WO2018139009A1 - Touch sensor and display device with embedded touch sensor - Google Patents

Touch sensor and display device with embedded touch sensor Download PDF

Info

Publication number
WO2018139009A1
WO2018139009A1 PCT/JP2017/040565 JP2017040565W WO2018139009A1 WO 2018139009 A1 WO2018139009 A1 WO 2018139009A1 JP 2017040565 W JP2017040565 W JP 2017040565W WO 2018139009 A1 WO2018139009 A1 WO 2018139009A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
connection line
touch sensor
electrodes
sensor according
Prior art date
Application number
PCT/JP2017/040565
Other languages
French (fr)
Japanese (ja)
Inventor
佐々木 亨
秋元 肇
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Publication of WO2018139009A1 publication Critical patent/WO2018139009A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces

Definitions

  • the present invention relates to a touch sensor and a display device with a built-in touch sensor.
  • Patent Document 1 a first electrode extending in the X direction in which adjacent main body portions are connected via a connecting portion, and a second electrode extending in the Y direction in which adjacent main body portions are connected via a connecting portion.
  • a display device incorporating a capacitive touch sensor arranged with a sealing film interposed therebetween.
  • the inventors of the present application are considering forming two types of electrodes of the capacitive touch sensor in the same layer.
  • one of the first connection line that connects the adjacent first electrodes and the second connection line that connects the adjacent second electrodes is formed in another layer separated from the electrode layer by an insulating film.
  • a large number of shapes having the same orientation are arranged, so that there is a possibility that the intersecting portion is easily visually recognized.
  • An object of the present invention is to provide a touch sensor and a display device with a built-in touch sensor in which an intersection is difficult to visually recognize.
  • the touch sensor of the present invention is a plurality of first electrodes arranged two-dimensionally, and the first electrodes adjacent in the first direction are the same layer or different layers from the first electrodes.
  • the first electrodes adjacent to each other in the second direction crossing the first direction are not connected, and are two-dimensionally in the same layer as the first electrode.
  • the plurality of second electrodes arranged and each surrounded by the first electrode, wherein the second electrodes adjacent in the second direction intersect the first connection line in plan view And a plurality of second electrodes, which are connected to the second electrode via a second connection line of the same layer or different layer, and are not connected to the second electrode adjacent in the first direction, and the first connection line and the An insulating film interposed between the first connecting line and the second connecting line, and the first layer and the second electrode in the same layer as the first connecting line.
  • the display device with a built-in touch sensor according to the present invention includes a display unit and the touch sensor according to the present invention formed on the display unit.
  • FIG. 5 is a cross-sectional view taken along line II-II shown in FIGS. 1 and 4.
  • FIG. 5 is a cross-sectional view taken along line III-III shown in FIGS. 1 and 4.
  • 1 is a plan view of a touch sensor according to a first embodiment of the present invention. It is a top view of the touch sensor which concerns on 2nd Embodiment of this invention. It is a top view of the touch sensor which concerns on 3rd Embodiment of this invention. It is a top view which shows the structural example of a connection line. It is a top view which shows the example of a connection of an electrode and a different layer connection line.
  • FIG. 8B is a sectional view taken along line 8B-8B shown in FIG. 8A.
  • FIG. 8B is a sectional view taken along line 8C-8C shown in FIG. 8A.
  • FIG. 9B is a sectional view taken along line 9B-9B shown in FIG. 9A.
  • FIG. 9B is a sectional view taken along line 9C-9C shown in FIG. 9A.
  • FIG. 18A It is a figure following FIG. 18B. It is a figure following FIG. 18C. It is a figure following FIG. 18D. It is a figure following FIG. 18E.
  • FIG. 1 is a plan view of a display device with a built-in touch sensor (hereinafter also simply referred to as a display device) according to an embodiment.
  • An organic EL display device is given as an example of the display device.
  • the display device 1 is configured to display a full-color image by forming a full-color pixel by combining a plurality of color unit pixels (sub-pixels) composed of, for example, red, green, and blue.
  • the display device 1 includes a display panel 10 and a touch sensor 20 formed on the display area of the display panel 10.
  • a peripheral region (frame region) 11 is formed outside the display region of the display panel 10, and an FPC 13 for electrical connection with the outside is connected to the peripheral region 11.
  • the direction along the peripheral region 11 to which the FPC 13 is connected is defined as the X direction
  • the direction orthogonal thereto is defined as the Y direction.
  • FIG. 2 is a cross-sectional view taken along the line II-II shown in FIG. 1 and FIG.
  • FIG. 3 is a cross-sectional view taken along the line III-III shown in FIGS.
  • hatching of some layers such as the substrate 30, the planarizing film 51, and the interlayer insulating film 53 is omitted in order to make the cross-sectional structure easy to see.
  • the stacking direction is the upward direction.
  • the substrate 30 is made of a flexible resin such as glass or polyimide.
  • the upper surface of the substrate 30 is covered with an undercoat layer 31.
  • a semiconductor layer 41 is formed on the undercoat layer 31, and the semiconductor layer 41 is covered with a gate insulating film 33.
  • a gate electrode 43 is formed on the gate insulating film 33, and the gate electrode 43 is covered with a passivation film 35.
  • the drain electrode 45 and the source electrode 47 are connected to the semiconductor layer 41 through the gate insulating film 33 and the passivation film 35.
  • the semiconductor layer 41, the gate electrode 43, the drain electrode 45, and the source electrode 47 constitute a thin film transistor 40.
  • the thin film transistor 40 is provided so as to correspond to each of the plurality of unit pixels.
  • the undercoat layer 31, the gate insulating film 33, and the passivation film 35 are made of an inorganic insulating material such as SiO 2 or SiN.
  • a lead wiring 49 is formed in the peripheral region 11.
  • the lead wiring 49 is a wiring for electrically connecting the touch sensor 20 and the FPC 13.
  • the drain electrode 45, the source electrode 47, and the lead wiring 49 are covered with a planarizing film 51, and the planarizing film 51 is covered with an interlayer insulating film 53.
  • the drain electrode 45, the source electrode 47, and the lead-out wiring 49 are made of a conductive material including, for example, Al, Ag, Cu, Ni, Ti, Mo, or the like.
  • the planarizing film 51 is formed of an organic insulating material such as acrylic resin and has a flat upper surface.
  • the interlayer insulating film 53 is formed of an inorganic insulating material such as SiO 2 or SiN.
  • a pixel electrode 61 (for example, an anode) is formed on the interlayer insulating film 53.
  • the pixel electrode 61 passes through the planarization film 51 and the interlayer insulating film 53 and is connected to the source electrode 47.
  • the pixel electrode 61 is provided so as to correspond to each of the plurality of unit pixels.
  • the pixel electrode 61 is formed as a reflective electrode.
  • terminals 67 and 68 are formed in the peripheral region 11 and are connected to both ends of the lead-out wiring 49 through the planarizing film 51 and the interlayer insulating film 53.
  • the pixel electrode 61 and the terminals 67 and 68 are formed to include a conductive material including, for example, Al, Ag, Cu, Ni, Ti, Mo, or the like, or a conductive oxide such as ITO or IZO.
  • the pixel electrode 61 is covered with a pixel separation film 55.
  • the pixel isolation film 55 is also called a rib or a bank.
  • the pixel separation film 55 is formed with an opening 55a through which the pixel electrode 61 is exposed to the bottom.
  • the inner edge portion of the pixel separation film 55 that forms the opening 55a is placed on the peripheral edge portion of the pixel electrode 61, and has a tapered shape that spreads outward as it goes upward. Note that the pixel isolation film 55 is not formed in the peripheral region 11.
  • the pixel separation film 55 is formed of an organic material such as acrylic resin or polyimide resin.
  • the light emitting layers 63 are formed separately from each other.
  • the light emitting layer 63 emits light in a plurality of colors including, for example, red, green, and blue corresponding to each of the plurality of unit pixels.
  • at least one layer of a hole transport layer, a hole injection layer, an electron transport layer, and an electron injection layer may be formed.
  • the light emitting layer 63 is formed by vapor deposition using a mask.
  • the light emitting layer 63 may be formed by vapor deposition as a uniform film (so-called solid film) extending over the entire display region across a plurality of unit pixels.
  • the light emitting layer 63 emits white light and is emitted by a color filter.
  • a color filter For example, each component of a plurality of colors including red, green, and blue is extracted.
  • the light emitting layer 63 is not limited to vapor deposition, and may be formed by coating.
  • the light emitting layer 63 and the pixel separation film 55 are covered with a counter electrode 65 (for example, a cathode).
  • the counter electrode 65 is formed as a uniform film (so-called solid film) that extends over the entire display region across a plurality of unit pixels.
  • a light emitting element 60 is configured by the light emitting layer 63 and the pixel electrode 61 and the counter electrode 65 sandwiching the light emitting layer 63, and the light emitting layer 63 emits light by a current flowing between the pixel electrode 61 and the counter electrode 65.
  • the counter electrode 65 is formed of a transparent conductive material such as ITO or a metal thin film such as MgAg.
  • the pixel separation film 55 and the counter electrode 65 are sealed by being covered with a sealing film (passivation film) 70 and shielded from moisture.
  • the sealing film 70 has, for example, a three-layer structure including an inorganic film 71, an organic film 73, and an inorganic film 75 in this order from the bottom.
  • the inorganic films 71 and 75 are made of an inorganic insulating material such as SiO 2 or SiN.
  • the organic film 73 is made of an organic insulating material such as an acrylic resin, and planarizes the upper surface of the sealing film 70. Note that the sealing film 70 may not be formed in the peripheral region 11. In particular, the sealing film 70 is not formed on the terminals 67 and 68.
  • the display device 1 has the touch sensor 20 on the sealing film 70.
  • a base insulating film 81 is formed on the sealing film 70.
  • the base insulating film 81 is made of, for example, an organic insulating material such as acrylic resin, and the upper surface of the base insulating film 81 is planarized.
  • On the base insulating film 81 a plurality of first electrodes 21 and a plurality of second electrodes 22 arranged in a two-dimensional manner are formed.
  • the first electrode 21 and the second electrode 22 constitute a drive electrode and a detection electrode of a capacitive touch sensor. Details of the touch sensor 20 will be described later.
  • the first electrode 21 and the second electrode 22 are covered with an interlayer insulating film 83.
  • the interlayer insulating film 83 is formed of, for example, an inorganic insulating material such as SiO 2 or SiN or an organic insulating material such as acrylic resin.
  • the lead-out wiring 25 is formed on the peripheral edge of the interlayer insulating film 83.
  • the lead-out wiring 25 is connected to the first electrode 21 or the second electrode 22 through an opening (through hole) 83 a formed in the interlayer insulating film 83.
  • the lead wiring 25 extends from the interlayer insulating film 83 to the peripheral region 11 beyond the edges of the interlayer insulating film 83, the base insulating film 81, and the sealing film 70.
  • the lead wiring 25 is connected to a terminal 67 close to the touch sensor 20 among the two terminals 67 and 68 connected to the lead wiring 49 embedded in the peripheral region 11.
  • the FPC 13 is connected to a terminal 68 away from the touch sensor 20 via an anisotropic conductive member 139.
  • FIG. 4 is a plan view of the touch sensor according to the first embodiment.
  • the touch sensor 20 according to the present embodiment includes a plurality of first electrodes 21 and a plurality of second electrodes 22 that are two-dimensionally arranged in a layer between the base insulating film 81 and the interlayer insulating film 83. Yes.
  • Each of the first electrode 21 and the second electrode 22 has a rectangular shape in which an X direction (first direction) and a Y direction (second direction) intersecting (for example, orthogonal to) the diagonal direction are diagonal, so-called rhombus ( Diamond shape). Further, each of the first electrode 21 and the second electrode 22 is formed by a mesh-like wiring (mesh wiring) made of a conductive material such as metal.
  • the first electrode 21 and the second electrode 22 are formed of a conductive material containing, for example, Al, Ag, Cu, Ni, Ti, Mo, or the like. Without being limited thereto, the first electrode 21 and the second electrode 22 may be formed of a transparent conductive film.
  • the plurality of first electrodes 21 are two-dimensionally arranged side by side in the X direction and the Y direction, respectively. Among these first electrodes 21, the first electrodes 21 adjacent in the X direction are connected via the first connection line 23, and the first electrodes 21 adjacent in the Y direction are not connected. That is, each of the plurality of first electrodes 21 forms a plurality of electrode rows extending in the X direction by connecting the first electrodes 21 adjacent to each other in the X direction via the first connection line 23. The electrode rows are electrically separated in the Y direction.
  • the plurality of second electrodes 22 are also two-dimensionally arranged in the X direction and the Y direction. Among these second electrodes 22, the second electrode 22 adjacent in the Y direction is connected via the second connection line 24 intersecting the first connection line 23 in plan view, and the second electrode 22 adjacent in the X direction. The electrode 22 is not connected. That is, the plurality of second electrodes 22 form a plurality of electrode rows extending in the Y direction by connecting the second electrodes 22 adjacent to each other in the Y direction via the second connection line 24. The columns are electrically separated in the X direction.
  • Each second electrode 22 is disposed so as to be surrounded by the first electrode 21.
  • each of the second electrodes 22 is disposed between the first electrodes 21 adjacent to each other in a direction intersecting both the X direction and the Y direction (for example, a direction of 45 degrees or ⁇ 45 degrees).
  • the first electrode 21 and the second electrode 22 are electrically separated by being spaced apart from each other so as not to contact each other. Since the first electrode 21 and the second electrode 22 are arranged in the same layer, a difference in light reflection or the like hardly occurs, so that the first electrode 21 and the second electrode 22 are hardly visually recognized.
  • the first connection line 23 and the second connection line 24 intersect in plan view.
  • An interlayer insulating film 83 is interposed between the first connection line 23 and the second connection line 24 that intersect in plan view, and the two are electrically separated.
  • a portion where the first connection line 23 and the second electrode 22 intersect in plan view is referred to as an “intersection 29”.
  • each first connection line 23 includes a first connection line in the same layer as the first electrode 21 and the second electrode 22 (hereinafter referred to as the same layer first connection line 231), the first electrode 21, It is formed by either the second electrode 22 or a first connection line of a different layer (hereinafter referred to as a different layer first connection line 235).
  • the same layer first connection line 231 is formed continuously with the first electrode 21 under the interlayer insulating film 83.
  • the different layer first connection line 235 is a so-called bridge wiring formed on the interlayer insulating film 83 and connected to the first electrode 21 through a through hole 83 a formed in the interlayer insulating film 83.
  • each of the second connection lines 24 includes a second connection line in the same layer as the first electrode 21 and the second electrode 22 (hereinafter referred to as the same layer second connection line 241), and the first electrode 21 and the second electrode 22. It is formed by either the electrode 22 or a second connection line of a different layer (hereinafter referred to as a different layer second connection line 245).
  • the same layer second connection line 241 is formed continuously with the second electrode 22 under the interlayer insulating film 83.
  • the different layer second connection line 245 is a so-called bridge wiring formed on the interlayer insulating film 83 and connected to the second electrode 22 through a through hole 83 a formed in the interlayer insulating film 83.
  • each of the intersecting portions 29 includes a “first intersecting portion 291” where the same-layer first connection line 231 and the different-layer second connection line 245 intersect, and a different-layer first connection line 235 and the same-layer second connection line 245. It is formed by any one of the “second intersecting portions 292” intersecting with the connection line 241.
  • the interlayer insulating film 83 is formed over the entire display region, but the present invention is not limited to this, and the interlayer insulating film 83 may be distributed at each intersection 29. That is, the interlayer insulating film 83 is interposed between the same-layer first connection line 231 and the different-layer second connection line 245 at the first intersection 291, and the different-layer first connection line 235 at the second intersection 292 and The first electrode 21 and the second electrode 22 may not be covered as long as they are interposed between the second connection lines 241 in the same layer.
  • the first intersection 291 and the second intersection 292 are arranged adjacent to each other.
  • the 1st crossing part 291 and the 2nd crossing part 292 do not need to be adjacent in all, and the place where the 1st crossing part 291 adjoins may be included, and the 2nd crossing part 292 Adjacent locations may be included.
  • At least one of the plurality of intersections 29 closest to the first intersection 291 is defined as the second intersection 292.
  • at least one of the plurality of intersections 29 closest to the second intersection 292 is defined as the first intersection 291.
  • the first intersection 291 and the second intersection 292 are alternately arranged in the X direction and the Y direction, and are arranged in a so-called checkered pattern.
  • the first intersection 291 and the second intersection 292 are not limited to every other one, and may be arranged every two or more.
  • the 1st crossing part 291 and the 2nd crossing part 292 should just appear periodically.
  • first intersection 291 and the second intersection 292 have the same number per fixed area.
  • the fixed area may be the entire display area, or may be a part of the center of the display area, for example. If the number per fixed area is the same, the first intersection 291 and the second intersection 292 may be randomly arranged.
  • FIG. 5 is a plan view of the touch sensor according to the second embodiment.
  • the first intersecting portions 291 and the second intersecting portions 292 are alternately arranged only in the X direction and are not arranged alternately in the Y direction, and the same ones are arranged. That is, two of the four intersections 29 closest to the first intersection 291 are adjacent to each other in the X direction as the second intersection 292. The same applies to the second intersection 292. Even in the second embodiment, even if not as much as in the first embodiment, there is an effect that the crossing portion 29 is less likely to be visually recognized.
  • FIG. 6 is a plan view of the touch sensor according to the third embodiment.
  • the first intersecting portions 291 and the second intersecting portions 292 are alternately arranged only in the Y direction, and are not arranged alternately in the X direction. That is, two of the four intersections 29 closest to the first intersection 291 are adjacent to each other in the Y direction as the second intersection 292. The same applies to the second intersection 292. Even in the third embodiment, the effect of making the crossing portion 29 less likely to be visually recognized is obtained, although not as much as in the first embodiment.
  • each electrode row of the second electrode 22 that is a detection electrode is the same layer second connection line 241 in the second embodiment.
  • both the same-layer second connection lines 241 and the different-layer second connection lines 245 are alternately included. For this reason, it is preferable to employ the third embodiment from the viewpoint of aligning the electric resistances of the electrode arrays of the second electrodes 22 that are detection electrodes.
  • FIG. 7 is a plan view showing a configuration example of connection lines.
  • the second intersection 292 is shown in an enlarged manner, but the first intersection 291 is similarly configured.
  • the different layer first connection line 235 and the same layer second connection line 241 are formed of a plurality of metal wires.
  • the different layer first connection line 235 includes two metal lines formed on the interlayer insulating film 83, and ends of the two metal lines are connected to the first electrode through the through holes 83a. 21 is connected to the end of the X direction.
  • Each end portion of the plurality of metal wires forming the different layer first connection line 235 may have an enlarged portion that extends in a pad shape so as to include the through hole 83a. In this case, it is desirable that the enlarged portion has a size that does not hinder the display of the pixel 100 (see FIG. 12). Further, the interval between the two metal lines forming the different layer first connection line 235 or the same layer second connection line 241 is the end of the first electrode 21 or the second electrode 22 formed as a mesh wiring (for example, It is desirable that the width is the same as the width of one eye constituting the end portion.
  • connection portion between the first electrode 21 and the different layer first connection line 235 is shown in an enlarged manner, but the connection portion between the second electrode 22 and the different layer second connection line 245 is similarly shown. Composed. The first electrode 21 is exposed at the bottom of the through hole 83a formed in the interlayer insulating film 83, and the different-layer first connection line 235 formed on the interlayer insulating film 83 is connected to the first electrode 21 through the through hole 83a. It is connected.
  • the line width of the different-layer first connection line 235 may be the same as the line width of the first electrode 21 formed as a mesh-like wiring. Further, the width of the through hole 83a may be smaller than the line width of the first electrode 21. In this case, the first electrode 21 is exposed at the entire bottom of the through hole 83a, and a different layer is formed at the entire bottom of the through hole 83a. A first connection line 235 is formed.
  • the line width of the different layer first connection line 235 may be larger than the line width of the first electrode 21.
  • the line width of the different-layer first connection line 235 is desirably a size that does not hinder the display of the pixel 100 (see FIG. 12).
  • the width of the through hole 83a may be larger than the line width of the first electrode 21 or the different layer first connection line 235.
  • the first electrode 21 is exposed at a part of the bottom of the through hole 83a
  • a different layer first connection line 235 is formed at a part of the bottom of the through hole 83a. This example is useful when the line width of the first electrode 21 is small and it is difficult to fit the through hole 83a inside the first electrode 21 in plan view.
  • FIG. 10 is a plan view showing a configuration example of connection lines.
  • the second intersection 292 is shown in an enlarged manner, but the first intersection 291 is similarly configured.
  • the different layer first connection line 235 is formed of a transparent conductive film
  • the same layer second connection line 241 is formed of a plurality of metal lines.
  • the different-layer first connection line 235 is made of a transparent conductive film such as ITO formed on the interlayer insulating film 83, and an end portion of the transparent conductive film in the X direction passes through a plurality of through holes 83a.
  • the first electrode 21 is connected to the end portion in the X direction.
  • the width of the transparent conductive film forming the different layer first connection line 235 is desirably wider than the line width of the first electrode 21 formed as a mesh-like wiring. Since the transparent conductive film is transparent, it may be formed so as to overlap with the pixel 100 (see FIG. 12) in plan view. This is effective when the length (X direction) of the transparent conductive film forming the different layer first connection line 235 is 1.5 times longer than the width (Y direction). From the viewpoint of reducing the electrical resistance, the length (X direction) of the transparent conductive film may be 1.5 times or more longer than the width (Y direction).
  • FIG. 11 is a plan view of the touch sensor according to the fourth embodiment.
  • the first electrode 21 and the second electrode 22 are disposed on the interlayer insulating film 83.
  • the different layer first connection line 235 and the different layer second connection line 245 are arranged under the interlayer insulating film 83.
  • the first electrode 21 and the second electrode 22 formed on the interlayer insulating film 83 include a different layer first connection line 235 and a different layer second connection line 245 formed under the interlayer insulating film 83 through the through hole 83a. Are connected to each.
  • FIG. 12 is a plan view showing an arrangement example of electrodes and pixels.
  • FIG. 13 is a plan view showing another arrangement example.
  • the display panel 10 includes a plurality of unit pixels 10R, 10G, and 10B made of red, green, and blue, for example, and a set of the unit pixels 10R, 10G, and 10B of a plurality of colors constitutes the pixel 100.
  • FIG. 12 shows an example of a so-called stripe arrangement in which unit pixels 10R, 10G, and 10B extending in the Y direction are arranged in the X direction.
  • FIG. 13 shows that the blue unit pixel 10B is replaced with the red and green unit pixels 10R, 10G. It shows an example that is larger.
  • Each of the unit pixels 10R, 10G, and 10B is partitioned by an opening 55a of the pixel separation film 55 that exposes the pixel electrode 61 (see FIG. 2).
  • each line of the mesh wiring constituting the first electrode 21 or the second electrode 22 is disposed above the pixel isolation film 55. That is, each line of the mesh wiring overlaps with the pixel separation film 55 in a plan view, and does not overlap with the opening 55a forming the unit pixels 10R, 10G, and 10B.
  • the width of each line of the mesh-like wiring is narrower than the interval between the openings 55a adjacent to each other in the X direction or the Y direction.
  • Each of the openings of the mesh wiring (that is, the mesh) includes one or a plurality of pixels 100 in plan view. That is, the mesh pitch of the mesh wiring is an integral multiple of the arrangement pitch of the unit pixels 10R, 10G, and 10B.
  • each line of the mesh-like wiring constituting the first electrode 21 or the second electrode 22 is arranged above the pixel isolation film 55, so that light traveling upward from the unit pixels 10R, 10G, and 10B is mesh-like. Not disturbed by wiring. Note that not only the first electrode 21 or the second electrode 22 but also the first connection line 23 or the second connection line 24 are similarly disposed above the pixel isolation film 55.
  • FIG. 14 is a plan view showing another arrangement example of electrodes and pixels.
  • the unit pixels 10R, 10G, and 10B are formed in a rectangular shape in which the X direction and the Y direction are diagonal directions, a so-called rhombus shape (diamond shape).
  • the unit pixels 10R, 10G, and 10B have the X direction and the Y direction as diagonal directions, that is, in a third or fourth direction (for example, a direction of 45 degrees or ⁇ 45 degrees) that intersects both the X direction and the Y direction. They are arranged two-dimensionally side by side.
  • a so-called pen tile arrangement in which a group of one red unit pixel 10R, one blue unit pixel 10B, and two green unit pixels 10G constitutes the pixel 100 is employed.
  • FIG. 14 shows the second electrode 22 in an enlarged manner, but the first electrode 21 is similarly configured.
  • Each line of the mesh-like wiring constituting the first electrode 21 or the second electrode 22 is disposed above the pixel isolation film 55, and is similar to the arrangement direction of the unit pixels 10R, 10G, and 10B in the X direction and the Y direction. It extends in a third or fourth direction intersecting both (for example, a direction of 45 degrees or -45 degrees).
  • the width of each line of the mesh-like wiring is narrower than the interval between the openings 55a adjacent in the third direction or the fourth direction.
  • Each of the openings of the mesh wiring includes one or a plurality of pixels 100 in plan view.
  • FIG. 15 is a plan view of the touch sensor according to the fifth embodiment.
  • the fifth embodiment is applied to the pixel array shown in FIG. Similar to the lines of the mesh wiring constituting the first electrode 21 or the second electrode 22, the first connection line 23 and the second connection line 24 are the third or fourth that intersects both the X direction and the Y direction. Each extends in a direction (eg, 45 degrees or -45 degrees). By being configured in this way, the light traveling upward from the pixel is not obstructed by the first connection line 23 and the second connection line 24.
  • first connection line 23 or the second connection line 24 has a central portion extending in one of the third and fourth directions, and end portions on both sides thereof extending in the other of the third and fourth directions. It is bent like a bowl. Further, the first connection line 23 and the second connection line 24 are configured such that the central portions are orthogonal to each other and overlap one another when one is rotated 90 degrees.
  • first intersection 291 and the second intersection 292 are alternately arranged in each of the X direction and the Y direction. That is, all of the four intersections 29 closest to the first intersection 291 are the second intersections 292. The same applies to the second intersection 292. According to this, also in the pixel array shown in FIG. 14, the effect that the intersection 29 is hardly visually recognized can be obtained as in the above embodiment.
  • FIG. 16 is a plan view of a touch sensor according to the sixth embodiment.
  • the sixth embodiment is applied to the pixel array shown in FIG. Similar to the lines of the mesh wiring constituting the first electrode 21 or the second electrode 22, the first connection line 23 and the second connection line 24 are the third or fourth that intersects both the X direction and the Y direction. Each extends in a direction (eg, 45 degrees or -45 degrees). By being configured in this way, the light traveling upward from the pixel is not obstructed by the first connection line 23 and the second connection line 24.
  • the first electrodes 21 adjacent to each other in the X direction are arranged offset in the Y direction, and the first connection line 23 extends linearly as a whole in the third or fourth direction.
  • the first electrodes 21 adjacent in the direction are connected.
  • the second electrodes 22 adjacent to each other in the Y direction are arranged so as to be offset in the X direction, and the second connection line 24 extends linearly in the third or fourth direction so that it is adjacent to the Y direction.
  • a matching second electrode 22 is connected.
  • first intersection 291 and the second intersection 292 are alternately arranged in each of the X direction and the Y direction. That is, all of the four intersections 29 closest to the first intersection 291 are the second intersections 292. The same applies to the second intersection 292. According to this, also in the pixel array shown in FIG. 14, the effect that the intersection 29 is hardly visually recognized can be obtained as in the above embodiment.
  • FIG. 17 is a plan view of the touch sensor according to the seventh embodiment.
  • a dummy wiring 27 (third electrode) that is not connected to any of the first electrode 21 and the second electrode 22 is formed between the first electrode 21 and the second electrode 22.
  • the dummy wiring 27 is disposed in the same layer as the first electrode 21 and the second electrode 22 so as to be sandwiched between the first electrode 21 and the second electrode 22. According to this, since the coupling between the first electrode 21 and the second electrode 22 can be reduced, the change in capacitance when touched is increased, and the detection sensitivity can be improved.
  • the dummy wiring 27 is also disposed above the pixel isolation film 55 and travels upward from the unit pixels 10R, 10G, and 10B in the same manner as each line of the mesh wiring configuring the first electrode 21 or the second electrode 22. It is desirable not to inhibit.
  • FIG. 18A to FIG. 18F are diagrams showing an example of the manufacturing process of the display device with a built-in touch sensor.
  • FIG. 18A shows a state where the light emitting element 60 is completed.
  • the pixel isolation film 55 is not formed in the peripheral region 11.
  • the range of the pixel isolation film 55 is referred to as a “display region”.
  • the interlayer insulating film 53 and the terminals 67 and 68 are exposed.
  • the lead-out wiring 49 and the terminals 67 and 68 connected to the touch sensor 20 are shown. Connected to.
  • FIG. 18B shows a process of forming the sealing film 70.
  • the organic film 73 formed of an organic material may be formed so as to cover the display region, and may not be formed in the peripheral region 11.
  • the outer edge of the organic film 72 is located on the inner side of the outer edge of the pixel separation film 55, and is sealed when two layers of inorganic films 71 and 73 formed of an inorganic material are in close contact with each other. For this reason, the peripheral region 11 is covered with two layers of inorganic films 71 and 73.
  • the two layers of inorganic films 71 and 73 covering the peripheral region 11 are referred to as “peripheral portions 76”.
  • FIG. 18C shows a step of forming the base insulating film 81.
  • the base insulating film 81 is formed only in the display region and not in the peripheral region 11. Specifically, the outer edge of the base insulating film 81 is located inside the outer edge of the pixel separation film 55 and located outside the outer edge of the organic film 72 of the sealing film 70.
  • the base insulating film 81 is made of an organic insulating material, and is used to planarize the upper surface of the base insulating film 81 and to remove the peripheral portion 76 in the next process.
  • FIG. 18D shows a process of removing the peripheral portion 76.
  • the removal of the peripheral portion 76 is performed using the base insulating film 81 as a mask.
  • the two inorganic films 71 and 75 are cut at the outer edge of the base insulating film 81, that is, at a position inside the outer edge of the pixel isolation film 55 and outside the outer edge of the organic film 73.
  • the interlayer insulating film 53 below the peripheral portion 76 is also formed of the same inorganic insulating material as the inorganic films 71 and 75, a part or all of the interlayer insulating film 53 is simultaneously removed by removing the peripheral portion 76. There is.
  • FIG. 18E shows a process of forming the touch sensor 20. Specifically, the first electrode 21, the second electrode 22, the same layer first connection line 231 and the same layer second connection line 241 are formed on the base insulating film 81, and the interlayer insulating film 83 and the opening 83a are formed thereon. Then, the different-layer first connection line 235 and the different-layer second connection line 245 are formed thereon (see FIGS. 3 and 4). Also, the lead-out wiring 25 connected to the terminal 67 from the interlayer insulating film 83 to the peripheral region 11 beyond the edges of the interlayer insulating film 83, the base insulating film 81, and the sealing film 70 is a different layer first connection line. 235 and the different layer second connection line 245 are formed at the same time.
  • FIG. 18F shows a process of forming a protective film 85 or the like that covers the touch sensor 20.
  • the protective film 85 is formed so as to cover the entire touch sensor 20 and further the lead-out wiring 25 and the terminal 67.
  • the protective film 85 is made of an organic insulating material such as acrylic resin.
  • a circularly polarizing film 87 is disposed on the protective film 85, and a cover film 89 is disposed on the circularly polarizing film 87.
  • the FPC 13 is connected to the terminal 68 not covered with the protective film 85 via the anisotropic conductive member 139.
  • the touch sensor 20 includes the first electrode 21 and the second electrode 22 that configure the drive electrode and the detection electrode of the capacitive touch sensor. 20 may further include an electrode for realizing a pressure-sensitive function in addition to these electrodes.
  • an organic EL display device has been exemplified as a disclosure example, but as other application examples, a liquid crystal display device, another self-luminous display device, or an electronic paper display device having an electrophoretic element or the like Any flat panel display device can be used. Moreover, it cannot be overemphasized that it can apply, without specifically limiting from a small size to a large size.

Abstract

Provided is a touch sensor, comprising: a plurality of first electrodes which have been arrayed two-dimensionally, wherein the first electrodes that are adjacent in a first direction are connected via first connection wires of either the same layer as or a different layer from the first electrodes; a plurality of second electrodes which have been arrayed two-dimensionally in the same layer as the first electrodes and which are respectively surrounded by the first electrodes, wherein the second electrodes that are adjacent in a second direction are connected via second connection wires of the same layer as or a different layer from the first electrodes and the second electrodes and which intersect the first connection wires in plan view; and an insulation film which is interposed between the first connection wires and the second connection wires. First intersection parts whereat the first connection wires of the same layer as the first electrodes and the second electrodes intersect with the second connection wires of the different layer from the first electrodes and the second electrodes are adjacent to second intersection parts whereat the first connection wires of the different layer from the first electrodes and the second electrodes intersect with the second connection wires of the same layer as the first electrodes and the second electrodes.

Description

タッチセンサ及びタッチセンサ内蔵表示装置Touch sensor and display device with built-in touch sensor
 本発明は、タッチセンサ及びタッチセンサ内蔵表示装置に関する。 The present invention relates to a touch sensor and a display device with a built-in touch sensor.
 特許文献1には、隣り合う本体部が接続部を介して接続されたX方向に延びる第1の電極と、隣り合う本体部が接続部を介して接続されたY方向に延びる第2の電極とが封止膜を挟んで配置された静電容量方式タッチセンサを内蔵する表示装置が開示されている。 In Patent Document 1, a first electrode extending in the X direction in which adjacent main body portions are connected via a connecting portion, and a second electrode extending in the Y direction in which adjacent main body portions are connected via a connecting portion. Discloses a display device incorporating a capacitive touch sensor arranged with a sealing film interposed therebetween.
特開2015-50245号公報Japanese Patent Laying-Open No. 2015-50245
 ところで、本願の発明者らは、静電容量方式タッチセンサの2種類の電極を同層に形成することを検討している。この場合、第1電極の隣同士を接続する第1接続線と、第2電極の隣同士を接続する第2接続線との一方を、電極層とは絶縁膜を隔てた別の層に形成して他方と平面視で交差させる必要がある。しかし、例えば第1接続線のみを別の層に形成すると、向きが揃った多数の形状が配列することになるため、交差部が視認されやすくなるおそれがある。 By the way, the inventors of the present application are considering forming two types of electrodes of the capacitive touch sensor in the same layer. In this case, one of the first connection line that connects the adjacent first electrodes and the second connection line that connects the adjacent second electrodes is formed in another layer separated from the electrode layer by an insulating film. Thus, it is necessary to cross the other in plan view. However, for example, if only the first connection line is formed in another layer, a large number of shapes having the same orientation are arranged, so that there is a possibility that the intersecting portion is easily visually recognized.
 本発明の目的は、交差部が視認されにくいタッチセンサ及びタッチセンサ内蔵表示装置を提供することにある。 An object of the present invention is to provide a touch sensor and a display device with a built-in touch sensor in which an intersection is difficult to visually recognize.
 上記課題を解決するため、本発明のタッチセンサは、2次元的に配列された複数の第1電極であって、第1方向に隣り合う第1電極が前記第1電極と同層又は異層の第1接続線を介して接続され、前記第1方向と交差する第2方向に隣り合う第1電極は接続されない、複数の第1電極と、前記第1電極と同層で2次元的に配列され、それぞれが前記第1電極に囲まれた複数の第2電極であって、前記第2方向に隣り合う第2電極が、前記第1接続線と平面視で交差する、前記第1電極及び前記第2電極と同層又は異層の第2接続線を介して接続され、前記第1方向に隣り合う第2電極は接続されない、複数の第2電極と、前記第1接続線と前記第2接続線との間に介在する絶縁膜と、を備え、前記第1電極及び前記第2電極と同層の前記第1接続線と前記第1電極及び前記第2電極と異層の第2接続線とが交差する第1交差部と、前記第1電極及び前記第2電極と異層の前記第1接続線と前記第1電極及び前記第2電極と同層の第2接続線とが交差する第2交差部と、が隣り合う。 In order to solve the above problems, the touch sensor of the present invention is a plurality of first electrodes arranged two-dimensionally, and the first electrodes adjacent in the first direction are the same layer or different layers from the first electrodes. The first electrodes adjacent to each other in the second direction crossing the first direction are not connected, and are two-dimensionally in the same layer as the first electrode. The plurality of second electrodes arranged and each surrounded by the first electrode, wherein the second electrodes adjacent in the second direction intersect the first connection line in plan view And a plurality of second electrodes, which are connected to the second electrode via a second connection line of the same layer or different layer, and are not connected to the second electrode adjacent in the first direction, and the first connection line and the An insulating film interposed between the first connecting line and the second connecting line, and the first layer and the second electrode in the same layer as the first connecting line. A first intersecting portion where a connection line intersects the first electrode and the second electrode and a second connection line of a different layer; the first connection line of the first electrode and the second electrode different from the first connection line; A first intersecting portion where the first electrode and the second electrode intersect with the second connection line in the same layer is adjacent.
 また、本発明のタッチセンサ内蔵表示装置は、表示部と、前記表示部上に形成された上記本発明のタッチセンサと、を備える。 The display device with a built-in touch sensor according to the present invention includes a display unit and the touch sensor according to the present invention formed on the display unit.
本発明の実施形態に係るタッチセンサ内蔵表示装置の平面図である。It is a top view of the display apparatus with a built-in touch sensor which concerns on embodiment of this invention. 図1及び図4に示すII-II線で切断したときの断面図である。FIG. 5 is a cross-sectional view taken along line II-II shown in FIGS. 1 and 4. 図1及び図4に示すIII-III線で切断したときの断面図である。FIG. 5 is a cross-sectional view taken along line III-III shown in FIGS. 1 and 4. 本発明の第1実施形態に係るタッチセンサの平面図である。1 is a plan view of a touch sensor according to a first embodiment of the present invention. 本発明の第2実施形態に係るタッチセンサの平面図である。It is a top view of the touch sensor which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係るタッチセンサの平面図である。It is a top view of the touch sensor which concerns on 3rd Embodiment of this invention. 接続線の構成例を示す平面図である。It is a top view which shows the structural example of a connection line. 電極と異層接続線との接続例を示す平面図である。It is a top view which shows the example of a connection of an electrode and a different layer connection line. 図8Aに示す8B-8B線で切断したときの断面図である。FIG. 8B is a sectional view taken along line 8B-8B shown in FIG. 8A. 図8Aに示す8C-8C線で切断したときの断面図である。FIG. 8B is a sectional view taken along line 8C-8C shown in FIG. 8A. 電極と異層接続線との接続例を示す平面図である。It is a top view which shows the example of a connection of an electrode and a different layer connection line. 図9Aに示す9B-9B線で切断したときの断面図である。FIG. 9B is a sectional view taken along line 9B-9B shown in FIG. 9A. 図9Aに示す9C-9C線で切断したときの断面図である。FIG. 9B is a sectional view taken along line 9C-9C shown in FIG. 9A. 接続線の構成例を示す平面図である。It is a top view which shows the structural example of a connection line. 本発明の第4実施形態に係るタッチセンサの平面図である。It is a top view of the touch sensor which concerns on 4th Embodiment of this invention. 電極と画素との配置例を示す平面図である。It is a top view which shows the example of arrangement | positioning of an electrode and a pixel. 電極と画素との配置例を示す平面図である。It is a top view which shows the example of arrangement | positioning of an electrode and a pixel. 電極と画素との配置例を示す平面図である。It is a top view which shows the example of arrangement | positioning of an electrode and a pixel. 本発明の第5実施形態に係るタッチセンサの平面図である。It is a top view of the touch sensor which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係るタッチセンサの平面図である。It is a top view of the touch sensor which concerns on 6th Embodiment of this invention. 本発明の第7実施形態に係るタッチセンサの平面図である。It is a top view of the touch sensor which concerns on 7th Embodiment of this invention. タッチセンサ内蔵表示装置の製造工程例を示す図である。It is a figure which shows the example of a manufacturing process of the display apparatus with a built-in touch sensor. 図18Aに続く図である。It is a figure following FIG. 18A. 図18Bに続く図である。It is a figure following FIG. 18B. 図18Cに続く図である。It is a figure following FIG. 18C. 図18Dに続く図である。It is a figure following FIG. 18D. 図18Eに続く図である。It is a figure following FIG. 18E.
 以下に、本発明の各実施の形態について、図面を参照しつつ説明する。なお、開示はあくまで一例にすぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は説明をより明確にするため、実施の形態に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the disclosure is merely an example, and those skilled in the art can easily conceive of appropriate modifications while maintaining the gist of the invention are naturally included in the scope of the present invention. In addition, the drawings may be schematically represented with respect to the width, thickness, shape, and the like of each part as compared with the embodiment for clarity of explanation, but are merely examples, and the interpretation of the present invention may be It is not limited. In addition, in the present specification and each drawing, elements similar to those described above with reference to the previous drawings are denoted by the same reference numerals, and detailed description may be omitted as appropriate.
 さらに、本発明の実施形態の詳細な説明において、ある構成物と他の構成物の位置関係を規定する際、「上に」「下に」とは、ある構成物の直上あるいは直下に位置する場合のみでなく、特に断りの無い限りは、間にさらに他の構成物を介在する場合を含むものとする。 Furthermore, in the detailed description of the embodiment of the present invention, when defining the positional relationship between a certain component and another component, “above” and “below” are located immediately above or directly below a certain component. In addition to the case, unless otherwise specified, the case where other components are further interposed is included.
 図1は、実施形態に係るタッチセンサ内蔵表示装置(以下、単に表示装置ともいう)の平面図である。表示装置の例として、有機EL表示装置を挙げる。表示装置1は、例えば赤、緑及び青からなる複数色の単位画素(サブピクセル)を組み合わせてフルカラーの画素を形成し、フルカラーの画像を表示するようになっている。表示装置1は、表示パネル10と、表示パネル10の表示領域上に形成されたタッチセンサ20とを有している。表示パネル10の表示領域の外側には周辺領域(額縁領域)11が形成されており、周辺領域11には外部との電気的接続のためのFPC13が接続されている。以下の説明においては、FPC13が接続される周辺領域11に沿った方向をX方向とし、それと直交する方向をY方向とする。 FIG. 1 is a plan view of a display device with a built-in touch sensor (hereinafter also simply referred to as a display device) according to an embodiment. An organic EL display device is given as an example of the display device. The display device 1 is configured to display a full-color image by forming a full-color pixel by combining a plurality of color unit pixels (sub-pixels) composed of, for example, red, green, and blue. The display device 1 includes a display panel 10 and a touch sensor 20 formed on the display area of the display panel 10. A peripheral region (frame region) 11 is formed outside the display region of the display panel 10, and an FPC 13 for electrical connection with the outside is connected to the peripheral region 11. In the following description, the direction along the peripheral region 11 to which the FPC 13 is connected is defined as the X direction, and the direction orthogonal thereto is defined as the Y direction.
 図2は、図1及び図4に示すII-II線で切断したときの断面図である。図3は、図1及び図4に示すIII-III線で切断したときの断面図である。これらの図では、断面構造を見易くするため、基板30、平坦化膜51及び層間絶縁膜53などの一部の層のハッチングを省略している。以下の説明では、積層方向を上方向とする。 FIG. 2 is a cross-sectional view taken along the line II-II shown in FIG. 1 and FIG. FIG. 3 is a cross-sectional view taken along the line III-III shown in FIGS. In these drawings, hatching of some layers such as the substrate 30, the planarizing film 51, and the interlayer insulating film 53 is omitted in order to make the cross-sectional structure easy to see. In the following description, the stacking direction is the upward direction.
 基板30は、例えばガラス、又はポリイミド等の可撓性がある樹脂からなる。基板30の上面はアンダーコート層31によって覆われている。アンダーコート層31上には半導体層41が形成されており、半導体層41はゲート絶縁膜33によって覆われている。ゲート絶縁膜33上にはゲート電極43が形成されており、ゲート電極43はパシベーション膜35によって覆われている。ドレイン電極45及びソース電極47は、ゲート絶縁膜33とパシベーション膜35とを貫通して半導体層41に接続されている。半導体層41、ゲート電極43、ドレイン電極45及びソース電極47により薄膜トランジスタ40が構成される。薄膜トランジスタ40は、複数の単位画素のそれぞれに対応するように設けられている。アンダーコート層31、ゲート絶縁膜33及びパシベーション膜35は、例えばSiO又はSiN等の無機絶縁材料で形成されている。 The substrate 30 is made of a flexible resin such as glass or polyimide. The upper surface of the substrate 30 is covered with an undercoat layer 31. A semiconductor layer 41 is formed on the undercoat layer 31, and the semiconductor layer 41 is covered with a gate insulating film 33. A gate electrode 43 is formed on the gate insulating film 33, and the gate electrode 43 is covered with a passivation film 35. The drain electrode 45 and the source electrode 47 are connected to the semiconductor layer 41 through the gate insulating film 33 and the passivation film 35. The semiconductor layer 41, the gate electrode 43, the drain electrode 45, and the source electrode 47 constitute a thin film transistor 40. The thin film transistor 40 is provided so as to correspond to each of the plurality of unit pixels. The undercoat layer 31, the gate insulating film 33, and the passivation film 35 are made of an inorganic insulating material such as SiO 2 or SiN.
 パシベーション膜35上には、ドレイン電極45及びソース電極47に加えて、周辺領域11に引き出し配線49が形成されている。引き出し配線49は、タッチセンサ20とFPC13とを電気的に接続するための配線である。ドレイン電極45、ソース電極47及び引き出し配線49は平坦化膜51によって覆われており、平坦化膜51は層間絶縁膜53によって覆われている。ドレイン電極45、ソース電極47及び引き出し配線49は、例えばAl、Ag、Cu、Ni、Ti、Mo等を含む導電性材料で形成されている。平坦化膜51は、例えばアクリル樹脂等の有機絶縁材料で形成され、平坦な上面を有している。層間絶縁膜53は、例えばSiO又はSiN等の無機絶縁材料で形成されている。 On the passivation film 35, in addition to the drain electrode 45 and the source electrode 47, a lead wiring 49 is formed in the peripheral region 11. The lead wiring 49 is a wiring for electrically connecting the touch sensor 20 and the FPC 13. The drain electrode 45, the source electrode 47, and the lead wiring 49 are covered with a planarizing film 51, and the planarizing film 51 is covered with an interlayer insulating film 53. The drain electrode 45, the source electrode 47, and the lead-out wiring 49 are made of a conductive material including, for example, Al, Ag, Cu, Ni, Ti, Mo, or the like. The planarizing film 51 is formed of an organic insulating material such as acrylic resin and has a flat upper surface. The interlayer insulating film 53 is formed of an inorganic insulating material such as SiO 2 or SiN.
 層間絶縁膜53上には画素電極61(例えば陽極)が形成されている。画素電極61は、平坦化膜51と層間絶縁膜53とを貫通してソース電極47に接続されている。画素電極61は、複数の単位画素のそれぞれに対応するように設けられている。画素電極61は反射電極として形成されている。また、周辺領域11には端子67,68が形成されており、平坦化膜51と層間絶縁膜53とを貫通して引き出し配線49の両方の端部にそれぞれ接続されている。画素電極61及び端子67,68は、例えばAl、Ag、Cu、Ni、Ti、Mo等を含む導電性材料や、ITO、IZO等の導電性酸化物を含んで形成されている。 A pixel electrode 61 (for example, an anode) is formed on the interlayer insulating film 53. The pixel electrode 61 passes through the planarization film 51 and the interlayer insulating film 53 and is connected to the source electrode 47. The pixel electrode 61 is provided so as to correspond to each of the plurality of unit pixels. The pixel electrode 61 is formed as a reflective electrode. Further, terminals 67 and 68 are formed in the peripheral region 11 and are connected to both ends of the lead-out wiring 49 through the planarizing film 51 and the interlayer insulating film 53. The pixel electrode 61 and the terminals 67 and 68 are formed to include a conductive material including, for example, Al, Ag, Cu, Ni, Ti, Mo, or the like, or a conductive oxide such as ITO or IZO.
 画素電極61は画素分離膜55によって覆われている。画素分離膜55はリブ又はバンクとも呼ばれる。画素分離膜55には、画素電極61が底に露出する開口55aが形成されている。開口55aを形成する画素分離膜55の内縁部分は画素電極61の周縁部分に載っており、上方に向かうに従って外方に広がるテーパー形状を有している。なお、画素分離膜55は、周辺領域11には形成されない。画素分離膜55は、例えばアクリル樹脂やポリイミド樹脂等の有機材料で形成されている。 The pixel electrode 61 is covered with a pixel separation film 55. The pixel isolation film 55 is also called a rib or a bank. The pixel separation film 55 is formed with an opening 55a through which the pixel electrode 61 is exposed to the bottom. The inner edge portion of the pixel separation film 55 that forms the opening 55a is placed on the peripheral edge portion of the pixel electrode 61, and has a tapered shape that spreads outward as it goes upward. Note that the pixel isolation film 55 is not formed in the peripheral region 11. The pixel separation film 55 is formed of an organic material such as acrylic resin or polyimide resin.
 画素分離膜55の開口55aの底に露出した画素電極61上には、発光層63が互いに離れて個別に形成されている。発光層63は、複数の単位画素のそれぞれに対応して例えば赤、緑及び青からなる複数色で発光する。発光層63とともに、正孔輸送層、正孔注入層、電子輸送層及び電子注入層の少なくとも一層が形成されてもよい。発光層63はマスクを用いて個別に蒸着形成される。発光層63は、複数の単位画素に跨がり表示領域の全体に広がる一様な膜(いわゆるベタ膜)として蒸着形成されてもよく、その場合、発光層63は白色で発光し、カラーフィルタによって例えば赤、緑及び青からなる複数色のそれぞれの成分が取り出される。なお、発光層63は蒸着形成に限らず、塗布形成されてもよい。 On the pixel electrode 61 exposed at the bottom of the opening 55a of the pixel separation film 55, the light emitting layers 63 are formed separately from each other. The light emitting layer 63 emits light in a plurality of colors including, for example, red, green, and blue corresponding to each of the plurality of unit pixels. Along with the light emitting layer 63, at least one layer of a hole transport layer, a hole injection layer, an electron transport layer, and an electron injection layer may be formed. The light emitting layer 63 is formed by vapor deposition using a mask. The light emitting layer 63 may be formed by vapor deposition as a uniform film (so-called solid film) extending over the entire display region across a plurality of unit pixels. In that case, the light emitting layer 63 emits white light and is emitted by a color filter. For example, each component of a plurality of colors including red, green, and blue is extracted. The light emitting layer 63 is not limited to vapor deposition, and may be formed by coating.
 発光層63及び画素分離膜55は対向電極65(例えば陰極)によって覆われている。対向電極65は、複数の単位画素に跨がり表示領域の全体に広がる一様な膜(いわゆるベタ膜)として形成されている。発光層63並びに発光層63を挟む画素電極61及び対向電極65によって発光素子60が構成され、発光層63は画素電極61と対向電極65との間を流れる電流によって発光する。対向電極65は、例えばITO等の透明導電材料又はMgAg等の金属薄膜で形成される。 The light emitting layer 63 and the pixel separation film 55 are covered with a counter electrode 65 (for example, a cathode). The counter electrode 65 is formed as a uniform film (so-called solid film) that extends over the entire display region across a plurality of unit pixels. A light emitting element 60 is configured by the light emitting layer 63 and the pixel electrode 61 and the counter electrode 65 sandwiching the light emitting layer 63, and the light emitting layer 63 emits light by a current flowing between the pixel electrode 61 and the counter electrode 65. The counter electrode 65 is formed of a transparent conductive material such as ITO or a metal thin film such as MgAg.
 画素分離膜55及び対向電極65は、封止膜(パシベーション膜)70によって覆われることで封止され、水分から遮断される。封止膜70は、例えば無機膜71、有機膜73及び無機膜75を下からこの順に含む三層積層構造を有している。無機膜71,75は、例えばSiO又はSiN等の無機絶縁材料で形成されている。有機膜73は、例えばアクリル樹脂等の有機絶縁材料で形成されており、封止膜70の上面の平坦化させる。なお、封止膜70は周辺領域11には形成されなくてもよい。特に、封止膜70は、端子67,68上には形成されない。 The pixel separation film 55 and the counter electrode 65 are sealed by being covered with a sealing film (passivation film) 70 and shielded from moisture. The sealing film 70 has, for example, a three-layer structure including an inorganic film 71, an organic film 73, and an inorganic film 75 in this order from the bottom. The inorganic films 71 and 75 are made of an inorganic insulating material such as SiO 2 or SiN. The organic film 73 is made of an organic insulating material such as an acrylic resin, and planarizes the upper surface of the sealing film 70. Note that the sealing film 70 may not be formed in the peripheral region 11. In particular, the sealing film 70 is not formed on the terminals 67 and 68.
 本実施形態に係る表示装置1は、封止膜70上にタッチセンサ20を有している。封止膜70上には下地絶縁膜81が形成されている。下地絶縁膜81は、例えばアクリル樹脂等の有機絶縁材料で形成されており、下地絶縁膜81の上面の平坦化させる。下地絶縁膜81上には、2次元的に配列された複数の第1電極21と複数の第2電極22とが形成されている。第1電極21と第2電極22とは、静電容量方式タッチセンサの駆動電極と検出電極とを構成する。タッチセンサ20の詳細については後述する。第1電極21及び第2電極22は層間絶縁膜83によって覆われている。層間絶縁膜83は、例えばSiO又はSiN等の無機絶縁材料又はアクリル樹脂等の有機絶縁材料で形成されている。 The display device 1 according to the present embodiment has the touch sensor 20 on the sealing film 70. A base insulating film 81 is formed on the sealing film 70. The base insulating film 81 is made of, for example, an organic insulating material such as acrylic resin, and the upper surface of the base insulating film 81 is planarized. On the base insulating film 81, a plurality of first electrodes 21 and a plurality of second electrodes 22 arranged in a two-dimensional manner are formed. The first electrode 21 and the second electrode 22 constitute a drive electrode and a detection electrode of a capacitive touch sensor. Details of the touch sensor 20 will be described later. The first electrode 21 and the second electrode 22 are covered with an interlayer insulating film 83. The interlayer insulating film 83 is formed of, for example, an inorganic insulating material such as SiO 2 or SiN or an organic insulating material such as acrylic resin.
 層間絶縁膜83の周縁部には、引き出し配線25が形成されている。引き出し配線25は、層間絶縁膜83に形成された開口(スルーホール)83aを通じて、第1電極21又は第2電極22に接続されている。引き出し配線25は、層間絶縁膜83上から層間絶縁膜83、下地絶縁膜81及び封止膜70の縁を超えて周辺領域11に至る。引き出し配線25は、周辺領域11に埋め込まれた引き出し配線49に接続された2つの端子67,68のうち、タッチセンサ20に近い端子67に接続されている。一方、タッチセンサ20から離れた端子68には、異方導電部材139を介してFPC13が接続されている。 The lead-out wiring 25 is formed on the peripheral edge of the interlayer insulating film 83. The lead-out wiring 25 is connected to the first electrode 21 or the second electrode 22 through an opening (through hole) 83 a formed in the interlayer insulating film 83. The lead wiring 25 extends from the interlayer insulating film 83 to the peripheral region 11 beyond the edges of the interlayer insulating film 83, the base insulating film 81, and the sealing film 70. The lead wiring 25 is connected to a terminal 67 close to the touch sensor 20 among the two terminals 67 and 68 connected to the lead wiring 49 embedded in the peripheral region 11. On the other hand, the FPC 13 is connected to a terminal 68 away from the touch sensor 20 via an anisotropic conductive member 139.
 図4は、第1実施形態に係るタッチセンサの平面図である。本実施形態に係るタッチセンサ20は、下地絶縁膜81と層間絶縁膜83との間の層において2次元的に配列された複数の第1電極21と複数の第2電極22とを有している。 FIG. 4 is a plan view of the touch sensor according to the first embodiment. The touch sensor 20 according to the present embodiment includes a plurality of first electrodes 21 and a plurality of second electrodes 22 that are two-dimensionally arranged in a layer between the base insulating film 81 and the interlayer insulating film 83. Yes.
 第1電極21と第2電極22のそれぞれは、X方向(第1方向)とこれに交差(例えば直交)するY方向(第2方向)とを対角方向とする矩形状、いわゆる菱形状(ダイヤモンド形状)で形成されている。また、第1電極21と第2電極22のそれぞれは、金属等の導電性材料からなる網目状配線(メッシュ配線)で形成されている。第1電極21と第2電極22とは、例えばAl、Ag、Cu、Ni、Ti、Mo等を含む導電性材料で形成されている。これに限られず、第1電極21と第2電極22とは透明導電膜で形成されてもよい。 Each of the first electrode 21 and the second electrode 22 has a rectangular shape in which an X direction (first direction) and a Y direction (second direction) intersecting (for example, orthogonal to) the diagonal direction are diagonal, so-called rhombus ( Diamond shape). Further, each of the first electrode 21 and the second electrode 22 is formed by a mesh-like wiring (mesh wiring) made of a conductive material such as metal. The first electrode 21 and the second electrode 22 are formed of a conductive material containing, for example, Al, Ag, Cu, Ni, Ti, Mo, or the like. Without being limited thereto, the first electrode 21 and the second electrode 22 may be formed of a transparent conductive film.
 複数の第1電極21はX方向とY方向とにそれぞれ並んで2次元的に配列されている。これらの第1電極21のうち、X方向に隣り合う第1電極21は第1接続線23を介して接続されており、Y方向に隣り合う第1電極21は接続されていない。すなわち、複数の第1電極21は、X方向に隣り合う第1電極21が第1接続線23を介して接続されることでX方向に延びる複数の電極列をそれぞれ形成しており、それぞれの電極列はY方向には電気的に分離されている。 The plurality of first electrodes 21 are two-dimensionally arranged side by side in the X direction and the Y direction, respectively. Among these first electrodes 21, the first electrodes 21 adjacent in the X direction are connected via the first connection line 23, and the first electrodes 21 adjacent in the Y direction are not connected. That is, each of the plurality of first electrodes 21 forms a plurality of electrode rows extending in the X direction by connecting the first electrodes 21 adjacent to each other in the X direction via the first connection line 23. The electrode rows are electrically separated in the Y direction.
 複数の第2電極22もX方向とY方向とにそれぞれ並んで2次元的に配列されている。これらの第2電極22のうち、Y方向に隣り合う第2電極22は第1接続線23と平面視で交差する第2接続線24を介して接続されており、X方向に隣り合う第2電極22は接続されていない。すなわち、複数の第2電極22は、Y方向に隣り合う第2電極22が第2接続線24を介して接続されることでY方向に延びる複数の電極列を形成しており、それぞれの電極列はX方向には電気的に分離されている。 The plurality of second electrodes 22 are also two-dimensionally arranged in the X direction and the Y direction. Among these second electrodes 22, the second electrode 22 adjacent in the Y direction is connected via the second connection line 24 intersecting the first connection line 23 in plan view, and the second electrode 22 adjacent in the X direction. The electrode 22 is not connected. That is, the plurality of second electrodes 22 form a plurality of electrode rows extending in the Y direction by connecting the second electrodes 22 adjacent to each other in the Y direction via the second connection line 24. The columns are electrically separated in the X direction.
 それぞれの第2電極22は、第1電極21に囲まれるよう配置されている。例えば、それぞれの第2電極22は、X方向とY方向の両方に交差する方向(例えば45度又は-45度の方向)に隣り合う第1電極21の間に配置されており、4つの第1電極21に囲まれている。第1電極21と第2電極22とは、互いに接触しないように間隔を空けることで電気的に分離されている。第1電極21と第2電極22とは、同層に配置されることで光の反射等に差が現れにくくなるため、視認されにくくなる。 Each second electrode 22 is disposed so as to be surrounded by the first electrode 21. For example, each of the second electrodes 22 is disposed between the first electrodes 21 adjacent to each other in a direction intersecting both the X direction and the Y direction (for example, a direction of 45 degrees or −45 degrees). Surrounded by one electrode 21. The first electrode 21 and the second electrode 22 are electrically separated by being spaced apart from each other so as not to contact each other. Since the first electrode 21 and the second electrode 22 are arranged in the same layer, a difference in light reflection or the like hardly occurs, so that the first electrode 21 and the second electrode 22 are hardly visually recognized.
 第1接続線23と第2接続線24とは平面視で交差している。平面視で交差する第1接続線23と第2接続線24との間には層間絶縁膜83が介在しており、両者は電気的に分離されている。以下、第1接続線23と第2電極22とが平面視で交差する部分を「交差部29」という。 The first connection line 23 and the second connection line 24 intersect in plan view. An interlayer insulating film 83 is interposed between the first connection line 23 and the second connection line 24 that intersect in plan view, and the two are electrically separated. Hereinafter, a portion where the first connection line 23 and the second electrode 22 intersect in plan view is referred to as an “intersection 29”.
 具体的には、それぞれの第1接続線23は、第1電極21及び第2電極22と同層の第1接続線(以下、同層第1接続線231という)と、第1電極21及び第2電極22と異層の第1接続線(以下、異層第1接続線235という)との何れかで形成されている。同層第1接続線231は、層間絶縁膜83下で第1電極21と連続的に形成されている。一方、異層第1接続線235は、層間絶縁膜83上に形成されており、層間絶縁膜83に形成されたスルーホール83aを通じて第1電極21に接続されている、いわゆるブリッジ配線である。 Specifically, each first connection line 23 includes a first connection line in the same layer as the first electrode 21 and the second electrode 22 (hereinafter referred to as the same layer first connection line 231), the first electrode 21, It is formed by either the second electrode 22 or a first connection line of a different layer (hereinafter referred to as a different layer first connection line 235). The same layer first connection line 231 is formed continuously with the first electrode 21 under the interlayer insulating film 83. On the other hand, the different layer first connection line 235 is a so-called bridge wiring formed on the interlayer insulating film 83 and connected to the first electrode 21 through a through hole 83 a formed in the interlayer insulating film 83.
 同様に、それぞれの第2接続線24は、第1電極21及び第2電極22と同層の第2接続線(以下、同層第2接続線241という)と、第1電極21及び第2電極22と異層の第2接続線(以下、異層第2接続線245という)との何れかで形成されている。同層第2接続線241は、層間絶縁膜83下で第2電極22と連続的に形成されている。一方、異層第2接続線245は、層間絶縁膜83上に形成されており、層間絶縁膜83に形成されたスルーホール83aを通じて第2電極22に接続されている、いわゆるブリッジ配線である。 Similarly, each of the second connection lines 24 includes a second connection line in the same layer as the first electrode 21 and the second electrode 22 (hereinafter referred to as the same layer second connection line 241), and the first electrode 21 and the second electrode 22. It is formed by either the electrode 22 or a second connection line of a different layer (hereinafter referred to as a different layer second connection line 245). The same layer second connection line 241 is formed continuously with the second electrode 22 under the interlayer insulating film 83. On the other hand, the different layer second connection line 245 is a so-called bridge wiring formed on the interlayer insulating film 83 and connected to the second electrode 22 through a through hole 83 a formed in the interlayer insulating film 83.
 このため、それぞれの交差部29は、同層第1接続線231と異層第2接続線245とが交差する「第1交差部291」と、異層第1接続線235と同層第2接続線241とが交差する「第2交差部292」との何れかで形成されている。 Therefore, each of the intersecting portions 29 includes a “first intersecting portion 291” where the same-layer first connection line 231 and the different-layer second connection line 245 intersect, and a different-layer first connection line 235 and the same-layer second connection line 245. It is formed by any one of the “second intersecting portions 292” intersecting with the connection line 241.
 なお、本実施形態では、層間絶縁膜83が表示領域全体に形成されているが、これに限られず、層間絶縁膜83は、それぞれの交差部29に分散して配置されてもよい。すなわち、層間絶縁膜83は、第1交差部291における同層第1接続線231と異層第2接続線245との間に介在し、第2交差部292における異層第1接続線235と同層第2接続線241との間に介在すれば、第1電極21と第2電極22とを覆わなくてもよい。 In the present embodiment, the interlayer insulating film 83 is formed over the entire display region, but the present invention is not limited to this, and the interlayer insulating film 83 may be distributed at each intersection 29. That is, the interlayer insulating film 83 is interposed between the same-layer first connection line 231 and the different-layer second connection line 245 at the first intersection 291, and the different-layer first connection line 235 at the second intersection 292 and The first electrode 21 and the second electrode 22 may not be covered as long as they are interposed between the second connection lines 241 in the same layer.
 本実施形態のタッチセンサ20において、第1交差部291と第2交差部292とは隣り合うように配置されている。なお、全てにおいて第1交差部291と第2交差部292とが隣り合っている必要はなく、第1交差部291同士が隣り合うところが含まれていてもよいし、第2交差部292同士が隣り合うところが含まれていてもよい。 In the touch sensor 20 of the present embodiment, the first intersection 291 and the second intersection 292 are arranged adjacent to each other. In addition, the 1st crossing part 291 and the 2nd crossing part 292 do not need to be adjacent in all, and the place where the 1st crossing part 291 adjoins may be included, and the 2nd crossing part 292 Adjacent locations may be included.
 第1交差部291に最も近い複数の交差部29の少なくとも1つ(本実施形態では、最も近い4つの交差部29の全て)が第2交差部292とされている。同様に、第2交差部292に最も近い複数の交差部29の少なくとも1つ(本実施形態では、最も近い4つの交差部29の全て)が第1交差部291とされている。 At least one of the plurality of intersections 29 closest to the first intersection 291 (all of the four intersections 29 closest in the present embodiment) is defined as the second intersection 292. Similarly, at least one of the plurality of intersections 29 closest to the second intersection 292 (all of the four intersections 29 closest in this embodiment) is defined as the first intersection 291.
 第1交差部291と第2交差部292とは、X方向とY方向とのそれぞれにおいて交互に配列しており、いわゆる市松模様的に配列している。第1交差部291と第2交差部292とは、1つ置きに限られず、2つ以上置きに配列してもよい。第1交差部291と第2交差部292とが周期的に出現すればよい。 The first intersection 291 and the second intersection 292 are alternately arranged in the X direction and the Y direction, and are arranged in a so-called checkered pattern. The first intersection 291 and the second intersection 292 are not limited to every other one, and may be arranged every two or more. The 1st crossing part 291 and the 2nd crossing part 292 should just appear periodically.
 第1交差部291と第2交差部292とは、一定面積当たりの数が同じであることが好ましい。一定面積は、表示領域の全体であってもよいし、例えば表示領域の中央部などの一部であってもよい。一定面積当たりの数が同じであれば、第1交差部291と第2交差部292とはランダムに配置されてもよい。 It is preferable that the first intersection 291 and the second intersection 292 have the same number per fixed area. The fixed area may be the entire display area, or may be a part of the center of the display area, for example. If the number per fixed area is the same, the first intersection 291 and the second intersection 292 may be randomly arranged.
 本実施形態のように、ブリッジ配線の向きが互いに異なる第1交差部291と第2交差部292とが隣り合って配置されることで、向きが揃ったブリッジ配線のみが配置される場合と比較して、交差部29が視認されにくくなり、表示装置1の画質を良好に保つことが可能である。 Compared to the case where only the bridge wirings having the same orientation are arranged by arranging the first intersection part 291 and the second intersection part 292 adjacent to each other in different directions as in the present embodiment. As a result, the crossing portion 29 becomes difficult to be visually recognized, and the image quality of the display device 1 can be kept good.
 図5は、第2実施形態に係るタッチセンサの平面図である。第2実施形態では、第1交差部291と第2交差部292とは、X方向においてのみ交互に配列しており、Y方向には交互に配列しておらず、同じものが並んでいる。すなわち、第1交差部291に最も近い4つの交差部29のうちX方向に隣り合う2つが第2交差部292とされている。第2交差部292についても同様である。第2実施形態においても、第1実施形態ほどではないにしても、交差部29が視認されにくくなる効果が得られる。 FIG. 5 is a plan view of the touch sensor according to the second embodiment. In the second embodiment, the first intersecting portions 291 and the second intersecting portions 292 are alternately arranged only in the X direction and are not arranged alternately in the Y direction, and the same ones are arranged. That is, two of the four intersections 29 closest to the first intersection 291 are adjacent to each other in the X direction as the second intersection 292. The same applies to the second intersection 292. Even in the second embodiment, even if not as much as in the first embodiment, there is an effect that the crossing portion 29 is less likely to be visually recognized.
 図6は、第3実施形態に係るタッチセンサの平面図である。第3実施形態では、第1交差部291と第2交差部292とは、Y方向においてのみ交互に配列しており、X方向には交互に配列しておらず、同じものが並んでいる。すなわち、第1交差部291に最も近い4つの交差部29のうちY方向に隣り合う2つが第2交差部292とされている。第2交差部292についても同様である。第3実施形態においても、第1実施形態ほどではないにしても、交差部29が視認されにくくなる効果が得られる。 FIG. 6 is a plan view of the touch sensor according to the third embodiment. In the third embodiment, the first intersecting portions 291 and the second intersecting portions 292 are alternately arranged only in the Y direction, and are not arranged alternately in the X direction. That is, two of the four intersections 29 closest to the first intersection 291 are adjacent to each other in the Y direction as the second intersection 292. The same applies to the second intersection 292. Even in the third embodiment, the effect of making the crossing portion 29 less likely to be visually recognized is obtained, although not as much as in the first embodiment.
 なお、例えば第1電極21を駆動電極とし、第2電極22を検出電極とする場合、検出電極である第2電極22のそれぞれの電極列は、第2実施形態では同層第2接続線241と異層第2接続線245との一方のみしか含まないのに対し、第3実施形態では同層第2接続線241と異層第2接続線245との両方を交互に含む。このため、検出電極である第2電極22の電極列の電気抵抗を揃えるという観点では、第3実施形態の採用が好ましい。 For example, when the first electrode 21 is a drive electrode and the second electrode 22 is a detection electrode, each electrode row of the second electrode 22 that is a detection electrode is the same layer second connection line 241 in the second embodiment. In the third embodiment, both the same-layer second connection lines 241 and the different-layer second connection lines 245 are alternately included. For this reason, it is preferable to employ the third embodiment from the viewpoint of aligning the electric resistances of the electrode arrays of the second electrodes 22 that are detection electrodes.
 図7は、接続線の構成例を示す平面図である。同図では、第2交差部292を拡大して示しているが、第1交差部291についても同様に構成される。この例では、異層第1接続線235も同層第2接続線241も複数の金属線で形成されている。具体的には、異層第1接続線235は、層間絶縁膜83上に形成された2本の金属線からなり、2本の金属線のそれぞれの端部は、スルーホール83aを通じて第1電極21のX方向の端部に接続されている。 FIG. 7 is a plan view showing a configuration example of connection lines. In the figure, the second intersection 292 is shown in an enlarged manner, but the first intersection 291 is similarly configured. In this example, the different layer first connection line 235 and the same layer second connection line 241 are formed of a plurality of metal wires. Specifically, the different layer first connection line 235 includes two metal lines formed on the interlayer insulating film 83, and ends of the two metal lines are connected to the first electrode through the through holes 83a. 21 is connected to the end of the X direction.
 異層第1接続線235を形成する複数の金属線のそれぞれの端部は、スルーホール83aを含むようパッド状に広がる拡大部を有してもよい。この場合、拡大部は画素100(図12を参照)の表示を阻害しない大きさであることが望ましい。また、異層第1接続線235又は同層第2接続線241を形成する2本の金属線の間隔は、網目状配線として形成された第1電極21又は第2電極22の端部(例えば、端部を構成する1つの目)の幅と同じであることが望ましい。 Each end portion of the plurality of metal wires forming the different layer first connection line 235 may have an enlarged portion that extends in a pad shape so as to include the through hole 83a. In this case, it is desirable that the enlarged portion has a size that does not hinder the display of the pixel 100 (see FIG. 12). Further, the interval between the two metal lines forming the different layer first connection line 235 or the same layer second connection line 241 is the end of the first electrode 21 or the second electrode 22 formed as a mesh wiring (for example, It is desirable that the width is the same as the width of one eye constituting the end portion.
 図8A~図8Cは、電極と異層接続線との接続例を示す図である。図9A~図9Cは、他の接続例を示す図である。これらの図では、第1電極21と異層第1接続線235との接続部分を拡大して示しているが、第2電極22と異層第2接続線245との接続部分についても同様に構成される。層間絶縁膜83に形成されたスルーホール83aの底には第1電極21が露出し、層間絶縁膜83上に形成された異層第1接続線235は、スルーホール83aを通じて第1電極21に接続されている。 8A to 8C are diagrams showing examples of connection between electrodes and different layer connection lines. 9A to 9C are diagrams showing other connection examples. In these drawings, the connection portion between the first electrode 21 and the different layer first connection line 235 is shown in an enlarged manner, but the connection portion between the second electrode 22 and the different layer second connection line 245 is similarly shown. Composed. The first electrode 21 is exposed at the bottom of the through hole 83a formed in the interlayer insulating film 83, and the different-layer first connection line 235 formed on the interlayer insulating film 83 is connected to the first electrode 21 through the through hole 83a. It is connected.
 図8A~図8Cに示すように、異層第1接続線235の線幅は、網目状配線として形成された第1電極21の線幅と同じであってよい。また、スルーホール83aの幅は、第1電極21の線幅より小さくてよく、この場合、スルーホール83aの底の全部に第1電極21が露出し、スルーホール83aの底の全部に異層第1接続線235が形成される。 As shown in FIGS. 8A to 8C, the line width of the different-layer first connection line 235 may be the same as the line width of the first electrode 21 formed as a mesh-like wiring. Further, the width of the through hole 83a may be smaller than the line width of the first electrode 21. In this case, the first electrode 21 is exposed at the entire bottom of the through hole 83a, and a different layer is formed at the entire bottom of the through hole 83a. A first connection line 235 is formed.
 図9A~図9Cに示すように、異層第1接続線235の線幅は、第1電極21の線幅より大きくてもよい。但し、異層第1接続線235の線幅は、画素100(図12を参照)の表示を阻害しない大きさであることが望ましい。また、スルーホール83aの幅は、第1電極21や異層第1接続線235の線幅より大きくてもよく、この場合、スルーホール83aの底の一部に第1電極21が露出し、スルーホール83aの底の一部に異層第1接続線235が形成される。この例は、第1電極21の線幅が小さく、平面視で第1電極21の内側にスルーホール83aを収めることが困難である場合に有用である。 As shown in FIGS. 9A to 9C, the line width of the different layer first connection line 235 may be larger than the line width of the first electrode 21. However, the line width of the different-layer first connection line 235 is desirably a size that does not hinder the display of the pixel 100 (see FIG. 12). Further, the width of the through hole 83a may be larger than the line width of the first electrode 21 or the different layer first connection line 235. In this case, the first electrode 21 is exposed at a part of the bottom of the through hole 83a, A different layer first connection line 235 is formed at a part of the bottom of the through hole 83a. This example is useful when the line width of the first electrode 21 is small and it is difficult to fit the through hole 83a inside the first electrode 21 in plan view.
 図10は、接続線の構成例を示す平面図である。同図では、第2交差部292を拡大して示しているが、第1交差部291についても同様に構成される。この例では、異層第1接続線235は透明導電膜で形成され、同層第2接続線241は複数の金属線で形成されている。具体的には、異層第1接続線235は、層間絶縁膜83上に形成された例えばITO等の透明導電膜からなり、透明導電膜のX方向の端部は、複数のスルーホール83aを通じて第1電極21のX方向の端部に接続されている。 FIG. 10 is a plan view showing a configuration example of connection lines. In the figure, the second intersection 292 is shown in an enlarged manner, but the first intersection 291 is similarly configured. In this example, the different layer first connection line 235 is formed of a transparent conductive film, and the same layer second connection line 241 is formed of a plurality of metal lines. Specifically, the different-layer first connection line 235 is made of a transparent conductive film such as ITO formed on the interlayer insulating film 83, and an end portion of the transparent conductive film in the X direction passes through a plurality of through holes 83a. The first electrode 21 is connected to the end portion in the X direction.
 透明導電膜は金属よりも抵抗率が高いため、異層第1接続線235を形成する透明導電膜の幅は、網目状配線として形成された第1電極21の線幅より広いことが望ましい。透明導電膜は透明であるため、画素100(図12を参照)と平面視で重なるように形成されてもよい。異層第1接続線235を形成する透明導電膜の長さ(X方向)が幅(Y方向)より1.5倍以上長い場合に効果的である。なお、電気抵抗を低減する観点からは、透明導電膜の長さ(X方向)が幅(Y方向)より1.5倍以上長くてもよい。 Since the transparent conductive film has a higher resistivity than the metal, the width of the transparent conductive film forming the different layer first connection line 235 is desirably wider than the line width of the first electrode 21 formed as a mesh-like wiring. Since the transparent conductive film is transparent, it may be formed so as to overlap with the pixel 100 (see FIG. 12) in plan view. This is effective when the length (X direction) of the transparent conductive film forming the different layer first connection line 235 is 1.5 times longer than the width (Y direction). From the viewpoint of reducing the electrical resistance, the length (X direction) of the transparent conductive film may be 1.5 times or more longer than the width (Y direction).
 図11は、第4実施形態に係るタッチセンサの平面図である。第4実施形態では、第1電極21と第2電極22とは層間絶縁膜83上に配置されている。異層第1接続線235と異層第2接続線245とは層間絶縁膜83下に配置されている。層間絶縁膜83上に形成された第1電極21と第2電極22とは、スルーホール83aを通じて層間絶縁膜83下に形成された異層第1接続線235と異層第2接続線245とにそれぞれ接続されている。 FIG. 11 is a plan view of the touch sensor according to the fourth embodiment. In the fourth embodiment, the first electrode 21 and the second electrode 22 are disposed on the interlayer insulating film 83. The different layer first connection line 235 and the different layer second connection line 245 are arranged under the interlayer insulating film 83. The first electrode 21 and the second electrode 22 formed on the interlayer insulating film 83 include a different layer first connection line 235 and a different layer second connection line 245 formed under the interlayer insulating film 83 through the through hole 83a. Are connected to each.
 これによると、第4実施形態では、他の実施形態と比較して第1電極21と第2電極22とが最表面により近づくため、タッチされた際の静電容量の変化が大きくなり、検出感度を向上させることが可能である。 According to this, in 4th Embodiment, since the 1st electrode 21 and the 2nd electrode 22 approach the outermost surface compared with other embodiment, the change of the electrostatic capacitance when touched becomes large, and it detects Sensitivity can be improved.
 図12は、電極と画素との配置例を示す平面図である。図13は、別の配置例を示す平面図である。表示パネル10は、例えば赤、緑及び青からなる複数色の単位画素10R,10G,10Bを有しており、複数色の単位画素10R,10G,10Bの集合が画素100を構成している。図12は、Y方向に延びる単位画素10R,10G,10BがX方向に配列したいわゆるストライプ配列の例を示しており、図13は、青色の単位画素10Bを赤色及び緑色の単位画素10R,10Gよりも大きくした例を示している。単位画素10R,10G,10Bのそれぞれは、画素電極61を露出させる画素分離膜55の開口55aにより区画されている(図2を参照)。 FIG. 12 is a plan view showing an arrangement example of electrodes and pixels. FIG. 13 is a plan view showing another arrangement example. The display panel 10 includes a plurality of unit pixels 10R, 10G, and 10B made of red, green, and blue, for example, and a set of the unit pixels 10R, 10G, and 10B of a plurality of colors constitutes the pixel 100. FIG. 12 shows an example of a so-called stripe arrangement in which unit pixels 10R, 10G, and 10B extending in the Y direction are arranged in the X direction. FIG. 13 shows that the blue unit pixel 10B is replaced with the red and green unit pixels 10R, 10G. It shows an example that is larger. Each of the unit pixels 10R, 10G, and 10B is partitioned by an opening 55a of the pixel separation film 55 that exposes the pixel electrode 61 (see FIG. 2).
 図12及び図13では、第2電極22を拡大して示しているが、第1電極21についても同様に構成される。第1電極21又は第2電極22を構成する網目状配線の各線は、画素分離膜55の上方に配置されている。すなわち、網目状配線の各線は、平面視で画素分離膜55と重なっており、単位画素10R,10G,10Bを形成する開口55aとは重なっていない。網目状配線の各線の幅は、X方向又はY方向に隣り合う開口55aの間隔よりも狭い。また、網目状配線の開口(すなわち網目)のそれぞれは、平面視で1又は複数の画素100を含んでいる。すなわち、網目状配線の網目ピッチは、単位画素10R,10G,10Bの配列ピッチの整数倍になっている。 12 and 13 show the second electrode 22 in an enlarged manner, but the first electrode 21 is configured similarly. Each line of the mesh wiring constituting the first electrode 21 or the second electrode 22 is disposed above the pixel isolation film 55. That is, each line of the mesh wiring overlaps with the pixel separation film 55 in a plan view, and does not overlap with the opening 55a forming the unit pixels 10R, 10G, and 10B. The width of each line of the mesh-like wiring is narrower than the interval between the openings 55a adjacent to each other in the X direction or the Y direction. Each of the openings of the mesh wiring (that is, the mesh) includes one or a plurality of pixels 100 in plan view. That is, the mesh pitch of the mesh wiring is an integral multiple of the arrangement pitch of the unit pixels 10R, 10G, and 10B.
 このように、第1電極21又は第2電極22を構成する網目状配線の各線が画素分離膜55の上方に配置されることで、単位画素10R,10G,10Bから上方に向かう光が網目状配線によって阻害されない。なお、第1電極21又は第2電極22だけでなく、第1接続線23又は第2接続線24も同様に画素分離膜55の上方に配置される。 As described above, each line of the mesh-like wiring constituting the first electrode 21 or the second electrode 22 is arranged above the pixel isolation film 55, so that light traveling upward from the unit pixels 10R, 10G, and 10B is mesh-like. Not disturbed by wiring. Note that not only the first electrode 21 or the second electrode 22 but also the first connection line 23 or the second connection line 24 are similarly disposed above the pixel isolation film 55.
 図14は、電極と画素の他の配置例を示す平面図である。この例では、単位画素10R,10G,10Bは、X方向とY方向とを対角方向とする矩形状、いわゆる菱形状(ダイヤモンド形状)で形成されている。単位画素10R,10G,10Bは、X方向とY方向とを対角方向として、すなわちX方向とY方向の両方に交差する第3又は第4方向(例えば45度又は-45度の方向)にそれぞれ並んで2次元的に配列している。ここでは、1つの赤色の単位画素10R、1つの青色の単位画素10B及び2つの緑色の単位画素10Gの集合が画素100を構成する、いわゆるペンタイル配列が採用されている。 FIG. 14 is a plan view showing another arrangement example of electrodes and pixels. In this example, the unit pixels 10R, 10G, and 10B are formed in a rectangular shape in which the X direction and the Y direction are diagonal directions, a so-called rhombus shape (diamond shape). The unit pixels 10R, 10G, and 10B have the X direction and the Y direction as diagonal directions, that is, in a third or fourth direction (for example, a direction of 45 degrees or −45 degrees) that intersects both the X direction and the Y direction. They are arranged two-dimensionally side by side. Here, a so-called pen tile arrangement in which a group of one red unit pixel 10R, one blue unit pixel 10B, and two green unit pixels 10G constitutes the pixel 100 is employed.
 図14では、第2電極22を拡大して示しているが、第1電極21についても同様に構成される。第1電極21又は第2電極22を構成する網目状配線の各線は、画素分離膜55の上方に配置されるとともに、単位画素10R,10G,10Bの配列方向と同様、X方向とY方向の両方に交差する第3又は第4方向(例えば45度又は-45度の方向)にそれぞれ延びている。網目状配線の各線の幅は、第3方向又は第4方向に隣り合う開口55aの間隔よりも狭い。また、網目状配線の開口(すなわち網目)のそれぞれは、平面視で1又は複数の画素100を含んでいる。 FIG. 14 shows the second electrode 22 in an enlarged manner, but the first electrode 21 is similarly configured. Each line of the mesh-like wiring constituting the first electrode 21 or the second electrode 22 is disposed above the pixel isolation film 55, and is similar to the arrangement direction of the unit pixels 10R, 10G, and 10B in the X direction and the Y direction. It extends in a third or fourth direction intersecting both (for example, a direction of 45 degrees or -45 degrees). The width of each line of the mesh-like wiring is narrower than the interval between the openings 55a adjacent in the third direction or the fourth direction. Each of the openings of the mesh wiring (that is, the mesh) includes one or a plurality of pixels 100 in plan view.
 図15は、第5実施形態に係るタッチセンサの平面図である。第5実施形態は、上記図14に示す画素配列に適用される。第1電極21又は第2電極22を構成する網目状配線の各線と同様に、第1接続線23と第2接続線24とは、X方向とY方向の両方に交差する第3又は第4方向(例えば45度又は-45度の方向)にそれぞれ延びている。このように構成されることで、画素から上方に向かう光が第1接続線23と第2接続線24とによって阻害されない。 FIG. 15 is a plan view of the touch sensor according to the fifth embodiment. The fifth embodiment is applied to the pixel array shown in FIG. Similar to the lines of the mesh wiring constituting the first electrode 21 or the second electrode 22, the first connection line 23 and the second connection line 24 are the third or fourth that intersects both the X direction and the Y direction. Each extends in a direction (eg, 45 degrees or -45 degrees). By being configured in this way, the light traveling upward from the pixel is not obstructed by the first connection line 23 and the second connection line 24.
 具体的には、第1接続線23又は第2接続線24は、中央部が第3及び第4方向の一方に延び、その両側の端部が第3及び第4方向の他方に延びるように鉤状に折れ曲がっている。また、第1接続線23及び第2接続線24は、中央部同士が直交し、一方を90度回転させたときに他方に重なるように構成されている。 Specifically, the first connection line 23 or the second connection line 24 has a central portion extending in one of the third and fourth directions, and end portions on both sides thereof extending in the other of the third and fourth directions. It is bent like a bowl. Further, the first connection line 23 and the second connection line 24 are configured such that the central portions are orthogonal to each other and overlap one another when one is rotated 90 degrees.
 また、第1交差部291と第2交差部292とは、X方向とY方向とのそれぞれにおいて交互に配列している。すなわち、第1交差部291に最も近い4つの交差部29の全てが第2交差部292とされている。第2交差部292についても同様である。これによると、上記図14に示す画素配列においても、上記実施形態と同様に交差部29が視認されにくくなる効果が得られる。 Further, the first intersection 291 and the second intersection 292 are alternately arranged in each of the X direction and the Y direction. That is, all of the four intersections 29 closest to the first intersection 291 are the second intersections 292. The same applies to the second intersection 292. According to this, also in the pixel array shown in FIG. 14, the effect that the intersection 29 is hardly visually recognized can be obtained as in the above embodiment.
 図16は、第6実施形態に係るタッチセンサの平面図である。第6実施形態は、上記図14に示す画素配列に適用される。第1電極21又は第2電極22を構成する網目状配線の各線と同様に、第1接続線23と第2接続線24とは、X方向とY方向の両方に交差する第3又は第4方向(例えば45度又は-45度の方向)にそれぞれ延びている。このように構成されることで、画素から上方に向かう光が第1接続線23と第2接続線24とによって阻害されない。 FIG. 16 is a plan view of a touch sensor according to the sixth embodiment. The sixth embodiment is applied to the pixel array shown in FIG. Similar to the lines of the mesh wiring constituting the first electrode 21 or the second electrode 22, the first connection line 23 and the second connection line 24 are the third or fourth that intersects both the X direction and the Y direction. Each extends in a direction (eg, 45 degrees or -45 degrees). By being configured in this way, the light traveling upward from the pixel is not obstructed by the first connection line 23 and the second connection line 24.
 具体的には、X方向に隣り合う第1電極21はY方向にオフセットして配置されており、第1接続線23は、第3又は第4方向に全体として直線的に延びることで、X方向に隣り合う第1電極21を接続している。また、Y方向に隣り合う第2電極22はX方向にオフセットして配置されており、第2接続線24は、第3又は第4方向に全体的に直線に延びることで、Y方向に隣り合う第2電極22を接続している。 Specifically, the first electrodes 21 adjacent to each other in the X direction are arranged offset in the Y direction, and the first connection line 23 extends linearly as a whole in the third or fourth direction. The first electrodes 21 adjacent in the direction are connected. The second electrodes 22 adjacent to each other in the Y direction are arranged so as to be offset in the X direction, and the second connection line 24 extends linearly in the third or fourth direction so that it is adjacent to the Y direction. A matching second electrode 22 is connected.
 また、第1交差部291と第2交差部292とは、X方向とY方向とのそれぞれにおいて交互に配列している。すなわち、第1交差部291に最も近い4つの交差部29の全てが第2交差部292とされている。第2交差部292についても同様である。これによると、上記図14に示す画素配列においても、上記実施形態と同様に交差部29が視認されにくくなる効果が得られる。 Further, the first intersection 291 and the second intersection 292 are alternately arranged in each of the X direction and the Y direction. That is, all of the four intersections 29 closest to the first intersection 291 are the second intersections 292. The same applies to the second intersection 292. According to this, also in the pixel array shown in FIG. 14, the effect that the intersection 29 is hardly visually recognized can be obtained as in the above embodiment.
 図17は、第7実施形態に係るタッチセンサの平面図である。第7実施形態では、第1電極21と第2電極22との間に、第1電極21と第2電極22との何れにも接続されないダミー配線27(第3の電極)が形成されている。ダミー配線27は、第1電極21と第2電極22と同層で、第1電極21と第2電極22とに挟まれるように配置されている。これによると、第1電極21と第2電極22とのカップリングを低減できるので、タッチされた際の静電容量の変化が大きくなり、検出感度を向上させることが可能である。 FIG. 17 is a plan view of the touch sensor according to the seventh embodiment. In the seventh embodiment, a dummy wiring 27 (third electrode) that is not connected to any of the first electrode 21 and the second electrode 22 is formed between the first electrode 21 and the second electrode 22. . The dummy wiring 27 is disposed in the same layer as the first electrode 21 and the second electrode 22 so as to be sandwiched between the first electrode 21 and the second electrode 22. According to this, since the coupling between the first electrode 21 and the second electrode 22 can be reduced, the change in capacitance when touched is increased, and the detection sensitivity can be improved.
 なお、ダミー配線27も、第1電極21又は第2電極22を構成する網目状配線の各線と同様に、画素分離膜55の上方に配置されて単位画素10R,10G,10Bから上方に向かう光を阻害しないことが望ましい。 The dummy wiring 27 is also disposed above the pixel isolation film 55 and travels upward from the unit pixels 10R, 10G, and 10B in the same manner as each line of the mesh wiring configuring the first electrode 21 or the second electrode 22. It is desirable not to inhibit.
 図18A~図18Fは、タッチセンサ内蔵表示装置の製造工程例を示す図である。 FIG. 18A to FIG. 18F are diagrams showing an example of the manufacturing process of the display device with a built-in touch sensor.
 図18Aは、発光素子60が完成した状態を示している。ここで、画素分離膜55は、周辺領域11には形成されない。以下、例えば画素分離膜55の範囲を「表示領域」という。周辺領域11には、層間絶縁膜53及び端子67,68が露出している。なお、同図の切断面では、タッチセンサ20に接続される引き出し配線49及び端子67,68を示しているが、異なる位置では、発光素子60の対向電極65が引き出し配線49及び端子67,68に接続される。 FIG. 18A shows a state where the light emitting element 60 is completed. Here, the pixel isolation film 55 is not formed in the peripheral region 11. Hereinafter, for example, the range of the pixel isolation film 55 is referred to as a “display region”. In the peripheral region 11, the interlayer insulating film 53 and the terminals 67 and 68 are exposed. In addition, in the cut surface of the same figure, the lead-out wiring 49 and the terminals 67 and 68 connected to the touch sensor 20 are shown. Connected to.
 図18Bは、封止膜70を形成する工程を示している。ここで、有機材料で形成された有機膜73は表示領域を覆うように形成されればよく、周辺領域11には形成されなくてもよい。詳しくは、有機膜72の外縁は、画素分離膜55の外縁よりも内側に位置しており、無機材料で形成された2層の無機膜71,73が密着することによって封止されている。このため、周辺領域11は2層の無機膜71,73によって覆われている。以下、周辺領域11を覆う2層の無機膜71,73を「周辺部76」という。 FIG. 18B shows a process of forming the sealing film 70. Here, the organic film 73 formed of an organic material may be formed so as to cover the display region, and may not be formed in the peripheral region 11. Specifically, the outer edge of the organic film 72 is located on the inner side of the outer edge of the pixel separation film 55, and is sealed when two layers of inorganic films 71 and 73 formed of an inorganic material are in close contact with each other. For this reason, the peripheral region 11 is covered with two layers of inorganic films 71 and 73. Hereinafter, the two layers of inorganic films 71 and 73 covering the peripheral region 11 are referred to as “peripheral portions 76”.
 図18Cは、下地絶縁膜81を形成する工程を示している。ここで、下地絶縁膜81は表示領域にのみ形成され、周辺領域11には形成されない。詳しくは、下地絶縁膜81の外縁は、画素分離膜55の外縁よりも内側に位置し、封止膜70の有機膜72の外縁よりも外側に位置している。下地絶縁膜81は、有機絶縁材料で形成されており、下地絶縁膜81の上面の平坦化させるとともに、次工程の周辺部76の除去に利用される。 FIG. 18C shows a step of forming the base insulating film 81. Here, the base insulating film 81 is formed only in the display region and not in the peripheral region 11. Specifically, the outer edge of the base insulating film 81 is located inside the outer edge of the pixel separation film 55 and located outside the outer edge of the organic film 72 of the sealing film 70. The base insulating film 81 is made of an organic insulating material, and is used to planarize the upper surface of the base insulating film 81 and to remove the peripheral portion 76 in the next process.
 図18Dは、周辺部76を除去する工程を示している。周辺部76の除去は、下地絶縁膜81をマスクとして行われる。詳しくは、2層の無機膜71,75は、下地絶縁膜81の外縁の位置で、すなわち画素分離膜55の外縁よりも内側かつ有機膜73の外縁よりも外側の位置で切断される。なお、周辺部76下の層間絶縁膜53も無機膜71,75と同じ無機絶縁材料で形成されているので、周辺部76の除去によって層間絶縁膜53の一部又は全部も同時に除去されることがある。 FIG. 18D shows a process of removing the peripheral portion 76. The removal of the peripheral portion 76 is performed using the base insulating film 81 as a mask. Specifically, the two inorganic films 71 and 75 are cut at the outer edge of the base insulating film 81, that is, at a position inside the outer edge of the pixel isolation film 55 and outside the outer edge of the organic film 73. Since the interlayer insulating film 53 below the peripheral portion 76 is also formed of the same inorganic insulating material as the inorganic films 71 and 75, a part or all of the interlayer insulating film 53 is simultaneously removed by removing the peripheral portion 76. There is.
 図18Eは、タッチセンサ20を形成する工程を示している。詳しくは、下地絶縁膜81上に第1電極21、第2電極22、同層第1接続線231及び同層第2接続線241が形成され、その上に層間絶縁膜83及び開口83aが形成され、その上に異層第1接続線235及び異層第2接続線245が形成される(図3及び図4等を参照)。また、層間絶縁膜83上から層間絶縁膜83、下地絶縁膜81及び封止膜70の縁を超えて周辺領域11に至り、端子67に接続される引き出し配線25が、異層第1接続線235及び異層第2接続線245と同時に形成される。 FIG. 18E shows a process of forming the touch sensor 20. Specifically, the first electrode 21, the second electrode 22, the same layer first connection line 231 and the same layer second connection line 241 are formed on the base insulating film 81, and the interlayer insulating film 83 and the opening 83a are formed thereon. Then, the different-layer first connection line 235 and the different-layer second connection line 245 are formed thereon (see FIGS. 3 and 4). Also, the lead-out wiring 25 connected to the terminal 67 from the interlayer insulating film 83 to the peripheral region 11 beyond the edges of the interlayer insulating film 83, the base insulating film 81, and the sealing film 70 is a different layer first connection line. 235 and the different layer second connection line 245 are formed at the same time.
 図18Fは、タッチセンサ20を覆う保護膜85等を形成する工程を示している。ここでは、タッチセンサ20の全部、さらには引き出し配線25及び端子67を覆うように保護膜85が形成される。保護膜85は、例えばアクリル樹脂等の有機絶縁材料で形成されている。保護膜85上には円偏光フィルム87が配置され、円偏光フィルム87上にはカバーフィルム89が配置される。また、保護膜85に覆われていない端子68には、異方導電部材139を介してFPC13が接続される。 FIG. 18F shows a process of forming a protective film 85 or the like that covers the touch sensor 20. Here, the protective film 85 is formed so as to cover the entire touch sensor 20 and further the lead-out wiring 25 and the terminal 67. The protective film 85 is made of an organic insulating material such as acrylic resin. A circularly polarizing film 87 is disposed on the protective film 85, and a cover film 89 is disposed on the circularly polarizing film 87. Further, the FPC 13 is connected to the terminal 68 not covered with the protective film 85 via the anisotropic conductive member 139.
 以上に説明した実施形態においては、タッチセンサ20は、静電容量方式タッチセンサの駆動電極と検出電極とを構成する第1電極21と第2電極22とを備える場合を例示したが、タッチセンサ20は、これらの電極に加えて、感圧機能を実現するための電極をさらに備えてもよい。 In the embodiment described above, the touch sensor 20 includes the first electrode 21 and the second electrode 22 that configure the drive electrode and the detection electrode of the capacitive touch sensor. 20 may further include an electrode for realizing a pressure-sensitive function in addition to these electrodes.
 本実施形態においては、開示例として有機EL表示装置の場合を例示したが、その他の適用例として、液晶表示装置、その他の自発光型表示装置、あるいは電気泳動素子等を有する電子ペーパー型表示装置等、あらゆるフラットパネル型の表示装置が挙げられる。また、中小型から大型まで、特に限定することなく適用が可能であることは言うまでもない。 In the present embodiment, the case of an organic EL display device has been exemplified as a disclosure example, but as other application examples, a liquid crystal display device, another self-luminous display device, or an electronic paper display device having an electrophoretic element or the like Any flat panel display device can be used. Moreover, it cannot be overemphasized that it can apply, without specifically limiting from a small size to a large size.
 本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。例えば、前述の各実施形態に対して、当業者が適宜、構成要素の追加、削除若しくは設計変更を行ったもの、又は、工程の追加、省略若しくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。

 
In the scope of the idea of the present invention, those skilled in the art can conceive various changes and modifications, and it is understood that these changes and modifications also belong to the scope of the present invention. For example, those in which the person skilled in the art appropriately added, deleted, or changed the design of the above-described embodiments, or those in which the process was added, omitted, or changed the conditions are also included in the gist of the present invention. As long as it is included in the scope of the present invention.

Claims (16)

  1.  2次元的に配列された複数の第1電極であって、第1方向に隣り合う第1電極が前記第1電極と同層又は異層の第1接続線を介して接続され、前記第1方向と交差する第2方向に隣り合う第1電極は接続されない、複数の第1電極と、
     前記第1電極と同層で2次元的に配列され、それぞれが前記第1電極に囲まれた複数の第2電極であって、前記第2方向に隣り合う第2電極が、前記第1接続線と平面視で交差する、前記第1電極及び前記第2電極と同層又は異層の第2接続線を介して接続され、前記第1方向に隣り合う第2電極は接続されない、複数の第2電極と、
     前記第1接続線と前記第2接続線との間に介在する絶縁膜と、
     を備え、
     前記第1電極及び前記第2電極と同層の前記第1接続線と前記第1電極及び前記第2電極と異層の第2接続線とが交差する第1交差部と、
     前記第1電極及び前記第2電極と異層の前記第1接続線と前記第1電極及び前記第2電極と同層の第2接続線とが交差する第2交差部と、
     が隣り合う
     タッチセンサ。
    A plurality of first electrodes arranged two-dimensionally, wherein the first electrodes adjacent in the first direction are connected to each other via a first connection line that is the same layer as or different from the first electrode. A plurality of first electrodes not connected to a first electrode adjacent to the second direction intersecting the direction;
    A plurality of second electrodes that are two-dimensionally arranged in the same layer as the first electrode, each surrounded by the first electrode, wherein the second electrode adjacent in the second direction is the first connection A plurality of second electrodes adjacent to each other in the first direction are connected to each other through a second connection line that is the same layer as or different from the first electrode and the second electrode. A second electrode;
    An insulating film interposed between the first connection line and the second connection line;
    With
    A first intersecting portion where the first connection line in the same layer as the first electrode and the second electrode intersects the first connection line and the second connection line in a different layer;
    A second intersecting portion where the first connection line in a different layer from the first electrode and the second electrode intersects the second connection line in the same layer as the first electrode and the second electrode;
    Touch sensor next to each other.
  2.  前記第1交差部と前記第2交差部とは、前記第1の方向に交互に配列する、
     請求項1に記載のタッチセンサ。
    The first intersection and the second intersection are alternately arranged in the first direction.
    The touch sensor according to claim 1.
  3.  前記第1交差部と前記第2交差部とは、前記第2の方向に交互に配列する、
     請求項1に記載のタッチセンサ。
    The first intersection and the second intersection are alternately arranged in the second direction.
    The touch sensor according to claim 1.
  4.  前記第1電極と前記第2電極とは、前記絶縁膜下に配置される、
     請求項1に記載のタッチセンサ。
    The first electrode and the second electrode are disposed under the insulating film,
    The touch sensor according to claim 1.
  5.  前記第1電極と前記第2電極とは、前記絶縁膜上に配置される、
     請求項1に記載のタッチセンサ。
    The first electrode and the second electrode are disposed on the insulating film,
    The touch sensor according to claim 1.
  6.  前記第1電極と前記第2電極とは、網目状配線で形成される、
     請求項1に記載のタッチセンサ。
    The first electrode and the second electrode are formed by mesh-like wiring,
    The touch sensor according to claim 1.
  7.  前記第1電極及び前記第2電極と異層の前記第1接続線又は前記第2接続線は、複数の金属線で形成される、
     請求項1に記載のタッチセンサ。
    The first connection line or the second connection line in a different layer from the first electrode and the second electrode is formed of a plurality of metal wires.
    The touch sensor according to claim 1.
  8.  前記第1電極及び前記第2電極と異層の前記第1接続線又は前記第2接続線は、透明導電膜で形成される、
     請求項1に記載のタッチセンサ。
    The first connection line or the second connection line in a different layer from the first electrode and the second electrode is formed of a transparent conductive film.
    The touch sensor according to claim 1.
  9.  前記第1電極及び前記第2電極と異層の前記第1接続線は、前記絶縁膜に形成されたスルーホールを通じて前記第1電極に接続され、
     前記第1電極及び前記第2電極と異層の前記第2接続線は、前記絶縁膜に形成されたスルーホールを通じて前記第2電極に接続される、
     請求項1に記載のタッチセンサ。
    The first connection line different from the first electrode and the second electrode is connected to the first electrode through a through hole formed in the insulating film,
    The second connection line different from the first electrode and the second electrode is connected to the second electrode through a through hole formed in the insulating film.
    The touch sensor according to claim 1.
  10.  前記第1電極と前記第2電極とは、静電容量方式タッチセンサの駆動電極と検出電極とである、
     請求項1に記載のタッチセンサ。
    The first electrode and the second electrode are a drive electrode and a detection electrode of a capacitive touch sensor,
    The touch sensor according to claim 1.
  11.  前記第1電極と前記第2電極との間に、前記第1電極と前記第2電極との何れにも接続されない第3の電極をさらに備える、
     請求項1に記載のタッチセンサ。
    A third electrode that is not connected to any of the first electrode and the second electrode is further provided between the first electrode and the second electrode.
    The touch sensor according to claim 1.
  12.  表示部と、
     前記表示部上に形成された請求項1に記載のタッチセンサと、
     を備えるタッチセンサ内蔵表示装置。
    A display unit;
    The touch sensor according to claim 1 formed on the display unit,
    A display device with a built-in touch sensor.
  13.  複数の画素電極と、
     前記各々の画素電極が底に露出する複数の開口が形成された画素分離膜と、
     前記画素分離膜の前記各々の開口の内側に形成された発光層と、
     を備え、
     前記第1電極と前記第2電極とは、網目状配線で形成され、
     前記網目状配線の各線は、前記画素分離膜の上方に配置される、
     請求項12に記載のタッチセンサ内蔵表示装置。
    A plurality of pixel electrodes;
    A pixel separation film having a plurality of openings in which the respective pixel electrodes are exposed to the bottom;
    A light emitting layer formed inside each opening of the pixel isolation film;
    With
    The first electrode and the second electrode are formed by mesh-like wiring,
    Each line of the mesh wiring is disposed above the pixel isolation film,
    The display device with a built-in touch sensor according to claim 12.
  14.  前記網目状配線の各線の幅は、前記複数の開口の隣同士の間隔よりも狭い、
     請求項13に記載のタッチセンサ内蔵表示装置。
    The width of each line of the mesh wiring is narrower than the interval between the plurality of openings,
    The display device with a built-in touch sensor according to claim 13.
  15.  前記各々の画素電極が単位画素を構成し、
     複数種類の前記単位画素の集合が画素を構成し、
     前記網目状配線の開口が、平面視で1又は複数の前記画素を含む、
     請求項13に記載のタッチセンサ内蔵表示装置。
    Each of the pixel electrodes constitutes a unit pixel,
    A set of unit pixels of a plurality of types constitutes a pixel,
    The opening of the mesh wiring includes one or a plurality of the pixels in a plan view.
    The display device with a built-in touch sensor according to claim 13.
  16.  前記複数の画素電極は、前記第1の方向と前記第2の方向とを対角方向として2次元的に配列し、
     前記第1接続線又は前記第2接続線は、前記第1の方向と前記第2の方向と交差する方向に延びる、
     請求項15に記載のタッチセンサ内蔵表示装置。

     
    The plurality of pixel electrodes are two-dimensionally arranged with the first direction and the second direction as diagonal directions,
    The first connection line or the second connection line extends in a direction intersecting the first direction and the second direction.
    The display device with a built-in touch sensor according to claim 15.

PCT/JP2017/040565 2017-01-25 2017-11-10 Touch sensor and display device with embedded touch sensor WO2018139009A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-011076 2017-01-25
JP2017011076A JP2018120397A (en) 2017-01-25 2017-01-25 Touch sensor and display incorporating touch sensor

Publications (1)

Publication Number Publication Date
WO2018139009A1 true WO2018139009A1 (en) 2018-08-02

Family

ID=62978216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040565 WO2018139009A1 (en) 2017-01-25 2017-11-10 Touch sensor and display device with embedded touch sensor

Country Status (2)

Country Link
JP (1) JP2018120397A (en)
WO (1) WO2018139009A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102409648B1 (en) 2017-12-14 2022-06-16 엘지디스플레이 주식회사 Touch display device and display panel
KR20200102036A (en) 2019-02-20 2020-08-31 삼성디스플레이 주식회사 Display device and touch sensor
KR20230128552A (en) * 2021-03-01 2023-09-05 알프스 알파인 가부시키가이샤 electrode member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3191207U (en) * 2013-03-30 2014-06-12 ナンチャン オー−フィルム オプティカル ディスプレイ テクノロジー カンパニー リミテッド Polarizing plate module and touch screen using polarizing plate module
JP2015153297A (en) * 2014-02-18 2015-08-24 Nltテクノロジー株式会社 Touch sensor substrate, image display device, and method for manufacturing touch sensor substrate
WO2016002583A1 (en) * 2014-07-02 2016-01-07 日本航空電子工業株式会社 Touch panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3191207U (en) * 2013-03-30 2014-06-12 ナンチャン オー−フィルム オプティカル ディスプレイ テクノロジー カンパニー リミテッド Polarizing plate module and touch screen using polarizing plate module
JP2015153297A (en) * 2014-02-18 2015-08-24 Nltテクノロジー株式会社 Touch sensor substrate, image display device, and method for manufacturing touch sensor substrate
WO2016002583A1 (en) * 2014-07-02 2016-01-07 日本航空電子工業株式会社 Touch panel

Also Published As

Publication number Publication date
JP2018120397A (en) 2018-08-02

Similar Documents

Publication Publication Date Title
JP6606432B2 (en) Display device and manufacturing method thereof
US10809837B2 (en) Display device with built-in touch sensor
US11621307B2 (en) Flexible organic light emitting display device including a connection structure disposed in a pad region
JP6535520B2 (en) Display device
CN110400823B (en) Organic light emitting display device having touch sensor
US10838565B2 (en) Display device, with touch sensor, to suppress disconnection of lead-out wiring
KR20190112136A (en) Touch control panel and manufacturing method thereof, touch control display screen
JP2018112859A (en) Display device
JP2018022322A (en) Display device
JP6625933B2 (en) Display device
KR101961527B1 (en) Display device
WO2018139009A1 (en) Touch sensor and display device with embedded touch sensor
US20190102005A1 (en) Display device with touch sensor and method of manufacturing display device with touch sensor
KR101961019B1 (en) Display device
WO2020061982A1 (en) Touch control structure and touch control display apparatus
US11630632B2 (en) Pixel arrangement of display device and tiled display including the same
WO2019171873A1 (en) Display device and production method for display device
JP2020119803A (en) Display device
JP2024030293A (en) Display device with built-in touch sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893697

Country of ref document: EP

Kind code of ref document: A1