WO2018139141A1 - Optical element and image display device using same - Google Patents

Optical element and image display device using same Download PDF

Info

Publication number
WO2018139141A1
WO2018139141A1 PCT/JP2017/046392 JP2017046392W WO2018139141A1 WO 2018139141 A1 WO2018139141 A1 WO 2018139141A1 JP 2017046392 W JP2017046392 W JP 2017046392W WO 2018139141 A1 WO2018139141 A1 WO 2018139141A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
refractive index
light
base
light absorbing
Prior art date
Application number
PCT/JP2017/046392
Other languages
French (fr)
Japanese (ja)
Inventor
有希 前田
前川 聡
Original Assignee
株式会社パリティ・イノベーションズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社パリティ・イノベーションズ filed Critical 株式会社パリティ・イノベーションズ
Priority to JP2018564175A priority Critical patent/JP7152019B2/en
Publication of WO2018139141A1 publication Critical patent/WO2018139141A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/09Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors

Definitions

  • the present invention relates to an optical element that forms a real image of an observation object on one surface side in a space on the other surface side, and an image display device using the optical element.
  • An optical element has been devised in which a projection object is arranged on one surface side of a plane body that partitions a certain space, and a mirror image of the projection object is formed at a position that is plane-symmetric in the space on the other surface side.
  • this type of optical element there is known an optical element having a structure in which a plurality of two-surface corner reflectors each composed of two minute mirror surfaces (reflection surfaces) perpendicular to each other are assembled in a plane (for example, Patent Documents). 1).
  • Patent Document 1 discloses an optical element having a two-sided corner reflector array in which a plurality of two-sided corner reflectors are arranged in a grid on a single plane.
  • each mirror surface forming a dihedral corner reflector is arranged perpendicular to the element surface of the optical element. Therefore, the light emitted from the observation object arranged on one surface side of the element surface is reflected and bent twice by the two-surface corner reflector when passing through the optical element, and the other surface without the observation object.
  • a real image is formed in the side space. Thereby, the real image is formed so that the object to be observed exists at a symmetrical position with respect to the element surface of the optical element.
  • the optical element described in Patent Document 1 a plurality of cube-shaped projecting portions protruding from the surface of the base are arranged, and the inner wall of the projecting portion is used as a mirror surface, and the total reflection of light on the inner wall is used. Then, a real mirror image is formed.
  • the projecting portion is formed by providing a lattice-like groove between adjacent projecting portions (two-surface corner reflectors). In such a configuration, a part of the light incident on the substrate is guided to the groove side without entering the projecting portion. Of the light emitted from the object to be observed, the light incident on the mirror surface at an angle smaller than the critical angle is guided to the groove side without being reflected by the mirror surface.
  • the light guided to the groove side becomes stray light that does not contribute to the image formation of the real mirror image and reduces the contrast of the stereoscopic image. Further, since the groove between the two-surface corner reflectors is as fine as ⁇ m, when ambient light such as external illumination light enters the groove, the light is irregularly reflected by the groove, causing white blurring.
  • the present invention solves the above-described problem, suppresses stray light that does not contribute to the image formation of a real mirror image, improves the contrast of a stereoscopic image, and suppresses irregular reflection of light between a plurality of two-surface corner reflectors.
  • An object of the present invention is to provide an optical element capable of reducing white blur and an image display apparatus using the optical element.
  • the present invention provides an optical element that forms a real image of an object to be observed on one surface side in a space on the other surface side and is formed of a transparent material and forms a single plane. And a plurality of protrusions formed integrally with the base so as to protrude from the base, the protrusion having three or more side surfaces having an angle with respect to the base. Two adjacent surfaces of the side surfaces are perpendicular to the base and are substantially orthogonal to each other, forming a two-surface corner reflector that reflects light emitted from the object to be observed, and a plurality of the protrusions.
  • a low refractive index portion made of a medium having a refractive index lower than the refractive index of the transparent material forming the projecting portions, and a light absorbing portion that absorbs light guided between the plurality of projecting portions. And the low refractive index portion is in contact with the two-surface corner reflector And wherein the door.
  • the low refractive index portion has a thickness of 1 ⁇ m or more from the surface of the dihedral corner reflector.
  • the light absorbing portion is in contact with a side surface of the protruding portion that does not form the two-surface corner reflector.
  • the light absorbing portion is composed of particles having a diameter of 1 ⁇ m or more.
  • the optical element further includes a transparent panel that collectively covers the plurality of protruding portions, and the light absorbing portion is formed in a region of the transparent panel that faces the plurality of protruding portions. Preferably it is.
  • the optical element is preferably used in a video notation device.
  • the optical element since the low refractive index portion is in contact with the side surface forming the dihedral corner reflector, the optical element has a large refractive index difference from the medium constituting the optical element, and the total reflection efficiency is improved.
  • Real mirror image can be brightened.
  • a light absorbing portion is provided between the projecting portions, the light guided between the projecting portions is cut, and the occurrence of stray light that does not contribute to the image formation of the real mirror image is suppressed.
  • the contrast of the real mirror image can be improved.
  • the light absorbing section cuts off ambient light such as external illumination light, the light is not irregularly reflected between the fine protrusions, and the occurrence of white blur can be suppressed.
  • FIG. 1 is a schematic perspective view conceptually showing a configuration example of an optical element according to a first embodiment of the present invention.
  • (A) (b) is a figure which shows typically the image formation mode by the said optical element. The perspective view which expanded a part of said optical element.
  • (A) is a side view of the optical element, and (b) is a top view. The side view for demonstrating the effect
  • (A) and (b) are the side views for demonstrating the structure which concerns on the 1st modification of the said optical element, and its formation method.
  • (A) is a side view for demonstrating the structure and its formation method which concern on the 2nd modification of the said optical element,
  • (b) is an enlarged view of the dashed-dotted line area
  • the side view for demonstrating the structure and its formation method which concern on the 3rd modification of the said optical element The side view for demonstrating the structure and its formation method which concern on the 4th modification of the said optical element.
  • the optical element 1 of the present embodiment includes a two-surface corner reflector 30 composed of mirror surfaces (vertical surfaces 31 and 32) that are perpendicular to the substrate 2 and substantially orthogonal to each other.
  • the plurality of two-surface corner reflectors 30 are arranged in a grid on one plane of the base 2 to form a two-surface corner reflector array 30S.
  • the real image (real mirror image P) of the object to be observed O is connected to the space on the other surface side of the element surface 1S of the optical element 1.
  • the optical element 1 forms an image of the real mirror image P of the observation object O at a plane-symmetrical position with the element surface 1S as a symmetry plane.
  • the element surface 1 ⁇ / b> S refers to a virtual plane orthogonal to the two vertical surfaces 31 and 32 constituting the two-surface corner reflector 30.
  • the dihedral corner reflector 30 is as fine as ⁇ m in comparison with the total size of the optical element 1 being in the order of cm or m, and in FIG. It is shown conceptually in a letter shape.
  • FIG. 2A The imaging mode by the two-surface corner reflector array 30S will be described with reference to FIGS.
  • FIG. 2A light emitted from a point light source o as a projection object is assumed to travel three-dimensionally from the back side to the front side of the page.
  • Light (solid arrow) emitted from the point light source o is reflected by one mirror surface (vertical surface 31) constituting the two-surface corner reflector 30 when passing through the optical element 1 (not shown in FIG. 2A). Then, after being reflected by the other mirror surface (vertical surface 32), it passes through the element surface 1S (see FIG. 2B).
  • the light emitted from the optical element 1 passes through the element surface 1S while spreading in a plane symmetrical position p of the point light source o. That is, the transmitted light of the optical element 1 is focused at a plane symmetry position p with respect to the element surface 1S of the point light source o, and forms an image as a real mirror image P (see FIG. 1).
  • the base 2 is formed of a transparent material and forms a plane.
  • the optical element 1 has a plurality of protruding portions 3 formed so as to protrude from the base 2.
  • the plurality of protrusions 3 are integrally formed with the base 2 by the same transparent material as the base 2.
  • the protruding portion 3 has three or more side surfaces having an angle with respect to the base 2.
  • the protruding portion 3 of the present embodiment has a truncated pyramid shape, and includes two surfaces perpendicular to the base 2 (vertical surfaces 31 and 32) and two surfaces inclined with respect to the base 2 (inclined surfaces 33 and 34). 4 side surfaces and an upper surface 35 forming a surface parallel to the base 2. Of the side surfaces, two surfaces, the vertical surfaces 31, 32, are adjacent to each other, and two surfaces, the inclined surfaces 33, 34, are adjacent to each other. The vertical surfaces 31 and 32 are disposed so as to be substantially orthogonal to each other.
  • the light (solid line arrow in FIG. 4A) incident on the protruding portion 3 from the base 2 is totally reflected twice by the inner wall surfaces of the vertical surfaces 31 and 32 and is emitted from the upper surface 35 of the protruding portion 3.
  • the upper surface 35 is defined by ridge lines with the vertical surfaces 31 and 32 and the inclined surfaces 33 and 34, and the lengths thereof are substantially equal, and are substantially square in a top view (see FIG. 4B).
  • the vertical surface 31 (32) is an inclined surface in a side view (see FIG. 4B), where the boundary line with the base 2 (dotted line in FIG. 4A) is the lower base, the ridge line with the upper surface 35 is the upper base, This is a trapezoid having the ridge line with 33 and 34 as a hypotenuse and the ridge line with adjacent vertical surfaces 32 and 31 as a vertical side.
  • a plurality of protrusions 3 having the above-mentioned shape are arranged in a grid.
  • one vertical surface 31 and the other inclined surface 34 face each other, and one vertical surface 32 and the other inclined surface 33 face each other.
  • the plurality of protrusions 3 are formed with lattice-like grooves 21 between the vertical surfaces 31 and 32 and the inclined surfaces 34 and 33 facing each other.
  • a plane parallel to the base 2 is formed between the side of the vertical surface 32 (31) facing the base 2 and the side of the inclined surface 33 (34) on the base 2 side, and the bottom of the groove 21 is formed.
  • a bottom surface 22 is formed.
  • the optical element 1 is guided to the groove 21 between the plurality of protrusions 3, the low refractive index part 4 made of a medium having a refractive index lower than the refractive index of the transparent material forming the protrusions 3, and the groove 21.
  • a light absorbing portion 5 that absorbs the waved light is disposed.
  • the low refractive index portion 4 is in contact with the vertical surfaces 31 and 32 forming at least a two-surface corner reflector.
  • a transparent material that has a light transmittance of 80% or more and a refractive index of 1.3 or more and hardly deteriorated due to heat or humidity is used for the medium of the base 2 and the protruding portion 3 constituting the optical element 1.
  • a transparent material include acrylic resin and glass.
  • the cycloolefin polymer include trade name: ZEONOR (registered trademark) (grade: 1020R, light transmittance: 92%, refractive index: 1.53) manufactured by ZEON Corporation.
  • the low refractive index portion 4 desirably has a refractive index of 1.4 or less in order to reduce the critical angle on the vertical surfaces 31 and 32 and easily cause total reflection.
  • the medium of the low refractive index portion 4 is air.
  • a portion excluding the low refractive index portion 4 and the light absorbing portion 5, that is, a dihedral corner reflector array 30S composed of the base 2 and the plurality of protruding portions 3 is produced.
  • the as a method for producing the two-sided corner reflector array 30S for example, a method of injection-molding a translucent resin or a hot press molding method using a mold such as a stamper can be cited.
  • the mold is manufactured by, for example, a method in which a shape corresponding to the shape of the protrusion 3 and the groove 21 (see FIG. 3) described above is formed on a metal master plate by nano-processing, and then reversal is performed. Further, for example, by using an X-ray lithography method, it is possible to produce the protruding portion 3 and the groove 21 having four side surfaces directly on the base 2 made of a transparent material.
  • two of the four surfaces forming the protruding portion 3 are the inclined surfaces 33 and 34. That is, the protruding portion 3 has a truncated pyramid shape.
  • a bottom surface 22 is provided in the groove 21 between the plurality of adjacent protruding portions 3. According to such a shape, it is possible to attach a so-called “drawer taper” to the protruding portion 3 which is a fine structure on the order of ⁇ m, and when the two-sided corner reflector array 30S is formed by molding, The two-sided corner reflector array 30S can be easily removed from a mold such as a stamper.
  • the width W of one side in the top view of the pitch 3 of the protruding portion 3 including the groove 21 is, for example, 100 to 700 ⁇ m (see FIG. 4B).
  • the pitch width W is set according to the pop-out distance of the real mirror image P (see FIG. 1). For example, when the pop-out distance is 10 cm, the pitch width W is about 280 ⁇ m.
  • the plate thickness of the optical element 1 including the base 2 and the protrusions 3 is generally 1 to 3 mm.
  • the height H (depth of the groove 21) of the protrusion 3 from the base 2 (the bottom surface 22 of the groove 21) is set to be equal to or larger than the pitch width W.
  • the inclination angle ⁇ of the inclined surfaces 33 and 34 with respect to the normal of the base 2 is preferably 5 to 25 ° (see FIG. 4A).
  • the inclination angle ⁇ is preferably 5 to 25 ° (see FIG. 4A).
  • the size (width L) of the upper surface 35 serving as an emission surface of the light reflected by the two-surface corner reflector 30 depends on the height H of the protrusion 3. And the darkness of the real mirror image P can be suppressed.
  • the height H of the protruding portion 3 is 300 ⁇ m
  • the width W of one side in the top view of the pitch 3 of the protruding portion 3 is 300 ⁇ m
  • the width L of one side of the upper surface 35 is 200 ⁇ m
  • the inclination angle ⁇ is 18 °.
  • the width D of the bottom surface 22 of the groove 21 is about 2.5 ⁇ m.
  • the numerical value shown here is a representative value shown as an example of this embodiment, and this invention is not limited to these numerical values.
  • the optical element 1 of the present embodiment is obtained by further forming the low refractive index portion 4 and the light absorbing portion 5 on the two-surface corner reflector 30 manufactured as described above.
  • the light absorbing portion 5 for example, black ink or particulate pigment is used.
  • the low refractive index portion 4 has a thickness of 1 ⁇ m or more from the surfaces of the vertical surfaces 31 and 32 forming the dihedral corner reflector 30.
  • the low refractive index portion 4 is formed so that the portion having a thickness of 1 ⁇ m or more from the surfaces of the vertical surfaces 31 and 32 forming the dihedral corner reflector 30 is 50% or more of the total area of the vertical surfaces 31 and 32. It only has to be done.
  • the low refractive index portion 4 having a thickness of 1 ⁇ m or more is disposed on at least 50% of the total area of the vertical surfaces 31 and 32 at least outside the vertical surfaces 31 and 32 in a region where evanescent waves can ooze out.
  • the low refractive index portion 4 and the light absorbing portion 5 for example, a method of applying an ink containing a light absorbing material toward the inclined surface 33 (34) and the bottom surface 22 of the groove 21 by micro ink jet printing. Is mentioned. In this way, the ink applied to the inclined surface 34 (33) and the bottom surface 22 of the groove 21 becomes the light absorbing portion 5, and air exists on the vertical surface 31 (32) side where the ink is not applied. The space in which this air exists becomes the low refractive index portion 4. As long as there is no problem in practical use, there may be uneven coating on the inclined surface 34 (33) or the groove 21, and some ink may adhere to the vertical surface 31 (32).
  • the low refractive index portion 4 is in contact with the vertical surface 32 (the same applies to the vertical surface 31) forming the dihedral corner reflector 30.
  • the refractive index difference from the medium constituting 1 is increased.
  • the critical angle at the vertical surface 32 is reduced, and light having a small incident angle ⁇ (solid arrow in the figure) that is not totally reflected in the absence of the low refractive index portion 4 can be totally reflected.
  • Efficiency is improved.
  • the real mirror image P can be brightened.
  • the light absorbing portion 5 is provided between the projecting portions 3, the light incident on the substrate 2 is not incident on the projecting portion 3, but is guided from the bottom surface 22 to the groove 21 side.
  • Light (broken arrow in the figure) is cut by the light absorbing portion 5.
  • light that is incident on the vertical surface 32 at an angle of incidence smaller than the critical angle and transmitted to the groove 21 side (dotted line arrow in the figure) is also cut.
  • the light guided to the groove 21 side is cut by the light absorption unit 5, so that stray light that does not contribute to the image formation of the real mirror image P can be suppressed, and the contrast of the real mirror image P can be suppressed. Can be improved.
  • the groove 21 between the two-surface corner reflectors 30 is as fine as ⁇ m, but even if ambient light such as external illumination light (two-dot chain line arrow in the figure) is incident on the groove 21, no light is emitted. Since the absorption part 5 cuts it, light is not diffusely reflected by the fine groove
  • the light absorbing portion 5 is preferably in contact with the side surface of the protruding portion 3 that does not form the two-surface corner reflector 30, that is, in the present embodiment, the inclined surfaces 33 and 34. It is possible that a part of the light incident on the projecting portion 3 from the base 2 enters the inclined surfaces 33 and 34 instead of the vertical surfaces 31 and 32. This light also does not contribute to the image formation of the real mirror image P, and when guided to the groove 21 side, it becomes stray light that lowers the contrast of the real mirror image P. Therefore, the light guided to the groove 21 side can be cut by arranging the light absorbing portion 5 in contact with the inclined surfaces 33 and 34.
  • the configuration of the low refractive index portion 4 and the light absorbing portion 5 and the formation method thereof are not limited to those described above.
  • a modified example related to the configuration of the low refractive index portion 4 and the light absorbing portion 5 and a method for forming the modified example will be described.
  • a removable sealing material Rm is formed in a thickness of 1 ⁇ m in advance on the vertical surface 32 (31), and the groove 21 is made of a light absorbing material Am.
  • the forming method include filling, curing the filled light absorbing material Am, and then removing the sealing material Rm.
  • a space having a thickness of about 1 ⁇ m is provided from the vertical surface 32 (31) in the space where the sealing material Rm is formed, and this gap is low.
  • the light absorbing material Am that becomes the refractive index portion 4 and is filled excluding the gap becomes the light absorbing portion 5.
  • this forming method include a method in which only the sealing material Rm is removed by immersing them in a predetermined solvent in which the light absorbing material Am is not dissolved but the sealing material Rm is dissolved.
  • the low refractive index portion 4 is in contact with the vertical surface 32 (31) forming the dihedral corner reflector 30, the total reflection efficiency is improved and the real mirror image P can be brightened. it can.
  • the light absorption part 5 is provided between the protruding parts 3, a stray light can be suppressed and the contrast of the real mirror image P can be improved.
  • the light absorbing portion 5 occupies a larger proportion in the groove 21 than in the configuration example shown in FIG. 5, so that ambient light such as illumination light itself is prevented from entering the groove 21. The occurrence of white blur can be effectively suppressed.
  • the grooves 21 between the plurality of protruding portions 3 there is a method of filling the grooves 21 between the plurality of protruding portions 3 with substantially spherical light absorbing particles 5s.
  • the light absorbing particles 5s for example, resin, carbon or the like is used, and particles in which carbon black is included in crosslinked polymer fine particles are particularly preferable.
  • the lower limit of the particle diameter of the light absorbing particles 5s is 1 ⁇ m or more, preferably 2 ⁇ m or more.
  • the upper limit of the particle diameter of the light-absorbing particles 5 s should be at least smaller than the maximum width of the groove 21, and is preferably 10 ⁇ m or less in consideration of the filling property into the groove 21.
  • the portion having a thickness of 1 ⁇ m or more from the surfaces of the vertical surfaces 31 and 32 forming the dihedral corner reflector 30 is 50% or more of the total area of the vertical surfaces 31 and 32.
  • the thickness of the low refractive index portion 4 may be partially 1 ⁇ m or less.
  • the low refractive index portion 4 and the light absorbing portion 5 are formed by a simple method of filling the grooves 21 between the plurality of protruding portions 3 with the substantially spherical light absorbing particles 5s. can do.
  • the stray light that does not contribute to the image formation of the real mirror image P is suppressed to improve the contrast of the stereoscopic image, and the irregular reflection of light between the plurality of two-surface corner reflectors 30 is suppressed, White blur can be reduced.
  • FIG. 8 it further includes a transparent panel 6 that collectively covers the plurality of protruding portions 3, and the light absorbing portion 5 is a plurality of protruding portions of the transparent panel 6.
  • channel 21 between 3 is mentioned.
  • glass, acrylic resin, glass and transparent material are used.
  • a pattern of the groove 21 between the plurality of protrusions 3 is scanned, and the same pattern printed on the transparent panel 6 with a light absorbing material (ink) is used as the plurality of protrusions 3.
  • the printed pattern may be slightly different from the actual groove pattern, and there may be a slight misalignment in bonding.
  • the width of the printed groove pattern may have an error of about ⁇ 20 ⁇ m compared to the actual width of the groove 21, and the positional deviation at the time of bonding may be about ⁇ 20 ⁇ m.
  • a space surrounded by the grooves 21 between the plurality of protruding portions 3 and the light absorbing portion 5 formed in the transparent panel 6 is the low refractive index portion 4. Also in the third modification example, as in the above configuration example, and in the above configuration example, stray light that does not contribute to the image formation of the real mirror image P is suppressed to improve the contrast of the stereoscopic image, and a plurality of White blurring can be reduced by suppressing irregular reflection of light between the two-surface corner reflectors 30.
  • the light absorbing portion 5 is flat. Since it prints on the transparent panel 6 of a shape, the light absorption part 5 can be formed substantially two-dimensionally, and the low refractive index part 4 and the light absorption part 5 can be formed easily.
  • the fourth modified example is one in which the protruding portion 3 is a cube, and the inclined surfaces 33 and 34 in the above configuration example do not exist, and the side surface of the protruding portion 3 is configured 4.
  • Each of the surfaces is a vertical surface (vertical surface 36 in the illustrated example).
  • the low refractive index portion 4 is also provided on the vertical surface 36 side.
  • the video display device 10 is a specific application of the optical element 1 described above, and includes a box 12 having an opening 11 on an upper surface, and a video display unit 13 provided on an inner surface of the box 12. Prepare.
  • the optical element 1 is attached to the opening 11 of the box 12.
  • the video display unit 13 uses, for example, a liquid crystal display device, and in the illustrated example, the image “A” is displayed in an inverted posture in which the character “A” is inverted upside down.
  • the light emitted from the image display unit 13 is bent and reflected by the optical element 1 to form a real mirror image of the letter “A”.
  • the observer can view the real mirror image of the letter “A” as an aerial image when looking into the optical element 1 with the viewpoint Ep placed obliquely above the image display device 10.
  • the protruding portion 3 has a truncated pyramid shape or a cubic shape having four side surfaces, but has two vertical surfaces and an upper surface that emits light.
  • a triangular frustum shape or a pyramid shape having five or more corners may be used.
  • the light absorbing portion 5 is not necessarily limited to the configuration example described above as long as it exists between the plurality of protruding portions 3 so that the low refractive index portion 4 is formed between the vertical surfaces 31 and 32. I can't.
  • the low refractive index portion 4 is most preferably mainly composed of air having a low refractive index.
  • the low refractive index portion 4 is a translucent resin, hollow silica particle, or mesoporous material having a refractive index lower than that of the protrusion 3 itself. Silica particles and the like may be applied as appropriate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

Provided is an optical element that improves the contrast of an image by suppressing stray light not contributing to forming of a real mirror image and that reduces white blur by suppressing scattering of light between two-surface corner reflectors. An optical element 1 includes a base 2 that is formed of a transparent material and forms one flat surface, and a plurality of protruding parts 3 that are integrally formed so as to protrude from the base 2. Adjacent vertical surfaces 31, 32 among side surfaces constituting each protruding part 3 form a two-surface corner reflector 30 having two substantially perpendicular surfaces. Disposed between the plurality of protruding parts 3 are: low refractive index parts 4 composed of a medium having a refractive index that is lower than that of the transparent material constituting the protruding parts 3; and light absorbing parts 5 that absorb light guided between the plurality of the protruding parts 3. In addition, the low refractive index parts 4 contact the two-surface corner reflectors 30.

Description

光学素子及びそれを用いた映像表示装置Optical element and image display device using the same
 本発明は、一方の面側にある被観察物の実像を他方の面側の空間に結像させる光学素子及びそれを用いた映像表示装置に関する。 The present invention relates to an optical element that forms a real image of an observation object on one surface side in a space on the other surface side, and an image display device using the optical element.
 ある空間を仕切る平面体の一方の面側に被投影物を配置し、他方の一面側の空間において面対称となる位置に、被投影物の鏡映像を結像させる光学素子が発案されている。この種のものとして、各々が互いに直交する2つの微小な鏡面(反射面)から成る2面コーナーリフレクタを複数、平面的に集合させた構造を有する光学素子が知られている(例えば、特許文献1参照)。 An optical element has been devised in which a projection object is arranged on one surface side of a plane body that partitions a certain space, and a mirror image of the projection object is formed at a position that is plane-symmetric in the space on the other surface side. . As this type of optical element, there is known an optical element having a structure in which a plurality of two-surface corner reflectors each composed of two minute mirror surfaces (reflection surfaces) perpendicular to each other are assembled in a plane (for example, Patent Documents). 1).
 上記特許文献1は、複数の2面コーナーリフレクタが一平面上に格子状に整列配置されて成る2面コーナーリフレクタアレイを有する光学素子を開示している。この光学素子では、2面コーナーリフレクタを成す各鏡面が、光学素子の素子面に対して垂直に配置されている。そのため、素子面の一方の面側に配置した被観察物から発せられた光は、光学素子を通過する際に2面コーナーリフレクタで2回反射されて屈曲し、被観察物がない他方の一面側の空間に実像として結像する。これにより、被観察物が、光学素子の素子面に対して対称位置に存在するように、その実像が結像される。 Patent Document 1 discloses an optical element having a two-sided corner reflector array in which a plurality of two-sided corner reflectors are arranged in a grid on a single plane. In this optical element, each mirror surface forming a dihedral corner reflector is arranged perpendicular to the element surface of the optical element. Therefore, the light emitted from the observation object arranged on one surface side of the element surface is reflected and bent twice by the two-surface corner reflector when passing through the optical element, and the other surface without the observation object. A real image is formed in the side space. Thereby, the real image is formed so that the object to be observed exists at a symmetrical position with respect to the element surface of the optical element.
特開2011-191404号公報JP 2011-191404 A
 上記特許文献1に記載の光学素子では、基盤の表面から突出した立方体形状の突状部が複数、配置されており、突状部の内壁を鏡面とし、当該内壁での光の全反射を利用して実鏡映像を結像している。ここで、隣り合う突状部(2面コーナーリフレクタ)間に格子状の溝を設けることで、突状部が形成されている。このような構成では、基盤に入射した光の一部は、突状部に入射せずに、溝側に導波される。また、被観察物から発せられた光のうち、臨界角よりも入射角の小さい角度で鏡面に入射した光は、鏡面で反射されることなく溝側に導波される。このような溝側に導波された光は、実鏡映像の結像に寄与しない迷光となり、立体映像のコントラストを低下させる。また、2面コーナーリフレクタ間の溝はμmオーダーと微細なので、外部の照明光といった環境光が上記溝に入射すると、溝で光が乱反射して、白ボケを生じさせる原因となる。 In the optical element described in Patent Document 1, a plurality of cube-shaped projecting portions protruding from the surface of the base are arranged, and the inner wall of the projecting portion is used as a mirror surface, and the total reflection of light on the inner wall is used. Then, a real mirror image is formed. Here, the projecting portion is formed by providing a lattice-like groove between adjacent projecting portions (two-surface corner reflectors). In such a configuration, a part of the light incident on the substrate is guided to the groove side without entering the projecting portion. Of the light emitted from the object to be observed, the light incident on the mirror surface at an angle smaller than the critical angle is guided to the groove side without being reflected by the mirror surface. The light guided to the groove side becomes stray light that does not contribute to the image formation of the real mirror image and reduces the contrast of the stereoscopic image. Further, since the groove between the two-surface corner reflectors is as fine as μm, when ambient light such as external illumination light enters the groove, the light is irregularly reflected by the groove, causing white blurring.
 本発明は、上記課題を解決するものであり、実鏡映像の結像に寄与しない迷光を抑制して立体映像のコントラストを向上させると共に、複数の2面コーナーリフレクタ間における光の乱反射を抑制して、白ボケを低減することができる光学素子及びそれを用いた映像表示装置を提供することを目的とする。 The present invention solves the above-described problem, suppresses stray light that does not contribute to the image formation of a real mirror image, improves the contrast of a stereoscopic image, and suppresses irregular reflection of light between a plurality of two-surface corner reflectors. An object of the present invention is to provide an optical element capable of reducing white blur and an image display apparatus using the optical element.
 上記課題を解決するため、本発明は、一方の面側にある被観察物の実像を他方の面側の空間に結像させる光学素子であって、透明材料により形成されて一平面を成す基盤と、前記基盤から突出するように該基盤と一体的に形成された複数の突状部と、を有し、前記突状部は、前記基盤に対して角度を持つ3つ以上の側面を有し、前記側面のうちの隣り合う2面は、前記基盤に対して垂直で且つ互いに略直交しており、被観察物から発せられる光を反射する2面コーナーリフレクタを成し、複数の前記突状部間には、前記突状部を成す透明材料の屈折率よりも屈折率の低い媒質から成る低屈折率部と、複数の前記突状部間に導波した光を吸収する光吸収部と、が配置されており、前記低屈折率部は、前記2面コーナーリフレクタと接していることを特徴とする。 In order to solve the above-described problems, the present invention provides an optical element that forms a real image of an object to be observed on one surface side in a space on the other surface side and is formed of a transparent material and forms a single plane. And a plurality of protrusions formed integrally with the base so as to protrude from the base, the protrusion having three or more side surfaces having an angle with respect to the base. Two adjacent surfaces of the side surfaces are perpendicular to the base and are substantially orthogonal to each other, forming a two-surface corner reflector that reflects light emitted from the object to be observed, and a plurality of the protrusions. Between the projecting portions, a low refractive index portion made of a medium having a refractive index lower than the refractive index of the transparent material forming the projecting portions, and a light absorbing portion that absorbs light guided between the plurality of projecting portions. And the low refractive index portion is in contact with the two-surface corner reflector And wherein the door.
 上記光学素子において、前記低屈折率部は、前記2面コーナーリフレクタの表面から1μm以上の厚みを成していることが好ましい。 In the optical element, it is preferable that the low refractive index portion has a thickness of 1 μm or more from the surface of the dihedral corner reflector.
 上記光学素子において、前記光吸収部は、前記2面コーナーリフレクタを成さない前記突状部の側面と接していることが好ましい。 In the optical element, it is preferable that the light absorbing portion is in contact with a side surface of the protruding portion that does not form the two-surface corner reflector.
 上記光学素子において、前記光吸収部は、直径1μm以上の粒子から構成されることが好ましい。 In the above optical element, it is preferable that the light absorbing portion is composed of particles having a diameter of 1 μm or more.
 上記光学素子において、複数の前記突状部を一括して覆う透明パネルを更に有し、前記光吸収部は、前記透明パネルのうち、複数の前記突状部間と対向する領域に形成されていることが好ましい。 The optical element further includes a transparent panel that collectively covers the plurality of protruding portions, and the light absorbing portion is formed in a region of the transparent panel that faces the plurality of protruding portions. Preferably it is.
 上記光学素子は、映像表記装置に用いられることが好ましい。 The optical element is preferably used in a video notation device.
 本発明によれば、光学素子は、低屈折率部が2面コーナーリフレクタを成す側面と接しているので、光学素子を構成する媒体との屈折率差が大きくなり、全反射効率が向上し、実鏡映像を明るくすることができる。また、突状部間には、光吸収部が設けられているので、突状部間に導波された光をカットし、実鏡映像の結像に寄与しない迷光が生じることを抑制し、実鏡映像のコントラストを向上させることができる。更に、光吸収部が外部の照明光といった環境光をカットするので、微細な突状部間で光が乱反射することもなく、白ボケの発生を抑制することができる。 According to the present invention, since the low refractive index portion is in contact with the side surface forming the dihedral corner reflector, the optical element has a large refractive index difference from the medium constituting the optical element, and the total reflection efficiency is improved. Real mirror image can be brightened. In addition, since a light absorbing portion is provided between the projecting portions, the light guided between the projecting portions is cut, and the occurrence of stray light that does not contribute to the image formation of the real mirror image is suppressed. The contrast of the real mirror image can be improved. Furthermore, since the light absorbing section cuts off ambient light such as external illumination light, the light is not irregularly reflected between the fine protrusions, and the occurrence of white blur can be suppressed.
本発明の第1の実施形態に係る光学素子の構成例を概念的に示す概略斜視図。1 is a schematic perspective view conceptually showing a configuration example of an optical element according to a first embodiment of the present invention. (a)(b)は上記光学素子による結像様式を模式的に示す図。(A) (b) is a figure which shows typically the image formation mode by the said optical element. 上記光学素子の一部を拡大した斜視図。The perspective view which expanded a part of said optical element. (a)は上記光学素子の側面図、(b)は上面図。(A) is a side view of the optical element, and (b) is a top view. 上記光学素子の作用を説明するための側面図。The side view for demonstrating the effect | action of the said optical element. (a)(b)は上記光学素子の第1の変形例に係る構成及びその形成方法を説明するための側面図。(A) and (b) are the side views for demonstrating the structure which concerns on the 1st modification of the said optical element, and its formation method. (a)は上記光学素子の第2の変形例に係る構成及びその形成方法を説明するための側面図、(b)は(a)の一点鎖線領域の拡大図。(A) is a side view for demonstrating the structure and its formation method which concern on the 2nd modification of the said optical element, (b) is an enlarged view of the dashed-dotted line area | region of (a). 上記光学素子の第3の変形例に係る構成及びその形成方法を説明するための側面図。The side view for demonstrating the structure and its formation method which concern on the 3rd modification of the said optical element. 上記光学素子の第4の変形例に係る構成及びその形成方法を説明するための側面図。The side view for demonstrating the structure and its formation method which concern on the 4th modification of the said optical element. 上記光学素子を備えた映像表示装置の構成例を概念的に示す斜視図。The perspective view which shows notionally the structural example of the video display apparatus provided with the said optical element.
 本発明の一実施形態に係る光学素子について、図面を参照して説明する。図1に示すように、本実施形態の光学素子1は、基盤2に対して垂直で且つ互いに略直交した鏡面(垂直面31、32)から成る2面コーナーリフレクタ30を有する。複数の2面コーナーリフレクタ30は、基盤2の一平面上に格子状に整列配置されて2面コーナーリフレクタアレイ30Sを成す。 An optical element according to an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the optical element 1 of the present embodiment includes a two-surface corner reflector 30 composed of mirror surfaces (vertical surfaces 31 and 32) that are perpendicular to the substrate 2 and substantially orthogonal to each other. The plurality of two-surface corner reflectors 30 are arranged in a grid on one plane of the base 2 to form a two-surface corner reflector array 30S.
 光学素子1は、その一方の面側に被観察物Oが配置されたとき、被観察物Oの実像(実鏡映像P)を光学素子1の素子面1Sの他方の面側の空間に結像させる。すなわち、光学素子1は、その素子面1Sを対称面とする面対称位置に、被観察物Oの実鏡映像Pを結像させる。ここで、素子面1Sとは、2面コーナーリフレクタ30を構成する2つの垂直面31、32と直交する仮想的な平面を言う。なお、光学素子1の全体の大きさがcm又はmオーダーであるのに比べて、2面コーナーリフレクタ30はμmオーダーと微細であり、図1では、2面コーナーリフレクタ30の集合体を、V字形状で概念的に示している。 When the object to be observed O is arranged on one surface side of the optical element 1, the real image (real mirror image P) of the object to be observed O is connected to the space on the other surface side of the element surface 1S of the optical element 1. Let me image. In other words, the optical element 1 forms an image of the real mirror image P of the observation object O at a plane-symmetrical position with the element surface 1S as a symmetry plane. Here, the element surface 1 </ b> S refers to a virtual plane orthogonal to the two vertical surfaces 31 and 32 constituting the two-surface corner reflector 30. Note that the dihedral corner reflector 30 is as fine as μm in comparison with the total size of the optical element 1 being in the order of cm or m, and in FIG. It is shown conceptually in a letter shape.
 2面コーナーリフレクタアレイ30Sによる結像様式について、図2(a)(b)を参照して説明する。なお、図2(a)では、被投影物として点光源oから発せられた光は、3次元的には紙面奥側から紙面手前側へ進行するものとする。点光源oから発せられた光(実線矢印)は、光学素子1(図2(a)では省略)を通過する際に、2面コーナーリフレクタ30を構成する一方の鏡面(垂直面31)で反射して、他方の鏡面(垂直面32)で反射した後、素子面1S(図2(b)参照)を透過する。このようにして光学素子1から出射された光(一点鎖線矢印)は、素子面1Sに対して点光源oの面対称位置p広がりながら通過する。すなわち、点光源oの素子面1Sに対する面対称位置pに、光学素子1の透過光が集束し、実鏡映像P(図1参照)として結像する。 The imaging mode by the two-surface corner reflector array 30S will be described with reference to FIGS. In FIG. 2A, light emitted from a point light source o as a projection object is assumed to travel three-dimensionally from the back side to the front side of the page. Light (solid arrow) emitted from the point light source o is reflected by one mirror surface (vertical surface 31) constituting the two-surface corner reflector 30 when passing through the optical element 1 (not shown in FIG. 2A). Then, after being reflected by the other mirror surface (vertical surface 32), it passes through the element surface 1S (see FIG. 2B). In this way, the light emitted from the optical element 1 (dashed line arrow) passes through the element surface 1S while spreading in a plane symmetrical position p of the point light source o. That is, the transmitted light of the optical element 1 is focused at a plane symmetry position p with respect to the element surface 1S of the point light source o, and forms an image as a real mirror image P (see FIG. 1).
 図3及び図4(a)(b)に示すように、基盤2は、透明材料により形成されて一平面を成している。光学素子1は、この基盤2から突出するように形成された複数の突状部3を有する。複数の突状部3は、基盤2と同じ透明材料によって基盤2と一体的に形成されている。 As shown in FIGS. 3 and 4 (a) and 4 (b), the base 2 is formed of a transparent material and forms a plane. The optical element 1 has a plurality of protruding portions 3 formed so as to protrude from the base 2. The plurality of protrusions 3 are integrally formed with the base 2 by the same transparent material as the base 2.
 突状部3は、基盤2に対して角度を持つ3つ以上の側面を有する。本実施形態の突状部3は、角錐台形状であり、基盤2に対して垂直な2面(垂直面31、32)及び基盤2に対して傾斜した2面(傾斜面33、34)から成る4面の側面と、基盤2と平行な面を成す上面35を有する。上記側面のうち、垂直面31、32の2面が隣り合い、傾斜面33、34の2面が隣り合っている。また、垂直面31、32は、互いに略直交するように配置されている。基盤2から突状部3に入射した光(図4(a)の実線矢印)は、垂直面31、32の内壁面で2回全反射され、突状部3の上面35から出射する。 The protruding portion 3 has three or more side surfaces having an angle with respect to the base 2. The protruding portion 3 of the present embodiment has a truncated pyramid shape, and includes two surfaces perpendicular to the base 2 (vertical surfaces 31 and 32) and two surfaces inclined with respect to the base 2 (inclined surfaces 33 and 34). 4 side surfaces and an upper surface 35 forming a surface parallel to the base 2. Of the side surfaces, two surfaces, the vertical surfaces 31, 32, are adjacent to each other, and two surfaces, the inclined surfaces 33, 34, are adjacent to each other. The vertical surfaces 31 and 32 are disposed so as to be substantially orthogonal to each other. The light (solid line arrow in FIG. 4A) incident on the protruding portion 3 from the base 2 is totally reflected twice by the inner wall surfaces of the vertical surfaces 31 and 32 and is emitted from the upper surface 35 of the protruding portion 3.
 上面35は、垂直面31、32及び傾斜面33、34との各稜線によって画定され、それらの長さは略等しく、上面視(図4(b)参照)において、略正方形である。垂直面31(32)は、側面視(図4(b)参照)において、基盤2との境界線(図4(a)の点線)を下底辺、上面35との稜線を上底辺、傾斜面33、34との稜線を斜辺、隣り合う垂直面32、31との稜線を垂直辺とする台形である。 The upper surface 35 is defined by ridge lines with the vertical surfaces 31 and 32 and the inclined surfaces 33 and 34, and the lengths thereof are substantially equal, and are substantially square in a top view (see FIG. 4B). The vertical surface 31 (32) is an inclined surface in a side view (see FIG. 4B), where the boundary line with the base 2 (dotted line in FIG. 4A) is the lower base, the ridge line with the upper surface 35 is the upper base, This is a trapezoid having the ridge line with 33 and 34 as a hypotenuse and the ridge line with adjacent vertical surfaces 32 and 31 as a vertical side.
 光学素子1の表面には、上記形状の突状部3が、複数、格子状に整列配置されている。隣り合う突状部3は、一方の垂直面31と他方の傾斜面34とが対峙し、一方の垂直面32と他方の傾斜面33が対峙する。言い換えると、複数の突状部3は、対峙する垂直面31、32及び傾斜面34、33の夫々の間に、格子状の溝21が形成されている。また、対峙する垂直面32(31)の基盤2側の辺と、傾斜面33(34)の基盤2側の辺との間には、基盤2と平行な面を成し、溝21の底となる底面22が形成されている。 On the surface of the optical element 1, a plurality of protrusions 3 having the above-mentioned shape are arranged in a grid. In the adjacent protrusions 3, one vertical surface 31 and the other inclined surface 34 face each other, and one vertical surface 32 and the other inclined surface 33 face each other. In other words, the plurality of protrusions 3 are formed with lattice-like grooves 21 between the vertical surfaces 31 and 32 and the inclined surfaces 34 and 33 facing each other. Further, a plane parallel to the base 2 is formed between the side of the vertical surface 32 (31) facing the base 2 and the side of the inclined surface 33 (34) on the base 2 side, and the bottom of the groove 21 is formed. A bottom surface 22 is formed.
 また、光学素子1は、複数の突状部3間の溝21に、突状部3を成す透明材料の屈折率よりも屈折率の低い媒質から成る低屈折率部4と、溝21に導波した光を吸収する光吸収部5と、が配置されている。そして、低屈折率部4は、少なくとも2面コーナーリフレクタを成す垂直面31、32と接している。 Further, the optical element 1 is guided to the groove 21 between the plurality of protrusions 3, the low refractive index part 4 made of a medium having a refractive index lower than the refractive index of the transparent material forming the protrusions 3, and the groove 21. A light absorbing portion 5 that absorbs the waved light is disposed. The low refractive index portion 4 is in contact with the vertical surfaces 31 and 32 forming at least a two-surface corner reflector.
 光学素子1を構成する基盤2及び突状部3の媒質には、光透過率80%以上、屈折率1.3以上で、熱や湿度による変質の少ない透明材料が用いられる。このような透明材料としては、例えば、アクリル樹脂やガラスが挙げられる。本実施形態の光学素子1では、特に、低吸水性・非晶質で脂環構造を持つ炭化水素系ポリマーであるシクロオレフィンポリマー(COP)を用いることが好ましい。シクロオレフィンポリマーとしては、例えば、日本ゼオン社製の商品名:ZEONOR(登録商標)(グレード:1020R、光透過率92%、屈折率1.53)が挙げられる。また、低屈折率部4は、垂直面31、32における臨界角を小さくして全反射を生じやすくするために、その媒質の屈折率は1.4以下であることが望ましく、本実施形態では、低屈折率部4の媒質を空気としている。 A transparent material that has a light transmittance of 80% or more and a refractive index of 1.3 or more and hardly deteriorated due to heat or humidity is used for the medium of the base 2 and the protruding portion 3 constituting the optical element 1. Examples of such a transparent material include acrylic resin and glass. In the optical element 1 of the present embodiment, it is particularly preferable to use a cycloolefin polymer (COP) which is a hydrocarbon polymer having a low water absorption property, an amorphous structure and an alicyclic structure. Examples of the cycloolefin polymer include trade name: ZEONOR (registered trademark) (grade: 1020R, light transmittance: 92%, refractive index: 1.53) manufactured by ZEON Corporation. Further, the low refractive index portion 4 desirably has a refractive index of 1.4 or less in order to reduce the critical angle on the vertical surfaces 31 and 32 and easily cause total reflection. The medium of the low refractive index portion 4 is air.
 本実施形態の光学素子1の作製に際しては、まず、上記低屈折率部4及び光吸収部5を除く部分、すなわち基盤2及び複数の突状部3から成る2面コーナーリフレクタアレイ30Sが作製される。2面コーナーリフレクタアレイ30Sの作製方法としては、例えば、スタンパ等の金型を用いて、透光性樹脂を射出成形する方法、又は熱プレス成形方法が挙げられる。金型は、例えば、ナノ加工により金属製マスター板に上述した突状部3及び溝21(図3参照)の形状に対応した形状を作製した後、電珠反転する方法により作製される。また、例えば、X線リソグラフィ法を用いることにより、透明材料から成る基盤2に直接的に4つの側面を有する突状部3及び溝21を作製することができる。 In producing the optical element 1 of the present embodiment, first, a portion excluding the low refractive index portion 4 and the light absorbing portion 5, that is, a dihedral corner reflector array 30S composed of the base 2 and the plurality of protruding portions 3 is produced. The As a method for producing the two-sided corner reflector array 30S, for example, a method of injection-molding a translucent resin or a hot press molding method using a mold such as a stamper can be cited. The mold is manufactured by, for example, a method in which a shape corresponding to the shape of the protrusion 3 and the groove 21 (see FIG. 3) described above is formed on a metal master plate by nano-processing, and then reversal is performed. Further, for example, by using an X-ray lithography method, it is possible to produce the protruding portion 3 and the groove 21 having four side surfaces directly on the base 2 made of a transparent material.
 本実施形態の光学素子1では、突状部3を成す4面のうちの2面が傾斜面33、34である。すなわち、突状部3は角錐台形状とされている。また、隣り合う複数の突状部3間の溝21には、底面22が設けられている。このような形状によれば、μmオーダーの微細な構造体である突状部3に、いわゆる「抜きテーパ」を付けることができ、金型成形で2面コーナーリフレクタアレイ30Sを作成した際に、2面コーナーリフレクタアレイ30Sをスタンパ等の金型からの取り外しを容易にすることができる。 In the optical element 1 of the present embodiment, two of the four surfaces forming the protruding portion 3 are the inclined surfaces 33 and 34. That is, the protruding portion 3 has a truncated pyramid shape. In addition, a bottom surface 22 is provided in the groove 21 between the plurality of adjacent protruding portions 3. According to such a shape, it is possible to attach a so-called “drawer taper” to the protruding portion 3 which is a fine structure on the order of μm, and when the two-sided corner reflector array 30S is formed by molding, The two-sided corner reflector array 30S can be easily removed from a mold such as a stamper.
 溝21を含む突状部3の1ピッチの上面視における一辺の幅Wは、例えば、100~700μmとされる(図4(b)参照)。なお、ピッチ幅Wは、実鏡映像Pの飛び出し距離(図1参照)に応じて設定される。例えば、飛び出し距離が10cmである場合には、ピッチ幅Wは約280μmとされる。基盤2及び突状部3を含む光学素子1の板厚は、一般的には1~3mmである。基盤2(溝21の底面22)から突状部3の高さH(溝21の深さ)は、ピッチ幅Wと同等か、それよりも大きく設定される。 The width W of one side in the top view of the pitch 3 of the protruding portion 3 including the groove 21 is, for example, 100 to 700 μm (see FIG. 4B). Note that the pitch width W is set according to the pop-out distance of the real mirror image P (see FIG. 1). For example, when the pop-out distance is 10 cm, the pitch width W is about 280 μm. The plate thickness of the optical element 1 including the base 2 and the protrusions 3 is generally 1 to 3 mm. The height H (depth of the groove 21) of the protrusion 3 from the base 2 (the bottom surface 22 of the groove 21) is set to be equal to or larger than the pitch width W.
 傾斜面33、34の基盤2の法線に対する傾斜角θは、5~25°であることが好ましい(図4(a)参照)。傾斜角θを5°以上とすることで、必要な抜きテーパを確保し、2面コーナーリフレクタアレイ30Sの作製時に金型からの取り外しを容易にすることができる。また、傾斜角θを25°以下とすることで、突状部3の高さHにも依るが、2面コーナーリフレクタ30で反射された光の出射面となる上面35のサイズ(幅L)を確保し、実鏡映像Pが暗くなることを抑制することができる。なお、仮に、突状部3の高さHを300μm、突状部3の1ピッチの上面視における一辺の幅Wを300μm、上面35の一辺の幅Lを200μm、傾斜角θを18°とした場合、溝21の底面22の幅Dは、約2.5μmとなる。なお、ここで示す数値は、本実施形態の一例として示す代表値であり、本発明は、これらの数値に限定されない。 The inclination angle θ of the inclined surfaces 33 and 34 with respect to the normal of the base 2 is preferably 5 to 25 ° (see FIG. 4A). By setting the inclination angle θ to 5 ° or more, a necessary draft taper can be ensured, and the removal from the mold can be facilitated when the two-surface corner reflector array 30S is manufactured. In addition, by setting the inclination angle θ to 25 ° or less, the size (width L) of the upper surface 35 serving as an emission surface of the light reflected by the two-surface corner reflector 30 depends on the height H of the protrusion 3. And the darkness of the real mirror image P can be suppressed. Temporarily, the height H of the protruding portion 3 is 300 μm, the width W of one side in the top view of the pitch 3 of the protruding portion 3 is 300 μm, the width L of one side of the upper surface 35 is 200 μm, and the inclination angle θ is 18 °. In this case, the width D of the bottom surface 22 of the groove 21 is about 2.5 μm. In addition, the numerical value shown here is a representative value shown as an example of this embodiment, and this invention is not limited to these numerical values.
 本実施形態の光学素子1は、上記にようにして作製された2面コーナーリフレクタ30に、更に、低屈折率部4及び光吸収部5が形成されたものである。光吸収部5には、例えば、黒色インクや粒子状の顔料が用いられる。また、低屈折率部4は、2面コーナーリフレクタ30を成す垂直面31、32の表面から1μm以上の厚みを成していることが好ましい。なお、低屈折率部4は、2面コーナーリフレクタ30を成す垂直面31、32の表面から1μm以上の厚みを有する部分が、垂直面31、32の全面積の50%以上となるように形成されていればよい。2面コーナーリフレクタ30を成す垂直面31、32で光を全反射させる際に、垂直面31、32の外側に、光の波長程度の間隔を置いて屈折率の高い媒質があると、エバネッセント波を介して光が透過してしまい、垂直面31、32の内壁面での全反射が抑制されることがある。そこで、垂直面31、32の外側において、少なくともエバネッセント波がしみ出し得る領域に、1μm以上の厚さの低屈折率部4を、垂直面31、32の全面積の50%以上に配置することで、全反射効率の低下を抑制し、実鏡映像Pの輝度低下を防ぐことができる。 The optical element 1 of the present embodiment is obtained by further forming the low refractive index portion 4 and the light absorbing portion 5 on the two-surface corner reflector 30 manufactured as described above. For the light absorbing portion 5, for example, black ink or particulate pigment is used. Moreover, it is preferable that the low refractive index portion 4 has a thickness of 1 μm or more from the surfaces of the vertical surfaces 31 and 32 forming the dihedral corner reflector 30. The low refractive index portion 4 is formed so that the portion having a thickness of 1 μm or more from the surfaces of the vertical surfaces 31 and 32 forming the dihedral corner reflector 30 is 50% or more of the total area of the vertical surfaces 31 and 32. It only has to be done. When light is totally reflected by the vertical surfaces 31 and 32 forming the dihedral corner reflector 30, if there is a medium having a high refractive index outside the vertical surfaces 31 and 32 with an interval of about the wavelength of the light, an evanescent wave is generated. In some cases, light is transmitted through the inner surface of the vertical surfaces 31 and 32, and total reflection on the inner wall surfaces of the vertical surfaces 31 and 32 is suppressed. Therefore, the low refractive index portion 4 having a thickness of 1 μm or more is disposed on at least 50% of the total area of the vertical surfaces 31 and 32 at least outside the vertical surfaces 31 and 32 in a region where evanescent waves can ooze out. Thus, it is possible to suppress a decrease in total reflection efficiency and prevent a decrease in luminance of the real mirror image P.
 低屈折率部4及び光吸収部5の形成方法としては、例えば、マイクロインクジェット印刷により、傾斜面33(34)と溝21の底面22に向けて、光吸収材料を含有するインクを塗布する方法が挙げられる。このように、傾斜面34(33)と溝21の底面22に塗布されたインクが光吸収部5となり、インクが塗布されていない垂直面31(32)側には空気が存在することになり、この空気が存在する空間が低屈折率部4となる。なお、実用上問題ない程度であれば、傾斜面34(33)や溝21に塗りムラがあってもよく、垂直面31(32)に多少のインクが付着していてもよい。 As a method for forming the low refractive index portion 4 and the light absorbing portion 5, for example, a method of applying an ink containing a light absorbing material toward the inclined surface 33 (34) and the bottom surface 22 of the groove 21 by micro ink jet printing. Is mentioned. In this way, the ink applied to the inclined surface 34 (33) and the bottom surface 22 of the groove 21 becomes the light absorbing portion 5, and air exists on the vertical surface 31 (32) side where the ink is not applied. The space in which this air exists becomes the low refractive index portion 4. As long as there is no problem in practical use, there may be uneven coating on the inclined surface 34 (33) or the groove 21, and some ink may adhere to the vertical surface 31 (32).
 このようにして作成された光学素子1では、図5に示すように、低屈折率部4が2面コーナーリフレクタ30を成す垂直面32(垂直面31も同様)と接しているので、光学素子1を構成する媒体との屈折率差が大きくなる。そのため、垂直面32における臨界角が小さくなり、低屈折率部4が無い場合には全反射されないような入射角αの小さい光(図中の実線矢印)も全反射させることができ、全反射効率が向上する。その結果、実鏡映像Pを明るくすることができる。 In the optical element 1 produced in this way, as shown in FIG. 5, the low refractive index portion 4 is in contact with the vertical surface 32 (the same applies to the vertical surface 31) forming the dihedral corner reflector 30. The refractive index difference from the medium constituting 1 is increased. For this reason, the critical angle at the vertical surface 32 is reduced, and light having a small incident angle α (solid arrow in the figure) that is not totally reflected in the absence of the low refractive index portion 4 can be totally reflected. Efficiency is improved. As a result, the real mirror image P can be brightened.
 また、突状部3間には、光吸収部5が設けられているので、基盤2に入射した光のうち、突状部3に入射せずに、底面22から溝21側に導波される光(図中の破線矢印)を光吸収部5でカットする。また、垂直面32に対して臨界角よりも入射角の小さい角度で入射して溝21側に透過した光(図中の1点鎖線矢印)もカットする。このように、溝21側に導波された光を光吸収部5でカットするので、実鏡映像Pの結像に寄与しない迷光が生じることを抑制することができ、実鏡映像Pのコントラストを向上させることができる。 In addition, since the light absorbing portion 5 is provided between the projecting portions 3, the light incident on the substrate 2 is not incident on the projecting portion 3, but is guided from the bottom surface 22 to the groove 21 side. Light (broken arrow in the figure) is cut by the light absorbing portion 5. In addition, light that is incident on the vertical surface 32 at an angle of incidence smaller than the critical angle and transmitted to the groove 21 side (dotted line arrow in the figure) is also cut. In this way, the light guided to the groove 21 side is cut by the light absorption unit 5, so that stray light that does not contribute to the image formation of the real mirror image P can be suppressed, and the contrast of the real mirror image P can be suppressed. Can be improved.
 また、2面コーナーリフレクタ30間の溝21はμmオーダーと微細であるが、これらの間の外部の照明光といった環境光(図中の2点鎖線矢印)が溝21に入射しても、光吸収部5がそれをカットするので、微細な溝21で光が乱反射することもなく、白ボケの発生を抑制することができる。 Further, the groove 21 between the two-surface corner reflectors 30 is as fine as μm, but even if ambient light such as external illumination light (two-dot chain line arrow in the figure) is incident on the groove 21, no light is emitted. Since the absorption part 5 cuts it, light is not diffusely reflected by the fine groove | channel 21, but generation | occurrence | production of white blur can be suppressed.
 光吸収部5は、2面コーナーリフレクタ30を成さない突状部3の側面、すなわち本実施形態では、傾斜面33、34と接していることが好ましい。基盤2から突状部3に入射する光の一部は、垂直面31、32ではなく、傾斜面33、34に入射することが有り得る。この光もまた、実鏡映像Pの結像には寄与せず、溝21側に導波されると、実鏡映像Pのコントラストを低下させる迷光となる。そこで、光吸収部5を傾斜面33、34と接するように配置することで、溝21側に導波される光をカットすることができる。 The light absorbing portion 5 is preferably in contact with the side surface of the protruding portion 3 that does not form the two-surface corner reflector 30, that is, in the present embodiment, the inclined surfaces 33 and 34. It is possible that a part of the light incident on the projecting portion 3 from the base 2 enters the inclined surfaces 33 and 34 instead of the vertical surfaces 31 and 32. This light also does not contribute to the image formation of the real mirror image P, and when guided to the groove 21 side, it becomes stray light that lowers the contrast of the real mirror image P. Therefore, the light guided to the groove 21 side can be cut by arranging the light absorbing portion 5 in contact with the inclined surfaces 33 and 34.
 低屈折率部4及び光吸収部5の構成、及びその形成方法は、上記で説明したものに限られない。以下、低屈折率部4及び光吸収部5の構成に係る変形例、及びその形成方法について説明する。 The configuration of the low refractive index portion 4 and the light absorbing portion 5 and the formation method thereof are not limited to those described above. Hereinafter, a modified example related to the configuration of the low refractive index portion 4 and the light absorbing portion 5 and a method for forming the modified example will be described.
 第1の変形例としては、図6(a)に示すように、垂直面32(31)に除去可能なシール材料Rmを1μm厚で予め成膜しておき、溝21を光吸収材料Amで充填し、充填された光吸収材料Amを硬化させた後、シール材料Rmを除去する形成方法が挙げられる。この形成方法によれば、図5(b)に示すように、シール材料Rmが成膜されていた空間に、垂直面32(31)から厚さ1μm程度の隙間が設けられ、この隙間が低屈折率部4となり、また、上記隙間を除いて充填された光吸収材料Amが光吸収部5となる。この形成方法は、例えば、光吸収材料Amは溶解せず、シール材料Rmが溶解する所定の溶媒に、それらを浸してシール材料Rmのみを除去する方法等が挙げられる。 As a first modified example, as shown in FIG. 6A, a removable sealing material Rm is formed in a thickness of 1 μm in advance on the vertical surface 32 (31), and the groove 21 is made of a light absorbing material Am. Examples of the forming method include filling, curing the filled light absorbing material Am, and then removing the sealing material Rm. According to this forming method, as shown in FIG. 5B, a space having a thickness of about 1 μm is provided from the vertical surface 32 (31) in the space where the sealing material Rm is formed, and this gap is low. The light absorbing material Am that becomes the refractive index portion 4 and is filled excluding the gap becomes the light absorbing portion 5. Examples of this forming method include a method in which only the sealing material Rm is removed by immersing them in a predetermined solvent in which the light absorbing material Am is not dissolved but the sealing material Rm is dissolved.
 この第1の変形例においても、低屈折率部4が2面コーナーリフレクタ30を成す垂直面32(31)と接しているので、全反射効率が向上し、実鏡映像Pを明るくすることができる。また、突状部3間には、光吸収部5が設けられているので、迷光を抑制し、実鏡映像Pのコントラストを向上させることができる。更に、この第1の変形例では、図5に示した構成例に比べて、光吸収部5が溝21に占める割合が多いので、照明光といった環境光が溝21に入射すること自体を防ぎ、白ボケの発生を効果的に抑制することができる。 Also in the first modified example, since the low refractive index portion 4 is in contact with the vertical surface 32 (31) forming the dihedral corner reflector 30, the total reflection efficiency is improved and the real mirror image P can be brightened. it can. Moreover, since the light absorption part 5 is provided between the protruding parts 3, a stray light can be suppressed and the contrast of the real mirror image P can be improved. Further, in this first modification, the light absorbing portion 5 occupies a larger proportion in the groove 21 than in the configuration example shown in FIG. 5, so that ambient light such as illumination light itself is prevented from entering the groove 21. The occurrence of white blur can be effectively suppressed.
 第2の変形例として、図7(a)に示すように、複数の突状部3間の溝21に、略球状の光吸収粒子5sを充填する方法が挙げられる。光吸収粒子5sには、例えば、樹脂やカーボン等が用いられ、架橋ポリマー微粒子にカーボンブラックを内包させた粒子が特に好ましい。光吸収粒子5sの粒径は、その下限が1μm以上、好ましくは2μm以上である。光吸収粒子5sの粒径の上限は、少なくとも溝21の最大幅より小さければよく、溝21への充填性を考慮して、10μm以下であることが好ましい。 As a second modification, as shown in FIG. 7A, there is a method of filling the grooves 21 between the plurality of protruding portions 3 with substantially spherical light absorbing particles 5s. For the light absorbing particles 5s, for example, resin, carbon or the like is used, and particles in which carbon black is included in crosslinked polymer fine particles are particularly preferable. The lower limit of the particle diameter of the light absorbing particles 5s is 1 μm or more, preferably 2 μm or more. The upper limit of the particle diameter of the light-absorbing particles 5 s should be at least smaller than the maximum width of the groove 21, and is preferably 10 μm or less in consideration of the filling property into the groove 21.
 この第2の変形例では、光吸収粒子5sの一部は、垂直面32(31)にも付着する。しかしながら、図7(b)に示すように、光吸収粒子5sは略球状なので、光吸収粒子5sと垂直面32(31)とが接する箇所は僅かであり、光吸収粒子5sと垂直面32との間には、多数の隙間(空気)が存在する。従って、この隙間が、低屈折率部4として機能する。なお、低屈折率部4は、上述したように、2面コーナーリフレクタ30を成す垂直面31、32の表面から1μm以上の厚みを有する部分が、垂直面31、32の全面積の50%以上となるように形成されていればよく、低屈折率部4の厚みが部分的に1μm以下となる場合があってもよい。この第2の変形例によれば、複数の突状部3間の溝21に、略球状の光吸収粒子5sを充填するという簡易な方法により、低屈折率部4及び光吸収部5を形成することができる。また、上記構成例と同様に、実鏡映像Pの結像に寄与しない迷光を抑制して立体映像のコントラストを向上させる共に、複数の2面コーナーリフレクタ30間における光の乱反射を抑制して、白ボケを低減することができる。 In this second modification, a part of the light absorbing particles 5s also adheres to the vertical surface 32 (31). However, as shown in FIG. 7B, since the light absorbing particles 5s are substantially spherical, there are few places where the light absorbing particles 5s and the vertical surface 32 (31) are in contact with each other. There are a large number of gaps (air) between them. Therefore, this gap functions as the low refractive index portion 4. Note that, as described above, in the low refractive index portion 4, the portion having a thickness of 1 μm or more from the surfaces of the vertical surfaces 31 and 32 forming the dihedral corner reflector 30 is 50% or more of the total area of the vertical surfaces 31 and 32. The thickness of the low refractive index portion 4 may be partially 1 μm or less. According to the second modification, the low refractive index portion 4 and the light absorbing portion 5 are formed by a simple method of filling the grooves 21 between the plurality of protruding portions 3 with the substantially spherical light absorbing particles 5s. can do. Further, as in the above configuration example, the stray light that does not contribute to the image formation of the real mirror image P is suppressed to improve the contrast of the stereoscopic image, and the irregular reflection of light between the plurality of two-surface corner reflectors 30 is suppressed, White blur can be reduced.
 第3の変形例として、図8に示すように、複数の突状部3を一括して覆う透明パネル6を更に有し、光吸収部5を、透明パネル6のうち、複数の突状部3間の溝21と対向する領域に形成する方法が挙げられる。透明パネル6には、ガラスやアクリル樹脂やガラスと透明材料が用いられる。 As a third modified example, as shown in FIG. 8, it further includes a transparent panel 6 that collectively covers the plurality of protruding portions 3, and the light absorbing portion 5 is a plurality of protruding portions of the transparent panel 6. The method of forming in the area | region facing the groove | channel 21 between 3 is mentioned. For the transparent panel 6, glass, acrylic resin, glass and transparent material are used.
 この形成方法では、例えば、複数の突状部3間の溝21のパターンをスキャンし、同一のパターンを透明パネル6上に光吸収材料(インク)で印刷したものを、複数の突状部3間の溝21と精密に位置合わせをした上で張り合わせる。なお、実用上問題ない程度であれば、印刷パターンが実際の溝パターンと多少異なっていてもよく、張り合わせに際して多少の位置ズレがあってもよい。例えば、印刷した溝パターンの幅について、実際の溝21の幅と比べて±20μm程度の誤差があってもよく、張り合わせの際の位置ズレが±20μm程度あってもよい。 In this forming method, for example, a pattern of the groove 21 between the plurality of protrusions 3 is scanned, and the same pattern printed on the transparent panel 6 with a light absorbing material (ink) is used as the plurality of protrusions 3. Laminate after precisely aligning with the groove 21 between them. As long as there is no problem in practical use, the printed pattern may be slightly different from the actual groove pattern, and there may be a slight misalignment in bonding. For example, the width of the printed groove pattern may have an error of about ± 20 μm compared to the actual width of the groove 21, and the positional deviation at the time of bonding may be about ± 20 μm.
 第3の変形例では、複数の突状部3間の溝21と透明パネル6に形成された光吸収部5とで囲われた空間が、低屈折率部4となる。この第3の変形例でも、上記構成例と同様に、また、上記構成例と同様に、実鏡映像Pの結像に寄与しない迷光を抑制して立体映像のコントラストを向上させる共に、複数の2面コーナーリフレクタ30間における光の乱反射を抑制して、白ボケを低減することができる。 In the third modified example, a space surrounded by the grooves 21 between the plurality of protruding portions 3 and the light absorbing portion 5 formed in the transparent panel 6 is the low refractive index portion 4. Also in the third modification example, as in the above configuration example, and in the above configuration example, stray light that does not contribute to the image formation of the real mirror image P is suppressed to improve the contrast of the stereoscopic image, and a plurality of White blurring can be reduced by suppressing irregular reflection of light between the two-surface corner reflectors 30.
 また、上述した各構成例では、溝21内に3次元的に光吸収部5を形成する必要があったのに対して、一方、第3の変形例によれば、光吸収部5を平面状の透明パネル6上に印刷するので、実質的に2次元的に光吸収部5を形成することができ、低屈折率部4及び光吸収部5を簡易に形成することができる。 Further, in each configuration example described above, it is necessary to form the light absorbing portion 5 in the groove 21 three-dimensionally. On the other hand, according to the third modification, the light absorbing portion 5 is flat. Since it prints on the transparent panel 6 of a shape, the light absorption part 5 can be formed substantially two-dimensionally, and the low refractive index part 4 and the light absorption part 5 can be formed easily.
 第4の変形例は、図9に示すように、突状部3を立方体としたものであり、上記構成例における傾斜面33、34が存在せず、突状部3の側面を構成する4面がいずれも垂直面(図例では、垂直面36)である。また、垂直面36側にも低屈折率部4が設けられている。上述した傾斜面33、34を有する構成例では、垂直面31、32の内角と対向する方向にある被観察物O(図1参照)から発せられた光を垂直面31、32で2回反射させて、実鏡映像Pを結像させる。一方、この第4の変形例では、垂直面31、32の内角とは反対方向からの光に対しても、垂直面36とこれと直交する垂直面(不図示)の2面コーナーリフレクタで反射して、実鏡映像を結像させることができる。 As shown in FIG. 9, the fourth modified example is one in which the protruding portion 3 is a cube, and the inclined surfaces 33 and 34 in the above configuration example do not exist, and the side surface of the protruding portion 3 is configured 4. Each of the surfaces is a vertical surface (vertical surface 36 in the illustrated example). The low refractive index portion 4 is also provided on the vertical surface 36 side. In the configuration example having the inclined surfaces 33 and 34 described above, the light emitted from the observation object O (see FIG. 1) in the direction opposite to the inner angle of the vertical surfaces 31 and 32 is reflected twice by the vertical surfaces 31 and 32. Thus, the real mirror image P is imaged. On the other hand, in the fourth modified example, light from the direction opposite to the inner angle of the vertical surfaces 31 and 32 is reflected by the two-surface corner reflector of the vertical surface 36 and a vertical surface (not shown) orthogonal thereto. Thus, a real mirror image can be formed.
 次に、本発明の一実施形態に係る映像表示装置について、図10を参照して説明する。映像表示装置10は、上述した光学素子1を具体的に適用したものであり、上面に開口部11を有する箱体12と、箱体12の内側面に設けられた映像表示部13と、を備える。光学素子1は、箱体12の開口部11に取り付けられている。図例では、映像表示部13は、例えば、液晶ディスプレイ装置が用いられ、図例では、文字「A」を上下反転させた倒立姿勢で表示している。映像表示部13から出射された光は、光学素子1により屈曲反射され、文字「A」の実鏡映像を結像させる。観察者は、映像表示装置10の斜め上方位置に視点Epを置いて光学素子1を覗き込んだ際に、文字「A」の実鏡映像を空中映像として視認することができる。 Next, a video display apparatus according to an embodiment of the present invention will be described with reference to FIG. The video display device 10 is a specific application of the optical element 1 described above, and includes a box 12 having an opening 11 on an upper surface, and a video display unit 13 provided on an inner surface of the box 12. Prepare. The optical element 1 is attached to the opening 11 of the box 12. In the illustrated example, the video display unit 13 uses, for example, a liquid crystal display device, and in the illustrated example, the image “A” is displayed in an inverted posture in which the character “A” is inverted upside down. The light emitted from the image display unit 13 is bent and reflected by the optical element 1 to form a real mirror image of the letter “A”. The observer can view the real mirror image of the letter “A” as an aerial image when looking into the optical element 1 with the viewpoint Ep placed obliquely above the image display device 10.
 本発明は、上記実施形態及び各種変形例に限られず、種々変形が可能である。上記実施形態及び変形例では、いずれも突状部3が、4面の側面を有する角錐台形状又は立方体形状のものを挙げたが、2面の垂直面と光を出射する上面を有していればよく、例えば、三角錐台形状、又は五角以上の角錐台形状形であってもよい。また、光吸収部5は、垂直面31、32との間に低屈折率部4が形成されるように、複数の突状部3間に存在していれば、必ずしも上述した構成例に限られない。また、低屈折率部4は、屈折率の低い空気を主たる媒体とすることが最も好ましいが、突状部3自体の屈折率よりも低屈折率の透光性樹脂、中空シリカ粒子、又はメソポーラスシリカ粒子等が適宜に適用されてもよい。 The present invention is not limited to the above embodiment and various modifications, and various modifications can be made. In the above-described embodiment and the modification, the protruding portion 3 has a truncated pyramid shape or a cubic shape having four side surfaces, but has two vertical surfaces and an upper surface that emits light. For example, a triangular frustum shape or a pyramid shape having five or more corners may be used. Further, the light absorbing portion 5 is not necessarily limited to the configuration example described above as long as it exists between the plurality of protruding portions 3 so that the low refractive index portion 4 is formed between the vertical surfaces 31 and 32. I can't. The low refractive index portion 4 is most preferably mainly composed of air having a low refractive index. However, the low refractive index portion 4 is a translucent resin, hollow silica particle, or mesoporous material having a refractive index lower than that of the protrusion 3 itself. Silica particles and the like may be applied as appropriate.
 1  光学素子
 10  映像表示装置
 2 基盤
 3  突状部
 30  2面コーナーリフレクタ
 31、32  垂直面(側面)
 33、34  傾斜面(側面)
 4  低屈折率部
 5  光吸収部
 5s  光吸収粒子(粒子)
 6  透明パネル
DESCRIPTION OF SYMBOLS 1 Optical element 10 Image | video display apparatus 2 Base | substrate 3 Protruding part 30 Two- surface corner reflector 31, 32 Vertical surface (side surface)
33, 34 Inclined surface (side surface)
4 Low refractive index part 5 Light absorbing part 5s Light absorbing particle (particle)
6 Transparent panel

Claims (6)

  1.  一方の面側にある被観察物の実像を他方の面側の空間に結像させる光学素子であって、
     透明材料により形成されて一平面を成す基盤と、前記基盤から突出するように該基盤と一体的に形成された複数の突状部と、を有し、
     前記突状部は、前記基盤に対して角度を持つ3つ以上の側面を有し、
     前記側面のうちの隣り合う2面は、前記基盤に対して垂直で且つ互いに略直交しており、被観察物から発せられる光を反射する2面コーナーリフレクタを成し、
     複数の前記突状部間には、前記突状部を成す透明材料の屈折率よりも屈折率の低い媒質から成る低屈折率部と、複数の前記突状部間に導波した光を吸収する光吸収部と、が配置されており、
     前記低屈折率部は、前記2面コーナーリフレクタと接していることを特徴とする光学素子。
    An optical element that forms a real image of an observation object on one surface side in a space on the other surface side,
    A base formed of a transparent material to form a flat surface, and a plurality of protrusions formed integrally with the base so as to protrude from the base;
    The protrusion has three or more side surfaces having an angle with respect to the base,
    Two adjacent surfaces of the side surfaces are perpendicular to the base and are substantially orthogonal to each other to form a two-surface corner reflector that reflects light emitted from the object to be observed,
    Between the plurality of protrusions, a low refractive index portion made of a medium having a refractive index lower than the refractive index of the transparent material forming the protrusions and light guided between the plurality of protrusions is absorbed. And a light absorbing part to be arranged,
    The optical element, wherein the low refractive index portion is in contact with the dihedral corner reflector.
  2.  前記低屈折率部は、前記2面コーナーリフレクタの表面から1μm以上の厚みを成していることを特徴とする請求項1に記載の光学素子。 The optical element according to claim 1, wherein the low refractive index portion has a thickness of 1 μm or more from the surface of the dihedral corner reflector.
  3.  前記光吸収部は、前記2面コーナーリフレクタを成さない前記突状部の側面と接していることを特徴とする請求項1又は請求項2に記載の光学素子。 The optical element according to claim 1, wherein the light absorbing portion is in contact with a side surface of the protruding portion that does not form the two-surface corner reflector.
  4.  前記光吸収部は、直径1μm以上の粒子から構成されることを特徴する請求項1乃至請求項3に記載の光学素子。 The optical element according to any one of claims 1 to 3, wherein the light absorbing portion is composed of particles having a diameter of 1 µm or more.
  5.  複数の前記突状部を一括して覆う透明パネルを更に有し、
     前記光吸収部は、前記透明パネルのうち、複数の前記突状部間と対向する領域に形成されていることを特徴とする請求項1乃至請求項4のいずれか一項に記載の光学素子。
    A transparent panel that collectively covers the plurality of protrusions;
    5. The optical element according to claim 1, wherein the light absorbing portion is formed in a region of the transparent panel that faces the plurality of protruding portions. .
  6.  請求項1乃至請求項5のいずれか一項に記載された光学素子を用いた映像表示装置。 An image display device using the optical element according to any one of claims 1 to 5.
PCT/JP2017/046392 2017-01-30 2017-12-25 Optical element and image display device using same WO2018139141A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018564175A JP7152019B2 (en) 2017-01-30 2017-12-25 Optical element and image display device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-014733 2017-01-30
JP2017014733 2017-01-30

Publications (1)

Publication Number Publication Date
WO2018139141A1 true WO2018139141A1 (en) 2018-08-02

Family

ID=62978508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046392 WO2018139141A1 (en) 2017-01-30 2017-12-25 Optical element and image display device using same

Country Status (2)

Country Link
JP (1) JP7152019B2 (en)
WO (1) WO2018139141A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162378A1 (en) * 2022-02-24 2023-08-31 株式会社パリティ・イノベーションズ Optical element and image display device using same
JP7498637B2 (en) 2020-08-07 2024-06-12 株式会社日本触媒 Aerial Display
JP7498636B2 (en) 2020-06-29 2024-06-12 株式会社日本触媒 Passive optical element for an aerial display and an aerial display including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066206A (en) * 2001-08-27 2003-03-05 Dainippon Printing Co Ltd Enlarging member for two dimensional viewing angle, and display device
US20070252954A1 (en) * 2003-05-22 2007-11-01 Mcguire James P Jr Beamsplitting structures and methods in optical systems
WO2009131128A1 (en) * 2008-04-22 2009-10-29 Fujishima Tomohiko Optical imaging device and optical imaging method using the same
WO2011108469A1 (en) * 2010-03-01 2011-09-09 シャープ株式会社 Reflective image forming element and optical system
JP2011191404A (en) * 2010-03-12 2011-09-29 Stanley Electric Co Ltd Two-face corner reflector array optical element and display device using the same
JP2012247459A (en) * 2011-05-25 2012-12-13 National Institute Of Information & Communication Technology Reflector array optical device and display unit using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6742903B2 (en) * 2001-07-25 2004-06-01 Francis X. Canning Arrangement of corner reflectors for a nearly omnidirectional return
US7926961B2 (en) * 2008-11-20 2011-04-19 Bae Systems Information And Electronic Systems Integration Inc. Low background flux telescope with integrated baffle
US9097849B2 (en) * 2013-03-07 2015-08-04 Seiko Epson Corporation Display device
CN107167918B (en) * 2017-07-12 2023-12-19 陈科枫 Plane symmetry imaging optical plate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066206A (en) * 2001-08-27 2003-03-05 Dainippon Printing Co Ltd Enlarging member for two dimensional viewing angle, and display device
US20070252954A1 (en) * 2003-05-22 2007-11-01 Mcguire James P Jr Beamsplitting structures and methods in optical systems
WO2009131128A1 (en) * 2008-04-22 2009-10-29 Fujishima Tomohiko Optical imaging device and optical imaging method using the same
WO2011108469A1 (en) * 2010-03-01 2011-09-09 シャープ株式会社 Reflective image forming element and optical system
JP2011191404A (en) * 2010-03-12 2011-09-29 Stanley Electric Co Ltd Two-face corner reflector array optical element and display device using the same
JP2012247459A (en) * 2011-05-25 2012-12-13 National Institute Of Information & Communication Technology Reflector array optical device and display unit using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7498636B2 (en) 2020-06-29 2024-06-12 株式会社日本触媒 Passive optical element for an aerial display and an aerial display including the same
JP7498637B2 (en) 2020-08-07 2024-06-12 株式会社日本触媒 Aerial Display
WO2023162378A1 (en) * 2022-02-24 2023-08-31 株式会社パリティ・イノベーションズ Optical element and image display device using same

Also Published As

Publication number Publication date
JP7152019B2 (en) 2022-10-12
JPWO2018139141A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
CN113866998B (en) System for imaging in the air
JP6598297B2 (en) 2-sided corner reflector array
JP5437436B2 (en) Optical imaging device
WO2018139141A1 (en) Optical element and image display device using same
WO2016136827A1 (en) Transmissive screen and head-up display device using same
JP6601742B2 (en) Transmission screen and head-up display device using the same
JP5614745B2 (en) Display device using two-surface corner reflector array optical element
JP2005063926A (en) Light emitting device
JP2004151592A (en) Contrast improvement sheet and back projection type screen
JP2006337944A (en) Semi-transmission type reflection screen
KR20070001053A (en) Fresnel lens sheet, transmission screen and rear projection display
JP2855510B2 (en) Lens sheet, edge light type surface light source and transmission type display
WO2011068168A1 (en) Light diffusion sheet, method for manufacturing same, and transmissive display device provided with light diffusion sheet
JP2000056105A (en) Directional light diffusing film, its manufacture and display device
JP6837668B2 (en) Optical element and image display device using it
JP4737226B2 (en) Light diffusion sheet and projection screen
WO2012005135A1 (en) Light diffusion sheet and display device provided with the light diffusion sheet
WO2019159758A1 (en) Optical image forming device
JP2014142429A (en) Reflective screen, front projection display device, and multi-screen display device
WO2023162378A1 (en) Optical element and image display device using same
JP2008102547A (en) Enlarging member for two-dimensional viewing angle and display device
JP6277650B2 (en) Light guide plate, surface light source device, video source unit, and liquid crystal display device
JP2021039145A (en) Optical structure, polarizing plate with optical structure, display device, and manufacturing method for optical structure
JP2017191175A (en) Image formation device
JP2019133109A (en) Optical element and graphic display device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894116

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564175

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894116

Country of ref document: EP

Kind code of ref document: A1