WO2018138982A1 - Optical fiber for amplification - Google Patents

Optical fiber for amplification Download PDF

Info

Publication number
WO2018138982A1
WO2018138982A1 PCT/JP2017/037515 JP2017037515W WO2018138982A1 WO 2018138982 A1 WO2018138982 A1 WO 2018138982A1 JP 2017037515 W JP2017037515 W JP 2017037515W WO 2018138982 A1 WO2018138982 A1 WO 2018138982A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
core
mode
optical fiber
active element
Prior art date
Application number
PCT/JP2017/037515
Other languages
French (fr)
Japanese (ja)
Inventor
淑通 安間
竹永 勝宏
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2018138982A1 publication Critical patent/WO2018138982A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating

Definitions

  • the present invention relates to an amplification optical fiber capable of amplifying higher-order mode light than fundamental mode light.
  • optical communication using an optical fiber information is superimposed on light in the LP 01 mode (basic mode), and information communication is performed by superimposing information on light in an LP mode higher than the basic mode such as the LP 11 mode.
  • Multi-mode communication to perform is known.
  • optical communication it is known that the intensity of light propagating through an optical fiber is attenuated by long-distance transmission, and the intensity of the attenuated light is amplified using an optical fiber amplifier.
  • Non-Patent Document 1 describes an amplification optical fiber in which an active element is added to a wide range of a core and a clad including a waveguide region for fundamental mode light and higher-order mode light. According to this amplification optical fiber, it is said that fundamental mode light and higher mode light can be amplified equally.
  • higher-order mode light propagating through an optical fiber tends to have a larger loss than fundamental mode light.
  • the main cause of this is as follows.
  • the mode field diameter (MFD) of the higher mode light is larger than the mode field diameter of the fundamental mode, and the light intensity at the interface between the core and the clad is higher in the higher mode light than in the fundamental mode light. Since impurities such as hydroxyl groups tend to remain at the interface between the core and the clad, light tends to be lost at the interface. Therefore, higher-order mode light having a higher intensity than fundamental mode light at the interface causes a greater loss.
  • the light in the higher mode is amplified than the light in the fundamental mode.
  • the amplification optical fiber of Non-Patent Document 1 is used, the light in the fundamental mode and the light in the higher order mode are equally amplified.
  • an object of the present invention is to provide an amplification optical fiber capable of amplifying light of a higher mode than light of a fundamental mode.
  • the present invention has a core and a clad, and light of a predetermined wavelength used for communication propagates through the core in at least two LP modes and forms at least a part of a light waveguide region.
  • An amplification optical fiber to which an active element is added, focusing on the light of a specific higher-order mode propagating through the core, the normalized intensity of the LP 01 mode light in the radial direction and the specific high-order light The innermost position where the normalized intensity of the light of the next mode matches the specific inner position, and the outermost position where the standardized intensity of the light of the specific higher order mode is 0.0001 is specified as the outer position.
  • the average concentration of the active element from the specific inner position to the specific outer position is It is higher than the average concentration of the active element from the center point to the specific inner position, and the amplification factor of all higher-order mode light used for communication is larger than the amplification factor of light in the fundamental mode It is.
  • Non-Patent Document 1 an active element having a constant concentration is added to the light guiding region, and the fundamental mode light and the higher-order mode light are amplified with the same amplification factor.
  • the average of the average concentration of active elements from the specific inner position to the specific outer position is the basic mode.
  • the light intensity is higher than the average concentration average of the active elements from the center point of the core, which is larger than the light intensity of the higher mode, to the specific inner position. Therefore, the amplification factors of all the higher-order mode light propagating through the core can be made larger than the amplification factors of the fundamental mode light.
  • the higher order mode is preferably an LP 11 mode and an LP 21 mode.
  • the higher-order mode is limited to the above-mentioned mode, even higher-order mode light in the even mode does not enter, and higher-order mode light can be more easily amplified than in the fundamental-mode light.
  • the active element is not added from the center point of the core to the specific inner position in the LP 11 mode light propagating through the core.
  • the specific inner position in the LP 11 mode light is closer to the center point of the core than the specific inner position in any higher order mode light. Since the active element is not added to the region from the center point of the core to at least the specific inner position, the amplification factor of the higher mode light can be made larger than the amplification factor of the fundamental mode light.
  • the active element is not added from the center point of the core to the specific inner position in the highest order higher-order mode light used for communication propagating through the core.
  • the active element is not added to the core.
  • the amplification factor of the higher mode light can be made larger than the amplification factor of the fundamental mode light.
  • the active element is preferably added at a high concentration.
  • the active element is preferably added at a concentration higher than the average concentration of the active element from the center point of the core to the specific inner position when paying attention to LP 11 mode light propagating through the core.
  • the specific outer position when focusing on the light of the highest order higher order mode used for communication propagating through the core from the specific inner position when focusing on the LP 11 mode light propagating through the core.
  • the active element and the active element at a concentration higher than the average concentration of the active element up to the specific inner position when focusing on LP 11 mode light propagating through the core from the central point of the core It is preferable that an element is added.
  • the amplification factor of the higher-order mode light can be made larger than the amplification factor of the light in the fundamental mode.
  • a multi-core amplification optical fiber can be realized.
  • each core light propagates in two or more LP modes, and in the case of paying attention to any higher-order mode light propagating through the core, the average concentration of the active element from the specific inner position to the specific outer position is The higher than the average concentration of the active element from the center point of the core to the specific inner position, the amplification factors of all higher-order modes are larger than the amplification factors of the fundamental modes. Therefore, the amplification factors of all higher-order mode light propagating through the respective cores of the multi-core amplification optical fiber can be made larger than the amplification factors of the fundamental mode light.
  • an outer cladding that covers the cladding and has a refractive index lower than that of the cladding.
  • the outer periphery of the clad has a polygonal shape.
  • the active element may be erbium.
  • the C-band and L-band light used for optical communication can be efficiently amplified.
  • an optical fiber for amplification capable of amplifying higher-order mode light than fundamental mode light is provided.
  • FIG. 1 is a view showing a state of a cross section perpendicular to the longitudinal direction of an optical fiber according to a first embodiment of the present invention.
  • an amplification optical fiber 10 includes a core 11, a clad 12 that surrounds the outer peripheral surface of the core 11 without a gap, an outer clad 13 that covers the outer peripheral surface of the clad 12, and an outer clad 13 as a main component.
  • the diameter of the core 11 is, for example, 11 ⁇ m.
  • the outer diameter of the cladding 12 is, for example, 125 ⁇ m, and the outer diameter of the outer cladding 13 is, for example, 200 ⁇ m.
  • the amplification optical fiber 10 of the present embodiment amplifies light used for communication, and an active element is added to at least a part of a waveguide region of propagating light.
  • the amplification optical fiber 10 is a multimode optical fiber that propagates light including LP 11 mode higher-order mode light in addition to LP 01 mode light, which is the fundamental mode of light propagating through the core 11. . Accordingly, when the LP 01 mode light and the LP 11 mode light are incident on the core 11 of the amplification optical fiber 10, the light of each mode can propagate through the amplification optical fiber 10.
  • the predetermined wavelength is, for example, a C band band or an L band band.
  • the amplification optical fiber 10 is intended to amplify the light used for communication as described above. Therefore, even when high-order mode light not related to communication is excited, this higher-order mode is used. There is no need to consider the light.
  • FIG. 2 is a diagram illustrating the state of the core 11 of the amplification optical fiber 10 of FIG. 1 and the surroundings thereof. Specifically, FIG. 2A shows the core 11 and the cladding 12 in the region indicated by the dotted line in FIG. 1, FIG. 2B shows the refractive index distribution in the region shown in FIG. FIG. 2 (C) amplification optical fiber 10 of the LP 01 mode when normalized by LP 01 mode of light and LP 11 mode power the light when the propagating light of a predetermined wavelength of light and LP 11 modes FIG. 2D shows the light intensity distribution, and FIG. 2D shows the concentration distribution of the active element in the region shown in FIG.
  • the refractive index of the cladding 12 is set lower than that of the core 11.
  • the refractive index of the outer cladding 13 is set lower than the refractive index of the cladding 12.
  • the refractive index of the core 11 is substantially constant in the radial direction
  • the refractive index of the cladding 12 is also substantially constant in the radial direction.
  • the relative refractive index difference between the core 11 and the clad 12 is, for example, 0.6%.
  • the core 11 is made of, for example, quartz to which a dopant such as germanium that increases the refractive index is added
  • the cladding 12 is made of, for example, quartz that is not particularly added with a dopant that increases the refractive index.
  • the core 11 may be made of, for example, quartz to which a dopant that increases the refractive index is not particularly added
  • the cladding 12 may be made of, for example, quartz to which a dopant such as fluorine that lowers the refractive index is added.
  • the core 11 and the clad 12 are added with an active element as necessary, as will be described later.
  • the outer cladding 13 is made of, for example, an ultraviolet curable resin or quartz to which a dopant for lowering the refractive index is added.
  • the covering layer 14 is made of, for example, an ultraviolet curable resin different from the outer cladding 13.
  • the LP 11 mode light has an intensity distribution as shown in FIG.
  • the LP 01 mode light has the intensity distribution that is the strongest at the center point C of the core 11, and the LP 11 mode light has an intensity of 0 at the center point C of the core 11, and the center point C of the core 11.
  • the outer peripheral surface IF of the core 11 have a peak intensity. Therefore, at a specific position between the center point C of the core 11 and the outer peripheral surface IF of the core 11, the light intensity of the LP 11 mode matches the light intensity of the LP 01 mode. This position is defined as a specific inner position Ri.
  • the intensity of light in the LP 11 mode is greater than the intensity of light in the LP 01 mode on the outer peripheral side from the specific inner position Ri.
  • the amplification optical fiber 10 propagates so as to protrude from the outer peripheral surface IF of the core 11 to the cladding 12. Accordingly, the light waveguide region extends to a region adjacent to the core 11 in the clad 12, and the light that protrudes into the clad 12 is attenuated from the core 11 side toward the outer peripheral side of the clad 12 in the clad 12.
  • the LP 11 mode light has a larger mode field diameter than the LP 01 mode light, and the protrusion to the clad 12 is large. Therefore, on the outer peripheral surface IF of the core 11, the intensity of the LP 11 mode light is greater than the intensity of the LP 01 mode light.
  • the normalized intensity of the LP 11 mode light is 0.0001 at specific positions on the inner and outer peripheral surfaces of the clad 12. That is, the light intensity when the intensity distribution is normalized so that the integral value in the radial direction of the light intensity distribution of the LP 11 mode is 1 becomes 0.0001. This position is defined as a specific outer position Ro. In this way, when the normalized intensity of light becomes 0.0001, it does not affect the propagation and amplification of light. Therefore, there is no need to consider light whose normalized intensity is less than 0.0001.
  • the light intensity of the LP 01 mode is larger than the light intensity of the LP 11 mode, and from the specific inner position Ri to the specific outer position Ro.
  • the intensity of the LP 11 mode light is larger than the intensity of the LP 01 mode light. Therefore, on the outer peripheral surface IF of the core 11, the intensity of the LP 11 mode light is greater than the intensity of the LP 01 mode light.
  • no active element is added to the region from the center point C of the core 11 to the specific inner position Ri, and the specific inner position Ri.
  • the active element is added to the region from the specific outer position Ro.
  • This active element is an element that is brought into an excited state by excitation light.
  • erbium (Er) can be cited as the active element.
  • the active element to be added varies depending on the wavelength of the propagating light, and examples of other active elements include rare earth elements such as neodymium (Nd) and ytterbium (Yb).
  • bismuth (Bi) can be cited as an active element in addition to rare earth elements.
  • the light incident on the core 11 of the amplification optical fiber 10 and light having a wavelength for exciting the active element is incident on the cladding 12 is amplified as follows. . That is, the excitation light incident on the clad 12 propagates mainly through the clad 12, and the active element is excited when the excitation light passes through the region where the active element is added.
  • the excited active element causes stimulated emission by light having a predetermined wavelength propagating through the amplification optical fiber 10, and the light having the predetermined wavelength is amplified by the stimulated emission.
  • the active element is added to the region from the specific inner position Ri to the specific outer position Ro, and the active element is not added to the region from the center point C of the core 11 to the specific inner position Ri. It is amplified in the region from the inner position Ri to the specific outer position Ro, and is not amplified in the region from the center point C of the core 11 to the specific inner position Ri.
  • Region where light is amplified is an area intensity of light of the light LP 11 mode than the intensity of the large LP 01 mode, no light is amplified region, than the intensity of light of the LP 11 mode of the LP 01 mode This is a region where the intensity of light is high. Therefore, when compared with the amplification optical fiber in which the active element is uniformly added to the entire core, according to the amplification optical fiber 10 of the present embodiment, the LP 11 mode light is more efficient than the LP 01 mode light. Amplified well.
  • the amplification factor of the LP 11 mode light can be made larger than the amplification factor of the LP 01 mode light.
  • FIG. 3 is a diagram showing the optical fiber amplifier of the present embodiment.
  • the optical fiber amplifier 1 in the present embodiment includes an incident end 20 on which signal light is incident, an excitation light source 30 that emits excitation light, an optical combiner 40 on which signal light and excitation light are input,
  • the amplification optical fiber 10 of FIG. 1 into which signal light and pumping light emitted from the optical combiner 40 are input, and an emission end 50 from which the amplified signal light is emitted are mainly configured.
  • the incident end 20 is connected to, for example, an optical fiber that performs optical communication using at least LP 01 mode light and LP 11 mode light. Accordingly, light having a predetermined wavelength including light of LP 01 mode and light of LP 11 mode used for optical communication is incident from the incident end 20.
  • the predetermined wavelength is not particularly limited, but is, for example, a C band band or an L band band as described above.
  • the light incident from the incident end 20 is composed of a core and a clad covering the core, and propagates through the optical fiber 25 that propagates the light in at least the LP 01 mode and the LP 11 mode.
  • the excitation light source 30 is composed of a plurality of laser diodes 31.
  • the laser diode 31 is, for example, a Fabry-Perot type semiconductor laser made of a GaAs-based semiconductor and emits light having a center wavelength of 980 nm. To do.
  • Each laser diode 31 of the excitation light source 30 is connected to an optical fiber 35, and the excitation light emitted from the laser diode 31 propagates through the optical fiber 35 as multimode light.
  • the optical combiner 40 to which the optical fiber 35 and the optical fiber 25 are connected is configured, for example, by melting and extending a portion where the multimode optical fiber is disposed around the optical fiber 25 as a center.
  • the core of the optical fiber 25 and the core 11 of the amplification optical fiber 10 are optically coupled, and the core of the optical fiber 35 and the cladding 12 of the amplification optical fiber 10 are optically coupled.
  • signal light incident from the incident end 20 is emitted from the optical fiber 25.
  • the wavelength of the signal light is, for example, C band or L band, and includes LP 01 mode light and LP 11 mode light. Then, the signal light propagating through the optical fiber 25 enters the optical combiner 40.
  • excitation light for exciting the active element added to the core 11 of the amplification optical fiber 10 is emitted from the excitation light source 30.
  • the wavelength at this time is, for example, 980 nm as described above. Then, the excitation light emitted from the excitation light source 30 propagates through the optical fiber 35 and enters the optical combiner 40.
  • the signal light incident on the core 11 of the amplification optical fiber 10 from the optical combiner 40 propagates through the core 11, and the excitation light incident on the cladding 12 of the amplification optical fiber 10 propagates mainly through the cladding 12.
  • the active element added as described above is in an excited state. Then, the excited active element causes stimulated emission by the signal light, and the signal light is amplified. At this time, the signal light is amplified in the region from the specific inner position Ri to the specific outer position Ro as described above for the amplification optical fiber 10, and in the region from the center point C of the core 11 to the specific inner position Ri. Not amplified. Accordingly, the signal light obtained by amplifying the LP 11 mode light with a higher amplification factor than the LP 01 mode light is emitted from the amplification optical fiber 10, and the signal light is emitted from the emission end 50.
  • the optical fiber amplifier 1 of the present embodiment it is possible to amplify the LP 11 mode light with a higher amplification factor than the LP 01 mode light. Accordingly, if the incident end 20 is a LP 01 mode of the optical power of the optical power and the LP 11 mode is the same in the light incident in the light emitted from the optical fiber amplifier 1 of LP 11 mode the power of the light LP It can be made larger than the light power of the 01 mode.
  • FIG. 4 is a view showing the concentration distribution of the active element in the amplification optical fiber 10 of the present modification as in FIG. 2D.
  • the active element is not added to the core 11, and the active element is added to the region from the outer peripheral surface IF of the core 11 to the specific outer position Ro.
  • the active element is not added to the region from the center point C to the specific inner position Ri as described above, and the active element is not added to the region from the specific inner position Ri to the specific outer position Ro.
  • the amplification factor of light in the LP 11 mode can be made larger than the amplification factor of light in the LP 01 mode.
  • the amplification optical fiber 10 of the present embodiment differs from the amplification optical fiber 10 of the first embodiment in that LP 21 mode light used for communication propagates.
  • FIG. 5 is a view showing the light intensity distribution in the case where the LP 21 mode light propagates through the amplification optical fiber 10 of FIG. 1, as in FIG.
  • the intensity distribution of the LP 01 mode light and the LP 11 mode light is shown in FIG. Same as C). Therefore, in the present embodiment, the position at which the intensity of the LP 11 mode light matches the intensity of the LP 01 mode light is defined as the specific inner position Ri 1, and the normalized intensity of the LP 11 mode light is 0.0001.
  • the light intensity of the LP 21 mode is 0 at the center point C of the core 11, and there are two positions where the intensity peaks between the center point C of the core 11 and the outer peripheral surface IF of the core 11. To do. Therefore, at a specific position between the center point C of the core 11 and the outer peripheral surface IF of the core 11, there are a plurality of positions where the light intensity of the LP 21 mode coincides with the light intensity of the LP 01 mode. Therefore, the innermost position among the positions where the light intensity of the LP 21 mode matches the light intensity of the LP 01 mode is set as the specific inner position Ri 2 .
  • the LP 21 mode light has a larger mode field diameter than the LP 01 mode light and the LP 11 mode light, and the protrusion to the clad 12 is large. Therefore, at the interface between the core 11 and the cladding 12, the intensity of the LP 21 mode light is larger than the intensity of the LP 01 mode light and the LP 11 mode light. The position of this interface coincides with the position of the outer peripheral surface IF of the core 11. Further, the standardized intensity of the LP 21 mode light is 0.0001 at a specific position on the outer peripheral surface side of the clad 12 with respect to the specific outer position Ro 1 described above. This position is the specific outer position Ro 2.
  • FIG. 6 is a view showing the concentration distribution of the active element in the amplification optical fiber 10 of the present embodiment in the same manner as FIG.
  • an active element is added to a region from the specific inner position Ri 2 to the specific outer position Ro 1, and the specific inner position from the center point C of the core 11. No active element is added to the region up to Ri 2 .
  • an active element is added between the specific inner position Ri 1 and the specific inner position Ri 2 that are part of a region where the intensity of the LP 11 mode light is greater than the intensity of the LP 01 mode light. Absent.
  • the average concentration of the active element from the specific inner position Ri 1 to the specific outer position Ro 1 of the LP 11 mode light is the center point of the core. It is higher than the average concentration of the active element from C to the specific inner position Ri 1 .
  • an active element is added between the specific outer position Ro 1 and the specific outer position Ro 2 that are part of a region where the light intensity of the LP 21 mode is larger than the light intensity of the LP 01 mode. It has not been.
  • the average concentration of the active element from the specific inner position Ri 2 to the specific outer position Ro 2 of the LP 21 mode light is the center point of the core. higher than the average concentration of the active elements in the C to a certain inside position Ri 2.
  • the amplification factor of the LP 11 mode light and the LP 21 mode light can be made larger than the amplification factor of the LP 01 mode light.
  • FIG. 7 is a view showing the concentration distribution of the active element in the amplification optical fiber 10 of the present modification as in FIG. 2D.
  • the active element is added to the region from the specific inner position Ri 2 to the specific outer position Ro 1
  • An active element is added to the region up to Ro 2 .
  • the average concentration of the active elements in the specified position inside Ri 1 of LP 11 mode of light to a certain position outside Ro 1 is higher than the average concentration of the active element in the center point C of the core to a certain inside position Ri 1.
  • the average concentration of the active elements in the specified position inside Ri 2 of LP 21 mode of light to a certain position outside Ro 2 are identified inside position Ri from the central point C of the core It is higher than the average concentration of active elements up to 2 .
  • the amplification factor of the LP 21 mode light can be further increased.
  • FIG. 8 is a view showing the concentration distribution of the active element in the amplification optical fiber 10 of the present modification as in FIG. 2D.
  • the active element is added to the region from the specific inner position Ri 2 to the specific outer position Ro 1
  • An active element is added to the region up to Ro 1 .
  • the average concentration of the active elements in the specified position inside Ri 1 of LP 11 mode of light to a certain position outside Ro 1 is higher than the average concentration of the active element in the center point C of the core to a certain inside position Ri 1.
  • the average concentration of the active elements in the specified position inside Ri 2 of LP 21 mode of light to a certain position outside Ro 2 are identified inside position Ri from the central point C of the core It is higher than the average concentration of active elements up to 2 .
  • the amplification factor of the LP 11 mode light can be further increased.
  • FIG. 9 is a view showing the concentration distribution of the active element in the amplification optical fiber 10 of the present modification as in FIG. 2D.
  • the active element is added to the region from the specific inner position Ri 2 to the specific outer position Ro 1
  • An active element is added to the region up to Ro 2 .
  • the average concentration of the active elements in the specified position inside Ri 1 of LP 11 mode of light to a certain position outside Ro 1 is higher than the average concentration of the active element in the center point C of the core to a certain inside position Ri 1.
  • the average concentration of the active elements in the specified position inside Ri 2 of LP 21 mode of light to a certain position outside Ro 2 are identified inside position Ri from the central point C of the core It is higher than the average concentration of active elements up to 2 .
  • the LP 11 mode light amplification factor and the LP 21 mode light amplification factor can be further increased.
  • FIG. 10 is a view showing the concentration distribution of the active element in the amplification optical fiber 10 of the present modification as in FIG. 2D.
  • the active element is not added to the core 11, the active element is added to an area from the outer peripheral surface IF of the core 11 to a certain position outside Ro 2.
  • the average concentration of the active elements in the specified position inside Ri 1 of LP 11 mode of light to a certain position outside Ro 1 is higher than the average concentration of the active element in the center point C of the core to a certain inside position Ri 1.
  • the average concentration of the active elements in the specified position inside Ri 2 of LP 21 mode of light to a certain position outside Ro 2 are identified inside position Ri from the central point C of the core It is higher than the average concentration of active elements up to 2 .
  • the active element is not added to the region from the center point C to the specific inner position Ri 2 as described above, and the region from the specific inner position Ri 2 to the specific outer position Ro 1 is not added.
  • the amplification factor of light in the LP 11 mode and the amplification factor of light in the LP 21 mode can be made larger than the amplification factor of light in the LP 01 mode.
  • LP 01 mode light, LP 11 mode light, and LP 21 mode light are input to the incident end 20.
  • the LP 11 mode light and the LP 21 mode light are amplified with a higher amplification factor than the LP 01 mode light and are emitted from the emission end 50.
  • an active element having a low average concentration may be added to at least a part of the region from the center point C of the core 11 to the specific inner position Ri.
  • the concentration distribution in which the average concentration of the active element in the region from the specific inner position Ri to the specific outer position Ro is higher than the average concentration of the active element from the center point C of the core 11 to the specific inner position Ri is satisfied.
  • the amplification factor of the LP 11 mode light can be made larger than the amplification factor of the LP 01 mode light.
  • the active element is not added to the core 11, and the active element is added to the region from the outer peripheral surface IF of the core 11 to the specific outer position Ro.
  • the above-described concentration distribution is satisfied in which the average concentration of the active element in the region from the specific inner position Ri to the specific outer position Ro is higher than the average concentration of the active element from the center point C of the core 11 to the specific inner position Ri.
  • an active element having a low average concentration may be added to at least a partial region of the core 11.
  • a low concentration active element is added to at least a part of the region from the center point C of the core 11 to the specific inner position Ri 1. May be.
  • the following density distribution needs to be satisfied in the second embodiment and the first to third modifications of the second embodiment.
  • LP 21 mode the highest order higher-order mode
  • the core is moved from the specific inner position Ri 2 when focusing on the light of the highest order higher order mode (LP 21 mode) used for communication propagating through the core 11. Focusing on LP 11 mode light propagating through the core from the center point of the core 11 in all regions up to the specific outer position Ro 2 when focusing on the light of the highest order higher order mode used for propagating communication In this case, the concentration distribution in which the active element is added at a concentration higher than the average concentration of the active element up to the specific inner position Ri 1 is satisfied.
  • a particular inner position Ri 1 where definitive if attention is paid to the LP 11 mode propagating through the core 11 of light, if attention is paid to the LP 11 mode propagating through the core 11 of light From the average concentration of the active element up to the specific inner position Ri 1 when focusing on the LP 11 mode light propagating through the core 11 from the center point C of the core 11 in all regions between the specific outer position Ro 1 The concentration distribution in which the active element is added at a high concentration is satisfied.
  • the highest order higher order used for communication propagating through the core 11 from the specific inner position Ri 1 when focusing on the LP 11 mode light propagating through the core 11.
  • Identification when focusing on LP 11 mode light propagating from the center point C of the core 11 to the core 11 in all regions up to the specific outer position Ro 2 when focusing on mode (LP 21 mode) light The concentration distribution in which the active element is added at a concentration higher than the average concentration of the active element up to the inner position Ri 1 is satisfied.
  • a low concentration active element may be added to at least a partial region of the core 11. Also, part of the region to a specific position outside Ro from certain inside position Ri of the first embodiment, a part of the region from a particular inner position Ri 2 to a certain position outside Ro 1 of the second embodiment, the second embodiment A part of the region from the specific inner position Ri 2 to the specific outer position Ro 2 in the first modified example, and one region from the specific inner position Ri 1 to the specific outer position Ro 1 in the second modified example of the second embodiment. In some regions from the specific inner position Ri 1 to the specific outer position Ro 2 in the third region of the second modification of the second embodiment, no active element is added or a low concentration of the active element is added. May be.
  • the average concentration of the active element from the specific inner position to the specific outer position is the center point C of the core 11.
  • the concentration distribution that is higher than the average concentration of the active element from the position to the specific inner position is satisfied, and the amplification factors of all higher-order modes used for communication are higher than the amplification factors of the light in the fundamental mode (LP 01 mode). Is also enlarged.
  • FIG. 11 is a diagram showing another example of the amplification optical fiber.
  • the outer periphery of the cladding 12 is circular.
  • the outer periphery of the cladding 12 is preferably polygonal.
  • the cross-sectional shape of the clad 12 is circular, the excitation light continues to be reflected at a certain angle at the interface between the clad 12 and the outer clad 13, and the skew light propagating through the clad 12 without the excitation light entering the core 11 is generated. It is likely to occur. Therefore, as in the present example, the clad 12 is polygonal so that the skew light can be suppressed, and the active element added to the core 11 can be excited efficiently.
  • the core 11 demonstrated one example, ie, the single core amplification optical fiber.
  • the core 11 may be plural.
  • FIG. 12 is a diagram illustrating a multi-core amplification optical fiber.
  • the core 11 is disposed at the center of the cladding 12, and a plurality of cores 11 are disposed around the core 11. That is, the core 11 is arranged 1-6.
  • this is an example in which a plurality of cores 11 are provided, and the arrangement of the plurality of cores 11 is not particularly limited.
  • at least the LP 01 mode light and the LP 11 mode light propagate through each core 11.
  • the concentration distribution of the active element is the same as that of the first embodiment and the modification thereof in each core 11 and the cladding 12 in the vicinity of the core 11.
  • LP 21 mode light may further propagate through each core 11.
  • the concentration distribution of the active element is the same as that in the second embodiment or the clad 12 in the vicinity of the core 11. This is the same as the modification.
  • pump light is incident on the clad 12 and signal light similar to that in the above embodiment is incident on each core 11.
  • FIG. 13 is a diagram showing another example of an optical fiber for multicore amplification. As shown in FIG. 13, it is preferable that the outer periphery of the cladding 12 is also a polygon in the multi-core amplification optical fiber. In this case, similarly to the description in FIG. 11, skew light can be suppressed, and the active element added to the core 11 can be excited efficiently.
  • the amplification optical fiber is a double-clad fiber having an outer cladding.
  • the amplification optical fiber may not be a double clad fiber. In this case, a structure in which excitation light is incident on the core 11 may be used.
  • the present invention is not limited to this, and higher-order mode light may be amplified by the amplification optical fiber.
  • the average concentration of the active element from the specific inner position to the specific outer position is The concentration distribution that is higher than the average concentration of the active element from the center point C to the specific inner position is satisfied, and the amplification factors of all the higher-order mode light used for communication are fundamental mode (LP 01 mode) light. It is made larger than the amplification factor.
  • LP 01 mode fundamental mode
  • light to be amplified is LP 01 mode light and LP 11 mode light used for communication, LP 01 mode light used for optical communication, LP 11 mode.
  • light in the LP 21 mode are preferable because even mode higher order light, such as the LP 02 mode, is not subject to amplification.
  • Example 1 The same amplification optical fiber as the amplification optical fiber shown in FIG. 2 was measured. Therefore, in this amplification optical fiber, the refractive index distribution of the core is constant in the radial direction, and the normalized intensity of the LP 11 mode light is larger than the normalized intensity of the LP 01 mode light only. An active element is added.
  • the theoretical cutoff wavelength ⁇ c of the LP 21 mode light is 1.40 ⁇ m and 1.50 ⁇ m
  • the ratio ⁇ is independent of the effective core area A eff of the LP 01 mode light, regardless of whether the theoretical cutoff wavelength ⁇ c of the LP 21 mode light is 1.40 ⁇ m or 1.50 ⁇ m.
  • 11 / ⁇ 01 was approximately 1.7. Therefore, in the amplification optical fiber 10 shown in FIG. 2, the amplification factor of the LP 11 mode light is larger than the amplification factor of the LP 01 mode light. Therefore, according to the amplification optical fiber 10 shown in FIG. 2, it was shown that the amplification factor of the LP 11 mode light can be made larger than the amplification factor of the LP 01 mode light.
  • Example 2 The same amplification optical fiber as the amplification optical fiber shown in FIG. 4 was measured. Therefore, in this amplification optical fiber, the refractive index distribution of the core is constant in the radial direction, and the active element is added only to the cladding.
  • this amplification optical fiber in the same manner as in the first embodiment, when the theoretical cutoff wavelength ⁇ c of the LP 21 mode light is 1.40 ⁇ m and 1.50 ⁇ m, the LP 01 mode light in the light of 1.55 ⁇ m wavelength is obtained.
  • the ratio ⁇ is independent of the effective core area A eff of the LP 01 mode light regardless of whether the theoretical cutoff wavelength ⁇ c of the LP 21 mode light is 1.40 ⁇ m or 1.50 ⁇ m.
  • 11 / ⁇ 01 was approximately 3. Therefore, in the example shown in FIG. 4, the amplification factor of the light in the LP 11 mode is larger than the amplification factor of the light in the LP 01 mode, compared to the example shown in FIG. Therefore, according to the amplification optical fiber 10 shown in FIG. 4, it is shown that the amplification factor of the LP 11 mode light can be made larger than the amplification factor of the LP 01 mode light.
  • an optical fiber for amplification capable of amplifying higher-order mode light than fundamental mode light is provided, and is expected to be used in the field of optical communication.

Abstract

An optical fiber (10) for amplification, in which, regarding light of a specific higher-order mode propagating through a core (11), the average concentration of an active element from the specific inside position (Ri) to the specific outside position (Ro) is higher than the average concentration of the active element from the center point (C) of a core (11) to the specific inside position (Ri) for light of any higher-order mode that is used for communication and that propagates through the core (11), where the specific inside position (Ri) is the innermost position at which the normalized intensity of light of the LP01 mode and the normalized intensity of light of the specific higher-order mode match in the radial direction, and the specific outside position (Ro) is the outermost position at which the normalized intensity of light of the specific higher-order mode is 0.0001, and the amplification factor for light of all higher-order modes used for communication is greater than the amplification factor for light of the basic mode.

Description

増幅用光ファイバAmplifying optical fiber
 本発明は、基本モードの光よりも高次モードの光を増幅し得る増幅用光ファイバに関する。 The present invention relates to an amplification optical fiber capable of amplifying higher-order mode light than fundamental mode light.
 光ファイバを用いた光通信において、LP01モード(基本モード)の光に情報を重畳させると共に、LP11モード等の基本モードよりも高次のLPモードの光に情報を重畳させて情報通信を行う多モード通信が知られている。光通信においては、長距離の伝送により光ファイバを伝搬する光の強度が減衰することが知られており、光ファイバ増幅器を用いて、減衰した光の強度を増幅することが行われている。 In optical communication using an optical fiber, information is superimposed on light in the LP 01 mode (basic mode), and information communication is performed by superimposing information on light in an LP mode higher than the basic mode such as the LP 11 mode. Multi-mode communication to perform is known. In optical communication, it is known that the intensity of light propagating through an optical fiber is attenuated by long-distance transmission, and the intensity of the attenuated light is amplified using an optical fiber amplifier.
 光ファイバ増幅器には、希土類元素等の活性元素が添加された増幅用光ファイバが用いられる。下記非特許文献1には、基本モードの光及び高次モードの光の導波領域を含むコア及びクラッドの広い範囲に活性元素が添加された増幅用光ファイバが記載されている。この増幅用光ファイバによれば、基本モードの光及び高次モードの光を等しく増幅し得るとされる。 For the optical fiber amplifier, an amplification optical fiber to which an active element such as a rare earth element is added is used. Non-Patent Document 1 below describes an amplification optical fiber in which an active element is added to a wide range of a core and a clad including a waveguide region for fundamental mode light and higher-order mode light. According to this amplification optical fiber, it is said that fundamental mode light and higher mode light can be amplified equally.
 ところで、光ファイバを伝搬する高次モードの光は、基本モードの光よりも損失が大きい傾向にある。この主な原因は、次のとおりである。高次モードの光のモードフィールド径(MFD)は基本モードのモードフィールド径よりも大きく、コアとクラッドとの界面における光の強度は基本モードの光よりも高次モードの光の方が大きい。このコアとクラッドとの界面には水酸基等の不純物が残留し易い傾向にあるため、当該界面では光が損失し易い。従って、界面において基本モードの光よりも強度が大きい高次モードの光の方が大きな損失となるのである。 By the way, higher-order mode light propagating through an optical fiber tends to have a larger loss than fundamental mode light. The main cause of this is as follows. The mode field diameter (MFD) of the higher mode light is larger than the mode field diameter of the fundamental mode, and the light intensity at the interface between the core and the clad is higher in the higher mode light than in the fundamental mode light. Since impurities such as hydroxyl groups tend to remain at the interface between the core and the clad, light tends to be lost at the interface. Therefore, higher-order mode light having a higher intensity than fundamental mode light at the interface causes a greater loss.
 このため、光ファイバ増幅器では、基本モードの光よりも高次モードの光が増幅されることが好ましい。しかし、上記のように、上記非特許文献1の増幅用光ファイバが用いられたとしても、基本モードの光と高次モードの光とが等しく増幅される。 For this reason, in the optical fiber amplifier, it is preferable that the light in the higher mode is amplified than the light in the fundamental mode. However, as described above, even if the amplification optical fiber of Non-Patent Document 1 is used, the light in the fundamental mode and the light in the higher order mode are equally amplified.
 そこで、本発明は、基本モードの光よりも高次モードの光を増幅し得る増幅用光ファイバを提供しようとすることを目的とする。 Therefore, an object of the present invention is to provide an amplification optical fiber capable of amplifying light of a higher mode than light of a fundamental mode.
 上記課題を解決するため、本発明は、コア及びクラッドを有し、通信に用いられる所定波長の光が前記コアを少なくとも2以上のLPモードで伝搬し、光の導波領域の少なくとも一部に活性元素が添加される増幅用光ファイバであって、前記コアを伝搬する特定の高次モードの光に着目して、径方向におけるLP01モードの光の規格化された強度と当該特定の高次モードの光の規格化された強度とが一致する最も内側の位置を特定内側位置とし、当該特定の高次モードの光の規格された強度が0.0001となる最も外側の位置を特定外側位置とする場合に、前記コアを伝搬する通信に用いられるどの高次モードの光に着目する場合においても、前記特定内側位置から前記特定外側位置までにおける前記活性元素の平均濃度が、前記コアの中心点から前記特定内側位置までにおける前記活性元素の平均濃度よりも高く、通信に用いられる全ての高次モードの光の増幅率が基本モードの光の増幅率よりも大きいことを特徴とするものである。 In order to solve the above-mentioned problems, the present invention has a core and a clad, and light of a predetermined wavelength used for communication propagates through the core in at least two LP modes and forms at least a part of a light waveguide region. An amplification optical fiber to which an active element is added, focusing on the light of a specific higher-order mode propagating through the core, the normalized intensity of the LP 01 mode light in the radial direction and the specific high-order light The innermost position where the normalized intensity of the light of the next mode matches the specific inner position, and the outermost position where the standardized intensity of the light of the specific higher order mode is 0.0001 is specified as the outer position. In the case of focusing on the light of any higher-order mode used for communication propagating through the core, the average concentration of the active element from the specific inner position to the specific outer position is It is higher than the average concentration of the active element from the center point to the specific inner position, and the amplification factor of all higher-order mode light used for communication is larger than the amplification factor of light in the fundamental mode It is.
 上記非特許文献1では、光の導波領域に一定の濃度の活性元素が添加されており、基本モードの光と高次モードの光とが同じ増幅率で増幅される。これに対して、上記発明では、通信に用いられる所定波長の光のそれぞれの高次モードに着目する場合に、特定内側位置から特定外側位置までの活性元素の平均濃度の平均が、基本モードの光の強度が高次モードの光の強度よりも大きなコアの中心点から特定内側位置までの活性元素の平均濃度平均よりも高い。従って、コアを伝搬する全ての高次モードの光の増幅率を基本モードの光の増幅率よりも大きくし得る。 In Non-Patent Document 1, an active element having a constant concentration is added to the light guiding region, and the fundamental mode light and the higher-order mode light are amplified with the same amplification factor. On the other hand, in the above invention, when focusing on each higher-order mode of light of a predetermined wavelength used for communication, the average of the average concentration of active elements from the specific inner position to the specific outer position is the basic mode. The light intensity is higher than the average concentration average of the active elements from the center point of the core, which is larger than the light intensity of the higher mode, to the specific inner position. Therefore, the amplification factors of all the higher-order mode light propagating through the core can be made larger than the amplification factors of the fundamental mode light.
 また、前記高次モードは、LP11モード、及び、LP21モードとされることが好ましい。 Further, the higher order mode is preferably an LP 11 mode and an LP 21 mode.
 高次モードが、上記モードに限定されることで、偶モードの高次モードの光が入ることが無く、基本モードの光よりも高次モードの光をより増幅し易くすることができる。 Since the higher-order mode is limited to the above-mentioned mode, even higher-order mode light in the even mode does not enter, and higher-order mode light can be more easily amplified than in the fundamental-mode light.
 前記コアの前記中心点から前記コアを伝搬するLP11モードの光における前記特定内側位置までには、前記活性元素が添加されないことが好ましい。 It is preferable that the active element is not added from the center point of the core to the specific inner position in the LP 11 mode light propagating through the core.
 LP11モードの光における特定内側位置は、どの高次モードの光における特定内側位置よりも最もコアの中心点に近い。コアの中心点から少なくともこの特定内側位置までの領域に活性元素が添加されないことにより、基本モードの光の増幅率よりも高次モードの光の増幅率をより大きくすることができる。 The specific inner position in the LP 11 mode light is closer to the center point of the core than the specific inner position in any higher order mode light. Since the active element is not added to the region from the center point of the core to at least the specific inner position, the amplification factor of the higher mode light can be made larger than the amplification factor of the fundamental mode light.
 さらに、前記コアの前記中心点から前記コアを伝搬する通信に用いられる最高次の高次モードの光における前記特定内側位置までには、前記活性元素が添加されないことが好ましい。 Furthermore, it is preferable that the active element is not added from the center point of the core to the specific inner position in the highest order higher-order mode light used for communication propagating through the core.
 このように活性元素が添加されない領域が設けられることで、基本モードの光の増幅率よりも高次モードの光の増幅率を更に大きくすることができる。 Thus, by providing a region to which no active element is added, it is possible to further increase the amplification factor of the light in the higher mode than the amplification factor of the light in the fundamental mode.
 またさらに、前記コアには前記活性元素が添加されないことが好ましい。 Furthermore, it is preferable that the active element is not added to the core.
 コアに活性元素が添加されないことで、基本モードの光の増幅率よりも高次モードの光の増幅率をより一層大きくすることができる。 Since the active element is not added to the core, the amplification factor of the higher mode light can be made larger than the amplification factor of the fundamental mode light.
 また、前記コアを伝搬する通信に用いられる最高次の高次モードの光に着目する場合における前記特定内側位置から、前記コアを伝搬するLP11モードの光に着目する場合おける前記特定外側位置までの間の全ての領域において、前記コアの前記中心点から前記コアを伝搬するLP11モードの光に着目する場合における前記特定内側位置までの前記活性元素の平均濃度よりも高い濃度で前記活性元素が添加されることが好ましい。 Also, from the specific inner position when focusing on the light of the highest order higher order mode used for communication propagating through the core to the specific outer position when focusing on the LP 11 mode light propagating through the core. In all regions between the active element and the active element at a concentration higher than the average concentration of the active element up to the specific inner position when focusing on the LP 11 mode light propagating through the core from the central point of the core Is preferably added.
 この場合、前記コアを伝搬する通信に用いられる最高次の高次モードの光に着目する場合における前記特定内側位置から、前記コアを伝搬する通信に用いられる最高次の高次モードの光に着目する場合における前記特定外側位置までの間の全ての領域において、前記コアの中心点から前記コアを伝搬するLP11モードの光に着目する場合における前記特定内側位置までの前記活性元素の平均濃度よりも高い濃度で前記活性元素が添加されることが好ましい。 In this case, pay attention to the light of the highest order higher order mode used for communication propagating through the core from the specific inner position when focusing on the light of the highest order higher order mode used for communication propagating through the core. From the average concentration of the active element to the specific inner position in the case where attention is paid to the light of the LP 11 mode propagating through the core from the central point of the core in all regions between the specific outer position and the specific outer position. The active element is preferably added at a high concentration.
 また、前記コアを伝搬するLP11モードの光に着目する場合おける前記特定内側位置から、前記コアを伝搬するLP11モードの光に着目する場合おける前記特定外側位置までの間の全ての領域において、前記コアの前記中心点から前記コアを伝搬するLP11モードの光に着目する場合における前記特定内側位置までの前記活性元素の平均濃度よりも高い濃度で前記活性元素が添加されることが好ましい。 Further, in all of the region between the specific inner position definitive if focusing on light LP 11 mode propagating through the core, until the specific outer position definitive if focusing on light LP 11 mode propagating through the core The active element is preferably added at a concentration higher than the average concentration of the active element from the center point of the core to the specific inner position when paying attention to LP 11 mode light propagating through the core. .
 この場合、前記コアを伝搬するLP11モードの光に着目する場合おける前記特定内側位置から、前記コアを伝搬する通信に用いられる最高次の高次モードの光に着目する場合における前記特定外側位置までの間の全ての領域において、前記コアの前記中心点から前記コアを伝搬するLP11モードの光に着目する場合における前記特定内側位置までの前記活性元素の平均濃度よりも高い濃度で前記活性元素が添加されることが好ましい。 In this case, the specific outer position when focusing on the light of the highest order higher order mode used for communication propagating through the core from the specific inner position when focusing on the LP 11 mode light propagating through the core. In all regions between the active element and the active element at a concentration higher than the average concentration of the active element up to the specific inner position when focusing on LP 11 mode light propagating through the core from the central point of the core It is preferable that an element is added.
 上記のように、コアの中心点からコアを伝搬するLP11モードの光に着目する場合における特定内側位置までにおける活性元素の平均濃度よりも、高い濃度で活性元素が添加される領域が規定されることで、基本モードの光の増幅率よりも高次モードの光の増幅率をより大きくすることができる。 As described above, a region where the active element is added at a higher concentration than the average concentration of the active element up to a specific inner position when focusing on the LP 11 mode light propagating through the core from the center point of the core is defined. Thus, the amplification factor of the higher-order mode light can be made larger than the amplification factor of the light in the fundamental mode.
 また、前記コアを複数備えることが好ましい。 Moreover, it is preferable to provide a plurality of the cores.
 この場合、マルチコアの増幅用光ファイバを実現することができる。そして、それぞれのコアにおいて、光が2以上のLPモードで伝搬し、コアを伝搬するどの高次モードの光に着目する場合においても、特定内側位置から特定外側位置までにおける活性元素の平均濃度が、コアの中心点から特定内側位置までにおける活性元素の平均濃度よりも高く、全ての高次モードの光の増幅率が基本モードの光の増幅率よりも大きい。従って、マルチコアの増幅用光ファイバのそれぞれのコアを伝搬する全ての高次モードの光の増幅率が基本モードの光の増幅率よりも大きくすることができる。 In this case, a multi-core amplification optical fiber can be realized. In each core, light propagates in two or more LP modes, and in the case of paying attention to any higher-order mode light propagating through the core, the average concentration of the active element from the specific inner position to the specific outer position is The higher than the average concentration of the active element from the center point of the core to the specific inner position, the amplification factors of all higher-order modes are larger than the amplification factors of the fundamental modes. Therefore, the amplification factors of all higher-order mode light propagating through the respective cores of the multi-core amplification optical fiber can be made larger than the amplification factors of the fundamental mode light.
 また、前記クラッドを被覆し前記クラッドよりも屈折率が低い外側クラッドを更に備えることが好ましい。 Further, it is preferable to further include an outer cladding that covers the cladding and has a refractive index lower than that of the cladding.
 このようなダブルクラッド構造により、励起光がクラッドを伝搬するクラッド励起を採用することができ、励起光がコアを伝搬するコア励起よりも、強度のより大きな励起光を入射させることができる。従って、上記の基本モードの光及び高次モードの光の増幅率を大きくすることができる。 With such a double clad structure, it is possible to employ clad pumping in which pumping light propagates through the clad, and it is possible to enter pumping light having a higher intensity than core pumping in which pumping light propagates through the core. Therefore, it is possible to increase the amplification factor of the fundamental mode light and the higher-order mode light.
 この場合、前記クラッドの外周の形状は多角形とされることが好ましい。 In this case, it is preferable that the outer periphery of the clad has a polygonal shape.
 ダブルクラッド構造の場合、クラッドの断面形状が円形の場合に、励起光がクラッドと外側クラッドとの界面において一定の角度で反射し続け、励起光がコアに入射せずにクラッドを伝搬するスキュー光が生じ易い。そこで、上記のようにクラッドが多角形とされることで、スキュー光を抑制することができ、コアに添加された活性元素を効率良く励起することができる。 In the case of a double clad structure, when the cross-sectional shape of the clad is circular, the excitation light continues to be reflected at a constant angle at the interface between the clad and the outer clad, and the skew light propagates through the clad without the excitation light entering the core. Is likely to occur. Therefore, by making the clad polygonal as described above, skew light can be suppressed, and the active element added to the core can be excited efficiently.
 また、前記活性元素がエルビウムとされても良い。 Further, the active element may be erbium.
 この場合、光通信に用いられる、Cバンド帯、Lバンド帯の光を効率良く増幅することができる。 In this case, the C-band and L-band light used for optical communication can be efficiently amplified.
 以上のように、本発明によれば、基本モードの光よりも高次モードの光を増幅し得る増幅用光ファイバが提供される。 As described above, according to the present invention, an optical fiber for amplification capable of amplifying higher-order mode light than fundamental mode light is provided.
本発明の第1実施形態に係る増幅用光ファイバの長手方向に垂直な断面の様子を示す図である。It is a figure which shows the mode of a cross section perpendicular | vertical to the longitudinal direction of the optical fiber for amplification which concerns on 1st Embodiment of this invention. 図1の増幅用光ファイバの屈折率、光の強度、活性元素の分布の様子を示す図である。It is a figure which shows the mode of the refractive index of the optical fiber for amplification of FIG. 1, the intensity | strength of light, and distribution of an active element. 図1の増幅用光ファイバを用いた光ファイバ増幅器を示す図である。It is a figure which shows the optical fiber amplifier using the optical fiber for amplification of FIG. 第1実施形態の変形例における増幅用光ファイバの活性元素の濃度分布を図2(D)と同様に示す図である。It is a figure which shows the density | concentration distribution of the active element of the optical fiber for amplification in the modification of 1st Embodiment similarly to FIG.2 (D). 図1の増幅用光ファイバ10にLP21モードの光が伝搬する場合における光の強度分布を図2(C)と同様に示す図である。Shows similar to FIG. 2 (C) the intensity distribution of light in the case of the amplification optical fiber 10 in FIG. 1 is light LP 21 mode propagates. 第2実施形態における増幅用光ファイバの活性元素の濃度分布を図2(D)と同様に示す図である。It is a figure which shows the density | concentration distribution of the active element of the optical fiber for amplification in 2nd Embodiment similarly to FIG.2 (D). 第2実施形態の第1の変形例における増幅用光ファイバの活性元素の濃度分布を図2(D)と同様に示す図である。It is a figure which shows the density | concentration distribution of the active element of the optical fiber for amplification in the 1st modification of 2nd Embodiment similarly to FIG.2 (D). 第2実施形態の第2の変形例における増幅用光ファイバの活性元素の濃度分布を図2(D)と同様に示す図である。It is a figure which shows the concentration distribution of the active element of the optical fiber for amplification in the 2nd modification of 2nd Embodiment similarly to FIG.2 (D). 第2実施形態の第3の変形例における増幅用光ファイバの活性元素の濃度分布を図2(D)と同様に示す図である。It is a figure which shows the concentration distribution of the active element of the optical fiber for amplification in the 3rd modification of 2nd Embodiment similarly to FIG.2 (D). 第2実施形態の第4の変形例における増幅用光ファイバの活性元素の濃度分布を図2(D)と同様に示す図である。It is a figure which shows the density | concentration distribution of the active element of the optical fiber for amplification in the 4th modification of 2nd Embodiment similarly to FIG.2 (D). 増幅用光ファイバの他の例を示す図である。It is a figure which shows the other example of the optical fiber for amplification. マルチコア増幅用光ファイバの例を示す図である。It is a figure which shows the example of the optical fiber for multi-core amplification. マルチコア増幅用光ファイバの他の例を示す図である。It is a figure which shows the other example of the optical fiber for multi-core amplification. 実施例1におけるLP01モードの光の実効コア断面積と、LP01モードの光の増幅率とLP11モードの光の増幅率との比との関係を示す図である。And the effective core area of the LP 01 mode of light in Example 1 is a diagram showing the relationship between the ratio of the LP 01 optical amplification factor of the mode and the LP 11 mode of the optical amplification factor of. 実施例2におけるLP01モードの光の実効コア断面積と、LP01モードの光の増幅率とLP11モードの光の増幅率との比との関係を示す図である。And the effective core area of the LP 01 mode of light in Example 2, a diagram showing the relationship between the ratio of the LP 01 optical amplification factor of the mode and the LP 11 mode of the optical amplification factor of.
 以下、本発明に係る光ファイバ、及び、それを用いた光ファイバ増幅器の好適な実施形態について図面を参照しながら詳細に説明する。なお、理解の容易のため、それぞれの図のスケールと、以下の説明に記載のスケールとが異なる場合がある。 Hereinafter, preferred embodiments of an optical fiber according to the present invention and an optical fiber amplifier using the same will be described in detail with reference to the drawings. For ease of understanding, the scale of each figure may be different from the scale described in the following description.
 (第1実施形態)
 <増幅用光ファイバについての説明>
 図1は、本発明の第1実施形態に係る光ファイバの長手方向に垂直な断面の様子を示す図である。
(First embodiment)
<Description of optical fiber for amplification>
FIG. 1 is a view showing a state of a cross section perpendicular to the longitudinal direction of an optical fiber according to a first embodiment of the present invention.
 図1に示すように、本実施形態の増幅用光ファイバ10は、コア11と、コア11の外周面を隙間なく囲むクラッド12と、クラッド12の外周面を被覆する外側クラッド13と、外側クラッド13を被覆する被覆層14とを主な構成として備える。コア11の直径は、例えば11μmとされる。また、クラッド12の外径は例えば125μmとされ、外側クラッド13の外径は例えば200μmとされる。 As shown in FIG. 1, an amplification optical fiber 10 according to this embodiment includes a core 11, a clad 12 that surrounds the outer peripheral surface of the core 11 without a gap, an outer clad 13 that covers the outer peripheral surface of the clad 12, and an outer clad 13 as a main component. The diameter of the core 11 is, for example, 11 μm. The outer diameter of the cladding 12 is, for example, 125 μm, and the outer diameter of the outer cladding 13 is, for example, 200 μm.
 また、本実施形態の増幅用光ファイバ10は、通信に用いられる光を増幅するものであり、伝搬する光の導波領域の少なくとも一部に活性元素が添加される。また、増幅用光ファイバ10は、コア11を伝搬する光が基本モードであるLP01モードの光の他にLP11モードの高次モードの光を含む光を伝搬するマルチモード光ファイバとされる。従って、増幅用光ファイバ10のコア11にLP01モードの光及びLP11モードの光が入射する場合、それぞれのモードの光が増幅用光ファイバ10を伝搬することができる。この所定波長は、例えば、Cバンド帯やLバンド帯とされる。なお、増幅用光ファイバ10は、上記の通り通信に用いられる光を増幅することを目的とするため、通信に関係のない高次モードの光が励振する場合であっても、この高次モードの光を考慮する必要はない。 The amplification optical fiber 10 of the present embodiment amplifies light used for communication, and an active element is added to at least a part of a waveguide region of propagating light. The amplification optical fiber 10 is a multimode optical fiber that propagates light including LP 11 mode higher-order mode light in addition to LP 01 mode light, which is the fundamental mode of light propagating through the core 11. . Accordingly, when the LP 01 mode light and the LP 11 mode light are incident on the core 11 of the amplification optical fiber 10, the light of each mode can propagate through the amplification optical fiber 10. The predetermined wavelength is, for example, a C band band or an L band band. The amplification optical fiber 10 is intended to amplify the light used for communication as described above. Therefore, even when high-order mode light not related to communication is excited, this higher-order mode is used. There is no need to consider the light.
 図2は、図1の増幅用光ファイバ10のコア11とその周囲における様子を示した図である。具体的には、図2(A)は図1の点線で示される領域におけるコア11とクラッド12とを示し、図2(B)は図2(A)に示す領域における屈折率分布を示し、図2(C)は増幅用光ファイバ10が所定波長の光を伝搬したときのLP01モードの光とLP11モードの光をパワーで規格化した場合のLP01モードの光及びLP11モードの光の強度分布を示し、図2(D)は図2(A)に示す領域での活性元素の濃度分布を示す。 FIG. 2 is a diagram illustrating the state of the core 11 of the amplification optical fiber 10 of FIG. 1 and the surroundings thereof. Specifically, FIG. 2A shows the core 11 and the cladding 12 in the region indicated by the dotted line in FIG. 1, FIG. 2B shows the refractive index distribution in the region shown in FIG. FIG. 2 (C) amplification optical fiber 10 of the LP 01 mode when normalized by LP 01 mode of light and LP 11 mode power the light when the propagating light of a predetermined wavelength of light and LP 11 modes FIG. 2D shows the light intensity distribution, and FIG. 2D shows the concentration distribution of the active element in the region shown in FIG.
 図2(B)に示すように、クラッド12の屈折率はコア11の屈折率よりも低くされている。なお、特に図示しないが、外側クラッド13の屈折率はクラッド12の屈折率よりも低くされている。また、本実施形態の増幅用光ファイバ10では、コア11の屈折率が径方向において概ね一定とされており、クラッド12の屈折率も径方向で概ね一定とされている。コア11とクラッド12との比屈折率差は、例えば0.6%とされる。コア11は例えば屈折率を高くするゲルマニウム等のドーパントが添加された石英から構成され、クラッド12は例えば屈折率を高くするドーパントが特に添加されない石英から構成される。或いは、コア11は例えば屈折率を高くするドーパントが特に添加されない石英から構成され、クラッド12は例えば屈折率を低くするフッ素等のドーパントが添加された石英から構成されても良い。なお、コア11及びクラッド12には、後述のように、必要に応じた活性元素が添加される。また、外側クラッド13は、例えば紫外線硬化樹脂や屈折率を下げるドーパントが添加された石英から構成される。また、被覆層14は、例えば外側クラッド13とは異なる紫外線硬化樹脂から構成される。 As shown in FIG. 2B, the refractive index of the cladding 12 is set lower than that of the core 11. Although not particularly illustrated, the refractive index of the outer cladding 13 is set lower than the refractive index of the cladding 12. Further, in the amplification optical fiber 10 of the present embodiment, the refractive index of the core 11 is substantially constant in the radial direction, and the refractive index of the cladding 12 is also substantially constant in the radial direction. The relative refractive index difference between the core 11 and the clad 12 is, for example, 0.6%. The core 11 is made of, for example, quartz to which a dopant such as germanium that increases the refractive index is added, and the cladding 12 is made of, for example, quartz that is not particularly added with a dopant that increases the refractive index. Alternatively, the core 11 may be made of, for example, quartz to which a dopant that increases the refractive index is not particularly added, and the cladding 12 may be made of, for example, quartz to which a dopant such as fluorine that lowers the refractive index is added. The core 11 and the clad 12 are added with an active element as necessary, as will be described later. The outer cladding 13 is made of, for example, an ultraviolet curable resin or quartz to which a dopant for lowering the refractive index is added. The covering layer 14 is made of, for example, an ultraviolet curable resin different from the outer cladding 13.
 上記のようにコア11をLP01モードの光及びLP11モードの光を含む光が伝搬すると、LP01モードの光及びLP11モードの光をパワーで規格化する場合にLP01モードの光及びLP11モードの光は図2(C)に示すような強度分布を有する。LP01モードの光は、コア11の中心点Cで最も強くなる強度分布を有しており、LP11モードの光は、コア11の中心点Cで強度が0となり、コア11の中心点Cとコア11の外周面IFとの間において強度がピークとなる。このため、コア11の中心点Cとコア11の外周面IFとの間の特定の位置において、LP11モードの光の強度がLP01モードの光の強度と一致する。この位置を特定内側位置Riとする。LP11モードの光の強度は、特定内側位置Riよりも外周側において、LP01モードの光の強度よりも大きくなる。 When the core 11 as described above light including light of the light and LP 11 modes LP 01 mode propagating light and the LP 01 mode when normalized with the power of light of the light and LP 11 modes LP 01 mode The LP 11 mode light has an intensity distribution as shown in FIG. The LP 01 mode light has the intensity distribution that is the strongest at the center point C of the core 11, and the LP 11 mode light has an intensity of 0 at the center point C of the core 11, and the center point C of the core 11. And the outer peripheral surface IF of the core 11 have a peak intensity. Therefore, at a specific position between the center point C of the core 11 and the outer peripheral surface IF of the core 11, the light intensity of the LP 11 mode matches the light intensity of the LP 01 mode. This position is defined as a specific inner position Ri. The intensity of light in the LP 11 mode is greater than the intensity of light in the LP 01 mode on the outer peripheral side from the specific inner position Ri.
 また、増幅用光ファイバ10を伝搬する光はコア11の外周面IFからクラッド12にはみ出すように伝搬する。従って、光の導波領域はクラッド12におけるコア11と隣接する領域まで広がっており、クラッド12にはみ出した光は、クラッド12においてコア11側からクラッド12の外周側に向けて減衰する。また、LP11モードの光は、LP01モードの光よりも大きなモードフィールド径を有しており、クラッド12へのはみ出し方が大きい。従って、コア11の外周面IFでは、LP11モードの光の強度がLP01モードの光の強度よりも大きい。また、LP11モードの光の規格化された強度は、クラッド12の内周面と外周面との特定の位置において、0.0001となる。つまり、LP11モードの光の強度分布の径方向の積分値が1になるように強度分布を規格化した時の光の強度が0.0001になる。この位置を特定外側位置Roとする。このように光の規格化された強度が0.0001になると、光の伝搬や増幅に影響を及ぼさない。従って、光の規格化された強度が0.0001より小さな光は考慮する必要が無い。 Further, light propagating through the amplification optical fiber 10 propagates so as to protrude from the outer peripheral surface IF of the core 11 to the cladding 12. Accordingly, the light waveguide region extends to a region adjacent to the core 11 in the clad 12, and the light that protrudes into the clad 12 is attenuated from the core 11 side toward the outer peripheral side of the clad 12 in the clad 12. Further, the LP 11 mode light has a larger mode field diameter than the LP 01 mode light, and the protrusion to the clad 12 is large. Therefore, on the outer peripheral surface IF of the core 11, the intensity of the LP 11 mode light is greater than the intensity of the LP 01 mode light. The normalized intensity of the LP 11 mode light is 0.0001 at specific positions on the inner and outer peripheral surfaces of the clad 12. That is, the light intensity when the intensity distribution is normalized so that the integral value in the radial direction of the light intensity distribution of the LP 11 mode is 1 becomes 0.0001. This position is defined as a specific outer position Ro. In this way, when the normalized intensity of light becomes 0.0001, it does not affect the propagation and amplification of light. Therefore, there is no need to consider light whose normalized intensity is less than 0.0001.
 上記説明より、コア11の中心点Cから特定内側位置Riまでの領域においては、LP01モードの光の強度はLP11モードの光の強度よりも大きく、特定内側位置Riから特定外側位置Roまでの領域においては、LP11モードの光の強度はLP01モードの光の強度よりも大きい。従って、コア11の外周面IFにおいては、LP11モードの光の強度はLP01モードの光の強度よりも大きくなる。 From the above description, in the region from the center point C of the core 11 to the specific inner position Ri, the light intensity of the LP 01 mode is larger than the light intensity of the LP 11 mode, and from the specific inner position Ri to the specific outer position Ro. In this region, the intensity of the LP 11 mode light is larger than the intensity of the LP 01 mode light. Therefore, on the outer peripheral surface IF of the core 11, the intensity of the LP 11 mode light is greater than the intensity of the LP 01 mode light.
 本実施形態の増幅用光ファイバ10では、図2(D)に示すように、コア11の中心点Cから特定内側位置Riまでの領域には活性元素が添加されておらず、特定内側位置Riから特定外側位置Roまでの領域には活性元素が添加されている。この活性元素は励起光により励起状態とされる元素であり、上記のようにCバンド帯やLバンド帯の光が伝搬する場合、活性元素として例えばエルビウム(Er)を挙げることができる。また、添加される活性元素は伝搬する光の波長により異なり、他の活性元素として、例えばネオジウム(Nd)やイッテルビウム(Yb)等の希土類元素を挙げることができる。さらに活性元素として、希土類元素の他に、ビスマス(Bi)を挙げることができる。 In the amplification optical fiber 10 of the present embodiment, as shown in FIG. 2D, no active element is added to the region from the center point C of the core 11 to the specific inner position Ri, and the specific inner position Ri. The active element is added to the region from the specific outer position Ro. This active element is an element that is brought into an excited state by excitation light. When light in the C-band or L-band is propagated as described above, for example, erbium (Er) can be cited as the active element. Further, the active element to be added varies depending on the wavelength of the propagating light, and examples of other active elements include rare earth elements such as neodymium (Nd) and ytterbium (Yb). Furthermore, bismuth (Bi) can be cited as an active element in addition to rare earth elements.
 上記のように増幅用光ファイバ10のコア11に所定波長の光が入射し、クラッド12に活性元素を励起する波長の光が入射すると、次のようにコア11に入射した光が増幅される。すなわち、クラッド12に入射する励起光はクラッド12を主に伝搬し、当該励起光が活性元素の添加領域を通過する際、当該活性元素が励起される。励起された活性元素は、増幅用光ファイバ10を伝搬する所定波長の光により誘導放出を起こして、この誘導放出により当該所定波長の光は増幅される。このとき、特定内側位置Riから特定外側位置Roまでの領域に活性元素が添加され、コア11の中心点Cから特定内側位置Riまでの領域に活性元素が添加されていないため、光は、特定内側位置Riから特定外側位置Roまでの領域で増幅され、コア11の中心点Cから特定内側位置Riまでの領域では増幅されない。光が増幅される領域は、LP01モードの光の強度よりもLP11モードの光の強度が大きい領域であり、光が増幅されない領域は、LP11モードの光の強度よりもLP01モードの光の強度が大きい領域である。従って、コア全体に活性元素が均一に添加されている増幅用光ファイバと比較する場合に、本実施形態の増幅用光ファイバ10によればLP11モードの光がLP01モードの光よりも効率良く増幅される。 As described above, when light having a predetermined wavelength is incident on the core 11 of the amplification optical fiber 10 and light having a wavelength for exciting the active element is incident on the cladding 12, the light incident on the core 11 is amplified as follows. . That is, the excitation light incident on the clad 12 propagates mainly through the clad 12, and the active element is excited when the excitation light passes through the region where the active element is added. The excited active element causes stimulated emission by light having a predetermined wavelength propagating through the amplification optical fiber 10, and the light having the predetermined wavelength is amplified by the stimulated emission. At this time, the active element is added to the region from the specific inner position Ri to the specific outer position Ro, and the active element is not added to the region from the center point C of the core 11 to the specific inner position Ri. It is amplified in the region from the inner position Ri to the specific outer position Ro, and is not amplified in the region from the center point C of the core 11 to the specific inner position Ri. Region where light is amplified is an area intensity of light of the light LP 11 mode than the intensity of the large LP 01 mode, no light is amplified region, than the intensity of light of the LP 11 mode of the LP 01 mode This is a region where the intensity of light is high. Therefore, when compared with the amplification optical fiber in which the active element is uniformly added to the entire core, according to the amplification optical fiber 10 of the present embodiment, the LP 11 mode light is more efficient than the LP 01 mode light. Amplified well.
 以上のように本実施形態の増幅用光ファイバ10によれば、LP11モードの光の増幅率をLP01モードの光の増幅率よりも大きくすることができる。 As described above, according to the amplification optical fiber 10 of the present embodiment, the amplification factor of the LP 11 mode light can be made larger than the amplification factor of the LP 01 mode light.
 <光ファイバ増幅器についての説明>
 次に上記の増幅用光ファイバ10を用いた光ファイバ増幅器について図3を参照して説明する。図3は、本実施形態の光ファイバ増幅器を示す図である。図3に示すように、本実施形態における光ファイバ増幅器1は、信号光が入射する入射端20と、励起光を出射する励起光源30と、信号光及び励起光が入力する光コンバイナ40と、光コンバイナ40から出射される信号光及び励起光が入力する図1の増幅用光ファイバ10と、増幅された信号光が出射する出射端50を主な構成として備える。
<Description of optical fiber amplifier>
Next, an optical fiber amplifier using the amplification optical fiber 10 will be described with reference to FIG. FIG. 3 is a diagram showing the optical fiber amplifier of the present embodiment. As shown in FIG. 3, the optical fiber amplifier 1 in the present embodiment includes an incident end 20 on which signal light is incident, an excitation light source 30 that emits excitation light, an optical combiner 40 on which signal light and excitation light are input, The amplification optical fiber 10 of FIG. 1 into which signal light and pumping light emitted from the optical combiner 40 are input, and an emission end 50 from which the amplified signal light is emitted are mainly configured.
 入射端20は、例えば、少なくともLP01モードの光及びLP11モードの光を用いて光通信を行う光ファイバに接続される。従って、この入射端20からは、光通信に用いられるLP01モードの光、LP11モードの光を含む所定波長の光が入射する。この所定波長は、特に制限されるものではないが、上記のように例えばCバンド帯、Lバンド帯とされる。また、入射端20から入射する光は、コア、及び、コアを被覆するクラッドから構成され、当該光を少なくともLP01モード及びLP11モードで伝搬する光ファイバ25を伝搬する。 The incident end 20 is connected to, for example, an optical fiber that performs optical communication using at least LP 01 mode light and LP 11 mode light. Accordingly, light having a predetermined wavelength including light of LP 01 mode and light of LP 11 mode used for optical communication is incident from the incident end 20. The predetermined wavelength is not particularly limited, but is, for example, a C band band or an L band band as described above. The light incident from the incident end 20 is composed of a core and a clad covering the core, and propagates through the optical fiber 25 that propagates the light in at least the LP 01 mode and the LP 11 mode.
 励起光源30は、複数のレーザダイオード31から構成され、レーザダイオード31は、本実施形態においては、例えば、GaAs系半導体を材料としたファブリペロー型半導体レーザであり、中心波長が980nmの光を出射する。また、励起光源30のそれぞれのレーザダイオード31は、光ファイバ35に接続されており、レーザダイオード31から出射される励起光は、光ファイバ35をマルチモード光として伝搬する。 The excitation light source 30 is composed of a plurality of laser diodes 31. In the present embodiment, the laser diode 31 is, for example, a Fabry-Perot type semiconductor laser made of a GaAs-based semiconductor and emits light having a center wavelength of 980 nm. To do. Each laser diode 31 of the excitation light source 30 is connected to an optical fiber 35, and the excitation light emitted from the laser diode 31 propagates through the optical fiber 35 as multimode light.
 光ファイバ35及び光ファイバ25が接続される光コンバイナ40は、例えば、光ファイバ25を中心としてその周りにマルチモード光ファイバが配置された部分が溶融延伸されて一体化することにより構成されており、光ファイバ25のコアと増幅用光ファイバ10のコア11とが光学的に結合され、光ファイバ35のコアと増幅用光ファイバ10のクラッド12とが光学的に結合されている。 The optical combiner 40 to which the optical fiber 35 and the optical fiber 25 are connected is configured, for example, by melting and extending a portion where the multimode optical fiber is disposed around the optical fiber 25 as a center. The core of the optical fiber 25 and the core 11 of the amplification optical fiber 10 are optically coupled, and the core of the optical fiber 35 and the cladding 12 of the amplification optical fiber 10 are optically coupled.
 次に、光ファイバ増幅器1の動作について説明する。 Next, the operation of the optical fiber amplifier 1 will be described.
 まず、入射端20から入射する信号光が光ファイバ25から出射する。この信号光の波長は、上述のように例えばCバンド帯やLバンド帯とされ、LP01モードの光とLP11モードの光とが含まれる。そして、光ファイバ25を伝搬する信号光は、光コンバイナ40に入射する。 First, signal light incident from the incident end 20 is emitted from the optical fiber 25. As described above, the wavelength of the signal light is, for example, C band or L band, and includes LP 01 mode light and LP 11 mode light. Then, the signal light propagating through the optical fiber 25 enters the optical combiner 40.
 また、励起光源30からは、増幅用光ファイバ10のコア11に添加されている活性元素を励起する励起光が出射される。このときの波長は、上述のように例えば980nmとされる。そして、励起光源30から出射した励起光は、光ファイバ35を伝搬して、光コンバイナ40に入射する。 Also, excitation light for exciting the active element added to the core 11 of the amplification optical fiber 10 is emitted from the excitation light source 30. The wavelength at this time is, for example, 980 nm as described above. Then, the excitation light emitted from the excitation light source 30 propagates through the optical fiber 35 and enters the optical combiner 40.
 光コンバイナ40から増幅用光ファイバ10のコア11に入射した信号光はコア11を伝搬し、光コンバイナ40から増幅用光ファイバ10のクラッド12に入射した励起光はクラッド12を主に伝搬して上記のように添加される活性元素を励起状態とする。そして励起状態とされた活性元素が信号光により誘導放出を起こして信号光が増幅する。このとき、上述の増幅用光ファイバ10の説明のように、信号光は特定内側位置Riから特定外側位置Roまでの領域で増幅され、コア11の中心点Cから特定内側位置Riまでの領域では増幅されない。従って、LP01モードの光よりもLP11モードの光が高い増幅率で増幅された信号光が増幅用光ファイバ10から出射し、当該信号光は出射端50から出射する。 The signal light incident on the core 11 of the amplification optical fiber 10 from the optical combiner 40 propagates through the core 11, and the excitation light incident on the cladding 12 of the amplification optical fiber 10 propagates mainly through the cladding 12. The active element added as described above is in an excited state. Then, the excited active element causes stimulated emission by the signal light, and the signal light is amplified. At this time, the signal light is amplified in the region from the specific inner position Ri to the specific outer position Ro as described above for the amplification optical fiber 10, and in the region from the center point C of the core 11 to the specific inner position Ri. Not amplified. Accordingly, the signal light obtained by amplifying the LP 11 mode light with a higher amplification factor than the LP 01 mode light is emitted from the amplification optical fiber 10, and the signal light is emitted from the emission end 50.
 以上説明したように本実施形態の光ファイバ増幅器1によれば、LP01モードの光よりもLP11モードの光を高い増幅率で増幅することができる。従って、入射端20から入射する光においてLP01モードの光のパワーとLP11モードの光のパワーとが同じである場合、光ファイバ増幅器1から出射する光においてLP11モードの光のパワーをLP01モードの光のパワーよりも大きくすることができる。 As described above, according to the optical fiber amplifier 1 of the present embodiment, it is possible to amplify the LP 11 mode light with a higher amplification factor than the LP 01 mode light. Accordingly, if the incident end 20 is a LP 01 mode of the optical power of the optical power and the LP 11 mode is the same in the light incident in the light emitted from the optical fiber amplifier 1 of LP 11 mode the power of the light LP It can be made larger than the light power of the 01 mode.
 次に本実施形態の変形例について説明する。 Next, a modification of this embodiment will be described.
 図4は、本変形例の増幅用光ファイバ10の活性元素の濃度分布を図2(D)と同様に示す図である。図4に示すように、本変形例では、コア11に活性元素が添加されず、コア11の外周面IFから特定外側位置Roまでの領域に活性元素が添加される。この様な活性元素の添加によれば、上記のように中心点Cから特定内側位置Riまでの領域に活性元素が添加されず、特定内側位置Riから特定外側位置Roまでの領域に活性元素が添加される場合と比べて、LP11モードの光の増幅率をLP01モードの光の増幅率よりも更に大きくすることができる。 FIG. 4 is a view showing the concentration distribution of the active element in the amplification optical fiber 10 of the present modification as in FIG. 2D. As shown in FIG. 4, in this modification, the active element is not added to the core 11, and the active element is added to the region from the outer peripheral surface IF of the core 11 to the specific outer position Ro. According to such addition of the active element, the active element is not added to the region from the center point C to the specific inner position Ri as described above, and the active element is not added to the region from the specific inner position Ri to the specific outer position Ro. Compared with the case where it is added, the amplification factor of light in the LP 11 mode can be made larger than the amplification factor of light in the LP 01 mode.
 (第2実施形態)
 次に、本発明の第2実施形態について図5、図6を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described in detail with reference to FIGS. In addition, about the component which is the same as that of 1st Embodiment, or equivalent, except the case where it demonstrates especially, the same referential mark is attached | subjected and the overlapping description is abbreviate | omitted.
 本実施形態の増幅用光ファイバ10は、通信に用いるLP21モードの光が伝搬する点において、第1実施形態の増幅用光ファイバ10と異なる。 The amplification optical fiber 10 of the present embodiment differs from the amplification optical fiber 10 of the first embodiment in that LP 21 mode light used for communication propagates.
 図5は、図1の増幅用光ファイバ10にLP21モードの光が伝搬する場合における光の強度分布を図2(C)と同様に示す図である。図5に示すように、本実施形態において、LP01モードの光とLP11モードの光をパワーで規格化した場合のLP01モードの光及びLP11モードの光の強度分布は、図2(C)と同様となる。そこで、本実施形態では、LP11モードの光の強度がLP01モードの光の強度と一致する位置を特定内側位置Riとし、LP11モードの光の規格化された強度が0.0001となる位置を特定外側位置Roとする。従って、本実施形態の特定内側位置Riは第1実施形態の特定内側位置Riと一致し、本実施形態の特定外側位置Roは第1実施形態の特定外側位置Roと一致する。 FIG. 5 is a view showing the light intensity distribution in the case where the LP 21 mode light propagates through the amplification optical fiber 10 of FIG. 1, as in FIG. As shown in FIG. 5, in this embodiment, when the LP 01 mode light and the LP 11 mode light are normalized by power, the intensity distribution of the LP 01 mode light and the LP 11 mode light is shown in FIG. Same as C). Therefore, in the present embodiment, the position at which the intensity of the LP 11 mode light matches the intensity of the LP 01 mode light is defined as the specific inner position Ri 1, and the normalized intensity of the LP 11 mode light is 0.0001. the a position to identify the outer position Ro 1. Therefore, the specific inner position Ri 1 of the present embodiment matches the specific inner position Ri of the first embodiment, and the specific outer position Ro 1 of the present embodiment matches the specific outer position Ro of the first embodiment.
 また、LP21モードの光の強度は、コア11の中心点Cで強度が0となり、コア11の中心点Cとコア11の外周面IFとの間において強度がピークとなる位置が2カ所存在する。このため、コア11の中心点Cとコア11の外周面IFとの間の特定の位置において、LP21モードの光の強度がLP01モードの光の強度と一致する位置が複数カ所存在する。そこで、LP21モードの光の強度がLP01モードの光の強度と一致する位置のうち最も内側の位置を特定内側位置Riとする。また、LP21モードの光は、LP01モードの光及びLP11モードの光よりも大きなモードフィールド径を有しており、クラッド12へのはみ出し方が大きい。このため、コア11とクラッド12との界面において、LP21モードの光の強度は、LP01モードの光の強度及びLP11モードの光の強度よりも大きくなる。この界面の位置は、コア11の外周面IFの位置と一致する。また、LP21モードの光の規格化された強度は、上記の特定外側位置Roよりもクラッド12の外周面側の特定の位置において、0.0001となる。この位置を特定外側位置Roとする。 Further, the light intensity of the LP 21 mode is 0 at the center point C of the core 11, and there are two positions where the intensity peaks between the center point C of the core 11 and the outer peripheral surface IF of the core 11. To do. Therefore, at a specific position between the center point C of the core 11 and the outer peripheral surface IF of the core 11, there are a plurality of positions where the light intensity of the LP 21 mode coincides with the light intensity of the LP 01 mode. Therefore, the innermost position among the positions where the light intensity of the LP 21 mode matches the light intensity of the LP 01 mode is set as the specific inner position Ri 2 . Further, the LP 21 mode light has a larger mode field diameter than the LP 01 mode light and the LP 11 mode light, and the protrusion to the clad 12 is large. Therefore, at the interface between the core 11 and the cladding 12, the intensity of the LP 21 mode light is larger than the intensity of the LP 01 mode light and the LP 11 mode light. The position of this interface coincides with the position of the outer peripheral surface IF of the core 11. Further, the standardized intensity of the LP 21 mode light is 0.0001 at a specific position on the outer peripheral surface side of the clad 12 with respect to the specific outer position Ro 1 described above. This position is the specific outer position Ro 2.
 図6は、本実施形態の増幅用光ファイバ10の活性元素の濃度分布を図2(D)と同様に示す図である。図6に示すように、本実施形態の増幅用光ファイバ10においては、特定内側位置Riから特定外側位置Roまでの領域に活性元素が添加され、コア11の中心点Cから特定内側位置Riまでの領域には、活性元素が添加されない。本実施形態では、LP11モードの光の強度がLP01モードの光の強度よりも大きい領域の一部である特定内側位置Riから特定内側位置Riまでの間に活性元素が添加されていない。しかし、高次モードの光であるLP11モードの光に着目する場合に、LP11モードの光の特定内側位置Riから特定外側位置Roまでにおける活性元素の平均濃度は、コアの中心点Cから特定内側位置Riまでにおける活性元素の平均濃度よりも高い。また、本実施形態では、LP21モードの光の強度がLP01モードの光の強度よりも大きい領域の一部である特定外側位置Roから特定外側位置Roまでの間に活性元素が添加されていない。しかし、高次モードの光であるLP21モードの光に着目する場合に、LP21モードの光の特定内側位置Riから特定外側位置Roまでにおける活性元素の平均濃度は、コアの中心点Cから特定内側位置Riまでにおける活性元素の平均濃度よりも高い。この様な活性元素の濃度分布を有することで、LP11モードの光及びLP21モードの光の増幅率をLP01モードの光の増幅率よりも大きくすることができる。 FIG. 6 is a view showing the concentration distribution of the active element in the amplification optical fiber 10 of the present embodiment in the same manner as FIG. As shown in FIG. 6, in the amplification optical fiber 10 of the present embodiment, an active element is added to a region from the specific inner position Ri 2 to the specific outer position Ro 1, and the specific inner position from the center point C of the core 11. No active element is added to the region up to Ri 2 . In the present embodiment, an active element is added between the specific inner position Ri 1 and the specific inner position Ri 2 that are part of a region where the intensity of the LP 11 mode light is greater than the intensity of the LP 01 mode light. Absent. However, when attention is focused on LP 11 mode light, which is higher-order mode light, the average concentration of the active element from the specific inner position Ri 1 to the specific outer position Ro 1 of the LP 11 mode light is the center point of the core. It is higher than the average concentration of the active element from C to the specific inner position Ri 1 . Further, in the present embodiment, an active element is added between the specific outer position Ro 1 and the specific outer position Ro 2 that are part of a region where the light intensity of the LP 21 mode is larger than the light intensity of the LP 01 mode. It has not been. However, when attention is focused on LP 21 mode light, which is higher order mode light, the average concentration of the active element from the specific inner position Ri 2 to the specific outer position Ro 2 of the LP 21 mode light is the center point of the core. higher than the average concentration of the active elements in the C to a certain inside position Ri 2. By having such an active element concentration distribution, the amplification factor of the LP 11 mode light and the LP 21 mode light can be made larger than the amplification factor of the LP 01 mode light.
 次に本実施形態の第1の変形例について説明する。 Next, a first modification of the present embodiment will be described.
 図7は、本変形例の増幅用光ファイバ10の活性元素の濃度分布を図2(D)と同様に示す図である。上記例では、特定内側位置Riから特定外側位置Roまでの領域に活性元素が添加されたのに対し、本変形例では、図7に示すように、特定内側位置Riから特定外側位置Roまでの領域に活性元素が添加される。本変形例においても上記実施形態と同様にして、LP11モードの光に着目する場合に、LP11モードの光の特定内側位置Riから特定外側位置Roまでにおける活性元素の平均濃度は、コアの中心点Cから特定内側位置Riまでにおける活性元素の平均濃度よりも高い。同様に、LP21モードの光に着目する場合に、LP21モードの光の特定内側位置Riから特定外側位置Roまでにおける活性元素の平均濃度は、コアの中心点Cから特定内側位置Riまでにおける活性元素の平均濃度よりも高い。この様に活性元素が添加されることで、LP21モードの光の増幅率を更に大きくすることができる。 FIG. 7 is a view showing the concentration distribution of the active element in the amplification optical fiber 10 of the present modification as in FIG. 2D. In the above example, the active element is added to the region from the specific inner position Ri 2 to the specific outer position Ro 1 , whereas in the present modification, as illustrated in FIG. 7, the specific outer position Ri 2 to the specific outer position An active element is added to the region up to Ro 2 . Even in the same manner as in the embodiment in the present modification, when attention is paid to light LP 11 mode, the average concentration of the active elements in the specified position inside Ri 1 of LP 11 mode of light to a certain position outside Ro 1 is higher than the average concentration of the active element in the center point C of the core to a certain inside position Ri 1. Similarly, when focusing on the light of the LP 21 mode, the average concentration of the active elements in the specified position inside Ri 2 of LP 21 mode of light to a certain position outside Ro 2 are identified inside position Ri from the central point C of the core It is higher than the average concentration of active elements up to 2 . By adding the active element in this manner, the amplification factor of the LP 21 mode light can be further increased.
 次に本実施形態の第2の変形例について説明する。 Next, a second modification of the present embodiment will be described.
 図8は、本変形例の増幅用光ファイバ10の活性元素の濃度分布を図2(D)と同様に示す図である。上記例では、特定内側位置Riから特定外側位置Roまでの領域に活性元素が添加されたのに対し、本変形例では、図8に示すように、特定内側位置Riから特定外側位置Roまでの領域に活性元素が添加される。本変形例においても上記実施形態と同様にして、LP11モードの光に着目する場合に、LP11モードの光の特定内側位置Riから特定外側位置Roまでにおける活性元素の平均濃度は、コアの中心点Cから特定内側位置Riまでにおける活性元素の平均濃度よりも高い。同様に、LP21モードの光に着目する場合に、LP21モードの光の特定内側位置Riから特定外側位置Roまでにおける活性元素の平均濃度は、コアの中心点Cから特定内側位置Riまでにおける活性元素の平均濃度よりも高い。この様に活性元素が添加されることで、LP11モードの光の増幅率を更に大きくすることができる。 FIG. 8 is a view showing the concentration distribution of the active element in the amplification optical fiber 10 of the present modification as in FIG. 2D. In the above example, the active element is added to the region from the specific inner position Ri 2 to the specific outer position Ro 1 , whereas in this modification, as illustrated in FIG. 8, the specific outer position Ri 1 to the specific outer position An active element is added to the region up to Ro 1 . Even in the same manner as in the embodiment in the present modification, when attention is paid to light LP 11 mode, the average concentration of the active elements in the specified position inside Ri 1 of LP 11 mode of light to a certain position outside Ro 1 is higher than the average concentration of the active element in the center point C of the core to a certain inside position Ri 1. Similarly, when focusing on the light of the LP 21 mode, the average concentration of the active elements in the specified position inside Ri 2 of LP 21 mode of light to a certain position outside Ro 2 are identified inside position Ri from the central point C of the core It is higher than the average concentration of active elements up to 2 . By adding the active element in this way, the amplification factor of the LP 11 mode light can be further increased.
 次に本実施形態の第3の変形例について説明する。 Next, a third modification of the present embodiment will be described.
 図9は、本変形例の増幅用光ファイバ10の活性元素の濃度分布を図2(D)と同様に示す図である。上記例では、特定内側位置Riから特定外側位置Roまでの領域に活性元素が添加されたのに対し、本変形例では、図9に示すように、特定内側位置Riから特定外側位置Roまでの領域に活性元素が添加される。本変形例においても上記実施形態と同様にして、LP11モードの光に着目する場合に、LP11モードの光の特定内側位置Riから特定外側位置Roまでにおける活性元素の平均濃度は、コアの中心点Cから特定内側位置Riまでにおける活性元素の平均濃度よりも高い。同様に、LP21モードの光に着目する場合に、LP21モードの光の特定内側位置Riから特定外側位置Roまでにおける活性元素の平均濃度は、コアの中心点Cから特定内側位置Riまでにおける活性元素の平均濃度よりも高い。この様に活性元素が添加されることで、LP11モードの光の増幅率及びLP21モードの光の増幅率を更に大きくすることができる。 FIG. 9 is a view showing the concentration distribution of the active element in the amplification optical fiber 10 of the present modification as in FIG. 2D. In the above example, the active element is added to the region from the specific inner position Ri 2 to the specific outer position Ro 1 , whereas in this modification, as illustrated in FIG. 9, the specific inner position Ri 1 to the specific outer position An active element is added to the region up to Ro 2 . Even in the same manner as in the embodiment in the present modification, when attention is paid to light LP 11 mode, the average concentration of the active elements in the specified position inside Ri 1 of LP 11 mode of light to a certain position outside Ro 1 is higher than the average concentration of the active element in the center point C of the core to a certain inside position Ri 1. Similarly, when focusing on the light of the LP 21 mode, the average concentration of the active elements in the specified position inside Ri 2 of LP 21 mode of light to a certain position outside Ro 2 are identified inside position Ri from the central point C of the core It is higher than the average concentration of active elements up to 2 . By adding the active element in this manner, the LP 11 mode light amplification factor and the LP 21 mode light amplification factor can be further increased.
 次に本実施形態の第4の変形例について説明する。 Next, a fourth modification of the present embodiment will be described.
 図10は、本変形例の増幅用光ファイバ10の活性元素の濃度分布を図2(D)と同様に示す図である。図10に示すように、本変形例では、コア11に活性元素が添加されず、コア11の外周面IFから特定外側位置Roまでの領域に活性元素が添加される。本変形例においても上記実施形態と同様にして、LP11モードの光に着目する場合に、LP11モードの光の特定内側位置Riから特定外側位置Roまでにおける活性元素の平均濃度は、コアの中心点Cから特定内側位置Riまでにおける活性元素の平均濃度よりも高い。同様に、LP21モードの光に着目する場合に、LP21モードの光の特定内側位置Riから特定外側位置Roまでにおける活性元素の平均濃度は、コアの中心点Cから特定内側位置Riまでにおける活性元素の平均濃度よりも高い。この様な活性元素の添加によれば、上記のように中心点Cから特定内側位置Riまでの領域に活性元素が添加されず、特定内側位置Riから特定外側位置Roまでの領域に活性元素が添加される場合と比べて、LP11モードの光の増幅率及びLP21モードの光の増幅率をLP01モードの光の増幅率よりも更に大きくすることができる。 FIG. 10 is a view showing the concentration distribution of the active element in the amplification optical fiber 10 of the present modification as in FIG. 2D. As shown in FIG. 10, in this modification, the active element is not added to the core 11, the active element is added to an area from the outer peripheral surface IF of the core 11 to a certain position outside Ro 2. Even in the same manner as in the embodiment in the present modification, when attention is paid to light LP 11 mode, the average concentration of the active elements in the specified position inside Ri 1 of LP 11 mode of light to a certain position outside Ro 1 is higher than the average concentration of the active element in the center point C of the core to a certain inside position Ri 1. Similarly, when focusing on the light of the LP 21 mode, the average concentration of the active elements in the specified position inside Ri 2 of LP 21 mode of light to a certain position outside Ro 2 are identified inside position Ri from the central point C of the core It is higher than the average concentration of active elements up to 2 . According to such addition of the active element, the active element is not added to the region from the center point C to the specific inner position Ri 2 as described above, and the region from the specific inner position Ri 2 to the specific outer position Ro 1 is not added. Compared with the case where an active element is added, the amplification factor of light in the LP 11 mode and the amplification factor of light in the LP 21 mode can be made larger than the amplification factor of light in the LP 01 mode.
 なお、本実施形態や変形例の増幅用光ファイバ10が図3に示す光ファイバ増幅器に用いられる場合、入射端20にはLP01モードの光、LP11モードの光及びLP21モードの光が入射され、増幅用光ファイバ10において、LP11モードの光及びLP21モードの光がLP01モードの光より高い増幅率で増幅されて、出射端50から出射する。 When the amplification optical fiber 10 according to the present embodiment or the modification is used in the optical fiber amplifier shown in FIG. 3, LP 01 mode light, LP 11 mode light, and LP 21 mode light are input to the incident end 20. In the optical fiber for amplification 10, the LP 11 mode light and the LP 21 mode light are amplified with a higher amplification factor than the LP 01 mode light and are emitted from the emission end 50.
 以上、本発明について、実施形態を例に説明したが、本発明はこれらに限定されるものではない。 As mentioned above, although this invention was demonstrated to the example for embodiment, this invention is not limited to these.
 例えば、第1実施形態において、コア11の中心点Cから特定内側位置Riまでの少なくとも一部の領域に平均濃度が低濃度の活性元素が添加されても良い。ただし、特定内側位置Riから特定外側位置Roまでの領域における活性元素の平均濃度が、コア11の中心点Cから特定内側位置Riまでにおける活性元素の平均濃度よりも高くされるという濃度分布が満たされる必要がある。この場合であっても、LP11モードの光の増幅率をLP01モードの光の増幅率よりも大きくすることができる。また、第1実施形態の変形例では、コア11に活性元素が添加されず、コア11の外周面IFから特定外側位置Roまでの領域に活性元素が添加された。しかし、特定内側位置Riから特定外側位置Roまでの領域における活性元素の平均濃度が、コア11の中心点Cから特定内側位置Riまでにおける活性元素の平均濃度よりも高くされるという上記濃度分布が満たされる限りにおいて、コア11の少なくとも一部の領域に平均濃度が低濃度の活性元素が添加されても良い。 For example, in the first embodiment, an active element having a low average concentration may be added to at least a part of the region from the center point C of the core 11 to the specific inner position Ri. However, the concentration distribution in which the average concentration of the active element in the region from the specific inner position Ri to the specific outer position Ro is higher than the average concentration of the active element from the center point C of the core 11 to the specific inner position Ri is satisfied. There is a need. Even in this case, the amplification factor of the LP 11 mode light can be made larger than the amplification factor of the LP 01 mode light. In the modification of the first embodiment, the active element is not added to the core 11, and the active element is added to the region from the outer peripheral surface IF of the core 11 to the specific outer position Ro. However, the above-described concentration distribution is satisfied in which the average concentration of the active element in the region from the specific inner position Ri to the specific outer position Ro is higher than the average concentration of the active element from the center point C of the core 11 to the specific inner position Ri. As long as it is possible, an active element having a low average concentration may be added to at least a partial region of the core 11.
 また、第2実施形態及び第2実施形態の第1から第3の変形例において、コア11の中心点Cから特定内側位置Riまでの少なくとも一部の領域に低濃度の活性元素が添加されても良い。ただし、この場合、第2実施形態及び第2実施形態の第1から第3の変形例では、以下の濃度分布が満たされる必要がある。 In the second embodiment and the first to third modifications of the second embodiment, a low concentration active element is added to at least a part of the region from the center point C of the core 11 to the specific inner position Ri 1. May be. However, in this case, the following density distribution needs to be satisfied in the second embodiment and the first to third modifications of the second embodiment.
 つまり、第2実施形態では、コア11を伝搬する通信に用いられる最高次の高次モード(LP21モード)の光に着目する場合における特定内側位置Riから、コア11を伝搬するLP11モードの光に着目する場合おける特定外側位置Roまでの間の全ての領域において、コア11の中心点Cからコア11を伝搬するLP11モードの光に着目する場合における特定内側位置Riまでの活性元素の平均濃度よりも高い濃度で活性元素が添加されるという濃度分布が満たされる。 That is, in the second embodiment, the LP 11 mode that propagates through the core 11 from the specific inner position Ri 2 when focusing on the light of the highest order higher-order mode (LP 21 mode) used for communication propagating through the core 11. In the entire region between the specific outer position Ro 1 when focusing on the light of the center and the light from the center point C of the core 11 to the specific inner position Ri 1 when focusing on the LP 11 mode light propagating through the core 11. The concentration distribution in which the active element is added at a concentration higher than the average concentration of the active element is satisfied.
 また、第2実施形態の第1の変形例では、コア11を伝搬する通信に用いられる最高次の高次モード(LP21モード)の光に着目する場合における特定内側位置Riから、コアを伝搬する通信に用いられる最高次の高次モードの光に着目する場合における特定外側位置Roまでの間の全ての領域において、コア11の中心点からコアを伝搬するLP11モードの光に着目する場合における特定内側位置Riまでの活性元素の平均濃度よりも高い濃度で活性元素が添加されるという濃度分布が満たされる。 In the first modification of the second embodiment, the core is moved from the specific inner position Ri 2 when focusing on the light of the highest order higher order mode (LP 21 mode) used for communication propagating through the core 11. Focusing on LP 11 mode light propagating through the core from the center point of the core 11 in all regions up to the specific outer position Ro 2 when focusing on the light of the highest order higher order mode used for propagating communication In this case, the concentration distribution in which the active element is added at a concentration higher than the average concentration of the active element up to the specific inner position Ri 1 is satisfied.
 また、第2実施形態の第2の変形例では、コア11を伝搬するLP11モードの光に着目する場合おける特定内側位置Riから、コア11を伝搬するLP11モードの光に着目する場合おける特定外側位置Roまでの間の全ての領域において、コア11の中心点Cからコア11を伝搬するLP11モードの光に着目する場合における特定内側位置Riまでの活性元素の平均濃度よりも高い濃度で活性元素が添加されるという濃度分布が満たされる。 In the second modification of the second embodiment, a particular inner position Ri 1 where definitive if attention is paid to the LP 11 mode propagating through the core 11 of light, if attention is paid to the LP 11 mode propagating through the core 11 of light From the average concentration of the active element up to the specific inner position Ri 1 when focusing on the LP 11 mode light propagating through the core 11 from the center point C of the core 11 in all regions between the specific outer position Ro 1 The concentration distribution in which the active element is added at a high concentration is satisfied.
 また、第2実施形態の第3の変形例では、コア11を伝搬するLP11モードの光に着目する場合おける特定内側位置Riから、コア11を伝搬する通信に用いられる最高次の高次モード(LP21モード)の光に着目する場合における特定外側位置Roまでの間の全ての領域において、コア11の中心点Cからコア11を伝搬するLP11モードの光に着目する場合における特定内側位置Riまでの活性元素の平均濃度よりも高い濃度で活性元素が添加されるという濃度分布が満たされる。 Further, in the third modification of the second embodiment, the highest order higher order used for communication propagating through the core 11 from the specific inner position Ri 1 when focusing on the LP 11 mode light propagating through the core 11. Identification when focusing on LP 11 mode light propagating from the center point C of the core 11 to the core 11 in all regions up to the specific outer position Ro 2 when focusing on mode (LP 21 mode) light The concentration distribution in which the active element is added at a concentration higher than the average concentration of the active element up to the inner position Ri 1 is satisfied.
 また、第2実施形態の第4の変形例においても、コア11の少なくとも一部の領域に低濃度の活性元素が添加されても良い。また、第1実施形態における特定内側位置Riから特定外側位置Roまでの一部の領域、第2実施形態における特定内側位置Riから特定外側位置Roまでの一部の領域、第2実施形態の第1の変形例における特定内側位置Riから特定外側位置Roまでの一部の領域、第2実施形態の第2の変形例における特定内側位置Riから特定外側位置Roまでの一部の領域、第2実施形態の第3の変形例における特定内側位置Riから特定外側位置Roまでの一部の領域において、活性元素が添加されなかったり、低濃度の活性元素が添加されても良い。ただし、これらの場合、コア11を伝搬する通信に用いられるどの高次モードの光に着目する場合においても、特定内側位置から特定外側位置までにおける活性元素の平均濃度が、コア11の中心点Cから特定内側位置までにおける活性元素の平均濃度よりも高くされるという濃度分布が満たされ、通信に用いられる全ての高次モードの光の増幅率が基本モード(LP01モード)の光の増幅率よりも大きくされる。 Also in the fourth modified example of the second embodiment, a low concentration active element may be added to at least a partial region of the core 11. Also, part of the region to a specific position outside Ro from certain inside position Ri of the first embodiment, a part of the region from a particular inner position Ri 2 to a certain position outside Ro 1 of the second embodiment, the second embodiment A part of the region from the specific inner position Ri 2 to the specific outer position Ro 2 in the first modified example, and one region from the specific inner position Ri 1 to the specific outer position Ro 1 in the second modified example of the second embodiment. In some regions from the specific inner position Ri 1 to the specific outer position Ro 2 in the third region of the second modification of the second embodiment, no active element is added or a low concentration of the active element is added. May be. However, in these cases, in the case where attention is paid to any higher-order mode light used for communication propagating through the core 11, the average concentration of the active element from the specific inner position to the specific outer position is the center point C of the core 11. The concentration distribution that is higher than the average concentration of the active element from the position to the specific inner position is satisfied, and the amplification factors of all higher-order modes used for communication are higher than the amplification factors of the light in the fundamental mode (LP 01 mode). Is also enlarged.
 図11は、増幅用光ファイバの他の例を示す図である。上記実施形態やその変形例では、クラッド12の外周の形状が円形の場合について説明した。しかし、図11に示すように、クラッド12の外周が多角形であることが好ましい。クラッド12の断面形状が円形の場合に、励起光がクラッド12と外側クラッド13との界面において一定の角度で反射し続け、励起光がコア11に入射せずにクラッド12を伝搬するスキュー光が生じ易い。そこで、本例のようにクラッド12が多角形とされることで、スキュー光を抑制することができ、コア11に添加された活性元素を効率良く励起することができる。 FIG. 11 is a diagram showing another example of the amplification optical fiber. In the embodiment and the modification thereof, the case where the outer periphery of the cladding 12 is circular has been described. However, as shown in FIG. 11, the outer periphery of the cladding 12 is preferably polygonal. When the cross-sectional shape of the clad 12 is circular, the excitation light continues to be reflected at a certain angle at the interface between the clad 12 and the outer clad 13, and the skew light propagating through the clad 12 without the excitation light entering the core 11 is generated. It is likely to occur. Therefore, as in the present example, the clad 12 is polygonal so that the skew light can be suppressed, and the active element added to the core 11 can be excited efficiently.
 また、上記実施形態やその変形例では、コア11が一つの例、すなわち、シングルコア増幅用光ファイバについて説明した。しかし、コア11は複数であっても良い。図12は、マルチコア増幅用光ファイバを示す図である。図12では、クラッド12の中心にコア11が配置され、そのコア11の周りに複数のコア11が配置される。つまりコア11が1-6配置されている。ただし、これはコア11が複数の場合の例であり、複数のコア11の配置は特に限定されない。本変形例において、それぞれのコア11をLP01モードの光及びLP11モードの光が少なくとも伝搬する。この場合、活性元素の濃度分布は、それぞれのコア11及び当該コア11の近傍におけるクラッド12において、第1実施形態やその変形例と同様とされる。また、それぞれのコア11をLP21モードの光が更に伝搬しても良く、この場合、活性元素の濃度分布は、それぞれのコア11及び当該コア11の近傍におけるクラッド12において、第2実施形態やその変形例と同様とされる。なお、本例の増幅用光ファイバが光ファイバ増幅器に用いられる場合、クラッド12に励起光が入射され、それぞれのコア11に上記実施形態と同様の信号光が入射される構成とされる。 Moreover, in the said embodiment and its modification, the core 11 demonstrated one example, ie, the single core amplification optical fiber. However, the core 11 may be plural. FIG. 12 is a diagram illustrating a multi-core amplification optical fiber. In FIG. 12, the core 11 is disposed at the center of the cladding 12, and a plurality of cores 11 are disposed around the core 11. That is, the core 11 is arranged 1-6. However, this is an example in which a plurality of cores 11 are provided, and the arrangement of the plurality of cores 11 is not particularly limited. In this modification, at least the LP 01 mode light and the LP 11 mode light propagate through each core 11. In this case, the concentration distribution of the active element is the same as that of the first embodiment and the modification thereof in each core 11 and the cladding 12 in the vicinity of the core 11. In addition, LP 21 mode light may further propagate through each core 11. In this case, the concentration distribution of the active element is the same as that in the second embodiment or the clad 12 in the vicinity of the core 11. This is the same as the modification. When the amplification optical fiber of this example is used for an optical fiber amplifier, pump light is incident on the clad 12 and signal light similar to that in the above embodiment is incident on each core 11.
 図13は、マルチコア増幅用光ファイバの他の例を示す図である。図13に示すように、マルチコア増幅用光ファイバにおいてもクラッド12の外周が多角形であることが好ましい。この場合、図11における説明と同様に、スキュー光を抑制することができ、コア11に添加された活性元素を効率良く励起することができる。 FIG. 13 is a diagram showing another example of an optical fiber for multicore amplification. As shown in FIG. 13, it is preferable that the outer periphery of the cladding 12 is also a polygon in the multi-core amplification optical fiber. In this case, similarly to the description in FIG. 11, skew light can be suppressed, and the active element added to the core 11 can be excited efficiently.
 また、上記実施形態や変形例等の例では、増幅用光ファイバが外側クラッドを有するダブルクラッドファイバとされた。しかし、増幅用光ファイバはダブルクラッドファイバとされなくても良い。この場合、励起光がコア11に入射される構造とすればよい。 In the examples of the above-described embodiment and modifications, the amplification optical fiber is a double-clad fiber having an outer cladding. However, the amplification optical fiber may not be a double clad fiber. In this case, a structure in which excitation light is incident on the core 11 may be used.
 また、第1実施形態では、通信に用いられるLP01モードの光及びLP11モードの光が増幅用光ファイバ10で増幅されるものとし、第2実施形態では、通信に用いられるLP01モードの光、LP11モードの光及びLP21モードの光が増幅用光ファイバ10で増幅されるものとした。しかし、本発明はこれに限らず、さらに高次のモードの光が増幅用光ファイバで増幅されても良い。ただし、この場合であっても、コア11を伝搬する通信に用いられるどの高次モードの光に着目する場合においても、特定内側位置から特定外側位置までにおける活性元素の平均濃度が、コア11の中心点Cから特定内側位置までにおける活性元素の平均濃度よりも高くされるという濃度分布が満たされ、通信に用いられる全ての高次モードの光の増幅率が基本モード(LP01モード)の光の増幅率よりも大きくされる。なお、増幅用光ファイバ10において、増幅される対象となる光が、通信に用いられるLP01モードの光及びLP11モードの光、或いは、光通信に用いられるLP01モードの光、LP11モードの光及びLP21モードの光であれば、LP02モードといった偶モードの高次モードの光が増幅の対象とならないため好ましい。 In the first embodiment, it is assumed that light of the light and LP 11 modes LP 01 mode used in communication is amplified by the amplification optical fiber 10, in the second embodiment, the LP 01 mode used in communication The light, the LP 11 mode light, and the LP 21 mode light are amplified by the amplification optical fiber 10. However, the present invention is not limited to this, and higher-order mode light may be amplified by the amplification optical fiber. However, even in this case, when focusing on any higher-order mode light used for communication propagating through the core 11, the average concentration of the active element from the specific inner position to the specific outer position is The concentration distribution that is higher than the average concentration of the active element from the center point C to the specific inner position is satisfied, and the amplification factors of all the higher-order mode light used for communication are fundamental mode (LP 01 mode) light. It is made larger than the amplification factor. Note that in the amplification optical fiber 10, light to be amplified is LP 01 mode light and LP 11 mode light used for communication, LP 01 mode light used for optical communication, LP 11 mode. And light in the LP 21 mode are preferable because even mode higher order light, such as the LP 02 mode, is not subject to amplification.
 以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明するが、本発明はこれに限定されるものでは無い。 Hereinafter, the contents of the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these.
 (実施例1)
 図2に示す増幅用光ファイバと同じ増幅用光ファイバを測定した。従って、この増幅用光ファイバでは、コアの屈折率分布が径方向に一定で、LP11モードの光の規格化された強度がLP01モードの光の規格化された強度よりも大きい領域のみに活性元素が添加されている。この増幅用光ファイバにおいて、LP21モードの光の理論カットオフ波長λcが1.40μmと1.50μmのそれぞれ場合において、波長1.55μmの光におけるLP01モードの光の実効コア断面積Aeffと、波長1.55μmの光におけるLP01モードの光の増幅率Γ01とLP11モードの光の増幅率Γ11との比Γ11/Γ01との関係を調べた。その結果を図14に示す。
Example 1
The same amplification optical fiber as the amplification optical fiber shown in FIG. 2 was measured. Therefore, in this amplification optical fiber, the refractive index distribution of the core is constant in the radial direction, and the normalized intensity of the LP 11 mode light is larger than the normalized intensity of the LP 01 mode light only. An active element is added. In this optical fiber for amplification, when the theoretical cutoff wavelength λc of the LP 21 mode light is 1.40 μm and 1.50 μm, the effective core area A eff of the LP 01 mode light in the light of wavelength 1.55 μm. When examined the relationship between the ratio gamma 11 / gamma 01 with the amplification factor gamma 11 of light LP 01 mode optical amplification factor gamma 01 and LP 11 modes in the optical wavelength 1.55 .mu.m. The result is shown in FIG.
 図14に示す通り、LP21モードの光の理論カットオフ波長λcが1.40μmと1.50μmのいずれの場合においても、LP01モードの光の実効コア断面積Aeffによらず、比Γ11/Γ01は、概ね1.7となった。従って、図2に示す増幅用光ファイバ10では、LP11モードの光の増幅率がLP01モードの光の増幅率よりも大きい結果となった。従って、図2に示す増幅用光ファイバ10によれば、LP11モードの光の増幅率をLP01モードの光の増幅率よりも大きくすることができることが示された。 As shown in FIG. 14, the ratio Γ is independent of the effective core area A eff of the LP 01 mode light, regardless of whether the theoretical cutoff wavelength λc of the LP 21 mode light is 1.40 μm or 1.50 μm. 11 / Γ 01 was approximately 1.7. Therefore, in the amplification optical fiber 10 shown in FIG. 2, the amplification factor of the LP 11 mode light is larger than the amplification factor of the LP 01 mode light. Therefore, according to the amplification optical fiber 10 shown in FIG. 2, it was shown that the amplification factor of the LP 11 mode light can be made larger than the amplification factor of the LP 01 mode light.
 (実施例2)
 図4に示す増幅用光ファイバと同じ増幅用光ファイバを測定した。従って、この増幅用光ファイバでは、コアの屈折率分布が径方向に一定で、クラッドのみに活性元素が添加されている。この増幅用光ファイバにおいて、実施例1と同様にLP21モードの光の理論カットオフ波長λcが1.40μmと1.50μmのそれぞれ場合において、波長1.55μmの光におけるLP01モードの光の実効コア断面積Aeffと、波長1.55μmの光におけるLP01モードの光の増幅率Γ01とLP11モードの光の増幅率Γ11との比Γ11/Γ01との関係を調べた。その結果を図15に示す。
(Example 2)
The same amplification optical fiber as the amplification optical fiber shown in FIG. 4 was measured. Therefore, in this amplification optical fiber, the refractive index distribution of the core is constant in the radial direction, and the active element is added only to the cladding. In this amplification optical fiber, in the same manner as in the first embodiment, when the theoretical cutoff wavelength λc of the LP 21 mode light is 1.40 μm and 1.50 μm, the LP 01 mode light in the light of 1.55 μm wavelength is obtained. The relationship between the effective core area A eff and the ratio Γ 11 / Γ 01 between the LP 01 mode light amplification factor Γ 01 and the LP 11 mode light amplification factor Γ 11 in the light having a wavelength of 1.55 μm was examined. . The result is shown in FIG.
 図15に示す通り、LP21モードの光の理論カットオフ波長λcが1.40μmと1.50μmのいずれの場合においても、LP01モードの光の実効コア断面積Aeffによらず、比Γ11/Γ01は、概ね3となった。従って、図4に示す例では、図2に示す例よりも更に、LP11モードの光の増幅率がLP01モードの光の増幅率よりも大きい結果となった。従って、図4に示す増幅用光ファイバ10によれば、LP11モードの光の増幅率をLP01モードの光の増幅率よりも大きくすることができることが示された。 As shown in FIG. 15, the ratio Γ is independent of the effective core area A eff of the LP 01 mode light regardless of whether the theoretical cutoff wavelength λc of the LP 21 mode light is 1.40 μm or 1.50 μm. 11 / Γ 01 was approximately 3. Therefore, in the example shown in FIG. 4, the amplification factor of the light in the LP 11 mode is larger than the amplification factor of the light in the LP 01 mode, compared to the example shown in FIG. Therefore, according to the amplification optical fiber 10 shown in FIG. 4, it is shown that the amplification factor of the LP 11 mode light can be made larger than the amplification factor of the LP 01 mode light.
 以上説明したように、本発明によれば、基本モードの光よりも高次モードの光を増幅し得る増幅用光ファイバが提供され、光通信の分野等においての利用が期待される。 As described above, according to the present invention, an optical fiber for amplification capable of amplifying higher-order mode light than fundamental mode light is provided, and is expected to be used in the field of optical communication.
 1・・・光ファイバ増幅器
 10・・・増幅用光ファイバ
 11・・・コア
 12・・・クラッド
 13・・・外側クラッド
 14・・・被覆層
 20・・・入射端
 30・・・励起光源
 40・・・光コンバイナ
 Ri,Ri,Ri・・・特定内側位置
 Ro,Ro,Ro・・・特定外側位置
DESCRIPTION OF SYMBOLS 1 ... Optical fiber amplifier 10 ... Amplifying optical fiber 11 ... Core 12 ... Cladding 13 ... Outer cladding 14 ... Covering layer 20 ... Incident end 30 ... Excitation light source 40・ ・ ・ Optical combiner Ri, Ri 1 , Ri 2 ... Specific inner position Ro, Ro 1 , Ro 2 ... Specific outer position

Claims (13)

  1.  コア及びクラッドを有し、通信に用いられる所定波長の光が前記コアを少なくとも2以上のLPモードで伝搬し、光の導波領域の少なくとも一部に活性元素が添加される増幅用光ファイバであって、
     前記コアを伝搬する特定の高次モードの光に着目して、径方向におけるLP01モードの光の規格化された強度と当該特定の高次モードの光の規格化された強度とが一致する最も内側の位置を特定内側位置とし、当該特定の高次モードの光の規格された強度が0.0001となる最も外側の位置を特定外側位置とする場合に、
     前記コアを伝搬する通信に用いられるどの高次モードの光に着目する場合においても、前記特定内側位置から前記特定外側位置までにおける前記活性元素の平均濃度が、前記コアの中心点から前記特定内側位置までにおける前記活性元素の平均濃度よりも高く、
     通信に用いられる全ての高次モードの光の増幅率が基本モードの光の増幅率よりも大きい
    ことを特徴とする増幅用光ファイバ。
    An amplifying optical fiber having a core and a cladding, wherein light of a predetermined wavelength used for communication propagates through the core in at least two LP modes, and an active element is added to at least a part of a light guiding region. There,
    Focusing on the specific higher-order mode light propagating through the core, the normalized intensity of the LP 01 mode light in the radial direction matches the normalized intensity of the specific higher-order mode light. When the innermost position is the specific inner position and the outermost position where the standardized intensity of the light of the specific higher-order mode is 0.0001 is the specific outer position,
    When focusing on any higher-order mode light used for communication propagating through the core, the average concentration of the active element from the specific inner position to the specific outer position is determined from the center point of the core to the specific inner side. Higher than the average concentration of the active element up to the position,
    An amplification optical fiber characterized in that the amplification factors of all higher-order mode light used for communication are larger than the amplification factors of fundamental mode light.
  2.  前記高次モードは、LP11モード、及び、LP21モードとされる
    ことを特徴とする請求項1に記載の増幅用光ファイバ。
    The amplification optical fiber according to claim 1, wherein the higher-order modes are an LP 11 mode and an LP 21 mode.
  3.  前記コアの前記中心点から前記コアを伝搬するLP11モードの光における前記特定内側位置までには、前記活性元素が添加されない
    ことを特徴とする請求項1または2に記載の増幅用光ファイバ。
    3. The amplification optical fiber according to claim 1, wherein the active element is not added from the center point of the core to the specific inner position in LP 11 mode light propagating through the core. 4.
  4.  前記コアの前記中心点から通信に用いられる最高次の高次モードの光における前記特定内側位置までには、前記活性元素が添加されない
    ことを特徴とする請求項3に記載の増幅用光ファイバ。
    4. The amplification optical fiber according to claim 3, wherein the active element is not added from the center point of the core to the specific inner position in the highest-order higher-order mode light used for communication.
  5.  前記コアには前記活性元素が添加されない
    ことを特徴とする請求項4に記載の増幅用光ファイバ。
    The amplification optical fiber according to claim 4, wherein the active element is not added to the core.
  6.  前記コアを伝搬する通信に用いられる最高次の高次モードの光に着目する場合における前記特定内側位置から、前記コアを伝搬するLP11モードの光に着目する場合おける前記特定外側位置までの間の全ての領域において、前記コアの前記中心点から前記コアを伝搬するLP11モードの光に着目する場合における前記特定内側位置までの前記活性元素の平均濃度よりも高い濃度で前記活性元素が添加される
    ことを特徴とする請求項1から4のいずれか1項に記載の増幅用光ファイバ。
    From the specific inner position when focusing on the light of the highest order higher order mode used for communication propagating through the core to the specific outer position when focusing on the light of LP 11 mode propagating through the core In all the regions, the active element is added at a concentration higher than the average concentration of the active element up to the specific inner position when focusing on the LP 11 mode light propagating through the core from the center point of the core The optical fiber for amplification according to any one of claims 1 to 4, wherein the optical fiber for amplification is used.
  7.  前記コアを伝搬する通信に用いられる最高次の高次モードの光に着目する場合における前記特定内側位置から、前記コアを伝搬する通信に用いられる最高次の高次モードの光に着目する場合における前記特定外側位置までの間の全ての領域において、前記コアの前記中心点から前記コアを伝搬するLP11モードの光に着目する場合における前記特定内側位置までの前記活性元素の平均濃度よりも高い濃度で前記活性元素が添加される
    ことを特徴とする請求項6に記載の増幅用光ファイバ。
    When paying attention to the light of the highest order higher order mode used for communication propagating through the core from the specific inner position when paying attention to the light of the highest order higher order mode used for communication propagating through the core Higher than the average concentration of the active element up to the specific inner position when focusing on the LP 11 mode light propagating through the core from the central point of the core in all regions up to the specific outer position The amplification optical fiber according to claim 6, wherein the active element is added at a concentration.
  8.  前記コアを伝搬するLP11モードの光に着目する場合おける前記特定内側位置から、前記コアを伝搬するLP11モードの光に着目する場合おける前記特定外側位置までの間の全ての領域において、前記コアの前記中心点から前記コアを伝搬するLP11モードの光に着目する場合における前記特定内側位置までの前記活性元素の平均濃度よりも高い濃度で前記活性元素が添加される
    ことを特徴とする請求項1から3のいずれか1項に記載の増幅用光ファイバ。
    In all areas of between the specific inner position definitive if focusing on light LP 11 mode propagating through the core, until the specific outer position definitive if focusing on light LP 11 mode propagating through the core, the The active element is added at a concentration higher than the average concentration of the active element from the center point of the core to the specific inner position in the case of paying attention to LP 11 mode light propagating through the core. The amplification optical fiber according to any one of claims 1 to 3.
  9.  前記コアを伝搬するLP11モードの光に着目する場合おける前記特定内側位置から、前記コアを伝搬する通信に用いられる最高次の高次モードの光に着目する場合における前記特定外側位置までの間の全ての領域において、前記コアの前記中心点から前記コアを伝搬するLP11モードの光に着目する場合における前記特定内側位置までの前記活性元素の平均濃度よりも高い濃度で前記活性元素が添加される
    ことを特徴とする請求項8に記載の増幅用光ファイバ。
    From the specific inner position when focusing on the LP 11 mode light propagating through the core to the specific outer position when focusing on the highest order higher mode light used for communication propagating through the core In all the regions, the active element is added at a concentration higher than the average concentration of the active element up to the specific inner position when focusing on the LP 11 mode light propagating through the core from the center point of the core The optical fiber for amplification according to claim 8, wherein the optical fiber for amplification is used.
  10.  前記コアを複数備える
    ことを特徴とする請求項1から9のいずれか1項に記載の増幅用光ファイバ。
    The amplification optical fiber according to claim 1, comprising a plurality of the cores.
  11.  前記クラッドを被覆し前記クラッドよりも屈折率が低い外側クラッドを更に備える
    ことを特徴とする請求項1から10のいずれか1項に記載の増幅用光ファイバ。
    The amplification optical fiber according to any one of claims 1 to 10, further comprising an outer cladding that covers the cladding and has a lower refractive index than the cladding.
  12.  前記クラッドの外周の形状は多角形とされる
    ことを特徴とする請求項11に記載の増幅用光ファイバ。
    The amplification optical fiber according to claim 11, wherein a shape of an outer periphery of the clad is a polygon.
  13.  前記活性元素がエルビウムとされる
    ことを特徴とする請求項1から12のいずれか1項に記載の増幅用光ファイバ。
     
     
    The optical fiber for amplification according to any one of claims 1 to 12, wherein the active element is erbium.

PCT/JP2017/037515 2017-01-27 2017-10-17 Optical fiber for amplification WO2018138982A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017013546A JP6668272B2 (en) 2017-01-27 2017-01-27 Optical fiber for amplification
JP2017-013546 2017-06-23

Publications (1)

Publication Number Publication Date
WO2018138982A1 true WO2018138982A1 (en) 2018-08-02

Family

ID=62979243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037515 WO2018138982A1 (en) 2017-01-27 2017-10-17 Optical fiber for amplification

Country Status (2)

Country Link
JP (1) JP6668272B2 (en)
WO (1) WO2018138982A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022039073A1 (en) * 2020-08-17 2022-02-24 古河電気工業株式会社 Optical amplification fibre, optical fibre amplifier, and optical communication system
WO2022157896A1 (en) * 2021-01-21 2022-07-28 日本電信電話株式会社 Optical fiber amplifier
WO2023195155A1 (en) * 2022-04-08 2023-10-12 日本電信電話株式会社 Optical fiber amplifier

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7214527B2 (en) * 2019-03-26 2023-01-30 古河電気工業株式会社 multicore optical amplifying fiber, multicore optical fiber amplifier and optical communication system
JP7136534B2 (en) 2019-05-07 2022-09-13 株式会社豊田中央研究所 Optical fiber laser device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030031442A1 (en) * 1999-01-13 2003-02-13 Siegman Anthony E. Fiber lasers having a complex-valued Vc-parameter for gain-guiding
WO2008133242A1 (en) * 2007-04-25 2008-11-06 Fujikura Ltd. Rare earth-added core optical fiber
JP2010533634A (en) * 2007-07-16 2010-10-28 コラクティヴ ハイ−テック インコーポレイティド Light emitting device with phosphosilicate glass
WO2011077984A1 (en) * 2009-12-22 2011-06-30 株式会社フジクラ Amplifying optical fiber, and optical fiber amplifier and resonator using same
JP2012510176A (en) * 2008-11-28 2012-04-26 エヌケイティー フォトニクス アクティーゼルスカブ Improved clad pump optical waveguide
JP2012099649A (en) * 2010-11-02 2012-05-24 Fujikura Ltd Optical fiber for amplification, and optical fiber amplifier and resonator using the same
JP2013161875A (en) * 2012-02-02 2013-08-19 Fujikura Ltd Optical component, optical fiber amplifier using the same, and fiber laser device
JP2015088530A (en) * 2013-10-29 2015-05-07 公立大学法人大阪府立大学 Multi-core optical fiber for optical amplification and optical amplifier
JP2015198177A (en) * 2014-04-01 2015-11-09 日本電信電話株式会社 fiber and fiber amplifier
JP2016111198A (en) * 2014-12-05 2016-06-20 日本電信電話株式会社 Optical amplifier

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013023193A1 (en) * 2011-08-10 2013-02-14 Ofs Fitel, Llc Few moded fiber device employing mode conversion

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030031442A1 (en) * 1999-01-13 2003-02-13 Siegman Anthony E. Fiber lasers having a complex-valued Vc-parameter for gain-guiding
WO2008133242A1 (en) * 2007-04-25 2008-11-06 Fujikura Ltd. Rare earth-added core optical fiber
JP2010533634A (en) * 2007-07-16 2010-10-28 コラクティヴ ハイ−テック インコーポレイティド Light emitting device with phosphosilicate glass
JP2012510176A (en) * 2008-11-28 2012-04-26 エヌケイティー フォトニクス アクティーゼルスカブ Improved clad pump optical waveguide
WO2011077984A1 (en) * 2009-12-22 2011-06-30 株式会社フジクラ Amplifying optical fiber, and optical fiber amplifier and resonator using same
JP2012099649A (en) * 2010-11-02 2012-05-24 Fujikura Ltd Optical fiber for amplification, and optical fiber amplifier and resonator using the same
JP2013161875A (en) * 2012-02-02 2013-08-19 Fujikura Ltd Optical component, optical fiber amplifier using the same, and fiber laser device
JP2015088530A (en) * 2013-10-29 2015-05-07 公立大学法人大阪府立大学 Multi-core optical fiber for optical amplification and optical amplifier
JP2015198177A (en) * 2014-04-01 2015-11-09 日本電信電話株式会社 fiber and fiber amplifier
JP2016111198A (en) * 2014-12-05 2016-06-20 日本電信電話株式会社 Optical amplifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022039073A1 (en) * 2020-08-17 2022-02-24 古河電気工業株式会社 Optical amplification fibre, optical fibre amplifier, and optical communication system
WO2022157896A1 (en) * 2021-01-21 2022-07-28 日本電信電話株式会社 Optical fiber amplifier
WO2023195155A1 (en) * 2022-04-08 2023-10-12 日本電信電話株式会社 Optical fiber amplifier

Also Published As

Publication number Publication date
JP2018121033A (en) 2018-08-02
JP6668272B2 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
WO2018138982A1 (en) Optical fiber for amplification
US8498044B2 (en) Amplification optical fiber, and optical fiber amplifier and resonator using the same
US9431787B2 (en) Amplification optical fiber and fiber laser device using the same
US8564877B2 (en) Photonic bandgap fiber and fiber amplifier
US8456737B2 (en) Amplification optical fiber and optical fiber amplifier and resonator using the same
JP5238509B2 (en) Photonic bandgap fiber
CA3029493C (en) Optical fiber and laser device
US8755111B2 (en) Amplification optical fiber, and optical fiber amplifier and resonator using same
WO2016035414A1 (en) Fiber laser device
US9252556B2 (en) Amplifying optical fiber and optical amplifier
JP2017041515A (en) Optical fiber for amplification, and optical fiber amplifier employing the same
WO2020203930A1 (en) Active element added-optical fiber, resonator, and fiber laser device
WO2020203900A1 (en) Active element-added optical fiber, resonator, and fiber laser device
WO2016143713A1 (en) Optical fiber, fiber amplifier, and fiber laser
JP6138877B2 (en) Amplifying optical fiber and optical fiber amplifier using the same
CA3025416C (en) Amplification optical fiber, fiber laser device, and optical resonator
JP2019029421A (en) Fiber laser device
US20210265799A1 (en) Active waveguide for high-power laser
WO2020170558A1 (en) Optical component and laser device
JP2021057566A (en) Optical fiber added with active element, resonator and fiber laser device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893972

Country of ref document: EP

Kind code of ref document: A1