WO2018139112A1 - Epoxy resin, epoxy resin composition containing same, and cured object obtained from said epoxy resin composition - Google Patents

Epoxy resin, epoxy resin composition containing same, and cured object obtained from said epoxy resin composition Download PDF

Info

Publication number
WO2018139112A1
WO2018139112A1 PCT/JP2017/045470 JP2017045470W WO2018139112A1 WO 2018139112 A1 WO2018139112 A1 WO 2018139112A1 JP 2017045470 W JP2017045470 W JP 2017045470W WO 2018139112 A1 WO2018139112 A1 WO 2018139112A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
epoxy
content
mass
reaction
Prior art date
Application number
PCT/JP2017/045470
Other languages
French (fr)
Japanese (ja)
Inventor
森永 邦裕
真実 木村
弘司 林
菜々 杉本
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2018564165A priority Critical patent/JPWO2018139112A1/en
Publication of WO2018139112A1 publication Critical patent/WO2018139112A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to an epoxy resin, an epoxy resin composition containing the epoxy resin, and a cured product using the epoxy resin composition.
  • the epoxy resin is a curable resin that contains an epoxy group in the molecule and can be cured by forming a crosslinked network with the epoxy group.
  • Epoxy resin cured products have excellent mechanical strength, heat resistance, water resistance, insulation, etc., so they can be used for applications such as fiber-reinforced composite materials, heat dissipation members, adhesives, paints, semiconductors, and printed wiring boards. Has been applied.
  • epoxy resins have been provided for various uses.
  • their use is expanding, for example, features such as excellent heat resistance and mechanical strength while being lightweight.
  • cured material of an epoxy resin is improving, and the higher performance of an epoxy resin is calculated
  • Patent Document 1 describes an epoxy resin obtained by reacting dihydroxynaphthalenes with epihalohydrin. According to Patent Document 1, it is described that when an epoxy resin composition containing the epoxy resin having the specific structure, a predetermined curing agent, and a predetermined inorganic filler is used, the cured product is excellent in heat conduction. ing.
  • the epoxy resin described in Patent Document 1 can be obtained by reacting dihydroxynaphthalene and epihalohydrin and epoxidizing them.
  • the epoxy resin described in Patent Document 1 that is, the epoxy resin obtained by reacting dihydroxynaphthalenes with epihalohydrin, although the cured product has a certain thermal conductivity, is not sufficient in heat resistance and toughness. It turns out that there may not be.
  • an object of the present invention is to provide an epoxy resin in which the obtained cured product is excellent in heat resistance and toughness.
  • the present inventors have conducted intensive research to solve the above problems. As a result, it has been found that the above-mentioned problems can be solved by controlling the content of a predetermined component of a composition obtained by using a predetermined dihydroxynaphthalene and reacting with epihalohydrin, thereby completing the present invention. It was.
  • the present invention relates to an epoxy resin that is a reaction product of 1,6-dihydroxynaphthalene and epihalohydrin.
  • the epoxy resin includes a trifunctional epoxy compound represented by the following chemical formula (1) and / or chemical formula (2), and the content of the trifunctional epoxy compound is based on the solid content of the epoxy resin. It is 5.0 mass% or less, It is characterized by the above-mentioned.
  • an epoxy resin in which the obtained cured product is excellent in heat resistance and toughness is provided.
  • the epoxy resin according to this embodiment is a reaction product of 1,6-dihydroxynaphthalene and epihalohydrin.
  • reaction product of 1,6-dihydroxynaphthalene and epihalohydrin may contain various epoxy compounds.
  • the physical properties of the epoxy resin as a reaction product and the cured product thereof can be obtained only with a bifunctional epoxy compound that can be a main component such as 1,6-bis (2,3-epoxypropan-1-yloxy) naphthalene. And may be affected by other epoxy compounds.
  • the epoxy resin according to the present embodiment pays attention to a predetermined trifunctional epoxy compound that can be included in the reaction product, and controls the content of the trifunctional epoxy compound. Thereby, the obtained hardened
  • 1,6-dihydroxynaphthalene 1,6-dihydroxynaphthalene is represented by the following chemical formula.
  • the amount of epihalohydrin added is not particularly limited, but is preferably 1.5 to 10.0 moles and preferably 2.0 to 7.5 moles with respect to 1 mole of the hydroxy group of 1,6-dihydroxynaphthalene. It is more preferable. It is preferable that the addition amount of epihalohydrin is 1.5 mol or more because a low-viscosity epoxy resin with less oligomer components can be obtained. On the other hand, when the added amount of epihalohydrin is 10.0 mol or less, the amount of excess epihahydrin that becomes unnecessary after the reaction can be reduced, which is preferable.
  • reaction The reaction between 1,6-dihydroxynaphthalene and epihalohydrin is not particularly limited and can be performed by a known method.
  • the reaction includes a step (1) of reacting a mixture containing 1,6-dihydroxynaphthalene and epihalohydrin in the presence of a basic compound.
  • the process (2) with which the obtained reaction material is made to react in presence of a basic compound may be further included as needed.
  • Step (1) is a step of reacting a mixture containing 1,6-dihydroxynaphthalene and epihalohydrin in the presence of a basic compound.
  • the mixture contains 1,6-dihydroxynaphthalene and epihalohydrin.
  • a solvent, a basic compound, etc. may be further included as needed.
  • 1,6-dihydroxynaphthalene and epihalohydrin The 1,6-dihydroxynaphthalene and the epihalohydrin are as described above, and thus the description thereof is omitted here.
  • Solvent is not particularly limited, and examples thereof include alcohols such as methanol, ethanol, isopropyl alcohol and butanol; ketones such as acetone and methyl ethyl ketone; ethers such as dioxane; dimethyl sulfone; dimethyl sulfoxide and the like. These solvents may be used alone or in combination of two or more.
  • the addition amount of the solvent is preferably 5 to 100% by mass, more preferably 5 to 60% by mass, and further preferably 5 to 50% by mass with respect to the addition amount of epihalohydrin. It is particularly preferably 10 to 30% by mass.
  • the basic compound has a function of promoting the nucleophilic reaction and ring-closing reaction between 1,6-dihydroxynaphthalene and epihalohydrin.
  • the basic compound is not particularly limited, and examples thereof include potassium hydroxide, sodium hydroxide, barium hydroxide, magnesium oxide, sodium carbonate, and potassium carbonate. Of these, potassium hydroxide and sodium hydroxide are preferably used. In addition, these basic compounds may be used independently or may be used in combination of 2 or more type.
  • the reaction typically includes a first reaction (nucleophilic reaction) of 1,6-dihydroxynaphthalene and epihalohydrin and a second reaction (ring closure) of the resulting haloalcohol as shown below. Reaction).
  • the first reaction and the second reaction may proceed simultaneously or sequentially. From the viewpoint of efficiently performing the reaction, the first reaction and the second reaction are preferably allowed to proceed sequentially. At this time, it is preferable to remove the epihalohydrin after the first reaction as the main reaction and to perform the second reaction as the main reaction.
  • the amount of the basic compound added in the first reaction is not particularly limited, but is preferably 0.05 to 0.7 mol with respect to 1 mol of 1,6-dihydroxynaphthalene. More preferably, it is ⁇ 0.5 mol.
  • the reaction temperature for carrying out the first reaction is not particularly limited, but is preferably 20 to 120 ° C, more preferably 30 to 80 ° C.
  • the reaction time for conducting the first reaction is not particularly limited, but is preferably 2 to 7 hours.
  • the amount of the basic compound added in the second reaction is not particularly limited, but is preferably 0.4 to 3.0 mol with respect to 1 mol of 1,6-dihydroxynaphthalene. More preferably, it is 6 to 2.0 mol.
  • the reaction temperature for carrying out the second reaction is not particularly limited, but is preferably 20 to 120 ° C, more preferably 30 to 80 ° C.
  • the reaction time for performing the second reaction is not particularly limited, but is preferably 1 to 10 hours.
  • Step (2) is a step of reacting the reaction product obtained in step (1) in the presence of a basic compound.
  • the reaction product obtained in the step (1) does not proceed with the second reaction described above, and an unreacted haloalcohol obtained by the first reaction may remain.
  • an unreacted haloalcohol can be closed and the unreacted haloalcohol in the epoxy resin can be eliminated or reduced.
  • step (2) the amount of basic compound added, the reaction temperature, and the reaction time are the same as in the second reaction described above.
  • step (2) it is preferable to remove epihalohydrin and the like from the reaction product obtained in the step (1) before performing the step (2).
  • reaction product includes an epoxy compound.
  • reaction product may include a solvent and other compounds.
  • the epoxy compound mainly includes a bifunctional epoxy compound.
  • a monofunctional epoxy compound, a trifunctional epoxy compound, a polyfunctional epoxy compound, an oligomer of an epoxy compound, and the like may be included.
  • the bifunctional epoxy compound is a compound in which two glycidyl ether groups are introduced into 1,6-dihydroxynaphthalene. Specific examples thereof include, but are not limited to, compounds represented by the following chemical formula (3).
  • the monofunctional epoxy compound is a compound in which one glycidyl ether group is introduced into 1,6-dihydroxynaphthalene. Specific examples thereof include, but are not limited to, compounds represented by the following formulas.
  • Trifunctional epoxy compound The trifunctional epoxy compound is obtained by introducing three glycidyl ether groups into 1,6-dihydroxynaphthalene. Specific examples thereof include, but are not limited to, compounds represented by chemical formulas (1) and (2).
  • the polyfunctional epoxy compound is a compound in which four or more glycidyl ether groups are introduced into 1,6-dihydroxynaphthalene. Specific examples thereof include, but are not limited to, compounds represented by the following formulas.
  • the oligomer is obtained by further reacting at least one of a monofunctional epoxy compound, a bifunctional epoxy compound, a trifunctional epoxy compound, and a polyfunctional epoxy compound with 1,6-dihydroxynaphthalene.
  • the oligomer is not particularly limited, and examples thereof include an oligomer represented by the following formula obtained by reacting a bifunctional epoxy compound represented by the above chemical formula (3) with 1,6-dihydroxynaphthalene.
  • n is 1 or more, preferably 1 to 5.
  • the solvent is not particularly limited, and examples thereof include water, a solvent, and the like that can be intentionally added in the purification step, in addition to the solvent used in the above-described reaction.
  • the other compound is not particularly limited, and examples thereof include compounds other than the epoxy compound generated by the reaction of 1,6-dihydroxynaphthalene and epihalohydrin. Specific examples include unreacted 1,6-dihydroxynaphthalene, unreacted epihalohydrin, unreacted basic compounds, and compounds derived from these (byproducts, etc.).
  • the epoxy resin according to this embodiment is the above-described reaction product. At this time, the epoxy resin contains a trifunctional epoxy compound represented by the chemical formula (1) and / or (2).
  • the content of the trifunctional epoxy compound is 5.0% by mass or less, preferably 3.0% by mass or less, more preferably 0.01 to 3.0% by mass, based on the solid content of the epoxy resin. %, And more preferably 0.03 to 2.0% by mass.
  • the total value of these content is the said content.
  • the “solid content of the epoxy resin” means the total mass of the components excluding the solvent in the epoxy resin. Therefore, when the epoxy resin does not contain a solvent, the total mass of the epoxy resin matches the solid content.
  • the trifunctional epoxy compound has three functional groups.
  • the epoxy resin contains such a trifunctional epoxy compound, the resulting cured product can have high heat resistance and high strength. Moreover, the fall of elongation can be suppressed or prevented because content of a trifunctional epoxy resin shall be 5.0 mass% or less, and high toughness can be obtained as a result.
  • the content of the bifunctional epoxy compound in the epoxy resin is preferably 30 to 97% by mass and more preferably 50 to 95% by mass with respect to the total mass of the epoxy compound. It is preferable that the content of the bifunctional epoxy compound is 30% by mass or more because the viscosity can be reduced. On the other hand, it is preferable that the content of the bifunctional epoxy compound is 97% by mass or less because heat resistance can be increased.
  • the content of the monofunctional epoxy compound in the epoxy resin is preferably 2 to 15% by mass, and more preferably 4 to 10% by mass with respect to the total mass of the epoxy compound. It is preferable that the content of the monofunctional epoxy compound is 2% by mass or more because the viscosity can be lowered. On the other hand, when the content of the monofunctional epoxy compound is 15% by mass or less, heat resistance can be increased, which is preferable.
  • the content of the polyfunctional epoxy compound in the epoxy resin is preferably 2 to 10% by mass, and more preferably 2 to 8% by mass with respect to the total mass of the epoxy compound. It is preferable that the content of the polyfunctional epoxy compound is 2% by mass or more because heat resistance can be increased. On the other hand, when the content of the polyfunctional epoxy compound is 10% by mass or less, the viscosity can be lowered, which is preferable.
  • the content of the oligomer in the epoxy resin is preferably 4 to 40% by mass, and more preferably 5 to 30% by mass with respect to the total mass of the epoxy compound. It is preferable that the oligomer content is 4% by mass or more because of excellent toughness. On the other hand, when the oligomer content is 40% by mass or less, the viscosity can be lowered, which is preferable.
  • the other compound in the epoxy resin is preferably 5% by mass or less, and more preferably 0.05 to 5% by mass.
  • Adjustment of the content of the component in the epoxy resin may be performed by controlling the reaction and controlling the purification process, or may be performed by adding a separate component. At this time, from the viewpoint of efficiently preparing the epoxy resin, it is preferable to adjust the content of the component of the epoxy resin by controlling the reaction. For example, by appropriately changing the addition amount of epihalohydrin, reaction temperature, reaction time, distillation of epihalohydrin, and the like, the content of the epoxy resin component can be adjusted by controlling the reaction.
  • the epoxy equivalent of the epoxy resin is not particularly limited, but is preferably 130 to 220 g / equivalent (Eq.), And 135 to 200 g / Eq. It is more preferable that Epoxy equivalent is 130 g / Eq. The above is preferable because the viscosity can be lowered. On the other hand, the epoxy equivalent was 220 g / Eq. The following is preferable because heat resistance can be increased. In addition, the value measured by the method described in an Example shall be employ
  • the viscosity of the epoxy resin is not particularly limited, but is preferably 500 to 1700 mPa ⁇ s, and more preferably 650 to 1500 mPa ⁇ s. It is preferable for the viscosity of the epoxy resin to be 500 mPa ⁇ s or more because sagging during molding can be suppressed. On the other hand, when the viscosity of the epoxy resin is 1700 mPa ⁇ s or less, it is preferable because the impregnation property to the reinforcing fiber is excellent.
  • the value measured by the method described in an Example shall be employ
  • an epoxy resin composition contains the above-mentioned epoxy resin and a hardening
  • the epoxy resin composition may further contain other epoxy resins, other resins, curing accelerators, organic solvents, inorganic fillers, additives, and the like as necessary.
  • epoxy resin Since the epoxy resin described above can be used, the description thereof is omitted here.
  • the content of the epoxy resin is preferably 30 to 99% by mass and more preferably 40 to 97% by mass with respect to the solid content of the resin composition. It is preferable that the content of the epoxy resin is 30% by mass or more because the performance of the epoxy resin is easily developed. On the other hand, when the content of the epoxy resin is 99% by mass or less, the choice of the curing agent is preferable.
  • the “solid content of the resin composition” means the total mass of components in the composition excluding the organic solvent described later. Therefore, when the resin composition does not contain a solvent, the total mass of the composition matches the solid content.
  • Another epoxy resin is an epoxy resin containing an epoxy compound other than the epoxy compound contained in the above-described epoxy resin.
  • a reaction product of substituted 1,6-dihydroxynaphthalene with epihalohydrin or substituted epihalohydrin substituted or unsubstituted 1,4-dihydroxynaphthalene, substituted or unsubstituted 1,5-dihydroxynaphthalene
  • Examples thereof include a reaction product of substituted or unsubstituted 2,6-dihydroxynaphthalene, substituted or unsubstituted 2,7-dihydroxynaphthalene and epihalohydrin or substituted epihalohydrin.
  • substituted means that at least one hydrogen atom bonded to naphthalene of dihydroxynaphthalene is substituted with a substituent.
  • substituted means that at least one hydrogen atom bonded to naphthalene of dihydroxynaphthalene is substituted with a substituent.
  • substituted means methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, octyl group, decyl, etc.
  • An alkenyl group having 2 to 10 carbon atoms such as a propylene group or an octenyl group; an alkynyl group having 2 to 10 carbon atoms such as a propargyl group or a butynyl group; 1 to 10 carbon atoms such as a methoxy group, an ethoxy group or a propyloxy group
  • An alkyloxy group having 2 to 10 carbon atoms such as an acetyl group or an ethylcarbonyl group;
  • Aryl groups having 6 to 10 carbon atoms such as nyl group, tolyl
  • the “substituted epihalohydrin” is not particularly limited, but means that at least one of the hydrogen atoms constituting the epihalohydrin is substituted with a substituent, specifically, 3-chloro-2-methyl-1, 2-epoxypropane, 3-chloro-3-methyl-1,2-epoxypropane, 3-chloro-2-ethyl-1,2-epoxypropane, 3-chloro-3-ethyl-1,2-epoxypropane, Examples include 3-chloro-2-propyl-1,2-epoxypropane and 3-chloro-3-propyl-1,2-epoxypropane.
  • the other epoxy resin may be an epoxy resin other than an epoxy resin containing a dihydroxynaphthalene skeleton.
  • epoxy resins are not particularly limited, but are bisphenol type epoxy resins such as bisphenol A type epoxy resin and bisphenol F type epoxy resin; biphenyl type epoxy resins such as biphenyl type epoxy resin and tetramethylbiphenyl type epoxy resin; phenol Novolac epoxy resins, cresol novolac epoxy resins, bisphenol A novolac epoxy resins, epoxidized products of condensation products of phenols and aromatic aldehydes having phenolic hydroxyl groups, novolac epoxy resins such as biphenyl novolac epoxy resins; Phenylmethane type epoxy resin; tetraphenylethane type epoxy resin; dicyclopentadiene-phenol addition reaction type epoxy resin; phenol aralkyl type epoxy resin; Runoborakku type epoxy resin, naphthol aralkyl type epoxy resin, naphthol - phenol co-con
  • the other epoxy resins described above may be used alone or in combination of two or more.
  • the other resin means a resin other than the epoxy resin.
  • the other resin may be a thermosetting resin or a thermoplastic resin.
  • specific examples of other resins include, but are not limited to, polycarbonate resin, polyphenylene ether resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene resin, polypropylene resin, polyimide resin, polyamideimide resin, polyetherimide resin, polyether.
  • examples include sulfone resins, polyketone resins, polyetherketone resins, polyetheretherketone resins, and phenolic resins. These other resins may be used alone or in combination of two or more.
  • the curing agent is not particularly limited, and examples thereof include amine compounds, amide compounds, acid anhydride compounds, phenol compounds, and the like.
  • Examples of the amine compound include ethylenediamine, diaminopropane, diaminobutane, diethylenetriamine, triethylenetetramine, 1,4-cyclohexanediamine, isophoronediamine, diaminodicyclohexylmethane, diaminodiphenylmethane, diaminodiphenylsulfone, phenylenediamine, imidazole, and BF.
  • Examples thereof include 3 -amine complexes and guanidine derivatives.
  • amide compounds examples include polyamide resins synthesized from dicyandiamide and a dimer of linolenic acid and ethylenediamine.
  • acid anhydride compounds examples include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexa And hydrophthalic anhydride.
  • phenolic compound examples include phenol novolak resin, cresol novolak resin, aromatic hydrocarbon formaldehyde resin-modified phenol resin, dicyclopentadiene phenol addition resin, phenol aralkyl resin, ⁇ -naphthol aralkyl resin, ⁇ -naphthol aralkyl resin, biphenyl.
  • Aralkyl resins trimethylol methane resins, tetraphenylol ethane resins, naphthol novolak resins, naphthol-phenol co-condensed novolac resins, naphthol-cresol co-condensed novolac resins, and amino group-containing triazine compounds (melamine, benzoguanamine, etc.) and phenols ( Phenol, cresol, and the like) and formaldehyde, and aminotriazine-modified phenolic resin.
  • amine compounds and phenol compounds are preferably used.
  • cured material may be used independently or may be used in combination of 2 or more type.
  • the content of the curing agent is preferably 1 to 70% by mass and more preferably 3 to 60% by mass with respect to the solid content of the resin composition.
  • the content of the curing agent is 1% by mass or more, it is preferable because choices of the curing agent are expanded.
  • the content of the curing agent is 70% by mass or less because the performance of the epoxy resin is easily developed.
  • the curing accelerator has a function of promoting curing. Thereby, reaction time can be shortened, generation of unreacted epoxy compounds can be prevented or reduced, and the like.
  • the curing accelerator is not particularly limited, and examples thereof include phosphorus compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, amine complexes, urea derivatives, and the like. Of these, imidazoles are preferably used. These curing accelerators may be used alone or in combination of two or more.
  • the content of the curing accelerator is preferably from 0.1 to 10% by mass, more preferably from 0.5 to 5% by mass, based on the solid content of the resin composition. It is preferable that the content of the curing accelerator is 0.1% by mass or more because curing can be accelerated. On the other hand, when the content of the curing accelerator is 10% by mass or less, it is preferable because the pot life can be lengthened.
  • Organic solvent has a function of adjusting the viscosity of the epoxy resin composition. Thereby, the impregnation property to a base material etc. can be improved.
  • the organic solvent is not particularly limited, but ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, carbitol acetate, ethyl diglycol acetate, propylene glycol Acetic esters such as monomethyl ether acetate; alcohols such as isopropyl alcohol, butanol, cellosolve and butyl carbitol; aromatic hydrocarbons such as toluene and xylene; amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone Is mentioned. Of these, alcohols and ketones are preferably used, and butanol and methyl ethyl ketone are more preferably used. In addition, these solvents may be used independently or may be used in combination of 2 or more type.
  • the content of the organic solvent is preferably 10 to 60% by mass and more preferably 20 to 50% by mass with respect to the solid content of the epoxy resin. It is preferable that the content of the organic solvent is 10% by mass or more because the viscosity can be lowered. On the other hand, it is preferable that the content of the organic solvent is 60% by mass or less because nonvolatile components can be reduced.
  • the inorganic filler has a function of preventing an increase in melt viscosity.
  • the inorganic filler is not particularly limited, and examples thereof include silica such as fused silica and crystalline silica, aluminum oxide, silicon nitride, and aluminum nitride. Of these, silica is preferably used, and fused silica is more preferably used. In addition, these inorganic fillers may be used independently or may be used in combination of 2 or more type.
  • the content of the inorganic filler is preferably 20 to 80% by mass and more preferably 20 to 60% by mass with respect to the solid content of the epoxy resin. It is preferable that the content of the inorganic filler is 20% by mass or more because the elastic modulus can be increased. On the other hand, when the content of the inorganic filler is 80% by mass or less, it is preferable because the viscosity can be lowered.
  • Additives that can be contained in the epoxy resin composition are not particularly limited, but include reinforcing fibers, flame retardants, release agents, pigments, antioxidants, ultraviolet absorbers, light stabilizers, antistatic agents, and conductivity-imparting agents. Etc. These additives may be used alone or in combination of two or more.
  • the epoxy resin composition can be applied to uses such as fiber reinforced composite materials, adhesives, paints, and the like.
  • fiber reinforced composite materials such as fiber reinforced composite materials, adhesives, paints, and the like.
  • uses of the fiber reinforced composite material will be described in detail.
  • the fiber reinforced composite material is a sheet-like intermediate material in which a reinforcing fiber is impregnated with an epoxy resin composition.
  • the raw material of the reinforcing fiber is not particularly limited, but includes carbon fibers such as polyacrylonitrile-based carbon fiber, pitch-based carbon fiber, rayon-based carbon fiber, glass fiber, aramid fiber, boron fiber, alumina fiber, silicon carbide fiber, etc. It is done. Of these, it is preferable to use carbon fibers.
  • the form of the reinforcing fiber examples include twisted yarn, untwisted yarn, and non-twisted yarn. Of these, untwisted yarns and non-twisted yarns are preferred because they have excellent moldability.
  • the form of the reinforcing fiber may be one in which the fiber directions are aligned in one direction, or may be a woven fabric such as plain weave or satin weave.
  • the above-mentioned reinforcing fibers may be used alone or in combination of two or more.
  • the content of the reinforcing fiber in the fiber reinforced composite material is preferably 40 to 85% by volume with respect to the total volume of the fiber reinforced composite material, and more preferably 50 to 70% by volume from the viewpoint of excellent strength. preferable.
  • the content of the reinforcing fiber is 40% by volume or more, flame retardancy of the obtained cured product is obtained, and this is preferable from the viewpoint of excellent physical properties such as specific elastic modulus and specific strength.
  • the content of the reinforcing fibers is 85% by volume or less, the adhesiveness between the epoxy resin composition and the reinforcing fibers becomes good, and for example, when the prepregs are laminated, delamination of the prepregs can be prevented.
  • the impregnation degree of the reinforcing fiber of the epoxy resin composition in the fiber reinforced composite material is not particularly limited, and the epoxy resin composition may be impregnated to the inside of the fiber bundle of the reinforcing fiber, or near the surface of the sheet-like fiber. It may be localized.
  • the method for producing the fiber reinforced composite material is not particularly limited, and a known method can be adopted as appropriate. Specific examples include a wet method and a hot melt method.
  • the viscosity of the epoxy resin composition is reduced by heating without using an organic solvent to form a film on a roll or release paper, and then from both sides or one side of a sheet-like fiber made of reinforcing fibers.
  • This is a method of impregnating a film by heating and pressurizing it.
  • the temperature of the resin composition when impregnating the reinforcing fibers is preferably 50 to 250 ° C., and more preferably 50 to 100 ° C. It is preferable that the temperature of the resin composition at the time of impregnation is 50 ° C. or higher because the reinforcing fibers are easily impregnated. On the other hand, it is preferable that the temperature of the resin composition at the time of impregnation is 250 ° C. or lower because an increase in the glass transition temperature due to the progress of a partial curing reaction can be suppressed and appropriate drape can be maintained.
  • hardened product> hardened
  • the cured product is formed by curing the above-described epoxy resin composition.
  • the cured product has high heat resistance and high toughness.
  • the shape of the cured product is not particularly limited, and may be a sheet shape, or may be a shape in which the cured product is impregnated with another material (such as a fibrous reinforcing material).
  • the glass transition point (Tg) of the cured product is not particularly limited, but is preferably 200 to 270 ° C., more preferably 200 to 250 ° C.
  • a glass transition point (Tg) of 200 ° C. or higher is preferable because heat resistance can be increased.
  • a glass transition point (Tg) of 270 ° C. or less is preferable because of excellent toughness.
  • the value measured by the method described in an Example shall be employ
  • the curing temperature of the epoxy resin composition is preferably 50 to 250 ° C, and more preferably 70 to 200 ° C. It is preferable for the curing temperature to be 50 ° C. or higher because the curing reaction can be carried out quickly. On the other hand, if the curing temperature is 250 ° C. or lower, it is preferable because the amount of energy required for curing can be suppressed.
  • the above-described cured product can be applied to uses such as a fiber-reinforced resin molded product, a heat dissipation member, a semiconductor, and a printed wiring board.
  • a fiber-reinforced resin molded product a heat dissipation member, a semiconductor, and a printed wiring board.
  • the fiber reinforced resin molded product is obtained by curing the above-mentioned fiber reinforced composite material.
  • the content of the reinforcing fiber is preferably 40 to 85% by volume with respect to the total volume of the fiber reinforced resin molded product, and more preferably 50 to 70% by volume from the viewpoint of strength.
  • the manufacturing method of the fiber reinforced resin molded product is not particularly limited, but after the fiber reinforced composite material is cut into a predetermined size, the epoxy resin composition is cured while applying heat and pressure to a laminate in which a predetermined number of layers are laminated. Is mentioned.
  • the method of heat curing is not particularly limited, and examples thereof include a press molding method, an autoclave molding method, a bagging molding method, a wrapping tape method, and an internal pressure molding method.
  • a manufacturing method for example, when manufacturing a plate-like fiber reinforced resin molded product, first, after cutting a sheet-like fiber reinforced composite material into a predetermined dimension, a predetermined number of sheets are placed on a rigid tool in a predetermined fiber axis direction. Laminate and seal with flexible film. Next, the space between the rigid tool and the flexible film is sucked with a vacuum pump to be deaerated. And after installing in an autoclave, a fiber reinforced resin molded product can be manufactured by heating and pressurizing.
  • the rigid tool is not particularly limited, and examples thereof include metals such as steel and aluminum; fiber reinforced plastic (FRP); wood; plaster and the like.
  • the flexible film is not particularly limited, and examples thereof include nylon, fluororesin, and silicone resin.
  • the heating temperature is not particularly limited, but is preferably 50 to 250 ° C, more preferably 80 to 220 ° C.
  • a heating temperature of 50 ° C. or higher is preferable because a suitable curing rate can be obtained.
  • the heating temperature is 250 ° C. or lower because warpage due to thermal strain can be prevented or suppressed. Heating may be performed sequentially. Specifically, a method of pre-curing at 50 to 100 ° C. to form a tack-free cured product and then heating at 120 to 200 ° C. can be used.
  • the pressure varies depending on the thickness of the prepreg and the volume content of the reinforcing fibers, but is preferably 1 to 10 kgf / cm 2 .
  • the pressure is 1 kgf / cm 2 or more, prevent or suppress the occurrence of localized uncured portions, preferred because it is prevented or suppressed, such as warping of the generator, whereas, when the pressure is 10 kgf / cm 2 or less, It is preferable because it is possible to prevent or suppress the occurrence of unimpregnated portions and to prevent or suppress leakage of the resin.
  • the fiber-reinforced molded product may be manufactured by other methods.
  • a fiber aggregate is laid on a mold, and the hand lay-up method or spray-up method in which the varnish is stacked in multiple layers is used.
  • Vacuum bag method in which the base material is stacked while impregnated with varnish, molded, covered with a flexible mold that can apply pressure to the molded product, and hermetically sealed is vacuum (reduced pressure) molding, contains reinforcing fibers in advance
  • a prepreg in which a reinforced varnish is impregnated with the varnish is manufactured by an SMC press method in which a sheet of varnish is compression-molded with a mold, an RTM method in which the varnish is injected into a mating mold in which fibers are spread, And a method of baking and hardening in a large autoclave.
  • Example 1 ⁇ Manufacture of epoxy resin> In a flask equipped with a nitrogen inlet tube, a condenser tube, a thermometer, and a stirrer, 160 parts (1.0 mol) of 1,6-dihydroxynaphthalene, 925 parts (10.0 mol) of epichlorohydrin, 139 parts of n-butanol , And 2 parts of tetraethylbenzylammonium chloride were charged and dissolved.
  • the resulting solution was heated to 65 ° C. and then decompressed to an azeotropic pressure, and 90 parts (1.1 mol) of a 49% aqueous sodium hydroxide solution was added dropwise over 5 hours. After dropping, the azeotropic distillate was separated by a Dean Stark apparatus, the aqueous layer was removed, and the reaction was carried out for 30 minutes while returning only the oil layer to the reaction system.
  • the obtained reaction product was washed with 150 parts of water. This was repeated 3 times, and it was confirmed that the pH of the cleaning liquid became neutral. An azeotropic dehydration operation was performed, and after fine filtration, the solvent was distilled off under reduced pressure to obtain 263.8 parts of an epoxy resin.
  • the content of the trifunctional epoxy compound represented by the chemical formula (1) and the trifunctional epoxy compound represented by the chemical formula (2) contained in the obtained epoxy resin is measured by high performance liquid chromatography (HPLC). did.
  • HPLC high performance liquid chromatography
  • the measuring apparatus is “Prominece” (manufactured by Shimadzu Corporation)
  • the column is “ODS-100V” (manufactured by Tosoh Corporation)
  • the detector is UV254 nm.
  • the standard material is polystyrene.
  • What filtered 0.5 mass% (solid content conversion) acetonitrile solution with a 100 micrometer micro filter is used as a sample.
  • the content of the trifunctional epoxy compound represented by the chemical formula (1) in the epoxy resin is 0.4% by mass
  • the content of the trifunctional epoxy compound represented by the chemical formula (2) is 0.4%. It was mass%.
  • the content of the trifunctional epoxy compound was 0.8% by mass.
  • Example 2 ⁇ Manufacture of epoxy resin> An epoxy resin was produced in the same manner as in Example 1 except that 555 parts (6.0 mol) of epichlorohydrin was used.
  • Example 3 ⁇ Manufacture of epoxy resin> An epoxy resin was produced in the same manner as in Example 1 except that 370 parts (4.0 mol) of epichlorohydrin was used.
  • the cured epoxy resins obtained in Examples 1 to 3 have a high glass transition point (Tg) and excellent heat resistance.
  • the cured products obtained in Examples 1 to 3 have high bending strength, flexural modulus, tensile strength, tensile modulus, and elongation, and are excellent in toughness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

A purpose of the present invention is to provide an epoxy resin giving cured objects which are excellent in terms of heat resistance and toughness. Specifically, the epoxy resin is a product of the reaction of 1,6-dihydroxynaphthalene with an epihalohydrin, and includes the trifunctional epoxy compound(s) represented by chemical formula (1) and/or chemical formula (2), the content of the trifunctional epoxy compound(s) being 5.0 mass% or less with respect to the solid matter of the epoxy resin.

Description

エポキシ樹脂およびこれを含むエポキシ樹脂組成物、並びに前記エポキシ樹脂組成物を用いた硬化物Epoxy resin, epoxy resin composition containing the same, and cured product using the epoxy resin composition
 本発明は、エポキシ樹脂およびこれを含むエポキシ樹脂組成物、並びに前記エポキシ樹脂組成物を用いた硬化物に関する。 The present invention relates to an epoxy resin, an epoxy resin composition containing the epoxy resin, and a cured product using the epoxy resin composition.
 エポキシ樹脂は、分子中にエポキシ基を含み、前記エポキシ基で架橋ネットワークを形成することで硬化させることができる硬化性樹脂である。エポキシ樹脂の硬化物は、優れた機械強度、耐熱性、耐水性、絶縁性等を有することから、繊維強化複合材料のマトリックス、放熱部材、接着剤、塗料、半導体、プリント配線基板等の用途に適用されている。 The epoxy resin is a curable resin that contains an epoxy group in the molecule and can be cured by forming a crosslinked network with the epoxy group. Epoxy resin cured products have excellent mechanical strength, heat resistance, water resistance, insulation, etc., so they can be used for applications such as fiber-reinforced composite materials, heat dissipation members, adhesives, paints, semiconductors, and printed wiring boards. Has been applied.
 近年、エポキシ樹脂は種々の用途に提供されており、例えば、繊維強化複合材料の用途では、軽量でありながら耐熱性や機械強度に優れる等の特徴が注目されるなどその利用が拡大している。これに伴い、エポキシ樹脂の硬化物の要求特性が向上しており、エポキシ樹脂のいっそう高い性能が求められている。 In recent years, epoxy resins have been provided for various uses. For example, in the use of fiber reinforced composite materials, their use is expanding, for example, features such as excellent heat resistance and mechanical strength while being lightweight. . In connection with this, the required characteristic of the hardened | cured material of an epoxy resin is improving, and the higher performance of an epoxy resin is calculated | required.
 例えば、特許文献1には、ジヒドロキシナフタレン類とエピハロヒドリンとを反応させることにより得られるエポキシ樹脂が記載されている。特許文献1によれば前記特定構造のエポキシ樹脂と、所定の硬化剤および所定の無機充填剤とを含有してなるエポキシ樹脂組成物を用いると、その硬化物が熱伝導に優れることが記載されている。 For example, Patent Document 1 describes an epoxy resin obtained by reacting dihydroxynaphthalenes with epihalohydrin. According to Patent Document 1, it is described that when an epoxy resin composition containing the epoxy resin having the specific structure, a predetermined curing agent, and a predetermined inorganic filler is used, the cured product is excellent in heat conduction. ing.
 なお、特許文献1に記載のエポキシ樹脂は、ジヒドロキシナフタレン類とエピハロヒドリンとを反応させ、エポキシ化することにより得られることが記載されている。 In addition, it is described that the epoxy resin described in Patent Document 1 can be obtained by reacting dihydroxynaphthalene and epihalohydrin and epoxidizing them.
特開2013-60607号公報JP 2013-60607 A
 特許文献1に記載のエポキシ樹脂、すなわち、ジヒドロキシナフタレン類とエピハロヒドリンとを反応させて得られるエポキシ樹脂は、その硬化物が一定の熱伝導性を有するものの、耐熱性および強靭性が十分とはいえない場合があることが判明した。 The epoxy resin described in Patent Document 1, that is, the epoxy resin obtained by reacting dihydroxynaphthalenes with epihalohydrin, although the cured product has a certain thermal conductivity, is not sufficient in heat resistance and toughness. It turns out that there may not be.
 そこで、本発明は、得られる硬化物が耐熱性および強靭性に優れるエポキシ樹脂を提供することを目的とする。 Therefore, an object of the present invention is to provide an epoxy resin in which the obtained cured product is excellent in heat resistance and toughness.
 本発明者らは、上記課題を解決すべく、鋭意研究を行った。その結果、所定のジヒドロキシナフタレンを用い、かつ、エピハロヒドリンと反応させて得られる組成物の所定成分の含有量を制御することで、上記課題が解決されうることを見出し、本発明を完成させるに至った。 The present inventors have conducted intensive research to solve the above problems. As a result, it has been found that the above-mentioned problems can be solved by controlling the content of a predetermined component of a composition obtained by using a predetermined dihydroxynaphthalene and reacting with epihalohydrin, thereby completing the present invention. It was.
 すなわち、本発明は、1,6-ジヒドロキシナフタレンとエピハロヒドリンとの反応生成物であるエポキシ樹脂に関する。この際、前記エポキシ樹脂が、下記化学式(1)および/または化学式(2)で表される3官能エポキシ化合物を含み、前記3官能エポキシ化合物の含有量が、エポキシ樹脂の固形分に対して、5.0質量%以下であることを特徴とする。 That is, the present invention relates to an epoxy resin that is a reaction product of 1,6-dihydroxynaphthalene and epihalohydrin. At this time, the epoxy resin includes a trifunctional epoxy compound represented by the following chemical formula (1) and / or chemical formula (2), and the content of the trifunctional epoxy compound is based on the solid content of the epoxy resin. It is 5.0 mass% or less, It is characterized by the above-mentioned.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 本発明によれば、得られる硬化物が耐熱性および強靭性に優れるエポキシ樹脂が提供される。 According to the present invention, an epoxy resin in which the obtained cured product is excellent in heat resistance and toughness is provided.
 以下、本発明を実施するための形態について詳細に説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail.
 <エポキシ樹脂>
 本形態に係るエポキシ樹脂は、1,6-ジヒドロキシナフタレンとエピハロヒドリンとの反応生成物である。
<Epoxy resin>
The epoxy resin according to this embodiment is a reaction product of 1,6-dihydroxynaphthalene and epihalohydrin.
 1,6-ジヒドロキシナフタレンとエピハロヒドリンとを反応させると、一般に、1,6-ジヒドロキシナフタレンの1位および6位のヒドロキシ基におけるグリシジルエーテル化反応が進行する。しかし、その他にも種々の反応が進行することがあり、その結果、1,6-ジヒドロキシナフタレンとエピハロヒドリンとの反応生成物は種々のエポキシ化合物を含みうる。このような反応生成物であるエポキシ樹脂の物性やその硬化物の物性は、1,6-ビス(2,3-エポキシプロパン-1-イルオキシ)ナフタレン等の主成分となりうる2官能エポキシ化合物だけでなく、他のエポキシ化合物の影響を受けることがある。 When 1,6-dihydroxynaphthalene and epihalohydrin are reacted, glycidyl etherification reaction generally proceeds at the 1-position and 6-position hydroxy groups of 1,6-dihydroxynaphthalene. However, various other reactions may proceed, and as a result, the reaction product of 1,6-dihydroxynaphthalene and epihalohydrin may contain various epoxy compounds. The physical properties of the epoxy resin as a reaction product and the cured product thereof can be obtained only with a bifunctional epoxy compound that can be a main component such as 1,6-bis (2,3-epoxypropan-1-yloxy) naphthalene. And may be affected by other epoxy compounds.
 本形態に係るエポキシ樹脂は、反応生成物に含まれうる所定の3官能エポキシ化合物に着目し、前記3官能エポキシ化合物の含有量を制御する。これにより、得られる硬化物は耐熱性および強靭性に優れる。 The epoxy resin according to the present embodiment pays attention to a predetermined trifunctional epoxy compound that can be included in the reaction product, and controls the content of the trifunctional epoxy compound. Thereby, the obtained hardened | cured material is excellent in heat resistance and toughness.
 [1,6-ジヒドロキシナフタレン]
 1,6-ジヒドロキシナフタレンは、下記化学式で表される。
[1,6-dihydroxynaphthalene]
1,6-dihydroxynaphthalene is represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 [エピハロヒドリン]
 エピハロヒドリンとしては、特に制限されないが、エピクロロヒドリン、エピブロモヒドリン、エピヨードヒドリン等が挙げられる。これらのエピハロヒドリンは、単独で用いても、2種以上を組み合わせて用いてもよい。
[Epihalohydrin]
Although it does not restrict | limit especially as an epihalohydrin, Epichlorohydrin, epibromohydrin, epiiodohydrin etc. are mentioned. These epihalohydrins may be used alone or in combination of two or more.
 エピハロヒドリンの添加量は、特に制限されないが、1,6-ジヒドロキシナフタレンのヒドロキシ基1モルに対して、1.5~10.0モルであることが好ましく、2.0~7.5モルであることがより好ましい。エピハロヒドリンの添加量が1.5モル以上であると、オリゴマー成分の少ない低粘度のエポキシ樹脂ができることから好ましい。一方、エピハロヒドリンの添加量が10.0モル以下であると、反応後に不要となる過剰エピハドヒドリン量を少なくできることから好ましい。 The amount of epihalohydrin added is not particularly limited, but is preferably 1.5 to 10.0 moles and preferably 2.0 to 7.5 moles with respect to 1 mole of the hydroxy group of 1,6-dihydroxynaphthalene. It is more preferable. It is preferable that the addition amount of epihalohydrin is 1.5 mol or more because a low-viscosity epoxy resin with less oligomer components can be obtained. On the other hand, when the added amount of epihalohydrin is 10.0 mol or less, the amount of excess epihahydrin that becomes unnecessary after the reaction can be reduced, which is preferable.
 [反応]
 1,6-ジヒドロキシナフタレンとエピハロヒドリンとの反応は、特に制限されず、公知の方法で行うことができる。一実施形態において、前記反応は、1,6-ジヒドロキシナフタレンとエピハロヒドリンとを含む混合物を、塩基性化合物の存在下で反応させる工程(1)を含む。この際、必要に応じて、得られた反応物を、塩基性化合物の存在下で反応させる工程(2)をさらに含んでいてもよい。
[reaction]
The reaction between 1,6-dihydroxynaphthalene and epihalohydrin is not particularly limited and can be performed by a known method. In one embodiment, the reaction includes a step (1) of reacting a mixture containing 1,6-dihydroxynaphthalene and epihalohydrin in the presence of a basic compound. Under the present circumstances, the process (2) with which the obtained reaction material is made to react in presence of a basic compound may be further included as needed.
 (工程(1))
 工程(1)は、1,6-ジヒドロキシナフタレンとエピハロヒドリンとを含む混合物を、塩基性化合物の存在下で反応させる工程である。
(Process (1))
Step (1) is a step of reacting a mixture containing 1,6-dihydroxynaphthalene and epihalohydrin in the presence of a basic compound.
 混合物は、1,6-ジヒドロキシナフタレンとエピハロヒドリンとを含む。その他、必要に応じて、溶媒、塩基性化合物等をさらに含んでいてもよい。 The mixture contains 1,6-dihydroxynaphthalene and epihalohydrin. In addition, a solvent, a basic compound, etc. may be further included as needed.
 1,6-ジヒドロキシナフタレンおよびエピハロヒドリン
 前記1,6-ジヒドロキシナフタレンおよび前記エピハロヒドリンは、上述した通りであるので、ここでは説明を省略する。
1,6-dihydroxynaphthalene and epihalohydrin The 1,6-dihydroxynaphthalene and the epihalohydrin are as described above, and thus the description thereof is omitted here.
 溶媒
 前記溶媒としては、特に制限されないが、メタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール;アセトン、メチルエチルケトン等のケトン;ジオキサン等のエーテル;ジメチルスルホン;ジメチルスルホキシド等が挙げられる。これらの溶媒は単独で用いても、2種以上を組み合わせて用いてもよい。
Solvent The solvent is not particularly limited, and examples thereof include alcohols such as methanol, ethanol, isopropyl alcohol and butanol; ketones such as acetone and methyl ethyl ketone; ethers such as dioxane; dimethyl sulfone; dimethyl sulfoxide and the like. These solvents may be used alone or in combination of two or more.
 なお、溶媒の添加量は、エピハロヒドリンの添加量に対して、5~100質量%であることが好ましく、5~60質量%であることがより好ましく、5~50質量%であることがさらに好ましく、10~30質量%であることが特に好ましい。 The addition amount of the solvent is preferably 5 to 100% by mass, more preferably 5 to 60% by mass, and further preferably 5 to 50% by mass with respect to the addition amount of epihalohydrin. It is particularly preferably 10 to 30% by mass.
 塩基性化合物
 塩基性化合物は、1,6-ジヒドロキシナフタレンとエピハロヒドリンとの求核反応および閉環反応を促進する機能を有する。
Basic Compound The basic compound has a function of promoting the nucleophilic reaction and ring-closing reaction between 1,6-dihydroxynaphthalene and epihalohydrin.
 前記塩基性化合物としては、特に制限されないが、水酸化カリウム、水酸化ナトリウム、水酸化バリウム、酸化マグネシウム、炭酸ナトリウム、炭酸カリウム等が挙げられる。これらのうち、水酸化カリウム、水酸化ナトリウムを用いることが好ましい。なお、これらの塩基性化合物は単独で用いても、2種以上を組み合わせて用いてもよい。 The basic compound is not particularly limited, and examples thereof include potassium hydroxide, sodium hydroxide, barium hydroxide, magnesium oxide, sodium carbonate, and potassium carbonate. Of these, potassium hydroxide and sodium hydroxide are preferably used. In addition, these basic compounds may be used independently or may be used in combination of 2 or more type.
 反応
 前記反応は、典型的には、以下に示すように、1,6-ジヒドロキシナフタレンとエピハロヒドリンとの第1の反応(求核反応)と、得られるハロアルコールを閉環する第2の反応(閉環反応)とを含む。
Reaction Typically, the reaction includes a first reaction (nucleophilic reaction) of 1,6-dihydroxynaphthalene and epihalohydrin and a second reaction (ring closure) of the resulting haloalcohol as shown below. Reaction).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 第1の反応および第2の反応は、同時に進行させるようにしてもよいし、順次進行させるようにしてもよい。効率的に反応を行う観点から、第1の反応および第2の反応は順次進行させるようすることが好ましい。この際、主反応として第1の反応を行った後にエピハロヒドリンを除去して、主反応として第2の反応を行うことが好ましい。 The first reaction and the second reaction may proceed simultaneously or sequentially. From the viewpoint of efficiently performing the reaction, the first reaction and the second reaction are preferably allowed to proceed sequentially. At this time, it is preferable to remove the epihalohydrin after the first reaction as the main reaction and to perform the second reaction as the main reaction.
 第1の反応を行う場合の塩基性化合物の添加量は、特に制限されないが、1,6-ジヒドロキシナフタレン1モルに対して、0.05~0.7モルであることが好ましく、0.1~0.5モルであることがより好ましい。 The amount of the basic compound added in the first reaction is not particularly limited, but is preferably 0.05 to 0.7 mol with respect to 1 mol of 1,6-dihydroxynaphthalene. More preferably, it is ˜0.5 mol.
 第1の反応を行う場合の反応温度としては、特に制限されないが、20~120℃であることが好ましく、30~80℃であることがより好ましい。 The reaction temperature for carrying out the first reaction is not particularly limited, but is preferably 20 to 120 ° C, more preferably 30 to 80 ° C.
 第1の反応を行う場合の反応時間としては、特に制限されないが、2~7時間であることが好ましい。 The reaction time for conducting the first reaction is not particularly limited, but is preferably 2 to 7 hours.
 また、第2の反応を行う場合の塩基性化合物の添加量は、特に制限されないが、1,6-ジヒドロキシナフタレン1モルに対して、0.4~3.0モルであることが好ましく、0.6~2.0モルであることがより好ましい。 The amount of the basic compound added in the second reaction is not particularly limited, but is preferably 0.4 to 3.0 mol with respect to 1 mol of 1,6-dihydroxynaphthalene. More preferably, it is 6 to 2.0 mol.
 第2の反応を行う場合の反応温度としては、特に制限されないが、20~120℃であることが好ましく、30~80℃であることがより好ましい。 The reaction temperature for carrying out the second reaction is not particularly limited, but is preferably 20 to 120 ° C, more preferably 30 to 80 ° C.
 第2の反応を行う場合の反応時間としては、特に制限されないが、1~10時間であることが好ましい。 The reaction time for performing the second reaction is not particularly limited, but is preferably 1 to 10 hours.
 (工程(2))
 工程(2)は、工程(1)で得られた反応物を、塩基性化合物の存在下で反応させる工程である。工程(1)で得られた反応物は、上述の第2の反応が進行せず、第1の反応により得られる未反応のハロアルコールが残存することがある。工程(2)を行うことで、かような未反応のハロアルコールを閉環させて、エポキシ樹脂中の未反応のハロアルコールを消失または低減することができる。
(Process (2))
Step (2) is a step of reacting the reaction product obtained in step (1) in the presence of a basic compound. The reaction product obtained in the step (1) does not proceed with the second reaction described above, and an unreacted haloalcohol obtained by the first reaction may remain. By performing the step (2), such an unreacted haloalcohol can be closed and the unreacted haloalcohol in the epoxy resin can be eliminated or reduced.
 工程(2)について、塩基性化合物の添加量、反応温度、反応時間は、上述の第2の反応と同様である。 In step (2), the amount of basic compound added, the reaction temperature, and the reaction time are the same as in the second reaction described above.
 なお、工程(2)を好適に行う観点から、工程(2)を行う前に、工程(1)で得られる反応物からエピハロヒドリン等を除去することが好ましい。 In addition, from the viewpoint of suitably performing the step (2), it is preferable to remove epihalohydrin and the like from the reaction product obtained in the step (1) before performing the step (2).
 [反応生成物]
 反応生成物は、エポキシ化合物を含む。また、反応生成物は、溶媒、その他の化合物が含まれうる。
[Reaction product]
The reaction product includes an epoxy compound. In addition, the reaction product may include a solvent and other compounds.
 なお、前記エポキシ化合物は、主に2官能エポキシ化合物が含まれる。その他、単官能エポキシ化合物、3官能エポキシ化合物、多官能エポキシ化合物、およびエポキシ化合物のオリゴマー等が含まれうる。 The epoxy compound mainly includes a bifunctional epoxy compound. In addition, a monofunctional epoxy compound, a trifunctional epoxy compound, a polyfunctional epoxy compound, an oligomer of an epoxy compound, and the like may be included.
 (2官能エポキシ化合物)
 2官能エポキシ化合物は、1,6-ジヒドロキシナフタレンにグリシジルエーテル基が2つ導入されたものである。その具体例としては、特に制限されないが、下記化学式(3)で表される化合物が挙げられる。
(Bifunctional epoxy compound)
The bifunctional epoxy compound is a compound in which two glycidyl ether groups are introduced into 1,6-dihydroxynaphthalene. Specific examples thereof include, but are not limited to, compounds represented by the following chemical formula (3).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 (単官能エポキシ化合物)
 単官能エポキシ化合物は、1,6-ジヒドロキシナフタレンにグリシジルエーテル基が1つ導入されたものである。その具体例としては、特に制限されないが、下記式で表される化合物が挙げられる。
(Monofunctional epoxy compound)
The monofunctional epoxy compound is a compound in which one glycidyl ether group is introduced into 1,6-dihydroxynaphthalene. Specific examples thereof include, but are not limited to, compounds represented by the following formulas.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 (3官能エポキシ化合物)
 3官能エポキシ化合物は、1,6-ジヒドロキシナフタレンにグリシジルエーテル基が3つ導入されたものである。その具体例としては、特に制限されないが、化学式(1)および(2)で表される化合物が挙げられる。
(Trifunctional epoxy compound)
The trifunctional epoxy compound is obtained by introducing three glycidyl ether groups into 1,6-dihydroxynaphthalene. Specific examples thereof include, but are not limited to, compounds represented by chemical formulas (1) and (2).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 (多官能エポキシ化合物)
 多官能エポキシ化合物は、1,6-ジヒドロキシナフタレンにグリシジルエーテル基が4つ以上導入されたものである。その具体例としては、特に制限されないが、下記式で表される化合物が挙げられる。
(Polyfunctional epoxy compound)
The polyfunctional epoxy compound is a compound in which four or more glycidyl ether groups are introduced into 1,6-dihydroxynaphthalene. Specific examples thereof include, but are not limited to, compounds represented by the following formulas.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 (オリゴマー)
 オリゴマーは、単官能エポキシ化合物、2官能エポキシ化合物、3官能エポキシ化合物、および多官能エポキシ化合物の少なくとも1つが、1,6-ジヒドロキシナフタレンとさらに反応して得られるものである。
(Oligomer)
The oligomer is obtained by further reacting at least one of a monofunctional epoxy compound, a bifunctional epoxy compound, a trifunctional epoxy compound, and a polyfunctional epoxy compound with 1,6-dihydroxynaphthalene.
 オリゴマーとしては、特に制限されないが、上記化学式(3)で表される2官能エポキシ化合物と1,6-ジヒドロキシナフタレンとが反応して得られる、下記式で表されるオリゴマーが挙げられる。 The oligomer is not particularly limited, and examples thereof include an oligomer represented by the following formula obtained by reacting a bifunctional epoxy compound represented by the above chemical formula (3) with 1,6-dihydroxynaphthalene.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記式中、nは1以上、好ましくは1~5である。 In the above formula, n is 1 or more, preferably 1 to 5.
 (溶媒)
 溶媒としては、特に制限されず、上述した反応に使用される溶媒の他、精製工程等において意図的に添加されうる水、溶媒等が挙げられる。
(solvent)
The solvent is not particularly limited, and examples thereof include water, a solvent, and the like that can be intentionally added in the purification step, in addition to the solvent used in the above-described reaction.
 (その他の化合物)
 その他の化合物としては、特に制限されず、1,6-ジヒドロキシナフタレンとエピハロヒドリンとの反応で生じるエポキシ化合物以外のものが挙げられる。具体的には、未反応の1,6-ジヒドロキシナフタレン、未反応のエピハロヒドリン、未反応の塩基性化合物、およびこれらに由来する化合物(副生成物等)が挙げられる。
(Other compounds)
The other compound is not particularly limited, and examples thereof include compounds other than the epoxy compound generated by the reaction of 1,6-dihydroxynaphthalene and epihalohydrin. Specific examples include unreacted 1,6-dihydroxynaphthalene, unreacted epihalohydrin, unreacted basic compounds, and compounds derived from these (byproducts, etc.).
 なお、通常、反応の条件の制御や精製を行うため、その他の化合物の含有量は低い傾向がある。 In addition, since the reaction conditions are usually controlled and purified, the content of other compounds tends to be low.
 [エポキシ樹脂の構成]
 本形態に係るエポキシ樹脂は、上述の反応生成物である。この際、エポキシ樹脂は、上記化学式(1)および/または(2)で表される3官能エポキシ化合物を含む。
[Configuration of epoxy resin]
The epoxy resin according to this embodiment is the above-described reaction product. At this time, the epoxy resin contains a trifunctional epoxy compound represented by the chemical formula (1) and / or (2).
 前記3官能エポキシ化合物の含有量は、エポキシ樹脂の固形分に対して、5.0質量%以下であり、好ましくは3.0質量%以下であり、より好ましくは0.01~3.0質量%であり、さらに好ましくは0.03~2.0質量%である。この際、エポキシ樹脂が、化学式(1)で表される3官能エポキシ化合物および化学式(2)で表される3官能エポキシ化合物を両方含む場合、これらの含有量の合計値が、上記含有量を満たせばよい。なお、本明細書において、「エポキシ樹脂の固形分」とは、エポキシ樹脂中において、溶媒を除いた成分の総質量を意味する。したがって、エポキシ樹脂が溶媒を含まない場合には、当該エポキシ樹脂の全質量は固形分と一致する。 The content of the trifunctional epoxy compound is 5.0% by mass or less, preferably 3.0% by mass or less, more preferably 0.01 to 3.0% by mass, based on the solid content of the epoxy resin. %, And more preferably 0.03 to 2.0% by mass. Under the present circumstances, when an epoxy resin contains both the trifunctional epoxy compound represented by Chemical formula (1) and the trifunctional epoxy compound represented by Chemical formula (2), the total value of these content is the said content. Just fill it. In the present specification, the “solid content of the epoxy resin” means the total mass of the components excluding the solvent in the epoxy resin. Therefore, when the epoxy resin does not contain a solvent, the total mass of the epoxy resin matches the solid content.
 上記3官能エポキシ化合物は、官能基を3つ有する。このような3官能エポキシ化合物をエポキシ樹脂が含むことにより、得られる硬化物は高い耐熱性および高い強度を有しうる。また、3官能エポキシ樹脂の含有量を5.0質量%以下とすることで、伸びの低下を抑制または防止することができ、結果として、高い靱性が得られうる。 The trifunctional epoxy compound has three functional groups. When the epoxy resin contains such a trifunctional epoxy compound, the resulting cured product can have high heat resistance and high strength. Moreover, the fall of elongation can be suppressed or prevented because content of a trifunctional epoxy resin shall be 5.0 mass% or less, and high toughness can be obtained as a result.
 エポキシ樹脂中の2官能エポキシ化合物の含有量は、エポキシ化合物の全質量に対して、30~97質量%であることが好ましく、50~95質量%であることがより好ましい。2官能エポキシ化合物の含有量が30質量%以上であると、低粘度化できることから好ましい。一方、2官能エポキシ化合物の含有量が97質量%以下であると、耐熱性を高くできることから好ましい。 The content of the bifunctional epoxy compound in the epoxy resin is preferably 30 to 97% by mass and more preferably 50 to 95% by mass with respect to the total mass of the epoxy compound. It is preferable that the content of the bifunctional epoxy compound is 30% by mass or more because the viscosity can be reduced. On the other hand, it is preferable that the content of the bifunctional epoxy compound is 97% by mass or less because heat resistance can be increased.
 エポキシ樹脂中の単官能エポキシ化合物の含有量は、エポキシ化合物の全質量に対して、2~15質量%であることが好ましく、4~10質量%であることがより好ましい。単官能エポキシ化合物の含有量が2質量%以上であると、粘度を低くできることから好ましい。一方、単官能エポキシ化合物の含有量が15質量%以下であると、耐熱性を高くできることから好ましい。 The content of the monofunctional epoxy compound in the epoxy resin is preferably 2 to 15% by mass, and more preferably 4 to 10% by mass with respect to the total mass of the epoxy compound. It is preferable that the content of the monofunctional epoxy compound is 2% by mass or more because the viscosity can be lowered. On the other hand, when the content of the monofunctional epoxy compound is 15% by mass or less, heat resistance can be increased, which is preferable.
 エポキシ樹脂中の多官能エポキシ化合物の含有量は、エポキシ化合物の全質量に対して、2~10質量%であることが好ましく、2~8質量%であることがより好ましい。多官能エポキシ化合物の含有量が2質量%以上であると、耐熱性を高くできることから好ましい。一方、多官能エポキシ化合物の含有量が10質量%以下であると、粘度を低くできることから好ましい。 The content of the polyfunctional epoxy compound in the epoxy resin is preferably 2 to 10% by mass, and more preferably 2 to 8% by mass with respect to the total mass of the epoxy compound. It is preferable that the content of the polyfunctional epoxy compound is 2% by mass or more because heat resistance can be increased. On the other hand, when the content of the polyfunctional epoxy compound is 10% by mass or less, the viscosity can be lowered, which is preferable.
 エポキシ樹脂中のオリゴマーの含有量は、エポキシ化合物の全質量に対して、4~40質量%であることが好ましく、5~30質量%であることがより好ましい。オリゴマーの含有量が4質量%以上であると、靭性に優れることから好ましい。一方、オリゴマーの含有量が40質量%以下であると、粘度を低くできることから好ましい。 The content of the oligomer in the epoxy resin is preferably 4 to 40% by mass, and more preferably 5 to 30% by mass with respect to the total mass of the epoxy compound. It is preferable that the oligomer content is 4% by mass or more because of excellent toughness. On the other hand, when the oligomer content is 40% by mass or less, the viscosity can be lowered, which is preferable.
 エポキシ樹脂中のその他の化合物は、5質量%以下であることが好ましく、0.05~5質量%であることがより好ましい。 The other compound in the epoxy resin is preferably 5% by mass or less, and more preferably 0.05 to 5% by mass.
 なお、本明細書において、エポキシ樹脂中の各成分の含有量は、実施例に記載の高速液体クロマトグラフィ(HPLC)の方法により測定された値を採用するものとする。 In addition, in this specification, the value measured by the method of the high performance liquid chromatography (HPLC) described in an Example shall be employ | adopted for content of each component in an epoxy resin.
 エポキシ樹脂中の成分の含有量の調整は、反応の制御、精製工程の制御により行ってもよいし、別途成分を添加することにより行ってもよい。この際、エポキシ樹脂を効率的に調製できる観点から、反応を制御してエポキシ樹脂の成分の含有量の調整を行うことが好ましい。なお、例えば、エピハロヒドリンの添加量、反応温度、反応時間、エピハロヒドリンの留去等を適宜変更することにより、反応の制御によるエポキシ樹脂の成分の含有量の調整を行うことができる。 Adjustment of the content of the component in the epoxy resin may be performed by controlling the reaction and controlling the purification process, or may be performed by adding a separate component. At this time, from the viewpoint of efficiently preparing the epoxy resin, it is preferable to adjust the content of the component of the epoxy resin by controlling the reaction. For example, by appropriately changing the addition amount of epihalohydrin, reaction temperature, reaction time, distillation of epihalohydrin, and the like, the content of the epoxy resin component can be adjusted by controlling the reaction.
 エポキシ樹脂のエポキシ当量は、特に制限されないが、130~220g/当量(Eq.)であることが好ましく、135~200g/Eq.であることがより好ましい。エポキシ当量が130g/Eq.以上であると、粘度を低くできることから好ましい。一方、エポキシ当量が220g/Eq.以下であると、耐熱性を高くできることから好ましい。なお、本明細書において「エポキシ当量」の値は、実施例に記載される方法で測定された値を採用するものとする。 The epoxy equivalent of the epoxy resin is not particularly limited, but is preferably 130 to 220 g / equivalent (Eq.), And 135 to 200 g / Eq. It is more preferable that Epoxy equivalent is 130 g / Eq. The above is preferable because the viscosity can be lowered. On the other hand, the epoxy equivalent was 220 g / Eq. The following is preferable because heat resistance can be increased. In addition, the value measured by the method described in an Example shall be employ | adopted for the value of "epoxy equivalent" in this specification.
 エポキシ樹脂の粘度は、特に制限されないが、500~1700mPa・sであることが好ましく、650~1500mPa・sであることがより好ましい。エポキシ樹脂の粘度が500mPa・s以上であると、成形時の垂れを抑制できることから好ましい。一方、エポキシ樹脂の粘度が1700mPa・s以下であると、強化繊維への含浸性に優れることから好ましい。なお、本明細書において「エポキシ樹脂の粘度」の値は、実施例に記載される方法で測定された値を採用するものとする。 The viscosity of the epoxy resin is not particularly limited, but is preferably 500 to 1700 mPa · s, and more preferably 650 to 1500 mPa · s. It is preferable for the viscosity of the epoxy resin to be 500 mPa · s or more because sagging during molding can be suppressed. On the other hand, when the viscosity of the epoxy resin is 1700 mPa · s or less, it is preferable because the impregnation property to the reinforcing fiber is excellent. In addition, the value measured by the method described in an Example shall be employ | adopted for the value of "viscosity of an epoxy resin" in this specification.
 <エポキシ樹脂組成物>
 本発明の一形態によれば、エポキシ樹脂組成物が提供される。前記エポキシ樹脂組成物は、上述のエポキシ樹脂と、硬化剤と、を含む。エポキシ樹脂組成物は、その他、必要に応じて、他のエポキシ樹脂、他の樹脂、硬化促進剤、有機溶媒、無機充填剤、添加物等をさらに含んでいてもよい。
<Epoxy resin composition>
According to one aspect of the present invention, an epoxy resin composition is provided. The said epoxy resin composition contains the above-mentioned epoxy resin and a hardening | curing agent. In addition, the epoxy resin composition may further contain other epoxy resins, other resins, curing accelerators, organic solvents, inorganic fillers, additives, and the like as necessary.
 [エポキシ樹脂]
 エポキシ樹脂は、上述したものが用いられうることからここでは説明を省略する。
[Epoxy resin]
Since the epoxy resin described above can be used, the description thereof is omitted here.
 エポキシ樹脂の含有量は、樹脂組成物の固形分に対して、30~99質量%であることが好ましく、40~97質量%であることがより好ましい。エポキシ樹脂の含有量が30質量%以上であると、エポキシ樹脂の性能を発現しやすいことから好ましい。一方、エポキシ樹脂の含有量が99質量%以下であると、硬化剤の選択肢が広がることから好ましい。なお、本明細書において、「樹脂組成物の固形分」とは、組成物中において、後述する有機溶媒を除いた成分の総質量を意味する。したがって、樹脂組成物が溶媒を含まない場合には、当該組成物の全質量は固形分と一致する。 The content of the epoxy resin is preferably 30 to 99% by mass and more preferably 40 to 97% by mass with respect to the solid content of the resin composition. It is preferable that the content of the epoxy resin is 30% by mass or more because the performance of the epoxy resin is easily developed. On the other hand, when the content of the epoxy resin is 99% by mass or less, the choice of the curing agent is preferable. In the present specification, the “solid content of the resin composition” means the total mass of components in the composition excluding the organic solvent described later. Therefore, when the resin composition does not contain a solvent, the total mass of the composition matches the solid content.
 [他のエポキシ樹脂]
 他のエポキシ樹脂は、上述のエポキシ樹脂に含有されるエポキシ化合物以外のエポキシ化合物を含むエポキシ樹脂である。
[Other epoxy resins]
Another epoxy resin is an epoxy resin containing an epoxy compound other than the epoxy compound contained in the above-described epoxy resin.
 具体的には、置換の1,6-ジヒドロキシナフタレンと、エピハロヒドリンまたは置換エピハロヒドリンとの反応生成物、置換または未置換の1,4-ジヒドロキシナフタレン、置換基または未置換の1,5-ジヒドロキシナフタレン、置換または未置換の2,6-ジヒドロキシナフタレン、置換または未置換の2,7-ジヒドロキシナフタレンと、エピハロヒドリンまたは置換エピハロヒドリンとの反応生成物等が挙げられる。 Specifically, a reaction product of substituted 1,6-dihydroxynaphthalene with epihalohydrin or substituted epihalohydrin, substituted or unsubstituted 1,4-dihydroxynaphthalene, substituted or unsubstituted 1,5-dihydroxynaphthalene, Examples thereof include a reaction product of substituted or unsubstituted 2,6-dihydroxynaphthalene, substituted or unsubstituted 2,7-dihydroxynaphthalene and epihalohydrin or substituted epihalohydrin.
 この際、「置換」とは、ジヒドロキシナフタレンのナフタレンに結合する水素原子の少なくとも1つが置換基に置換されたものを意味する。この際、「置換基」とは、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル等の炭素原子数1~10のアルキル基;シクロプロピル基、シクロブチル基、メチルシクロブチル基、シクロペンチル基、シクロヘキシル基、シクロデシル基等の炭素原子数3~10のシクロアルキル基;ビニル基、アリル基、ブテニル基、オクテニル基等の炭素原子数2~10のアルケニル基;プロパルギル基、ブチニル基等の炭素原子数2~10のアルキニル基;メトキシ基、エトキシ基、プロピルオキシ基等の炭素原子数1~10のアルキルオキシ基;アセチル基、エチルカルボニル基等の炭素原子数2~10のアルキルカルボニル基;フェニル基、トリル基、キシリル基、クロロフェニル基等の炭素原子数6~10のアリール基;ベンジル基等の炭素原子数7~10のアラルキル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子等が挙げられる。これらの置換基は単独で有していても、2種以上を組み合せて有していてもよい。 In this case, “substituted” means that at least one hydrogen atom bonded to naphthalene of dihydroxynaphthalene is substituted with a substituent. In this case, the “substituent” means methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, octyl group, decyl, etc. An alkyl group having 1 to 10 carbon atoms; a cycloalkyl group having 3 to 10 carbon atoms such as cyclopropyl group, cyclobutyl group, methylcyclobutyl group, cyclopentyl group, cyclohexyl group, cyclodecyl group; vinyl group, allyl group, butenyl An alkenyl group having 2 to 10 carbon atoms such as a propylene group or an octenyl group; an alkynyl group having 2 to 10 carbon atoms such as a propargyl group or a butynyl group; 1 to 10 carbon atoms such as a methoxy group, an ethoxy group or a propyloxy group An alkyloxy group having 2 to 10 carbon atoms such as an acetyl group or an ethylcarbonyl group; Aryl groups having 6 to 10 carbon atoms such as nyl group, tolyl group, xylyl group and chlorophenyl group; aralkyl groups having 7 to 10 carbon atoms such as benzyl group; fluorine atom, chlorine atom, bromine atom and iodine atom A halogen atom etc. are mentioned. These substituents may be used alone or in combination of two or more.
 また、「置換エピハロヒドリン」としては、特に制限されないが、エピハロヒドリンを構成する水素原子の少なくとも1つが置換基に置換されたものを意味し、具体的には、3-クロロ-2-メチル-1,2-エポキシプロパン、3-クロロ-3-メチル-1,2-エポキシプロパン、3-クロロ-2-エチル-1,2-エポキシプロパン、3-クロロ-3-エチル-1,2-エポキシプロパン、3-クロロ-2-プロピル-1,2-エポキシプロパン、3-クロロ-3-プロピル-1,2-エポキシプロパン等が挙げられる。 The “substituted epihalohydrin” is not particularly limited, but means that at least one of the hydrogen atoms constituting the epihalohydrin is substituted with a substituent, specifically, 3-chloro-2-methyl-1, 2-epoxypropane, 3-chloro-3-methyl-1,2-epoxypropane, 3-chloro-2-ethyl-1,2-epoxypropane, 3-chloro-3-ethyl-1,2-epoxypropane, Examples include 3-chloro-2-propyl-1,2-epoxypropane and 3-chloro-3-propyl-1,2-epoxypropane.
 また、他のエポキシ樹脂は、ジヒドロキシナフタレン骨格を含むエポキシ樹脂以外のエポキシ樹脂であってもよい。このようなエポキシ樹脂としては、特に制限されないが、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂等のビフェニル型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、フェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物、ビフェニルノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェニルメタン型エポキシ樹脂;テトラフェニルエタン型エポキシ樹脂;ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂;フェノールアラルキル型エポキシ樹脂;ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、ジグリシジルオキシナフタレン、リン原子含有エポキシ樹脂等が挙げられる。 Further, the other epoxy resin may be an epoxy resin other than an epoxy resin containing a dihydroxynaphthalene skeleton. Such epoxy resins are not particularly limited, but are bisphenol type epoxy resins such as bisphenol A type epoxy resin and bisphenol F type epoxy resin; biphenyl type epoxy resins such as biphenyl type epoxy resin and tetramethylbiphenyl type epoxy resin; phenol Novolac epoxy resins, cresol novolac epoxy resins, bisphenol A novolac epoxy resins, epoxidized products of condensation products of phenols and aromatic aldehydes having phenolic hydroxyl groups, novolac epoxy resins such as biphenyl novolac epoxy resins; Phenylmethane type epoxy resin; tetraphenylethane type epoxy resin; dicyclopentadiene-phenol addition reaction type epoxy resin; phenol aralkyl type epoxy resin; Runoborakku type epoxy resin, naphthol aralkyl type epoxy resin, naphthol - phenol co-condensed novolak type epoxy resin, naphthol - cresol co-condensed novolac type epoxy resin, diglycidyl oxy naphthalene, phosphorus-containing epoxy resin and the like.
 上述の他のエポキシ樹脂は、単独で用いても、2種以上を組み合わせて用いてもよい。 The other epoxy resins described above may be used alone or in combination of two or more.
 [他の樹脂]
 他の樹脂は、エポキシ樹脂以外の樹脂を意味する。当該他の樹脂としては、熱硬化性樹脂であっても熱可塑性樹脂であってもよい。他の樹脂の具体例としては、特に制限されないが、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリエーテルスルホン樹脂、ポリケトン樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、フェノール系樹脂が挙げられる。これらの他の樹脂は、単独で用いても、2種以上を組み合わせて用いてもよい。
[Other resins]
The other resin means a resin other than the epoxy resin. The other resin may be a thermosetting resin or a thermoplastic resin. Specific examples of other resins include, but are not limited to, polycarbonate resin, polyphenylene ether resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene resin, polypropylene resin, polyimide resin, polyamideimide resin, polyetherimide resin, polyether. Examples include sulfone resins, polyketone resins, polyetherketone resins, polyetheretherketone resins, and phenolic resins. These other resins may be used alone or in combination of two or more.
 [硬化剤]
 硬化剤としては、特に制限されないが、アミン系化合物、アミド系化合物、酸無水物系化合物、フェノ-ル系化合物等が挙げられる。
[Curing agent]
The curing agent is not particularly limited, and examples thereof include amine compounds, amide compounds, acid anhydride compounds, phenol compounds, and the like.
 前記アミン系化合物としては、エチレンジアミン、ジアミノプロパン、ジアミノブタン、ジエチレントリアミン、トリエチレンテトラミン、1,4-シクロヘキサンジアミン、イソホロンジアミン、ジアミノジシクロヘキシルメタン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、フェニレンジアミン、イミダゾ-ル、BF-アミン錯体、グアニジン誘導体等が挙げられる。 Examples of the amine compound include ethylenediamine, diaminopropane, diaminobutane, diethylenetriamine, triethylenetetramine, 1,4-cyclohexanediamine, isophoronediamine, diaminodicyclohexylmethane, diaminodiphenylmethane, diaminodiphenylsulfone, phenylenediamine, imidazole, and BF. Examples thereof include 3 -amine complexes and guanidine derivatives.
 前記アミド系化合物としては、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとから合成されるポリアミド樹脂等が挙げられる。 Examples of the amide compounds include polyamide resins synthesized from dicyandiamide and a dimer of linolenic acid and ethylenediamine.
 前記酸無水物系化合物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられる。 Examples of the acid anhydride compounds include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexa And hydrophthalic anhydride.
 前記フェノール系化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂、α-ナフトールアラルキル樹脂、β-ナフトールアラルキル樹脂、ビフェニルアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、およびアミノ基含有トリアジン化合物(メラミン、ベンゾグアナミン等)とフェノール類(フェノール、クレゾール等)と、ホルムアルデヒドと、の共重合体であるアミノトリアジン変性フェノール樹脂等が挙げられる。 Examples of the phenolic compound include phenol novolak resin, cresol novolak resin, aromatic hydrocarbon formaldehyde resin-modified phenol resin, dicyclopentadiene phenol addition resin, phenol aralkyl resin, α-naphthol aralkyl resin, β-naphthol aralkyl resin, biphenyl. Aralkyl resins, trimethylol methane resins, tetraphenylol ethane resins, naphthol novolak resins, naphthol-phenol co-condensed novolac resins, naphthol-cresol co-condensed novolac resins, and amino group-containing triazine compounds (melamine, benzoguanamine, etc.) and phenols ( Phenol, cresol, and the like) and formaldehyde, and aminotriazine-modified phenolic resin.
 これらのうち、アミン系化合物、フェノール系化合物を用いることが好ましく、ジアミノジフェニルスルホン、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂、α-ナフトールアラルキル樹脂、β-ナフトールアラルキル樹脂、ビフェニルアラルキル樹脂、アミノトリアジン変性フェノール樹脂を用いることがより好ましい。 Of these, amine compounds and phenol compounds are preferably used. Diaminodiphenyl sulfone, phenol novolac resin, cresol novolac resin, phenol aralkyl resin, α-naphthol aralkyl resin, β-naphthol aralkyl resin, biphenyl aralkyl resin, amino It is more preferable to use a triazine-modified phenol resin.
 なお、上述の硬化物は、単独で用いても、2種以上を組み合わせて用いてもよい。 In addition, the above-mentioned hardened | cured material may be used independently or may be used in combination of 2 or more type.
 硬化剤の含有量は、樹脂組成物の固形分に対して、1~70質量%であることが好ましく、3~60質量%であることがより好ましい。硬化剤の含有量が1質量%以上であると、硬化剤の選択肢が広がることから好ましい。一方、硬化剤の含有量が70質量%以下であると、エポキシ樹脂の性能が発現しやすいことから好ましい。 The content of the curing agent is preferably 1 to 70% by mass and more preferably 3 to 60% by mass with respect to the solid content of the resin composition. When the content of the curing agent is 1% by mass or more, it is preferable because choices of the curing agent are expanded. On the other hand, it is preferable that the content of the curing agent is 70% by mass or less because the performance of the epoxy resin is easily developed.
 [硬化促進剤]
 硬化促進剤は、硬化を促進する機能を有する。これにより、反応時間の短縮、未反応のエポキシ化合物の発生の防止または低減等をすることができる。
[Curing accelerator]
The curing accelerator has a function of promoting curing. Thereby, reaction time can be shortened, generation of unreacted epoxy compounds can be prevented or reduced, and the like.
 硬化促進剤としては、特に制限されないが、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯体、尿素誘導体等が挙げられる。これらのうち、イミダゾール類を用いることが好ましい。なお、これらの硬化促進剤は、単独で用いても、2種以上を組み合わせて用いてもよい。 The curing accelerator is not particularly limited, and examples thereof include phosphorus compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, amine complexes, urea derivatives, and the like. Of these, imidazoles are preferably used. These curing accelerators may be used alone or in combination of two or more.
 硬化促進剤の含有量は、樹脂組成物の固形分に対して、0.1~10質量%であることが好ましく、0.5~5質量%であることがより好ましい。硬化促進剤の含有量が0.1質量%以上であると、硬化を促進できることから好ましい。一方、硬化促進剤の含有量が10質量%以下であると、ポットライフを長くできることから好ましい。 The content of the curing accelerator is preferably from 0.1 to 10% by mass, more preferably from 0.5 to 5% by mass, based on the solid content of the resin composition. It is preferable that the content of the curing accelerator is 0.1% by mass or more because curing can be accelerated. On the other hand, when the content of the curing accelerator is 10% by mass or less, it is preferable because the pot life can be lengthened.
 [有機溶媒]
 有機溶媒は、エポキシ樹脂組成物の粘度を調整する機能を有する。これにより、基材への含浸性等が改善されうる。
[Organic solvent]
The organic solvent has a function of adjusting the viscosity of the epoxy resin composition. Thereby, the impregnation property to a base material etc. can be improved.
 有機溶媒としては、特に制限されないが、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート等の酢酸エステル類;イソプロピルアルコール、ブタノール、セロソルブ、ブチルカルビトール等のアルコール類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド類等が挙げられる。これらのうち、アルコール、ケトン類を用いることが好ましく、ブタノール、メチルエチルケトンを用いることがより好ましい。なお、これらの溶媒は、単独で用いても、2種以上を組み合わせて用いてもよい。 The organic solvent is not particularly limited, but ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, carbitol acetate, ethyl diglycol acetate, propylene glycol Acetic esters such as monomethyl ether acetate; alcohols such as isopropyl alcohol, butanol, cellosolve and butyl carbitol; aromatic hydrocarbons such as toluene and xylene; amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone Is mentioned. Of these, alcohols and ketones are preferably used, and butanol and methyl ethyl ketone are more preferably used. In addition, these solvents may be used independently or may be used in combination of 2 or more type.
 有機溶媒の含有量は、エポキシ樹脂の固形分に対して、10~60質量%であることが好ましく、20~50質量%であることがより好ましい。有機溶媒の含有量が10質量%以上であると、粘度を低くできることから好ましい。一方、有機溶媒の含有量が60質量%以下であると、不揮発成分を低減できることから好ましい。 The content of the organic solvent is preferably 10 to 60% by mass and more preferably 20 to 50% by mass with respect to the solid content of the epoxy resin. It is preferable that the content of the organic solvent is 10% by mass or more because the viscosity can be lowered. On the other hand, it is preferable that the content of the organic solvent is 60% by mass or less because nonvolatile components can be reduced.
 [無機充填剤]
 無機充填剤は、溶融粘度の上昇を防止する機能を有する。
[Inorganic filler]
The inorganic filler has a function of preventing an increase in melt viscosity.
 無機充填剤としては、特に制限されないが、溶融シリカ、結晶シリカ等のシリカ、酸化アルミニウム、窒化ケイ素、窒化アルミニウム等が挙げられる。これらのうち、シリカを用いることが好ましく、溶融シリカを用いることがより好ましい。なお、これらの無機充填剤は、単独で用いても、2種以上を組み合わせて用いてもよい。 The inorganic filler is not particularly limited, and examples thereof include silica such as fused silica and crystalline silica, aluminum oxide, silicon nitride, and aluminum nitride. Of these, silica is preferably used, and fused silica is more preferably used. In addition, these inorganic fillers may be used independently or may be used in combination of 2 or more type.
 無機充填剤の含有量は、エポキシ樹脂の固形分に対して、20~80質量%であることが好ましく、20~60質量%であることがより好ましい。無機充填剤の含有量が20質量%以上であると、弾性率を高くできることから好ましい。一方、無機充填剤の含有量が80質量%以下であると、粘度を低くできることから好ましい。 The content of the inorganic filler is preferably 20 to 80% by mass and more preferably 20 to 60% by mass with respect to the solid content of the epoxy resin. It is preferable that the content of the inorganic filler is 20% by mass or more because the elastic modulus can be increased. On the other hand, when the content of the inorganic filler is 80% by mass or less, it is preferable because the viscosity can be lowered.
 [添加物]
 エポキシ樹脂組成物に含有されうる添加物としては、特に制限されないが、強化繊維、難燃剤、離型剤、顔料、酸化防止剤、紫外線吸収剤、光安定剤、帯電防止剤、導電性付与剤等が挙げられる。これらの添加剤は、単独で用いても、2種以上を組み合わせて用いてもよい。
[Additive]
Additives that can be contained in the epoxy resin composition are not particularly limited, but include reinforcing fibers, flame retardants, release agents, pigments, antioxidants, ultraviolet absorbers, light stabilizers, antistatic agents, and conductivity-imparting agents. Etc. These additives may be used alone or in combination of two or more.
 [用途]
 一実施形態において、エポキシ樹脂組成物は、繊維強化複合材料、接着剤、塗料等の用途に適用されうる。以下、繊維強化複合材料の用途について詳細に説明する。
[Usage]
In one embodiment, the epoxy resin composition can be applied to uses such as fiber reinforced composite materials, adhesives, paints, and the like. Hereinafter, uses of the fiber reinforced composite material will be described in detail.
 前記繊維強化複合材料とは、エポキシ樹脂組成物が強化繊維に含浸したシート状中間素材である。 The fiber reinforced composite material is a sheet-like intermediate material in which a reinforcing fiber is impregnated with an epoxy resin composition.
 強化繊維の原料としては、特に制限されないが、ポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維等の炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維等が挙げられる。これらのうち、炭素繊維を用いることが好ましい。 The raw material of the reinforcing fiber is not particularly limited, but includes carbon fibers such as polyacrylonitrile-based carbon fiber, pitch-based carbon fiber, rayon-based carbon fiber, glass fiber, aramid fiber, boron fiber, alumina fiber, silicon carbide fiber, etc. It is done. Of these, it is preferable to use carbon fibers.
 強化繊維の形態としては、有撚糸、解撚糸、無撚糸等が挙げられる。これらのうち、優れた成形性を有することから、解撚糸、無撚糸であることが好ましい。また、強化繊維の形態は、繊維方向を一方向に引き揃えたものであってもよいし、平織り、朱子織り等の織物等であってもよい。 Examples of the form of the reinforcing fiber include twisted yarn, untwisted yarn, and non-twisted yarn. Of these, untwisted yarns and non-twisted yarns are preferred because they have excellent moldability. The form of the reinforcing fiber may be one in which the fiber directions are aligned in one direction, or may be a woven fabric such as plain weave or satin weave.
 上述の強化繊維は単独で用いても、2種以上を組み合わせて用いてもよい。 The above-mentioned reinforcing fibers may be used alone or in combination of two or more.
 繊維強化複合材料中の強化繊維の含有率は、繊維強化複合材料の全体積に対して、40~85体積%であることが好ましく、強度に優れる観点から50~70体積%であることがより好ましい。強化繊維の含有率が40体積%以上であると、得られる硬化物の難燃性が得られ、比弾性率や比強度等の物性に優れる観点から好ましい。一方、強化繊維の含有率が85体積%以下であると、エポキシ樹脂組成物と強化繊維との接着性が良好となり、例えばプリプレグを積層した際にプリプレグの層間剥離を防止できることから好ましい。 The content of the reinforcing fiber in the fiber reinforced composite material is preferably 40 to 85% by volume with respect to the total volume of the fiber reinforced composite material, and more preferably 50 to 70% by volume from the viewpoint of excellent strength. preferable. When the content of the reinforcing fiber is 40% by volume or more, flame retardancy of the obtained cured product is obtained, and this is preferable from the viewpoint of excellent physical properties such as specific elastic modulus and specific strength. On the other hand, when the content of the reinforcing fibers is 85% by volume or less, the adhesiveness between the epoxy resin composition and the reinforcing fibers becomes good, and for example, when the prepregs are laminated, delamination of the prepregs can be prevented.
 繊維強化複合材料におけるエポキシ樹脂組成物の強化繊維の含浸度についても特に制限されず、エポキシ樹脂組成物が強化繊維の繊維束の内部まで含浸されていてもよいし、シート状繊維の表面付近に局在化していてもよい。 The impregnation degree of the reinforcing fiber of the epoxy resin composition in the fiber reinforced composite material is not particularly limited, and the epoxy resin composition may be impregnated to the inside of the fiber bundle of the reinforcing fiber, or near the surface of the sheet-like fiber. It may be localized.
 繊維強化複合材料の製造方法は、特に制限されず、適宜公知の手法が採用されうる。具体的には、ウェット法、ホットメルト法が挙げられる。 The method for producing the fiber reinforced composite material is not particularly limited, and a known method can be adopted as appropriate. Specific examples include a wet method and a hot melt method.
 前記ウェット法は、エポキシ樹脂組成物に含まれる各成分を均一に混合したワニスを調製し、次いで、強化繊維からなるシート状繊維に浸漬させながら含浸させ、オーブン等で有機溶媒を蒸発させて繊維強化複合材料を得る方法である。 In the wet method, a varnish in which each component contained in the epoxy resin composition is uniformly mixed is prepared, then impregnated while being immersed in a sheet-like fiber made of reinforcing fiber, and the organic solvent is evaporated in an oven or the like to obtain a fiber. This is a method for obtaining a reinforced composite material.
 前記ホットメルト法は、エポキシ樹脂組成物を、有機溶媒を使用せずに加熱により低粘度化してロールや離型紙上にフィルムを作成し、次いで、強化繊維からなるシート状繊維の両側または片側からフィルムを重ねて加熱、加圧することで含浸させる方法である。 In the hot melt method, the viscosity of the epoxy resin composition is reduced by heating without using an organic solvent to form a film on a roll or release paper, and then from both sides or one side of a sheet-like fiber made of reinforcing fibers. This is a method of impregnating a film by heating and pressurizing it.
 この際、ホットメルト法において、強化繊維を含浸させる際の樹脂組成物の温度は、50~250℃であることが好ましく、50~100℃であることがより好ましい。含浸時の樹脂組成物の温度が50℃以上であると、強化繊維に含浸しやすくなることから好ましい。一方、含浸時の樹脂組成物の温度が250℃以下であると、部分的な硬化反応の進行によるガラス転移温度の上昇を抑えることができ、適正なドレープ性の保持ができることから好ましい。 In this case, in the hot melt method, the temperature of the resin composition when impregnating the reinforcing fibers is preferably 50 to 250 ° C., and more preferably 50 to 100 ° C. It is preferable that the temperature of the resin composition at the time of impregnation is 50 ° C. or higher because the reinforcing fibers are easily impregnated. On the other hand, it is preferable that the temperature of the resin composition at the time of impregnation is 250 ° C. or lower because an increase in the glass transition temperature due to the progress of a partial curing reaction can be suppressed and appropriate drape can be maintained.
 上述のうち、残留有機溶媒が生じないホットメルト法を用いることが好ましい。 Of the above, it is preferable to use a hot melt method in which no residual organic solvent is generated.
 <硬化物>
 本発明の一形態によれば、硬化物が提供される。前記硬化物は、上述のエポキシ樹脂組成物が硬化されてなる。当該硬化物は、高い耐熱性および高い靱性を有する。
<Hardened product>
According to one form of this invention, hardened | cured material is provided. The cured product is formed by curing the above-described epoxy resin composition. The cured product has high heat resistance and high toughness.
 硬化物の形状は、特に制限されず、シート形状であってもよいし、硬化物が他の材料(繊維状補強材料等)に含浸された形状であってもよい。 The shape of the cured product is not particularly limited, and may be a sheet shape, or may be a shape in which the cured product is impregnated with another material (such as a fibrous reinforcing material).
 硬化物のガラス転移点(Tg)は、特に制限されないが、200~270℃であることが好ましく、200~250℃であることがより好ましい。ガラス転移点(Tg)が200℃以上であると、耐熱性を高くできることから好ましい。一方、ガラス転移点(Tg)が270℃以下であると、靭性に優れることから好ましい。なお、本明細書において「ガラス転移点(Tg)」の値は、実施例に記載される方法で測定された値を採用するものとする。 The glass transition point (Tg) of the cured product is not particularly limited, but is preferably 200 to 270 ° C., more preferably 200 to 250 ° C. A glass transition point (Tg) of 200 ° C. or higher is preferable because heat resistance can be increased. On the other hand, a glass transition point (Tg) of 270 ° C. or less is preferable because of excellent toughness. In addition, the value measured by the method described in an Example shall be employ | adopted for the value of "glass transition point (Tg)" in this specification.
 エポキシ樹脂組成物の硬化温度は、50~250℃であることが好ましく、70~200℃であることがより好ましい。硬化温度が50℃以上であると、硬化反応が速やかに行われうることから好ましい。一方、硬化温度が250℃以下であれば、硬化時に必要なエネルギー量を抑制できることから好ましい。 The curing temperature of the epoxy resin composition is preferably 50 to 250 ° C, and more preferably 70 to 200 ° C. It is preferable for the curing temperature to be 50 ° C. or higher because the curing reaction can be carried out quickly. On the other hand, if the curing temperature is 250 ° C. or lower, it is preferable because the amount of energy required for curing can be suppressed.
 一実施形態において、上述の硬化物は、繊維強化樹脂成形品、放熱部材、半導体、プリント配線基板等の用途に適用されうる。以下、繊維強化樹脂成形品に適用する場合について詳細に説明する。 In one embodiment, the above-described cured product can be applied to uses such as a fiber-reinforced resin molded product, a heat dissipation member, a semiconductor, and a printed wiring board. Hereinafter, the case where it applies to a fiber reinforced resin molded product is demonstrated in detail.
 繊維強化樹脂成形品は、上述の繊維強化複合材料を硬化したものである。 The fiber reinforced resin molded product is obtained by curing the above-mentioned fiber reinforced composite material.
 強化繊維の含有率は、繊維強化樹脂成形品の全体積に対して、40~85体積%であることが好ましく、強度の観点から、50~70体積%であることがより好ましい。 The content of the reinforcing fiber is preferably 40 to 85% by volume with respect to the total volume of the fiber reinforced resin molded product, and more preferably 50 to 70% by volume from the viewpoint of strength.
 繊維強化樹脂成形品の製造方法は、特に制限されないが、繊維強化複合材料を所定の寸法に裁断後、所定枚数を積層した積層物に熱と圧力を加えながら、エポキシ樹脂組成物を硬化させる方法が挙げられる。 The manufacturing method of the fiber reinforced resin molded product is not particularly limited, but after the fiber reinforced composite material is cut into a predetermined size, the epoxy resin composition is cured while applying heat and pressure to a laminate in which a predetermined number of layers are laminated. Is mentioned.
 加熱硬化の方法としては、特に制限されないが、プレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法、内圧成形法等が挙げられる。 The method of heat curing is not particularly limited, and examples thereof include a press molding method, an autoclave molding method, a bagging molding method, a wrapping tape method, and an internal pressure molding method.
 上記製造方法として、例えば、板状の繊維強化樹脂成形品を製造する場合、まず、シート状の繊維強化複合材料を所定の寸法に裁断後、剛体ツール上に所定枚数、所定の繊維軸方向に積層し、可撓性フィルムでシールする。次いで、前記剛体ツールと前記可撓性フィルムの間を真空ポンプにて吸引して脱気する。そして、オートクレーブに設置後、加熱、加圧することで繊維強化樹脂成形品を製造することができる。 As a manufacturing method, for example, when manufacturing a plate-like fiber reinforced resin molded product, first, after cutting a sheet-like fiber reinforced composite material into a predetermined dimension, a predetermined number of sheets are placed on a rigid tool in a predetermined fiber axis direction. Laminate and seal with flexible film. Next, the space between the rigid tool and the flexible film is sucked with a vacuum pump to be deaerated. And after installing in an autoclave, a fiber reinforced resin molded product can be manufactured by heating and pressurizing.
 なお、前記剛体ツールとしては、特に制限されないが、スチール、アルミニウム等の金属;繊維強化プラスチック(FRP);木材;石膏等が挙げられる。 The rigid tool is not particularly limited, and examples thereof include metals such as steel and aluminum; fiber reinforced plastic (FRP); wood; plaster and the like.
 また、前記可撓性フィルムとしては、特に制限されないが、ナイロン、フッ素樹脂、シリコーン樹脂等が挙げられる。 Further, the flexible film is not particularly limited, and examples thereof include nylon, fluororesin, and silicone resin.
 加熱温度としては、特に制限されないが、50~250℃であることが好ましく、80~220℃であることがより好ましい。加熱温度が50℃以上であると、好適な硬化速度が得られることから好ましい。一方、加熱温度が250℃以下であると、熱歪みによる反りの発生が防止または抑制できることから好ましい。なお、加熱は順次行ってもよい。具体的には、50~100℃で予備硬化させてタックフリー状の硬化物にした後、120~200℃で加熱する方法等が挙げられる。 The heating temperature is not particularly limited, but is preferably 50 to 250 ° C, more preferably 80 to 220 ° C. A heating temperature of 50 ° C. or higher is preferable because a suitable curing rate can be obtained. On the other hand, it is preferable that the heating temperature is 250 ° C. or lower because warpage due to thermal strain can be prevented or suppressed. Heating may be performed sequentially. Specifically, a method of pre-curing at 50 to 100 ° C. to form a tack-free cured product and then heating at 120 to 200 ° C. can be used.
 圧力としては、プリプレグの厚みや強化繊維の体積含有率によっても異なるが、1~10kgf/cmであることが好ましい。圧力が1kgf/cm以上であると、局所的な未硬化部分の発生の防止または抑制、反りの発生の防止または抑制等ができることから好ましい、一方、圧力が10kgf/cm以下であると、未含浸部分の発生の防止または抑制、樹脂の漏出が防止または抑制できることから好ましい。 The pressure varies depending on the thickness of the prepreg and the volume content of the reinforcing fibers, but is preferably 1 to 10 kgf / cm 2 . When the pressure is 1 kgf / cm 2 or more, prevent or suppress the occurrence of localized uncured portions, preferred because it is prevented or suppressed, such as warping of the generator, whereas, when the pressure is 10 kgf / cm 2 or less, It is preferable because it is possible to prevent or suppress the occurrence of unimpregnated portions and to prevent or suppress leakage of the resin.
 なお、繊維強化成形品は、他の方法で製造してもよい。当該他の方法としては、例えば、金型に繊維骨材を敷き、上記ワニスを多重積層してゆくハンドレイアップ法やスプレーアップ法、オス型・メス型のいずれかを使用し、強化繊維からなる基材にワニスを含浸させながら積み重ねて成形、圧力を成形物に作用させることのできるフレキシブルな型をかぶせ、気密シールしたものを真空(減圧)成型する真空バッグ法、あらかじめ強化繊維を含有するワニスをシート状にしたものを金型で圧縮成型するSMCプレス法、繊維を敷き詰めた合わせ型に上記ワニスを注入するRTM法などにより、強化繊維に上記ワニスを含浸させたプリプレグを製造し、これを大型のオートクレーブで焼き固める方法等が挙げられる。 Note that the fiber-reinforced molded product may be manufactured by other methods. As the other method, for example, a fiber aggregate is laid on a mold, and the hand lay-up method or spray-up method in which the varnish is stacked in multiple layers is used. Vacuum bag method in which the base material is stacked while impregnated with varnish, molded, covered with a flexible mold that can apply pressure to the molded product, and hermetically sealed is vacuum (reduced pressure) molding, contains reinforcing fibers in advance A prepreg in which a reinforced varnish is impregnated with the varnish is manufactured by an SMC press method in which a sheet of varnish is compression-molded with a mold, an RTM method in which the varnish is injected into a mating mold in which fibers are spread, And a method of baking and hardening in a large autoclave.
 以下、実施例を用いて本発明を説明するが、本発明は実施例の記載に制限されるものではない。なお、実施例において「部」の表示を用いるが、特に断りがない限り「質量部」を表す。 Hereinafter, the present invention will be described using examples, but the present invention is not limited to the description of the examples. In addition, although the display of "part" is used in an Example, unless otherwise indicated, "mass part" is represented.
 [実施例1]
 <エポキシ樹脂の製造>
 窒素導入管、冷却管、温度計、および撹拌機をセットしたフラスコに、1,6-ジヒドロキシナフタレン160部(1.0mol)、エピクロロヒドリン925部(10.0mol)、n-ブタノール139部、およびテトラエチルベンジルアンモニウムクロリド2部を仕込み、溶解させた。
[Example 1]
<Manufacture of epoxy resin>
In a flask equipped with a nitrogen inlet tube, a condenser tube, a thermometer, and a stirrer, 160 parts (1.0 mol) of 1,6-dihydroxynaphthalene, 925 parts (10.0 mol) of epichlorohydrin, 139 parts of n-butanol , And 2 parts of tetraethylbenzylammonium chloride were charged and dissolved.
 得られた溶液を、65℃に昇温した後、共沸する圧力まで減圧し、49%水酸化ナトリウム水溶液90部(1.1mol)を5時間かけて滴下した。滴下後、共沸による留出分をディーンスターク装置により分離し、水層を除去して油層のみを反応系中に戻しながら30分間反応を行った。 The resulting solution was heated to 65 ° C. and then decompressed to an azeotropic pressure, and 90 parts (1.1 mol) of a 49% aqueous sodium hydroxide solution was added dropwise over 5 hours. After dropping, the azeotropic distillate was separated by a Dean Stark apparatus, the aqueous layer was removed, and the reaction was carried out for 30 minutes while returning only the oil layer to the reaction system.
 未反応のエピクロロヒドリンを減圧蒸留により留出させ、得られた粗生成物にメチルエチルケトン59部およびn-ブタノール177部を加えて溶解した。次いで、10%水酸化ナトリウム水溶液10部を添加して80℃まで昇温し、2時間反応させた。 Unreacted epichlorohydrin was distilled by distillation under reduced pressure, and 59 parts of methyl ethyl ketone and 177 parts of n-butanol were added to and dissolved in the obtained crude product. Next, 10 parts of a 10% aqueous sodium hydroxide solution was added, the temperature was raised to 80 ° C., and the reaction was carried out for 2 hours.
 得られた反応物を水150部で水洗した。これを3回繰り返し、洗浄液のPHが中性となったことを確認した。共沸による脱水操作を行い、精密濾過後、溶媒を減圧条件下で留去して、エポキシ樹脂263.8部を得た。 The obtained reaction product was washed with 150 parts of water. This was repeated 3 times, and it was confirmed that the pH of the cleaning liquid became neutral. An azeotropic dehydration operation was performed, and after fine filtration, the solvent was distilled off under reduced pressure to obtain 263.8 parts of an epoxy resin.
 得られたエポキシ樹脂中に含まれる上記化学式(1)で表される3官能エポキシ化合物、および上記化学式(2)で表される3官能エポキシ化合物の含有量を高速液体クロマトグラフィ(HPLC)でそれぞれ測定した。なお、HPLCの条件に関し、測定装置は「Prominece」(株式会社島津製作所製)であり、カラムは「ODS-100V」(東ソー株式会社製)であり、検出器はUV254nmである。また、測定条件は、カラム温度が40℃であり、溶媒は水とアセトニトリルの混合溶液およびアセトニトリルを用い(水:アセトニトリル=70:30(体積比)の混合溶媒で2.5分間保持し、次いで、アセトニトリルを用いて15分かけてカラムの展開溶媒を水:アセトニトリル=0:100としてこれを保持する)、流束は0.3mL/分である。そして、標準物質はポリスチレンである。なお、試料としては、0.5質量%(固形分換算)のアセトニトリル溶液を100μmのマイクロフィルタでろ過したものを使用する。その結果、エポキシ樹脂中の化学式(1)で表される3官能エポキシ化合物の含有量は0.4質量%であり、化学式(2)で表される3官能エポキシ化合物の含有量は0.4質量%であった。3官能エポキシ化合物の含有量は0.8質量%であった。 The content of the trifunctional epoxy compound represented by the chemical formula (1) and the trifunctional epoxy compound represented by the chemical formula (2) contained in the obtained epoxy resin is measured by high performance liquid chromatography (HPLC). did. Regarding the HPLC conditions, the measuring apparatus is “Prominece” (manufactured by Shimadzu Corporation), the column is “ODS-100V” (manufactured by Tosoh Corporation), and the detector is UV254 nm. The measurement conditions were that the column temperature was 40 ° C., the solvent was a mixed solution of water and acetonitrile and acetonitrile (water: acetonitrile = 70: 30 (volume ratio) mixed solvent was maintained for 2.5 minutes, The column developing solvent is maintained as water: acetonitrile = 0: 100 using acetonitrile for 15 minutes), and the flux is 0.3 mL / min. The standard material is polystyrene. In addition, as a sample, what filtered 0.5 mass% (solid content conversion) acetonitrile solution with a 100 micrometer micro filter is used. As a result, the content of the trifunctional epoxy compound represented by the chemical formula (1) in the epoxy resin is 0.4% by mass, and the content of the trifunctional epoxy compound represented by the chemical formula (2) is 0.4%. It was mass%. The content of the trifunctional epoxy compound was 0.8% by mass.
 <エポキシ樹脂組成物の製造>
 上述のエポキシ樹脂70部に対し、硬化剤である4,4’-ジアミノジフェニルスルホン30部を100℃、2時間の条件で溶融混合を行い、エポキシ樹脂組成物を得た。
<Manufacture of epoxy resin composition>
To 70 parts of the epoxy resin described above, 30 parts of 4,4′-diaminodiphenylsulfone as a curing agent was melt-mixed at 100 ° C. for 2 hours to obtain an epoxy resin composition.
 <硬化物の製造>
 上述で製造したエポキシ樹脂組成物を、2mmのスペーサーを間に挟んだガラス板の間に流し込み、150℃で1時間、次いで180℃で3時間硬化反応を行い、硬化物を製造した。
<Manufacture of cured product>
The epoxy resin composition produced above was poured between glass plates with a 2 mm spacer in between, and a curing reaction was carried out at 150 ° C. for 1 hour and then at 180 ° C. for 3 hours to produce a cured product.
 [実施例2]
 <エポキシ樹脂の製造>
 エピクロルヒドリンを555部(6.0mol)用いたことを除いては、実施例1と同様の方法でエポキシ樹脂を製造した。
[Example 2]
<Manufacture of epoxy resin>
An epoxy resin was produced in the same manner as in Example 1 except that 555 parts (6.0 mol) of epichlorohydrin was used.
 得られたエポキシ樹脂について、実施例1と同様の方法で、化学式(1)で表される3官能エポキシ化合物の含有量、化学式(2)で表される3官能エポキシ化合物の含有量、および3官能エポキシ化合物の含有量を測定した。その結果、化学式(1)で表される3官能エポキシ化合物の含有量は1.0質量%であり、化学式(2)で表される3官能エポキシ化合物の含有量は1.3質量%であり、3官能エポキシ化合物の含有量は2.3質量%であった。 About the obtained epoxy resin, by the method similar to Example 1, content of the trifunctional epoxy compound represented by Chemical formula (1), content of the trifunctional epoxy compound represented by Chemical formula (2), and 3 The content of the functional epoxy compound was measured. As a result, the content of the trifunctional epoxy compound represented by the chemical formula (1) is 1.0% by mass, and the content of the trifunctional epoxy compound represented by the chemical formula (2) is 1.3% by mass. The content of the trifunctional epoxy compound was 2.3% by mass.
 <エポキシ樹脂組成物および硬化物の製造>
 実施例1と同様の方法で、エポキシ樹脂組成物および硬化物を製造した。
<Manufacture of epoxy resin composition and cured product>
In the same manner as in Example 1, an epoxy resin composition and a cured product were produced.
 [実施例3]
 <エポキシ樹脂の製造>
 エピクロルヒドリンを370部(4.0mol)用いたことを除いては、実施例1と同様の方法でエポキシ樹脂を製造した。
[Example 3]
<Manufacture of epoxy resin>
An epoxy resin was produced in the same manner as in Example 1 except that 370 parts (4.0 mol) of epichlorohydrin was used.
 得られたエポキシ樹脂について、実施例1と同様の方法で、化学式(1)で表される3官能エポキシ化合物の含有量、化学式(2)で表される3官能エポキシ化合物の含有量、および3官能エポキシ化合物の含有量を測定した。その結果、化学式(1)で表される3官能エポキシ化合物の含有量は1.9質量%であり、化学式(2)で表される3官能エポキシ化合物の含有量は2.0質量%であり、3官能エポキシ化合物の含有量は3.9質量%であった。 About the obtained epoxy resin, by the method similar to Example 1, content of the trifunctional epoxy compound represented by Chemical formula (1), content of the trifunctional epoxy compound represented by Chemical formula (2), and 3 The content of the functional epoxy compound was measured. As a result, the content of the trifunctional epoxy compound represented by the chemical formula (1) is 1.9% by mass, and the content of the trifunctional epoxy compound represented by the chemical formula (2) is 2.0% by mass. The content of the trifunctional epoxy compound was 3.9% by mass.
 <エポキシ樹脂組成物および硬化物の製造>
 実施例1と同様の方法で、エポキシ樹脂組成物および硬化物を製造した。
<Manufacture of epoxy resin composition and cured product>
In the same manner as in Example 1, an epoxy resin composition and a cured product were produced.
 [比較例1]
 <エポキシ樹脂の製造>
 エピクロルヒドリンを185部(2.0mol)用いたことを除いては、実施例1と同様の方法でエポキシ樹脂を製造した。
[Comparative Example 1]
<Manufacture of epoxy resin>
An epoxy resin was produced in the same manner as in Example 1 except that 185 parts (2.0 mol) of epichlorohydrin was used.
 得られたエポキシ樹脂について、実施例1と同様の方法で、化学式(1)で表される3官能エポキシ化合物の含有量、化学式(2)で表される3官能エポキシ化合物の含有量、および3官能エポキシ化合物の含有量を測定した。その結果、化学式(1)で表される3官能エポキシ化合物の含有量は2.6質量%であり、化学式(2)で表される3官能エポキシ化合物の含有量は3.2質量%であり、3官能エポキシ化合物の含有量は5.8質量%であった。 About the obtained epoxy resin, by the method similar to Example 1, content of the trifunctional epoxy compound represented by Chemical formula (1), content of the trifunctional epoxy compound represented by Chemical formula (2), and 3 The content of the functional epoxy compound was measured. As a result, the content of the trifunctional epoxy compound represented by the chemical formula (1) is 2.6% by mass, and the content of the trifunctional epoxy compound represented by the chemical formula (2) is 3.2% by mass. The content of the trifunctional epoxy compound was 5.8% by mass.
 <エポキシ樹脂組成物および硬化物の製造>
 実施例1と同様の方法で、エポキシ樹脂組成物および硬化物を製造した。
<Manufacture of epoxy resin composition and cured product>
In the same manner as in Example 1, an epoxy resin composition and a cured product were produced.
 実施例1~3および比較例1で製造したエポキシ樹脂について、下記表1に示す。 The epoxy resins produced in Examples 1 to 3 and Comparative Example 1 are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 <評価>
 [エポキシ樹脂の評価]
 実施例1~3および比較例1で製造したエポキシ樹脂について、エポキシ当量、粘度、およびガラス転移点(Tg)を測定した。
<Evaluation>
[Evaluation of epoxy resin]
The epoxy resin produced in Examples 1 to 3 and Comparative Example 1 was measured for epoxy equivalent, viscosity, and glass transition point (Tg).
 (エポキシ当量)
 JIS K 7236:2009の方法により、エポキシ樹脂のエポキシ当量を測定した。得られた結果を下記表2に示す。
(Epoxy equivalent)
The epoxy equivalent of the epoxy resin was measured by the method of JIS K 7236: 2009. The obtained results are shown in Table 2 below.
 (粘度)
 B形粘度計(英弘精機株式会社製)を用いて、52℃におけるエポキシ樹脂の粘度を測定した。得られた結果を下記表2に示す。
(viscosity)
The viscosity of the epoxy resin at 52 ° C. was measured using a B-type viscometer (manufactured by Eiko Seiki Co., Ltd.). The obtained results are shown in Table 2 below.
 [硬化物の評価]
 実施例1~3および比較例1で製造したエポキシ硬化物について、ガラス転移点、曲げ強度、曲げ弾性率、引張強度、引張弾性率、および伸びを測定した
 (ガラス転移点(Tg))
 粘弾性測定装置(DMA:レオメトリック社製固体粘弾性測定装置RSAII、レクタンギュラーテンション法;周波数1Hz、昇温速度3℃/min、最高測定温度300℃)を用い、硬化物について弾性率変化が最大となる(tanδ変化率が最も大きい)温度を測定し、これをガラス転移温度(Tg)として評価した。結果を下記表2に示す。
[Evaluation of cured product]
With respect to the epoxy cured products produced in Examples 1 to 3 and Comparative Example 1, the glass transition point, bending strength, bending elastic modulus, tensile strength, tensile elastic modulus, and elongation were measured (glass transition point (Tg)).
Using a viscoelasticity measuring device (DMA: solid viscoelasticity measuring device RSAII manufactured by Rheometric, rectangular tension method; frequency 1 Hz, temperature rising rate 3 ° C./min, maximum measuring temperature 300 ° C.) (The tan δ change rate is the highest) was measured, and this was evaluated as the glass transition temperature (Tg). The results are shown in Table 2 below.
 (曲げ強度・曲げ弾性率)
 JIS K6911:2006に従って、島津製作所株式会社製のAUTOGRAPH AG-Iを用いて測定し、硬化物の曲げ強度、曲げ弾性率を測定した。得られた結果を下記表2に示す。
(Bending strength / flexural modulus)
According to JIS K6911: 2006, it measured using AUTOGRAPH AG-I made by Shimadzu Corporation, and the bending strength and bending elastic modulus of the cured product were measured. The obtained results are shown in Table 2 below.
 (引張強度・引張弾性率・伸び)
 JIS K7161:1994に従って、島津製作所株式会社製のAUTOGRAPH AG-Iを用いて測定し、硬化物の引張強度、引張弾性率、伸びを測定した。得られた結果を下記表2に示す。
(Tensile strength, tensile modulus, elongation)
In accordance with JIS K7161: 1994, measurement was performed using AUTOGRAPH AG-I manufactured by Shimadzu Corporation, and the tensile strength, tensile elastic modulus, and elongation of the cured product were measured. The obtained results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 上記表2からも明らかなように、実施例1~3で得られるエポキシ樹脂の硬化物はガラス転移点(Tg)が高く、耐熱性に優れることが分かる。 As apparent from Table 2 above, it can be seen that the cured epoxy resins obtained in Examples 1 to 3 have a high glass transition point (Tg) and excellent heat resistance.
 また、実施例1~3で得られる硬化物は、曲げ強度、曲げ弾性率、引張強度、引張弾性率、および伸びが高く、靱性に優れることが分かる。 It can also be seen that the cured products obtained in Examples 1 to 3 have high bending strength, flexural modulus, tensile strength, tensile modulus, and elongation, and are excellent in toughness.

Claims (4)

  1.  1,6-ジヒドロキシナフタレンとエピハロヒドリンとの反応生成物であるエポキシ樹脂であって、
     前記エポキシ樹脂が、下記化学式(1)および/または化学式(2):
    Figure JPOXMLDOC01-appb-C000001
    で表される3官能エポキシ化合物を含み、
     前記3官能エポキシ化合物の含有量が、エポキシ樹脂の固形分に対して、5.0質量%以下である、エポキシ樹脂。
    An epoxy resin that is a reaction product of 1,6-dihydroxynaphthalene and epihalohydrin,
    The epoxy resin has the following chemical formula (1) and / or chemical formula (2):
    Figure JPOXMLDOC01-appb-C000001
    A trifunctional epoxy compound represented by
    The epoxy resin whose content of the said trifunctional epoxy compound is 5.0 mass% or less with respect to solid content of an epoxy resin.
  2.  前記3官能エポキシ化合物の含有量が、エポキシ樹脂の固形分に対して、3.0質量%以下である、請求項1に記載のエポキシ樹脂。 The epoxy resin according to claim 1, wherein the content of the trifunctional epoxy compound is 3.0% by mass or less based on the solid content of the epoxy resin.
  3.  請求項1または2に記載のエポキシ樹脂と、硬化剤と、を含むエポキシ樹脂組成物。 An epoxy resin composition comprising the epoxy resin according to claim 1 or 2 and a curing agent.
  4.  請求項3に記載のエポキシ樹脂組成物を硬化してなる、硬化物。 Hardened | cured material formed by hardening | curing the epoxy resin composition of Claim 3.
PCT/JP2017/045470 2017-01-24 2017-12-19 Epoxy resin, epoxy resin composition containing same, and cured object obtained from said epoxy resin composition WO2018139112A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018564165A JPWO2018139112A1 (en) 2017-01-24 2017-12-19 Epoxy resin, epoxy resin composition containing the same, and cured product using the epoxy resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-010301 2017-01-24
JP2017010301 2017-01-24

Publications (1)

Publication Number Publication Date
WO2018139112A1 true WO2018139112A1 (en) 2018-08-02

Family

ID=62978554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045470 WO2018139112A1 (en) 2017-01-24 2017-12-19 Epoxy resin, epoxy resin composition containing same, and cured object obtained from said epoxy resin composition

Country Status (2)

Country Link
JP (1) JPWO2018139112A1 (en)
WO (1) WO2018139112A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114133535A (en) * 2021-12-27 2022-03-04 安徽善孚新材料科技股份有限公司 Moisture-heat-resistant epoxy resin and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173719A (en) * 1984-09-20 1986-04-15 Dainippon Ink & Chem Inc Novel epoxy resin composition
JP2010132825A (en) * 2008-12-08 2010-06-17 Nippon Kayaku Co Ltd Epoxy resin composition, prepreg and cured product thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3062822B2 (en) * 1990-01-29 2000-07-12 大日本インキ化学工業株式会社 Epoxy resin composition
JP2000336248A (en) * 1999-05-27 2000-12-05 Dainippon Ink & Chem Inc Epoxy resin composition and electrical laminate sheet
JP5135702B2 (en) * 2006-03-31 2013-02-06 Dic株式会社 Epoxy resin composition, cured product thereof, semiconductor sealing material, and semiconductor device
JP5228404B2 (en) * 2007-08-27 2013-07-03 Dic株式会社 Epoxy resin composition, cured product thereof, resin composition for buildup film, novel epoxy resin, and production method thereof
JP5135951B2 (en) * 2007-08-27 2013-02-06 Dic株式会社 Epoxy resin composition, cured product thereof, and novel epoxy resin
JP2009073889A (en) * 2007-09-19 2009-04-09 Dic Corp Epoxy resin composition, cured product thereof, and resin composition for build-up film
KR20150015443A (en) * 2012-04-24 2015-02-10 신닛테츠 수미킨 가가쿠 가부시키가이샤 Epoxy resin composition, resin sheet, cured article, and phenoxy resin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173719A (en) * 1984-09-20 1986-04-15 Dainippon Ink & Chem Inc Novel epoxy resin composition
JP2010132825A (en) * 2008-12-08 2010-06-17 Nippon Kayaku Co Ltd Epoxy resin composition, prepreg and cured product thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OGURA ET AL.: "State-of-the-arts Technologies of Hyper Epoxy Resins beyond History", DIC TECHNICAL REVIEW, no. 11, 2005, pages 21 - 28, XP055531038 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114133535A (en) * 2021-12-27 2022-03-04 安徽善孚新材料科技股份有限公司 Moisture-heat-resistant epoxy resin and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2018139112A1 (en) 2019-04-18

Similar Documents

Publication Publication Date Title
KR102309168B1 (en) Epoxy resin, method for producing epoxy resin, curable resin composition and cured product thereof, fiber-reinforced composite material, and molded article
WO2020129724A1 (en) Phenolic resin, epoxy resin, epoxy resin comosition and cured product of same
US9006312B2 (en) Composite compositions
JP6575838B2 (en) Epoxy resin, epoxy resin composition containing the same, and cured product using the epoxy resin composition
JPWO2018180451A1 (en) Epoxy resin, production method, epoxy resin composition and cured product thereof
JP7368551B2 (en) Method for producing epoxy resin composition and method for using biphenylaralkyl phenolic resin
WO2013032739A2 (en) Epoxybenzyl-terminated poly(arylene ether)s, method for preparation thereof, and curable compositions comprising same
JP6260846B2 (en) Epoxy resin, method for producing epoxy resin, curable resin composition and cured product thereof
JP7132784B2 (en) Epoxy resin composition, prepreg, laminate and printed wiring board
JP5192198B2 (en) Polyfunctional epoxidized polyphenylene ether resin and method for producing the same
WO2018139112A1 (en) Epoxy resin, epoxy resin composition containing same, and cured object obtained from said epoxy resin composition
WO2023153160A1 (en) Phenolic resin, epoxy resin, curable resin composition, cured product, fiber-reinforced composite material, and fiber-reinforced resin molded article
JP6590126B2 (en) Epoxy resin, epoxy resin composition containing the same, and cured product using the epoxy resin composition
US20240218112A1 (en) Phenolic resin, epoxy resin, curable resin composition, cured product, fiber-reinforced composite material, and fiber-reinforced resin molded product
JP6008064B2 (en) Epoxy resin, method for producing epoxy resin, curable resin composition, cured product thereof, fiber-reinforced composite material, and molded article
JP5195107B2 (en) Imide skeleton resin, curable resin composition, and cured product thereof
JP2023065175A (en) Phenolic resin, epoxy resin, curable resin composition, cured product, fiber-reinforced composite material, and fiber-reinforced resin molded article
JP7059633B2 (en) Epoxy resin, manufacturing method, epoxy resin composition and its cured product
JP7298801B1 (en) Phenolic resins, epoxy resins, curable resin compositions, cured products, fiber-reinforced composite materials, and fiber-reinforced resin moldings
JP6992932B2 (en) Polyfunctional phenol resin, polyfunctional epoxy resin, curable resin composition containing them and cured product thereof
JPWO2017145772A1 (en) Epoxy resin, curable resin composition and cured product thereof
JP7024227B2 (en) Epoxy resin manufacturing method, epoxy resin, epoxy resin composition and cured product thereof
JP2022066986A (en) Phenol resin, epoxy resin, curable resin composition, cured object, fiber reinforced composite material and fiber reinforced resin molded product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893535

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564165

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893535

Country of ref document: EP

Kind code of ref document: A1