シクロオレフィンポリマー(COP)、光学用ポリカーボネート、フルオレン系ポリエステル、ポリエーテルスルホン等の熱可塑性樹脂も使用できる(第1の透明樹脂も同様)。
In addition, when different types of transparent resins are used for the first and second transparent resins, the refractive indexes are preferably the same or similar. That is, a refractive index η2 that is the same as or substantially equal to the refractive index η1 of the first transparent resin (for example, a range of ± 10%, ie, a range of (0.9 to 1.1) × η1, preferably a lower limit of 0.95). A second transparent resin having × η1 and an upper limit of 1.05 × η1) can be used.
Here, as a method of matching the refractive index of the second transparent resin with the refractive index of the first transparent resin constituting the first and second light control panels 11, for example, two or more different resins are used. There is a method of adjusting the refractive index by mixing (the first transparent resin can also adjust the refractive index by the same method).
The adhesive 18 made of the second transparent resin is an ultraviolet curable type (for example, urethane (meth) acrylate, (meth) acrylate having a polyisoprene skeleton, (meth) acrylate having a polybutadiene skeleton, (meth) acrylate monomer) (Meth) acrylate), thermosetting type, two-component curable type, and normal temperature curable type. Further, for example, thermoplastic resins such as polymethyl methacrylate (PMMA: acrylic resin), amorphous fluororesin, cycloolefin polymer (COP), optical polycarbonate, fluorene polyester, polyethersulfone, etc. can also be used. The same applies to transparent resin).
 第1、第2の光制御パネル11は、tを板材12の厚み、hを金属反射面13(凸条17)の高さとすると、例えば、t/hが0.5~10の範囲にあるのが好ましい。ここで、(t+h)は0.5~5mmの範囲で、hは例えば0.03~3mmの範囲であるのが実用的であるが、本発明はこの数値に限定されない。
 また、金属反射面13(垂直面14)と傾斜面15との角度θ1は15~60度(好ましくは、上限を45度)の範囲にあるのが好ましいが、厚みtと高さhに応じて変えることができる。
 更に、金属反射面13のピッチ(溝16の幅)pに対する金属反射面13の高さhの比であるアスペクト比(h/p)は0.8~5(好ましくは、下限が2、上限が3.5)の範囲にあるのが好ましく、これによって、より高さの高い金属反射面13が得られる。
The first and second light control panels 11 have t / h in the range of 0.5 to 10, for example, where t is the thickness of the plate 12 and h is the height of the metal reflecting surface 13 (projection strip 17). Is preferred. Here, it is practical that (t + h) is in the range of 0.5 to 5 mm and h is in the range of 0.03 to 3 mm, for example, but the present invention is not limited to this value.
The angle θ1 between the metal reflecting surface 13 (vertical surface 14) and the inclined surface 15 is preferably in the range of 15 to 60 degrees (preferably, the upper limit is 45 degrees), depending on the thickness t and the height h. Can be changed.
Furthermore, the aspect ratio (h / p), which is the ratio of the height h of the metal reflecting surface 13 to the pitch (width of the groove 16) p of the metal reflecting surface 13, is 0.8 to 5 (preferably, the lower limit is 2, the upper limit is Is preferably in the range of 3.5), whereby a metal reflecting surface 13 having a higher height is obtained.
 断面三角形の鋭角をなす凸条17の角部(先部、頂部)、及び断面三角形の鋭角をなす溝16の角部(底部)にはそれぞれ、第1、第2の微小平面部19、20が設けられている。
 この第1の微小平面部19の幅w1は、金属反射面13が形成されるピッチpの0.01~0.2倍(好ましくは、下限が0.02倍)の範囲にあり、また、第2の微小平面部20の幅w2は、上記したピッチpの0.01~0.3倍(好ましくは、下限が0.02倍、上限が0.2倍)の範囲にあり、w2≧w1であるのが好ましい。
 この第1、第2の微小平面部19、20を設けることにより、製品に疵が付き難くなり、製品精度が更に上がる。なお、本実施例においては、第1、第2の微小平面部19、20の幅は小さいので無視し、溝16及び凸条17の断面形状を断面三角形として説明している(以下の実施例においても同様である)。
First and second micro-planar portions 19 and 20 are respectively provided at the corners (tips and tops) of the ridges 17 forming an acute angle of the cross-sectional triangle and the corners (bottoms) of the grooves 16 forming the acute angle of the cross-sectional triangles. Is provided.
The width w1 of the first microplanar portion 19 is in the range of 0.01 to 0.2 times (preferably, the lower limit is 0.02 times) the pitch p on which the metal reflecting surface 13 is formed, The width w2 of the second microplanar portion 20 is in the range of 0.01 to 0.3 times (preferably the lower limit is 0.02 times and the upper limit is 0.2 times) the above-described pitch p, and w2 ≧ Preferably it is w1.
Providing the first and second minute flat surface portions 19 and 20 makes it difficult for the product to be wrinkled and further increases the product accuracy. In the present embodiment, since the widths of the first and second microplanar portions 19 and 20 are small, they are ignored and the cross-sectional shapes of the grooves 16 and the ridges 17 are described as cross-sectional triangles (the following examples) The same applies to the above).
 金属反射面13は、図2(A)に示すように、第1の透明樹脂で形成される成型母材(後述する)21の溝16の垂直面14に、選択的に鏡面処理を行って形成されている。
 鏡面処理は、傾斜面15に沿った方向から傾斜面15が影になるようにして、垂直面14に向けてスパッターリング、金属蒸着、金属微粒子の吹き付け、又はイオンビームの照射(以下、これらを「スパッターリング等」と称する場合もある)をすることにより行う。この鏡面処理には、高反射率を有する金属(例えば、Ag(銀)、Al(アルミニウム)、Ni(ニッケル)、Ti(チタン)、Cr(クロム)等)を用いており、垂直面14に形成される金属被膜25の表面が金属反射面13となる。
 これにより、溝16の傾斜面15に鏡面が形成されるのを極力防止し、溝16の垂直面14に選択的に鏡面を形成することが可能となる。
As shown in FIG. 2A, the metal reflecting surface 13 is selectively mirror-finished on the vertical surface 14 of the groove 16 of the molding base material (described later) 21 formed of the first transparent resin. Is formed.
The mirror surface treatment is performed such that the inclined surface 15 is shaded from the direction along the inclined surface 15 and the sputtering is performed toward the vertical surface 14 by metal sputtering, metal vapor deposition, metal fine particle spraying, or ion beam irradiation (hereinafter referred to as these). (Sometimes referred to as “sputtering, etc.”). This mirror surface treatment uses a metal having high reflectivity (for example, Ag (silver), Al (aluminum), Ni (nickel), Ti (titanium), Cr (chromium), etc.). The surface of the formed metal film 25 becomes the metal reflecting surface 13.
Thereby, it is possible to prevent the mirror surface from being formed on the inclined surface 15 of the groove 16 as much as possible, and to selectively form the mirror surface on the vertical surface 14 of the groove 16.
 一方、傾斜面15は、透明な成型母材21のままでよく、光透過性のよい均一な平面を有しているが、後述する成型母材21の製造に際し、型抜き抵抗を下げるため、傾斜面15に複数の凹凸(ディンプル)を形成する梨地処理(脱型表面処理の一例)を行うことが好ましい。
 この傾斜面15は、図2(A)に示すように平面となっているが、図2(B)、(C)に示すように、傾斜面22、23を、上側の第1の微小平面部19の溝側端部(上端)と、下側の第2の微小平面部20の垂直面側端部(下端)とを結ぶ、仮想平面24に対して窪む凹面で構成することもできる。具体的には、以下の通りである。
 図2(B)に示す傾斜面22は、断面湾曲又は円弧状の曲面で構成されている。
 図2(C)に示す傾斜面23は、上側に形成された平面と、これに連接する下側に形成された曲面(断面湾曲又は円弧状)とで構成されている。
On the other hand, the inclined surface 15 may remain the transparent molding base material 21 and has a uniform flat surface with good light transmittance. However, in order to reduce the die-cutting resistance when manufacturing the molding base material 21 described later, It is preferable to perform a satin treatment (an example of a demolding surface treatment) for forming a plurality of irregularities (dimples) on the inclined surface 15.
The inclined surface 15 is a flat surface as shown in FIG. 2 (A). However, as shown in FIGS. 2 (B) and 2 (C), the inclined surfaces 22 and 23 are formed on the upper first minute flat surface. It can also be configured by a concave surface that is recessed with respect to the virtual plane 24 that connects the groove-side end (upper end) of the portion 19 and the vertical surface-side end (lower end) of the lower second microplanar portion 20. . Specifically, it is as follows.
The inclined surface 22 shown in FIG. 2B is configured by a curved cross section or an arcuate curved surface.
The inclined surface 23 shown in FIG. 2 (C) is composed of a flat surface formed on the upper side and a curved surface (cross-sectionally curved or arcuate) formed on the lower side connected thereto.
 なお、傾斜面は、凹面であれば上記した形状に限定されるものではなく、例えば、2つ以上の複数の平面で構成することもでき、この場合、隣接する平面のなす角を、180度未満(例えば、120~175度、好ましくは、下限が150度、上限が170度)となるように、構成することもできる。
 これにより、図2(A)に示すように、平面状の傾斜面15の断面傾斜角度θ1を超える角度(例えば、θ1+(1~10度))で、傾斜面15に沿って、垂直面14にスパッターリング等することで、傾斜面15に鏡面が形成されるのを更に防止し、溝16の垂直面14に選択的に鏡面を形成することが可能となる(図2(B)、(C)も同様)。このため、傾斜面15の仮想平面24に対する窪み量は、スパッターリング等の条件に応じて種々変更できる。
The inclined surface is not limited to the above-described shape as long as it is a concave surface. For example, the inclined surface can be composed of two or more planes. In this case, the angle formed by the adjacent planes is 180 degrees. It can also be configured to be less than (for example, 120 to 175 degrees, preferably the lower limit is 150 degrees and the upper limit is 170 degrees).
As a result, as shown in FIG. 2A, the vertical surface 14 extends along the inclined surface 15 at an angle exceeding the cross-sectional inclination angle θ1 of the planar inclined surface 15 (for example, θ1 + (1 to 10 degrees)). By performing sputtering or the like, it is possible to further prevent the mirror surface from being formed on the inclined surface 15 and to selectively form the mirror surface on the vertical surface 14 of the groove 16 (FIG. 2B, ( The same applies to C). For this reason, the amount of depression with respect to the virtual plane 24 of the inclined surface 15 can be variously changed according to conditions such as sputtering.
 これによって、図1(A)、(B)において、立体像結像装置10の左下側から斜めに入光した対象物からの光L1、L2は、下側の金属反射面13のP1、P2で反射し、更に上側の金属反射面13のQ1、Q2で反射して、立体像結像装置10の上側に立体像を形成する。なお、本実施例においては、鏡面処理によって垂直面14に形成された金属被膜25の裏側(図1(A)、(B)では左側)を第1、第2の光制御パネル11の金属反射面13として使用したが、金属被膜25の表側(図1(A)、(B)では右側)を金属反射面として使用することもできる。
 この立体像結像装置10の動作において、空気中から板材12へ入光する場合、及び板材12から空気中に出光する場合に、光の屈折現象、場合によって全反射現象を起こすので、これらを考慮して立体像結像装置10を使用する必要がある(以下の実施例においても同様である)。なお、傾斜面15はそのまま光通過面となる。
Thereby, in FIGS. 1A and 1B, the light L1 and L2 from the object obliquely incident from the lower left side of the stereoscopic image forming apparatus 10 are P1 and P2 of the lower metal reflecting surface 13, respectively. , And further reflected by Q1 and Q2 of the upper metal reflecting surface 13 to form a stereoscopic image on the upper side of the stereoscopic image forming apparatus 10. In this embodiment, the metal reflection of the first and second light control panels 11 is the back side (the left side in FIGS. 1A and 1B) of the metal film 25 formed on the vertical surface 14 by the mirror treatment. Although used as the surface 13, the front side of the metal coating 25 (the right side in FIGS. 1A and 1B) can also be used as the metal reflecting surface.
In the operation of the stereoscopic image forming apparatus 10, when light enters the plate 12 from the air and when light exits from the plate 12 into the air, a light refraction phenomenon and a total reflection phenomenon occur depending on the case. It is necessary to use the stereoscopic image forming apparatus 10 in consideration (the same applies to the following embodiments). In addition, the inclined surface 15 becomes a light passage surface as it is.
 続いて、本発明の第1の実施例に係る立体像結像装置10の製造方法について、図3(A)~(D)を参照しながら説明するが、第1の光制御パネル11の製造方法と第2の光制御パネル11の製造方法は同じであるので、第1の光制御パネル11の製造方法を主として説明する。 Subsequently, a manufacturing method of the stereoscopic image forming apparatus 10 according to the first embodiment of the present invention will be described with reference to FIGS. 3A to 3D. However, the manufacturing of the first light control panel 11 will be described. Since the method and the manufacturing method of the second light control panel 11 are the same, the manufacturing method of the first light control panel 11 will be mainly described.
(第1工程)
 図3(A)に示すように、板材12の表側に、傾斜面15と垂直面14とを有する断面三角形の溝16、及び隣り合う溝16によって形成される断面三角形の凸条17がそれぞれ平行配置された、第1の透明樹脂からなる成型母材21を、プレス成型、インジェクション成型、及びロール成型のいずれか1の方法によって製造する。この成型母材21を形成する第1の透明樹脂としては、紫外線硬化型、熱硬化型、2液硬化型、及び常温硬化型のいずれか1を使用することが好ましく、また、ポリメチルメタクリレート、非晶質フッ素樹脂、シクロオレフィンポリマー、光学用ポリカーボネート、フルオレン系ポリエステル、ポリエーテルスルホン等の熱可塑性樹脂も使用できる。
(First step)
As shown in FIG. 3A, on the front side of the plate member 12, a triangular cross-section groove 16 having an inclined surface 15 and a vertical surface 14 and a triangular cross-section 17 formed by adjacent grooves 16 are parallel to each other. The arranged molding base material 21 made of the first transparent resin is manufactured by any one of press molding, injection molding, and roll molding. As the first transparent resin forming the molding base material 21, it is preferable to use any one of an ultraviolet curable type, a thermosetting type, a two-component curable type, and a room temperature curable type, and polymethyl methacrylate, Thermoplastic resins such as amorphous fluororesin, cycloolefin polymer, optical polycarbonate, fluorene polyester, and polyethersulfone can also be used.
 成型母材21の寸法については、第1、第2の光制御パネル11の寸法と略同じであるが、前述の通り、溝16の部分が外広がりのテーパになっているので、更には傾斜面15に梨地処理を施すので、脱型性はよく、長尺の垂直面14を容易に得ることができる。なお、傾斜面15に梨地処理を施す方法としては、成型母材21を製造する型枠の、傾斜面15との当接面に複数の凹凸を形成する方法がある。
 更に、成型母材21には、成型時に発生した残留応力を除去するためのアニーリング処理を行うことが好ましい。このアニーリング処理は、例えば成型母材21を、電気炉や熱風乾燥機、又は熱水槽(加熱溶媒)に所定時間入れることによって行う(以下の実施例においても同様である)。
The dimensions of the molded base material 21 are substantially the same as the dimensions of the first and second light control panels 11, but as described above, the groove 16 is tapered outwardly, and therefore further inclined. Since the surface 15 is subjected to a satin treatment, the demolding property is good and the long vertical surface 14 can be easily obtained. In addition, as a method of performing the satin treatment on the inclined surface 15, there is a method of forming a plurality of irregularities on the contact surface of the mold for manufacturing the molded base material 21 with the inclined surface 15.
Furthermore, it is preferable that the molding base material 21 is subjected to an annealing process for removing residual stress generated during molding. This annealing process is performed, for example, by placing the molding base material 21 in an electric furnace, hot air dryer, or hot water tank (heating solvent) for a predetermined time (the same applies to the following examples).
(第2工程)
 図2(A)、図3(B)に示すように、例えばスパッターリングによって、垂直面14を選択的に鏡面(金属反射面13)にする。
 ここで、スパッターリングとは、真空中で不活性ガス(主にアルゴン)を導入し、ターゲットにマイナスの電圧を引加してグロー放電を起こさせ、不活性ガスをイオン化し(又は、イオン化しない原子状態で)、高速でターゲットの表面にガスイオンを衝突させ、ターゲットを構成する成膜材料(例えば、Ag、Al、Ni等)の金属粒子を弾き出し、勢いよく基材(ここでは、垂直面14)に付着させ堆積させる技術である。
(Second step)
As shown in FIGS. 2A and 3B, the vertical surface 14 is selectively made into a mirror surface (metal reflection surface 13) by sputtering, for example.
Here, sputtering means that an inert gas (mainly argon) is introduced in a vacuum, a negative voltage is applied to the target to cause glow discharge, and the inert gas is ionized (or not ionized). In the atomic state), gas ions collide with the surface of the target at high speed, and the metal particles of the film forming material (eg, Ag, Al, Ni, etc.) constituting the target are ejected, and the substrate (here, the vertical surface) 14) is a technique of adhering and depositing.
 このとき、ガスの流れ26を傾斜面15に沿って(傾斜面15に沿った方向(特定方向)から)、かつ傾斜面15が影になるようにして、垂直面14に向けてスパッターリング(金属粒噴射も含む)を行うと、傾斜面15には成膜材料が付着し難く、垂直面14に付着する。特に、傾斜面15の角度θ1が小さいほど、また、図2(B)、(C)に示した傾斜面22、23を採用するほど、選択的付着効率がよい。
 なお、鏡面処理には、スパッターリングの代わりに、金属蒸着、金属微小粒子の吹き付け、又はイオンビームの照射を用いて、特定方向から金属照射を行い、垂直面14に金属被膜25を形成して、金属反射面13とすることもできる。
 これによって、垂直面14の表面に金属被膜(金属反射膜)25が形成され、その表面が金属反射面13となり、第1の光制御パネル11が得られる(第2の光制御パネル11も同様)。
At this time, the gas flow 26 is sputtered toward the vertical surface 14 along the inclined surface 15 (from the direction along the inclined surface 15 (specific direction)) and in such a manner that the inclined surface 15 becomes a shadow. (Including metal particle injection), the film forming material hardly adheres to the inclined surface 15 and adheres to the vertical surface 14. In particular, the smaller the angle θ1 of the inclined surface 15 is, and the more the inclined surfaces 22 and 23 shown in FIGS.
In the mirror treatment, instead of sputtering, metal vapor deposition, metal fine particle spraying, or ion beam irradiation is used to perform metal irradiation from a specific direction to form a metal film 25 on the vertical surface 14. The metal reflecting surface 13 can also be used.
As a result, a metal film (metal reflection film) 25 is formed on the surface of the vertical surface 14, and the surface becomes the metal reflection surface 13 to obtain the first light control panel 11 (the same applies to the second light control panel 11). ).
(第3工程)
 図3(C)に示すように、第1工程及び第2工程を経て製造された第1の光制御パネル11を、溝16が上方に開口した状態で支持台27上に配置し、この第1の光制御パネル11の上に、前記した第2の透明樹脂からなる接着剤18を載せる。なお、接着剤18は液体(ゼリー状)である。
 この接着剤18には、紫外線硬化型、熱硬化型、2液硬化型、及び常温硬化型のいずれか1を使用することが好ましく、また、ポリメチルメタクリレート、非晶質フッ素樹脂、シクロオレフィンポリマー、光学用ポリカーボネート、フルオレン系ポリエステル、ポリエーテルスルホン等の熱可塑性樹脂も使用できる。
(Third step)
As shown in FIG. 3C, the first light control panel 11 manufactured through the first step and the second step is disposed on the support base 27 with the groove 16 opened upward. The adhesive 18 made of the second transparent resin described above is placed on one light control panel 11. The adhesive 18 is liquid (jelly-like).
As the adhesive 18, it is preferable to use any one of an ultraviolet curing type, a thermosetting type, a two-component curing type, and a room temperature curing type, and polymethyl methacrylate, an amorphous fluororesin, and a cycloolefin polymer. Also, thermoplastic resins such as optical polycarbonate, fluorene polyester, and polyethersulfone can be used.
 続いて、この第1の光制御パネル11上に、第2の光制御パネル11を、それぞれの金属反射面13が平面視して直交配置された状態で、溝16を向かい合わせて配置する。
 そして、脱気状態(減圧状態、更には真空状態)で、第2の光制御パネル11をプレス28で第1の光制御パネル11に対して押圧し、第1、第2の光制御パネル11の溝16内に接着剤18を充填して(溝16を接着剤18で埋めて)、第1、第2の光制御パネル11を接合する。
 このように、第1、第2の光制御パネル11の接合作業を、脱気状態で行うことで、内部に気泡が発生することを防止できる。なお、第1、第2の光制御パネル11の接合中に超音波等の振動を加えて(加振して)、内部に発生した気泡を除去することもできる。
Subsequently, the second light control panel 11 is disposed on the first light control panel 11 with the grooves 16 facing each other in a state where the respective metal reflection surfaces 13 are arranged orthogonally in plan view.
The second light control panel 11 is pressed against the first light control panel 11 with a press 28 in a deaerated state (depressurized state, and further in a vacuum state), and the first and second light control panels 11 are pressed. The groove 16 is filled with the adhesive 18 (the groove 16 is filled with the adhesive 18), and the first and second light control panels 11 are joined.
Thus, it can prevent that a bubble generate | occur | produces inside by performing joining operation | work of the 1st, 2nd light control panel 11 in a deaeration state. It is also possible to remove bubbles generated inside by applying vibrations such as ultrasonic waves during the joining of the first and second light control panels 11 (vibrating).
 なお、接着剤18には、熱可塑性樹脂からなる板状(シート状)のものを使用することもできる。
 この場合、まず、第1の光制御パネル11の上に板状の接着剤18を載せ、更にこの接着剤18の上に第2の光制御パネル11を載せる。次に、脱気状態で、第2の光制御パネル11をプレス28で第1の光制御パネル11に対して押圧しながら、少なくとも接着剤18を加熱し軟化(更には溶融)させて、溝16を接着剤18で埋めた後、冷却する。
 また、脱気状態で、溝16を向かい合わせて対向配置された第1の光制御パネル11と第2の光制御パネル11との間に、接着剤18を注入することもできる。この場合、接着剤18の注入部以外を封止する。
 これによって、図3(D)に示す立体像結像装置10が完成する。
The adhesive 18 may be a plate (sheet) made of a thermoplastic resin.
In this case, first, the plate-like adhesive 18 is placed on the first light control panel 11, and the second light control panel 11 is placed on the adhesive 18. Next, in the deaerated state, while pressing the second light control panel 11 against the first light control panel 11 with the press 28, at least the adhesive 18 is heated and softened (and further melted) to form the groove. 16 is filled with adhesive 18 and then cooled.
Further, in the deaerated state, the adhesive 18 can be injected between the first light control panel 11 and the second light control panel 11 that are disposed to face each other with the grooves 16 facing each other. In this case, the parts other than the injection part of the adhesive 18 are sealed.
Thereby, the stereoscopic image forming apparatus 10 shown in FIG.
 次に、図4(A)、(B)を参照しながら、本発明の第2の実施例に係る立体像結像装置の製造方法により製造した立体像結像装置30について説明するが、前記した立体像結像装置10と同一部材には同一符号を付し、詳しい説明を省略する。
 前記した立体像結像装置10は、第1、第2の光制御パネル11を別々に製造し、溝16を向かい合わせた状態で重ね合わせて形成したものである。一方、この立体像結像装置30は、第1の透明樹脂からなる板材(透明板材)31の表裏側(両側)に形成される溝32、33及び凸条34、35を、金型(図示しない)によって一体成型して、形成されたものである。
Next, with reference to FIGS. 4A and 4B, a stereoscopic image imaging apparatus 30 manufactured by the manufacturing method of the stereoscopic image imaging apparatus according to the second embodiment of the present invention will be described. The same members as those of the three-dimensional image forming apparatus 10 are denoted by the same reference numerals and detailed description thereof is omitted.
The stereoscopic image forming apparatus 10 described above is formed by separately manufacturing the first and second light control panels 11 and superimposing the grooves 16 in a state of facing each other. On the other hand, the stereoscopic image forming apparatus 30 includes grooves (32, 33) and protrusions (34, 35) formed on the front and back sides (both sides) of a plate material (transparent plate material) 31 made of a first transparent resin. No)) and is formed by integral molding.
 この立体像結像装置30は、中央に位置する板材31の表側(一側)に、垂直面36と傾斜面37を有する断面三角形の溝(第1の溝)32、及び隣り合う溝32によって形成される断面三角形の凸条(第1の凸条)34が、それぞれ平行配置され、板材31の裏側(他側)に、垂直面38と傾斜面39を有する断面三角形の溝(第2の溝)33、及び隣り合う溝33によって形成される断面三角形の凸条(第2の凸条)35が、それぞれ平行配置された、第1の透明樹脂からなる成型母材40を有している。 The stereoscopic image forming apparatus 30 includes a groove (first groove) 32 having a vertical surface 36 and an inclined surface 37 on the front side (one side) of a plate member 31 located in the center, and an adjacent groove 32. The formed triangular ridges (first ridges) 34 are arranged in parallel to each other, and on the back side (the other side) of the plate 31, the cross-sectional triangular grooves (second grooves) having the vertical surface 38 and the inclined surface 39. (Grooves) 33 and ridges (second ridges) 35 having a triangular cross section formed by adjacent grooves 33 each have a molding base material 40 made of a first transparent resin and arranged in parallel. .
 この板材31の表側に形成された溝32と、板材31の裏側に形成された溝33とは、平面視して直交(例えば、85~95度、より好ましくは88~92度の範囲で交差した状態を含む)している。
 溝32、33は、立体像結像装置10の溝16と同様の構成であり、凸条34、35は、立体像結像装置10の凸条17と同様の構成である。この溝32、33の垂直面36、38に、金属反射面13が形成されている。
 この金属反射面13の高さをh1とすると、板材31の厚みTは、例えば、0.5×h1~3×h1(更には、上限が1×h1)の範囲にあるのが好ましい。また、金属反射面13のピッチpに対する金属反射面13の高さh1のアスペクト比(h1/p)は0.8~5の範囲にあるのが好ましい。
The groove 32 formed on the front side of the plate material 31 and the groove 33 formed on the back side of the plate material 31 intersect at right angles (for example, 85 to 95 degrees, more preferably 88 to 92 degrees in a plan view). (Including the state that was done).
The grooves 32 and 33 have the same configuration as the groove 16 of the stereoscopic image forming apparatus 10, and the ridges 34 and 35 have the same configuration as the protruding line 17 of the stereoscopic image imaging apparatus 10. The metal reflecting surface 13 is formed on the vertical surfaces 36 and 38 of the grooves 32 and 33.
When the height of the metal reflecting surface 13 is h1, the thickness T of the plate 31 is preferably in the range of, for example, 0.5 × h1 to 3 × h1 (and the upper limit is 1 × h1). The aspect ratio (h1 / p) of the height h1 of the metal reflecting surface 13 with respect to the pitch p of the metal reflecting surface 13 is preferably in the range of 0.8-5.
 なお、溝32、33の内部は、第2の透明樹脂からなる充填剤18a(前記した接着剤18と同一成分)で埋められている(充填されている)。この溝32、33を埋めた充填剤(充填材)18aの表面は、特に処理せずにそのままの状態でもよく、また、必要に応じて硬化後、研削(研磨)してもよい。
 また、充填材18aの表面に、例えば、第1の透明樹脂又は第2の透明樹脂からなる透明平板を配置することもできる。なお、透明平板は、凸条34、35の頂部(第1の微小平面部19)に当接してもよく、また、凸条34、35の頂部とは隙間を有してもよい。
 このように、充填材18aの表面に透明平板を配置する場合、立体像結像装置を補強できるため、板材31の厚みTをより薄くできるので好ましい。
The interiors of the grooves 32 and 33 are filled (filled) with a filler 18a (the same component as the adhesive 18 described above) made of a second transparent resin. The surface of the filler (filler) 18a filling the grooves 32 and 33 may be left as it is without being treated, or may be ground (polished) after curing as necessary.
Moreover, the transparent flat plate which consists of 1st transparent resin or 2nd transparent resin can also be arrange | positioned on the surface of the filler 18a, for example. The transparent flat plate may abut on the tops of the ridges 34 and 35 (the first micro-planar part 19), and may have a gap with the tops of the ridges 34 and 35.
Thus, when a transparent flat plate is arranged on the surface of the filler 18a, the stereoscopic image forming apparatus can be reinforced, and therefore the thickness T of the plate 31 can be further reduced, which is preferable.
 続いて、本発明の第2の実施例に係る立体像結像装置30の製造方法について、図5(A)~(D)を参照しながら説明するが、前記した第1の実施例に係る立体像結像装置10の製造方法と同様の部分については、詳しい説明を省略する。 Subsequently, a manufacturing method of the stereoscopic image forming apparatus 30 according to the second embodiment of the present invention will be described with reference to FIGS. 5A to 5D. However, according to the first embodiment described above. Detailed description of the same parts as those of the manufacturing method of the stereoscopic image forming apparatus 10 is omitted.
(第1工程)
 図5(A)に示すように、板材31の両側に、断面三角形の溝32、33、及び隣り合う溝32、33によって形成される断面三角形の凸条34、35がそれぞれ形成され、かつ板材31の両側にそれぞれ形成された溝32、33が平面視して直交して配置された成型母材40を、プレス成型、インジェクション成型、及びロール成型のいずれか1の方法によって製造する。
 この成型母材40は、前記した立体像結像装置10の成型母材21と同様、第1の透明樹脂によって形成されている。
(First step)
As shown in FIG. 5 (A), on both sides of the plate material 31 are formed triangular cross-section ridges 34 and 35 formed by triangular cross-section grooves 32 and 33 and adjacent grooves 32 and 33, respectively. A molding base material 40 in which grooves 32 and 33 formed on both sides of 31 are arranged orthogonally in plan view is manufactured by any one of press molding, injection molding, and roll molding.
The molding base material 40 is formed of a first transparent resin, like the molding base material 21 of the stereoscopic image forming apparatus 10 described above.
(第2工程)
 図5(B)に示すように、例えばスパッターリングによって、垂直面36を選択的に鏡面(金属反射面13)にする。具体的には、ガスの流れ26を傾斜面37に沿って(傾斜面37に沿った方向(特定方向)から)、かつ傾斜面37が影になるようにして、垂直面36に向けてスパッターリングを行う。なお、垂直面38も同様の方法で鏡面処理を行う。
 この鏡面処理には、スパッターリングの代わりに、金属蒸着、金属微小粒子の吹き付け、又はイオンビームの照射を用いることもできる。
 これによって、垂直面36の表面に金属被膜(金属反射膜)25が形成され、その表面が金属反射面13となり、立体像結像装置本体41が得られる(垂直面38も同様)。
(Second step)
As shown in FIG. 5B, the vertical surface 36 is selectively made into a mirror surface (metal reflecting surface 13) by sputtering, for example. Specifically, the gas flow 26 is sputtered along the inclined surface 37 (from the direction (specific direction) along the inclined surface 37) toward the vertical surface 36 so that the inclined surface 37 becomes a shadow. Do the ring. The vertical surface 38 is also mirror-finished by the same method.
In this mirror treatment, metal vapor deposition, metal fine particle spraying, or ion beam irradiation can be used instead of sputtering.
As a result, the metal film (metal reflection film) 25 is formed on the surface of the vertical surface 36, and the surface becomes the metal reflection surface 13, and the stereoscopic image forming apparatus main body 41 is obtained (the same applies to the vertical surface 38).
(第3工程)
 図5(C)に示すように、立体像結像装置本体41の上に、前記した第2の透明樹脂からなる充填剤18aを載せ、この充填剤18aで溝32を埋めて硬化させる。そして、立体像結像装置本体41を反転させ、立体像結像装置本体41の上に、前記した第2の透明樹脂からなる充填剤18aを載せ、この充填剤18aで溝33を埋めて硬化させる。
 なお、使用する充填剤18aは液体(ゼリー状)である。
 ここで、各溝32、33への充填剤18aの充填は、脱気状態で行うことが好ましい。また、各溝32、33への充填剤18aの充填の際(又は、充填後)には、平面化処理を行うことが好ましい。この平面化処理は、プレス等で押す場合、金型で成型する場合の他、切削又は研磨による場合や、液体の充填剤18a上に透明平板を配置する場合も含む。
 これにより、図5(D)に示す露出面が平面となった平板状の立体像結像装置30が得られる。
(Third step)
As shown in FIG. 5C, the filler 18a made of the second transparent resin is placed on the stereoscopic image forming apparatus main body 41, and the groove 32 is filled with the filler 18a to be cured. Then, the stereoscopic image forming apparatus main body 41 is inverted, and the filler 18a made of the second transparent resin is placed on the stereoscopic image forming apparatus main body 41, and the groove 33 is filled with the filler 18a and cured. Let
In addition, the filler 18a to be used is a liquid (jelly form).
Here, the filling of the fillers 18a into the grooves 32 and 33 is preferably performed in a deaerated state. Moreover, it is preferable to perform a planarization process when filling each groove 32 and 33 with the filler 18a (or after filling). This flattening treatment includes not only the case of pressing with a press or the like, the case of molding with a mold, the case of cutting or polishing, and the case of arranging a transparent flat plate on the liquid filler 18a.
As a result, the flat stereoscopic image forming apparatus 30 having a flat exposed surface shown in FIG. 5D is obtained.
 以上、本発明を、実施例を参照して説明してきたが、本発明は何ら上記した実施例に記載の構成に限定されるものではなく、請求の範囲に記載されている事項の範囲内で考えられるその他の実施例や変形例も含むものである。例えば、前記したそれぞれの実施例や変形例の一部又は全部を組合せて本発明の立体像結像装置の製造方法を構成する場合も本発明の権利範囲に含まれる。 The present invention has been described with reference to the embodiments. However, the present invention is not limited to the configurations described in the above-described embodiments, and is within the scope of the matters described in the claims. Other possible embodiments and modifications are also included. For example, a case where the manufacturing method of the stereoscopic image forming apparatus of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.
 本発明に係る立体像結像装置の製造方法は、アスペクト比の比較的高い立体像結像装置を容易にかつ安価に製造できる。これによって、立体像結像装置を、映像を必要とする機器(例えば、医療機器、家庭電気製品、自動車、航空機、船舶等)で有効に利用できる。 The method for manufacturing a stereoscopic image forming apparatus according to the present invention can easily and inexpensively manufacture a stereoscopic image forming apparatus having a relatively high aspect ratio. Accordingly, the stereoscopic image forming apparatus can be effectively used in devices that require images (for example, medical devices, home appliances, automobiles, airplanes, ships, etc.).
10:立体像結像装置、11:第1、第2の光制御パネル、12:板材、13:金属反射面、14:垂直面、15:傾斜面、16:溝、17:凸条、18:接着剤、18a:充填剤、19:第1の微小平面部、20:第2の微小平面部、21:成型母材、22、23:傾斜面、24:仮想平面、25:金属被膜、26:ガスの流れ、27:支持台、28:プレス、30:立体像結像装置、31:板材、32、33:溝、34、35:凸条、36:垂直面、37:傾斜面、38:垂直面、39:傾斜面、40:成型母材、41:立体像結像装置本体 10: stereoscopic image forming apparatus, 11: first and second light control panels, 12: plate material, 13: metal reflecting surface, 14: vertical surface, 15: inclined surface, 16: groove, 17: ridge, 18 : Adhesive, 18a: Filler, 19: First microplanar portion, 20: Second microplanar portion, 21: Molding base material, 22, 23: Inclined surface, 24: Virtual plane, 25: Metal coating, 26: Gas flow, 27: Support base, 28: Press, 30: Stereoscopic image forming device, 31: Plate material, 32, 33: Groove, 34, 35: Projection, 36: Vertical surface, 37: Inclined surface, 38: Vertical surface, 39: Inclined surface, 40: Molding base material, 41: Stereoscopic image forming apparatus main body

Claims (9)

  1.  第1の透明樹脂からなる板材の表側に、傾斜面と垂直面とを有する断面三角形の溝、及び隣り合う前記溝によって形成される断面三角形の凸条がそれぞれ平行配置された成型母材を、プレス成型、インジェクション成型、及びロール成型のいずれか1の方法で製造する第1工程と、
     前記溝の垂直面に選択的に金属反射面を形成する第2工程と、
     前記第1工程及び前記第2工程を経てそれぞれ製造された第1、第2の光制御パネルを、前記金属反射面が平面視して直交配置された状態で、前記溝を向かい合わせ、かつ前記第1の透明樹脂の屈折率η1の0.9~1.1倍の屈折率η2を有する第2の透明樹脂からなる接着剤で前記第1、第2の光制御パネルの溝を埋めて、該第1、第2の光制御パネルを脱気状態で接合する第3工程とを有することを特徴とする立体像結像装置の製造方法。
    On the front side of the plate material made of the first transparent resin, a molded base material in which the grooves of the cross-sectional triangle having the inclined surface and the vertical surface, and the protrusions of the cross-sectional triangle formed by the adjacent grooves are arranged in parallel, A first step of producing by any one of press molding, injection molding, and roll molding;
    A second step of selectively forming a metal reflecting surface on a vertical surface of the groove;
    The first and second light control panels manufactured through the first step and the second step, respectively, in a state where the metal reflecting surfaces are arranged orthogonally in plan view, the grooves facing each other, and Filling the grooves of the first and second light control panels with an adhesive made of a second transparent resin having a refractive index η2 that is 0.9 to 1.1 times the refractive index η1 of the first transparent resin, And a third step of joining the first and second light control panels in a deaerated state.
  2.  請求項1記載の立体像結像装置の製造方法において、前記第1の光制御パネルを下に、前記第2の光制御パネルを上にした状態で、前記第1の光制御パネルの上に前記接着剤を載せて、前記第2の光制御パネルをプレスで前記第1の光制御パネルに対して押圧して前記第1、第2の光制御パネルの溝内に前記接着剤が充填することを特徴とする立体像結像装置の製造方法。 2. The method of manufacturing a stereoscopic image forming apparatus according to claim 1, wherein the first light control panel is placed on the first light control panel with the first light control panel on the bottom and the second light control panel on the top. The adhesive is placed, the second light control panel is pressed against the first light control panel with a press, and the adhesive fills the grooves of the first and second light control panels. A method for manufacturing a stereoscopic image forming apparatus.
  3.  請求項1又は2記載の立体像結像装置の製造方法において、前記断面三角形の凸条の先部及び前記断面三角形の溝の底部にはそれぞれ第1、第2の微小平面部が設けられていることを特徴とする立体像結像装置の製造方法。 3. The manufacturing method of a stereoscopic image forming apparatus according to claim 1 or 2, wherein first and second minute flat portions are respectively provided at a tip portion of the convex section having the triangular section and a bottom portion of the groove having the triangular section. A method for manufacturing a stereoscopic image forming apparatus.
  4.  第1の透明樹脂からなる板材の両側に垂直面と傾斜面を有する断面三角形の第1、第2の溝、及び隣り合う前記第1、第2の溝によって形成される断面三角形の第1、第2の凸条がそれぞれ形成され、かつ前記板材の両側にそれぞれ形成された前記第1、第2の溝が平面視して直交配置される成型母材を、プレス成型、インジェクション成型、及びロール成型のいずれか1の方法で製造する第1工程と、
     前記成型母材の両側にある前記第1、第2の溝の前記垂直面に、選択的に金属反射面を形成する第2工程と、
     前記第1の透明樹脂の屈折率η1の0.9~1.1倍の屈折率η2を有する第2の透明樹脂からなる充填剤で前記第1、第2の溝を埋める第3工程とを有することを特徴とする立体像結像装置の製造方法。
    First and second grooves of a triangular section formed by the first and second grooves having a vertical surface and an inclined surface on both sides of a plate material made of the first transparent resin, and the adjacent first and second grooves, Press molding, injection molding, and rolls are formed on the molding base material in which the second ridges are formed and the first and second grooves respectively formed on both sides of the plate material are arranged orthogonally in plan view. A first step of manufacturing by any one method of molding;
    A second step of selectively forming a metal reflecting surface on the vertical surfaces of the first and second grooves on both sides of the molding base material;
    A third step of filling the first and second grooves with a filler made of a second transparent resin having a refractive index η2 of 0.9 to 1.1 times the refractive index η1 of the first transparent resin; A method of manufacturing a stereoscopic image forming apparatus, comprising:
  5.  請求項4記載の立体像結像装置の製造方法において、前記断面三角形の第1、第2の凸条の先部及び前記断面三角形の第1、第2の溝の底部にはそれぞれ第1、第2の微小平面部が設けられていることを特徴とする立体像結像装置の製造方法。 5. The manufacturing method of a stereoscopic image forming apparatus according to claim 4, wherein the first and second protrusions of the cross-sectional triangle and the bottoms of the first and second grooves of the cross-sectional triangle are first and second, respectively. A method for manufacturing a stereoscopic image forming apparatus, wherein a second micro-planar portion is provided.
  6.  請求項3又は5記載の立体像結像装置の製造方法において、前記第1の微小平面部の幅w1は、前記金属反射面が形成されるピッチpの0.01~0.2倍の範囲にあり、前記第2の微小平面部の幅w2は、前記ピッチpの0.01~0.3倍の範囲にあることを特徴とする立体像結像装置の製造方法。 6. The method of manufacturing a stereoscopic image forming apparatus according to claim 3, wherein a width w1 of the first minute plane portion is in a range of 0.01 to 0.2 times a pitch p on which the metal reflecting surface is formed. And the width w2 of the second micro-planar portion is in the range of 0.01 to 0.3 times the pitch p.
  7.  請求項1~6のいずれか1項に記載の立体像結像装置の製造方法において、前記第2の透明樹脂は、紫外線硬化型、熱硬化型、2液硬化型、及び常温硬化型のいずれか1であることを特徴とする立体像結像装置の製造方法。 The method for manufacturing a stereoscopic image forming apparatus according to any one of claims 1 to 6, wherein the second transparent resin is any one of an ultraviolet curing type, a thermosetting type, a two-component curing type, and a room temperature curing type. Or a manufacturing method of a three-dimensional image forming apparatus.
  8.  請求項1~7のいずれか1項に記載の立体像結像装置の製造方法において、前記傾斜面は、該傾斜面の上端と下端を結ぶ仮想平面に対して窪んでいることを特徴とする立体像結像装置の製造方法。 The method for manufacturing a stereoscopic image forming apparatus according to any one of claims 1 to 7, wherein the inclined surface is recessed with respect to a virtual plane connecting an upper end and a lower end of the inclined surface. Manufacturing method of stereoscopic image forming apparatus.
  9. 請求項1~8のいずれか1項に記載の立体像結像装置の製造方法において、前記金属反射面のピッチpに対する前記金属反射面の高さhの比(h/p)は0.8~5の範囲にあることを特徴とする立体像結像装置の製造方法。 The method for manufacturing a stereoscopic image forming apparatus according to any one of claims 1 to 8, wherein a ratio (h / p) of a height h of the metal reflecting surface to a pitch p of the metal reflecting surface is 0.8. A manufacturing method of a stereoscopic image forming apparatus, characterized in that it is in the range of 5 to 5.
PCT/JP2018/001962 2017-01-27 2018-01-23 Production method for stereoscopic-image-forming device WO2018139444A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018564578A JP6686184B2 (en) 2017-01-27 2018-01-23 Method of manufacturing stereoscopic image forming apparatus and stereoscopic image forming apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-013351 2017-01-27
JP2017013351 2017-01-27
JP2017-136891 2017-07-13
JP2017136891 2017-07-13

Publications (1)

Publication Number Publication Date
WO2018139444A1 true WO2018139444A1 (en) 2018-08-02

Family

ID=62978392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001962 WO2018139444A1 (en) 2017-01-27 2018-01-23 Production method for stereoscopic-image-forming device

Country Status (2)

Country Link
JP (1) JP6686184B2 (en)
WO (1) WO2018139444A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011090117A (en) * 2009-10-21 2011-05-06 Tomohiko Fujishima Optical image-forming device and optical image-forming method using the same
JP2012247459A (en) * 2011-05-25 2012-12-13 National Institute Of Information & Communication Technology Reflector array optical device and display unit using the same
JP2013127625A (en) * 2008-04-22 2013-06-27 Askanet:Kk Optical imaging apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033645A1 (en) * 2013-09-06 2015-03-12 株式会社アスカネット Method for fabrication of photo-control panel comprising photo-reflector parts which are positioned in parallel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013127625A (en) * 2008-04-22 2013-06-27 Askanet:Kk Optical imaging apparatus
JP2011090117A (en) * 2009-10-21 2011-05-06 Tomohiko Fujishima Optical image-forming device and optical image-forming method using the same
JP2012247459A (en) * 2011-05-25 2012-12-13 National Institute Of Information & Communication Technology Reflector array optical device and display unit using the same

Also Published As

Publication number Publication date
JP6686184B2 (en) 2020-04-22
JPWO2018139444A1 (en) 2020-03-26

Similar Documents

Publication Publication Date Title
CN109997068B (en) Method for manufacturing stereoscopic image imaging device and stereoscopic image imaging device
JP6203989B1 (en) Method for manufacturing stereoscopic image forming apparatus
CN110476106B (en) Stereoscopic image imaging device
CN110573935B (en) Stereoscopic image imaging device and method for manufacturing stereoscopic image imaging device
JP2019109530A5 (en)
JP2018124534A5 (en)
WO2019155647A1 (en) Stereoscopic image forming device manufacturing method and stereoscopic image forming device
JP7089958B2 (en) Manufacturing method of stereoscopic image imaging device and stereoscopic image imaging device
TWI714119B (en) Production method for stereoscopic-image-forming device, and stereoscopic-image-forming device
CN110709759B (en) Method for manufacturing stereoscopic image imaging device and stereoscopic image imaging device
JP2020062885A5 (en)
JP2018097065A (en) Stereoscopic image formation apparatus and manufacturing method of the same
WO2018139444A1 (en) Production method for stereoscopic-image-forming device
JP6616554B1 (en) Method for manufacturing stereoscopic image forming apparatus
US20230099636A1 (en) Production method for stereoscopic-image-forming device, and stereoscopic-image-forming device
EP4043945B1 (en) Optical image forming device and method for manufacturing same
JP2018189705A (en) Method for manufacturing stereoscopic imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018564578

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18744548

Country of ref document: EP

Kind code of ref document: A1