WO2018139242A1 - Image analysis system, image analysis method, and program - Google Patents

Image analysis system, image analysis method, and program Download PDF

Info

Publication number
WO2018139242A1
WO2018139242A1 PCT/JP2018/000893 JP2018000893W WO2018139242A1 WO 2018139242 A1 WO2018139242 A1 WO 2018139242A1 JP 2018000893 W JP2018000893 W JP 2018000893W WO 2018139242 A1 WO2018139242 A1 WO 2018139242A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
luminance
difference
pixels
pixel
Prior art date
Application number
PCT/JP2018/000893
Other languages
French (fr)
Japanese (ja)
Inventor
靖之 祖父江
靖裕 間宮
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2018139242A1 publication Critical patent/WO2018139242A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material

Definitions

  • the present invention relates to an image analysis system, an image analysis method, and a program, and more particularly, to an image analysis system, an image analysis method, and a program for analyzing an image and detecting a region where a specific substance exists from the image.
  • Patent Document 1 there is a system that detects fluorescence (specific substance) of a biological substance that is fluorescently stained among a plurality of types of substances from an image (for example, Patent Document 1).
  • Patent Literature 1 creates a graph in which brightness and the frequency of appearance of brightness are associated with each other in an image, and the biological material that is fluorescently stained using a predetermined threshold for the created graph. Detect fluorescence. This makes it possible to detect an area where a specific substance exists from the image.
  • the brightness of the entire image may vary depending on conditions such as the environment during measurement. Therefore, when a predetermined threshold value is used, there is a possibility that the fluorescence of the biological material (specific substance) may not be detected depending on the brightness of the entire image.
  • an image analysis system capable of detecting a specific substance from a liquid sample containing a plurality of kinds of substances even when the brightness of the entire image has changed.
  • the image analysis system includes a creation unit, a determination unit, and a determination unit.
  • the creation unit includes a pixel having a large difference from the brightness of peripheral pixels from the image and the peripheral pixel, and extracts a region composed of a collection of pixels smaller than the number of pixels of the image as a target region, A luminance histogram is created in which the luminance included in the target region is associated with the frequency at which the luminance appears.
  • the determination unit determines a luminance threshold value from the luminance histogram.
  • the determination unit determines whether or not a specific substance exists in at least the target region extracted by the creation unit, using the luminance threshold value.
  • the image analysis method includes a creation step, a determination step, and a determination step.
  • the creation step includes a pixel having a large difference from the brightness of peripheral pixels from the image and the peripheral pixel, and extracts a region composed of a collection of pixels smaller than the number of pixels of the image as a target region, A luminance histogram is created in which the luminance included in the target region is associated with the frequency at which the luminance appears.
  • the determining step determines a brightness threshold value from the brightness histogram.
  • the determination step determines whether or not a specific substance is present in at least the target region extracted in the creation step using the luminance threshold value.
  • the program according to one aspect of the present invention is a program for causing a computer to function as the image analysis system.
  • FIG. 1 is a block diagram showing a configuration of an image analysis apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a configuration diagram of a detection apparatus that includes the image analysis apparatus as described above and inspects a liquid sample using a disk.
  • FIG. 3 is a plan view of the disk according to Embodiment 1 of the present invention.
  • FIG. 4A is a perspective view of the above disk.
  • FIG. 4B is a partially broken perspective view of the above disk.
  • FIG. 4C is an enlarged view of a main part C of FIG. 4B.
  • FIG. 4D is a perspective view of the same disk as seen from below the main part.
  • FIG. 5 is an exploded perspective view of the disk.
  • FIG. 5 is an exploded perspective view of the disk.
  • FIG. 6A is a perspective view of the same disk as seen from the upper side of the disk body.
  • FIG. 6B is a perspective view of the same disk as seen from the lower side of the disk main body.
  • 6C is a cross-sectional view taken along the line X1-X1 of FIG. 6A.
  • FIG. 6D is an enlarged view of a main part of FIG. 6C.
  • 7A to 7D are diagrams for explaining the flattening process performed by the image analysis apparatus same as above.
  • FIG. 8 is a diagram showing an example of a luminance histogram obtained after flattening processing performed by the image analysis apparatus same as above.
  • FIG. 9 is a diagram for explaining extraction of a target area performed by the image analysis apparatus same as above.
  • the image analysis system 100 is provided in a detection system for detecting a specific substance from a liquid sample containing a plurality of types of substances.
  • the detection system as a computer system includes a detection device 70 that detects a specific substance from a liquid sample containing a plurality of types of substances stored in a disk 1 that is a liquid sample inspection disk.
  • the An image analysis system 100 as a computer system includes an image analysis apparatus 101 that detects the presence or absence of a specific substance from an image obtained by analyzing a liquid sample.
  • the disk 1 includes a disk-shaped laminated disk main body 2 and a plurality of filter cartridges 3. As shown in FIGS. 4A to 4C and 5, the laminated disk main body 2 includes a disk-shaped disk main body 4 and a disk-shaped plate 5 that is more flexible than the disk main body 4.
  • the disk body 4 and the plate 5 are joined so as to overlap each other.
  • a disk-shaped disk main body 4 and a disk-shaped plate 5 are laminated via a joint 6.
  • the central axis 45 (see FIG. 5) of the disk main body 4 and the central axis 56 (see FIG. 5) of the plate 5 are aligned on a straight line.
  • the disk main body 4 has a chamber 400 for storing a liquid sample.
  • the disc body 4 has a first surface 41 and a second surface 42 that are opposite to each other in the thickness direction.
  • the plate 5 is joined to the disc body 4 so as to cover the chamber 400 on the first surface 41 side of the disc body 4.
  • the chamber 400 includes a first chamber 401 and a second chamber 402 as shown in FIGS. 3, 6B and 6C.
  • the first chamber 401 penetrates in the thickness direction of the disc body 4, and the opening on the plate 5 side is closed by the plate 5.
  • the first chamber 401 is open on the side opposite to the plate 5 side in the thickness direction of the disk main body 4.
  • the second chamber 402 is formed on the first surface 41 of the disc body 4, and the side opposite to the plate 5 side in the thickness direction of the disc body 4 is closed. In the second chamber 402, the opening on the plate 5 side is closed by the plate 5.
  • the second chamber 402 is in communication with (connected to) the first chamber 401.
  • the disc body 4 has a channel 403 (see FIGS. 4B, 4D, 6B, and 6C) that communicates with the first chamber 401 and the second chamber 402 between the first chamber 401 and the second chamber 402, respectively. Is preferred.
  • the channel 403 is formed on the first surface 41 of the disk main body 4, and the side opposite to the plate 5 side in the thickness direction of the disk main body 4 is closed.
  • the space surrounded by the inner wall surface of the first chamber 401 and the plate 5 in the disk main body 4 constitutes a first well 21 (see FIGS. 3 and 4B) for storing a liquid sample.
  • the space surrounded by the inner wall surface of the second chamber 402 and the plate 5 in the disk main body 4 is a second well 22 (see FIG. 3 and FIG. 3) that stores the liquid sample moved from the first well 21. 4B).
  • a space surrounded by the inner wall surface of the channel 403 and the plate 5 in the disk main body 4 is a flow path 23 (see FIG. 5) through which a liquid sample passes between the first chamber 401 and the second chamber 402. 3 and 4B).
  • the liquid sample contains multiple types of substances.
  • the filter cartridge 3 includes a filter 35 (see FIGS. 3, 4B, and 4D) that removes a specific substance from the liquid sample moving from the first chamber 401 to the second chamber 402.
  • “removing a specific substance” means capturing a specific substance.
  • the filter 35 includes a porous structure that captures a specific first substance from the liquid sample and passes the specific second substance.
  • the filter cartridge 3 is placed in the first chamber 401 of the disc body 4. Here, in the disk 1, the filter cartridge 3 is fitted into the first well 21 of the laminated disk main body 2.
  • the filter cartridge 3 includes a case 30 that holds the filter 35.
  • the case 30 has substantially the same shape as the first well 21 when viewed from the thickness direction of the laminated disk main body 2.
  • the case 30 has a shape in which the width gradually increases with increasing distance from the center of the laminated disk body 2 in the radial direction of the laminated disk body 2 when viewed from the thickness direction of the laminated disk body 2.
  • the case 30 has an opening 320 (see FIG. 4D) on one surface of the second chamber 402 side.
  • the filter 35 is disposed so as to close the opening 320 of the case 30.
  • the filter 35 is fixed to the case 30 with, for example, an adhesive.
  • the space surrounded by the case 30 and the filter 35 constitutes a storage space 31 for liquid sample (see FIGS. 3 and 4B).
  • the disk 1 is used, for example, to examine the infection rate of pathogenic microorganisms (for example, malaria protozoa) to a specimen (for example, red blood cells) in a liquid biological sample (for example, human blood).
  • pathogenic microorganisms for example, malaria protozoa
  • the malaria parasite for example, invades a human body when an mosquito sucks human blood, invades red blood cells in the blood, and parasitizes in red blood cells.
  • the “infection rate” here is ⁇ [number of samples infected with pathogenic microorganisms] / [total number of samples] ⁇ ⁇ 100 [%].
  • the liquid sample includes at least a liquid biological sample.
  • the blood is preferably diluted with a diluent in order to reduce the viscosity.
  • a diluent for example, a buffer solution, an isotonic solution, a culture solution, a surfactant and the like can be used.
  • a fluorescent reagent for staining the nucleic acid of pathogenic microorganisms is disposed in the second well 22 of the laminated disk body 2.
  • the fluorescent reagent is preferably arranged by, for example, a freeze-drying method or a spin coating method.
  • the disc 1 can fluorescently label the nucleic acid of the pathogenic microorganism that is parasitic on the specimen (red blood cells) in the liquid sample moved to the second well 22.
  • the nucleic acid stained with the fluorescent reagent emits fluorescence when excitation light is irradiated from the outside.
  • the fluorescent reagent for staining the nucleic acid of the pathogenic microorganism may be a powder.
  • the filter 35 is configured to pass red blood cells that are specific second substances (specimens) and to capture white blood cells that are specific first substances.
  • the filter 35 is configured to function as a separation unit that separates red blood cells and white blood cells and extracts red blood cells. Therefore, the disk 1 can extract red blood cells from a biological sample.
  • Fluorescent reagents for staining nucleic acids of pathogenic microorganisms are materials that can also stain leukocytes.
  • leukocytes in the liquid sample placed in the first chamber 401 are captured by the filter 35. Therefore, in the disc 1, it is possible to prevent the white blood cells contained in the liquid sample put in the first chamber 401 from being stained with the fluorescent reagent.
  • the filter 35 in the filter cartridge 3 exists between the storage space 31 and the second chamber 402 in the radial direction of the disc body 4.
  • the filter cartridge 3 is placed in the first chamber 401 of the disk body 4, so that the liquid sample in the storage space 31 of the filter cartridge 3 can be regarded as the liquid sample placed in the first chamber 401.
  • red blood cells in the liquid sample placed in the storage space 31 are moved to the second well 22 through the filter 35. It becomes possible.
  • the operation of putting the liquid sample into the storage space 31 is preferably performed in a state in which the filter cartridge 3 is fitted in the first well 21 of the laminated disk main body 2.
  • the shape of the storage space 31 of the filter cartridge 3 is U-shaped as shown in FIG. 3 when viewed from the thickness direction of the disk 1.
  • the injection hole 33 is provided so as to communicate with the first end of the U-shaped storage space 31 in the case 30 and the vent hole 38 is provided so as to communicate with the second end. .
  • the shape of the vent 38 is, for example, a circle.
  • the vent hole 38 is preferably smaller from the viewpoint of preventing leakage of the liquid sample, and is preferably smaller than the injection hole 33.
  • the storage space 31, the filter 35, and the second chamber 402 are arranged in this order from the center side of the disk body 4 to the outer peripheral side in a state where the filter cartridge 3 is placed in the first chamber 401.
  • the storage space 31, the filter 35, and the second well 22 are arranged in this order from the center side of the laminated disk main body 2 outward in the radial direction of the laminated disk main body 2.
  • the liquid sample in the storage space 31 can be moved to the second well 22 through the filter 35 by the centrifugal force acting on the liquid sample when the disk 1 is rotated.
  • surface tension or the like acts on the liquid sample in addition to centrifugal force.
  • the rotation direction of the disk 1 is clockwise (clockwise) when viewed from the upper side of the disk 1 (the second surface 42 side of the disk body 4 in the disk 1).
  • the shape of the laminated disk main body 2 is preferably a disk shape as in the case of optical disks (CD, DVD, etc.).
  • a circular hole 28 is preferably formed in the center of the laminated disk body 2.
  • the diameter of the disk 1 is 120 mm, for example.
  • the laminated disk main body 2 includes the disk-shaped disk main body 4 and the disk-shaped plate 5 joined to the disk main body 4 on the first surface 41 side of the disk main body 4 as described above.
  • a circular hole 48 constituting a part of the hole 28 of the laminated disk main body 2 is formed in the center of the disk main body 4.
  • a circular hole 58 constituting a part of the hole 28 of the laminated disk main body 2 is formed at the center of the plate 5.
  • the plate 5 includes a disk-shaped plate body 50 (see FIG. 4C).
  • the material of the plate body 50 is, for example, a transparent resin.
  • the plate body 50 has a front surface 51 and a back surface 52 that are opposite to each other in the thickness direction.
  • the front surface 51 of the plate main body 50 is preferably formed with a spiral track for following the beam-like light incident through the back surface 52 of the plate main body 50 in the same manner as the optical disc.
  • a track is a groove.
  • the track is formed in a spiral shape from the center to the outer periphery of the plate body 50.
  • Address information is continuously recorded on the track.
  • the position can be specified by the address information. Therefore, for example, the position information of the second well 22 in the plane of the disk 1 is specified by the address information.
  • the track 1 is scanned with light to reproduce address information.
  • the light is excitation light.
  • the wavelength of the excitation light is preferably 400 nm to 410 nm, for example, and more preferably 405 nm.
  • the track depth is, for example, 50 nm.
  • the plate 5 further includes a dielectric film 54 (see FIG. 4C) formed on the surface 51 of the plate body 50.
  • the dielectric film 54 is, for example, a ZnS—SiO 2 film.
  • the dielectric film 54 is formed so as to cover the track.
  • the dielectric film 54 is configured to reflect a part of the excitation light for tracking and transmit most of the remaining part.
  • the reflectance of the dielectric film 54 with respect to the excitation light is, for example, 5% or more and 20% or less.
  • the reflectance of the dielectric film 54 with respect to the fluorescence is preferably less than or equal to the reflectance of the dielectric film 54 with respect to the excitation light.
  • a reflection surface 55 (see FIG. 4C) that reflects the excitation light incident on the back surface 52 of the plate body 50 is configured by an interface between the dielectric film 54 and the plate body 50.
  • the specimen in the liquid sample sent from the first well 21 to the second well 22 through the filter 35 in the disk 1 is inspected by, for example, a detection device 70 as shown in FIG.
  • the detecting device 70 includes, for example, an optical system similar to an optical pickup device for an optical disc, and the operation thereof is also the same.
  • the optical system of the detection device 70 includes a semiconductor laser 71, a polarization beam splitter 72, an objective lens 73, a dichroic prism 74, a fluorescence detector 75, an anamorphic lens 76, and a reflected excitation light detector 77. ing.
  • the detection device 70 includes a holder 81, an actuator 82, a rotation device 83, a first signal calculation circuit 84, a servo circuit 85, a second signal calculation circuit 86, and image analysis.
  • a device 101 (image analysis system 100) and an image display device 88 are provided.
  • the rotating device 83 is a motor.
  • the rotating device 83 is controlled by a servo circuit 85.
  • the detecting device 70 After the disk 1 is set on the rotating table by the rotating device 83, a predetermined operation is started.
  • the optical system, the holder 81 and the actuator 82 are installed in a housing in the same manner as an existing optical pickup device used for recording / reproducing of a CD or DVD.
  • the housing is movable in the radial direction of the disk 1 by a predetermined guide mechanism.
  • the servo circuit 85 also controls the movement of the housing. Since this control is the same access control as that in the existing CD player or DVD player, detailed description thereof is omitted.
  • the semiconductor laser 71 emits light (excitation light) having a wavelength of about 405 nm.
  • the traveling path of light is indicated by a one-dot chain line.
  • the excitation light emitted from the semiconductor laser 71 is reflected by the polarization beam splitter 72 and enters the objective lens 73.
  • the objective lens 73 has a predetermined numerical aperture (Numerical Aperture) and is configured to properly converge the excitation light on the disk 1. Specifically, the objective lens 73 is configured such that excitation light incident from the polarization beam splitter 72 side converges.
  • the objective lens 73 is driven by the actuator 82 in the focus direction (the thickness direction of the disk 1) and the tracking direction (the radial direction of the disk 1) while being held by the holder 81. That is, the objective lens 73 is driven so as to follow the track in a state where the excitation light is focused on the reflection surface 55 (see FIG. 4C) of the disk 1. A part of the excitation light focused on the reflection surface 55 is reflected by the reflection surface 55 and most of the excitation light is transmitted through the reflection surface 55.
  • Fluorescence is generated when the excitation light focused by the objective lens 73 is irradiated onto a nucleic acid that is fluorescently labeled in red blood cells.
  • the wavelength of fluorescence is different from the wavelength of excitation light.
  • the fluorescence wavelength is preferably, for example, 440 nm to 490 nm, and more preferably 455 nm.
  • SYTO (registered trademark) Blue can be used as the fluorescent dye. Red blood cells that are not infected with malaria parasites are not fluorescently labeled, and therefore do not generate fluorescence even when irradiated with excitation light. Therefore, the detection apparatus 70 can distinguish between red blood cells infected with malaria parasites and red blood cells not infected by the presence or absence of fluorescence.
  • the dichroic prism 74 is configured to reflect light having a wavelength of about 405 nm and transmit light having a wavelength of about 440 to 600 nm.
  • Excitation light reflected by the reflecting surface 55 passes through the polarization beam splitter 72, is reflected by the dichroic prism 74, and enters the anamorphic lens 76.
  • the anamorphic lens 76 introduces astigmatism into the reflected excitation light incident from the polarization beam splitter 72 side.
  • the reflected excitation light transmitted through the anamorphic lens 76 enters the reflected excitation light detector 77.
  • the reflected excitation light detector 77 has a four-divided sensor for receiving reflected excitation light on the light receiving surface.
  • the detection signal of the reflected excitation light detector 77 is input to the second signal calculation circuit 86.
  • the second signal calculation circuit 86 generates a focus error signal and a tracking error signal from the detection signal of the reflected excitation light detector 77, and also generates a wobble signal (Wobble Signal).
  • the focus error signal is a signal indicating a deviation (focus error) between the focal position of the objective lens 73 and the disk 1.
  • the tracking error signal is a signal indicating a deviation (tracking error) between the spot of the excitation light and the track.
  • the wobble signal is a waveform signal corresponding to the meandering shape of the groove defined by the track.
  • the focus error signal and the tracking error signal are generated according to the astigmatism method and the one-beam push-pull method.
  • the wobble signal is generated based on the tracking error signal.
  • a wobble signal is generated by extracting a frequency component corresponding to the wobble signal from the tracking error signal.
  • the servo circuit 85 controls the actuator 82 using the focus error signal and tracking error signal output from the second signal calculation circuit 86.
  • the servo circuit 85 controls the rotating device 83 so that the disk 1 is rotated at a predetermined linear velocity using the wobble signal output from the second signal calculation circuit 86.
  • the second signal calculation circuit 86 outputs reproduction data (address information) generated by demodulating the wobble signal to the image analysis apparatus 101.
  • Fluorescence incident on the dichroic prism 74 from the objective lens 73 side passes through the dichroic prism 74 and enters the fluorescence detector 75.
  • the fluorescence detector 75 has a sensor that converts the received fluorescence into a detection signal composed of an electrical signal and outputs the detection signal.
  • the detection signal of the fluorescence detector 75 is input to the first signal calculation circuit 84.
  • the first signal calculation circuit 84 outputs fluorescence luminance information generated by amplifying the detection signal from the fluorescence detector 75 to the image analysis apparatus 101.
  • the image analysis apparatus 101 is configured to display an image of the liquid sample in the second chamber 402 based on the fluorescence luminance information output from the first signal calculation circuit 84 and the address information output from the second signal calculation circuit 86. Is generated and displayed on the image display device 88.
  • the image analysis apparatus 101 performs a predetermined process on the generated image, determines whether or not red blood cells infected with malaria parasites exist in the liquid sample, and causes the image display apparatus 88 to display the result.
  • the image analysis apparatus 101 can be realized, for example, by causing a personal computer to execute an appropriate program. Further, the image display device 88 can be constituted by a display of a personal computer, for example.
  • a liquid sample is prepared by mixing the blood and a diluent.
  • a liquid sample is put into the storage space 31 of the filter cartridge 3.
  • a biological sample for example, a pipette (Pipette), a syringe (Syringe), a capillary (Capillary) or the like is used.
  • a pipette Pipette
  • a syringe Syringe
  • Capillary capillary
  • the disk 1 is rotated at a predetermined linear velocity for a predetermined rotation time.
  • the detection device 70 rotates the disk 1 around the central axis 25 of the laminated disk main body 2.
  • white blood cells in the liquid sample are captured by the filter 35 of the filter cartridge 3 and do not reach the flow path 23 and the second well 22. Therefore, in the disk 1, the red blood cells contained in the liquid sample can be moved from the first well 21 to the second well 22, and the white blood cells contained in the liquid sample can be captured by the filter 35. .
  • the image analysis apparatus 101 includes a first input unit 102, a second input unit 103, a control unit 104, and an output unit 105 (see FIG. 1).
  • the image analysis apparatus 101 includes a CPU (Central Processing Unit) and a memory.
  • the function of the control unit 104 is realized by the CPU executing a program stored in the memory.
  • the program is provided through an electric communication line such as the Internet or recorded in a recording medium such as a memory card, but may be recorded in advance in a memory of a computer.
  • the first input unit 102 receives the fluorescence luminance information output from the first signal calculation circuit 84.
  • the second input unit 103 receives the address information output from the second signal calculation circuit 86.
  • the control unit 104 includes a first processing unit 110, a creation unit 111, a determination unit 112, a determination unit 113, and a second processing unit 114 (see FIG. 1).
  • the first processing unit 110 generates an image of the sample separated from the liquid sample. Specifically, the first processing unit 110 uses the fluorescence luminance information received from the first signal calculation circuit 84 and the address information received from the second signal calculation circuit 86 to store the information in the second well 22. Generate an image of the sample. The first processing unit 110 outputs the generated image to the image display device 88 via the output unit 105.
  • the creation unit 111 uses the image generated by the first processing unit 110 to create a luminance histogram G10 representing the correspondence between the luminance and the frequency at which the luminance appears in the image (see FIG. 8). Specifically, the creation unit 111 creates a saliency map from the image generated by the first processing unit 110, and using the created saliency map, a difference in luminance with surrounding pixels is a predetermined value or more. All regions (target regions) including a certain pixel are extracted. The creation unit 111 creates a brightness histogram G10 using all the extracted regions.
  • luminance means a luminance value. For example, the luminance is any value from 0 to 255.
  • the creation unit 111 acquires one or more first pixel groups B10 that are a collection of pixels with high luminance (bright pixels) from an image B1 (first image described later) generated by the first processing unit 110. For example, in the illustration of FIG. 9, the creating unit 111 acquires four first pixel groups B10. The creation unit 111 acquires a second pixel group B11 that is a collection of pixels that exist around the first pixel group B10 and have a luminance lower than that of the first pixel group B10. Here, for example, the creation unit 111 acquires the second pixel group B11 so that the outer shape of the second pixel group B11 is a square shape.
  • the creation unit 111 extracts from the image B1 a region B20 that is a combination of the first pixel group B10 and the second pixel group B11 existing around the first pixel group B10 as a target region. That is, the creation unit 111 includes a pixel having a difference from the brightness of surrounding pixels from the image B1 to a predetermined value or more and a pixel existing around the pixel, and having a smaller number of pixels than the image B1. A body region B20 is extracted as a target region. The creation unit 111 creates a brightness histogram G10 in which the brightness of each pixel included in the area B20 (target area) is associated with the frequency at which the brightness appears.
  • the creating unit 111 does not create the luminance histogram G10 from the entire image B1, but creates a region (target region) having a smaller number of pixels than the number of pixels of the image B1, using the saliency map.
  • the region B20 used for creating the histogram G10 is narrowed down to a part of the image B1. Therefore, the ratio of the number of pixels of the first pixel group to the number of pixels of the target region is larger than the ratio of the number of pixels of the second pixel group to the number of pixels of the image B1.
  • the creation unit 111 sets the target area to the image B1 so that the ratio of the number of pixels of the first pixel group to the number of pixels of the target area is larger than the ratio of the number of pixels of the second pixel group to the number of pixels of the image.
  • the first pixel group is a group of pixels in the target area whose difference from the luminance of surrounding pixels is a predetermined value or more.
  • the second pixel group is a group of pixels in the entire image having a difference from the luminance of surrounding pixels equal to or greater than a predetermined value.
  • the creation unit 111 may use a region that is a part of the region 20 and that includes a part of the first pixel group B10 and a part of the second pixel group B11 as a target region.
  • the creation unit 111 may create a luminance histogram using the region B30, which is a half of the region 20, as a target region.
  • the creation of the luminance histogram performed by the creation unit 111 may be applied to an image whose brightness is reversed.
  • the creation unit 111 acquires a collection of pixels with low luminance (dark pixels) as the first pixel group.
  • the creation unit 111 acquires a group of pixels that exist around the first pixel group and have a luminance higher than that of the first pixel group as the second pixel group.
  • the creation unit 111 extracts, from the image B1, an area obtained by combining the first pixel group and the second pixel group present around the first pixel group as a target area.
  • the creation unit 111 sets a target region as a region including the first pixel group and the second pixel group existing around the first pixel group, and the luminance of each pixel included in the target region and the luminance appear.
  • a luminance histogram is created in association with the frequency of performing.
  • the determining unit 112 uses the luminance histogram G10 generated by the generating unit 111 to determine a luminance threshold value used for determining the presence or absence of a specific substance (malaria parasite) in the image.
  • the determination unit 113 determines whether or not a specific substance (malaria parasite) is present in the image created by the first processing unit 110 using the brightness threshold value determined by the determination unit 112. Specifically, the determination unit 113 determines whether or not there is an area that includes a luminance equal to or higher than a luminance threshold in the image. When determining that it exists, the determination unit 113 determines that a specific substance (malaria parasite) is present in the image.
  • the second processing unit 114 obtains the number of specific substances present in the image when a specific substance (malaria parasite) is present in the image based on the determination result of the determination unit 113. For example, the second processing unit 114 obtains the number of regions in the image that include a luminance equal to or higher than the luminance threshold. The second processing unit 114 outputs the result of the presence / absence of the specific substance and the number of the substance when the specific substance exists to the image display device 88 via the output unit 105.
  • a specific substance malaria parasite
  • the output unit 105 outputs the image generated by the control unit 104 and the result of the presence or absence of red blood cells infected with the malaria parasite to the image display device 88.
  • the image display apparatus 88 can display the result about the image produced
  • the first processing unit 110 generates an image of the liquid sample in the second well 22 using the fluorescence luminance information and the address information.
  • the creation unit 111 creates a saliency map using the image generated by the first processing unit 110. For each pixel included in the image generated by the first processing unit 110, the creation unit 111 obtains an index for determining whether or not the difference in luminance from surrounding pixels is equal to or greater than a predetermined value. The creation unit 111 compares the index obtained for each pixel with a predetermined threshold value, and creates a saliency map from the result. Specifically, the creation unit 111 smoothes the image (first image) generated by the first processing unit 110 and generates a second image. The creation unit 111 subtracts the second image from the first image to generate a difference image that represents a difference in gray value (luminance) of each pixel.
  • each pixel of the difference image serves as an index.
  • the creation unit 111 extracts, from the first image, an area (target area) corresponding to an area where the difference in luminance from surrounding pixels is equal to or greater than a predetermined value from the difference image. This creates a saliency map.
  • the saliency map uses the difference image formed by the difference between the image generated by the first processing unit and the image obtained by blurring the image (smoothed image), and the luminance of the surrounding pixels. This is obtained by extracting a region including pixels whose difference is equal to or greater than a predetermined value.
  • the creation unit 111 applies a Gaussian filter to each pixel of the first image generated by the first processing unit 110, and then divides the image into a plurality of sections (for example, a region of 9 ⁇ 9 pixels). To do.
  • the creation unit 111 creates a smoothed second image for each of the plurality of sections by replacing the brightness of the entire section with the average brightness in the section.
  • FIG. 7A shows an example of a graph G1 representing the correspondence between the pixels arranged in a predetermined direction (for example, the horizontal direction of the image) in the first image and the luminance of the pixel. Since the fluorescently labeled portion is bright, the change in the luminance difference between adjacent pixels is large. Therefore, when there is a fluorescently labeled part in the first image, a part R1 exists in the graph G1.
  • FIG. 7B represents correspondence between pixels arranged in a predetermined direction (for example, the horizontal direction of the image) in the second image and the luminance of the pixel.
  • a predetermined direction for example, the horizontal direction of the image
  • the difference in luminance from adjacent pixels is smaller than in the graph G1 in FIG. 7A. Therefore, in the graph G2, the difference from the region R1 in the graph G1 is smaller. A region R2 having a small change amount exists.
  • the graph G3 in FIG. 7C shows the correspondence between the pixels arranged in a predetermined direction (for example, the horizontal direction of the image) in the difference image, which is the difference in gray value between the first image and the second image, and the luminance of the pixel.
  • the luminance of the pixel in the difference image is a difference value between the graph G1 and the graph G2.
  • the luminance difference with the surrounding pixels is noticeable also in the difference image.
  • the part R3 represents the difference between the part R1 in the graph G1 and the part R2 in the graph G2, and the part R3 has a maximum value L3.
  • the maximum value L3 is a difference value between the maximum value L1 in the part R1 and the maximum value L2 in the part R2.
  • the slope of the graph is almost the same in a portion other than the portion R1 in the graph G1 (for example, the portion R11 shown in FIG. 7A) and a portion other than the portion R2 in the graph G2 (eg, the portion R21 shown in FIG. 7A).
  • the difference is almost constant.
  • the difference value (substantially constant value) obtained in the region R11 and the region R21 is referred to as a reference value L4.
  • the reference value L4 is a difference value obtained between the part R11 and the part R21, but may be a difference value between a part other than the part R1 and a part other than the part R2. Alternatively, the reference value L4 may be an average value of difference values between a plurality of locations other than the region R1 and a plurality of locations other than the region R2.
  • the creation unit 111 extracts, from the first image, a region of the first image corresponding to a portion where the difference between the graph G1 and the graph G2 is large as a target region. For example, an intermediate value between the maximum value L3 and the reference value L4 in the part R3 is set as a value L5. In this case, the creation unit 111 sets a region including a collection of pixels having a difference value equal to or greater than the value L5 from the periphery of the pixel having the maximum value L3 of the region R3 as a difference value (a hatched portion R4 illustrated in FIG. 7D) as a target region. Is extracted from the first image.
  • the value L5 is the predetermined threshold value described above.
  • the creation unit 111 can extract the target region by comparing the luminance (index) of each pixel of the difference image with a predetermined threshold (value L5).
  • the creation unit 111 has pixels that have a difference from the first pixel (image B1) generated by the first processing unit 110 that is greater than or equal to a predetermined value, and pixels that exist around the pixel.
  • a region B20 made up of an aggregate of pixels smaller than the number of pixels of the first image can be extracted.
  • a pixel in which a difference value between the first image and the second image is a predetermined threshold value (value L5) or more is set as a pixel in which a luminance difference from surrounding pixels is a predetermined value or more.
  • the creation unit 111 extracts the target region, the number of pixels whose luminance difference with surrounding pixels is equal to or greater than a predetermined value and the number of pixels of other pixels are substantially equal. Extract the target area.
  • the number of pixels of the first pixel group B10 and the number of pixels of the second pixel group B11 are substantially equal.
  • the creation unit 111 obtains an intermediate value between the value L3 and the reference value L4 for each of the plurality of graphs G3.
  • the creation unit 111 obtains an average value of the obtained plurality of intermediate values.
  • the creation unit 111 extracts a target area including a portion corresponding to the calculated average value or more from the first image.
  • the creation unit 111 extracts the target region described above. That is, cannot create a saliency map.
  • the image analysis device 101 causes the image display device 88 to display a message indicating that a specific substance (protozoan malaria) is not detected from the liquid sample.
  • the creating unit 111 creates a luminance histogram G10 representing the relationship between the luminance and the appearance frequency of the luminance, using all the extracted target regions.
  • the appearance frequency is the number of pixels having a corresponding luminance.
  • the extracted region includes the number of pixels having a luminance difference greater than or equal to a predetermined value and the number of other pixels substantially equal. Therefore, the luminance histogram G10 created by the creation unit 111 is a multimodal histogram including the first peak G11 and the second peak G12, as shown in FIG. Note that the appearance frequency may be a ratio with respect to the total number of pixels in all target regions for pixels having the corresponding luminance.
  • the determining unit 112 determines the brightness threshold using the brightness histogram G10. Specifically, the determination unit 112 obtains the minimum value of the frequency between the first peak part G11 and the second peak part G12 that are represented by the luminance histogram G10 in FIG. The corresponding luminance is set as the luminance threshold. Here, how to obtain the minimum value will be briefly described.
  • the determination unit 112 selects the brightness P1 as a temporary threshold.
  • the determination unit 112 selects a first comparative luminance (for example, luminance P2) smaller than the luminance P1 and a second comparative luminance (for example, luminance P3) larger than the luminance P1.
  • the determination unit 112 determines the frequency for the temporary threshold (for example, the frequency Q1 for the luminance P1), the frequency for the first comparative luminance (for example, the frequency Q2 for the luminance P2), and the frequency for the second comparative luminance (for example, the frequency Q3 for the luminance P3). ). If the comparison result shows that there is a frequency smaller than the frequency for the temporary threshold, the determination unit 112 sets the luminance of the frequency as a new temporary threshold. In the example of FIG. 8, when the temporary threshold value is set to the luminance P1, the luminance P3 having the frequency Q3, which is smaller than the frequency Q1 with respect to the luminance P1, is set as a new temporary threshold value.
  • the determination unit 112 repeats this operation until both the frequency for the first comparison luminance and the frequency for the second comparison luminance become larger than the frequency for the temporary threshold. Thereby, the determination part 112 can obtain
  • the determination unit 112 sets the luminance (temporary threshold) for the obtained minimum value as the luminance threshold.
  • the determination unit 112 obtains a temporary threshold in which both the frequency of the first comparison luminance and the frequency of the second comparison luminance are larger than the frequency of the temporary threshold, a value smaller than the temporary threshold and a larger value are respectively determined. It is preferable to determine the brightness threshold by acquiring the number (for example, 15). In this case, the determination unit 112 determines an average value (first average value) of frequencies corresponding to 15 values smaller than the temporary threshold and an average value (second average) of frequencies corresponding to 15 values larger than the temporary threshold. Value). The determination unit 112 determines the temporary threshold as the luminance threshold when the frequency with respect to the temporary threshold is smaller than both the first average value and the second average value.
  • the determination unit 113 determines whether or not a specific substance is present in the first image created by the first processing unit 110 using the brightness threshold value determined by the determination unit 112. Specifically, the determination unit 113 determines whether or not there is a collection (extraction region) of pixels whose luminance is greater than or equal to the luminance threshold in the image generated by the first processing unit 110.
  • the extraction region is a collection of pixels that are continuous in the vertical and horizontal directions of the first image.
  • pixels arranged in a predetermined direction in an image there is a pixel whose luminance is smaller than the luminance threshold due to noise or the like between two collections of pixels that are equal to or higher than the luminance threshold (first collection and second collection). There are things to do.
  • the determination unit 113 refers to the first collection and the second collection. It is considered as one gathering.
  • the second processing unit 114 obtains the number of extraction areas based on the determination result of the determination unit 113.
  • the second processing unit 114 outputs the result of the presence / absence of the specific substance and the number of the substance when the specific substance exists to the image display device 88 via the output unit 105.
  • the image generated by the first processing unit 110 includes a region where red blood cells are present, a region where malaria parasites are present, and other regions (background regions). . Since the malaria parasite is fluorescently labeled, the image generated by the first processing unit 110 is displayed brightly. Therefore, the luminance of the red blood cells, the background region, and the malaria parasite displayed in the image increases in this order. Therefore, the malaria parasite is displayed by extracting from the image an area including a pixel whose luminance difference with a surrounding pixel is equal to or greater than a predetermined value from the saliency map by the above-described operation. Regions can be extracted.
  • the order of the luminance of the red blood cells, the background region, and the malaria parasite does not change. Therefore, by creating a saliency map, the possibility of extracting a target area including a malaria parasite increases.
  • the target area is extracted so that the number of pixels whose luminance difference from surrounding pixels is equal to or greater than a predetermined value and the number of other pixels are substantially equal. Therefore, in the luminance histogram G10, the appearance frequency of the luminance indicating the malaria parasite (second peak portion G12) and the appearance frequency of the luminance indicating other than the malaria parasite (first peak portion G11) are equal. In other words, a region where the malaria parasite is present can be distinguished from other regions. Therefore, it is possible to easily search for the minimum value of the frequency between the first peak part G11 and the second peak part G12.
  • the creation unit 111 uses the saliency map to determine all regions including pixels whose luminance difference from the surrounding pixels is equal to or greater than a predetermined value from the image generated by the first processing unit 110. Although it was set as the structure extracted, it is not limited to this structure.
  • the creation unit 111 may extract at least one region including a pixel having a luminance difference equal to or greater than a predetermined value from the image generated by the first processing unit 110 using a saliency map.
  • the determination unit 113 is configured to determine the presence or absence of a specific substance with respect to the entire image generated by the first processing unit 110, but is not limited to this configuration.
  • the determination unit 113 may determine the presence or absence of a specific substance only for all the regions extracted by the creation unit 111.
  • the second processing unit 114 is configured to obtain the number of specific substances in the image generated by the first processing unit 110, but is not limited to this configuration.
  • the second processing unit 114 may obtain a location (position) where the substance exists, and the size (size) may be obtained. You may obtain
  • the second processing unit 114 may obtain at least one of the number, location, size, and brightness.
  • the creation unit 111 is configured to apply the Gaussian filter to the image before the image generated by the first processing unit 110 is divided into a plurality of sections, but is not limited to this configuration.
  • a bilateral filter may be applied to the image.
  • the creation unit 111 is configured to replace the brightness of the entire section with the average brightness in the section for each of the plurality of sections when generating a smoothed image. It is not limited to the configuration. For each of the plurality of sections, the creation unit 111 sets the luminance of the entire section in a specific order from the larger or smaller order when arranging the median value in the section and the brightness in the section in numerical order.
  • a smoothed image may be generated by replacing the incoming luminance value (for example, the second smallest value, the second largest value) or the pixel luminance at a specific position.
  • the creating unit 111 sets the brightness of the entire section as the larger or smaller when the average brightness, the median value of the adjacent sections, and the brightness within the section are arranged in numerical order.
  • a smoothed image may be generated by substituting the luminance value (for example, the second smallest value, the second largest value) or the pixel luminance at a specific position in a specific order from one side.
  • the creation unit 111 generates a saliency map, and uses the generated saliency map to extract a region including a pixel whose luminance difference with a surrounding pixel is equal to or greater than a predetermined value.
  • the creation unit 111 may extract a region including a pixel having a luminance difference equal to or greater than a predetermined value by edge extraction using fast Fourier or differential edge detection. For example, when differential type edge detection is performed, a differential value between the luminance of the pixel of interest and the luminance of surrounding pixels becomes an index of the pixel of interest. When the index is equal to or greater than a predetermined threshold, the area including the target pixel corresponding to the index is the target area.
  • the creation unit 111 is configured to extract all target regions including pixels whose luminance difference with surrounding pixels is equal to or greater than a predetermined value from the image generated by the first processing unit 110. It is not limited to this configuration.
  • the creation unit 111 may extract at least one target region including a pixel having a luminance difference equal to or greater than a predetermined value from surrounding pixels from the image generated by the first processing unit 110.
  • the image analysis apparatus 101 includes the first processing unit 110, the creation unit 111, the determination unit 112, the determination unit 113, and the second processing unit 114, but is not limited to this configuration.
  • the image analysis apparatus 101 may include some of these components, and a server connected to the image analysis apparatus 101 via a network may include the remaining components.
  • the image analysis apparatus 101 may include the first processing unit 110, and the server may include the creation unit 111, the determination unit 112, the determination unit 113, and the second processing unit 114.
  • the image analysis apparatus 101 transmits the created image to the server.
  • the server generates a luminance histogram G10 based on the image received from the image analysis apparatus 101.
  • the server determines a luminance threshold based on the generated luminance histogram G10.
  • the server determines whether or not a specific substance (malaria parasite) is present in the image using the luminance threshold. Based on the determination result, the server obtains the number of specific substances present in the image when a specific substance exists in the image.
  • the server transmits the result of the presence / absence of the specific substance and the number of the specific substance, if any, to the image display device 88 via the image analysis apparatus 101.
  • Embodiment 2 This embodiment is different from the first embodiment in that the image analysis apparatus 101 creates a plurality of saliency maps.
  • the present embodiment will be described focusing on differences from the first embodiment.
  • symbol is attached
  • the creation unit 111 of the present embodiment creates a plurality of saliency maps using a plurality of extraction processes using the image generated by the first processing unit 110, and brightness based on the created plurality of saliency maps A histogram G10 is created.
  • the plurality of extraction processes include a first extraction process and a second extraction process.
  • the first extraction process is a process of extracting a first candidate region from an image obtained by smoothing the image generated by the first processing unit 110 under a first smoothing condition.
  • the second extraction process is a process of extracting the second candidate region from an image obtained by smoothing the image generated by the first processing unit 110 under the second smoothing condition.
  • the creation unit 111 applies a Gaussian filter to each pixel of the image generated by the first processing unit 110, and then classifies the image after the Gaussian filter is applied into a plurality of sections according to the first smoothing condition.
  • the first smoothing condition is to divide the image into areas of m ⁇ m pixels.
  • the creation unit 111 creates, for each of the plurality of sections, a first smoothed image that is smoothed by replacing the brightness of the entire section with the average brightness in the section.
  • a first difference image composed of a difference between the image generated by the first processing unit 110 and the first smoothed image is generated.
  • the creation unit 111 extracts all first candidate regions including pixels whose luminance difference with surrounding pixels is greater than or equal to a predetermined value from the first difference image.
  • the process from applying the Gaussian filter to each pixel of the image generated by the first processing unit 110 until extracting the first candidate area corresponds to the first extraction process.
  • the creation unit 111 applies a Gaussian filter to each pixel of the image generated by the first processing unit 110, and then divides the image after the Gaussian filter is applied into a plurality of sections according to the second smoothing condition.
  • the second smoothing condition is to divide the image into areas of n ⁇ n pixels.
  • n is a value smaller than m.
  • the creation unit 111 creates, for each of the plurality of sections, a second smoothed image that is smoothed by replacing the brightness of the entire section with the average brightness in the section. A second difference image is generated that is the difference between the image generated by the first processing unit 110 and the second smoothed image.
  • the creation unit 111 extracts all second candidate regions including pixels whose luminance difference with surrounding pixels is equal to or greater than a predetermined value from the second difference image.
  • the process from applying the Gaussian filter to each pixel of the image generated by the first processing unit 110 until extracting the second candidate area corresponds to the second extraction process.
  • the creation unit 111 creates the luminance histogram G10 using all the first candidate areas extracted in the first extraction process and all the second candidate areas extracted in the second extraction process as target areas.
  • a plurality of extraction processes can be performed on the image generated by the first processing unit 110, and a saliency map can be created based on the result.
  • the creation unit 111 is configured to perform the extraction process twice, but is not limited to this configuration.
  • the creation unit 111 may perform the extraction process three times or more.
  • the first smoothing condition and the second smoothing are performed so that the size of the area after the image is divided by the first extraction process is different from the size of the area after the image is divided by the second extraction process.
  • the smoothing conditions are not limited to this.
  • the smoothing conditions may be set for each extraction process so that the plurality of smoothed images obtained by the plurality of extraction processes have different blurring degrees.
  • the brightness setting method applied to each area after the image is divided by the first extraction process and the brightness setting method applied to each area after the image is divided by the second extraction process are different from each other. You may define 1 smoothing conditions and 2nd smoothing conditions.
  • the creation unit 111 replaces the brightness of the entire section with the average brightness in the section for each of the plurality of sections.
  • the creation unit 111 replaces the luminance of the entire section with the representative value in the section for each of the plurality of sections.
  • the creation unit 111 creates the luminance histogram G10 using all the first candidate areas obtained by the first extraction process and the second candidate areas obtained by the second extraction process as target areas. Although configured, it is not limited to this configuration.
  • the creation unit 111 creates a luminance histogram G10 using a common area among all the first candidate areas obtained by the first extraction process and the second candidate area obtained by the second extraction process as a target area. May be.
  • the liquid sample put in the storage space 31 of the filter cartridge 3 may contain a staining solution for staining the nucleic acid of the pathogenic microorganism.
  • a staining solution for example, Giemsa staining, acridine orange staining, Wright staining, Jenner staining, Leishmann staining, Romanovsky staining, and the like can be employed.
  • An appropriate staining solution may be used as the staining solution according to the type of pathogenic microorganism and the staining method.
  • the height of the second well 22 may increase from the inner periphery to the outer periphery of the laminated disc body 2. Thereby, in the disk 1, it is difficult for bubbles to remain in the second well 22.
  • the specimen is arranged in the second well 22 so as to be biased toward the outer peripheral side of the laminated disk main body 2. Can be suppressed.
  • the shape of the laminated disk body 2 viewed from the thickness direction of the laminated disk body 2 is not limited to a circular shape, and may be, for example, an octagonal shape.
  • a discharge port for discharging the liquid sample may be provided on the outer peripheral portion of the second well 22.
  • the discharge port is, for example, a through hole formed on the upper surface side of the laminated disk main body 2.
  • red blood cells contained in the liquid sample in the first well 21 are moved to the second well 22 by centrifugal force, but the present invention is not limited to this.
  • the red blood cells may be moved from the first well 21 to the second well 22 by generating a pressure difference between the first well 21 and the flow path 23.
  • a pressure difference can be generated between the first well 21 and the flow path 23 by applying pressure to the first well 21.
  • pressurization is performed from above the first well 21.
  • the disc 1, the filter cartridge 3 and the laminated disc main body 2 are used for the examination of red blood cells
  • the uses of the disc 1, the filter cartridge 3 and the laminated disc main body 2 are not limited to this.
  • the disk 1, the filter cartridge 3, and the laminated disk main body 2 can be used for DNA testing, protein testing, and the like.
  • the image analysis system (100) includes the creation unit (111), the determination unit (112), and the determination unit (113).
  • the creation unit (111) includes a pixel including a pixel whose difference from the luminance of the surrounding pixels from the image (B1) is equal to or greater than a predetermined value and the surrounding pixels, and is formed of an aggregate of pixels smaller than the number of pixels of the image. B20 is extracted as a target area.
  • the creation unit (111) creates a brightness histogram (B10) in which the brightness included in the target region is associated with the frequency at which the brightness appears.
  • the determination unit (112) determines a luminance threshold value from the luminance histogram (G10).
  • the determination unit (113) determines whether or not a specific substance exists in at least the target region extracted by the creation unit (111) using the luminance threshold.
  • the image analysis system (100) includes a pixel whose luminance difference from the image (B1) and the surrounding pixels is equal to or greater than a predetermined value and the surrounding pixels, and has fewer pixels than the number of pixels of the image.
  • a luminance histogram (G10) corresponding to the target region made up of the image analysis system (100) can detect a specific substance from a liquid sample containing a plurality of types of substances even when the brightness of the entire image changes.
  • the luminance histogram (G10) is a multi-modality including at least the first peak (G11) and the second peak (G12). It is a histogram.
  • the determination unit (112) determines the luminance corresponding to the minimum value of the frequency between the first peak (G11) and the second peak (G12) included in the luminance histogram (G10) as the luminance threshold. .
  • the image analysis system (100) divides a luminance histogram (G10) into a region where a specific substance (for example, malaria parasite) exists and a region where the specific substance does not exist, with a luminance threshold as a boundary. Can do.
  • a specific substance for example, malaria parasite
  • the creation unit (111) differs from the image (B1) with the brightness of surrounding pixels for each of the plurality of extraction processes. Extract at least one candidate region including a pixel having a value equal to or greater than a predetermined value. The creation unit (111) extracts a target region used for creating the luminance histogram (G10) from all candidate regions obtained by a plurality of extraction processes.
  • the image analysis system (100) can increase the accuracy of detection of a specific substance.
  • the plurality of extraction processes include a first extraction process and a second extraction process.
  • a first candidate region is extracted from an image obtained by smoothing an image under a first smoothing condition.
  • a second candidate region is extracted from an image obtained by smoothing the image under the second smoothing condition.
  • the creation unit (111) performs the first extraction process to create a first difference image including a difference between the image (B1) and the first smoothed image smoothed under the first smoothing condition.
  • the creation unit (111) extracts at least one first candidate region including a pixel whose difference from the luminance of surrounding pixels is a predetermined value or more from the first difference image as a candidate region.
  • the creation unit (111) performs the second extraction process, thereby creating a second difference image including a difference between the image (B1) and the second smoothed image smoothed under the second smoothing condition.
  • the creation unit (111) extracts at least one second candidate region including a pixel whose difference from the luminance of surrounding pixels is a predetermined value or more from the second difference image as a candidate region.
  • the creation unit (111) uses all the first candidate areas extracted by the first extraction process and all the second candidate areas extracted by the second extraction process, respectively, for creating the luminance histogram (G10).
  • the target area is not limited to create a target area.
  • the image analysis system (100) can increase the accuracy of detection of a specific substance.
  • the plurality of extraction processes include a first extraction process and a second extraction process.
  • a first candidate region is extracted from an image obtained by smoothing an image under a first smoothing condition.
  • a second candidate region is extracted from an image obtained by smoothing the image under the second smoothing condition.
  • the creation unit (111) performs the first extraction process to create a first difference image including a difference between the image (B1) and the first smoothed image smoothed under the first smoothing condition.
  • the creation unit (111) extracts at least one first candidate region including a pixel whose difference from the luminance of surrounding pixels is a predetermined value or more from the first difference image as a candidate region.
  • the creation unit (111) performs the second extraction process, thereby creating a second difference image including a difference between the image (B1) and the second smoothed image smoothed under the second smoothing condition.
  • the creation unit (111) extracts at least one second candidate region including a pixel whose difference from the luminance of surrounding pixels is a predetermined value or more from the second difference image as a candidate region.
  • the creation unit (111) determines a common area among all the first candidate areas extracted in the first extraction process and all the second candidate areas extracted in the second extraction process as a luminance histogram (G10). This is the target area used to create
  • the image analysis system (100) can increase the accuracy of detection of a specific substance.
  • the determination unit (113) uses the luminance threshold value to determine whether a specific substance exists in the image (B1). Determine whether or not.
  • the image analysis system 100 determines whether or not a specific substance is present in the entire image. Therefore, the image analysis system 100 detects a specific substance as compared with a case where a part of the image is determined. Accuracy can be improved.
  • the image (B1) is an image of the sample separated from the liquid sample.
  • the determination unit (113) determines whether or not a specific substance is present in the sample.
  • the image analysis system (100) can detect a specific substance from a liquid sample.
  • the creation unit (111) determines that the ratio of the number of pixels in the first pixel group to the number of pixels in the target region is an image.
  • the target area is extracted from the image so as to be larger than the ratio of the number of pixels of the second pixel group to the number of pixels of (B1).
  • the first pixel group is a group of pixels in the target area whose difference from the luminance of surrounding pixels is a predetermined value or more.
  • the second pixel group is a group of pixels in the entire image (B1) whose difference from the luminance of surrounding pixels is a predetermined value or more.
  • the image analysis system (100) can increase the accuracy of detection of a specific substance.
  • the image analysis method includes a creation step, a determination step, and a determination step.
  • the creation step includes a region B20 that includes a pixel whose difference from the luminance of the surrounding pixels from the image (B1) is equal to or greater than a predetermined value and the surrounding pixels, and is composed of a collection of pixels smaller than the number of pixels of the image. Extract as a region.
  • the creating step creates a brightness histogram (G10) in which the brightness included in the target region is associated with the frequency of appearance of the brightness.
  • a luminance threshold is determined from the luminance histogram (G10).
  • it is determined whether or not a specific substance exists in at least the target region extracted in the creation step by using the luminance threshold value.
  • a specific substance can be detected from a liquid sample containing a plurality of kinds of substances even when the brightness of the entire image changes.
  • the program according to the tenth aspect is a program for causing a computer to function as the image analysis system (100) according to any one of the first to eighth aspects.
  • This program can detect a specific substance from a liquid sample containing a plurality of types of substances even when the brightness of the entire image changes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Provided are an image analysis system, image analysis method, and program that make it possible to detect a specific substance from a liquid sample including a plurality of types of substances even if the brightness of the overall image changes. This image analysis system (100) is provided with a creation unit (111), determination unit (112), and decision unit (113). The creation unit (111) extracts a target area from an image that comprises a set of pixels that is smaller than the number of pixels in the image and includes pixels having a brightness difference with surrounding pixels of a prescribed value or greater and the surrounding pixels. The creation unit (111) creates a brightness histogram associating the brightnesses included in the target area and the frequencies of occurrence of the brightnesses. The determination unit (112) determines a brightness threshold from the brightness histogram. The decision unit (113) uses the brightness threshold to determine whether a specific substance is at least in the target area extracted by the creation unit (111).

Description

画像解析システム、画像解析方法及びプログラムImage analysis system, image analysis method and program
 本発明は、画像解析システム、画像解析方法及びプログラムに関し、より詳細には画像を解析して特定の物質が存在する領域を画像から検出する画像解析システム、画像解析方法及びプログラムに関する。 The present invention relates to an image analysis system, an image analysis method, and a program, and more particularly, to an image analysis system, an image analysis method, and a program for analyzing an image and detecting a region where a specific substance exists from the image.
 従来、画像から複数種類の物質のうち蛍光染色された生体物質の蛍光(特定の物質)を検出するシステムがある(例えば、特許文献1)。 Conventionally, there is a system that detects fluorescence (specific substance) of a biological substance that is fluorescently stained among a plurality of types of substances from an image (for example, Patent Document 1).
 特許文献1で記載されたシステムは、画像において、輝度と、輝度が出現する頻度とを対応付けたグラフを作成し、作成したグラフに対して既定の閾値を用いて蛍光染色された生体物質の蛍光を検出する。これにより、特定の物質が存在する領域を画像から検出することが可能となる。 The system described in Patent Literature 1 creates a graph in which brightness and the frequency of appearance of brightness are associated with each other in an image, and the biological material that is fluorescently stained using a predetermined threshold for the created graph. Detect fluorescence. This makes it possible to detect an area where a specific substance exists from the image.
 画像は、測定時の環境等の条件により画像全体の明るさが変わる場合がある。そのため、既定の閾値を用いた場合、画像全体の明るさによっては、生体物質の蛍光(特定の物質)が検出されない可能性がある。 * The brightness of the entire image may vary depending on conditions such as the environment during measurement. Therefore, when a predetermined threshold value is used, there is a possibility that the fluorescence of the biological material (specific substance) may not be detected depending on the brightness of the entire image.
特許第5906623号公報Japanese Patent No. 5906623
 そこで、本発明は上記事由に鑑みてなされており、画像全体の明るさが変わった場合であっても複数種類の物質が含まれる液体試料から特定の物質を検出することができる画像解析システム、画像解析方法及びプログラムを提供することを目的とする。 Therefore, the present invention has been made in view of the above reasons, an image analysis system capable of detecting a specific substance from a liquid sample containing a plurality of kinds of substances even when the brightness of the entire image has changed, An object is to provide an image analysis method and program.
 本発明の一態様に係る画像解析システムは、作成部と、決定部と、判定部と、を備える。前記作成部は、画像から周辺の画素の輝度との差が大きい画素と当該周辺の画素とを含み、前記画像の画素数よりも少ない画素の集合体からなる領域を対象領域として抽出し、前記対象領域に含まれる輝度と当該輝度が出現する頻度とを対応付けた輝度ヒストグラムを作成する。前記決定部は、前記輝度ヒストグラムから輝度閾値を決定する。前記判定部は、前記輝度閾値を用いて、少なくとも前記作成部が抽出した前記対象領域に特定の物質が存在するか否かを判定する。 The image analysis system according to an aspect of the present invention includes a creation unit, a determination unit, and a determination unit. The creation unit includes a pixel having a large difference from the brightness of peripheral pixels from the image and the peripheral pixel, and extracts a region composed of a collection of pixels smaller than the number of pixels of the image as a target region, A luminance histogram is created in which the luminance included in the target region is associated with the frequency at which the luminance appears. The determination unit determines a luminance threshold value from the luminance histogram. The determination unit determines whether or not a specific substance exists in at least the target region extracted by the creation unit, using the luminance threshold value.
 本発明の一態様に係る画像解析方法は、作成ステップと、決定ステップと、判定ステップと、を含む。前記作成ステップは、画像から周辺の画素の輝度との差が大きい画素と当該周辺の画素とを含み、前記画像の画素数よりも少ない画素の集合体からなる領域を対象領域として抽出し、前記対象領域に含まれる輝度と当該輝度が出現する頻度とを対応付けた輝度ヒストグラムを作成する。前記決定ステップは、前記輝度ヒストグラムから輝度閾値を決定する。前記判定ステップは、前記輝度閾値を用いて、少なくとも前記作成ステップで抽出した前記対象領域に特定の物質が存在するか否かを判定する。 The image analysis method according to an aspect of the present invention includes a creation step, a determination step, and a determination step. The creation step includes a pixel having a large difference from the brightness of peripheral pixels from the image and the peripheral pixel, and extracts a region composed of a collection of pixels smaller than the number of pixels of the image as a target region, A luminance histogram is created in which the luminance included in the target region is associated with the frequency at which the luminance appears. The determining step determines a brightness threshold value from the brightness histogram. The determination step determines whether or not a specific substance is present in at least the target region extracted in the creation step using the luminance threshold value.
 本発明の一態様に係るプログラムは、コンピュータを、前記画像解析システムとして機能させるためのプログラムである。 The program according to one aspect of the present invention is a program for causing a computer to function as the image analysis system.
図1は、本発明の実施形態1に係る画像解析装置の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of an image analysis apparatus according to Embodiment 1 of the present invention. 図2は、同上の画像解析装置を備え、ディスクを利用して液体試料の検査を行う検出装置の構成図である。FIG. 2 is a configuration diagram of a detection apparatus that includes the image analysis apparatus as described above and inspects a liquid sample using a disk. 図3は、本発明の実施形態1に係るディスクの平面図である。FIG. 3 is a plan view of the disk according to Embodiment 1 of the present invention. 図4Aは、同上のディスクの斜視図である。図4Bは、同上のディスクの一部破断した斜視図である。図4Cは、図4Bの要部Cの拡大図である。図4Dは、同上のディスクにおける要部の下側から見た斜視図である。FIG. 4A is a perspective view of the above disk. FIG. 4B is a partially broken perspective view of the above disk. FIG. 4C is an enlarged view of a main part C of FIG. 4B. FIG. 4D is a perspective view of the same disk as seen from below the main part. 図5は、同上のディスクの分解斜視図である。FIG. 5 is an exploded perspective view of the disk. 図6Aは、同上のディスクにおけるディスク本体の上側から見た斜視図である。図6Bは、同上のディスクにおけるディスク本体の下側から見た斜視図である。図6Cは、図6AのX1-X1断面図である。図6Dは、図6Cの要部拡大図である。FIG. 6A is a perspective view of the same disk as seen from the upper side of the disk body. FIG. 6B is a perspective view of the same disk as seen from the lower side of the disk main body. 6C is a cross-sectional view taken along the line X1-X1 of FIG. 6A. FIG. 6D is an enlarged view of a main part of FIG. 6C. 図7A~7Dは、同上の画像解析装置が行う平坦化処理を説明するための図である。7A to 7D are diagrams for explaining the flattening process performed by the image analysis apparatus same as above. 図8は、同上の画像解析装置が行う平坦化処理後に得られる輝度ヒストグラムの一例を示す図である。FIG. 8 is a diagram showing an example of a luminance histogram obtained after flattening processing performed by the image analysis apparatus same as above. 図9は、同上の画像解析装置が行う対象領域の抽出について説明するための図である。FIG. 9 is a diagram for explaining extraction of a target area performed by the image analysis apparatus same as above.
 以下に説明する各実施形態及び変形例は、本発明の一例に過ぎず、本発明は、各実施形態及び変形例に限定されない。これらの実施形態及び変形例以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。 Each embodiment and modification described below are only examples of the present invention, and the present invention is not limited to each embodiment and modification. Even if other than these embodiments and modifications, various modifications can be made according to the design and the like as long as they do not depart from the technical idea of the present invention.
 (実施形態1)
 本実施形態に係る画像解析システム、画像解析方法及びプログラムについて図1~図9を用いて説明する。
(Embodiment 1)
An image analysis system, an image analysis method, and a program according to this embodiment will be described with reference to FIGS.
 本実施形態に係る画像解析システム100は、複数種類の物質が含まれる液体試料から特定の物質を検出するための検出システムに備えられる。 The image analysis system 100 according to the present embodiment is provided in a detection system for detecting a specific substance from a liquid sample containing a plurality of types of substances.
 コンピュータシステムとしての検出システムは、図2に示すように、液体試料検査用ディスクであるディスク1に収納された複数種類の物質を含む液体試料から特定の物質を検出する検出装置70にて構成される。コンピュータシステムとしての画像解析システム100は、液体試料を解析して得られる画像から特定の物質の有無を検出する画像解析装置101にて構成される。 As shown in FIG. 2, the detection system as a computer system includes a detection device 70 that detects a specific substance from a liquid sample containing a plurality of types of substances stored in a disk 1 that is a liquid sample inspection disk. The An image analysis system 100 as a computer system includes an image analysis apparatus 101 that detects the presence or absence of a specific substance from an image obtained by analyzing a liquid sample.
 まず、ディスク1について説明する。 First, the disk 1 will be described.
 ディスク1は、円盤状の積層ディスク本体2と、複数のフィルタカートリッジ3と、を備える。積層ディスク本体2は、図4A~4C及び5に示すように、円盤状のディスク本体4と、ディスク本体4よりも柔軟な円盤状のプレート5と、を備える。 The disk 1 includes a disk-shaped laminated disk main body 2 and a plurality of filter cartridges 3. As shown in FIGS. 4A to 4C and 5, the laminated disk main body 2 includes a disk-shaped disk main body 4 and a disk-shaped plate 5 that is more flexible than the disk main body 4.
 積層ディスク本体2では、ディスク本体4とプレート5とが互いに重なるようにして接合されている。例えば、積層ディスク本体2は、円盤状のディスク本体4と、円盤状のプレート5とが、接合部6を介して積層されている。積層ディスク本体2では、ディスク本体4の中心軸45(図5参照)とプレート5の中心軸56(図5参照)とを一直線上に揃えてある。 In the laminated disk body 2, the disk body 4 and the plate 5 are joined so as to overlap each other. For example, in the laminated disk main body 2, a disk-shaped disk main body 4 and a disk-shaped plate 5 are laminated via a joint 6. In the laminated disk main body 2, the central axis 45 (see FIG. 5) of the disk main body 4 and the central axis 56 (see FIG. 5) of the plate 5 are aligned on a straight line.
 ディスク本体4は、液体試料を入れるチャンバー400を有する。ディスク本体4は、厚さ方向において互いに反対側にある第1面41及び第2面42を有する。プレート5は、ディスク本体4の第1面41側においてチャンバー400を覆うようにディスク本体4に接合されている。チャンバー400は、図3,6B及び6Cに示すように、第1チャンバー401と、第2チャンバー402と、を有する。第1チャンバー401は、ディスク本体4の厚さ方向に貫通しており、プレート5側の開口をプレート5により塞がれている。これにより、積層ディスク本体2では、第1チャンバー401は、ディスク本体4の厚さ方向においてプレート5側とは反対側が開放されている。第2チャンバー402は、ディスク本体4の第1面41に形成されており、ディスク本体4の厚さ方向においてプレート5側とは反対側が閉塞されている。また、第2チャンバー402は、プレート5側の開口をプレート5により塞がれている。第2チャンバー402は、第1チャンバー401と連通している(繋がっている)。ここにおいて、ディスク本体4は、第1チャンバー401と第2チャンバー402との間に、第1チャンバー401及び第2チャンバー402それぞれに連通するチャネル403(図4B,4D,6B及び6C参照)を有するのが好ましい。チャネル403は、ディスク本体4の第1面41に形成されており、ディスク本体4の厚さ方向においてプレート5側とは反対側が閉塞されている。 The disk main body 4 has a chamber 400 for storing a liquid sample. The disc body 4 has a first surface 41 and a second surface 42 that are opposite to each other in the thickness direction. The plate 5 is joined to the disc body 4 so as to cover the chamber 400 on the first surface 41 side of the disc body 4. The chamber 400 includes a first chamber 401 and a second chamber 402 as shown in FIGS. 3, 6B and 6C. The first chamber 401 penetrates in the thickness direction of the disc body 4, and the opening on the plate 5 side is closed by the plate 5. As a result, in the laminated disk main body 2, the first chamber 401 is open on the side opposite to the plate 5 side in the thickness direction of the disk main body 4. The second chamber 402 is formed on the first surface 41 of the disc body 4, and the side opposite to the plate 5 side in the thickness direction of the disc body 4 is closed. In the second chamber 402, the opening on the plate 5 side is closed by the plate 5. The second chamber 402 is in communication with (connected to) the first chamber 401. Here, the disc body 4 has a channel 403 (see FIGS. 4B, 4D, 6B, and 6C) that communicates with the first chamber 401 and the second chamber 402 between the first chamber 401 and the second chamber 402, respectively. Is preferred. The channel 403 is formed on the first surface 41 of the disk main body 4, and the side opposite to the plate 5 side in the thickness direction of the disk main body 4 is closed.
 積層ディスク本体2では、ディスク本体4における第1チャンバー401の内壁面とプレート5とで囲まれた空間が、液体試料を溜める第1ウェル21(図3及び4B参照)を構成している。また、積層ディスク本体2では、ディスク本体4における第2チャンバー402の内壁面とプレート5とで囲まれた空間が、第1ウェル21から移動させた液体試料を溜める第2ウェル22(図3及び4B参照)を構成している。また、積層ディスク本体2では、ディスク本体4におけるチャネル403の内壁面とプレート5とで囲まれた空間が、第1チャンバー401と第2チャンバー402との間で液体試料を通す流路23(図3及び4B参照)を構成している。 In the laminated disk main body 2, the space surrounded by the inner wall surface of the first chamber 401 and the plate 5 in the disk main body 4 constitutes a first well 21 (see FIGS. 3 and 4B) for storing a liquid sample. In the laminated disk main body 2, the space surrounded by the inner wall surface of the second chamber 402 and the plate 5 in the disk main body 4 is a second well 22 (see FIG. 3 and FIG. 3) that stores the liquid sample moved from the first well 21. 4B). In the laminated disk main body 2, a space surrounded by the inner wall surface of the channel 403 and the plate 5 in the disk main body 4 is a flow path 23 (see FIG. 5) through which a liquid sample passes between the first chamber 401 and the second chamber 402. 3 and 4B).
 液体試料は、複数種類の物質を含んでいる。フィルタカートリッジ3は、第1チャンバー401から第2チャンバー402へ移動する液体試料から特定の物質を除去するフィルタ35(図3、4B及び4D参照)を有する。ここで、「特定の物質を除去する」とは、特定の物質を捕捉することを意味する。要するに、フィルタ35は、液体試料から特定の第1物質を捕捉し特定の第2物質を通す多孔質構造体を含む。フィルタカートリッジ3は、ディスク本体4の第1チャンバー401に入れられる。ここにおいて、ディスク1では、フィルタカートリッジ3は、積層ディスク本体2の第1ウェル21に嵌め込まれる。 The liquid sample contains multiple types of substances. The filter cartridge 3 includes a filter 35 (see FIGS. 3, 4B, and 4D) that removes a specific substance from the liquid sample moving from the first chamber 401 to the second chamber 402. Here, “removing a specific substance” means capturing a specific substance. In short, the filter 35 includes a porous structure that captures a specific first substance from the liquid sample and passes the specific second substance. The filter cartridge 3 is placed in the first chamber 401 of the disc body 4. Here, in the disk 1, the filter cartridge 3 is fitted into the first well 21 of the laminated disk main body 2.
 フィルタカートリッジ3は、フィルタ35を保持するケース30を備えている。ケース30は、積層ディスク本体2の厚さ方向から見て第1ウェル21と略同じ形状である。ケース30は、積層ディスク本体2の厚さ方向から見て、積層ディスク本体2の径方向において積層ディスク本体2の中心から離れるにつれて幅が徐々に広くなる形状である。ケース30は、第2チャンバー402側の一面に開口部320(図4D参照)を有する。フィルタカートリッジ3では、フィルタ35がケース30の開口部320を塞ぐように配置されている。フィルタ35は、ケース30に対して、例えば、接着剤により固定されている。フィルタカートリッジ3では、ケース30とフィルタ35とで囲まれた空間が液体試料の収納空間31(図3及び4B参照)を構成している。 The filter cartridge 3 includes a case 30 that holds the filter 35. The case 30 has substantially the same shape as the first well 21 when viewed from the thickness direction of the laminated disk main body 2. The case 30 has a shape in which the width gradually increases with increasing distance from the center of the laminated disk body 2 in the radial direction of the laminated disk body 2 when viewed from the thickness direction of the laminated disk body 2. The case 30 has an opening 320 (see FIG. 4D) on one surface of the second chamber 402 side. In the filter cartridge 3, the filter 35 is disposed so as to close the opening 320 of the case 30. The filter 35 is fixed to the case 30 with, for example, an adhesive. In the filter cartridge 3, the space surrounded by the case 30 and the filter 35 constitutes a storage space 31 for liquid sample (see FIGS. 3 and 4B).
 ディスク1は、例えば、液状の生体試料(例えば、人の血液)中の検体(例えば、赤血球)への病原性微生物(例えば、マラリアの原虫)の感染率を検査するために用いられる。マラリアの原虫は、例えば、ハマダラ蚊が人の血を吸ったときに人の体内に侵入し、血液中において赤血球に侵入し、赤血球中に寄生する。ここでいう「感染率」は、{[病原性微生物の感染している検体の数]/[検体の全数]}×100〔%〕である。液体試料は、少なくとも、液状の生体試料を含む。液体試料は、例えば、生体試料が血液である場合、粘性を低下させるために、血液を希釈液により希釈してあるのが好ましい。希釈液としては、生体試料に含まれる血液細胞(赤血球、白血球)を変性させない液を用いる。希釈液としては、例えば、緩衝液、等張液、培養液、界面活性剤等を用いることができる。 The disk 1 is used, for example, to examine the infection rate of pathogenic microorganisms (for example, malaria protozoa) to a specimen (for example, red blood cells) in a liquid biological sample (for example, human blood). The malaria parasite, for example, invades a human body when an mosquito sucks human blood, invades red blood cells in the blood, and parasitizes in red blood cells. The “infection rate” here is {[number of samples infected with pathogenic microorganisms] / [total number of samples]} × 100 [%]. The liquid sample includes at least a liquid biological sample. In the liquid sample, for example, when the biological sample is blood, the blood is preferably diluted with a diluent in order to reduce the viscosity. As the diluted solution, a solution that does not denature blood cells (erythrocytes, leukocytes) contained in the biological sample is used. As the diluent, for example, a buffer solution, an isotonic solution, a culture solution, a surfactant and the like can be used.
 ディスク1では、病原性微生物の核酸を染色するための蛍光試薬(蛍光色素)が、積層ディスク本体2の第2ウェル22に配置されているのが好ましい。蛍光試薬は、例えば、凍結乾燥法、スピンコート法などにより配置されているのが好ましい。これにより、ディスク1では、第2ウェル22へ移動した液体試料中の検体(赤血球)に寄生している病原性微生物の核酸を蛍光標識することが可能となる。蛍光試薬により染色された核酸は、外部から励起光が照射されたときに蛍光を発する。病原性微生物の核酸を染色するための蛍光試薬は、粉末でもよい。 In the disk 1, it is preferable that a fluorescent reagent (fluorescent dye) for staining the nucleic acid of pathogenic microorganisms is disposed in the second well 22 of the laminated disk body 2. The fluorescent reagent is preferably arranged by, for example, a freeze-drying method or a spin coating method. Thereby, the disc 1 can fluorescently label the nucleic acid of the pathogenic microorganism that is parasitic on the specimen (red blood cells) in the liquid sample moved to the second well 22. The nucleic acid stained with the fluorescent reagent emits fluorescence when excitation light is irradiated from the outside. The fluorescent reagent for staining the nucleic acid of the pathogenic microorganism may be a powder.
 ディスク1では、フィルタ35が、特定の第2物質(検体)である赤血球を通し、かつ、特定の第1物質である白血球を捕捉するように構成されている。言い換えれば、フィルタ35は、赤血球と白血球とを分離し赤血球を抽出する分離部として機能するように構成されている。したがって、ディスク1では、生体試料から赤血球を抽出することが可能となる。 In the disk 1, the filter 35 is configured to pass red blood cells that are specific second substances (specimens) and to capture white blood cells that are specific first substances. In other words, the filter 35 is configured to function as a separation unit that separates red blood cells and white blood cells and extracts red blood cells. Therefore, the disk 1 can extract red blood cells from a biological sample.
 病原性微生物の核酸を染色するための蛍光試薬は、白血球も染色することができる材料である。しかしながら、ディスク1では、第1チャンバー401に入れられた液体試料中の白血球がフィルタ35に捕捉される。よって、ディスク1では、第1チャンバー401へ入れられた液体試料に含まれている白血球が蛍光試薬により染色されるのを防ぐことが可能となる。 Fluorescent reagents for staining nucleic acids of pathogenic microorganisms are materials that can also stain leukocytes. However, in the disk 1, leukocytes in the liquid sample placed in the first chamber 401 are captured by the filter 35. Therefore, in the disc 1, it is possible to prevent the white blood cells contained in the liquid sample put in the first chamber 401 from being stained with the fluorescent reagent.
 フィルタカートリッジ3におけるフィルタ35は、ディスク本体4の径方向において収納空間31と第2チャンバー402との間に存在する。ディスク1では、フィルタカートリッジ3がディスク本体4の第1チャンバー401に入れられるので、フィルタカートリッジ3の収納空間31にある液体試料を、第1チャンバー401内に入れた液体試料とみなすことができる。ディスク1では、フィルタカートリッジ3におけるフィルタ35が収納空間31と第2チャンバー402との間にあることにより、収納空間31に入れた液体試料中の赤血球を、フィルタ35を通して第2ウェル22へ移動させることが可能となる。収納空間31に液体試料を入れる作業は、フィルタカートリッジ3が積層ディスク本体2の第1ウェル21に嵌め込まれた状態で行うのが好ましい。 The filter 35 in the filter cartridge 3 exists between the storage space 31 and the second chamber 402 in the radial direction of the disc body 4. In the disk 1, the filter cartridge 3 is placed in the first chamber 401 of the disk body 4, so that the liquid sample in the storage space 31 of the filter cartridge 3 can be regarded as the liquid sample placed in the first chamber 401. In the disk 1, since the filter 35 in the filter cartridge 3 is between the storage space 31 and the second chamber 402, red blood cells in the liquid sample placed in the storage space 31 are moved to the second well 22 through the filter 35. It becomes possible. The operation of putting the liquid sample into the storage space 31 is preferably performed in a state in which the filter cartridge 3 is fitted in the first well 21 of the laminated disk main body 2.
 フィルタカートリッジ3の収納空間31の形状は、ディスク1の厚さ方向から見て、図3に示すように、U字形状である。フィルタカートリッジ3では、ケース30においてU字形状の収納空間31の第1端に連通するように注入孔33が設けられ、第2端に連通するように通気孔38が設けられていることが望ましい。これにより、フィルタカートリッジ3の収納空間31に液体試料を注入する際に、収納空間31内部に存在していた空気をフィルタ35以外の部分からも逃がすことが可能となるために、スムーズに液体試料を注入することができる。通気孔38の形状は、例えば、円形である。通気孔38は、液体試料の漏れを防ぐ観点から小さいほうが好ましく、注入孔33よりも小さいのが好ましい。 The shape of the storage space 31 of the filter cartridge 3 is U-shaped as shown in FIG. 3 when viewed from the thickness direction of the disk 1. In the filter cartridge 3, it is desirable that the injection hole 33 is provided so as to communicate with the first end of the U-shaped storage space 31 in the case 30 and the vent hole 38 is provided so as to communicate with the second end. . Thereby, when the liquid sample is injected into the storage space 31 of the filter cartridge 3, the air existing in the storage space 31 can be released from the portion other than the filter 35, so that the liquid sample can be smoothly supplied. Can be injected. The shape of the vent 38 is, for example, a circle. The vent hole 38 is preferably smaller from the viewpoint of preventing leakage of the liquid sample, and is preferably smaller than the injection hole 33.
 ディスク1では、フィルタカートリッジ3が第1チャンバー401に入れられた状態において、収納空間31、フィルタ35及び第2チャンバー402が、ディスク本体4の中心側から外周側に向かってこの順に並んでいるのが好ましい。要するに、ディスク1では、積層ディスク本体2の中心側から積層ディスク本体2の径方向外向きにおいて、収納空間31、フィルタ35及び第2ウェル22が、この順に並んでいるのが好ましい。これにより、ディスク1を回転させたときに液体試料に作用する遠心力により、収納空間31中の液体試料を、フィルタ35を通して第2ウェル22へ移動させることが可能となる。第2ウェル22内において、液体試料には、遠心力の他に、表面張力等も作用する。ディスク1の回転方向は、ディスク1の上側(ディスク1におけるディスク本体4の第2面42側)から見て、時計回り(右回り)の方向である。 In the disk 1, the storage space 31, the filter 35, and the second chamber 402 are arranged in this order from the center side of the disk body 4 to the outer peripheral side in a state where the filter cartridge 3 is placed in the first chamber 401. Is preferred. In short, in the disk 1, it is preferable that the storage space 31, the filter 35, and the second well 22 are arranged in this order from the center side of the laminated disk main body 2 outward in the radial direction of the laminated disk main body 2. Thereby, the liquid sample in the storage space 31 can be moved to the second well 22 through the filter 35 by the centrifugal force acting on the liquid sample when the disk 1 is rotated. In the second well 22, surface tension or the like acts on the liquid sample in addition to centrifugal force. The rotation direction of the disk 1 is clockwise (clockwise) when viewed from the upper side of the disk 1 (the second surface 42 side of the disk body 4 in the disk 1).
 積層ディスク本体2の形状は、光ディスク(CD、DVD等)と同様、円盤状であるのが好ましい。積層ディスク本体2の中央には、円形状の孔28が形成されているのが好ましい。ディスク1の直径は、例えば、120mmである。 The shape of the laminated disk main body 2 is preferably a disk shape as in the case of optical disks (CD, DVD, etc.). A circular hole 28 is preferably formed in the center of the laminated disk body 2. The diameter of the disk 1 is 120 mm, for example.
 積層ディスク本体2は、上述のように、円盤状のディスク本体4と、ディスク本体4の第1面41側においてディスク本体4に接合された円盤状のプレート5と、を備える。ここにおいて、ディスク本体4の中央には、積層ディスク本体2の孔28の一部を構成する円形状の孔48が形成されている。また、プレート5の中央には、積層ディスク本体2の孔28の一部を構成する円形状の孔58が形成されている。また、プレート5は、円盤状のプレート本体50(図4C参照)を備える。プレート本体50の材質は、例えば、透明な樹脂である。プレート本体50は、厚さ方向において互いに反対側にある表面51及び裏面52を有する。プレート本体50の表面51には、光ディスクと同様に、プレート本体50の裏面52を通して入射したビーム状の光を追従させるための螺旋状のトラックが形成されているのが好ましい。トラックは、溝である。トラックは、プレート本体50の中央部から外周部まで螺旋状に形成されている。トラックにはアドレス情報が連続的に記録されている。これにより、プレート本体50では、アドレス情報によって位置が特定できるようになっている。したがって、例えば、ディスク1の面内における第2ウェル22の位置情報は、アドレス情報により特定される。ディスク1は、CDやDVDと同様、トラックが光により走査されることにより、アドレス情報が再生される。光は、励起光である。励起光の波長は、例えば、400nm~410nmであるのが好ましく、405nmであるのがより好ましい。トラックの深さは、例えば、50nmである。 The laminated disk main body 2 includes the disk-shaped disk main body 4 and the disk-shaped plate 5 joined to the disk main body 4 on the first surface 41 side of the disk main body 4 as described above. Here, a circular hole 48 constituting a part of the hole 28 of the laminated disk main body 2 is formed in the center of the disk main body 4. A circular hole 58 constituting a part of the hole 28 of the laminated disk main body 2 is formed at the center of the plate 5. The plate 5 includes a disk-shaped plate body 50 (see FIG. 4C). The material of the plate body 50 is, for example, a transparent resin. The plate body 50 has a front surface 51 and a back surface 52 that are opposite to each other in the thickness direction. The front surface 51 of the plate main body 50 is preferably formed with a spiral track for following the beam-like light incident through the back surface 52 of the plate main body 50 in the same manner as the optical disc. A track is a groove. The track is formed in a spiral shape from the center to the outer periphery of the plate body 50. Address information is continuously recorded on the track. Thereby, in the plate body 50, the position can be specified by the address information. Therefore, for example, the position information of the second well 22 in the plane of the disk 1 is specified by the address information. As in the case of a CD or DVD, the track 1 is scanned with light to reproduce address information. The light is excitation light. The wavelength of the excitation light is preferably 400 nm to 410 nm, for example, and more preferably 405 nm. The track depth is, for example, 50 nm.
 プレート5は、プレート本体50の表面51上に形成された誘電体膜54(図4C参照)を更に備えている。誘電体膜54は、例えば、ZnS-SiO2膜である。誘電体膜54は、トラックを覆うように形成されている。誘電体膜54は、トラッキングのために励起光の一部を反射し、残りのほとんどを透過させるように構成されている。励起光に対する誘電体膜54の反射率は、例えば、5%以上20%以下である。上述の蛍光に対する誘電体膜54の反射率は、例えば、上述の励起光に対する誘電体膜54の反射率以下であるのが好ましい。ディスク1では、プレート本体50の裏面52に入射した励起光を反射する反射面55(図4C参照)が、誘電体膜54とプレート本体50との界面により構成される。 The plate 5 further includes a dielectric film 54 (see FIG. 4C) formed on the surface 51 of the plate body 50. The dielectric film 54 is, for example, a ZnS—SiO 2 film. The dielectric film 54 is formed so as to cover the track. The dielectric film 54 is configured to reflect a part of the excitation light for tracking and transmit most of the remaining part. The reflectance of the dielectric film 54 with respect to the excitation light is, for example, 5% or more and 20% or less. For example, the reflectance of the dielectric film 54 with respect to the fluorescence is preferably less than or equal to the reflectance of the dielectric film 54 with respect to the excitation light. In the disk 1, a reflection surface 55 (see FIG. 4C) that reflects the excitation light incident on the back surface 52 of the plate body 50 is configured by an interface between the dielectric film 54 and the plate body 50.
 ディスク1において第1ウェル21からフィルタ35を通して第2ウェル22へ送られた液体試料中の検体は、例えば、図2に示すような検出装置70によって検査される。 The specimen in the liquid sample sent from the first well 21 to the second well 22 through the filter 35 in the disk 1 is inspected by, for example, a detection device 70 as shown in FIG.
 検出装置70は、例えば、光ディスク用の光ピックアップ装置と同様の光学系を備えており、その動作も同様である。検出装置70の光学系は、半導体レーザ71と、偏光ビームスプリッタ72と、対物レンズ73と、ダイクロイックプリズム74と、蛍光検出器75と、アナモフィックレンズ76と、反射励起光検出器77と、を備えている。 The detecting device 70 includes, for example, an optical system similar to an optical pickup device for an optical disc, and the operation thereof is also the same. The optical system of the detection device 70 includes a semiconductor laser 71, a polarization beam splitter 72, an objective lens 73, a dichroic prism 74, a fluorescence detector 75, an anamorphic lens 76, and a reflected excitation light detector 77. ing.
 検出装置70は、上述の光学系の他、ホルダ81と、アクチュエータ82と、回転装置83と、第1の信号演算回路84と、サーボ回路85と、第2の信号演算回路86と、画像解析装置101(画像解析システム100)と、画像表示装置88と、を備えている。回転装置83は、モータである。回転装置83は、サーボ回路85によって制御される。 In addition to the optical system described above, the detection device 70 includes a holder 81, an actuator 82, a rotation device 83, a first signal calculation circuit 84, a servo circuit 85, a second signal calculation circuit 86, and image analysis. A device 101 (image analysis system 100) and an image display device 88 are provided. The rotating device 83 is a motor. The rotating device 83 is controlled by a servo circuit 85.
 検出装置70では、回転装置83により回転するテーブルにディスク1がセットされた後に、所定動作が開始される。 In the detecting device 70, after the disk 1 is set on the rotating table by the rotating device 83, a predetermined operation is started.
 光学系、ホルダ81及びアクチュエータ82は、CDやDVDの記録/再生に用いる既存の光ピックアップ装置と同様、ハウジングに設置される。また、このハウジングは、所定のガイド機構によって、ディスク1の径方向に移動可能となっている。サーボ回路85は、ハウジングの移動の制御も行う。この制御は、既存のCDプレーヤやDVDプレーヤにおける制御と同様のアクセス制御なので、その詳細な説明は省略する。 The optical system, the holder 81 and the actuator 82 are installed in a housing in the same manner as an existing optical pickup device used for recording / reproducing of a CD or DVD. The housing is movable in the radial direction of the disk 1 by a predetermined guide mechanism. The servo circuit 85 also controls the movement of the housing. Since this control is the same access control as that in the existing CD player or DVD player, detailed description thereof is omitted.
 半導体レーザ71は、波長405nm程度の光(励起光)を出射する。図2には、光の進行経路を一点鎖線で示してある。半導体レーザ71から出射された励起光は、偏光ビームスプリッタ72によって反射され、対物レンズ73に入射する。 The semiconductor laser 71 emits light (excitation light) having a wavelength of about 405 nm. In FIG. 2, the traveling path of light is indicated by a one-dot chain line. The excitation light emitted from the semiconductor laser 71 is reflected by the polarization beam splitter 72 and enters the objective lens 73.
 対物レンズ73は、所定の開口数(Numerical Aperture)を有し、励起光をディスク1に対して適正に収束させるよう構成されている。具体的には、対物レンズ73は、偏光ビームスプリッタ72側から入射する励起光が収束するよう構成されている。 The objective lens 73 has a predetermined numerical aperture (Numerical Aperture) and is configured to properly converge the excitation light on the disk 1. Specifically, the objective lens 73 is configured such that excitation light incident from the polarization beam splitter 72 side converges.
 対物レンズ73は、ホルダ81に保持された状態で、アクチュエータ82により、フォーカス方向(ディスク1の厚さ方向)とトラッキング方向(ディスク1の径方向)に駆動される。すなわち、対物レンズ73は、励起光がディスク1の反射面55(図4C参照)に合焦された状態でトラックを追従するように駆動される。反射面55に合焦された励起光は、一部が反射面55によって反射され、大部分が反射面55を透過する。 The objective lens 73 is driven by the actuator 82 in the focus direction (the thickness direction of the disk 1) and the tracking direction (the radial direction of the disk 1) while being held by the holder 81. That is, the objective lens 73 is driven so as to follow the track in a state where the excitation light is focused on the reflection surface 55 (see FIG. 4C) of the disk 1. A part of the excitation light focused on the reflection surface 55 is reflected by the reflection surface 55 and most of the excitation light is transmitted through the reflection surface 55.
 対物レンズ73によって収束された励起光が赤血球において蛍光標識された核酸に照射されると、蛍光が発生する。蛍光の波長は、励起光の波長と異なる。蛍光の波長は、例えば、440nm~490nmであるのが好ましく、455nmであるのがより好ましい。蛍光色素としては、例えば、SYTO(登録商標)Blue等を用いることができる。マラリアの原虫が感染していない赤血球は、蛍光標識されていないので、励起光を照射されても蛍光を発生しない。したがって、検出装置70では、マラリアの原虫が感染している赤血球と感染していない赤血球とを蛍光の有無で区別することができる。 Fluorescence is generated when the excitation light focused by the objective lens 73 is irradiated onto a nucleic acid that is fluorescently labeled in red blood cells. The wavelength of fluorescence is different from the wavelength of excitation light. The fluorescence wavelength is preferably, for example, 440 nm to 490 nm, and more preferably 455 nm. For example, SYTO (registered trademark) Blue can be used as the fluorescent dye. Red blood cells that are not infected with malaria parasites are not fluorescently labeled, and therefore do not generate fluorescence even when irradiated with excitation light. Therefore, the detection apparatus 70 can distinguish between red blood cells infected with malaria parasites and red blood cells not infected by the presence or absence of fluorescence.
 ダイクロイックプリズム74は、波長405nm程度の光を反射し、波長440~600nm程度の光を透過するよう構成されている。 The dichroic prism 74 is configured to reflect light having a wavelength of about 405 nm and transmit light having a wavelength of about 440 to 600 nm.
 反射面55によって反射された励起光(以下、「反射励起光」という)は、偏光ビームスプリッタ72を透過し、ダイクロイックプリズム74によって反射され、アナモフィックレンズ76に入射する。 Excitation light reflected by the reflecting surface 55 (hereinafter referred to as “reflected excitation light”) passes through the polarization beam splitter 72, is reflected by the dichroic prism 74, and enters the anamorphic lens 76.
 アナモフィックレンズ76は、偏光ビームスプリッタ72側から入射する反射励起光に非点収差を導入する。アナモフィックレンズ76を透過した反射励起光は、反射励起光検出器77に入射する。反射励起光検出器77は、受光面上に反射励起光を受光するための4分割センサを有している。反射励起光検出器77の検出信号は、第2の信号演算回路86に入力される。 The anamorphic lens 76 introduces astigmatism into the reflected excitation light incident from the polarization beam splitter 72 side. The reflected excitation light transmitted through the anamorphic lens 76 enters the reflected excitation light detector 77. The reflected excitation light detector 77 has a four-divided sensor for receiving reflected excitation light on the light receiving surface. The detection signal of the reflected excitation light detector 77 is input to the second signal calculation circuit 86.
 第2の信号演算回路86は、反射励起光検出器77の検出信号から、フォーカスエラー信号及びトラッキングエラー信号を生成し、かつ、ウォブル信号(Wobble Signal)を生成する。フォーカスエラー信号は、対物レンズ73の焦点位置とディスク1とのずれ(焦点誤差)を示す信号である。トラッキングエラー信号は、励起光のスポットとトラックとのずれ(トラッキング誤差)を示す信号である。ウォブル信号は、トラックにより規定されるグルーブの蛇行形状に応じた波形信号である。フォーカスエラー信号及びトラッキングエラー信号は、非点収差法と1ビームプッシュプル法に従って生成される。ウォブル信号は、トラッキングエラー信号に基づいて生成される。具体的には、トラッキングエラー信号から、ウォブル信号に応じた周波数成分を抽出することにより、ウォブル信号が生成される。サーボ回路85は、第2の信号演算回路86から出力されたフォーカスエラー信号及びトラッキングエラー信号を用いて、アクチュエータ82を制御する。また、サーボ回路85は、第2の信号演算回路86から出力されたウォブル信号を用いて、所定の線速度でディスク1が回転されるように回転装置83を制御する。 The second signal calculation circuit 86 generates a focus error signal and a tracking error signal from the detection signal of the reflected excitation light detector 77, and also generates a wobble signal (Wobble Signal). The focus error signal is a signal indicating a deviation (focus error) between the focal position of the objective lens 73 and the disk 1. The tracking error signal is a signal indicating a deviation (tracking error) between the spot of the excitation light and the track. The wobble signal is a waveform signal corresponding to the meandering shape of the groove defined by the track. The focus error signal and the tracking error signal are generated according to the astigmatism method and the one-beam push-pull method. The wobble signal is generated based on the tracking error signal. Specifically, a wobble signal is generated by extracting a frequency component corresponding to the wobble signal from the tracking error signal. The servo circuit 85 controls the actuator 82 using the focus error signal and tracking error signal output from the second signal calculation circuit 86. The servo circuit 85 controls the rotating device 83 so that the disk 1 is rotated at a predetermined linear velocity using the wobble signal output from the second signal calculation circuit 86.
 また、第2の信号演算回路86は、ウォブル信号を復調して生成した再生データ(アドレス情報)を画像解析装置101に出力する。 Also, the second signal calculation circuit 86 outputs reproduction data (address information) generated by demodulating the wobble signal to the image analysis apparatus 101.
 対物レンズ73側からダイクロイックプリズム74に入射する蛍光は、ダイクロイックプリズム74を透過し、蛍光検出器75に入射する。蛍光検出器75は、受光した蛍光を電気信号からなる検出信号に変換して出力するセンサを有している。蛍光検出器75の検出信号は、第1の信号演算回路84に入力される。 Fluorescence incident on the dichroic prism 74 from the objective lens 73 side passes through the dichroic prism 74 and enters the fluorescence detector 75. The fluorescence detector 75 has a sensor that converts the received fluorescence into a detection signal composed of an electrical signal and outputs the detection signal. The detection signal of the fluorescence detector 75 is input to the first signal calculation circuit 84.
 第1の信号演算回路84は、蛍光検出器75からの検出信号を増幅して生成した蛍光輝度情報を画像解析装置101に出力する。 The first signal calculation circuit 84 outputs fluorescence luminance information generated by amplifying the detection signal from the fluorescence detector 75 to the image analysis apparatus 101.
 画像解析装置101は、第1の信号演算回路84から出力される蛍光輝度情報と、第2の信号演算回路86から出力されるアドレス情報と、に基づいて第2チャンバー402内の液体試料の画像を生成して画像表示装置88に表示させる。画像解析装置101は、生成した画像に所定の処理を施して、液体試料中にマラリア原虫に感染している赤血球の有無について判定し、その結果を画像表示装置88に表示させる。画像解析装置101は、例えば、パーソナルコンピュータに適宜のプログラムを実行させることにより実現できる。また、画像表示装置88は、例えば、パーソナルコンピュータのディスプレイにより構成できる。 The image analysis apparatus 101 is configured to display an image of the liquid sample in the second chamber 402 based on the fluorescence luminance information output from the first signal calculation circuit 84 and the address information output from the second signal calculation circuit 86. Is generated and displayed on the image display device 88. The image analysis apparatus 101 performs a predetermined process on the generated image, determines whether or not red blood cells infected with malaria parasites exist in the liquid sample, and causes the image display apparatus 88 to display the result. The image analysis apparatus 101 can be realized, for example, by causing a personal computer to execute an appropriate program. Further, the image display device 88 can be constituted by a display of a personal computer, for example.
 ディスク1及び検出装置70を用いて赤血球の検査を行う例の手順について、簡単に説明する。 The procedure of an example of examining red blood cells using the disk 1 and the detection device 70 will be briefly described.
 患者から採血された血液(生体試料)を準備してから、血液と希釈液とを混合することで液体試料を調製する。 After preparing blood (biological sample) collected from a patient, a liquid sample is prepared by mixing the blood and a diluent.
 その後、フィルタカートリッジ3の収納空間31に液体試料を入れる。収納空間31に生体試料を入れるときには、例えば、ピペット(Pipette)、シリンジ(Syringe)、毛細管(Capillary)等を用いる。ここでは、フィルタカートリッジ3を積層ディスク本体2の第1ウェル21に嵌め込んだ状態において液体試料を収納空間31に入れるのが好ましい。 Thereafter, a liquid sample is put into the storage space 31 of the filter cartridge 3. When putting a biological sample in the storage space 31, for example, a pipette (Pipette), a syringe (Syringe), a capillary (Capillary) or the like is used. Here, it is preferable to put the liquid sample into the storage space 31 in a state where the filter cartridge 3 is fitted in the first well 21 of the laminated disk main body 2.
 その後、検出装置70において、ディスク1を所定の線速度で所定の回転時間だけ回転させる。検出装置70は、積層ディスク本体2の中心軸25を中心としてディスク1を回転させる。このとき、液体試料中の白血球は、フィルタカートリッジ3のフィルタ35に捕捉され、流路23及び第2ウェル22へは到達しない。よって、ディスク1では、液体試料に含まれている赤血球を第1ウェル21から第2ウェル22へ移動させることができ、かつ、液体試料に含まれている白血球をフィルタ35で捕捉することができる。 Thereafter, in the detection device 70, the disk 1 is rotated at a predetermined linear velocity for a predetermined rotation time. The detection device 70 rotates the disk 1 around the central axis 25 of the laminated disk main body 2. At this time, white blood cells in the liquid sample are captured by the filter 35 of the filter cartridge 3 and do not reach the flow path 23 and the second well 22. Therefore, in the disk 1, the red blood cells contained in the liquid sample can be moved from the first well 21 to the second well 22, and the white blood cells contained in the liquid sample can be captured by the filter 35. .
 ここで、画像解析装置101(画像解析システム100)の構成について説明する。 Here, the configuration of the image analysis apparatus 101 (image analysis system 100) will be described.
 画像解析装置101は、第1入力部102、第2入力部103、制御部104及び出力部105を備える(図1参照)。画像解析装置101は、CPU(Central Processing Unit)及びメモリを有している。CPUがメモリに格納されているプログラムを実行することにより、制御部104の機能を実現する。プログラムは、ここではインターネット等の電気通信回線を通じて、あるいはメモリカード等の記録媒体に記録されて提供されるが、コンピュータのメモリに予め記録されていてもよい。 The image analysis apparatus 101 includes a first input unit 102, a second input unit 103, a control unit 104, and an output unit 105 (see FIG. 1). The image analysis apparatus 101 includes a CPU (Central Processing Unit) and a memory. The function of the control unit 104 is realized by the CPU executing a program stored in the memory. Here, the program is provided through an electric communication line such as the Internet or recorded in a recording medium such as a memory card, but may be recorded in advance in a memory of a computer.
 第1入力部102は、第1の信号演算回路84で出力された蛍光輝度情報を受け取る。第2入力部103は、第2の信号演算回路86から出力されたアドレス情報を受け取る。 The first input unit 102 receives the fluorescence luminance information output from the first signal calculation circuit 84. The second input unit 103 receives the address information output from the second signal calculation circuit 86.
 制御部104は、第1処理部110、作成部111、決定部112、判定部113及び第2処理部114を有している(図1参照)。 The control unit 104 includes a first processing unit 110, a creation unit 111, a determination unit 112, a determination unit 113, and a second processing unit 114 (see FIG. 1).
 第1処理部110は、液体試料から分離された試料の画像を生成する。具体的には、第1処理部110は、第1の信号演算回路84から受け取った蛍光輝度情報と、第2の信号演算回路86から受け取ったアドレス情報とを用いて、第2ウェル22内の試料の画像を生成する。第1処理部110は、生成した画像を出力部105を介して画像表示装置88へ出力する。 The first processing unit 110 generates an image of the sample separated from the liquid sample. Specifically, the first processing unit 110 uses the fluorescence luminance information received from the first signal calculation circuit 84 and the address information received from the second signal calculation circuit 86 to store the information in the second well 22. Generate an image of the sample. The first processing unit 110 outputs the generated image to the image display device 88 via the output unit 105.
 作成部111は、第1処理部110で生成された画像を用いて、輝度と画像内において当該輝度が出現する頻度との対応関係を表す輝度ヒストグラムG10を作成する(図8参照)。具体的には、作成部111は、第1処理部110で生成された画像から、顕著性マップを作成し、作成した顕著性マップを用いて周辺の画素との輝度の差が所定値以上である画素を含むすべての領域(対象領域)を抽出する。作成部111は、抽出したすべての領域を用いて輝度ヒストグラムG10を作成する。以下、説明において、輝度とは、輝度値を意味する。例えば、輝度は、0~255のうちいずれかの値となる。 The creation unit 111 uses the image generated by the first processing unit 110 to create a luminance histogram G10 representing the correspondence between the luminance and the frequency at which the luminance appears in the image (see FIG. 8). Specifically, the creation unit 111 creates a saliency map from the image generated by the first processing unit 110, and using the created saliency map, a difference in luminance with surrounding pixels is a predetermined value or more. All regions (target regions) including a certain pixel are extracted. The creation unit 111 creates a brightness histogram G10 using all the extracted regions. Hereinafter, in the description, luminance means a luminance value. For example, the luminance is any value from 0 to 255.
 以下、図9を用いて、対象領域の抽出について説明する。 Hereinafter, extraction of the target area will be described with reference to FIG.
 作成部111は、第1処理部110で生成された画像B1(後述する第1画像)から、輝度が高い画素(明るい画素)の集まりである1つ以上の第1画素群B10を取得する。例えば、図9の例示では、作成部111は、4つの第1画素群B10を取得する。作成部111は、第1画素群B10の周囲に存在し第1画素群B10の輝度よりも低い輝度の画素の集まりである第2画素群B11を取得する。ここで、作成部111は、例えば、第2画素群B11の外形が四角形状となるように第2画素群B11を取得する。作成部111は、第1画素群B10と、当該第1画素群B10の周囲に存在する第2画素群B11とを合わせた領域B20を対象領域として画像B1から抽出する。つまり、作成部111は、画像B1から周辺の画素の輝度との差が所定値以上である画素と、当該画素の周囲に存在する画素とを含み、画像B1よりも少ない画素数の画素の集合体からなる領域B20を対象領域として抽出する。作成部111は、領域B20(対象領域)に含まれる各画素の輝度と、当該輝度が出現する頻度とを対応付けた輝度ヒストグラムG10を作成する。 The creation unit 111 acquires one or more first pixel groups B10 that are a collection of pixels with high luminance (bright pixels) from an image B1 (first image described later) generated by the first processing unit 110. For example, in the illustration of FIG. 9, the creating unit 111 acquires four first pixel groups B10. The creation unit 111 acquires a second pixel group B11 that is a collection of pixels that exist around the first pixel group B10 and have a luminance lower than that of the first pixel group B10. Here, for example, the creation unit 111 acquires the second pixel group B11 so that the outer shape of the second pixel group B11 is a square shape. The creation unit 111 extracts from the image B1 a region B20 that is a combination of the first pixel group B10 and the second pixel group B11 existing around the first pixel group B10 as a target region. That is, the creation unit 111 includes a pixel having a difference from the brightness of surrounding pixels from the image B1 to a predetermined value or more and a pixel existing around the pixel, and having a smaller number of pixels than the image B1. A body region B20 is extracted as a target region. The creation unit 111 creates a brightness histogram G10 in which the brightness of each pixel included in the area B20 (target area) is associated with the frequency at which the brightness appears.
 作成部111は、輝度ヒストグラムG10を画像B1全体から作成するのではなく、顕著性マップを用いて、画像B1の画素数よりも少ない画素数からなる領域(対象領域)から作成している。言い換えれば、ヒストグラムG10の作成に用いる領域B20を画像B1の一部に絞っている。そのため、対象領域の画素数に対する第1画素群の画素数の割合が、画像B1の画素数に対する第2画素群の画素数の割合よりも大きくなる。つまり、作成部111は、対象領域の画素数に対する第1画素群の画素数の割合が、画像の画素数に対する第2画素群の画素数の割合よりも大きくなるように、対象領域を画像B1から抽出する。ここで、第1画素群は、周辺の画素の輝度との差が所定値以上であって対象領域における画素の集まりである。第2画素群は、周辺の画素の輝度との差が所定値以上であって画像全体における画素の集まりである。 The creating unit 111 does not create the luminance histogram G10 from the entire image B1, but creates a region (target region) having a smaller number of pixels than the number of pixels of the image B1, using the saliency map. In other words, the region B20 used for creating the histogram G10 is narrowed down to a part of the image B1. Therefore, the ratio of the number of pixels of the first pixel group to the number of pixels of the target region is larger than the ratio of the number of pixels of the second pixel group to the number of pixels of the image B1. That is, the creation unit 111 sets the target area to the image B1 so that the ratio of the number of pixels of the first pixel group to the number of pixels of the target area is larger than the ratio of the number of pixels of the second pixel group to the number of pixels of the image. Extract from Here, the first pixel group is a group of pixels in the target area whose difference from the luminance of surrounding pixels is a predetermined value or more. The second pixel group is a group of pixels in the entire image having a difference from the luminance of surrounding pixels equal to or greater than a predetermined value.
 なお、作成部111は、領域20の一部の領域であって第1画素群B10の一部と第2画素群B11の一部とを含む領域を対象領域としてもよい。例えば、作成部111は、領域20のうち半分の領域である領域B30を対象領域として、輝度ヒストグラムを作成してもよい。 Note that the creation unit 111 may use a region that is a part of the region 20 and that includes a part of the first pixel group B10 and a part of the second pixel group B11 as a target region. For example, the creation unit 111 may create a luminance histogram using the region B30, which is a half of the region 20, as a target region.
 また、本実施形態では、作成部111が行う輝度ヒストグラムの作成は、明暗が反転した画像に対して適用してもよい。この場合、作成部111は、輝度が低い画素(暗い画素)の集まりを第1画素群として取得する。作成部111は、第1画素群の周囲に存在し第1画素群の輝度よりも高い輝度の画素の集まりを第2画素群として取得する。作成部111は、第1画素群と、当該第1画素群の周囲に存在する第2画素群とを併せた領域を対象領域として画像B1から抽出する。作成部111は、第1画素群と、当該第1画素群の周囲に存在する第2画素群とを併せた領域を対象領域とし、対象領域に含まれる各画素の輝度と、当該輝度が出現する頻度とを対応付けた輝度ヒストグラムを作成する。 Further, in the present embodiment, the creation of the luminance histogram performed by the creation unit 111 may be applied to an image whose brightness is reversed. In this case, the creation unit 111 acquires a collection of pixels with low luminance (dark pixels) as the first pixel group. The creation unit 111 acquires a group of pixels that exist around the first pixel group and have a luminance higher than that of the first pixel group as the second pixel group. The creation unit 111 extracts, from the image B1, an area obtained by combining the first pixel group and the second pixel group present around the first pixel group as a target area. The creation unit 111 sets a target region as a region including the first pixel group and the second pixel group existing around the first pixel group, and the luminance of each pixel included in the target region and the luminance appear. A luminance histogram is created in association with the frequency of performing.
 決定部112は、作成部111で作成された輝度ヒストグラムG10を用いて、画像内において特定の物質(マラリア原虫)の存在の有無の判定に用いる輝度閾値を決定する。 The determining unit 112 uses the luminance histogram G10 generated by the generating unit 111 to determine a luminance threshold value used for determining the presence or absence of a specific substance (malaria parasite) in the image.
 判定部113は、決定部112で決定された輝度閾値を用いて、第1処理部110で作成された画像において特定の物質(マラリア原虫)が存在するか否かを判定する。具体的には、判定部113は、画像において輝度閾値以上の輝度を含む領域が存在するか否かを判断する。存在すると判断する場合には、判定部113は、画像において、特定の物質(マラリア原虫)が存在すると判断する。 The determination unit 113 determines whether or not a specific substance (malaria parasite) is present in the image created by the first processing unit 110 using the brightness threshold value determined by the determination unit 112. Specifically, the determination unit 113 determines whether or not there is an area that includes a luminance equal to or higher than a luminance threshold in the image. When determining that it exists, the determination unit 113 determines that a specific substance (malaria parasite) is present in the image.
 第2処理部114は、判定部113の判定結果に基づいて、画像において特定の物質(マラリア原虫)が存在する場合には画像内に存在する特定の物質の数を求める。例えば、第2処理部114は、画像において輝度閾値以上の輝度が含まれる領域の個数を求める。第2処理部114は、特定の物質の存在の有無の結果と、特定の物質が存在する場合にはその物質の数とを出力部105を介して画像表示装置88へ出力する。 The second processing unit 114 obtains the number of specific substances present in the image when a specific substance (malaria parasite) is present in the image based on the determination result of the determination unit 113. For example, the second processing unit 114 obtains the number of regions in the image that include a luminance equal to or higher than the luminance threshold. The second processing unit 114 outputs the result of the presence / absence of the specific substance and the number of the substance when the specific substance exists to the image display device 88 via the output unit 105.
 出力部105は、制御部104で生成された画像、及びマラリア原虫が感染している赤血球の有無等についての結果を、画像表示装置88に出力する。これにより、画像表示装置88は、画像解析装置101で生成された画像、及びマラリア原虫に感染している赤血球の有無等についての結果を表示することができる。 The output unit 105 outputs the image generated by the control unit 104 and the result of the presence or absence of red blood cells infected with the malaria parasite to the image display device 88. Thereby, the image display apparatus 88 can display the result about the image produced | generated by the image analysis apparatus 101, the presence or absence of the red blood cell infected with the malaria parasite.
 次に、画像解析装置101の動作について説明する。 Next, the operation of the image analysis apparatus 101 will be described.
 第1処理部110は、蛍光輝度情報とアドレス情報とを用いて、第2ウェル22内の液体試料の画像を生成する。 The first processing unit 110 generates an image of the liquid sample in the second well 22 using the fluorescence luminance information and the address information.
 作成部111は、第1処理部110で生成された画像を用いて、顕著性マップを作成する。作成部111は、第1処理部110で生成された画像に含まれる画素ごとに、周辺の画素との輝度の差が所定値以上であるか否かを判断するための指標を求める。作成部111は、画素ごとに求めた指標と所定の閾値とを比較して、その結果から顕著性マップを作成する。具体的には、作成部111は、第1処理部110で生成された画像(第1画像)を平滑化して第2画像を生成する。作成部111は、第1画像から第2画像を差し引いて各画素の濃淡値(輝度)の差分を表す差分画像を生成する。ここで、差分画像の各画素が指標となる。作成部111は、差分画像から周辺の画素との輝度の差が所定値以上である領域に対応する領域(対象領域)を第1画像から抽出する。これにより顕著性マップが作成される。 The creation unit 111 creates a saliency map using the image generated by the first processing unit 110. For each pixel included in the image generated by the first processing unit 110, the creation unit 111 obtains an index for determining whether or not the difference in luminance from surrounding pixels is equal to or greater than a predetermined value. The creation unit 111 compares the index obtained for each pixel with a predetermined threshold value, and creates a saliency map from the result. Specifically, the creation unit 111 smoothes the image (first image) generated by the first processing unit 110 and generates a second image. The creation unit 111 subtracts the second image from the first image to generate a difference image that represents a difference in gray value (luminance) of each pixel. Here, each pixel of the difference image serves as an index. The creation unit 111 extracts, from the first image, an area (target area) corresponding to an area where the difference in luminance from surrounding pixels is equal to or greater than a predetermined value from the difference image. This creates a saliency map.
 このように、顕著性マップは、第1処理部で生成された画像と、当該画像をボカした画像(平滑化された画像)との差分からなる差分画像を用いて、周辺の画素との輝度の差が所定値以上である画素を含む領域を抽出することで得られる。 As described above, the saliency map uses the difference image formed by the difference between the image generated by the first processing unit and the image obtained by blurring the image (smoothed image), and the luminance of the surrounding pixels. This is obtained by extracting a region including pixels whose difference is equal to or greater than a predetermined value.
 作成部111は、例えば第1処理部110で生成された第1画像の各画素に対してガウシアンフィルタを適用して、その後、画像を複数の区分(例えば、9×9画素の領域)に分割する。作成部111は、複数の区分の各々に対して、当該区分全体の輝度を当該区分内の平均輝度に置き換えて平滑化された第2画像を作成する。 For example, the creation unit 111 applies a Gaussian filter to each pixel of the first image generated by the first processing unit 110, and then divides the image into a plurality of sections (for example, a region of 9 × 9 pixels). To do. The creation unit 111 creates a smoothed second image for each of the plurality of sections by replacing the brightness of the entire section with the average brightness in the section.
 上述した動作により第1画像から周辺の画素との輝度の差が所定値以上であるすべての領域が抽出できることを、簡単に説明する。第1画像のうち所定の方向(例えば、画像の水平方向)に並んだ画素と、当該画素の輝度との対応を表すグラフG1の一例を図7Aに示す。蛍光標識された箇所は明るいため、隣接する画素との輝度の差の変化が大きい。そのため、第1画像に蛍光標識された箇所が存在する場合には、グラフG1において部位R1が存在する。図7BのグラフG2は、第2画像のうち所定の方向(例えば、画像の水平方向)に並んだ画素と、当該画素の輝度との対応を表す。図7Bでは、第1画像を平滑化しているので、図7AのグラフG1と比較して、隣接する画素との輝度の差が小さくなっているため、グラフG2では、グラフG1の部位R1よりの変化量が小さい部位R2が存在する。 It will be briefly described that all the regions in which the difference in luminance from surrounding pixels is greater than or equal to a predetermined value can be extracted from the first image by the above-described operation. FIG. 7A shows an example of a graph G1 representing the correspondence between the pixels arranged in a predetermined direction (for example, the horizontal direction of the image) in the first image and the luminance of the pixel. Since the fluorescently labeled portion is bright, the change in the luminance difference between adjacent pixels is large. Therefore, when there is a fluorescently labeled part in the first image, a part R1 exists in the graph G1. A graph G2 in FIG. 7B represents correspondence between pixels arranged in a predetermined direction (for example, the horizontal direction of the image) in the second image and the luminance of the pixel. In FIG. 7B, since the first image is smoothed, the difference in luminance from adjacent pixels is smaller than in the graph G1 in FIG. 7A. Therefore, in the graph G2, the difference from the region R1 in the graph G1 is smaller. A region R2 having a small change amount exists.
 図7CのグラフG3は、第1画像と第2画像との濃淡値の差分である差分画像のうち所定の方向(例えば、画像の水平方向)に並んだ画素と、当該画素の輝度との対応を表す。差分画像における画素の輝度は、グラフG1とグラフG2との差分値である。第1画像で周辺の画素との輝度の差が顕著な箇所(部位R1)では、差分画像においても周辺の画素との輝度の差は顕著に表れるため、グラフG3において変化量が大きい部位R3が存在する。部位R3は、グラフG1における部位R1とグラフG2における部位R2との差分を表しており、部位R3には最大値L3が存在する。最大値L3は、部位R1における最大値L1と部位R2における最大値L2との差分値である。グラフG1の部位R1以外の箇所(例えば、図7Aに示す部位R11)と、グラフG2の部位R2以外の箇所(例えば、図7Aに示す部位R21)とでは、グラフの傾きがほぼ同一であるため、その差分はほぼ一定となる。本実施形態では、部位R11と部位R21とにおいて得られる差分値(ほぼ一定の値)を、基準値L4という。なお、基準値L4は、部位R11と部位R21とにおいて得られる差分値としたが、部位R1以外の箇所と、部位R2以外の箇所との差分値であればよい。または、基準値L4は、部位R1以外の複数の箇所と、部位R2以外の複数の箇所との差分値の平均値としてもよい。 The graph G3 in FIG. 7C shows the correspondence between the pixels arranged in a predetermined direction (for example, the horizontal direction of the image) in the difference image, which is the difference in gray value between the first image and the second image, and the luminance of the pixel. Represents. The luminance of the pixel in the difference image is a difference value between the graph G1 and the graph G2. In a portion where the luminance difference with the surrounding pixels is significant in the first image (region R1), the luminance difference with the surrounding pixels is noticeable also in the difference image. Exists. The part R3 represents the difference between the part R1 in the graph G1 and the part R2 in the graph G2, and the part R3 has a maximum value L3. The maximum value L3 is a difference value between the maximum value L1 in the part R1 and the maximum value L2 in the part R2. The slope of the graph is almost the same in a portion other than the portion R1 in the graph G1 (for example, the portion R11 shown in FIG. 7A) and a portion other than the portion R2 in the graph G2 (eg, the portion R21 shown in FIG. 7A). The difference is almost constant. In the present embodiment, the difference value (substantially constant value) obtained in the region R11 and the region R21 is referred to as a reference value L4. The reference value L4 is a difference value obtained between the part R11 and the part R21, but may be a difference value between a part other than the part R1 and a part other than the part R2. Alternatively, the reference value L4 may be an average value of difference values between a plurality of locations other than the region R1 and a plurality of locations other than the region R2.
 作成部111は、グラフG1とグラフG2との差分が大きい箇所に相当する第1画像の領域を対象領域として第1画像から抽出する。例えば、部位R3における最大値L3と基準値L4との中間値を値L5とする。この場合、作成部111は、部位R3の最大値L3を差分値とする画素の周囲から値L5以上を差分値とする画素の集まり(図7Dで示す斜線部分R4)を含む領域を、対象領域として第1画像から抽出する。ここで、値L5が、上述した所定の閾値である。 The creation unit 111 extracts, from the first image, a region of the first image corresponding to a portion where the difference between the graph G1 and the graph G2 is large as a target region. For example, an intermediate value between the maximum value L3 and the reference value L4 in the part R3 is set as a value L5. In this case, the creation unit 111 sets a region including a collection of pixels having a difference value equal to or greater than the value L5 from the periphery of the pixel having the maximum value L3 of the region R3 as a difference value (a hatched portion R4 illustrated in FIG. 7D) as a target region. Is extracted from the first image. Here, the value L5 is the predetermined threshold value described above.
 以上説明したように、作成部111は、差分画像の各画素の輝度(指標)と、所定の閾値(値L5)とを比較して、対象領域を抽出することができる。 As described above, the creation unit 111 can extract the target region by comparing the luminance (index) of each pixel of the difference image with a predetermined threshold (value L5).
 これにより、作成部111は、第1処理部110で生成された第1画像(画像B1)から周辺の画素の輝度との差が所定値以上である画素と、当該画素の周囲に存在する画素とを含み、第1画像の画素数よりも少ない画素の集合体からなる領域B20を抽出することができる。ここでは、第1画像と第2画像との差分値が所定の閾値(値L5)以上である画素を周囲の画素との輝度の差が所定値以上である画素としている。作成部111は、対象領域を抽出する際には、周囲の画素との輝度の差が所定値以上である画素の画素数と、それ以外の画素の画素数とがほぼ同等となるように、対象領域を抽出する。つまり、図9に示す領域B20において、第1画素群B10の画素数と、第2画素群B11の画素数とが、ほぼ同等となる。ここで、第1画像において、周囲の画素との輝度の差が所定値以上である画素を含む領域が複数存在する場合には、図7Cで示すグラフG3は、複数存在する。この場合、例えば作成部111は、複数のグラフG3ごとに、値L3と基準値L4との中間値を求める。作成部111は、求めた複数の中間値の平均値を求める。作成部111は、求めた平均値以上に相当する箇所を含む対象領域を第1画像から抽出する。 As a result, the creation unit 111 has pixels that have a difference from the first pixel (image B1) generated by the first processing unit 110 that is greater than or equal to a predetermined value, and pixels that exist around the pixel. A region B20 made up of an aggregate of pixels smaller than the number of pixels of the first image can be extracted. Here, a pixel in which a difference value between the first image and the second image is a predetermined threshold value (value L5) or more is set as a pixel in which a luminance difference from surrounding pixels is a predetermined value or more. When the creation unit 111 extracts the target region, the number of pixels whose luminance difference with surrounding pixels is equal to or greater than a predetermined value and the number of pixels of other pixels are substantially equal. Extract the target area. That is, in the region B20 shown in FIG. 9, the number of pixels of the first pixel group B10 and the number of pixels of the second pixel group B11 are substantially equal. Here, in the first image, when there are a plurality of regions including pixels whose luminance difference with the surrounding pixels is a predetermined value or more, there are a plurality of graphs G3 illustrated in FIG. 7C. In this case, for example, the creation unit 111 obtains an intermediate value between the value L3 and the reference value L4 for each of the plurality of graphs G3. The creation unit 111 obtains an average value of the obtained plurality of intermediate values. The creation unit 111 extracts a target area including a portion corresponding to the calculated average value or more from the first image.
 第1処理部110で生成された画像(第1画像)において、周囲の画素との輝度の差が所定値以上である画素が存在しない場合には、作成部111は、上述した対象領域を抽出することができない、つまり顕著性マップを作成することができない。この場合、画像解析装置101は、液体試料から特定の物質(マラリア原虫)が検出されない旨のメッセージを画像表示装置88に表示させる。 In the image (first image) generated by the first processing unit 110, when there is no pixel whose luminance difference is equal to or greater than a predetermined value, the creation unit 111 extracts the target region described above. That is, cannot create a saliency map. In this case, the image analysis device 101 causes the image display device 88 to display a message indicating that a specific substance (protozoan malaria) is not detected from the liquid sample.
 以下に説明する動作は、顕著性マップが作成されたことを前提として説明する。 The operation described below will be described on the assumption that a saliency map has been created.
 作成部111は、抽出したすべての対象領域を用いて、輝度と当該輝度の出現頻度との関係を表す輝度ヒストグラムG10を作成する。本実施形態では、出現頻度とは、対応する輝度を有する画素の個数である。ここで、抽出される領域には周囲の画素との輝度の差が所定値以上である画素の画素数と、それ以外の画素の画素数とがほぼ同等とに含まれている。そのため、作成部111で作成される輝度ヒストグラムG10は、図8に示すように、第1の山部G11と第2の山部G12とを含む多峰性のヒストグラムとなる。なお、出現頻度は、対応する輝度を有する画素についてのすべての対象領域での画素の総数に対する割合であってもよい。 The creating unit 111 creates a luminance histogram G10 representing the relationship between the luminance and the appearance frequency of the luminance, using all the extracted target regions. In the present embodiment, the appearance frequency is the number of pixels having a corresponding luminance. Here, the extracted region includes the number of pixels having a luminance difference greater than or equal to a predetermined value and the number of other pixels substantially equal. Therefore, the luminance histogram G10 created by the creation unit 111 is a multimodal histogram including the first peak G11 and the second peak G12, as shown in FIG. Note that the appearance frequency may be a ratio with respect to the total number of pixels in all target regions for pixels having the corresponding luminance.
 決定部112は、輝度ヒストグラムG10を用いて輝度閾値を決定する。具体的には、決定部112は、図8の輝度ヒストグラムG10で表れている第1の山部G11と第2の山部G12との間の頻度の極小値を求めて、求めた極小値に対応する輝度を輝度閾値とする。ここで、極小値の求め方について、簡単に説明する。決定部112は、仮閾値として輝度P1を選択する。決定部112は、輝度P1より小さい第1比較輝度(例えば、輝度P2)及び輝度P1より大きい第2比較輝度(例えば、輝度P3)を選択する。決定部112は、仮閾値に対する頻度(例えば、輝度P1に対する頻度Q1)と、第1比較輝度に対する頻度(例えば、輝度P2に対する頻度Q2)及び第2比較輝度に対する頻度(例えば、輝度P3に対する頻度Q3)とを比較する。決定部112は、比較結果により、仮閾値に対する頻度よりも小さい頻度が存在する場合には、その頻度の輝度を新たな仮閾値として設定する。図8の例では、仮閾値を輝度P1とした場合には、輝度P1に対する頻度Q1より小さい値である頻度Q3の輝度P3が新たな仮閾値として設定される。決定部112は、この動作を、仮閾値に対する頻度よりも第1比較輝度に対する頻度及び第2比較輝度に対する頻度の双方ともが大きくなるまで繰り返す。これにより、決定部112は、頻度の極小値を求めることができる。決定部112は、求めた極小値に対する輝度(仮閾値)を、輝度閾値とする。 The determining unit 112 determines the brightness threshold using the brightness histogram G10. Specifically, the determination unit 112 obtains the minimum value of the frequency between the first peak part G11 and the second peak part G12 that are represented by the luminance histogram G10 in FIG. The corresponding luminance is set as the luminance threshold. Here, how to obtain the minimum value will be briefly described. The determination unit 112 selects the brightness P1 as a temporary threshold. The determination unit 112 selects a first comparative luminance (for example, luminance P2) smaller than the luminance P1 and a second comparative luminance (for example, luminance P3) larger than the luminance P1. The determination unit 112 determines the frequency for the temporary threshold (for example, the frequency Q1 for the luminance P1), the frequency for the first comparative luminance (for example, the frequency Q2 for the luminance P2), and the frequency for the second comparative luminance (for example, the frequency Q3 for the luminance P3). ). If the comparison result shows that there is a frequency smaller than the frequency for the temporary threshold, the determination unit 112 sets the luminance of the frequency as a new temporary threshold. In the example of FIG. 8, when the temporary threshold value is set to the luminance P1, the luminance P3 having the frequency Q3, which is smaller than the frequency Q1 with respect to the luminance P1, is set as a new temporary threshold value. The determination unit 112 repeats this operation until both the frequency for the first comparison luminance and the frequency for the second comparison luminance become larger than the frequency for the temporary threshold. Thereby, the determination part 112 can obtain | require the local minimum value. The determination unit 112 sets the luminance (temporary threshold) for the obtained minimum value as the luminance threshold.
 なお、決定部112は、仮閾値の頻度よりも第1比較輝度の頻度及び第2比較輝度の頻度の双方ともが大きくなる仮閾値を求めると、仮閾値より小さい値及び大きい値を、それぞれ所定個数(例えば、15個)取得して、輝度閾値を決定することが好ましい。この場合、決定部112は、仮閾値より小さい15個の値に対応する頻度の平均値(第1平均値)と、仮閾値より大きい15個の値に対応する頻度の平均値(第2平均値)とを求める。決定部112は、仮閾値に対する頻度が第1平均値及び第2平均値の双方ともより小さい場合に、仮閾値を輝度閾値として決定する。 Note that when the determination unit 112 obtains a temporary threshold in which both the frequency of the first comparison luminance and the frequency of the second comparison luminance are larger than the frequency of the temporary threshold, a value smaller than the temporary threshold and a larger value are respectively determined. It is preferable to determine the brightness threshold by acquiring the number (for example, 15). In this case, the determination unit 112 determines an average value (first average value) of frequencies corresponding to 15 values smaller than the temporary threshold and an average value (second average) of frequencies corresponding to 15 values larger than the temporary threshold. Value). The determination unit 112 determines the temporary threshold as the luminance threshold when the frequency with respect to the temporary threshold is smaller than both the first average value and the second average value.
 判定部113は、決定部112で決定された輝度閾値を用いて、第1処理部110で作成された第1画像において特定の物質が存在するか否かを判定する。具体的には、判定部113は、第1処理部110で生成した画像において、輝度が輝度閾値以上である画素の集まり(抽出領域)が存在するか否かを判断する。ここで、抽出領域とは、第1画像の縦軸方向及び横軸方向に連続する画素の集まりである。画像において所定の方向に並べられた画素において、輝度閾値以上である画素の2つの集まり(第1の集まり、第2の集まり)との間に、ノイズ等により輝度が輝度閾値より小さい画素が存在することがある。判定部113は、第1の集まり、第2の集まりとの間において、ノイズ等により輝度が輝度閾値より小さい画素が所定数以下存在する場合には、第1の集まり、第2の集まりとは1つの集まりとみなす。 The determination unit 113 determines whether or not a specific substance is present in the first image created by the first processing unit 110 using the brightness threshold value determined by the determination unit 112. Specifically, the determination unit 113 determines whether or not there is a collection (extraction region) of pixels whose luminance is greater than or equal to the luminance threshold in the image generated by the first processing unit 110. Here, the extraction region is a collection of pixels that are continuous in the vertical and horizontal directions of the first image. Among pixels arranged in a predetermined direction in an image, there is a pixel whose luminance is smaller than the luminance threshold due to noise or the like between two collections of pixels that are equal to or higher than the luminance threshold (first collection and second collection). There are things to do. When there are a predetermined number or less of pixels whose luminance is smaller than the luminance threshold due to noise or the like between the first collection and the second collection, the determination unit 113 refers to the first collection and the second collection. It is considered as one gathering.
 第2処理部114は、判定部113の判定結果に基づいて抽出領域の数を求める。第2処理部114は、特定の物質の存在の有無の結果と、特定の物質が存在する場合にはその物質の数とを出力部105を介して画像表示装置88へ出力する。 The second processing unit 114 obtains the number of extraction areas based on the determination result of the determination unit 113. The second processing unit 114 outputs the result of the presence / absence of the specific substance and the number of the substance when the specific substance exists to the image display device 88 via the output unit 105.
 第1処理部110で生成された画像は、赤血球がマラリア原虫に感染している場合には、赤血球が存在する領域、マラリア原虫が存在する領域、及びその他の領域(背景領域)を含んでいる。マラリア原虫は蛍光標識されているので、第1処理部110で生成された画像では明るく表示される。そのため、当該画像で表示される赤血球、背景領域、マラリア原虫の輝度は、この順に高くなる。そこで、上述した動作により顕著性マップから他の領域と比較して周辺の画素との輝度の差が所定値以上である画素を含む領域を当該画像から抽出することで、マラリア原虫が表示される領域を抽出することができる。 When the red blood cells are infected with malaria parasites, the image generated by the first processing unit 110 includes a region where red blood cells are present, a region where malaria parasites are present, and other regions (background regions). . Since the malaria parasite is fluorescently labeled, the image generated by the first processing unit 110 is displayed brightly. Therefore, the luminance of the red blood cells, the background region, and the malaria parasite displayed in the image increases in this order. Therefore, the malaria parasite is displayed by extracting from the image an area including a pixel whose luminance difference with a surrounding pixel is equal to or greater than a predetermined value from the saliency map by the above-described operation. Regions can be extracted.
 また、第1処理部110で生成された画像全体の明るさが変化した場合であっても、赤血球、背景領域、マラリア原虫の輝度の順序は変化しない。そのため、顕著性マップを作成することで、マラリア原虫を含む対象領域を抽出する可能性が高くなる。 Also, even when the brightness of the entire image generated by the first processing unit 110 changes, the order of the luminance of the red blood cells, the background region, and the malaria parasite does not change. Therefore, by creating a saliency map, the possibility of extracting a target area including a malaria parasite increases.
 また、対象領域は、周囲の画素との輝度の差が所定値以上である画素の画素数と、それ以外の画素の画素数とがほぼ同等となるよう抽出されている。そのため、輝度ヒストグラムG10において、マラリア原虫を示す輝度の出現頻度(第2の山部G12)と、マラリア原虫以外を示す輝度の出現頻度(第1の山部G11)とは、同等になる。言い換えると、マラリア原虫が存在する領域と、その他の領域とが顕著に区別することができる。そのため、第1の山部G11と第2の山部G12との間における頻度の極小値の探索が容易に行うことができる。 In addition, the target area is extracted so that the number of pixels whose luminance difference from surrounding pixels is equal to or greater than a predetermined value and the number of other pixels are substantially equal. Therefore, in the luminance histogram G10, the appearance frequency of the luminance indicating the malaria parasite (second peak portion G12) and the appearance frequency of the luminance indicating other than the malaria parasite (first peak portion G11) are equal. In other words, a region where the malaria parasite is present can be distinguished from other regions. Therefore, it is possible to easily search for the minimum value of the frequency between the first peak part G11 and the second peak part G12.
 なお、本実施形態において、作成部111は、顕著性マップを用いて周囲の画素との輝度の差が所定値以上である画素を含むすべての領域を第1処理部110で生成された画像から抽出する構成としたが、この構成に限定されない。作成部111は、顕著性マップを用いて周囲の画素との輝度の差が所定値以上である画素を含む少なくとも1つの領域を第1処理部110で生成された画像から抽出してもよい。 In the present embodiment, the creation unit 111 uses the saliency map to determine all regions including pixels whose luminance difference from the surrounding pixels is equal to or greater than a predetermined value from the image generated by the first processing unit 110. Although it was set as the structure extracted, it is not limited to this structure. The creation unit 111 may extract at least one region including a pixel having a luminance difference equal to or greater than a predetermined value from the image generated by the first processing unit 110 using a saliency map.
 また、本実施形態において、判定部113は、第1処理部110で生成された画像全体に対して、特定の物質の存在の有無を判定する構成としたが、この構成に限定されない。判定部113は、作成部111で抽出したすべての領域に対してのみ特定の物質の存在の有無を判定してもよい。 In the present embodiment, the determination unit 113 is configured to determine the presence or absence of a specific substance with respect to the entire image generated by the first processing unit 110, but is not limited to this configuration. The determination unit 113 may determine the presence or absence of a specific substance only for all the regions extracted by the creation unit 111.
 また、第2処理部114は、第1処理部110で生成された画像に特定の物質が存在する場合には、その個数を求める構成としたが、この構成に限定されない。第2処理部114は、第1処理部110で生成された画像に特定の物質が存在する場合には、その物質が存在する箇所(位置)を求めてもよいし、大きさ(サイズ)を求めてもよいし、明るさ(特定の物質が存在する領域の平均輝度)を求めてもよい。第2処理部114は、第1処理部110で生成された画像に特定の物質が存在する場合には、その個数、箇所、大きさ及び明るさのうち少なくともいずれかを求めればよい。 In addition, the second processing unit 114 is configured to obtain the number of specific substances in the image generated by the first processing unit 110, but is not limited to this configuration. When a specific substance exists in the image generated by the first processing unit 110, the second processing unit 114 may obtain a location (position) where the substance exists, and the size (size) may be obtained. You may obtain | require, and you may obtain | require brightness (average brightness | luminance of the area | region where a specific substance exists). When a specific substance exists in the image generated by the first processing unit 110, the second processing unit 114 may obtain at least one of the number, location, size, and brightness.
 本実施形態では、作成部111は、第1処理部110で生成された画像を複数の区分に分割する前に、当該画像にガウシアンフィルタを適用する構成としたが、この構成に限定されない。第1処理部110で生成された画像を複数の区分に分割する前に、当該画像にバイラテラルフィルタを適用してもよい。 In the present embodiment, the creation unit 111 is configured to apply the Gaussian filter to the image before the image generated by the first processing unit 110 is divided into a plurality of sections, but is not limited to this configuration. Before the image generated by the first processing unit 110 is divided into a plurality of sections, a bilateral filter may be applied to the image.
 本実施形態では、作成部111は、平滑化された画像を生成する際に、複数の区分の各々に対して、当該区分全体の輝度を当該区分内の平均輝度に置き換える構成としたが、この構成に限定されない。作成部111は、複数の区分の各々に対して、当該区分全体の輝度を当該区分内の中央値、当該区画分内の輝度を数値順に並べた際に大きい方あるいは小さい方から特定の順番に来る輝度値(例えば、2番目に小さい値、2番目に大きい値)、又は特定の位置のピクセル輝度に置き換えて平滑化された画像を生成してもよい。 In the present embodiment, the creation unit 111 is configured to replace the brightness of the entire section with the average brightness in the section for each of the plurality of sections when generating a smoothed image. It is not limited to the configuration. For each of the plurality of sections, the creation unit 111 sets the luminance of the entire section in a specific order from the larger or smaller order when arranging the median value in the section and the brightness in the section in numerical order. A smoothed image may be generated by replacing the incoming luminance value (for example, the second smallest value, the second largest value) or the pixel luminance at a specific position.
 または、作成部111は、複数の区分の各々に対して、当該区分全体の輝度を、隣接する区分の平均輝度、中央値、当該区画分内の輝度を数値順に並べた際に大きい方あるいは小さい方から特定の順番に来る輝度値(例えば、2番目に小さい値、2番目に大きい値)、又は特定の位置のピクセル輝度に置き換えて平滑化された画像を生成してもよい。 Alternatively, for each of the plurality of sections, the creating unit 111 sets the brightness of the entire section as the larger or smaller when the average brightness, the median value of the adjacent sections, and the brightness within the section are arranged in numerical order. A smoothed image may be generated by substituting the luminance value (for example, the second smallest value, the second largest value) or the pixel luminance at a specific position in a specific order from one side.
 本実施形態では、作成部111は、顕著性マップを生成して、生成した顕著性マップを用いて周囲の画素との輝度の差が所定値以上である画素を含む領域を抽出する構成としたが、この構成に限定されない。作成部111は、高速フーリエを利用したエッジ抽出又は微分型のエッジ検出により、周囲の画素との輝度の差が所定値以上である画素を含む領域を抽出してもよい。例えば、微分型のエッジ検出を行う場合には、注目画素の輝度と周囲の画素の輝度との微分値が注目画素の指標となる。指標が所定の閾値以上である場合には、当該指標に対応する注目画素を含む領域が対象領域となる。 In the present embodiment, the creation unit 111 generates a saliency map, and uses the generated saliency map to extract a region including a pixel whose luminance difference with a surrounding pixel is equal to or greater than a predetermined value. However, it is not limited to this configuration. The creation unit 111 may extract a region including a pixel having a luminance difference equal to or greater than a predetermined value by edge extraction using fast Fourier or differential edge detection. For example, when differential type edge detection is performed, a differential value between the luminance of the pixel of interest and the luminance of surrounding pixels becomes an index of the pixel of interest. When the index is equal to or greater than a predetermined threshold, the area including the target pixel corresponding to the index is the target area.
 本実施形態では、作成部111は、第1処理部110で生成された画像から周辺の画素との輝度の差が所定値以上である画素を含むすべての対象領域を抽出する構成としたが、この構成に限定されない。作成部111は、第1処理部110で生成された画像から周辺の画素との輝度の差が所定値以上である画素を含む少なくとも1つの対象領域を抽出してもよい。 In the present embodiment, the creation unit 111 is configured to extract all target regions including pixels whose luminance difference with surrounding pixels is equal to or greater than a predetermined value from the image generated by the first processing unit 110. It is not limited to this configuration. The creation unit 111 may extract at least one target region including a pixel having a luminance difference equal to or greater than a predetermined value from surrounding pixels from the image generated by the first processing unit 110.
 本実施形態において、画像解析装置101が第1処理部110、作成部111、決定部112、判定部113及び第2処理部114を備える構成としたが、この構成に限定されない。画像解析装置101がこれらの構成要素うち一部を備え、画像解析装置101とネットワークを介して接続されたサーバが残りの構成要素を備えてもよい。例えば、画像解析装置101は第1処理部110を備え、サーバは作成部111、決定部112、判定部113及び第2処理部114を備えてもよい。この場合、画像解析装置101は、作成した画像をサーバへ送信する。サーバは、画像解析装置101から受信した画像を基に、輝度ヒストグラムG10を生成する。サーバは、生成した輝度ヒストグラムG10を基に輝度閾値を決定する。サーバは、輝度閾値を用いて画像内に特定の物質(マラリア原虫)が存在するか否かを判定する。サーバは、判定結果に基づいて、画像内に特定の物質が存在する場合には画像内に存在する特定の物質の数を求める。サーバは、特定の物質の存在の有無の結果と、特定の物質が存在する場合にはその物質の数とを画像解析装置101を介して画像表示装置88へ送信する。 In the present embodiment, the image analysis apparatus 101 includes the first processing unit 110, the creation unit 111, the determination unit 112, the determination unit 113, and the second processing unit 114, but is not limited to this configuration. The image analysis apparatus 101 may include some of these components, and a server connected to the image analysis apparatus 101 via a network may include the remaining components. For example, the image analysis apparatus 101 may include the first processing unit 110, and the server may include the creation unit 111, the determination unit 112, the determination unit 113, and the second processing unit 114. In this case, the image analysis apparatus 101 transmits the created image to the server. The server generates a luminance histogram G10 based on the image received from the image analysis apparatus 101. The server determines a luminance threshold based on the generated luminance histogram G10. The server determines whether or not a specific substance (malaria parasite) is present in the image using the luminance threshold. Based on the determination result, the server obtains the number of specific substances present in the image when a specific substance exists in the image. The server transmits the result of the presence / absence of the specific substance and the number of the specific substance, if any, to the image display device 88 via the image analysis apparatus 101.
 (実施形態2)
 本実施形態では、画像解析装置101が、複数の顕著性マップを作成する点が実施形態1とは異なる。以下、本実施形態では、実施形態1と異なる点を中心に説明する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を適宜省略する。
(Embodiment 2)
This embodiment is different from the first embodiment in that the image analysis apparatus 101 creates a plurality of saliency maps. In the following, the present embodiment will be described focusing on differences from the first embodiment. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted suitably.
 本実施形態の作成部111は、第1処理部110で生成された画像を用いて、複数の抽出処理を用いて複数の顕著性マップを作成し、作成した複数の顕著性マップに基づいて輝度ヒストグラムG10を作成する。ここで、複数の抽出処理は、第1抽出処理及び第2抽出処理を含む。第1抽出処理は、第1処理部110で生成された画像を第1平滑化条件で平滑化した画像から第1候補領域を抽出する処理である。第2抽出処理は、第1処理部110で生成された画像を第2平滑化条件で平滑化した画像から第2候補領域を抽出する処理である。 The creation unit 111 of the present embodiment creates a plurality of saliency maps using a plurality of extraction processes using the image generated by the first processing unit 110, and brightness based on the created plurality of saliency maps A histogram G10 is created. Here, the plurality of extraction processes include a first extraction process and a second extraction process. The first extraction process is a process of extracting a first candidate region from an image obtained by smoothing the image generated by the first processing unit 110 under a first smoothing condition. The second extraction process is a process of extracting the second candidate region from an image obtained by smoothing the image generated by the first processing unit 110 under the second smoothing condition.
 作成部111は、第1処理部110で生成された画像の各画素に対してガウシアンフィルタを適用して、その後、ガウシアンフィルタが適用された後の画像を第1平滑化条件により複数の区分に分割する。ここで、第1平滑化条件は、画像をm×m画素の領域に分割することである。作成部111は、複数の区分の各々に対して、当該区分全体の輝度を当該区分内の平均輝度に置き換えて平滑化された第1平滑化画像を作成する。第1処理部110で生成された画像と第1平滑化画像との差分からなる第1差分画像を生成する。作成部111は、第1差分画像から周囲の画素との輝度の差が所定値以上である画素を含むすべての第1候補領域を抽出する。なお、第1処理部110で生成された画像の各画素に対してガウシアンフィルタを適用してから第1候補領域を抽出するまでの処理が第1抽出処理に相当する。 The creation unit 111 applies a Gaussian filter to each pixel of the image generated by the first processing unit 110, and then classifies the image after the Gaussian filter is applied into a plurality of sections according to the first smoothing condition. To divide. Here, the first smoothing condition is to divide the image into areas of m × m pixels. The creation unit 111 creates, for each of the plurality of sections, a first smoothed image that is smoothed by replacing the brightness of the entire section with the average brightness in the section. A first difference image composed of a difference between the image generated by the first processing unit 110 and the first smoothed image is generated. The creation unit 111 extracts all first candidate regions including pixels whose luminance difference with surrounding pixels is greater than or equal to a predetermined value from the first difference image. The process from applying the Gaussian filter to each pixel of the image generated by the first processing unit 110 until extracting the first candidate area corresponds to the first extraction process.
 作成部111は、第1処理部110で生成された画像の各画素に対してガウシアンフィルタを適用して、その後、ガウシアンフィルタが適用された後の画像を第2平滑化条件により複数の区分に分割する。ここで、第2平滑化条件は、画像をn×n画素の領域に分割することである。ここでnはmより小さい値である。作成部111は、複数の区分の各々に対して、当該区分全体の輝度を当該区分内の平均輝度に置き換えて平滑化された第2平滑化画像を作成する。第1処理部110で生成された画像と第2平滑化画像との差分からなる第2差分画像を生成する。作成部111は、第2差分画像から周囲の画素との輝度の差が所定値以上である画素を含むすべての第2候補領域を抽出する。なお、第1処理部110で生成された画像の各画素に対してガウシアンフィルタを適用してから第2候補領域を抽出するまでの処理が第2抽出処理に相当する。 The creation unit 111 applies a Gaussian filter to each pixel of the image generated by the first processing unit 110, and then divides the image after the Gaussian filter is applied into a plurality of sections according to the second smoothing condition. To divide. Here, the second smoothing condition is to divide the image into areas of n × n pixels. Here, n is a value smaller than m. The creation unit 111 creates, for each of the plurality of sections, a second smoothed image that is smoothed by replacing the brightness of the entire section with the average brightness in the section. A second difference image is generated that is the difference between the image generated by the first processing unit 110 and the second smoothed image. The creation unit 111 extracts all second candidate regions including pixels whose luminance difference with surrounding pixels is equal to or greater than a predetermined value from the second difference image. The process from applying the Gaussian filter to each pixel of the image generated by the first processing unit 110 until extracting the second candidate area corresponds to the second extraction process.
 作成部111は、第1抽出処理で抽出されたすべての第1候補領域と、第2抽出処理で抽出されたすべての第2候補領域とを対象領域として輝度ヒストグラムG10を作成する。 The creation unit 111 creates the luminance histogram G10 using all the first candidate areas extracted in the first extraction process and all the second candidate areas extracted in the second extraction process as target areas.
 これにより、第1処理部110で生成された画像に対して複数の抽出処理を行い、その結果に基づいて顕著性マップを作成することができる。 Thereby, a plurality of extraction processes can be performed on the image generated by the first processing unit 110, and a saliency map can be created based on the result.
 本実施形態では、作成部111は、抽出処理を2回行う構成としたが、この構成に限定されない。作成部111は、抽出処理を3回以上行ってもよい。 In the present embodiment, the creation unit 111 is configured to perform the extraction process twice, but is not limited to this configuration. The creation unit 111 may perform the extraction process three times or more.
 本実施形態では、第1抽出処理で画像を分割した後の領域の大きさと、第2抽出処理で画像を分割した後の領域の大きさとが異なるように第1平滑化条件と第2平滑化条件を定めたが、平滑化条件はこれに限定されない。複数の抽出処理で得られる複数の平滑化画像が互いに異なるボカし度合となるように、抽出処理ごとに平滑化条件が設定されていればよい。例えば、第1抽出処理で画像を分割した後の各領域に適用する輝度の設定方法と第2抽出処理で画像を分割した後の各領域に適用する輝度の設定方法とが、異なるように第1平滑化条件と第2平滑化条件を定めてもよい。例えば、作成部111は、第1抽出処理では、複数の区分の各々に対して、当該区分全体の輝度を当該区分内の平均輝度に置き換える。作成部111は、第2抽出処理では、複数の区分の各々に対して、当該区分全体の輝度を当該区分内の代表値に置き換える。また、複数の抽出処理の各々で画像を同一の領域で分割した場合(上述のn=mの場合)、抽出処理ごとに分割する分割パターンが異なる(分割位置が異なる)ように、抽出処理ごとに異なる平滑化条件を設定してもよい。 In the present embodiment, the first smoothing condition and the second smoothing are performed so that the size of the area after the image is divided by the first extraction process is different from the size of the area after the image is divided by the second extraction process. Although the conditions are defined, the smoothing conditions are not limited to this. The smoothing conditions may be set for each extraction process so that the plurality of smoothed images obtained by the plurality of extraction processes have different blurring degrees. For example, the brightness setting method applied to each area after the image is divided by the first extraction process and the brightness setting method applied to each area after the image is divided by the second extraction process are different from each other. You may define 1 smoothing conditions and 2nd smoothing conditions. For example, in the first extraction process, the creation unit 111 replaces the brightness of the entire section with the average brightness in the section for each of the plurality of sections. In the second extraction process, the creation unit 111 replaces the luminance of the entire section with the representative value in the section for each of the plurality of sections. Further, when an image is divided into the same region in each of a plurality of extraction processes (when n = m described above), each extraction process has different division patterns (different division positions) for each extraction process. Different smoothing conditions may be set for.
 本実施形態では、作成部111は、第1抽出処理で得られたすべての第1候補領域と、第2抽出処理で得られた第2候補領域とを、対象領域として輝度ヒストグラムG10を作成する構成としたが、この構成に限定されない。作成部111は、第1抽出処理で得られたすべての第1候補領域と、第2抽出処理で得られた第2候補領域とのうち共通する領域を対象領域として、輝度ヒストグラムG10を作成してもよい。 In the present embodiment, the creation unit 111 creates the luminance histogram G10 using all the first candidate areas obtained by the first extraction process and the second candidate areas obtained by the second extraction process as target areas. Although configured, it is not limited to this configuration. The creation unit 111 creates a luminance histogram G10 using a common area among all the first candidate areas obtained by the first extraction process and the second candidate area obtained by the second extraction process as a target area. May be.
 (変形例)
 以下に、変形例について列記する。なお、以下に説明する変形例は、上記各実施形態と適宜組み合わせて適用可能である。
(Modification)
Below, modifications are listed. Note that the modifications described below can be applied in appropriate combination with the above embodiments.
 上記各実施形態に記載した材料、数値等は、好ましい例を示しているだけであり、それに限定する主旨ではない。更に、本願発明は、その技術的思想の範囲を逸脱しない範囲で、構成及び形状それぞれに適宜変更を加えることが可能である。 The materials, numerical values, and the like described in the above embodiments are merely preferable examples and are not intended to be limited thereto. Furthermore, in the present invention, the configuration and the shape can be appropriately changed without departing from the scope of the technical idea.
 また、フィルタカートリッジ3の収納空間31に入れる液体試料は、病原性微生物の核酸を染色する染色液を含んでいてもよい。この場合、積層ディスク本体2には、核酸を染色させるための蛍光色素を配置しなくてもよい。染色液を利用した染色方法としては、例えば、ギムザ染色、アクリジンオレンジ染色、ライト染色、ジェンナー染色、リーシュマン染色、ロマノフスキー染色等を採用することができる。染色液は、病原性微生物の種類及び染色方法に応じて適宜の染色液を用いればよい。 Further, the liquid sample put in the storage space 31 of the filter cartridge 3 may contain a staining solution for staining the nucleic acid of the pathogenic microorganism. In this case, it is not necessary to arrange a fluorescent dye for staining the nucleic acid in the laminated disk body 2. As a staining method using a staining solution, for example, Giemsa staining, acridine orange staining, Wright staining, Jenner staining, Leishmann staining, Romanovsky staining, and the like can be employed. An appropriate staining solution may be used as the staining solution according to the type of pathogenic microorganism and the staining method.
 なお、第2ウェル22の高さは積層ディスク本体2の内周から外周に向かって高くなってよい。これにより、ディスク1では、第2ウェル22内に気泡が残りにくくなる。また、ディスク1では、液体試料は積層ディスク本体2の内周側から外周側に行くに従って流速が遅くなるため、第2ウェル22内において検体が積層ディスク本体2の外周側に偏って配置されるのを抑制することが可能となる。 Note that the height of the second well 22 may increase from the inner periphery to the outer periphery of the laminated disc body 2. Thereby, in the disk 1, it is difficult for bubbles to remain in the second well 22. In the disk 1, since the flow rate of the liquid sample decreases from the inner peripheral side to the outer peripheral side of the laminated disk main body 2, the specimen is arranged in the second well 22 so as to be biased toward the outer peripheral side of the laminated disk main body 2. Can be suppressed.
 積層ディスク本体2の厚さ方向から見た積層ディスク本体2の形状は、円形状に限らず、例えば、八角形状等でもよい。 The shape of the laminated disk body 2 viewed from the thickness direction of the laminated disk body 2 is not limited to a circular shape, and may be, for example, an octagonal shape.
 また、第2ウェル22の外周部には、液体試料を排出するための排出口を設けてもよい。排出口は、例えば、積層ディスク本体2の上面側に形成された貫通孔である。排出口を設けることにより、例えば、液体試料を排出口から排出し、第2ウェル22の底面に吸着した試料を別途固定化及び染色することができる。そのため、検出装置70を用いて測定を行ったディスク1を、例えば、検体の標本として保管することができる。 Further, a discharge port for discharging the liquid sample may be provided on the outer peripheral portion of the second well 22. The discharge port is, for example, a through hole formed on the upper surface side of the laminated disk main body 2. By providing the discharge port, for example, the liquid sample can be discharged from the discharge port, and the sample adsorbed on the bottom surface of the second well 22 can be separately fixed and stained. Therefore, the disk 1 measured using the detection device 70 can be stored as a specimen sample, for example.
 また、ディスク1では、第1ウェル21内にある液体試料に含まれている赤血球を遠心力により第2ウェル22まで移動させるが、これに限定されない。例えば、第1ウェル21と流路23との間に圧力の差を発生させることによって赤血球を第1ウェル21から第2ウェル22まで移動させてもよい。一手段として、第1ウェル21に圧力を印加することによって第1ウェル21と流路23との間に圧力の差を発生させることができる。第1ウェル21に圧力を印加させる方法としては、第1ウェル21の上方から加圧する。 In the disk 1, red blood cells contained in the liquid sample in the first well 21 are moved to the second well 22 by centrifugal force, but the present invention is not limited to this. For example, the red blood cells may be moved from the first well 21 to the second well 22 by generating a pressure difference between the first well 21 and the flow path 23. As one means, a pressure difference can be generated between the first well 21 and the flow path 23 by applying pressure to the first well 21. As a method for applying pressure to the first well 21, pressurization is performed from above the first well 21.
 ディスク1、フィルタカートリッジ3及び積層ディスク本体2を赤血球の検査に用いる例について説明したが、ディスク1、フィルタカートリッジ3及び積層ディスク本体2の用途はこれに限定されない。例えば、ディスク1、フィルタカートリッジ3及び積層ディスク本体2は、DNA検査、蛋白質検査等にも用いることが可能である。 Although the example in which the disc 1, the filter cartridge 3 and the laminated disc main body 2 are used for the examination of red blood cells has been described, the uses of the disc 1, the filter cartridge 3 and the laminated disc main body 2 are not limited to this. For example, the disk 1, the filter cartridge 3, and the laminated disk main body 2 can be used for DNA testing, protein testing, and the like.
 (まとめ)
 以上説明したように、第1の態様の画像解析システム(100)は、作成部(111)と、決定部(112)と、判定部(113)と、を備える。作成部(111)は、画像(B1)から周辺の画素の輝度との差が所定値以上である画素と当該周辺の画素とを含み、画像の画素数よりも少ない画素の集合体からなる領域B20を対象領域として抽出する。作成部(111)は、対象領域に含まれる輝度と当該輝度が出現する頻度とを対応付けた輝度ヒストグラム(B10)を作成する。決定部(112)は、輝度ヒストグラム(G10)から輝度閾値を決定する。判定部(113)は、輝度閾値を用いて、少なくとも作成部(111)が抽出した対象領域に特定の物質が存在するか否かを判定する。
(Summary)
As described above, the image analysis system (100) according to the first aspect includes the creation unit (111), the determination unit (112), and the determination unit (113). The creation unit (111) includes a pixel including a pixel whose difference from the luminance of the surrounding pixels from the image (B1) is equal to or greater than a predetermined value and the surrounding pixels, and is formed of an aggregate of pixels smaller than the number of pixels of the image. B20 is extracted as a target area. The creation unit (111) creates a brightness histogram (B10) in which the brightness included in the target region is associated with the frequency at which the brightness appears. The determination unit (112) determines a luminance threshold value from the luminance histogram (G10). The determination unit (113) determines whether or not a specific substance exists in at least the target region extracted by the creation unit (111) using the luminance threshold.
 この構成によると、画像解析システム(100)は、画像(B1)から周囲の画素との輝度の差が所定値以上である画素と当該周辺の画素とを含み、画像の画素数よりも少ない画素の集合体からなる対象領域に応じた輝度ヒストグラム(G10)を作成する。これにより、画像解析システム(100)は、画像全体の明るさが変わった場合であっても複数種類の物質が含まれる液体試料から特定の物質を検出することができる。 According to this configuration, the image analysis system (100) includes a pixel whose luminance difference from the image (B1) and the surrounding pixels is equal to or greater than a predetermined value and the surrounding pixels, and has fewer pixels than the number of pixels of the image. A luminance histogram (G10) corresponding to the target region made up of Thus, the image analysis system (100) can detect a specific substance from a liquid sample containing a plurality of types of substances even when the brightness of the entire image changes.
 第2の態様の画像解析システム(100)では、第1の態様において、輝度ヒストグラム(G10)は、少なくとも第1の山部(G11)及び第2の山部(G12)を含む多峰性のヒストグラムである。決定部(112)は、輝度ヒストグラム(G10)に含まれる第1の山部(G11)と第2の山部(G12)との間における頻度の極小値に対応する輝度を輝度閾値として決定する。 In the image analysis system (100) of the second aspect, in the first aspect, the luminance histogram (G10) is a multi-modality including at least the first peak (G11) and the second peak (G12). It is a histogram. The determination unit (112) determines the luminance corresponding to the minimum value of the frequency between the first peak (G11) and the second peak (G12) included in the luminance histogram (G10) as the luminance threshold. .
 この構成によると、画像解析システム(100)は、輝度ヒストグラム(G10)において輝度閾値を境界として特定の物質(例えば、マラリア原虫)が存在する領域と、特定の物質が存在しない領域とに切り分けることができる。 According to this configuration, the image analysis system (100) divides a luminance histogram (G10) into a region where a specific substance (for example, malaria parasite) exists and a region where the specific substance does not exist, with a luminance threshold as a boundary. Can do.
 第3の態様の画像解析システム(100)では、第1又は第2の態様において、作成部(111)は、複数の抽出処理の各々について、画像(B1)から周辺の画素の輝度との差が所定値以上である画素を含む少なくとも1つの候補領域を抽出する。作成部(111)は、複数の抽出処理で得られたすべての候補領域から、輝度ヒストグラム(G10)の作成に用いる対象領域を抽出する。 In the image analysis system (100) of the third aspect, in the first or second aspect, the creation unit (111) differs from the image (B1) with the brightness of surrounding pixels for each of the plurality of extraction processes. Extract at least one candidate region including a pixel having a value equal to or greater than a predetermined value. The creation unit (111) extracts a target region used for creating the luminance histogram (G10) from all candidate regions obtained by a plurality of extraction processes.
 この構成によると、画像解析システム(100)は、特定の物質の検出の精度を上げることができる。 According to this configuration, the image analysis system (100) can increase the accuracy of detection of a specific substance.
 第4の態様の画像解析システム(100)では、第3の態様において、複数の抽出処理は、第1抽出処理、及び第2抽出処理を含む。第1抽出処理は、第1平滑化条件で画像を平滑化した画像から第1候補領域を抽出する。第2抽出処理は、第2平滑化条件で画像を平滑化した画像から第2候補領域を抽出する。作成部(111)は、第1抽出処理を行うことで、画像(B1)と第1平滑化条件で平滑化された第1平滑化画像との差分からなる第1差分画像を作成する。作成部(111)は、第1差分画像から周辺の画素の輝度との差が所定値以上である画素を含む少なくとも1つの第1候補領域を候補領域として抽出する。作成部(111)は、第2抽出処理を行うことで、画像(B1)と第2平滑化条件で平滑化された第2平滑化画像との差分からなる第2差分画像を作成する。作成部(111)は、第2差分画像から周辺の画素の輝度との差が所定値以上である画素を含む少なくとも1つの第2候補領域を候補領域として抽出する。作成部(111)は、第1抽出処理で抽出されたすべての第1候補領域と、第2抽出処理で抽出されたすべての第2候補領域とを、それぞれ輝度ヒストグラム(G10)の作成に用いる対象領域とする。 In the image analysis system (100) of the fourth aspect, in the third aspect, the plurality of extraction processes include a first extraction process and a second extraction process. In the first extraction process, a first candidate region is extracted from an image obtained by smoothing an image under a first smoothing condition. In the second extraction process, a second candidate region is extracted from an image obtained by smoothing the image under the second smoothing condition. The creation unit (111) performs the first extraction process to create a first difference image including a difference between the image (B1) and the first smoothed image smoothed under the first smoothing condition. The creation unit (111) extracts at least one first candidate region including a pixel whose difference from the luminance of surrounding pixels is a predetermined value or more from the first difference image as a candidate region. The creation unit (111) performs the second extraction process, thereby creating a second difference image including a difference between the image (B1) and the second smoothed image smoothed under the second smoothing condition. The creation unit (111) extracts at least one second candidate region including a pixel whose difference from the luminance of surrounding pixels is a predetermined value or more from the second difference image as a candidate region. The creation unit (111) uses all the first candidate areas extracted by the first extraction process and all the second candidate areas extracted by the second extraction process, respectively, for creating the luminance histogram (G10). The target area.
 この構成によると、画像解析システム(100)は、特定の物質の検出の精度を上げることができる。 According to this configuration, the image analysis system (100) can increase the accuracy of detection of a specific substance.
 第5の態様の画像解析システム(100)では、第3の態様において、複数の抽出処理は、第1抽出処理、及び第2抽出処理を含む。第1抽出処理は、第1平滑化条件で画像を平滑化した画像から第1候補領域を抽出する。第2抽出処理は、第2平滑化条件で画像を平滑化した画像から第2候補領域を抽出する。作成部(111)は、第1抽出処理を行うことで、画像(B1)と第1平滑化条件で平滑化された第1平滑化画像との差分からなる第1差分画像を作成する。作成部(111)は、第1差分画像から周辺の画素の輝度との差が所定値以上である画素を含む少なくとも1つの第1候補領域を候補領域として抽出する。作成部(111)は、第2抽出処理を行うことで、画像(B1)と第2平滑化条件で平滑化された第2平滑化画像との差分からなる第2差分画像を作成する。作成部(111)は、第2差分画像から周辺の画素の輝度との差が所定値以上である画素を含む少なくとも1つの第2候補領域を候補領域として抽出する。作成部(111)は、第1抽出処理で抽出されたすべての第1候補領域と、第2抽出処理で抽出されたすべての第2候補領域とのうち共通する領域を、輝度ヒストグラム(G10)の作成に用いる対象領域とする。 In the image analysis system (100) of the fifth aspect, in the third aspect, the plurality of extraction processes include a first extraction process and a second extraction process. In the first extraction process, a first candidate region is extracted from an image obtained by smoothing an image under a first smoothing condition. In the second extraction process, a second candidate region is extracted from an image obtained by smoothing the image under the second smoothing condition. The creation unit (111) performs the first extraction process to create a first difference image including a difference between the image (B1) and the first smoothed image smoothed under the first smoothing condition. The creation unit (111) extracts at least one first candidate region including a pixel whose difference from the luminance of surrounding pixels is a predetermined value or more from the first difference image as a candidate region. The creation unit (111) performs the second extraction process, thereby creating a second difference image including a difference between the image (B1) and the second smoothed image smoothed under the second smoothing condition. The creation unit (111) extracts at least one second candidate region including a pixel whose difference from the luminance of surrounding pixels is a predetermined value or more from the second difference image as a candidate region. The creation unit (111) determines a common area among all the first candidate areas extracted in the first extraction process and all the second candidate areas extracted in the second extraction process as a luminance histogram (G10). This is the target area used to create
 この構成によると、画像解析システム(100)は、特定の物質の検出の精度を上げることができる。 According to this configuration, the image analysis system (100) can increase the accuracy of detection of a specific substance.
 第6の態様の画像解析システム(100)では、第1~第5のいずれかの態様において、判定部(113)は、輝度閾値を用いて、画像(B1)に特定の物質が存在するか否かを判定する。 In the image analysis system (100) of the sixth aspect, in any one of the first to fifth aspects, the determination unit (113) uses the luminance threshold value to determine whether a specific substance exists in the image (B1). Determine whether or not.
 これにより、画像解析システム100は、画像全体に対して、特定の物質が存在するか否かを判断するので、画像のうち一部の領域について判断する場合と比較して、特定の物質の検出の精度を向上させることができる。 As a result, the image analysis system 100 determines whether or not a specific substance is present in the entire image. Therefore, the image analysis system 100 detects a specific substance as compared with a case where a part of the image is determined. Accuracy can be improved.
 第7の態様の画像解析システム(100)では、第1~第6のいずれかの態様において、画像(B1)は、液体試料から分離された試料の画像である。判定部(113)は、特定の物質が試料に存在するか否かを判定する。 In the image analysis system (100) of the seventh aspect, in any one of the first to sixth aspects, the image (B1) is an image of the sample separated from the liquid sample. The determination unit (113) determines whether or not a specific substance is present in the sample.
 この構成によると、画像解析システム(100)は、特定の物質を液体試料から検出することができる。 According to this configuration, the image analysis system (100) can detect a specific substance from a liquid sample.
 第8の態様の画像解析システム(100)では、第1~第7のいずれかの態様において、作成部(111)は、対象領域の画素数に対する第1画素群の画素数の割合が、画像(B1)の画素数に対する第2画素群の画素数の割合よりも大きくなるように、対象領域を前記画像から抽出する。第1画素群は、周辺の画素の輝度との差が所定値以上であって対象領域における画素の集まりである。第2画素群は、周辺の画素の輝度との差が所定値以上であって画像(B1)全体における画素の集まりである。 In the image analysis system (100) according to the eighth aspect, in any one of the first to seventh aspects, the creation unit (111) determines that the ratio of the number of pixels in the first pixel group to the number of pixels in the target region is an image. The target area is extracted from the image so as to be larger than the ratio of the number of pixels of the second pixel group to the number of pixels of (B1). The first pixel group is a group of pixels in the target area whose difference from the luminance of surrounding pixels is a predetermined value or more. The second pixel group is a group of pixels in the entire image (B1) whose difference from the luminance of surrounding pixels is a predetermined value or more.
 この構成によると、画像解析システム(100)は、特定の物質の検出の精度を上げることができる。 According to this configuration, the image analysis system (100) can increase the accuracy of detection of a specific substance.
 第9の態様の画像解析方法は、作成ステップと、決定ステップと、判定ステップと、を含む。作成ステップは、画像(B1)から周辺の画素の輝度との差が所定値以上である画素と当該周辺の画素とを含み、画像の画素数よりも少ない画素の集合体からなる領域B20を対象領域として抽出する。作成ステップは、対象領域に含まれる輝度と当該輝度が出現する頻度とを対応付けた輝度ヒストグラム(G10)を作成する。決定ステップは、輝度ヒストグラム(G10)から輝度閾値を決定する。判定ステップは、輝度閾値を用いて、少なくとも作成ステップで抽出した対象領域に特定の物質が存在するか否かを判定する。 The image analysis method according to the ninth aspect includes a creation step, a determination step, and a determination step. The creation step includes a region B20 that includes a pixel whose difference from the luminance of the surrounding pixels from the image (B1) is equal to or greater than a predetermined value and the surrounding pixels, and is composed of a collection of pixels smaller than the number of pixels of the image. Extract as a region. The creating step creates a brightness histogram (G10) in which the brightness included in the target region is associated with the frequency of appearance of the brightness. In the determining step, a luminance threshold is determined from the luminance histogram (G10). In the determination step, it is determined whether or not a specific substance exists in at least the target region extracted in the creation step by using the luminance threshold value.
 この画像解析方法によると、画像全体の明るさが変わった場合であっても複数種類の物質が含まれる液体試料から特定の物質を検出することができる。 According to this image analysis method, a specific substance can be detected from a liquid sample containing a plurality of kinds of substances even when the brightness of the entire image changes.
 第10の態様のプログラムは、コンピュータを、第1~第8のいずれかの態様の画像解析システム(100)として機能させるためのプログラムである。 The program according to the tenth aspect is a program for causing a computer to function as the image analysis system (100) according to any one of the first to eighth aspects.
 このプログラムによると、画像全体の明るさが変わった場合であっても複数種類の物質が含まれる液体試料から特定の物質を検出することができる。 This program can detect a specific substance from a liquid sample containing a plurality of types of substances even when the brightness of the entire image changes.
  100  画像解析システム
  101  画像解析装置
  111  作成部
  112  決定部
  113  判定部
  G10  輝度ヒストグラム
  G11  第1の山部
  G12  第2の山部
  B1   画像(第1画像)
DESCRIPTION OF SYMBOLS 100 Image analysis system 101 Image analysis apparatus 111 Creation part 112 Determination part 113 Determination part G10 Luminance histogram G11 1st peak part G12 2nd peak part B1 Image (1st image)

Claims (10)

  1.  画像から周辺の画素の輝度との差が所定値以上である画素と当該周辺の画素とを含み、前記画像の画素数よりも少ない画素の集合体からなる領域を対象領域として抽出し、前記対象領域に含まれる輝度と当該輝度が出現する頻度とを対応付けた輝度ヒストグラムを作成する作成部と、
     前記輝度ヒストグラムから輝度閾値を決定する決定部と、
     前記輝度閾値を用いて、少なくとも前記作成部が抽出した前記対象領域に特定の物質が存在するか否かを判定する判定部と、を備える
     ことを特徴とする画像解析システム。
    An area including a pixel having a difference from the luminance of surrounding pixels equal to or greater than a predetermined value from the image and the surrounding pixels, and including a collection of pixels smaller than the number of pixels of the image is extracted as the target area, and the target A creation unit that creates a brightness histogram that associates the brightness included in the region with the frequency of appearance of the brightness;
    A determination unit for determining a luminance threshold from the luminance histogram;
    An image analysis system comprising: a determination unit that determines whether or not a specific substance exists in at least the target region extracted by the creation unit using the luminance threshold.
  2.  前記輝度ヒストグラムは、少なくとも第1の山部及び第2の山部を含む多峰性のヒストグラムであり、
     前記決定部は、
     前記輝度ヒストグラムに含まれる前記第1の山部と第2の山部との間における前記頻度の極小値に対応する輝度を前記輝度閾値として決定する
     ことを特徴とする請求項1に記載の画像解析システム。
    The luminance histogram is a multimodal histogram including at least a first peak and a second peak.
    The determination unit is
    The image according to claim 1, wherein a luminance corresponding to the minimum value of the frequency between the first peak and the second peak included in the luminance histogram is determined as the luminance threshold. Analysis system.
  3.  前記作成部は、複数の抽出処理の各々について、前記画像から周辺の画素の輝度との差が前記所定値以上である画素を含む少なくとも1つの候補領域を抽出し、前記複数の抽出処理で得られたすべての前記候補領域から、前記輝度ヒストグラムの作成に用いる前記対象領域を抽出する
     ことを特徴とする請求項1又は2に記載の画像解析システム。
    For each of a plurality of extraction processes, the creation unit extracts at least one candidate region including a pixel having a difference from the brightness of surrounding pixels equal to or greater than the predetermined value from the image, and is obtained by the plurality of extraction processes. The image analysis system according to claim 1, wherein the target region used for creating the luminance histogram is extracted from all the candidate regions that have been obtained.
  4.  前記複数の抽出処理は、第1平滑化条件で前記画像を平滑化した画像から第1候補領域を抽出する第1抽出処理、及び第2平滑化条件で前記画像を平滑化した画像から第2候補領域を抽出する第2抽出処理を含み、
     前記作成部は、
     前記第1抽出処理を行うことで、前記画像と前記第1平滑化条件で平滑化された第1平滑化画像との差分からなる第1差分画像を作成し、前記第1差分画像から周辺の画素の輝度との差が前記所定値以上である画素を含む少なくとも1つの前記第1候補領域を前記候補領域として抽出し、
     前記第2抽出処理を行うことで、前記画像と前記第2平滑化条件で平滑化された第2平滑化画像との差分からなる第2差分画像を作成し、前記第2差分画像から周辺の画素の輝度との差が前記所定値以上である画素を含む少なくとも1つの前記第2候補領域を前記候補領域として抽出し、
     前記第1抽出処理で抽出されたすべての前記第1候補領域と、前記第2抽出処理で抽出されたすべての前記第2候補領域とを、それぞれ前記輝度ヒストグラムの作成に用いる前記対象領域とする
     ことを特徴とする請求項3に記載の画像解析システム。
    The plurality of extraction processes include a first extraction process for extracting a first candidate region from an image obtained by smoothing the image under a first smoothing condition, and a second image obtained by smoothing the image under a second smoothing condition. Including a second extraction process for extracting candidate regions;
    The creating unit
    By performing the first extraction process, a first difference image made up of a difference between the image and the first smoothed image smoothed under the first smoothing condition is created, and the first difference image Extracting at least one of the first candidate areas including a pixel having a difference from the luminance of the pixel equal to or greater than the predetermined value as the candidate area;
    By performing the second extraction process, a second difference image including a difference between the image and the second smoothed image smoothed under the second smoothing condition is created, and the second difference image is Extracting at least one second candidate region including a pixel having a difference from a luminance of the pixel equal to or greater than the predetermined value as the candidate region;
    All the first candidate areas extracted in the first extraction process and all the second candidate areas extracted in the second extraction process are set as the target areas used for creating the luminance histogram, respectively. The image analysis system according to claim 3.
  5.  前記複数の抽出処理は、第1平滑化条件で前記画像を平滑化した画像から第1候補領域を抽出する第1抽出処理、及び第2平滑化条件で前記画像を平滑化した画像から第2候補領域を抽出する第2抽出処理を含み、
     前記作成部は、
     前記第1抽出処理を行うことで、前記画像と前記第1平滑化条件で平滑化された第1平滑化画像との差分からなる第1差分画像を作成し、前記第1差分画像から周辺の画素の輝度との差が前記所定値以上である画素を含む少なくとも1つの前記第1候補領域を前記候補領域として抽出し、
     前記第2抽出処理を行うことで、前記画像と前記第2平滑化条件で平滑化された第2平滑化画像との差分からなる第2差分画像を作成し、前記第2差分画像から周辺の画素の輝度との差が前記所定値以上である画素を含む少なくとも1つの前記第2候補領域を前記候補領域として抽出し、
     前記第1抽出処理で抽出されたすべての前記第1候補領域と、前記第2抽出処理で抽出されたすべての前記第2候補領域とのうち共通する領域を、前記輝度ヒストグラムの作成に用いる前記対象領域とする
     ことを特徴とする請求項3に記載の画像解析システム。
    The plurality of extraction processes include a first extraction process for extracting a first candidate region from an image obtained by smoothing the image under a first smoothing condition, and a second image obtained by smoothing the image under a second smoothing condition. Including a second extraction process for extracting candidate regions;
    The creating unit
    By performing the first extraction process, a first difference image made up of a difference between the image and the first smoothed image smoothed under the first smoothing condition is created, and the first difference image Extracting at least one of the first candidate areas including a pixel having a difference from the luminance of the pixel equal to or greater than the predetermined value as the candidate area;
    By performing the second extraction process, a second difference image including a difference between the image and the second smoothed image smoothed under the second smoothing condition is created, and the second difference image is Extracting at least one second candidate region including a pixel having a difference from a luminance of the pixel equal to or greater than the predetermined value as the candidate region;
    The common area among all the first candidate areas extracted in the first extraction process and all the second candidate areas extracted in the second extraction process is used for creating the luminance histogram. The image analysis system according to claim 3, wherein the image analysis system is a target area.
  6.  前記判定部は、
     前記輝度閾値を用いて、前記画像に前記特定の物質が存在するか否かを判定する
     ことを特徴とする請求項1~5のいずれか一項に記載の画像解析システム。
    The determination unit
    6. The image analysis system according to claim 1, wherein it is determined whether or not the specific substance is present in the image using the luminance threshold value.
  7.  前記画像は、液体試料から分離された試料の画像であり、
     前記判定部は、前記特定の物質が前記試料に存在するか否かを判定する
     ことを特徴とする請求項1~6のいずれか一項に記載の画像解析システム。
    The image is an image of a sample separated from a liquid sample;
    The image analysis system according to any one of claims 1 to 6, wherein the determination unit determines whether or not the specific substance is present in the sample.
  8.  前記作成部は、
     前記対象領域の画素数に対する第1画素群の画素数の割合が、前記画像の画素数に対する第2画素群の画素数の割合よりも大きくなるように、前記対象領域を前記画像から抽出し、
     前記第1画素群は、前記周辺の画素の輝度との差が前記所定値以上であって前記対象領域における画素の集まりであり、
     前記第2画素群は、前記周辺の画素の輝度との差が前記所定値以上であって前記画像全体における画素の集まりである
     ことを特徴とする請求項1~7のいずれか一項に記載の画像解析システム。
    The creating unit
    Extracting the target area from the image such that the ratio of the number of pixels of the first pixel group to the number of pixels of the target area is larger than the ratio of the number of pixels of the second pixel group to the number of pixels of the image;
    The first pixel group is a group of pixels in the target area whose difference from the luminance of the surrounding pixels is not less than the predetermined value.
    8. The second pixel group is a group of pixels in the entire image having a difference from the luminance of the surrounding pixels equal to or greater than the predetermined value. Image analysis system.
  9.  画像から周辺の画素の輝度との差が前記所定値以上である画素と当該周辺の画素とを含み、前記画像の画素数よりも少ない画素の集合体からなる領域を対象領域として抽出し、前記対象領域に含まれる輝度と当該輝度が出現する頻度とを対応付けた輝度ヒストグラムを作成する作成ステップと、
     前記輝度ヒストグラムから輝度閾値を決定する決定ステップと、
     前記輝度閾値を用いて、少なくとも前記作成ステップで抽出した前記対象領域に特定の物質が存在するか否かを判定する判定ステップと、を含む
     ことを特徴とする画像解析方法。
    A region including a pixel having a difference from the brightness of surrounding pixels from the image that is equal to or greater than the predetermined value and the surrounding pixels, and including a collection of pixels smaller than the number of pixels of the image as a target region; A creation step of creating a brightness histogram that associates the brightness included in the target region with the frequency of appearance of the brightness;
    A determination step of determining a luminance threshold from the luminance histogram;
    A determination step of determining whether or not a specific substance is present in at least the target region extracted in the creation step by using the luminance threshold value.
  10.  コンピュータを、
     請求項1~8のいずれか1項に記載の画像解析システムとして機能させるためのプログラム。
    Computer
    A program for causing an image analysis system according to any one of claims 1 to 8 to function.
PCT/JP2018/000893 2017-01-27 2018-01-16 Image analysis system, image analysis method, and program WO2018139242A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-013364 2017-01-27
JP2017013364 2017-01-27

Publications (1)

Publication Number Publication Date
WO2018139242A1 true WO2018139242A1 (en) 2018-08-02

Family

ID=62978408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000893 WO2018139242A1 (en) 2017-01-27 2018-01-16 Image analysis system, image analysis method, and program

Country Status (1)

Country Link
WO (1) WO2018139242A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06222282A (en) * 1993-01-27 1994-08-12 Olympus Optical Co Ltd Photographing device for microscope
JP2000348173A (en) * 1999-06-04 2000-12-15 Matsushita Electric Ind Co Ltd Lip extraction method
JP2005274268A (en) * 2004-03-24 2005-10-06 Kowa Co Fluorescent particle determiner, fluorescent particle counter equipped with fluorescent particle determiner, and fluorescent particle determination method
JP2006189258A (en) * 2004-12-28 2006-07-20 Olympus Corp Image processor
JP2009156824A (en) * 2007-12-28 2009-07-16 Panasonic Corp Biochemical information analyzer, device for preparing conversion information used for the same, method of analyzing biochemical information and method of preparing conversion information
JP2013214272A (en) * 2012-03-08 2013-10-17 Sony Corp Image processing device, image processing method, and program
JP2014063019A (en) * 2012-09-21 2014-04-10 Keyence Corp Image capturing and analyzing device, method of controlling the same, and program for the same
WO2017061112A1 (en) * 2015-10-07 2017-04-13 パナソニック株式会社 Image processing method and image processing device
WO2017154567A1 (en) * 2016-03-11 2017-09-14 パナソニック株式会社 Sample analysis method and sample analysis device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06222282A (en) * 1993-01-27 1994-08-12 Olympus Optical Co Ltd Photographing device for microscope
JP2000348173A (en) * 1999-06-04 2000-12-15 Matsushita Electric Ind Co Ltd Lip extraction method
JP2005274268A (en) * 2004-03-24 2005-10-06 Kowa Co Fluorescent particle determiner, fluorescent particle counter equipped with fluorescent particle determiner, and fluorescent particle determination method
JP2006189258A (en) * 2004-12-28 2006-07-20 Olympus Corp Image processor
JP2009156824A (en) * 2007-12-28 2009-07-16 Panasonic Corp Biochemical information analyzer, device for preparing conversion information used for the same, method of analyzing biochemical information and method of preparing conversion information
JP2013214272A (en) * 2012-03-08 2013-10-17 Sony Corp Image processing device, image processing method, and program
JP2014063019A (en) * 2012-09-21 2014-04-10 Keyence Corp Image capturing and analyzing device, method of controlling the same, and program for the same
WO2017061112A1 (en) * 2015-10-07 2017-04-13 パナソニック株式会社 Image processing method and image processing device
WO2017154567A1 (en) * 2016-03-11 2017-09-14 パナソニック株式会社 Sample analysis method and sample analysis device

Similar Documents

Publication Publication Date Title
US10843190B2 (en) Apparatus and method for analyzing a bodily sample
US10724957B2 (en) Micro-droplet fluorescence detection system
RU2402006C1 (en) Device, method and computer program for measuring
US8744164B2 (en) Automated analysis of images using bright field microscopy
JP3213334B2 (en) Urine cell analyzer
EP1425696A2 (en) Methods for differential cell counts including related apparatus and software for performing same
JP6845844B2 (en) Systems and methods for adjusting cytometer measurements
JP2022553151A (en) Explanation of sources of error in optical measurements
JP2013502590A (en) Rapid imaging of cell cross sections
WO2017154750A1 (en) Disk for liquid sample inspection and filter cartridge used in same, disk body, measurement plate, sample detection plate, fluorescence detection system, and fluorescence detection method
JP2005524833A (en) Devices and methods for analytical cell imaging
JP6740703B2 (en) Analysis method and analyzer
US20200183140A1 (en) Dual parallel optical axis modules sharing sample stage for bioburden testing
JP6455790B2 (en) Discrimination method using sample detection plate
CN114787625A (en) Detecting platelets in a blood sample
US20200379227A1 (en) Method For Analyzing Fluorescent Particles in an Immunoassay
WO2018139242A1 (en) Image analysis system, image analysis method, and program
CN109963936A (en) Automatic body fluid analysis
US20050023765A1 (en) Bio-safety features for optical analysis disc and disc system including same
JP2008116422A (en) Particulate detection apparatus
JP2005523684A (en) Segment area detector for biodrive and related methods
EP1936359A2 (en) System and Method for Removing Auto-Fluorescence Through The Use Of Multiple Detection Channels
Tsai et al. Position-addressable digital laser scanning point fluorescence microscopy with a Blu-ray disk pickup head
KR100747647B1 (en) Bio-chip decipherment aparatus and diagnosis apparatus having bio-chip decipherment apparatus
WO2017154567A1 (en) Sample analysis method and sample analysis device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18744330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP