WO2018139187A1 - Solid-state image capturing device, method for driving same, and electronic device - Google Patents

Solid-state image capturing device, method for driving same, and electronic device Download PDF

Info

Publication number
WO2018139187A1
WO2018139187A1 PCT/JP2018/000231 JP2018000231W WO2018139187A1 WO 2018139187 A1 WO2018139187 A1 WO 2018139187A1 JP 2018000231 W JP2018000231 W JP 2018000231W WO 2018139187 A1 WO2018139187 A1 WO 2018139187A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
transfer
transistor
transfer transistor
solid
Prior art date
Application number
PCT/JP2018/000231
Other languages
French (fr)
Japanese (ja)
Inventor
勇佑 松村
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2018139187A1 publication Critical patent/WO2018139187A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components

Definitions

  • the present technology relates to a solid-state imaging device, a driving method thereof, and an electronic device, and more particularly, to a solid-state imaging device capable of improving transfer characteristics, a driving method thereof, and an electronic device.
  • a technique in which an amplification transistor is used in a source ground connection instead of a source follower connection.
  • the voltage amplification gain of the amplification transistor can be greatly improved and the conversion efficiency can be increased as compared with the case where the amplification transistor is used with the source follower connection.
  • the amplification transistor when the amplification transistor is used with the source grounded, the gain is inverted amplification. For this reason, as the electric charge is accumulated in the FD (floating diffusion), the potential of the FD becomes lower, whereas the voltage read from the vertical signal line becomes higher.
  • Patent Document 1 discloses that a capacitor is connected to the FD, and a boost signal line connected to the capacitor is controlled to boost the potential of the FD only at the time of charge transfer. With this configuration, charge transfer from the PD to the FD can be assisted.
  • Patent Document 1 it is necessary to additionally arrange a capacitor and a boost signal line, which may reduce the degree of freedom of layout.
  • the present technology has been made in view of such a situation, and is intended to improve transfer characteristics while maintaining flexibility in layout.
  • a solid-state imaging device includes a pixel having a PD (photodiode) and a transfer transistor that transfers the charge of the PD, an FD (floating diffusion) that accumulates the charge from the transfer transistor and converts the charge into a voltage, and the FD
  • a grounded source amplification transistor that reads out the voltage of the pixel as a signal and a drive circuit that drives the pixel, and the drive circuit is disposed in the vicinity of the FD during charge transfer by the transfer transistor of the pixel.
  • An intermediate voltage is applied to a predetermined transistor electrically connected to the FD.
  • the FD is shared by a plurality of the pixels, and the drive circuit can apply the intermediate voltage to the transfer transistors of the non-readout pixels during charge transfer by the transfer transistors of the read pixels.
  • the drive circuit can apply the intermediate voltage to the transfer transistors of two or more non-readout pixels during charge transfer by the transfer transistor of one read pixel.
  • the drive circuit can apply the intermediate voltage to the transfer transistor of the readout pixel after charge transfer by the transfer transistor of the readout pixel.
  • the drive circuit may be configured to apply the intermediate voltage to a reset transistor that resets the charge accumulated in the FD during charge transfer by the transfer transistor of the pixel.
  • the intermediate voltage can be applied to a conversion efficiency switching transistor that switches the conversion efficiency of the FD during charge transfer by the transfer transistor of the pixel.
  • a driving method of the solid-state imaging device includes a pixel having a PD (photodiode) and a transfer transistor that transfers the charge of the PD, and an FD (floating diffusion) that accumulates the charge from the transfer transistor and converts it into a voltage.
  • a solid-state imaging device driving method comprising: a common-source amplification transistor that reads out the voltage of the FD as a signal; and a driving circuit that drives the pixel, wherein the driving circuit is a charge generated by the transfer transistor of the pixel.
  • An electronic device of the present technology includes a pixel having a PD (photodiode) and a transfer transistor that transfers the charge of the PD, an FD (floating diffusion) that accumulates the charge from the transfer transistor and converts the charge into a voltage, and the FD
  • a source-grounded amplification transistor that reads a voltage as a signal and a drive circuit that drives the pixel, and the drive circuit is disposed in the vicinity of the FD during charge transfer by the transfer transistor of the pixel;
  • a solid-state imaging device that applies an intermediate voltage to a predetermined transistor electrically connected to the FD is provided.
  • an intermediate voltage is applied to a predetermined transistor that is disposed in the vicinity of the FD and electrically connected to the FD.
  • 10 is a timing chart at the time of charge transfer in the second embodiment. 12 is a timing chart during charge transfer in the third embodiment. It is a top view which shows the layout of the pixel of 4th Embodiment. 10 is a timing chart during charge transfer in the fourth embodiment. It is a circuit diagram which shows the structural example of the pixel of 5th Embodiment. It is a top view which shows the layout of the pixel of 5th Embodiment. 10 is a timing chart during charge transfer in the fifth embodiment. It is a block diagram which shows the structural example of the electronic device to which this technique is applied. It is a figure which shows the usage example of an image sensor. It is a block diagram which shows an example of a schematic structure of a vehicle control system. It is explanatory drawing which shows an example of the installation position of a vehicle exterior information detection part and an imaging part.
  • FIG. 1 is a block diagram illustrating a configuration example of an embodiment of a solid-state imaging device to which the present technology is applied.
  • the solid-state imaging device of FIG. 1 is configured as, for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
  • CMOS Complementary Metal Oxide Semiconductor
  • 1 includes a pixel array section 12, a vertical drive circuit 13, a horizontal drive circuit 14, and an output circuit 15.
  • a plurality of pixels 21 are arranged in a matrix in the pixel array unit 12. Each pixel 21 is connected to the vertical drive circuit 13 for each row by a horizontal signal line 22 and connected to the horizontal drive circuit 14 for each column by a vertical signal line 23.
  • the vertical drive circuit 13 outputs a drive signal via the horizontal signal line 22 to drive the pixels 21 arranged in the pixel array unit 12 for each row.
  • the horizontal drive circuit 14 performs column processing for detecting a signal level by a CDS (Correlated Double Sampling) operation from a signal output from each pixel 21 of the pixel array unit 12 through the vertical signal line 23, and the pixel 21 performs photoelectric processing. An output signal corresponding to the charge generated by the conversion is output to the output circuit 15.
  • CDS Correlated Double Sampling
  • the output circuit 15 amplifies the output signal sequentially output from the horizontal drive circuit 14 to a voltage value of a predetermined level and outputs it to a subsequent image processing circuit or the like.
  • the solid-state imaging device 11 to which the present technology is applied includes a pixel 21 having a PD (photodiode) and a transfer transistor that transfers the charge of the PD, and an FD (floating diffusion) that accumulates the charge from the transfer transistor and converts it into a voltage. ), A grounded source amplification transistor that reads out the voltage of the FD as a signal, and a drive circuit that drives the pixel 21.
  • a PD photodiode
  • FD floating diffusion
  • the drive circuit is configured as a vertical drive circuit 13 and operates to apply an intermediate voltage to a predetermined transistor that is disposed in the vicinity of the FD and electrically connected to the FD during charge transfer by the transfer transistor of the pixel 21. .
  • FIG. 2 is a circuit diagram illustrating a configuration example of a pixel according to the first embodiment
  • FIG. 3 is a plan view illustrating a layout of the pixel.
  • a two-pixel sharing configuration is adopted in which one FD is shared by two pixels 21-1, 21-2.
  • the pixel 21-1 has a PD 41-1 and a transfer transistor 42-1
  • the pixel 21-2 has a PD 41-2 and a transfer transistor 42-2.
  • a connection point between the transfer transistors 42-1 and 42-2 constitutes the FD43.
  • the transfer transistor 42-1 is driven according to the transfer signal TG1 supplied from the vertical drive circuit 13 (FIG. 1) via the horizontal signal line 22T1, and is turned on at a timing when the transfer signal TG1 becomes a high level in a pulse shape.
  • the transfer transistor 42-1 is turned on, the charge generated in the PD 41-1 is transferred to the FD 43 via the transfer transistor 42-1.
  • the transfer transistor 42-2 is driven in accordance with the transfer signal TG2 supplied from the vertical drive circuit 13 via the horizontal signal line 22T2, and is turned on when the transfer signal TG2 becomes a high level in a pulse shape.
  • the transfer transistor 42-2 is turned on, the charge generated in the PD 41-2 is transferred to the FD 43 via the transfer transistor 42-2.
  • the FD 43 is connected to the gate electrode of the amplification transistor 44.
  • the amplification transistor 44 outputs a voltage having a level corresponding to the charge accumulated in the FD 43.
  • the selection transistor 45 is driven in accordance with the selection signal SEL supplied from the vertical drive circuit 13 via the horizontal signal line 22S, and is turned on at a timing when the selection signal SEL becomes a high level in a pulse shape.
  • the selection transistor 45 is turned on, the voltage output from the amplification transistor 44 can be output to the vertical signal line 23 via the selection transistor 45.
  • the source side of the amplification transistor 44 is grounded via a load transistor 46 that is an nMOS.
  • the amplification transistor 44 and the load transistor 46 operate as a common-source inverting amplifier, and a signal indicating a level corresponding to the charge accumulated in the FD 43 is output.
  • the reset transistor 47 is driven in accordance with the reset signal RST supplied from the vertical drive circuit 13 via the horizontal signal line 22R, and is turned on when the reset signal RST becomes a high level in a pulse shape.
  • the drain side of the reset transistor 47 is connected to the vertical signal line 23.
  • the reset transistor 47 is turned on, the charge accumulated in the FD 43 is transferred via the reset transistor 47.
  • the FD 43 is reset.
  • the transfer transistors 42-1 and 42-2 are arranged in the vicinity of the FD 43, and are electrically connected to the FD 43.
  • the transfer transistor 42-1 of the pixel 21-1 which is the pixel to be read (readout pixel), has a high level as the transfer signal TG1.
  • a voltage of (for example, about 3 V) is applied in a pulse shape.
  • the transfer transistor 42-1 is turned on, the charge generated in PD1 (PD41-1) is transferred to the FD 43 as shown in the lower part of FIG.
  • a high level voltage is applied in a pulse form as the transfer signal TG2 to the transfer transistor 42-2 of the pixel 21-2 as the read pixel.
  • the transfer transistor 42-2 is turned on, although not shown, the charge generated in the PD2 (PD41-2) is transferred to the FD43.
  • PD1 (PD41-1) and PD2 (PD41-2) have a smaller amount of charge than in the case of high illuminance (FIG. 4). Accumulated.
  • a high level voltage is pulsed as a transfer signal TG1 to the transfer transistor 42-1 of the pixel 21-1 as the read pixel.
  • an intermediate voltage for example, about 1 V
  • an intermediate voltage that becomes an intermediate level between the high level and the low level as the transfer signal TG2 is applied to the transfer transistor 42-2 of the pixel 21-2 that is a pixel not to be read (non-read pixel). Is applied in pulses.
  • a high level voltage is applied in a pulse form as the transfer signal TG2 to the transfer transistor 42-2 of the pixel 21-2 that is the read pixel.
  • an intermediate voltage is applied in the form of a pulse as the transfer signal TG1 to the transfer transistor 42-1 of the pixel 21-1, which is a non-read pixel.
  • the charge transfer can be assisted by feedthrough without the need to additionally arrange a capacitor or a boost signal line as in the configuration of Patent Document 1, so that the layout It is possible to improve transfer characteristics while maintaining the degree of freedom, and as a result, a high S / N ratio in the solid-state imaging device 11 can be realized.
  • the operation at the time of charge transfer under high illuminance and the operation at the time of charge transfer under low illuminance described above may be switched according to the charge amount of the PD, for example. Specifically, when the charge amount of the PD exceeds a predetermined amount, the operation at the time of charge transfer under high illuminance is performed, and when the charge amount of the PD does not exceed the predetermined amount, the charge under low illuminance Make sure that the transfer operation is performed.
  • the two-pixel sharing configuration has been described as an example, but the number of shared pixels is not limited to two.
  • FIG. 8 is a plan view showing the layout of the pixel according to the second embodiment.
  • a two-pixel sharing configuration is adopted in which one FD is shared by the four pixels 21-1 to 21-4.
  • the pixel 21-1 has a PD 41-1 and a transfer transistor 42-1
  • the pixel 21-2 has a PD 41-2 and a transfer transistor 42-2
  • the pixel 21-3 has a PD 41-3 and a transfer transistor 42-3
  • the pixel 21-4 has a PD 41-4 and a transfer transistor 42-4.
  • Each connection point of the transfer transistors 42-1 to 42-4 constitutes the FD43.
  • the transfer transistors 42-1 to 42-4 are arranged in the vicinity of the FD 43, and are electrically connected to the FD 43.
  • FIG. 9 shows a timing chart at the time of charge transfer under low illumination in this embodiment.
  • a high level voltage is applied in a pulse form as the transfer signal TG1 to the transfer transistor 42-1 of the pixel 21-1, which is the read pixel.
  • intermediate voltages are pulsed as transfer signals TG2, TG3, and TG4 to the transfer transistors 42-2, 42-3, and 42-4 of the pixels 21-2, 21-3, and 21-4 that are non-readout pixels. Applied in the form.
  • a high level voltage is applied in a pulse form as the transfer signal TG2 to the transfer transistor 42-2 of the pixel 21-2 as the read pixel.
  • intermediate voltages are pulsed as transfer signals TG1, TG3, TG4 to the transfer transistors 42-1, 42-3, 42-4 of the pixels 21-1, 21-3, 21-4 which are non-readout pixels. Applied in the form.
  • a high-level voltage is applied in a pulse form to the transfer transistor of the readout pixel, and the other non-readout pixels are read out.
  • An intermediate voltage is applied in a pulsed manner to each transfer transistor.
  • the potential of the FD 43 is further increased by applying an intermediate voltage to the transfer transistors of two or more non-readout pixels during charge transfer by the transfer transistor of one read pixel.
  • the potential difference between the PD and the FD 43 of the readout pixel is further increased, and the transfer characteristics can be further improved.
  • FIG. 10 shows a timing chart at the time of charge transfer under low illuminance in the third embodiment.
  • a two-pixel sharing configuration is adopted in which one FD is shared by two pixels 21-1 and 21-2.
  • a high level voltage is applied as the transfer signal TG1 to the transfer transistor 42-1 of the pixel 21-1, which is the read pixel. Further, after charge transfer by the transfer transistor 42-1 of the pixel 21-1, an intermediate voltage is applied as the transfer signal TG1 to the transfer transistor 42-1 of the pixel 21-1. In the meantime, the intermediate voltage is applied in a pulse form as the transfer signal TG2 to the transfer transistor 42-2 of the pixel 21-2 which is a non-read pixel.
  • a high level voltage is applied as the transfer signal TG2 to the transfer transistor 42-2 of the pixel 21-2 that is the readout pixel.
  • an intermediate voltage is applied as the transfer signal TG2 to the transfer transistor 42-2 of the pixel 21-2.
  • an intermediate voltage is applied in the form of a pulse as the transfer signal TG1 to the transfer transistor 42-1 of the pixel 21-1, which is a non-read pixel.
  • the voltage applied to the transfer transistor can be lowered stepwise. As a result, it is possible to prevent the charge transferred from the PD of the readout pixel from the FD 43 from flowing back to the PD side.
  • the intermediate voltage is applied to the transfer transistor of the non-read pixel while the high level voltage and the intermediate voltage are applied to the transfer transistor of the read pixel. It is sufficient that an intermediate voltage is applied to the transfer transistor at least while a high level voltage is applied to the transfer transistor of the readout pixel.
  • present embodiment may be applied to the configuration of the second embodiment or other embodiments described later.
  • FIG. 11 is a plan view showing the layout of the pixel according to the fourth embodiment.
  • a two-pixel sharing configuration is adopted in which one FD is shared by two pixels 21-1, 21-2.
  • the pixel 21-1 has a PD 41-1 and a transfer transistor 42-1
  • the pixel 21-2 has a PD 41-2 and a transfer transistor 42-2.
  • a connection point between the transfer transistors 42-1 and 42-2 and the reset transistor 47 constitutes the FD43.
  • the transfer transistors 42-1 and 42-2 and the reset transistor 47 are arranged in the vicinity of the FD 43 and are electrically connected to the FD 43.
  • FIG. 12 shows a timing chart at the time of charge transfer under low illumination in this embodiment.
  • a high level voltage is applied in a pulse form as the transfer signal TG1 to the transfer transistor 42-1 of the pixel 21-1, which is the read pixel.
  • the intermediate voltage is applied in a pulse form as the transfer signal TG2 and the reset signal RST to the transfer transistor 42-2 and the reset transistor 47 of the pixel 21-2 which is a non-read pixel.
  • a high-level voltage is applied in a pulse form as the transfer signal TG2 to the transfer transistor 42-2 of the pixel 21-2 that is the readout pixel.
  • the intermediate voltage is applied in a pulse form as the transfer signal TG1 and the reset signal RST to the transfer transistor 42-1 and the reset transistor 47 of the pixel 21-1, which is a non-read pixel.
  • the potential of the FD 43 is also boosted by applying an intermediate voltage to the reset transistor 47 during charge transfer by the transfer transistor of the readout pixel.
  • the potential difference between the PD and the FD 43 of the readout pixel becomes larger, and the transfer characteristics can be improved.
  • this embodiment may be applied to the configuration of the second embodiment, or may be applied to a configuration that does not share pixels.
  • FIG. 13 is a circuit diagram illustrating a configuration example of a pixel according to the fifth embodiment
  • FIG. 14 is a plan view illustrating a layout of the pixel.
  • the pixel 21-1 has a PD 41-1 and a transfer transistor 42-1
  • the pixel 21-2 has a PD 41-2 and a transfer transistor 42-2.
  • the connection point of the transfer transistors 42-1 and 42-2 and the conversion efficiency switching transistor 61 constitutes the FD43.
  • the conversion efficiency switching transistor 61 is driven in accordance with the switching signal FDG supplied from the vertical driving circuit 13 (FIG. 1) via the horizontal signal line 22F, and is turned on at a timing when the switching signal FDG is pulsed to a high level.
  • the conversion efficiency switching transistor 61 is turned on, the capacity of the FD 43 increases and the conversion efficiency is lowered.
  • the transfer transistors 42-1 and 42-2 and the conversion efficiency switching transistor 61 are arranged in the vicinity of the FD 43, and are electrically connected to the FD 43.
  • FIG. 15 shows a timing chart at the time of charge transfer under low illumination in this embodiment.
  • a high level voltage is applied in a pulse form as the transfer signal TG1 to the transfer transistor 42-1 of the pixel 21-1, which is the read pixel.
  • the intermediate voltage is applied in a pulse form as the transfer signal TG2 and the switching signal FDG to the transfer transistor 42-2 and the conversion efficiency switching transistor 61 of the pixel 21-2 which is a non-read pixel.
  • a high level voltage is applied in a pulse form as the transfer signal TG2 to the transfer transistor 42-2 of the pixel 21-2 as the read pixel.
  • the intermediate voltage is applied in a pulse form as the transfer signal TG1 and the switching signal FDG to the transfer transistor 42-1 and the conversion efficiency switching transistor 61 of the pixel 21-1, which is a non-read pixel.
  • the potential of the FD 43 is also boosted by applying an intermediate voltage to the conversion efficiency switching transistor 61 during charge transfer by the transfer transistor of the readout pixel.
  • the potential difference between the PD and the FD 43 of the readout pixel becomes larger, and the transfer characteristics can be improved.
  • this embodiment may be applied to the configuration of the second embodiment, or may be applied to a configuration that does not share pixels.
  • the solid-state imaging device 11 as described above is applied to various electronic devices such as an imaging system such as a digital still camera and a digital video camera, a mobile phone having an imaging function, or other devices having an imaging function. be able to.
  • FIG. 16 is a block diagram illustrating a configuration example of an imaging apparatus that is an electronic apparatus to which the present technology is applied.
  • the imaging device 301 includes an optical system 302, a solid-state imaging device 303, and a DSP (Digital Signal Processor) 304, and a DSP 304, a display device 305, an operation system 306, and a memory via a bus 307. 308, the recording device 309, and the power supply system 310 are connected, and can capture still images and moving images.
  • a DSP Digital Signal Processor
  • the optical system 302 includes one or more lenses, guides image light (incident light) from a subject to the solid-state imaging device 303, and forms an image on a light receiving surface (sensor unit) of the solid-state imaging device 303.
  • the solid-state imaging device 303 As the solid-state imaging device 303, the solid-state imaging device 11 having the pixel 21 of any one of the above-described configuration examples is applied. In the solid-state imaging device 303, electrons are accumulated for a certain period according to an image formed on the light receiving surface via the optical system 302. Then, a signal corresponding to the electrons accumulated in the solid-state imaging device 303 is supplied to the DSP 304.
  • the DSP 304 performs various signal processing on the signal from the solid-state imaging device 303 to acquire an image, and temporarily stores the image data in the memory 308.
  • the image data stored in the memory 308 is recorded in the recording device 309 or supplied to the display device 305 to display an image.
  • the operation system 306 receives various operations by the user and supplies operation signals to each block of the imaging apparatus 301, and the power supply system 310 supplies power necessary for driving each block of the imaging apparatus 301.
  • the imaging device 301 configured as described above, by applying the solid-state imaging device 11 as described above as the solid-state imaging device 303, it is possible to improve the transfer characteristics while maintaining the degree of freedom of layout. Therefore, it is possible to realize a high S / N ratio.
  • the configuration of the solid-state imaging device according to the present technology can be employed in a backside illumination type CMOS image sensor or a frontside illumination type CMOS image sensor.
  • FIG. 17 is a diagram illustrating an example of using an image sensor to which the present technology is applied.
  • the image sensor described above can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-ray as follows.
  • Devices for taking images for viewing such as digital cameras and mobile devices with camera functions
  • Devices used for traffic such as in-vehicle sensors that capture the back, surroundings, and interiors of vehicles, surveillance cameras that monitor traveling vehicles and roads, and ranging sensors that measure distances between vehicles, etc.
  • Equipment used for home appliances such as TVs, refrigerators, air conditioners, etc. to take pictures and operate the equipment according to the gestures ⁇ Endoscopes, equipment that performs blood vessel photography by receiving infrared light, etc.
  • Equipment used for medical and health care ⁇ Security equipment such as security surveillance cameras and personal authentication cameras ⁇ Skin measuring instrument for photographing skin and scalp photography Such as a microscope to do beauty Equipment used for sports such as action cameras and wearable cameras for sports applications etc.
  • Equipment used for agriculture such as cameras for monitoring the condition of fields and crops
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure is realized as a device that is mounted on any type of mobile body such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, personal mobility, an airplane, a drone, a ship, and a robot. May be.
  • FIG. 18 is a block diagram illustrating a schematic configuration example of a vehicle control system that is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, a vehicle exterior information detection unit 12030, a vehicle interior information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are illustrated.
  • the drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 includes a driving force generator for generating a driving force of a vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism that adjusts and a braking device that generates a braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a headlamp, a back lamp, a brake lamp, a blinker, or a fog lamp.
  • the body control unit 12020 can be input with radio waves transmitted from a portable device that substitutes for a key or signals from various switches.
  • the body system control unit 12020 receives input of these radio waves or signals, and controls a door lock device, a power window device, a lamp, and the like of the vehicle.
  • the vehicle outside information detection unit 12030 detects information outside the vehicle on which the vehicle control system 12000 is mounted.
  • the imaging unit 12031 is connected to the vehicle exterior information detection unit 12030.
  • the vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image outside the vehicle and receives the captured image.
  • the vehicle outside information detection unit 12030 may perform an object detection process or a distance detection process such as a person, a car, an obstacle, a sign, or a character on a road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal corresponding to the amount of received light.
  • the imaging unit 12031 can output an electrical signal as an image, or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared rays.
  • the vehicle interior information detection unit 12040 detects vehicle interior information.
  • a driver state detection unit 12041 that detects a driver's state is connected to the in-vehicle information detection unit 12040.
  • the driver state detection unit 12041 includes, for example, a camera that images the driver, and the vehicle interior information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated or it may be determined whether the driver is asleep.
  • the microcomputer 12051 calculates a control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside / outside the vehicle acquired by the vehicle outside information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit A control command can be output to 12010.
  • the microcomputer 12051 realizes an ADAS (Advanced Driver Assistance System) function including vehicle collision avoidance or impact mitigation, following traveling based on inter-vehicle distance, vehicle speed maintaining traveling, vehicle collision warning, or vehicle lane departure warning, etc. It is possible to perform cooperative control for the purpose.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform cooperative control for the purpose of automatic driving that autonomously travels without depending on the operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on information outside the vehicle acquired by the vehicle outside information detection unit 12030.
  • the microcomputer 12051 controls the headlamp according to the position of the preceding vehicle or the oncoming vehicle detected by the outside information detection unit 12030, and performs cooperative control for the purpose of anti-glare, such as switching from a high beam to a low beam. It can be carried out.
  • the sound image output unit 12052 transmits an output signal of at least one of sound and image to an output device capable of visually or audibly notifying information to a vehicle occupant or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include at least one of an on-board display and a head-up display, for example.
  • FIG. 19 is a diagram illustrating an example of an installation position of the imaging unit 12031.
  • the vehicle 12100 includes imaging units 12101, 12102, 12103, 12104, and 12105 as the imaging unit 12031.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at positions such as a front nose, a side mirror, a rear bumper, a back door, and an upper part of a windshield in the vehicle interior of the vehicle 12100.
  • the imaging unit 12101 provided in the front nose and the imaging unit 12105 provided in the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
  • the imaging units 12102 and 12103 provided in the side mirror mainly acquire an image of the side of the vehicle 12100.
  • the imaging unit 12104 provided in the rear bumper or the back door mainly acquires an image behind the vehicle 12100.
  • the forward images acquired by the imaging units 12101 and 12105 are mainly used for detecting a preceding vehicle or a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 19 shows an example of the shooting range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively
  • the imaging range 12114 The imaging range of the imaging part 12104 provided in the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, an overhead image when the vehicle 12100 is viewed from above is obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera including a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
  • the microcomputer 12051 based on the distance information obtained from the imaging units 12101 to 12104, the distance to each three-dimensional object in the imaging range 12111 to 12114 and the temporal change in this distance (relative speed with respect to the vehicle 12100).
  • a predetermined speed for example, 0 km / h or more
  • the microcomputer 12051 can set an inter-vehicle distance to be secured in advance before the preceding vehicle, and can perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like.
  • automatic brake control including follow-up stop control
  • automatic acceleration control including follow-up start control
  • cooperative control for the purpose of autonomous driving or the like autonomously traveling without depending on the operation of the driver can be performed.
  • the microcomputer 12051 converts the three-dimensional object data related to the three-dimensional object to other three-dimensional objects such as a two-wheeled vehicle, a normal vehicle, a large vehicle, a pedestrian, and a utility pole based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles.
  • the microcomputer 12051 identifies obstacles around the vehicle 12100 as obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see.
  • the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 is connected via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration or avoidance steering via the drive system control unit 12010, driving assistance for collision avoidance can be performed.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether a pedestrian is present in the captured images of the imaging units 12101 to 12104. Such pedestrian recognition is, for example, whether or not the user is a pedestrian by performing a pattern matching process on a sequence of feature points indicating the outline of an object and a procedure for extracting feature points in the captured images of the imaging units 12101 to 12104 as infrared cameras. It is carried out by the procedure for determining.
  • the audio image output unit 12052 When the microcomputer 12051 determines that there is a pedestrian in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 has a rectangular contour line for emphasizing the recognized pedestrian.
  • the display unit 12062 is controlled so as to be superimposed and displayed.
  • voice image output part 12052 may control the display part 12062 so that the icon etc. which show a pedestrian may be displayed on a desired position.
  • the technology according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above.
  • the solid-state imaging device 11 of FIG. 1 can be applied to the imaging unit 12031.
  • a pixel having a PD (photodiode) and a transfer transistor for transferring the charge of the PD; FD (floating diffusion) that accumulates charges from the transfer transistor and converts them into a voltage; A common source amplification transistor that reads out the voltage of the FD as a signal; A drive circuit for driving the pixels, The driving circuit applies an intermediate voltage to a predetermined transistor that is disposed in the vicinity of the FD and electrically connected to the FD during charge transfer by the transfer transistor of the pixel.
  • the FD is shared by a plurality of the pixels
  • the driving circuit applies the intermediate voltage to the transfer transistors of two or more non-readout pixels during charge transfer by the transfer transistor of one read-out pixel.
  • the drive circuit applies the intermediate voltage to the transfer transistor of the readout pixel after charge transfer by the transfer transistor of the readout pixel.
  • a driving method of a solid-state imaging device comprising: a driving circuit that drives the pixels, The driving circuit includes a step of applying an intermediate voltage to a predetermined transistor that is disposed in the vicinity of the FD and electrically connected to the FD during charge transfer by the transfer transistor of the pixel. Method.
  • An electronic apparatus comprising: a solid-state imaging device that applies an intermediate voltage to a predetermined transistor that is disposed in the vicinity of the FD and is electrically connected to the FD during charge transfer by the transfer transistor of the pixel.
  • 11 solid-state imaging device 21, 211-1 to 21-4 pixels, 13 vertical drive circuit, 41-1 to 41-4 PD, 42-1 to 42-4 transfer transistor, 43 FD, 44 amplification transistor, 45 selection transistor , 46 load transistor, 47 reset transistor, 61 conversion efficiency switching transistor, 301 electronic device, 303 solid-state imaging device

Abstract

This technology relates to a solid-state image capturing device, a method for driving the same, and an electronic device for allowing the transfer performance to be enhanced while maintaining the degree of layout freedom. A solid-state image capturing device according to the present invention is provided with: pixels having PDs and transfer transistors for transferring the charges on the PDs; FDs for storing the charges from the transfer transistors and converting the charges into voltages; source-grounded amplifier transistors for reading out the voltages of the FDs as signals; and a driving circuit for driving the pixels. When charge is transferred by the transfer transistor of a pixel, the driving circuit applies an intermediate voltage to a prescribed transistor that is disposed in the vicinity of the FD and that is electrically connecting to the FD. This technology can be applied to CMOS image sensors.

Description

固体撮像装置およびその駆動方法、並びに電子機器Solid-state imaging device, driving method thereof, and electronic apparatus
 本技術は、固体撮像装置およびその駆動方法、並びに電子機器に関し、特に、転送特性を向上させることができるようにする固体撮像装置およびその駆動方法、並びに電子機器に関する。 The present technology relates to a solid-state imaging device, a driving method thereof, and an electronic device, and more particularly, to a solid-state imaging device capable of improving transfer characteristics, a driving method thereof, and an electronic device.
 固体撮像装置において、増幅トランジスタを、ソースフォロア接続ではなくソース接地接続で用いる技術が知られている。増幅トランジスタをソース接地接続で用いることにより、ソースフォロア接続で用いた場合と比べて、増幅トランジスタの電圧増幅利得を大きく向上させ、変換効率を高めることができる。 In a solid-state imaging device, a technique is known in which an amplification transistor is used in a source ground connection instead of a source follower connection. By using the amplification transistor with the source ground connection, the voltage amplification gain of the amplification transistor can be greatly improved and the conversion efficiency can be increased as compared with the case where the amplification transistor is used with the source follower connection.
 一方、増幅トランジスタをソース接地接続で用いた場合、利得は反転増幅となる。そのため、FD(フローティングディフュージョン)に電荷が蓄積されるほどFDの電位は低くなるのに対して、垂直信号線から読み出される電圧は高くなる。 On the other hand, when the amplification transistor is used with the source grounded, the gain is inverted amplification. For this reason, as the electric charge is accumulated in the FD (floating diffusion), the potential of the FD becomes lower, whereas the voltage read from the vertical signal line becomes higher.
 画素信号の振幅を大きく確保するためには、FDの電位をより低くする必要がある。しかしながら、そうすることにより、PD(フォトダイオード)とFDとの間の電位差が十分に確保されなくなり、PDからFDへの電荷転送特性が悪化してしまう。 In order to ensure a large amplitude of the pixel signal, it is necessary to lower the FD potential. However, by doing so, a sufficient potential difference between the PD (photodiode) and the FD is not ensured, and the charge transfer characteristics from the PD to the FD are deteriorated.
 これに対して、例えば特許文献1には、FDにキャパシタを接続し、キャパシタに接続された昇圧信号線を制御することで、電荷転送時にのみFDの電位を昇圧することが開示されている。この構成により、PDからFDへの電荷転送をアシストすることができる。 On the other hand, for example, Patent Document 1 discloses that a capacitor is connected to the FD, and a boost signal line connected to the capacitor is controlled to boost the potential of the FD only at the time of charge transfer. With this configuration, charge transfer from the PD to the FD can be assisted.
特開2005-217607号公報JP 2005-217607 A
 しかしながら、特許文献1の構成は、キャパシタや昇圧信号線を追加で配置する必要があり、レイアウトの自由度を低下させるおそれがあった。 However, in the configuration of Patent Document 1, it is necessary to additionally arrange a capacitor and a boost signal line, which may reduce the degree of freedom of layout.
 本技術は、このような状況に鑑みてなされたものであり、レイアウトの自由度を保ちつつ、転送特性を向上させるようにするものである。 The present technology has been made in view of such a situation, and is intended to improve transfer characteristics while maintaining flexibility in layout.
 本技術の固体撮像装置は、PD(フォトダイオード)および前記PDの電荷を転送する転送トランジスタを有する画素と、前記転送トランジスタからの電荷を蓄積し電圧に変換するFD(フローティングディフュージョン)と、前記FDの電圧を信号として読み出すソース接地型の増幅トランジスタと、前記画素を駆動する駆動回路とを備え、前記駆動回路は、前記画素の前記転送トランジスタによる電荷転送時に、前記FDの近傍に配置され、前記FDに電気的に接続される所定のトランジスタに中間電圧を印加する。 A solid-state imaging device according to an embodiment of the present technology includes a pixel having a PD (photodiode) and a transfer transistor that transfers the charge of the PD, an FD (floating diffusion) that accumulates the charge from the transfer transistor and converts the charge into a voltage, and the FD A grounded source amplification transistor that reads out the voltage of the pixel as a signal and a drive circuit that drives the pixel, and the drive circuit is disposed in the vicinity of the FD during charge transfer by the transfer transistor of the pixel. An intermediate voltage is applied to a predetermined transistor electrically connected to the FD.
 前記FDは、複数の前記画素に共有され、前記駆動回路には、読み出し画素の前記転送トランジスタによる電荷転送時に、非読み出し画素の前記転送トランジスタに前記中間電圧を印加させることができる。 The FD is shared by a plurality of the pixels, and the drive circuit can apply the intermediate voltage to the transfer transistors of the non-readout pixels during charge transfer by the transfer transistors of the read pixels.
 前記駆動回路には、1の前記読み出し画素の前記転送トランジスタによる電荷転送時に、2以上の前記非読み出し画素の前記転送トランジスタに前記中間電圧を印加させることができる。 The drive circuit can apply the intermediate voltage to the transfer transistors of two or more non-readout pixels during charge transfer by the transfer transistor of one read pixel.
 前記駆動回路には、前記読み出し画素の前記転送トランジスタによる電荷転送後に、前記読み出し画素の前記転送トランジスタに前記中間電圧を印加させることができる。 The drive circuit can apply the intermediate voltage to the transfer transistor of the readout pixel after charge transfer by the transfer transistor of the readout pixel.
 前記駆動回路には、前記画素の前記転送トランジスタによる電荷転送時に、前記FDに蓄積された電荷をリセットするリセットトランジスタに前記中間電圧を印加させることができる。 The drive circuit may be configured to apply the intermediate voltage to a reset transistor that resets the charge accumulated in the FD during charge transfer by the transfer transistor of the pixel.
 前記駆動回路には、前記画素の前記転送トランジスタによる電荷転送時に、前記FDの変換効率を切り替える変換効率切替トランジスタに前記中間電圧を印加させることができる。 In the drive circuit, the intermediate voltage can be applied to a conversion efficiency switching transistor that switches the conversion efficiency of the FD during charge transfer by the transfer transistor of the pixel.
 本技術の固体撮像装置の駆動方法は、PD(フォトダイオード)および前記PDの電荷を転送する転送トランジスタを有する画素と、前記転送トランジスタからの電荷を蓄積し電圧に変換するFD(フローティングディフュージョン)と、前記FDの電圧を信号として読み出すソース接地型の増幅トランジスタと、前記画素を駆動する駆動回路とを備える固体撮像装置の駆動方法であって、前記駆動回路が、前記画素の前記転送トランジスタによる電荷転送時に、前記FDの近傍に配置され、前記FDに電気的に接続される所定のトランジスタに中間電圧を印加するステップを含む。 A driving method of the solid-state imaging device according to the present technology includes a pixel having a PD (photodiode) and a transfer transistor that transfers the charge of the PD, and an FD (floating diffusion) that accumulates the charge from the transfer transistor and converts it into a voltage. A solid-state imaging device driving method comprising: a common-source amplification transistor that reads out the voltage of the FD as a signal; and a driving circuit that drives the pixel, wherein the driving circuit is a charge generated by the transfer transistor of the pixel. A step of applying an intermediate voltage to a predetermined transistor that is disposed in the vicinity of the FD and electrically connected to the FD during transfer;
 本技術の電子機器は、PD(フォトダイオード)および前記PDの電荷を転送する転送トランジスタを有する画素と、前記転送トランジスタからの電荷を蓄積し電圧に変換するFD(フローティングディフュージョン)と、前記FDの電圧を信号として読み出すソース接地型の増幅トランジスタと、前記画素を駆動する駆動回路とを有し、前記駆動回路が、前記画素の前記転送トランジスタによる電荷転送時に、前記FDの近傍に配置され、前記FDに電気的に接続される所定のトランジスタに中間電圧を印加する固体撮像装置を備える。 An electronic device of the present technology includes a pixel having a PD (photodiode) and a transfer transistor that transfers the charge of the PD, an FD (floating diffusion) that accumulates the charge from the transfer transistor and converts the charge into a voltage, and the FD A source-grounded amplification transistor that reads a voltage as a signal and a drive circuit that drives the pixel, and the drive circuit is disposed in the vicinity of the FD during charge transfer by the transfer transistor of the pixel; A solid-state imaging device that applies an intermediate voltage to a predetermined transistor electrically connected to the FD is provided.
 本技術においては、前記画素の前記転送トランジスタによる電荷転送時に、前記FDの近傍に配置され、前記FDに電気的に接続される所定のトランジスタに中間電圧が印加される。 In the present technology, during charge transfer by the transfer transistor of the pixel, an intermediate voltage is applied to a predetermined transistor that is disposed in the vicinity of the FD and electrically connected to the FD.
 本技術によれば、レイアウトの自由度を保ちつつ、転送特性を向上させることが可能となる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 According to the present technology, it is possible to improve the transfer characteristics while maintaining the flexibility of layout. Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
本技術を適用した固体撮像装置の構成例を示すブロック図である。It is a block diagram showing an example of composition of a solid imaging device to which this art is applied. 第1の実施の形態の画素の構成例を示す回路図である。It is a circuit diagram showing an example of composition of a pixel of a 1st embodiment. 第1の実施の形態の画素のレイアウトを示す平面図である。It is a top view which shows the layout of the pixel of 1st Embodiment. 高照度下での電荷転送時の電荷の流れについて説明する図である。It is a figure explaining the flow of the electric charge at the time of the charge transfer under high illumination intensity. 高照度下での電荷転送時のタイミングチャートである。It is a timing chart at the time of charge transfer under high illuminance. 低照度下での電荷転送時の電荷の流れについて説明する図である。It is a figure explaining the flow of an electric charge at the time of electric charge transfer under low illumination intensity. 低照度下での電荷転送時のタイミングチャートである。It is a timing chart at the time of charge transfer under low illumination. 第2の実施の形態の画素のレイアウトを示す平面図である。It is a top view which shows the layout of the pixel of 2nd Embodiment. 第2の実施の形態における電荷転送時のタイミングチャートである。10 is a timing chart at the time of charge transfer in the second embodiment. 第3の実施の形態における電荷転送時のタイミングチャートである。12 is a timing chart during charge transfer in the third embodiment. 第4の実施の形態の画素のレイアウトを示す平面図である。It is a top view which shows the layout of the pixel of 4th Embodiment. 第4の実施の形態における電荷転送時のタイミングチャートである。10 is a timing chart during charge transfer in the fourth embodiment. 第5の実施の形態の画素の構成例を示す回路図である。It is a circuit diagram which shows the structural example of the pixel of 5th Embodiment. 第5の実施の形態の画素のレイアウトを示す平面図である。It is a top view which shows the layout of the pixel of 5th Embodiment. 第5の実施の形態における電荷転送時のタイミングチャートである。10 is a timing chart during charge transfer in the fifth embodiment. 本技術を適用した電子機器の構成例を示すブロック図である。It is a block diagram which shows the structural example of the electronic device to which this technique is applied. イメージセンサの使用例を示す図である。It is a figure which shows the usage example of an image sensor. 車両制御システムの概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of a schematic structure of a vehicle control system. 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。It is explanatory drawing which shows an example of the installation position of a vehicle exterior information detection part and an imaging part.
 以下、本開示を実施するための形態(以下、実施の形態とする)について説明する。なお、説明は以下の順序で行う。 Hereinafter, modes for carrying out the present disclosure (hereinafter referred to as embodiments) will be described. The description will be given in the following order.
 1.固体撮像装置の構成例
 2.第1の実施の形態
 3.第2の実施の形態
 4.第3の実施の形態
 5.第4の実施の形態
 6.第5の実施の形態
 7.電子機器の構成例
 8.イメージセンサの使用例
 9.移動体への応用例
1. 1. Configuration example of solid-state imaging device 1. First embodiment 2. Second embodiment 3. Third embodiment 4. Fourth embodiment Fifth embodiment Configuration example of electronic device 8. 8. Use example of image sensor Application examples for moving objects
<1.固体撮像装置の構成例>
 図1は、本技術を適用した固体撮像装置の一実施の形態の構成例を示すブロック図である。図1の固体撮像装置は、例えば、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサとして構成される。
<1. Configuration Example of Solid-State Imaging Device>
FIG. 1 is a block diagram illustrating a configuration example of an embodiment of a solid-state imaging device to which the present technology is applied. The solid-state imaging device of FIG. 1 is configured as, for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
 図1の固体撮像装置11は、画素アレイ部12、垂直駆動回路13、水平駆動回路14、および出力回路15を備えている。 1 includes a pixel array section 12, a vertical drive circuit 13, a horizontal drive circuit 14, and an output circuit 15.
 画素アレイ部12には、複数の画素21が行列状に配置されている。それぞれの画素21は、水平信号線22により行毎に垂直駆動回路13に接続されるとともに、垂直信号線23により列毎に水平駆動回路14に接続されている。 A plurality of pixels 21 are arranged in a matrix in the pixel array unit 12. Each pixel 21 is connected to the vertical drive circuit 13 for each row by a horizontal signal line 22 and connected to the horizontal drive circuit 14 for each column by a vertical signal line 23.
 垂直駆動回路13は、水平信号線22を介して駆動信号を出力して、画素アレイ部12に配置されている画素21を行毎に駆動する。 The vertical drive circuit 13 outputs a drive signal via the horizontal signal line 22 to drive the pixels 21 arranged in the pixel array unit 12 for each row.
 水平駆動回路14は、垂直信号線23を介して画素アレイ部12の各画素21から出力される信号から、CDS(Correlated Double Sampling)動作により信号レベルを検出するカラム処理を行い、画素21において光電変換により発生した電荷に応じた出力信号を出力回路15に出力する。 The horizontal drive circuit 14 performs column processing for detecting a signal level by a CDS (Correlated Double Sampling) operation from a signal output from each pixel 21 of the pixel array unit 12 through the vertical signal line 23, and the pixel 21 performs photoelectric processing. An output signal corresponding to the charge generated by the conversion is output to the output circuit 15.
 出力回路15は、水平駆動回路14から順次出力される出力信号を、所定のレベルの電圧値に増幅して、後段の画像処理回路などに出力する。 The output circuit 15 amplifies the output signal sequentially output from the horizontal drive circuit 14 to a voltage value of a predetermined level and outputs it to a subsequent image processing circuit or the like.
 ここで、本技術を適用した固体撮像装置11は、PD(フォトダイオード)およびPDの電荷を転送する転送トランジスタを有する画素21と、転送トランジスタからの電荷を蓄積し電圧に変換するFD(フローティングディフュージョン)と、FDの電圧を信号として読み出すソース接地型の増幅トランジスタと、画素21を駆動する駆動回路とを備えるものとする。 Here, the solid-state imaging device 11 to which the present technology is applied includes a pixel 21 having a PD (photodiode) and a transfer transistor that transfers the charge of the PD, and an FD (floating diffusion) that accumulates the charge from the transfer transistor and converts it into a voltage. ), A grounded source amplification transistor that reads out the voltage of the FD as a signal, and a drive circuit that drives the pixel 21.
 駆動回路は、垂直駆動回路13として構成され、画素21の転送トランジスタによる電荷転送時に、FDの近傍に配置され、FDに電気的に接続される所定のトランジスタに中間電圧を印加するように動作する。 The drive circuit is configured as a vertical drive circuit 13 and operates to apply an intermediate voltage to a predetermined transistor that is disposed in the vicinity of the FD and electrically connected to the FD during charge transfer by the transfer transistor of the pixel 21. .
 以下においては、本技術を適用した固体撮像装置11の実施の形態について説明する。 Hereinafter, an embodiment of the solid-state imaging device 11 to which the present technology is applied will be described.
<2.第1の実施の形態>
 図2は、第1の実施の形態の画素の構成例を示す回路図であり、図3は画素のレイアウトを示す平面図である。
<2. First Embodiment>
FIG. 2 is a circuit diagram illustrating a configuration example of a pixel according to the first embodiment, and FIG. 3 is a plan view illustrating a layout of the pixel.
 本実施の形態では、2つの画素21-1,21-2に1つのFDが共有された2画素共有の構成が採られている。 In the present embodiment, a two-pixel sharing configuration is adopted in which one FD is shared by two pixels 21-1, 21-2.
 画素21-1は、PD41-1および転送トランジスタ42-1を有し、画素21-2は、PD41-2および転送トランジスタ42-2を有する。転送トランジスタ42-1と42-2との接続点がFD43を構成する。 The pixel 21-1 has a PD 41-1 and a transfer transistor 42-1, and the pixel 21-2 has a PD 41-2 and a transfer transistor 42-2. A connection point between the transfer transistors 42-1 and 42-2 constitutes the FD43.
 転送トランジスタ42-1は、水平信号線22T1を介して垂直駆動回路13(図1)から供給される転送信号TG1に従って駆動し、転送信号TG1がパルス状にHighレベルとなるタイミングでオンになる。転送トランジスタ42-1がオンになると、PD41-1で発生した電荷が転送トランジスタ42-1を介してFD43に転送される。 The transfer transistor 42-1 is driven according to the transfer signal TG1 supplied from the vertical drive circuit 13 (FIG. 1) via the horizontal signal line 22T1, and is turned on at a timing when the transfer signal TG1 becomes a high level in a pulse shape. When the transfer transistor 42-1 is turned on, the charge generated in the PD 41-1 is transferred to the FD 43 via the transfer transistor 42-1.
 転送トランジスタ42-2は、水平信号線22T2を介して垂直駆動回路13から供給される転送信号TG2に従って駆動し、転送信号TG2がパルス状にHighレベルとなるタイミングでオンになる。転送トランジスタ42-2がオンになると、PD41-2で発生した電荷が転送トランジスタ42-2を介してFD43に転送される。 The transfer transistor 42-2 is driven in accordance with the transfer signal TG2 supplied from the vertical drive circuit 13 via the horizontal signal line 22T2, and is turned on when the transfer signal TG2 becomes a high level in a pulse shape. When the transfer transistor 42-2 is turned on, the charge generated in the PD 41-2 is transferred to the FD 43 via the transfer transistor 42-2.
 増幅トランジスタ44のゲート電極にはFD43が接続される。増幅トランジスタ44は、FD43に蓄積されている電荷に応じたレベルの電圧を出力する。 FD 43 is connected to the gate electrode of the amplification transistor 44. The amplification transistor 44 outputs a voltage having a level corresponding to the charge accumulated in the FD 43.
 選択トランジスタ45は、水平信号線22Sを介して垂直駆動回路13から供給される選択信号SELに従って駆動し、選択信号SELがパルス状にHighレベルとなるタイミングでオンになる。選択トランジスタ45がオンになると、増幅トランジスタ44から出力される電圧が、選択トランジスタ45を介して垂直信号線23に出力可能な状態となる。 The selection transistor 45 is driven in accordance with the selection signal SEL supplied from the vertical drive circuit 13 via the horizontal signal line 22S, and is turned on at a timing when the selection signal SEL becomes a high level in a pulse shape. When the selection transistor 45 is turned on, the voltage output from the amplification transistor 44 can be output to the vertical signal line 23 via the selection transistor 45.
 なお、増幅トランジスタ44のソース側は、nMOSである負荷トランジスタ46を介して接地されている。これにより、増幅トランジスタ44と負荷トランジスタ46とが、ソース接地型の反転増幅器として動作し、FD43に蓄積されている電荷に応じたレベルを示す信号が出力される。 The source side of the amplification transistor 44 is grounded via a load transistor 46 that is an nMOS. As a result, the amplification transistor 44 and the load transistor 46 operate as a common-source inverting amplifier, and a signal indicating a level corresponding to the charge accumulated in the FD 43 is output.
 リセットトランジスタ47は、水平信号線22Rを介して垂直駆動回路13から供給されるリセット信号RSTに従って駆動し、リセット信号RSTがパルス状にHighレベルとなるタイミングでオンになる。図2の例では、リセットトランジスタ47のドレイン側が、垂直信号線23に接続されており、リセットトランジスタ47がオンになると、リセットトランジスタ47を介して、FD43に蓄積されている電荷が垂直信号線23に排出されて、FD43がリセットされる。 The reset transistor 47 is driven in accordance with the reset signal RST supplied from the vertical drive circuit 13 via the horizontal signal line 22R, and is turned on when the reset signal RST becomes a high level in a pulse shape. In the example of FIG. 2, the drain side of the reset transistor 47 is connected to the vertical signal line 23. When the reset transistor 47 is turned on, the charge accumulated in the FD 43 is transferred via the reset transistor 47. The FD 43 is reset.
 なお、図3に示されるように、転送トランジスタ42-1,42-2は、互いにFD43の近傍に配置され、FD43に電気的に接続されている。 As shown in FIG. 3, the transfer transistors 42-1 and 42-2 are arranged in the vicinity of the FD 43, and are electrically connected to the FD 43.
 ここで、画素21-1,21-2の電荷転送時の動作について説明する。 Here, the operation at the time of charge transfer of the pixels 21-1, 21-2 will be described.
(高照度下での電荷転送)
 図4および図5は、高照度下での電荷転送時の電荷の流れとタイミングチャートとを示している。
(Charge transfer under high illumination)
4 and 5 show a charge flow and a timing chart during charge transfer under high illuminance.
 高照度下であるので、図4上段に示されるように、PD1(PD41-1),PD2(PD41-2)には、光電変換により多くの量の電荷が蓄積されている。 Since it is under high illuminance, as shown in the upper part of FIG. 4, a large amount of charge is accumulated in PD1 (PD41-1) and PD2 (PD41-2) by photoelectric conversion.
 この状態で、画素21-1の読み出しを行う場合、図5に示されるように、読み出し対象の画素(読み出し画素)である画素21-1の転送トランジスタ42-1に、転送信号TG1としてHighレベル(例えば3V程度)の電圧がパルス状に印加される。これにより、転送トランジスタ42-1がオンになると、図4下段に示されるように、PD1(PD41-1)で発生した電荷がFD43に転送される。 When reading out the pixel 21-1 in this state, as shown in FIG. 5, the transfer transistor 42-1 of the pixel 21-1, which is the pixel to be read (readout pixel), has a high level as the transfer signal TG1. A voltage of (for example, about 3 V) is applied in a pulse shape. As a result, when the transfer transistor 42-1 is turned on, the charge generated in PD1 (PD41-1) is transferred to the FD 43 as shown in the lower part of FIG.
 また、画素21-2の読み出しを行う場合、図5に示されるように、読み出し画素である画素21-2の転送トランジスタ42-2に、転送信号TG2としてHighレベルの電圧がパルス状に印加される。これにより、転送トランジスタ42-2がオンになると、図示はしないが、PD2(PD41-2)で発生した電荷がFD43に転送される。 Further, when reading out the pixel 21-2, as shown in FIG. 5, a high level voltage is applied in a pulse form as the transfer signal TG2 to the transfer transistor 42-2 of the pixel 21-2 as the read pixel. The Thus, when the transfer transistor 42-2 is turned on, although not shown, the charge generated in the PD2 (PD41-2) is transferred to the FD43.
(低照度下での電荷転送)
 図6および図7は、低照度下での電荷転送時の電荷の流れとタイミングチャートとを示している。
(Charge transfer under low illumination)
6 and 7 show a flow of charge and a timing chart during charge transfer under low illuminance.
 低照度下であるので、図6上段に示されるように、PD1(PD41-1),PD2(PD41-2)には、高照度下の場合(図4)と比較して少ない量の電荷が蓄積されている。 Since it is under low illuminance, as shown in the upper part of FIG. 6, PD1 (PD41-1) and PD2 (PD41-2) have a smaller amount of charge than in the case of high illuminance (FIG. 4). Accumulated.
 この状態で、画素21-1の読み出しを行う場合、図7に示されるように、読み出し画素である画素21-1の転送トランジスタ42-1に、転送信号TG1としてHighレベルの電圧がパルス状に印加される。また、その間、読み出し対象ではない画素(非読み出し画素)である画素21-2の転送トランジスタ42-2に、転送信号TG2として、HighレベルとLowレベルの中間レベルとなる中間電圧(例えば1V程度)がパルス状に印加される。 When reading out the pixel 21-1 in this state, as shown in FIG. 7, a high level voltage is pulsed as a transfer signal TG1 to the transfer transistor 42-1 of the pixel 21-1 as the read pixel. Applied. In the meantime, an intermediate voltage (for example, about 1 V) that becomes an intermediate level between the high level and the low level as the transfer signal TG2 is applied to the transfer transistor 42-2 of the pixel 21-2 that is a pixel not to be read (non-read pixel). Is applied in pulses.
 これにより、フィードスルーが発生し、図6下段に示されるように、FD43の電位が昇圧される。その結果、読み出し画素のPD1(画素21-1のPD41-1)とFD43との間の電位差がより大きくなり、PD1からFD43への電荷転送をアシストすることができる。 Thereby, feedthrough occurs, and the potential of the FD 43 is boosted as shown in the lower part of FIG. As a result, the potential difference between PD1 of the readout pixel (PD41-1 of pixel 21-1) and FD43 becomes larger, and charge transfer from PD1 to FD43 can be assisted.
 また、画素21-2の読み出しを行う場合、図7に示されるように、読み出し画素である画素21-2の転送トランジスタ42-2に、転送信号TG2としてHighレベルの電圧がパルス状に印加される。また、その間、非読み出し画素である画素21-1の転送トランジスタ42-1に、転送信号TG1として中間電圧がパルス状に印加される。 When reading out the pixel 21-2, as shown in FIG. 7, a high level voltage is applied in a pulse form as the transfer signal TG2 to the transfer transistor 42-2 of the pixel 21-2 that is the read pixel. The In the meantime, an intermediate voltage is applied in the form of a pulse as the transfer signal TG1 to the transfer transistor 42-1 of the pixel 21-1, which is a non-read pixel.
 これにより、フィードスルーが発生し、図示はしないがFD43の電位が昇圧される。その結果、読み出し画素のPD2(画素21-2のPD41-2)とFD43との間の電位差がより大きくなり、PD2からFD43への電荷転送をアシストすることができる。 This causes feedthrough and boosts the potential of the FD 43 (not shown). As a result, the potential difference between PD2 of the readout pixel (PD41-2 of pixel 21-2) and FD43 becomes larger, and charge transfer from PD2 to FD43 can be assisted.
 以上のような電荷転送時の動作によれば、特許文献1の構成のように、キャパシタや昇圧信号線を追加で配置する必要なく、フィードスルーにより電荷転送をアシストすることができるので、レイアウトの自由度を保ちつつ、転送特性を向上させることが可能となり、ひいては、固体撮像装置11における高S/N化を実現することができる。 According to the operation at the time of charge transfer as described above, the charge transfer can be assisted by feedthrough without the need to additionally arrange a capacitor or a boost signal line as in the configuration of Patent Document 1, so that the layout It is possible to improve transfer characteristics while maintaining the degree of freedom, and as a result, a high S / N ratio in the solid-state imaging device 11 can be realized.
 なお、例えば図6に示されるように、非読み出し画素である画素21-2の転送トランジスタ42-2に中間電圧が印加されることで、PD2(PD41-2)の飽和電荷量は小さくなる。しかしながら、このような電荷転送時の動作は、感度を大きく向上させる必要のある低照度下で行われるので、非読み出し画素におけるPDの飽和電荷量が小さくなっても問題はない。 For example, as shown in FIG. 6, when the intermediate voltage is applied to the transfer transistor 42-2 of the pixel 21-2 that is a non-read pixel, the saturation charge amount of PD2 (PD41-2) is reduced. However, such an operation at the time of charge transfer is performed under a low illuminance that requires a significant improvement in sensitivity. Therefore, there is no problem even if the saturation charge amount of the PD in the non-read pixel is reduced.
 また、上述で説明した高照度下での電荷転送時の動作と、低照度下での電荷転送時の動作とを、例えばPDの電荷量に応じて切り替えるようにしてもよい。具体的には、PDの電荷量が所定量を超える場合、高照度下での電荷転送時の動作が行われるようにし、PDの電荷量が所定量を超えない場合、低照度下での電荷転送時の動作が行われるようにする。 Also, the operation at the time of charge transfer under high illuminance and the operation at the time of charge transfer under low illuminance described above may be switched according to the charge amount of the PD, for example. Specifically, when the charge amount of the PD exceeds a predetermined amount, the operation at the time of charge transfer under high illuminance is performed, and when the charge amount of the PD does not exceed the predetermined amount, the charge under low illuminance Make sure that the transfer operation is performed.
 以上においては、2画素共有の構成を例に説明したが、共有画素数は2画素に限定されない。 In the above, the two-pixel sharing configuration has been described as an example, but the number of shared pixels is not limited to two.
<3.第2の実施の形態>
 図8は、第2の実施の形態の画素のレイアウトを示す平面図である。
<3. Second Embodiment>
FIG. 8 is a plan view showing the layout of the pixel according to the second embodiment.
 本実施の形態では、4つの画素21-1乃至21-4に1つのFDが共有された2画素共有の構成が採られている。 In the present embodiment, a two-pixel sharing configuration is adopted in which one FD is shared by the four pixels 21-1 to 21-4.
 画素21-1は、PD41-1および転送トランジスタ42-1を有し、画素21-2は、PD41-2および転送トランジスタ42-2を有する。また、画素21-3は、PD41-3および転送トランジスタ42-3を有し、画素21-4は、PD41-4および転送トランジスタ42-4を有する。転送トランジスタ42-1乃至42-4それぞれの接続点がFD43を構成する。 The pixel 21-1 has a PD 41-1 and a transfer transistor 42-1, and the pixel 21-2 has a PD 41-2 and a transfer transistor 42-2. The pixel 21-3 has a PD 41-3 and a transfer transistor 42-3, and the pixel 21-4 has a PD 41-4 and a transfer transistor 42-4. Each connection point of the transfer transistors 42-1 to 42-4 constitutes the FD43.
 図8に示されるように、転送トランジスタ42-1乃至42-4は、互いにFD43の近傍に配置され、FD43に電気的に接続されている。 As shown in FIG. 8, the transfer transistors 42-1 to 42-4 are arranged in the vicinity of the FD 43, and are electrically connected to the FD 43.
 図9は、本実施の形態における、低照度下での電荷転送時のタイミングチャートを示している。 FIG. 9 shows a timing chart at the time of charge transfer under low illumination in this embodiment.
 画素21-1の読み出しを行う場合、図9に示されるように、読み出し画素である画素21-1の転送トランジスタ42-1に、転送信号TG1としてHighレベルの電圧がパルス状に印加される。また、その間、非読み出し画素である画素21-2,21-3,21-4の転送トランジスタ42-2,42-3,42-4それぞれに、転送信号TG2,TG3,TG4として中間電圧がパルス状に印加される。 When reading out the pixel 21-1, as shown in FIG. 9, a high level voltage is applied in a pulse form as the transfer signal TG1 to the transfer transistor 42-1 of the pixel 21-1, which is the read pixel. In the meantime, intermediate voltages are pulsed as transfer signals TG2, TG3, and TG4 to the transfer transistors 42-2, 42-3, and 42-4 of the pixels 21-2, 21-3, and 21-4 that are non-readout pixels. Applied in the form.
 また、画素21-2の読み出しを行う場合、図9に示されるように、読み出し画素である画素21-2の転送トランジスタ42-2に、転送信号TG2としてHighレベルの電圧がパルス状に印加される。また、その間、非読み出し画素である画素21-1,21-3,21-4の転送トランジスタ42-1,42-3,42-4それぞれに、転送信号TG1,TG3,TG4として中間電圧がパルス状に印加される。 Further, when reading out the pixel 21-2, as shown in FIG. 9, a high level voltage is applied in a pulse form as the transfer signal TG2 to the transfer transistor 42-2 of the pixel 21-2 as the read pixel. The In the meantime, intermediate voltages are pulsed as transfer signals TG1, TG3, TG4 to the transfer transistors 42-1, 42-3, 42-4 of the pixels 21-1, 21-3, 21-4 which are non-readout pixels. Applied in the form.
 なお、図示はしないが、画素21-3や画素21-4の読み出しを行う場合にも、その読み出し画素の転送トランジスタに、Highレベルの電圧がパルス状に印加され、それ以外の非読み出し画素の転送トランジスタそれぞれに、中間電圧がパルス状に印加される。 Although not shown, when reading out the pixel 21-3 and the pixel 21-4, a high-level voltage is applied in a pulse form to the transfer transistor of the readout pixel, and the other non-readout pixels are read out. An intermediate voltage is applied in a pulsed manner to each transfer transistor.
 このように、1の読み出し画素の転送トランジスタによる電荷転送時に、2以上の非読み出し画素の転送トランジスタに中間電圧を印加することで、FD43の電位がより大きく昇圧される。その結果、読み出し画素のPDとFD43との間の電位差が一層大きくなり、転送特性をさらに向上させることが可能となる。 As described above, the potential of the FD 43 is further increased by applying an intermediate voltage to the transfer transistors of two or more non-readout pixels during charge transfer by the transfer transistor of one read pixel. As a result, the potential difference between the PD and the FD 43 of the readout pixel is further increased, and the transfer characteristics can be further improved.
<4.第3の実施の形態>
 図10は、第3の実施の形態における、低照度下での電荷転送時のタイミングチャートを示している。
<4. Third Embodiment>
FIG. 10 shows a timing chart at the time of charge transfer under low illuminance in the third embodiment.
 本実施の形態では、第1の実施の形態(図3)の構成と同様、2つの画素21-1,21-2に1つのFDが共有された2画素共有の構成が採られている。 In the present embodiment, similarly to the configuration of the first embodiment (FIG. 3), a two-pixel sharing configuration is adopted in which one FD is shared by two pixels 21-1 and 21-2.
 画素21-1の読み出しを行う場合、図9に示されるように、読み出し画素である画素21-1の転送トランジスタ42-1に、転送信号TG1としてHighレベルの電圧が印加される。さらに、画素21-1の転送トランジスタ42-1による電荷転送後に、画素21-1の転送トランジスタ42-1に、転送信号TG1として中間電圧が印加される。また、その間、非読み出し画素である画素21-2の転送トランジスタ42-2に、転送信号TG2として中間電圧がパルス状に印加される。 When reading out the pixel 21-1, as shown in FIG. 9, a high level voltage is applied as the transfer signal TG1 to the transfer transistor 42-1 of the pixel 21-1, which is the read pixel. Further, after charge transfer by the transfer transistor 42-1 of the pixel 21-1, an intermediate voltage is applied as the transfer signal TG1 to the transfer transistor 42-1 of the pixel 21-1. In the meantime, the intermediate voltage is applied in a pulse form as the transfer signal TG2 to the transfer transistor 42-2 of the pixel 21-2 which is a non-read pixel.
 また、画素21-2の読み出しを行う場合、図9に示されるように、読み出し画素である画素21-2の転送トランジスタ42-2に、転送信号TG2としてHighレベルの電圧が印加される。さらに、画素21-2の転送トランジスタ42-2による電荷転送後に、画素21-2の転送トランジスタ42-2に、転送信号TG2として中間電圧が印加される。また、その間、非読み出し画素である画素21-1の転送トランジスタ42-1に、転送信号TG1として中間電圧がパルス状に印加される。 Further, when reading out the pixel 21-2, as shown in FIG. 9, a high level voltage is applied as the transfer signal TG2 to the transfer transistor 42-2 of the pixel 21-2 that is the readout pixel. Further, after the charge transfer by the transfer transistor 42-2 of the pixel 21-2, an intermediate voltage is applied as the transfer signal TG2 to the transfer transistor 42-2 of the pixel 21-2. In the meantime, an intermediate voltage is applied in the form of a pulse as the transfer signal TG1 to the transfer transistor 42-1 of the pixel 21-1, which is a non-read pixel.
 このように、読み出し画素の転送トランジスタによる電荷転送後に、読み出し画素の転送トランジスタに中間電圧を印加することで、その転送トランジスタに印加される電圧を段階的に低くすることができる。その結果、読み出し画素のPDからFD43へ転送される電荷がPD側へ逆流するのを防ぐことが可能となる。 As described above, by applying the intermediate voltage to the transfer transistor of the read pixel after the charge transfer by the transfer transistor of the read pixel, the voltage applied to the transfer transistor can be lowered stepwise. As a result, it is possible to prevent the charge transferred from the PD of the readout pixel from the FD 43 from flowing back to the PD side.
 なお、図10の例では、読み出し画素の転送トランジスタにHighレベルの電圧および中間電圧が印加されている間、非読み出し画素の転送トランジスタに中間電圧が印加されるものとしたが、非読み出し画素の転送トランジスタには、少なくとも、読み出し画素の転送トランジスタにHighレベルの電圧が印加されている間、中間電圧が印加されていればよい。 In the example of FIG. 10, the intermediate voltage is applied to the transfer transistor of the non-read pixel while the high level voltage and the intermediate voltage are applied to the transfer transistor of the read pixel. It is sufficient that an intermediate voltage is applied to the transfer transistor at least while a high level voltage is applied to the transfer transistor of the readout pixel.
 また、本実施の形態は、第2の実施の形態や、後述する他の実施の形態の構成に適用されるようにしてもよい。 Further, the present embodiment may be applied to the configuration of the second embodiment or other embodiments described later.
<5.第4の実施の形態>
 図11は、第4の実施の形態の画素のレイアウトを示す平面図である。
<5. Fourth Embodiment>
FIG. 11 is a plan view showing the layout of the pixel according to the fourth embodiment.
 本実施の形態では、2つの画素21-1,21-2に1つのFDが共有された2画素共有の構成が採られている。 In the present embodiment, a two-pixel sharing configuration is adopted in which one FD is shared by two pixels 21-1, 21-2.
 画素21-1は、PD41-1および転送トランジスタ42-1を有し、画素21-2は、PD41-2および転送トランジスタ42-2を有する。転送トランジスタ42-1,42-2、およびリセットトランジスタ47の接続点がFD43を構成する。 The pixel 21-1 has a PD 41-1 and a transfer transistor 42-1, and the pixel 21-2 has a PD 41-2 and a transfer transistor 42-2. A connection point between the transfer transistors 42-1 and 42-2 and the reset transistor 47 constitutes the FD43.
 図11に示されるように、転送トランジスタ42-1,42-2、およびリセットトランジスタ47は、互いにFD43の近傍に配置され、FD43に電気的に接続されている。 As shown in FIG. 11, the transfer transistors 42-1 and 42-2 and the reset transistor 47 are arranged in the vicinity of the FD 43 and are electrically connected to the FD 43.
 図12は、本実施の形態における、低照度下での電荷転送時のタイミングチャートを示している。 FIG. 12 shows a timing chart at the time of charge transfer under low illumination in this embodiment.
 画素21-1の読み出しを行う場合、図12に示されるように、読み出し画素である画素21-1の転送トランジスタ42-1に、転送信号TG1としてHighレベルの電圧がパルス状に印加される。また、その間、非読み出し画素である画素21-2の転送トランジスタ42-2およびリセットトランジスタ47それぞれに、転送信号TG2およびリセット信号RSTとして中間電圧がパルス状に印加される。 When reading out the pixel 21-1, as shown in FIG. 12, a high level voltage is applied in a pulse form as the transfer signal TG1 to the transfer transistor 42-1 of the pixel 21-1, which is the read pixel. In the meantime, the intermediate voltage is applied in a pulse form as the transfer signal TG2 and the reset signal RST to the transfer transistor 42-2 and the reset transistor 47 of the pixel 21-2 which is a non-read pixel.
 また、画素21-2の読み出しを行う場合、図12に示されるように、読み出し画素である画素21-2の転送トランジスタ42-2に、転送信号TG2としてHighレベルの電圧がパルス状に印加される。また、その間、非読み出し画素である画素21-1の転送トランジスタ42-1およびリセットトランジスタ47それぞれに、転送信号TG1およびリセット信号RSTとして中間電圧がパルス状に印加される。 When reading out the pixel 21-2, as shown in FIG. 12, a high-level voltage is applied in a pulse form as the transfer signal TG2 to the transfer transistor 42-2 of the pixel 21-2 that is the readout pixel. The In the meantime, the intermediate voltage is applied in a pulse form as the transfer signal TG1 and the reset signal RST to the transfer transistor 42-1 and the reset transistor 47 of the pixel 21-1, which is a non-read pixel.
 このように、読み出し画素の転送トランジスタによる電荷転送時に、リセットトランジスタ47に中間電圧を印加することでも、FD43の電位が昇圧される。その結果、読み出し画素のPDとFD43との間の電位差がより大きくなり、転送特性を向上させることが可能となる。 As described above, the potential of the FD 43 is also boosted by applying an intermediate voltage to the reset transistor 47 during charge transfer by the transfer transistor of the readout pixel. As a result, the potential difference between the PD and the FD 43 of the readout pixel becomes larger, and the transfer characteristics can be improved.
 また、本実施の形態は、第2の実施の形態の構成に適用されるようにしてもよいし、画素を共有しない構成に適用されるようにしてもよい。 Also, this embodiment may be applied to the configuration of the second embodiment, or may be applied to a configuration that does not share pixels.
<6.第5の実施の形態>
 図13は、第5の実施の形態の画素の構成例を示す回路図であり、図14は画素のレイアウトを示す平面図である。
<6. Fifth embodiment>
FIG. 13 is a circuit diagram illustrating a configuration example of a pixel according to the fifth embodiment, and FIG. 14 is a plan view illustrating a layout of the pixel.
 本実施の形態においては、第1の実施の形態(図2および図3)と同様の構成に、FD43の変換効率を切り替える変換効率切替トランジスタ61が追加された構成が採られている。 In the present embodiment, a configuration in which a conversion efficiency switching transistor 61 for switching the conversion efficiency of the FD 43 is added to the same configuration as that of the first embodiment (FIGS. 2 and 3) is adopted.
 画素21-1は、PD41-1および転送トランジスタ42-1を有し、画素21-2は、PD41-2および転送トランジスタ42-2を有する。転送トランジスタ42-1,42-2、および変換効率切替トランジスタ61の接続点がFD43を構成する。 The pixel 21-1 has a PD 41-1 and a transfer transistor 42-1, and the pixel 21-2 has a PD 41-2 and a transfer transistor 42-2. The connection point of the transfer transistors 42-1 and 42-2 and the conversion efficiency switching transistor 61 constitutes the FD43.
 変換効率切替トランジスタ61は、水平信号線22Fを介して垂直駆動回路13(図1)から供給される切替信号FDGに従って駆動し、切替信号FDGがパルス状にHighレベルとなるタイミングでオンになる。変換効率切替トランジスタ61がオンになると、FD43の容量が増加し、変換効率が下げられる。 The conversion efficiency switching transistor 61 is driven in accordance with the switching signal FDG supplied from the vertical driving circuit 13 (FIG. 1) via the horizontal signal line 22F, and is turned on at a timing when the switching signal FDG is pulsed to a high level. When the conversion efficiency switching transistor 61 is turned on, the capacity of the FD 43 increases and the conversion efficiency is lowered.
 なお、図14に示されるように、転送トランジスタ42-1,42-2、および変換効率切替トランジスタ61は、互いにFD43の近傍に配置され、FD43に電気的に接続されている。 As shown in FIG. 14, the transfer transistors 42-1 and 42-2 and the conversion efficiency switching transistor 61 are arranged in the vicinity of the FD 43, and are electrically connected to the FD 43.
 図15は、本実施の形態における、低照度下での電荷転送時のタイミングチャートを示している。 FIG. 15 shows a timing chart at the time of charge transfer under low illumination in this embodiment.
 画素21-1の読み出しを行う場合、図15に示されるように、読み出し画素である画素21-1の転送トランジスタ42-1に、転送信号TG1としてHighレベルの電圧がパルス状に印加される。また、その間、非読み出し画素である画素21-2の転送トランジスタ42-2および変換効率切替トランジスタ61それぞれに、転送信号TG2および切替信号FDGとして中間電圧がパルス状に印加される。 When reading out the pixel 21-1, as shown in FIG. 15, a high level voltage is applied in a pulse form as the transfer signal TG1 to the transfer transistor 42-1 of the pixel 21-1, which is the read pixel. In the meantime, the intermediate voltage is applied in a pulse form as the transfer signal TG2 and the switching signal FDG to the transfer transistor 42-2 and the conversion efficiency switching transistor 61 of the pixel 21-2 which is a non-read pixel.
 また、画素21-2の読み出しを行う場合、図15に示されるように、読み出し画素である画素21-2の転送トランジスタ42-2に、転送信号TG2としてHighレベルの電圧がパルス状に印加される。また、その間、非読み出し画素である画素21-1の転送トランジスタ42-1および変換効率切替トランジスタ61それぞれに、転送信号TG1および切替信号FDGとして中間電圧がパルス状に印加される。 Further, when reading out the pixel 21-2, as shown in FIG. 15, a high level voltage is applied in a pulse form as the transfer signal TG2 to the transfer transistor 42-2 of the pixel 21-2 as the read pixel. The In the meantime, the intermediate voltage is applied in a pulse form as the transfer signal TG1 and the switching signal FDG to the transfer transistor 42-1 and the conversion efficiency switching transistor 61 of the pixel 21-1, which is a non-read pixel.
 このように、読み出し画素の転送トランジスタによる電荷転送時に、変換効率切替トランジスタ61に中間電圧を印加することでも、FD43の電位が昇圧される。その結果、読み出し画素のPDとFD43との間の電位差がより大きくなり、転送特性を向上させることが可能となる。 As described above, the potential of the FD 43 is also boosted by applying an intermediate voltage to the conversion efficiency switching transistor 61 during charge transfer by the transfer transistor of the readout pixel. As a result, the potential difference between the PD and the FD 43 of the readout pixel becomes larger, and the transfer characteristics can be improved.
 また、本実施の形態は、第2の実施の形態の構成に適用されるようにしてもよいし、画素を共有しない構成に適用されるようにしてもよい。 Also, this embodiment may be applied to the configuration of the second embodiment, or may be applied to a configuration that does not share pixels.
 上述したような固体撮像装置11は、例えば、デジタルスチルカメラやデジタルビデオカメラなどの撮像システム、撮像機能を備えた携帯電話機、または、撮像機能を備えた他の機器といった各種の電子機器に適用することができる。 The solid-state imaging device 11 as described above is applied to various electronic devices such as an imaging system such as a digital still camera and a digital video camera, a mobile phone having an imaging function, or other devices having an imaging function. be able to.
<7.電子機器の構成例>
 図16は、本技術を適用した電子機器である撮像装置の構成例を示すブロック図である。
<7. Configuration example of electronic device>
FIG. 16 is a block diagram illustrating a configuration example of an imaging apparatus that is an electronic apparatus to which the present technology is applied.
 図16に示すように、撮像装置301は、光学系302、固体撮像装置303、DSP(Digital Signal Processor)304を備えており、バス307を介して、DSP304、表示装置305、操作系306、メモリ308、記録装置309、および電源系310が接続されて構成され、静止画像および動画像を撮像可能である。 As shown in FIG. 16, the imaging device 301 includes an optical system 302, a solid-state imaging device 303, and a DSP (Digital Signal Processor) 304, and a DSP 304, a display device 305, an operation system 306, and a memory via a bus 307. 308, the recording device 309, and the power supply system 310 are connected, and can capture still images and moving images.
 光学系302は、1枚または複数枚のレンズを有して構成され、被写体からの像光(入射光)を固体撮像装置303に導き、固体撮像装置303の受光面(センサ部)に結像させる。 The optical system 302 includes one or more lenses, guides image light (incident light) from a subject to the solid-state imaging device 303, and forms an image on a light receiving surface (sensor unit) of the solid-state imaging device 303. Let
 固体撮像装置303としては、上述したいずれかの構成例の画素21を有する固体撮像装置11が適用される。固体撮像装置303には、光学系302を介して受光面に結像される像に応じて、一定期間、電子が蓄積される。そして、固体撮像装置303に蓄積された電子に応じた信号がDSP304に供給される。 As the solid-state imaging device 303, the solid-state imaging device 11 having the pixel 21 of any one of the above-described configuration examples is applied. In the solid-state imaging device 303, electrons are accumulated for a certain period according to an image formed on the light receiving surface via the optical system 302. Then, a signal corresponding to the electrons accumulated in the solid-state imaging device 303 is supplied to the DSP 304.
 DSP304は、固体撮像装置303からの信号に対して各種の信号処理を施して画像を取得し、その画像のデータを、メモリ308に一時的に記憶させる。メモリ308に記憶された画像のデータは、記録装置309に記録されたり、表示装置305に供給されて画像が表示されたりする。また、操作系306は、ユーザによる各種の操作を受け付けて撮像装置301の各ブロックに操作信号を供給し、電源系310は、撮像装置301の各ブロックの駆動に必要な電力を供給する。 The DSP 304 performs various signal processing on the signal from the solid-state imaging device 303 to acquire an image, and temporarily stores the image data in the memory 308. The image data stored in the memory 308 is recorded in the recording device 309 or supplied to the display device 305 to display an image. The operation system 306 receives various operations by the user and supplies operation signals to each block of the imaging apparatus 301, and the power supply system 310 supplies power necessary for driving each block of the imaging apparatus 301.
 このように構成されている撮像装置301では、固体撮像装置303として、上述したような固体撮像装置11を適用することにより、レイアウトの自由度を保ちつつ、転送特性を向上させることができ、ひいては、高S/N化を実現することが可能となる。 In the imaging device 301 configured as described above, by applying the solid-state imaging device 11 as described above as the solid-state imaging device 303, it is possible to improve the transfer characteristics while maintaining the degree of freedom of layout. Therefore, it is possible to realize a high S / N ratio.
 なお、本技術における固体撮像装置の構成は、裏面照射型のCMOSイメージセンサや、表面照射型のCMOSイメージセンサに採用することができる。 Note that the configuration of the solid-state imaging device according to the present technology can be employed in a backside illumination type CMOS image sensor or a frontside illumination type CMOS image sensor.
<8.イメージセンサの使用例>
 次に、本技術を適用したイメージセンサの使用例について説明する。
<8. Examples of using image sensors>
Next, a usage example of an image sensor to which the present technology is applied will be described.
 図17は、本技術を適用したイメージセンサの使用例を示す図である。 FIG. 17 is a diagram illustrating an example of using an image sensor to which the present technology is applied.
 上述したイメージセンサは、例えば、以下のように、可視光や、赤外光、紫外光、X線等の光をセンシングする様々なケースに使用することができる。 The image sensor described above can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-ray as follows.
 ・デジタルカメラや、カメラ機能付きの携帯機器等の、鑑賞の用に供される画像を撮影する装置
 ・自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置
 ・ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、TVや、冷蔵庫、エアーコンディショナ等の家電に供される装置
 ・内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置
 ・防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置
 ・肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供される装置
 ・スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される装置
 ・畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置
・ Devices for taking images for viewing, such as digital cameras and mobile devices with camera functions ・ For safe driving such as automatic stop and recognition of the driver's condition, etc. Devices used for traffic, such as in-vehicle sensors that capture the back, surroundings, and interiors of vehicles, surveillance cameras that monitor traveling vehicles and roads, and ranging sensors that measure distances between vehicles, etc. Equipment used for home appliances such as TVs, refrigerators, air conditioners, etc. to take pictures and operate the equipment according to the gestures ・ Endoscopes, equipment that performs blood vessel photography by receiving infrared light, etc. Equipment used for medical and health care ・ Security equipment such as security surveillance cameras and personal authentication cameras ・ Skin measuring instrument for photographing skin and scalp photography Such as a microscope to do beauty Equipment used for sports such as action cameras and wearable cameras for sports applications etc. Equipment used for agriculture such as cameras for monitoring the condition of fields and crops
<9.移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
<9. Application example to mobile objects>
The technology according to the present disclosure (present technology) can be applied to various products. For example, the technology according to the present disclosure is realized as a device that is mounted on any type of mobile body such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, personal mobility, an airplane, a drone, a ship, and a robot. May be.
 図18は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 18 is a block diagram illustrating a schematic configuration example of a vehicle control system that is an example of a mobile control system to which the technology according to the present disclosure can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図18に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。 The vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001. In the example illustrated in FIG. 18, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, a vehicle exterior information detection unit 12030, a vehicle interior information detection unit 12040, and an integrated control unit 12050. As a functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are illustrated.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs. For example, the drive system control unit 12010 includes a driving force generator for generating a driving force of a vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism that adjusts and a braking device that generates a braking force of the vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs. For example, the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a headlamp, a back lamp, a brake lamp, a blinker, or a fog lamp. In this case, the body control unit 12020 can be input with radio waves transmitted from a portable device that substitutes for a key or signals from various switches. The body system control unit 12020 receives input of these radio waves or signals, and controls a door lock device, a power window device, a lamp, and the like of the vehicle.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 The vehicle outside information detection unit 12030 detects information outside the vehicle on which the vehicle control system 12000 is mounted. For example, the imaging unit 12031 is connected to the vehicle exterior information detection unit 12030. The vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image outside the vehicle and receives the captured image. The vehicle outside information detection unit 12030 may perform an object detection process or a distance detection process such as a person, a car, an obstacle, a sign, or a character on a road surface based on the received image.
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal corresponding to the amount of received light. The imaging unit 12031 can output an electrical signal as an image, or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared rays.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The vehicle interior information detection unit 12040 detects vehicle interior information. For example, a driver state detection unit 12041 that detects a driver's state is connected to the in-vehicle information detection unit 12040. The driver state detection unit 12041 includes, for example, a camera that images the driver, and the vehicle interior information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated or it may be determined whether the driver is asleep.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 calculates a control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside / outside the vehicle acquired by the vehicle outside information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit A control command can be output to 12010. For example, the microcomputer 12051 realizes an ADAS (Advanced Driver Assistance System) function including vehicle collision avoidance or impact mitigation, following traveling based on inter-vehicle distance, vehicle speed maintaining traveling, vehicle collision warning, or vehicle lane departure warning, etc. It is possible to perform cooperative control for the purpose.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 Further, the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform cooperative control for the purpose of automatic driving that autonomously travels without depending on the operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 Further, the microcomputer 12051 can output a control command to the body system control unit 12020 based on information outside the vehicle acquired by the vehicle outside information detection unit 12030. For example, the microcomputer 12051 controls the headlamp according to the position of the preceding vehicle or the oncoming vehicle detected by the outside information detection unit 12030, and performs cooperative control for the purpose of anti-glare, such as switching from a high beam to a low beam. It can be carried out.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図18の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The sound image output unit 12052 transmits an output signal of at least one of sound and image to an output device capable of visually or audibly notifying information to a vehicle occupant or the outside of the vehicle. In the example of FIG. 18, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices. The display unit 12062 may include at least one of an on-board display and a head-up display, for example.
 図19は、撮像部12031の設置位置の例を示す図である。 FIG. 19 is a diagram illustrating an example of an installation position of the imaging unit 12031.
 図19では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。 In FIG. 19, the vehicle 12100 includes imaging units 12101, 12102, 12103, 12104, and 12105 as the imaging unit 12031.
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at positions such as a front nose, a side mirror, a rear bumper, a back door, and an upper part of a windshield in the vehicle interior of the vehicle 12100. The imaging unit 12101 provided in the front nose and the imaging unit 12105 provided in the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100. The imaging units 12102 and 12103 provided in the side mirror mainly acquire an image of the side of the vehicle 12100. The imaging unit 12104 provided in the rear bumper or the back door mainly acquires an image behind the vehicle 12100. The forward images acquired by the imaging units 12101 and 12105 are mainly used for detecting a preceding vehicle or a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
 なお、図19には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 FIG. 19 shows an example of the shooting range of the imaging units 12101 to 12104. The imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose, the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively, and the imaging range 12114 The imaging range of the imaging part 12104 provided in the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, an overhead image when the vehicle 12100 is viewed from above is obtained.
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the imaging units 12101 to 12104 may be a stereo camera including a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, the microcomputer 12051, based on the distance information obtained from the imaging units 12101 to 12104, the distance to each three-dimensional object in the imaging range 12111 to 12114 and the temporal change in this distance (relative speed with respect to the vehicle 12100). In particular, it is possible to extract, as a preceding vehicle, a three-dimensional object that travels at a predetermined speed (for example, 0 km / h or more) in the same direction as the vehicle 12100, particularly the closest three-dimensional object on the traveling path of the vehicle 12100. it can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured in advance before the preceding vehicle, and can perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. Thus, cooperative control for the purpose of autonomous driving or the like autonomously traveling without depending on the operation of the driver can be performed.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, the microcomputer 12051 converts the three-dimensional object data related to the three-dimensional object to other three-dimensional objects such as a two-wheeled vehicle, a normal vehicle, a large vehicle, a pedestrian, and a utility pole based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 identifies obstacles around the vehicle 12100 as obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. The microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 is connected via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration or avoidance steering via the drive system control unit 12010, driving assistance for collision avoidance can be performed.
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether a pedestrian is present in the captured images of the imaging units 12101 to 12104. Such pedestrian recognition is, for example, whether or not the user is a pedestrian by performing a pattern matching process on a sequence of feature points indicating the outline of an object and a procedure for extracting feature points in the captured images of the imaging units 12101 to 12104 as infrared cameras. It is carried out by the procedure for determining. When the microcomputer 12051 determines that there is a pedestrian in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 has a rectangular contour line for emphasizing the recognized pedestrian. The display unit 12062 is controlled so as to be superimposed and displayed. Moreover, the audio | voice image output part 12052 may control the display part 12062 so that the icon etc. which show a pedestrian may be displayed on a desired position.
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12031に適用され得る。具体的には、図1の固体撮像装置11は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、レイアウトの自由度を保ちつつ、転送特性を向上させることができ、ひいては高S/N化を実現することができるので、より見やすい撮影画像を得ることができるため、ドライバの疲労を軽減することが可能になる。 Heretofore, an example of a vehicle control system to which the technology according to the present disclosure can be applied has been described. The technology according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above. Specifically, the solid-state imaging device 11 of FIG. 1 can be applied to the imaging unit 12031. By applying the technology according to the present disclosure to the imaging unit 12031, it is possible to improve the transfer characteristics while maintaining the degree of freedom of layout, and thus to realize high S / N. Therefore, driver fatigue can be reduced.
 なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。 Note that the embodiments of the present technology are not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present technology.
 さらに、本技術は以下のような構成をとることができる。
(1)
 PD(フォトダイオード)および前記PDの電荷を転送する転送トランジスタを有する画素と、
 前記転送トランジスタからの電荷を蓄積し電圧に変換するFD(フローティングディフュージョン)と、
 前記FDの電圧を信号として読み出すソース接地型の増幅トランジスタと、
 前記画素を駆動する駆動回路と
 を備え、
 前記駆動回路は、前記画素の前記転送トランジスタによる電荷転送時に、前記FDの近傍に配置され、前記FDに電気的に接続される所定のトランジスタに中間電圧を印加する
 固体撮像装置。
(2)
 前記FDは、複数の前記画素に共有され、
 前記駆動回路は、読み出し画素の前記転送トランジスタによる電荷転送時に、非読み出し画素の前記転送トランジスタに前記中間電圧を印加する
 (1)に記載の固体撮像装置。
(3)
 前記駆動回路は、1の前記読み出し画素の前記転送トランジスタによる電荷転送時に、2以上の前記非読み出し画素の前記転送トランジスタに前記中間電圧を印加する
 (2)に記載の固体撮像装置。
(4)
 前記駆動回路は、前記読み出し画素の前記転送トランジスタによる電荷転送後に、前記読み出し画素の前記転送トランジスタに前記中間電圧を印加する
 (2)または(3)に記載の固体撮像装置。
(5)
 前記駆動回路は、前記画素の前記転送トランジスタによる電荷転送時に、前記FDに蓄積された電荷をリセットするリセットトランジスタに前記中間電圧を印加する
 (1)乃至(3)のいずれかに記載の固体撮像装置。
(6)
 前記駆動回路は、前記画素の前記転送トランジスタによる電荷転送時に、前記FDの変換効率を切り替える変換効率切替トランジスタに前記中間電圧を印加する
 (1)乃至(3)のいずれかに記載の固体撮像装置。
(7)
 PD(フォトダイオード)および前記PDの電荷を転送する転送トランジスタを有する画素と、
 前記転送トランジスタからの電荷を蓄積し電圧に変換するFD(フローティングディフュージョン)と、
 前記FDの電圧を信号として読み出すソース接地型の増幅トランジスタと、
 前記画素を駆動する駆動回路と
 を備える固体撮像装置の駆動方法であって、
 前記駆動回路が、前記画素の前記転送トランジスタによる電荷転送時に、前記FDの近傍に配置され、前記FDに電気的に接続される所定のトランジスタに中間電圧を印加する
 ステップを含む固体撮像装置の駆動方法。
(8)
 PD(フォトダイオード)および前記PDの電荷を転送する転送トランジスタを有する画素と、
 前記転送トランジスタからの電荷を蓄積し電圧に変換するFD(フローティングディフュージョン)と、
 前記FDの電圧を信号として読み出すソース接地型の増幅トランジスタと、
 前記画素を駆動する駆動回路と
 を有し、
 前記駆動回路は、前記画素の前記転送トランジスタによる電荷転送時に、前記FDの近傍に配置され、前記FDに電気的に接続される所定のトランジスタに中間電圧を印加する固体撮像装置
 を備える電子機器。
Furthermore, this technique can take the following structures.
(1)
A pixel having a PD (photodiode) and a transfer transistor for transferring the charge of the PD;
FD (floating diffusion) that accumulates charges from the transfer transistor and converts them into a voltage;
A common source amplification transistor that reads out the voltage of the FD as a signal;
A drive circuit for driving the pixels,
The driving circuit applies an intermediate voltage to a predetermined transistor that is disposed in the vicinity of the FD and electrically connected to the FD during charge transfer by the transfer transistor of the pixel.
(2)
The FD is shared by a plurality of the pixels,
The solid-state imaging device according to (1), wherein the driving circuit applies the intermediate voltage to the transfer transistor of the non-readout pixel during charge transfer by the transfer transistor of the read pixel.
(3)
The solid-state imaging device according to (2), wherein the driving circuit applies the intermediate voltage to the transfer transistors of two or more non-readout pixels during charge transfer by the transfer transistor of one read-out pixel.
(4)
The solid-state imaging device according to (2) or (3), wherein the drive circuit applies the intermediate voltage to the transfer transistor of the readout pixel after charge transfer by the transfer transistor of the readout pixel.
(5)
The solid-state imaging according to any one of (1) to (3), wherein the driving circuit applies the intermediate voltage to a reset transistor that resets the charge accumulated in the FD during charge transfer by the transfer transistor of the pixel. apparatus.
(6)
The solid-state imaging device according to any one of (1) to (3), wherein the driving circuit applies the intermediate voltage to a conversion efficiency switching transistor that switches the conversion efficiency of the FD during charge transfer by the transfer transistor of the pixel. .
(7)
A pixel having a PD (photodiode) and a transfer transistor for transferring the charge of the PD;
FD (floating diffusion) that accumulates charges from the transfer transistor and converts them into a voltage;
A common source amplification transistor that reads out the voltage of the FD as a signal;
A driving method of a solid-state imaging device comprising: a driving circuit that drives the pixels,
The driving circuit includes a step of applying an intermediate voltage to a predetermined transistor that is disposed in the vicinity of the FD and electrically connected to the FD during charge transfer by the transfer transistor of the pixel. Method.
(8)
A pixel having a PD (photodiode) and a transfer transistor for transferring the charge of the PD;
FD (floating diffusion) that accumulates charges from the transfer transistor and converts them into a voltage;
A common source amplification transistor that reads out the voltage of the FD as a signal;
A drive circuit for driving the pixel,
An electronic apparatus comprising: a solid-state imaging device that applies an intermediate voltage to a predetermined transistor that is disposed in the vicinity of the FD and is electrically connected to the FD during charge transfer by the transfer transistor of the pixel.
 11 固体撮像装置, 21,21-1乃至21-4 画素, 13 垂直駆動回路, 41-1乃至41-4 PD, 42-1乃至42-4 転送トランジスタ, 43 FD, 44 増幅トランジスタ, 45 選択トランジスタ, 46 負荷トランジスタ, 47 リセットトランジスタ, 61 変換効率切替トランジスタ, 301 電子機器, 303 固体撮像装置 11 solid-state imaging device, 21, 211-1 to 21-4 pixels, 13 vertical drive circuit, 41-1 to 41-4 PD, 42-1 to 42-4 transfer transistor, 43 FD, 44 amplification transistor, 45 selection transistor , 46 load transistor, 47 reset transistor, 61 conversion efficiency switching transistor, 301 electronic device, 303 solid-state imaging device

Claims (8)

  1.  PD(フォトダイオード)および前記PDの電荷を転送する転送トランジスタを有する画素と、
     前記転送トランジスタからの電荷を蓄積し電圧に変換するFD(フローティングディフュージョン)と、
     前記FDの電圧を信号として読み出すソース接地型の増幅トランジスタと、
     前記画素を駆動する駆動回路と
     を備え、
     前記駆動回路は、前記画素の前記転送トランジスタによる電荷転送時に、前記FDの近傍に配置され、前記FDに電気的に接続される所定のトランジスタに中間電圧を印加する
     固体撮像装置。
    A pixel having a PD (photodiode) and a transfer transistor for transferring the charge of the PD;
    FD (floating diffusion) that accumulates charges from the transfer transistor and converts them into a voltage;
    A common source amplification transistor that reads out the voltage of the FD as a signal;
    A drive circuit for driving the pixels,
    The driving circuit applies an intermediate voltage to a predetermined transistor that is disposed in the vicinity of the FD and electrically connected to the FD during charge transfer by the transfer transistor of the pixel.
  2.  前記FDは、複数の前記画素に共有され、
     前記駆動回路は、読み出し画素の前記転送トランジスタによる電荷転送時に、非読み出し画素の前記転送トランジスタに前記中間電圧を印加する
     請求項1に記載の固体撮像装置。
    The FD is shared by a plurality of the pixels,
    The solid-state imaging device according to claim 1, wherein the driving circuit applies the intermediate voltage to the transfer transistor of a non-readout pixel during charge transfer by the transfer transistor of the read pixel.
  3.  前記駆動回路は、1の前記読み出し画素の前記転送トランジスタによる電荷転送時に、2以上の前記非読み出し画素の前記転送トランジスタに前記中間電圧を印加する
     請求項2に記載の固体撮像装置。
    The solid-state imaging device according to claim 2, wherein the drive circuit applies the intermediate voltage to the transfer transistors of two or more non-readout pixels during charge transfer by the transfer transistor of one read-out pixel.
  4.  前記駆動回路は、前記読み出し画素の前記転送トランジスタによる電荷転送後に、前記読み出し画素の前記転送トランジスタに前記中間電圧を印加する
     請求項2に記載の固体撮像装置。
    The solid-state imaging device according to claim 2, wherein the drive circuit applies the intermediate voltage to the transfer transistor of the readout pixel after charge transfer by the transfer transistor of the readout pixel.
  5.  前記駆動回路は、前記画素の前記転送トランジスタによる電荷転送時に、前記FDに蓄積された電荷をリセットするリセットトランジスタに前記中間電圧を印加する
     請求項1に記載の固体撮像装置。
    2. The solid-state imaging device according to claim 1, wherein the drive circuit applies the intermediate voltage to a reset transistor that resets the charge accumulated in the FD during charge transfer by the transfer transistor of the pixel.
  6.  前記駆動回路は、前記画素の前記転送トランジスタによる電荷転送時に、前記FDの変換効率を切り替える変換効率切替トランジスタに前記中間電圧を印加する
     請求項1に記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein the drive circuit applies the intermediate voltage to a conversion efficiency switching transistor that switches the conversion efficiency of the FD during charge transfer by the transfer transistor of the pixel.
  7.  PD(フォトダイオード)および前記PDの電荷を転送する転送トランジスタを有する画素と、
     前記転送トランジスタからの電荷を蓄積し電圧に変換するFD(フローティングディフュージョン)と、
     前記FDの電圧を信号として読み出すソース接地型の増幅トランジスタと、
     前記画素を駆動する駆動回路と
     を備える固体撮像装置の駆動方法であって、
     前記駆動回路が、前記画素の前記転送トランジスタによる電荷転送時に、前記FDの近傍に配置され、前記FDに電気的に接続される所定のトランジスタに中間電圧を印加する
     ステップを含む固体撮像装置の駆動方法。
    A pixel having a PD (photodiode) and a transfer transistor for transferring the charge of the PD;
    FD (floating diffusion) that accumulates charges from the transfer transistor and converts them into a voltage;
    A common source amplification transistor that reads out the voltage of the FD as a signal;
    A driving method of a solid-state imaging device comprising: a driving circuit that drives the pixels,
    The driving circuit includes a step of applying an intermediate voltage to a predetermined transistor that is disposed in the vicinity of the FD and electrically connected to the FD during charge transfer by the transfer transistor of the pixel. Method.
  8.  PD(フォトダイオード)および前記PDの電荷を転送する転送トランジスタを有する画素と、
     前記転送トランジスタからの電荷を蓄積し電圧に変換するFD(フローティングディフュージョン)と、
     前記FDの電圧を信号として読み出すソース接地型の増幅トランジスタと、
     前記画素を駆動する駆動回路と
     を有し、
     前記駆動回路が、前記画素の前記転送トランジスタによる電荷転送時に、前記FDの近傍に配置され、前記FDに電気的に接続される所定のトランジスタに中間電圧を印加する固体撮像装置
     を備える電子機器。
    A pixel having a PD (photodiode) and a transfer transistor for transferring the charge of the PD;
    FD (floating diffusion) that accumulates charges from the transfer transistor and converts them into a voltage;
    A common source amplification transistor that reads out the voltage of the FD as a signal;
    A drive circuit for driving the pixel,
    An electronic apparatus comprising: a solid-state imaging device that applies an intermediate voltage to a predetermined transistor that is disposed in the vicinity of the FD and is electrically connected to the FD during charge transfer by the transfer transistor of the pixel.
PCT/JP2018/000231 2017-01-24 2018-01-10 Solid-state image capturing device, method for driving same, and electronic device WO2018139187A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-010052 2017-01-24
JP2017010052A JP2018121142A (en) 2017-01-24 2017-01-24 Solid state imaging device and driving method thereof, and electronic device

Publications (1)

Publication Number Publication Date
WO2018139187A1 true WO2018139187A1 (en) 2018-08-02

Family

ID=62978288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000231 WO2018139187A1 (en) 2017-01-24 2018-01-10 Solid-state image capturing device, method for driving same, and electronic device

Country Status (2)

Country Link
JP (1) JP2018121142A (en)
WO (1) WO2018139187A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023034113A (en) * 2021-08-30 2023-03-13 ソニーセミコンダクタソリューションズ株式会社 Imaging element and imaging device
WO2023074177A1 (en) * 2021-10-27 2023-05-04 ソニーセミコンダクタソリューションズ株式会社 Imaging device
WO2024057810A1 (en) * 2022-09-15 2024-03-21 ソニーセミコンダクタソリューションズ株式会社 Imaging device, imaging system, and imaging device driving method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012010106A (en) * 2010-06-24 2012-01-12 Canon Inc Solid-state imaging apparatus and method of driving solid-state imaging apparatus
WO2012053127A1 (en) * 2010-10-19 2012-04-26 パナソニック株式会社 Solid-state imaging device, driving method therefor, and imaging device
WO2013099723A1 (en) * 2011-12-27 2013-07-04 ソニー株式会社 Image pickup element, image pickup apparatus, electronic device, and image pickup method
JP2014112580A (en) * 2012-12-05 2014-06-19 Sony Corp Solid-state image sensor and driving method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012010106A (en) * 2010-06-24 2012-01-12 Canon Inc Solid-state imaging apparatus and method of driving solid-state imaging apparatus
WO2012053127A1 (en) * 2010-10-19 2012-04-26 パナソニック株式会社 Solid-state imaging device, driving method therefor, and imaging device
WO2013099723A1 (en) * 2011-12-27 2013-07-04 ソニー株式会社 Image pickup element, image pickup apparatus, electronic device, and image pickup method
JP2014112580A (en) * 2012-12-05 2014-06-19 Sony Corp Solid-state image sensor and driving method

Also Published As

Publication number Publication date
JP2018121142A (en) 2018-08-02

Similar Documents

Publication Publication Date Title
US11082649B2 (en) Solid-state imaging device with pixels having an in-pixel capacitance
US11765483B2 (en) Solid-state imaging device, and electronic apparatus
WO2020116185A1 (en) Solid-state imaging device, signal processing chip, and electronic apparatus
US11924566B2 (en) Solid-state imaging device and electronic device
US10880506B2 (en) Solid-state imaging device, electronic apparatus, and driving method
WO2017163890A1 (en) Solid state imaging apparatus, method for driving solid state imaging apparatus, and electronic device
WO2018180574A1 (en) Solid-state imaging device and electronic apparatus
JP6803989B2 (en) Solid-state image sensor and its driving method
CN110024376B (en) Solid-state imaging device, driving method, and electronic device
WO2018139187A1 (en) Solid-state image capturing device, method for driving same, and electronic device
JP2020156070A (en) Solid state image pickup device, electronic apparatus, and control method of solid state image pickup device
WO2018207666A1 (en) Imaging element, method for driving same, and electronic device
US11503240B2 (en) Solid-state image pickup element, electronic apparatus, and method of controlling solid-state image pickup element
WO2022019026A1 (en) Information processing device, information processing system, information processing method, and information processing program
JP2021170691A (en) Imaging element, method for control, and electronic apparatus
US11330212B2 (en) Imaging device and diagnosis method
WO2018211985A1 (en) Imaging element, method for controlling imaging element, imaging device, and electronic apparatus
WO2021157263A1 (en) Imaging device and electronic apparatus
US20240089637A1 (en) Imaging apparatus
US20230239593A1 (en) Imaging device and electronic device
WO2022097529A1 (en) Imaging device and imaging method
JP2018125599A (en) Solid-state image-capture apparatus, electronic device, and drive method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18745243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18745243

Country of ref document: EP

Kind code of ref document: A1