WO2018138838A1 - Mass spectrometry method and mass spectrometry device - Google Patents

Mass spectrometry method and mass spectrometry device Download PDF

Info

Publication number
WO2018138838A1
WO2018138838A1 PCT/JP2017/002774 JP2017002774W WO2018138838A1 WO 2018138838 A1 WO2018138838 A1 WO 2018138838A1 JP 2017002774 W JP2017002774 W JP 2017002774W WO 2018138838 A1 WO2018138838 A1 WO 2018138838A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
ions
gas
quadrupole
quadrupole mass
Prior art date
Application number
PCT/JP2017/002774
Other languages
French (fr)
Japanese (ja)
Inventor
真二 宮内
浩子 上田
良弘 上野
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2018564018A priority Critical patent/JPWO2018138838A1/en
Priority to PCT/JP2017/002774 priority patent/WO2018138838A1/en
Publication of WO2018138838A1 publication Critical patent/WO2018138838A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons

Definitions

  • the present invention relates to a mass spectrometer using a quadrupole mass filter that selects ions having a specific mass-to-charge ratio m / z, and a mass spectrometry method in the mass spectrometer.
  • the mass spectrometer referred to here is not only a general single quadrupole mass spectrometer using a quadrupole mass filter as the only mass separator, but also a two-stage quadrupole for performing MS / MS analysis.
  • Q detected by dissociating ions selected by a triple quadrupole mass spectrometer equipped with a quadrupole mass filter or a quadrupole mass filter and then separating them according to the mass-to-charge ratio using a time-of-flight mass separator -It shall include a TOF mass spectrometer.
  • ions generated from a sample are introduced into a quadrupole mass filter to selectively pass only ions having a specific mass-to-charge ratio m / z. Ions are detected by a detector to obtain an intensity signal corresponding to the amount of ions.
  • a quadrupole mass filter is generally composed of four rod electrodes arranged in parallel to each other so as to surround a linear ion optical axis, and a voltage obtained by adding a DC voltage and a high-frequency voltage to each of the four rod electrodes. Applied. Due to the applied voltage, a quadrupole electric field is formed in the internal space of the quadrupole mass filter, and only ions having a certain mass-to-charge ratio or included in the mass-to-charge ratio range vibrate appropriately while the quadrupole is vibrating. The other ions pass through the internal space of the mass filter and diverge on the way. The conditions under which ions can stably pass through a quadrupole mass filter have been theoretically studied for a long time.
  • Non-Patent Document 1 As disclosed in Non-Patent Document 1, etc., the behavior of ions in an ideal quadrupole electric field is well known, but an ideal quadrupole electric field is formed in an actual quadrupole mass filter. It is very difficult.
  • an ideal rod electrode has a hyperbolic shape in cross section facing the ion optical axis, but in many cases, a rod electrode having a circular cross section is used as a rod electrode in order to avoid complicated manufacturing.
  • the configuration of the quadrupole mass filter deviates from the ideal state due to limitations in processing accuracy of each rod electrode and assembly accuracy of a plurality of rod electrodes.
  • Non-Patent Documents 3 and 4 when there is a deviation from an ideal quadrupole electric field in a quadrupole mass filter, a nonlinear resonance phenomenon occurs, and a peak that should originally have a shape as shown in FIG. As shown in FIG. 4 (b), it is known that the top portion has a cracked shape (see Non-Patent Documents 3 and 4).
  • Non-Patent Document 2 high-order multiplexing is performed by adjusting the ratio of the radius of each rod electrode to the inscribed circle radius of the plurality of rod electrodes, that is, the position of the rod electrodes. Attempts have been made to improve the distortion of peaks on the mass spectrum by reducing the polar electric field components. However, since the assembly error of the rod electrode varies from device to device, the magnitude of the high-order multipole electric field component also varies from device to device. It is difficult to reduce enough. Such work is very time consuming and not very practical.
  • the present invention has been made to solve the above-mentioned problems, and the main object of the present invention is on the mass spectrum resulting from the fact that the quadrupole electric field formed by the quadrupole mass filter is not ideal.
  • An object of the present invention is to provide a mass spectrometer and a mass spectrometry method that can easily reduce peak distortion.
  • a mass separator that separates ions according to a mass-to-charge ratio is usually placed in a chamber that is maintained at a vacuum level as high as possible. This is because, for example, in a quadrupole mass spectrometer, when ions, which can pass through the quadrupole mass filter, come into contact with the residual gas, the trajectory may change and cannot pass through. . That is, if the mass separator is placed under a relatively low degree of vacuum, the ion transmittance is reduced, leading to a reduction in detection sensitivity.
  • the inventor repeated simulation calculations and examinations under various conditions, and in the region where ions pass through the quadrupole mass filter, there are many opportunities for contact between the ions and neutral gas particles. It was found that the peak distortion on the mass spectrum is reduced on the contrary, although the transmittance of ions decreases. This is presumed to be the effect that the energy of ions increased by nonlinear resonance due to higher-order multipole electric field components is cooled by contact with neutral gas particles. The present invention has been made based on these findings.
  • the mass spectrometric method according to the present invention is a method of vacuuming a quadrupole mass filter that selectively passes ions having a predetermined mass-to-charge ratio or included in a predetermined mass-to-charge ratio range.
  • a mass spectrometry method using a mass spectrometer provided in a chamber At the time of analysis, at least the gas pressure in the space through which ions are to pass through the quadrupole mass filter is higher than the gas pressure when the vacuum pump that evacuates the vacuum chamber is operated at the maximum exhaust speed.
  • the ions are cooled by contact between the ions and the gas in the space in the quadrupole mass filter. It is characterized by that.
  • a first aspect of the mass spectrometer according to the present invention is configured to selectively pass ions having a predetermined mass-to-charge ratio or included in a predetermined mass-to-charge ratio range.
  • a mass spectrometer comprising a multipole mass filter inside a vacuum chamber, a) a gas introduction part for introducing a cooling gas into a space in which ions are to pass in the quadrupole mass filter; b) a control unit for controlling the amount of gas introduced by the gas introduction unit; It is characterized by having.
  • a mass spectrometer comprising a multipole mass filter inside a vacuum chamber, a) a vacuum pump for evacuating the vacuum chamber; b) The pumping speed of the vacuum pump is set so that the gas pressure in the vacuum chamber at the time of analysis becomes a predetermined gas pressure higher than the gas pressure in the vacuum chamber when the vacuum pump is operated at the maximum pumping speed.
  • a control unit to control; It is characterized by having.
  • the vacuum pump is operated at the maximum exhaust speed so that the gas pressure in the vacuum chamber in which the quadrupole mass filter is arranged is as low as possible.
  • a predetermined gas (usually inactive) is activated by operating the vacuum pump at a lower capacity than the maximum exhaust speed during analysis, or by a gas introduction unit. Gas) is intentionally introduced into the space surrounded by the rod electrodes of the quadrupole mass filter, so that more neutral particles are present in the space.
  • the high-accuracy measurement mode in which the gas introduction amount is relatively large under the control of the control unit, and the gas introduction amount is relatively small.
  • the high sensitivity measurement mode may be configured to be selectable by the user.
  • the high-precision measurement mode in which the target value of the gas pressure under the control of the control unit is relatively high, and the target value of the gas pressure is It may be configured to have a relatively low high sensitivity measurement mode that can be selected by the user.
  • ion cooling is promoted in the internal space of the quadrupole mass filter, so that peak distortion on the mass spectrum is reduced as described above, and a peak having a good shape is obtained. Can be acquired.
  • ion cooling is relatively less likely to occur in the internal space of the quadrupole mass filter, so that peak distortion on the mass spectrum is conspicuous but the ion transmission efficiency is high, so the peak of high signal intensity is high. Can be obtained.
  • the user can freely select the measurement giving priority to the accuracy and the measurement giving priority to the sensitivity according to the purpose of the analysis and the amount of the component which is the analysis purpose.
  • the mass spectrometer and the mass spectrometry method according to the present invention even when the quadrupole electric field formed by the quadrupole mass filter is not ideal and the multipole component is superimposed, The peak distortion can be easily reduced.
  • the mass spectrometer and the mass spectrometry method according to the present invention it is not necessary to change mechanical elements such as the shape and arrangement of the rod electrode in order to reduce the distortion of the peak, and the peak can be obtained only by electrical control. Therefore, even if it is necessary to make adjustments for each device, it is easy and automatic adjustment is easy.
  • the schematic block diagram of one Example of the quadrupole-type mass spectrometer which concerns on this invention The figure which shows the simulation result of the peak waveform on the mass spectrum with the case where it accelerates
  • FIG. 1 is a schematic configuration diagram of a quadrupole mass spectrometer according to the present embodiment.
  • the quadrupole mass spectrometer includes an ion source 2, an ion lens 3, a quadrupole mass filter 4, and a vacuum chamber 1 having a substantially sealed structure that is evacuated by a vacuum pump 9. And a detector 5.
  • the detection signal obtained by the detector 5 is input to the data processing unit 6.
  • the degree of vacuum (gas pressure) in the vacuum chamber 1 is detected by a vacuum gauge 10 such as an ion gauge, and the control unit 7 operates the vacuum pump 9 and the inside of the quadrupole mass filter 4 according to the detected degree of vacuum.
  • the operation of the gas introduction unit 11 for introducing a predetermined gas into the space is controlled.
  • An input unit 8 operated by a user is connected to the control unit 7.
  • the ion source 2 ionizes components (compounds) in the sample gas introduced from the outside by, for example, electron ionization (EI). Ions generated by the ion source 2 and drawn rightward as indicated by white arrows in FIG. 1 are converged by the action of an electric field by the ion lens 3 and introduced into the quadrupole mass filter 4.
  • the quadrupole mass filter 4 is composed of four rod electrodes arranged in parallel around the ion optical axis C, and a high-frequency voltage is superimposed on a DC voltage on each of the four rod electrodes from a power source (not shown). Applied voltage.
  • the ions are formed by a DC voltage and a high-frequency voltage applied to the rod electrode of the quadrupole mass filter 4. Due to the action of the electric field, only ions having a specific mass-to-charge ratio (or included in the mass-to-charge ratio range) pass through the vicinity of the ion optical axis C while oscillating other ions. Ions that have passed through the quadrupole mass filter 4 reach the detector 5, and the detector 5 generates a detection signal corresponding to the amount of ions that arrived and sends it to the data processing unit 6.
  • the mass-to-charge ratio of ions that can pass through the quadrupole mass filter 4 changes. Therefore, by scanning the DC voltage and the high-frequency voltage within a predetermined range, the mass-to-charge ratio of ions that can reach the detector 5 can be changed within the predetermined range.
  • the data processing unit 6 can create a mass spectrum indicating the relationship between the mass-to-charge ratio and the signal intensity based on the detection signal obtained thereby.
  • the vacuum pump 9 is usually a combination of a turbo molecular pump and a rotary pump.
  • the vacuum pump 9 is operated at a maximum exhaust speed or a speed close thereto at the time of performing analysis, and the vacuum chamber 1 is maintained at a high degree of vacuum. Characteristic control is performed as described in (1).
  • FIG. 2 is a diagram showing simulation results of peak waveforms on the mass spectrum in the internal space of the quadrupole mass filter, with and without considering cooling by Ar gas.
  • the mean free path of ions is limited to 25 cm in consideration of contact between ions and Ar gas in the case of cooling, while the mean free path is not limited in the case of no cooling, and the mass to charge ratio is
  • the relative ion permeation amount for ions near m / z 500 was calculated.
  • the relative permeation amount is about 2.5 times higher than when the cooling is performed, but a large crack occurs at the peak. This is a phenomenon caused by the above-described nonlinear resonance.
  • the density of neutral gas particles in the space may be increased. This is the opposite of the conventional operation in which the degree of vacuum in the vacuum chamber 1 is made as high as possible so that ions do not come into contact with the residual gas or the like.
  • the mass spectrometer of the present embodiment either of two methods can be adopted to increase the density of neutral gas particles in the internal space of the quadrupole mass filter 4.
  • the pumping speed at this time is smaller than the maximum pumping speed of the vacuum pump 9, and an inert gas occupying most of the sample gas continuously supplied in the vacuum chamber 1 (for example, used in a gas chromatograph connected to the preceding stage)
  • the carrier gas of He, N 2 , Ar, etc. remains moderately. Ions generated by the ion source 2 and trying to pass through the internal space of the quadrupole mass filter 4 come into contact with such residual gas and are cooled. Accordingly, an increase in undesired energy due to nonlinear resonance can be suppressed, and distortion such as peak cracking on the mass spectrum can be reduced.
  • the degree of vacuum and the amount of gas supply appropriate for obtaining the effects described above also differ depending on the mass-to-charge ratio of the ions to be analyzed. Therefore, when the mass-to-charge ratio of ions to be analyzed is determined as in, for example, selected ion monitoring (SIM) measurement, the vacuum pump 9 is adjusted so that the degree of vacuum and the amount of gas supply correspond to the mass-to-charge ratio. Alternatively, the gas introduction unit 11 may be controlled.
  • SIM selected ion monitoring
  • FIG. 3 is a schematic configuration diagram of a quadrupole mass spectrometer according to another embodiment of the present invention.
  • the same components as those in the apparatus of the embodiment shown in FIG. As can be seen from FIG. 2, when cooling is performed in the internal space of the quadrupole mass filter, the peak distortion is improved, but the relative permeation amount of ions is reduced, and the sensitivity is lowered accordingly. For this reason, if the amount of ions to be analyzed is originally small, such as microanalysis, the target ions may not be observed with sufficient signal intensity when cooling is performed. Therefore, the mass spectrometer shown in FIG. 3 has a high-accuracy measurement mode that prioritizes the reduction of peak distortion and a high-sensitivity measurement mode that prioritizes the amount of ions to be detected, and switches between these two measurement modes. Is possible.
  • the input unit 8 includes a mode selection unit 81, and the control unit 8 includes a target vacuum degree switching unit 71.
  • the user Prior to execution of analysis, the user selects one of the high-precision measurement mode and the high-sensitivity measurement mode by the mode selection unit 81 according to the purpose of analysis, the type of sample, and the like.
  • the target vacuum degree switching unit 71 in the control unit 7 sets the vacuum degree target value to P1 in the high accuracy measurement mode and P2 higher than P1 (the gas pressure is low) in the high sensitivity measurement mode.
  • the vacuum pump 9 may be continuously operated at the maximum exhaust speed without setting the target vacuum value.
  • the present invention is applied to a single quadrupole mass spectrometer.
  • the present invention is not limited to various mass spectrometers using other quadrupole mass filters. Specifically, it can be clearly applied to a triple quadrupole mass spectrometer or a Q-TOF mass spectrometer.
  • These mass spectrometers have a collision cell for collision-induced dissociation of ions, and an inert gas such as Ar is introduced into the collision cell as a collision gas. It can also be used for cooling in the interior space.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

In this invention, during analysis, a control unit (7) controls a gas introducing unit (11) in such a manner that an appropriate amount of inert gas is introduced into the internal space of a quadrupole mass filter (4). An ion generated at an ion source (2) and passing through the internal space of the quadrupole mass filter (4) is cooled by contacting the gas that has been introduced. Caused by an offset in the positioning of a rod electrode from the quadrupole mass filter (4), or the like, a multipolar component overlaps with the quadrupole electric field formed in the filter (4), thereby generating a non-linear resonance. By cooling the ion passing through the quadrupole mass filter (4), the increase of undesirable energy caused by the non-linear resonance is suppressed, thereby attenuating the distortion of a peak in a mass spectrum.

Description

質量分析方法及び質量分析装置Mass spectrometry method and mass spectrometer
 本発明は、特定の質量電荷比m/zを有するイオンを選択する四重極マスフィルタを用いた質量分析装置、及び該質量分析装置における質量分析方法に関する。なお、ここでいう質量分析装置は、唯一の質量分離器として四重極マスフィルタを用いる一般的なシングル四重極型質量分析装置のみならず、MS/MS分析を行うために二段の四重極マスフィルタを備えた三連四重極型質量分析装置や四重極マスフィルタで選択したイオンを解離したあとに飛行時間型質量分離器で質量電荷比に応じて分離して検出するQ-TOF型質量分析装置を含むものとする。 The present invention relates to a mass spectrometer using a quadrupole mass filter that selects ions having a specific mass-to-charge ratio m / z, and a mass spectrometry method in the mass spectrometer. The mass spectrometer referred to here is not only a general single quadrupole mass spectrometer using a quadrupole mass filter as the only mass separator, but also a two-stage quadrupole for performing MS / MS analysis. Q detected by dissociating ions selected by a triple quadrupole mass spectrometer equipped with a quadrupole mass filter or a quadrupole mass filter and then separating them according to the mass-to-charge ratio using a time-of-flight mass separator -It shall include a TOF mass spectrometer.
 一般的な四重極型質量分析装置では、試料から生成された各種イオンを四重極マスフィルタに導入して特定の質量電荷比m/zを有するイオンのみを選択的に通過させ、通過したイオンを検出器で検出してイオンの量に応じた強度信号を取得する。 In a general quadrupole mass spectrometer, various ions generated from a sample are introduced into a quadrupole mass filter to selectively pass only ions having a specific mass-to-charge ratio m / z. Ions are detected by a detector to obtain an intensity signal corresponding to the amount of ions.
 四重極マスフィルタは一般に、直線状のイオン光軸を取り囲むように互いに平行に配置された4本のロッド電極から成り、その4本のロッド電極にそれぞれ直流電圧と高周波電圧を加算した電圧が印加される。その印加電圧によって四重極マスフィルタの内部空間には四重極電場が形成され、或る特定の質量電荷比を有する又は質量電荷比範囲に含まれるイオンのみが適当に振動しつつ四重極マスフィルタの内部空間を通過し、それ以外のイオンは途中で発散してしまう。イオンが安定的に四重極マスフィルタを通過し得る条件については、比較的古くから理論的に研究されている。 A quadrupole mass filter is generally composed of four rod electrodes arranged in parallel to each other so as to surround a linear ion optical axis, and a voltage obtained by adding a DC voltage and a high-frequency voltage to each of the four rod electrodes. Applied. Due to the applied voltage, a quadrupole electric field is formed in the internal space of the quadrupole mass filter, and only ions having a certain mass-to-charge ratio or included in the mass-to-charge ratio range vibrate appropriately while the quadrupole is vibrating. The other ions pass through the internal space of the mass filter and diverge on the way. The conditions under which ions can stably pass through a quadrupole mass filter have been theoretically studied for a long time.
 非特許文献1等に開示されているように、理想的な四重極電場におけるイオンの挙動はよく知られているものの、現実の四重極マスフィルタにおいて理想的な四重極電場を形成することは非常に難しい。例えば、理想的なロッド電極はイオン光軸に向いた断面形状が双曲線形状であるが、多くの場合、製造上の煩雑さを避けるため、ロッド電極としては断面円形状のものが用いられる。また、各ロッド電極の加工精度や複数のロッド電極の組立精度の限界により、四重極マスフィルタの構成は理想状態からずれることになる。そのために、四重極マスフィルタにより形成される四重極電場にはより高い次数の多重極電場成分が重畳することになり、そうした電場を通過するイオンの挙動は理想的な四重極電場を通過する場合とは異なるものとなる。その結果、所定の質量電荷比範囲に亘る質量走査を行いつつ所定の質量電荷比を有するイオンを観測した場合、得られるマススペクトルにおいて目的イオンに対応するピークの形状は多少なりとも歪むことになる。 As disclosed in Non-Patent Document 1, etc., the behavior of ions in an ideal quadrupole electric field is well known, but an ideal quadrupole electric field is formed in an actual quadrupole mass filter. It is very difficult. For example, an ideal rod electrode has a hyperbolic shape in cross section facing the ion optical axis, but in many cases, a rod electrode having a circular cross section is used as a rod electrode in order to avoid complicated manufacturing. In addition, the configuration of the quadrupole mass filter deviates from the ideal state due to limitations in processing accuracy of each rod electrode and assembly accuracy of a plurality of rod electrodes. Therefore, higher-order multipole field components are superimposed on the quadrupole field formed by the quadrupole mass filter, and the behavior of ions passing through such an electric field is the ideal quadrupole field. It is different from the case of passing. As a result, when an ion having a predetermined mass-to-charge ratio is observed while performing mass scanning over a predetermined mass-to-charge ratio range, the shape of the peak corresponding to the target ion in the obtained mass spectrum is somewhat distorted. .
 具体的には、四重極マスフィルタにおいて理想的な四重極電場からのずれがあると非線形共鳴現象が生じ、それによって、本来は図4(a)に示すような形状であるべきピークが図4(b)に示すように頂部が割れた形状となることが知られている(非特許文献3、4等参照)。 Specifically, when there is a deviation from an ideal quadrupole electric field in a quadrupole mass filter, a nonlinear resonance phenomenon occurs, and a peak that should originally have a shape as shown in FIG. As shown in FIG. 4 (b), it is known that the top portion has a cracked shape (see Non-Patent Documents 3 and 4).
 こうした課題に対して、従来、例えば非特許文献2では、各ロッド電極の半径と複数のロッド電極の内接円半径との比、つまりはロッド電極の位置を調整することで、高次の多重極電場成分を軽減してマススペクトル上のピークの歪みを改善する試みがなされている。
 しかしながら、ロッド電極の組立誤差は装置毎に異なるため高次の多重極電場成分の大きさも装置毎に異なり、装置毎に個別にロッド電極の位置を調整しないと、高次の多重極電場成分を十分に軽減することは難しい。こうした作業は非常に手間が掛かるため、あまり実用的ではない。
Conventionally, for example, in Non-Patent Document 2, for example, high-order multiplexing is performed by adjusting the ratio of the radius of each rod electrode to the inscribed circle radius of the plurality of rod electrodes, that is, the position of the rod electrodes. Attempts have been made to improve the distortion of peaks on the mass spectrum by reducing the polar electric field components.
However, since the assembly error of the rod electrode varies from device to device, the magnitude of the high-order multipole electric field component also varies from device to device. It is difficult to reduce enough. Such work is very time consuming and not very practical.
特開2000-36283号公報(段落[0006])JP 2000-36283 A (paragraph [0006])
 本発明は上記課題を解決するために成されたものであり、その主たる目的とするところは、四重極マスフィルタにより形成される四重極電場が理想的でないことに起因するマススペクトル上のピークの歪みを簡便に軽減することができる質量分析装置及び質量分析方法を提供することにある。 The present invention has been made to solve the above-mentioned problems, and the main object of the present invention is on the mass spectrum resulting from the fact that the quadrupole electric field formed by the quadrupole mass filter is not ideal. An object of the present invention is to provide a mass spectrometer and a mass spectrometry method that can easily reduce peak distortion.
 四重極型質量分析装置に限らず質量分析装置では、通常、イオンを質量電荷比に応じて分離する質量分離器はできるだけ高い真空度に維持されるチャンバ内に配置される。これは、例えば四重極型質量分析装置においては、四重極マスフィルタを通り抜け得る条件であるイオンが残留ガスに接触すると、その軌道が変化して通り抜けることができなくなるおそれがあるからである。即ち、質量分離器が比較的低い真空度の下に置かれると、イオンの透過率が低下して検出感度の低下に繋がるからである。これに対し本発明者は、各種条件の下でのシミュレーション計算と検討を繰り返す中で、四重極マスフィルタをイオンが通過する領域において該イオンと中性ガス粒子との接触の機会が多いと、イオンの透過率は下がるものの、マススペクトル上のピークの歪みは逆に軽減されるとの知見を得た。これは、高次の多重極電場成分のために非線形共鳴により増大したイオンのエネルギーが中性ガス粒子との接触によりクーリングされた効果であると推察される。本発明はこうした知見に基づいてなされたものである。 In mass spectrometers as well as quadrupole mass spectrometers, a mass separator that separates ions according to a mass-to-charge ratio is usually placed in a chamber that is maintained at a vacuum level as high as possible. This is because, for example, in a quadrupole mass spectrometer, when ions, which can pass through the quadrupole mass filter, come into contact with the residual gas, the trajectory may change and cannot pass through. . That is, if the mass separator is placed under a relatively low degree of vacuum, the ion transmittance is reduced, leading to a reduction in detection sensitivity. On the other hand, the inventor repeated simulation calculations and examinations under various conditions, and in the region where ions pass through the quadrupole mass filter, there are many opportunities for contact between the ions and neutral gas particles. It was found that the peak distortion on the mass spectrum is reduced on the contrary, although the transmittance of ions decreases. This is presumed to be the effect that the energy of ions increased by nonlinear resonance due to higher-order multipole electric field components is cooled by contact with neutral gas particles. The present invention has been made based on these findings.
 上記課題を解決するために成された本発明に係る質量分析方法は、所定の質量電荷比を有する又は所定の質量電荷比範囲に含まれるイオンを選択的に通過させる四重極マスフィルタを真空室の内部に具備する質量分析装置を用いた質量分析方法であって、
 分析時に、少なくとも前記四重極マスフィルタにおいてイオンが通過しようとする空間におけるガス圧が、前記真空室内を真空排気する真空ポンプを最大排気速度で作動させたときのガス圧よりも高くなるように、該真空ポンプの排気速度又は外部から該真空室内へのガスの導入量を調整することで、前記四重極マスフィルタにおける前記空間でのイオンとガスとの接触による該イオンのクーリングを行うようにしたことを特徴としている。
The mass spectrometric method according to the present invention, which has been made to solve the above-mentioned problems, is a method of vacuuming a quadrupole mass filter that selectively passes ions having a predetermined mass-to-charge ratio or included in a predetermined mass-to-charge ratio range. A mass spectrometry method using a mass spectrometer provided in a chamber,
At the time of analysis, at least the gas pressure in the space through which ions are to pass through the quadrupole mass filter is higher than the gas pressure when the vacuum pump that evacuates the vacuum chamber is operated at the maximum exhaust speed. By adjusting the pumping speed of the vacuum pump or the amount of gas introduced into the vacuum chamber from the outside, the ions are cooled by contact between the ions and the gas in the space in the quadrupole mass filter. It is characterized by that.
 また上記課題を解決するために成された本発明に係る質量分析装置の第1の態様は、所定の質量電荷比を有する又は所定の質量電荷比範囲に含まれるイオンを選択的に通過させる四重極マスフィルタを真空室の内部に具備する質量分析装置であって、
 a)前記四重極マスフィルタにおいてイオンが通過しようとする空間に、クーリング用ガスを導入するガス導入部と、
 b)前記ガス導入部によるガス導入量を制御する制御部と、
 を備えることを特徴としている。
In addition, a first aspect of the mass spectrometer according to the present invention, which has been made to solve the above-mentioned problems, is configured to selectively pass ions having a predetermined mass-to-charge ratio or included in a predetermined mass-to-charge ratio range. A mass spectrometer comprising a multipole mass filter inside a vacuum chamber,
a) a gas introduction part for introducing a cooling gas into a space in which ions are to pass in the quadrupole mass filter;
b) a control unit for controlling the amount of gas introduced by the gas introduction unit;
It is characterized by having.
 また上記課題を解決するために成された本発明に係る質量分析装置の第2の態様は、所定の質量電荷比を有する又は所定の質量電荷比範囲に含まれるイオンを選択的に通過させる四重極マスフィルタを真空室の内部に具備する質量分析装置であって、
 a)前記真空室内を真空排気する真空ポンプと、
 b)分析時に前記真空室内のガス圧が、前記真空ポンプを最大排気速度で作動させたときの前記真空室内のガス圧よりも高い所定のガス圧となるように、前記真空ポンプの排気速度を制御する制御部と、
 を備えることを特徴としている。
In addition, a second aspect of the mass spectrometer according to the present invention, which has been made to solve the above-described problems, is configured to selectively pass ions having a predetermined mass-to-charge ratio or included in a predetermined mass-to-charge ratio range. A mass spectrometer comprising a multipole mass filter inside a vacuum chamber,
a) a vacuum pump for evacuating the vacuum chamber;
b) The pumping speed of the vacuum pump is set so that the gas pressure in the vacuum chamber at the time of analysis becomes a predetermined gas pressure higher than the gas pressure in the vacuum chamber when the vacuum pump is operated at the maximum pumping speed. A control unit to control;
It is characterized by having.
 即ち、従来一般的な質量分析装置では、四重極マスフィルタが配置された真空室内のガス圧をできるだけ低くするように真空ポンプを最大排気速度で作動させる。これに対し、本発明に係る質量分析方法及び質量分析装置では、分析時に、真空ポンプを最大排気速度よりも低い能力で作動させることで、或いは、ガス導入部により所定のガス(通常は不活性ガス)を四重極マスフィルタのロッド電極で囲まれる空間に意図的に導入することで、中性粒子が該空間に比較多く存在するようにする。それによって、四重極マスフィルタへの印加電圧に応じた通過条件に適合したイオンが四重極マスフィルタの内部空間を通過しようとする際に、該イオンは中性粒子に接触し易くなりクーリングが促進される。その結果、四重極マスフィルタにより形成される電場に高次の多重極成分が多く、非線形共鳴が生起される場合でも、それによる不所望のエネルギー増大が抑制され、マススペクトル上でのピークの歪みが軽減されることになる。 That is, in the conventional general mass spectrometer, the vacuum pump is operated at the maximum exhaust speed so that the gas pressure in the vacuum chamber in which the quadrupole mass filter is arranged is as low as possible. On the other hand, in the mass spectrometry method and the mass spectrometer according to the present invention, a predetermined gas (usually inactive) is activated by operating the vacuum pump at a lower capacity than the maximum exhaust speed during analysis, or by a gas introduction unit. Gas) is intentionally introduced into the space surrounded by the rod electrodes of the quadrupole mass filter, so that more neutral particles are present in the space. As a result, when ions suitable for the passage condition corresponding to the voltage applied to the quadrupole mass filter try to pass through the interior space of the quadrupole mass filter, the ions are more likely to come into contact with neutral particles and cooling. Is promoted. As a result, the electric field formed by the quadrupole mass filter has many higher-order multipole components, and even when nonlinear resonance occurs, the undesired increase in energy is suppressed, and the peak on the mass spectrum is suppressed. Distortion will be reduced.
 ただし、四重極マスフィルタの内部空間で分析目的であるイオンと中性粒子との接触の機会が増加すると、本来であれば四重極マスフィルタを通り抜ける筈である一部のイオンの軌道が変化してしまいイオンの透過効率が下がることになる。即ち、四重極マスフィルタの内部空間におけるガス圧を高くすると、マススペクトル上のピークの歪みが軽減されることでマススペクトルの精度は向上するものの、信号強度自体は下がって感度が低下するおそれがある。そのため、もともと分析目的であるイオンの量が少ないような場合、四重極マスフィルタの内部空間でのイオンのクーリングを促進すると十分な信号強度が観測されなくなる可能性がある。 However, if the chance of contact between ions for analysis and neutral particles increases in the internal space of the quadrupole mass filter, the trajectory of some ions that would otherwise pass through the quadrupole mass filter It will change and the transmission efficiency of ion will fall. That is, when the gas pressure in the internal space of the quadrupole mass filter is increased, the distortion of the peak on the mass spectrum is reduced, so that the accuracy of the mass spectrum is improved, but the signal intensity itself is lowered and the sensitivity may be lowered. There is. Therefore, when the amount of ions originally intended for analysis is small, sufficient signal intensity may not be observed if ion cooling is promoted in the internal space of the quadrupole mass filter.
 そこで、本発明に係る質量分析装置の上記第1の態様においては、前記制御部の制御の下でのガス導入量が相対的に多い高精度測定モードと、該ガス導入量が相対的に少ない高感度測定モードとを、ユーザーによる選択可能に有する構成とするとよい。 Therefore, in the first aspect of the mass spectrometer according to the present invention, the high-accuracy measurement mode in which the gas introduction amount is relatively large under the control of the control unit, and the gas introduction amount is relatively small. The high sensitivity measurement mode may be configured to be selectable by the user.
 一方、本発明に係る質量分析装置の上記第2の態様においては、前記制御部の制御の下でのガス圧の目標値が相対的に高い高精度測定モードと、該ガス圧の目標値が相対的に低い高感度測定モードとを、ユーザーによる選択可能に有する構成とするとよい。 On the other hand, in the second aspect of the mass spectrometer according to the present invention, the high-precision measurement mode in which the target value of the gas pressure under the control of the control unit is relatively high, and the target value of the gas pressure is It may be configured to have a relatively low high sensitivity measurement mode that can be selected by the user.
 これら構成によれば、高精度測定モードでは四重極マスフィルタの内部空間においてイオンのクーリングが促進されるので上述したようにマススペクトル上でのピークの歪みが軽減され、良好な形状のピークを取得することができる。一方、高感度測定モードでは四重極マスフィルタの内部空間においてイオンのクーリングが相対的に生じにくいので、マススペクトル上でピークの歪みが目立ち易いもののイオン透過効率が高いので、高い信号強度のピークを得ることができる。それにより、分析の目的や分析目的である成分の量などに応じて精度を優先した測定と感度を優先した測定とをユーザーが自在に選択することができる。 According to these configurations, in the high-accuracy measurement mode, ion cooling is promoted in the internal space of the quadrupole mass filter, so that peak distortion on the mass spectrum is reduced as described above, and a peak having a good shape is obtained. Can be acquired. On the other hand, in the high-sensitivity measurement mode, ion cooling is relatively less likely to occur in the internal space of the quadrupole mass filter, so that peak distortion on the mass spectrum is conspicuous but the ion transmission efficiency is high, so the peak of high signal intensity is high. Can be obtained. Thereby, the user can freely select the measurement giving priority to the accuracy and the measurement giving priority to the sensitivity according to the purpose of the analysis and the amount of the component which is the analysis purpose.
 本発明に係る質量分析装置及び質量分析方法によれば、四重極マスフィルタにより形成される四重極電場が理想的でなく多重極成分が重畳している場合でも、それに起因するマススペクトル上のピークの歪みを簡便に軽減することができる。特に本発明に係る質量分析装置及び質量分析方法によれば、ピークの歪みを軽減するためにロッド電極の形状や配置などの機械的な要素を変更する必要がなく、電気的な制御のみでピークの歪みを軽減することができるので、仮に装置個別に調整が必要な場合であっても手間が掛からず自動調整も容易である。 According to the mass spectrometer and the mass spectrometry method according to the present invention, even when the quadrupole electric field formed by the quadrupole mass filter is not ideal and the multipole component is superimposed, The peak distortion can be easily reduced. In particular, according to the mass spectrometer and the mass spectrometry method according to the present invention, it is not necessary to change mechanical elements such as the shape and arrangement of the rod electrode in order to reduce the distortion of the peak, and the peak can be obtained only by electrical control. Therefore, even if it is necessary to make adjustments for each device, it is easy and automatic adjustment is easy.
本発明に係る四重極型質量分析装置の一実施例の概略構成図。The schematic block diagram of one Example of the quadrupole-type mass spectrometer which concerns on this invention. 四重極マスフィルタにおいてクーリングを促進する場合と促進しない場合とのマススペクトル上のピーク波形のシミュレーション結果を示す図。The figure which shows the simulation result of the peak waveform on the mass spectrum with the case where it accelerates | stimulates in the case where cooling is not promoted in a quadrupole mass filter. 本発明に係る四重極型質量分析装置の他の実施例の概略構成図。The schematic block diagram of the other Example of the quadrupole-type mass spectrometer which concerns on this invention. 四重極マスフィルタにより形成される電場における多重極成分の影響によるマススペクトル上のピークの歪みの説明図。Explanatory drawing of the distortion of the peak on a mass spectrum by the influence of the multipole component in the electric field formed by a quadrupole mass filter.
 本発明に係る四重極型質量分析装置の一実施例について、添付図面を参照して説明する。
 図1は本実施例の四重極型質量分析装置の概略構成図である。
An embodiment of a quadrupole mass spectrometer according to the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic configuration diagram of a quadrupole mass spectrometer according to the present embodiment.
 本実施例の四重極型質量分析装置は、真空ポンプ9により真空排気される略密閉された構造である真空室1の内部に、イオン源2、イオンレンズ3、四重極マスフィルタ4、及び検出器5、を備える。検出器5で得られた検出信号はデータ処理部6に入力される。真空室1内の真空度(ガス圧)はイオンゲージ等の真空計10により検出され、制御部7は検出される真空度に応じて、真空ポンプ9の動作と四重極マスフィルタ4の内部空間に所定のガスを導入するガス導入部11の動作を制御する。制御部7にはユーザーが操作する入力部8が接続されている。 The quadrupole mass spectrometer according to the present embodiment includes an ion source 2, an ion lens 3, a quadrupole mass filter 4, and a vacuum chamber 1 having a substantially sealed structure that is evacuated by a vacuum pump 9. And a detector 5. The detection signal obtained by the detector 5 is input to the data processing unit 6. The degree of vacuum (gas pressure) in the vacuum chamber 1 is detected by a vacuum gauge 10 such as an ion gauge, and the control unit 7 operates the vacuum pump 9 and the inside of the quadrupole mass filter 4 according to the detected degree of vacuum. The operation of the gas introduction unit 11 for introducing a predetermined gas into the space is controlled. An input unit 8 operated by a user is connected to the control unit 7.
 イオン源2は例えば電子イオン化(EI)法により、外部から導入された試料ガス中の成分(化合物)をイオン化する。イオン源2で生成され図1中に白抜き矢印で示すように右方に引き出されたイオンは、イオンレンズ3による電場の作用で収束されて四重極マスフィルタ4に導入される。四重極マスフィルタ4はイオン光軸Cを中心にその周りに平行に配置された4本のロッド電極からなり、図示しない電源部から、4本のロッド電極にそれぞれ直流電圧に高周波電圧を重畳した電圧が印加される。 The ion source 2 ionizes components (compounds) in the sample gas introduced from the outside by, for example, electron ionization (EI). Ions generated by the ion source 2 and drawn rightward as indicated by white arrows in FIG. 1 are converged by the action of an electric field by the ion lens 3 and introduced into the quadrupole mass filter 4. The quadrupole mass filter 4 is composed of four rod electrodes arranged in parallel around the ion optical axis C, and a high-frequency voltage is superimposed on a DC voltage on each of the four rod electrodes from a power source (not shown). Applied voltage.
 イオン光軸Cに沿って四重極マスフィルタ4の長軸方向の空間に導入されたイオンのうち、該四重極マスフィルタ4のロッド電極に印加されている直流電圧と高周波電圧により形成される電場の作用により、特定の質量電荷比を有する(又は質量電荷比範囲に含まれる)イオンのみがイオン光軸C付近を振動しながら通り抜け、他のイオンは途中で発散する。四重極マスフィルタ4を通り抜けたイオンは検出器5に到達し、検出器5は到達したイオンの量に応じた検出信号を生成してデータ処理部6へと送る。四重極マスフィルタ4のロッド電極に印加する直流電圧と高周波電圧とを所定の関係を保ちつつそれぞれ変化させると、四重極マスフィルタ4を通り抜け得るイオンの質量電荷比が変化する。そこで、その直流電圧と高周波電圧とをそれぞれ所定の範囲で走査することによって、検出器5に到達し得るイオンの質量電荷比を所定の範囲で変化させることができる。データ処理部6は、それにより得られた検出信号に基づいて、質量電荷比と信号強度との関係を示すマススペクトルを作成することができる。 Of the ions introduced into the space in the long axis direction of the quadrupole mass filter 4 along the ion optical axis C, the ions are formed by a DC voltage and a high-frequency voltage applied to the rod electrode of the quadrupole mass filter 4. Due to the action of the electric field, only ions having a specific mass-to-charge ratio (or included in the mass-to-charge ratio range) pass through the vicinity of the ion optical axis C while oscillating other ions. Ions that have passed through the quadrupole mass filter 4 reach the detector 5, and the detector 5 generates a detection signal corresponding to the amount of ions that arrived and sends it to the data processing unit 6. When the DC voltage applied to the rod electrode of the quadrupole mass filter 4 and the high-frequency voltage are changed while maintaining a predetermined relationship, the mass-to-charge ratio of ions that can pass through the quadrupole mass filter 4 changes. Therefore, by scanning the DC voltage and the high-frequency voltage within a predetermined range, the mass-to-charge ratio of ions that can reach the detector 5 can be changed within the predetermined range. The data processing unit 6 can create a mass spectrum indicating the relationship between the mass-to-charge ratio and the signal intensity based on the detection signal obtained thereby.
 真空室1内を高い真空度に維持するため、通常、真空ポンプ9はターボ分子ポンプとロータリポンプとの組み合わせが利用される。従来の質量分析装置においては、分析実行時に、真空ポンプ9は最大排気速度又はそれに近い速度で作動され、真空室1内は高い真空度に維持されるが、本実施例の質量分析装置では以下に述べるように特徴的な制御が行われる。 In order to maintain the inside of the vacuum chamber 1 at a high degree of vacuum, the vacuum pump 9 is usually a combination of a turbo molecular pump and a rotary pump. In the conventional mass spectrometer, the vacuum pump 9 is operated at a maximum exhaust speed or a speed close thereto at the time of performing analysis, and the vacuum chamber 1 is maintained at a high degree of vacuum. Characteristic control is performed as described in (1).
 図2は、四重極マスフィルタの内部空間における、Arガスによるクーリングを考慮した場合とクーリングを考慮しない場合とのマススペクトル上のピーク波形のシミュレーション結果を示す図である。シミュレーションでは、クーリングありの場合にはイオンとArガスとの接触を考慮してイオンの平均自由行程を25cmに制限する一方、クーリングなしの場合には平均自由行程を制限せず、質量電荷比がm/z 500付近のイオンに対するイオン相対透過量を計算した。図2に示すように、クーリングなしの場合にはクーリングありの場合に比べて相対透過量は2.5倍程度高いものの、ピークの頂部に大きな割れが生じている。これが上述した非線形共鳴に起因する現象である。逆にクーリングありの場合には、相対透過量は低下するものの、ピーク頂部の割れはほぼ解消されている。このことから、四重極マスフィルタの内部空間において通過しようとするイオンをクーリングすることにより、非線形共鳴によるピークの歪みが軽減できることが分かる。 FIG. 2 is a diagram showing simulation results of peak waveforms on the mass spectrum in the internal space of the quadrupole mass filter, with and without considering cooling by Ar gas. In the simulation, the mean free path of ions is limited to 25 cm in consideration of contact between ions and Ar gas in the case of cooling, while the mean free path is not limited in the case of no cooling, and the mass to charge ratio is The relative ion permeation amount for ions near m / z 500 was calculated. As shown in FIG. 2, when the cooling is not performed, the relative permeation amount is about 2.5 times higher than when the cooling is performed, but a large crack occurs at the peak. This is a phenomenon caused by the above-described nonlinear resonance. On the contrary, in the case of cooling, although the relative permeation amount decreases, the crack at the peak top is almost eliminated. From this, it can be understood that the peak distortion due to nonlinear resonance can be reduced by cooling the ions passing through the internal space of the quadrupole mass filter.
 四重極マスフィルタ4の内部空間でイオンをクーリングするには、該空間における中性ガス粒子の密度を高めればよい。これは、従来、真空室1内の真空度をできるだけ高くしてイオンが残留ガス等に接触しないようにすることとは全く逆の作用である。本実施例の質量分析装置では、四重極マスフィルタ4の内部空間における中性ガス粒子の密度を高めるために二つの方法のいずれかを採ることができる。 In order to cool ions in the internal space of the quadrupole mass filter 4, the density of neutral gas particles in the space may be increased. This is the opposite of the conventional operation in which the degree of vacuum in the vacuum chamber 1 is made as high as possible so that ions do not come into contact with the residual gas or the like. In the mass spectrometer of the present embodiment, either of two methods can be adopted to increase the density of neutral gas particles in the internal space of the quadrupole mass filter 4.
 [1]真空ポンプ9の動作制御
 上記方法の一つは、真空ポンプ9の排気速度つまりは排気性能を抑えることで、真空室1内の真空度を意図的に低下させることである。この場合、ガス導入部11は使用しない。
 制御部7にはクーリングによるピーク波形形状の改善効果が得られるような真空度目標値が予め(分析実行前に)設定されている。この真空度目標値は本装置の製造メーカーが実験的に求めてメモリに記憶させておくようにしてもよいし、装置を使用するユーザーが実験的に調べてメモリに記憶させるようにしてもよい。いずれにしても、分析に際して制御部7は、真空計10で検出される真空度が真空度目標値になるように真空ポンプ9の排気速度を制御する。このときの排気速度は真空ポンプ9の最大排気速度よりも小さく、真空室1内には、連続的に供給される試料ガスの多くを占める不活性ガス(例えば前段に接続されるガスクロマトグラフで使用されるHe、N2、Ar等のキャリアガス)が適度に残留する。イオン源2で生成され四重極マスフィルタ4の内部空間を通り抜けようとするイオンは、こうした残留ガスに接触しクーリングされる。それによって、非線形共鳴による不所望のエネルギーの増加が抑えられ、マススペクトル上でのピークの割れ等の歪みを軽減することができる。
[1] Operation Control of Vacuum Pump 9 One of the above methods is to intentionally lower the degree of vacuum in the vacuum chamber 1 by suppressing the exhaust speed of the vacuum pump 9, that is, the exhaust performance. In this case, the gas introduction part 11 is not used.
The control unit 7 is set in advance (before the analysis is performed) with a vacuum degree target value so that the peak waveform shape can be improved by cooling. This vacuum degree target value may be experimentally obtained by the manufacturer of the apparatus and stored in the memory, or a user who uses the apparatus may experimentally investigate and store it in the memory. . In any case, in the analysis, the control unit 7 controls the exhaust speed of the vacuum pump 9 so that the degree of vacuum detected by the vacuum gauge 10 becomes the target degree of vacuum. The pumping speed at this time is smaller than the maximum pumping speed of the vacuum pump 9, and an inert gas occupying most of the sample gas continuously supplied in the vacuum chamber 1 (for example, used in a gas chromatograph connected to the preceding stage) The carrier gas of He, N 2 , Ar, etc.) remains moderately. Ions generated by the ion source 2 and trying to pass through the internal space of the quadrupole mass filter 4 come into contact with such residual gas and are cooled. Accordingly, an increase in undesired energy due to nonlinear resonance can be suppressed, and distortion such as peak cracking on the mass spectrum can be reduced.
 [2]外部からのガスの導入
 他の一つの方法は、四重極マスフィルタ4の内部空間にガス導入部11から不活性ガスを連続的に又は間欠的に導入するものである。不活性ガスの供給量、供給時間などのパラメータはクーリングによるピーク波形形状の改善効果が得られるように予め定めておけばよい。イオン源2で生成され四重極マスフィルタ4の内部空間を通り抜けようとするイオンは、ガス導入部11から該空間に供給された不活性ガスに接触しクーリングされる。それによって、非線形共鳴による不所望のエネルギーの増加が抑えられ、マススペクトル上でのピークの割れ等の歪みを軽減することができる。
[2] Introduction of gas from outside Another method is to continuously or intermittently introduce an inert gas from the gas introduction part 11 into the internal space of the quadrupole mass filter 4. Parameters such as the supply amount of inert gas and the supply time may be determined in advance so that the peak waveform shape can be improved by cooling. Ions generated by the ion source 2 and trying to pass through the internal space of the quadrupole mass filter 4 come into contact with the inert gas supplied to the space from the gas introduction unit 11 and are cooled. Accordingly, an increase in undesired energy due to nonlinear resonance can be suppressed, and distortion such as peak cracking on the mass spectrum can be reduced.
 なお、上述したような効果を得るのに適切な真空度やガス供給量は分析対象であるイオンの質量電荷比によっても相違する。そこで、例えば選択イオンモニタリング(SIM)測定のように分析対象であるイオンの質量電荷比が決まっている場合には、その質量電荷比に応じた真空度やガス供給量になるように真空ポンプ9やガス導入部11を制御してもよい。 Note that the degree of vacuum and the amount of gas supply appropriate for obtaining the effects described above also differ depending on the mass-to-charge ratio of the ions to be analyzed. Therefore, when the mass-to-charge ratio of ions to be analyzed is determined as in, for example, selected ion monitoring (SIM) measurement, the vacuum pump 9 is adjusted so that the degree of vacuum and the amount of gas supply correspond to the mass-to-charge ratio. Alternatively, the gas introduction unit 11 may be controlled.
 図3は本発明の他の実施例の四重極型質量分析装置の概略構成図である。図1に示した実施例の装置と同じ構成要素には同じ符号を付している。
 図2から分かるように、四重極マスフィルタの内部空間においてクーリングを行うとピーク歪みは改善されるもののイオンの相対透過量が減少しその分だけ感度が低下する。そのため、微量分析等、分析対象であるイオンの量が元々少ない場合には、クーリングを行うと目的イオンが十分な信号強度で観測できなくなるおそれがある。そこで、図3に示した質量分析装置では、ピーク歪みの軽減を優先した高精度測定モードと検出するイオン量の多さを優先した高感度測定モードとを有し、それら二つの測定モードの切替えを可能としている。
FIG. 3 is a schematic configuration diagram of a quadrupole mass spectrometer according to another embodiment of the present invention. The same components as those in the apparatus of the embodiment shown in FIG.
As can be seen from FIG. 2, when cooling is performed in the internal space of the quadrupole mass filter, the peak distortion is improved, but the relative permeation amount of ions is reduced, and the sensitivity is lowered accordingly. For this reason, if the amount of ions to be analyzed is originally small, such as microanalysis, the target ions may not be observed with sufficient signal intensity when cooling is performed. Therefore, the mass spectrometer shown in FIG. 3 has a high-accuracy measurement mode that prioritizes the reduction of peak distortion and a high-sensitivity measurement mode that prioritizes the amount of ions to be detected, and switches between these two measurement modes. Is possible.
 入力部8はモード選択部81を含み、制御部8は目標真空度切替部71を含む。分析実行に先立ってユーザーは、分析の目的、試料の種類などに応じて高精度測定モード又は高感度測定モードの一方をモード選択部81により選択する。この選択指示を受けると、制御部7において目標真空度切替部71は真空度目標値を高精度測定モードではP1、高感度測定モードではP1よりも高い(ガス圧は低い)P2に設定する。高感度測定モードでは真空度目標値を定めずに最大排気速度で真空ポンプ9を連続的に作動させるようにしてもよい。また、真空ポンプ9の制御ではなくガス導入部11からのガス供給量を各測定モードに応じて切り替えるようにしてもよい。いずれにしても、高感度測定モードが選択された場合には高精度測定モードが選択された場合に比べて、四重極マスフィルタ4の内部空間におけるガス圧が低くなり、イオンがガスに接触する可能性は低くなる。それにより、クーリングの効果は実質的に得られないためにピーク歪みは軽減されないものの、イオンの透過率が高まり検出感度の点で有利である。 The input unit 8 includes a mode selection unit 81, and the control unit 8 includes a target vacuum degree switching unit 71. Prior to execution of analysis, the user selects one of the high-precision measurement mode and the high-sensitivity measurement mode by the mode selection unit 81 according to the purpose of analysis, the type of sample, and the like. When this selection instruction is received, the target vacuum degree switching unit 71 in the control unit 7 sets the vacuum degree target value to P1 in the high accuracy measurement mode and P2 higher than P1 (the gas pressure is low) in the high sensitivity measurement mode. In the high sensitivity measurement mode, the vacuum pump 9 may be continuously operated at the maximum exhaust speed without setting the target vacuum value. Moreover, you may make it switch the gas supply amount from the gas introduction part 11 according to each measurement mode instead of control of the vacuum pump 9. FIG. In any case, when the high-sensitivity measurement mode is selected, the gas pressure in the internal space of the quadrupole mass filter 4 is lower than when the high-precision measurement mode is selected, and the ions contact the gas. The possibility of doing is low. Thereby, since the cooling effect is not substantially obtained and the peak distortion is not reduced, the transmittance of ions is increased, which is advantageous in terms of detection sensitivity.
 なお、図1、図3に示した実施例は本発明をシングル四重極型質量分析装置に適用したものであるが、本発明はそれ以外の四重極マスフィルタを利用した各種質量分析装置、具体的には、三連四重極型質量分析装置やQ-TOF型質量分析装置に適用することができることは明らかである。これら質量分析装置はイオンを衝突誘起解離させるためにコリジョンセルを有し、該コリジョンセル内には衝突ガスとしてAr等の不活性ガスが導入されるため、こうした不活性ガスを四重極マスフィルタの内部空間でのクーリングに利用することもできる。 1 and 3, the present invention is applied to a single quadrupole mass spectrometer. However, the present invention is not limited to various mass spectrometers using other quadrupole mass filters. Specifically, it can be clearly applied to a triple quadrupole mass spectrometer or a Q-TOF mass spectrometer. These mass spectrometers have a collision cell for collision-induced dissociation of ions, and an inert gas such as Ar is introduced into the collision cell as a collision gas. It can also be used for cooling in the interior space.
 また、上記実施例は本発明の一例に過ぎず、上記記載の変形例にとどまらず、本発明の趣旨の範囲で適宜、変更や修正、追加を行っても本願特許請求の範囲に包含されることは当然である。 Further, the above-described embodiment is merely an example of the present invention, and is not limited to the above-described modification example, and changes, modifications, and additions are appropriately included in the scope of the claims of the present application even within the scope of the present invention. It is natural.
1…真空室
2…イオン源
3…イオンレンズ
4…四重極マスフィルタ
5…検出器
6…データ処理部
7…制御部
71…目標真空度切替部
8…入力部
81…モード選択部
9…真空ポンプ
10…真空計
11…ガス導入部
C…イオン光軸
DESCRIPTION OF SYMBOLS 1 ... Vacuum chamber 2 ... Ion source 3 ... Ion lens 4 ... Quadrupole mass filter 5 ... Detector 6 ... Data processing part 7 ... Control part 71 ... Target vacuum degree switching part 8 ... Input part 81 ... Mode selection part 9 ... Vacuum pump 10 ... Vacuum gauge 11 ... Gas introduction part C ... Ion optical axis

Claims (5)

  1.  所定の質量電荷比を有する又は所定の質量電荷比範囲に含まれるイオンを選択的に通過させる四重極マスフィルタを真空室の内部に具備する質量分析装置を用いた質量分析方法であって、
     分析時に、少なくとも前記四重極マスフィルタにおいてイオンが通過しようとする空間におけるガス圧が、前記真空室内を真空排気する真空ポンプを最大排気速度で作動させたときのガス圧よりも高くなるように、該真空ポンプの排気速度又は外部から該真空室内へのガスの導入量を調整することで、前記四重極マスフィルタにおける前記空間でのイオンとガスとの接触による該イオンのクーリングを行うようにしたことを特徴とする質量分析方法。
    A mass spectrometry method using a mass spectrometer having a quadrupole mass filter having a predetermined mass-to-charge ratio or selectively passing ions included in a predetermined mass-to-charge ratio range inside a vacuum chamber,
    At the time of analysis, at least the gas pressure in the space through which ions are to pass through the quadrupole mass filter is higher than the gas pressure when the vacuum pump that evacuates the vacuum chamber is operated at the maximum exhaust speed. By adjusting the pumping speed of the vacuum pump or the amount of gas introduced into the vacuum chamber from the outside, the ions are cooled by contact between the ions and the gas in the space in the quadrupole mass filter. A mass spectrometric method characterized by that.
  2.  所定の質量電荷比を有する又は所定の質量電荷比範囲に含まれるイオンを選択的に通過させる四重極マスフィルタを真空室の内部に具備する質量分析装置であって、
     a)前記四重極マスフィルタにおいてイオンが通過しようとする空間に、クーリング用ガスを導入するガス導入部と、
     b)前記ガス導入部によるガス導入量を制御する制御部と、
     を備えることを特徴とする質量分析装置。
    A mass spectrometer comprising a quadrupole mass filter in a vacuum chamber for selectively passing ions having a predetermined mass-to-charge ratio or included in a predetermined mass-to-charge ratio range,
    a) a gas introduction part for introducing a cooling gas into a space in which ions are to pass in the quadrupole mass filter;
    b) a control unit for controlling the amount of gas introduced by the gas introduction unit;
    A mass spectrometer comprising:
  3.  所定の質量電荷比を有する又は所定の質量電荷比範囲に含まれるイオンを選択的に通過させる四重極マスフィルタを真空室の内部に具備する質量分析装置であって、
     a)前記真空室内を真空排気する真空ポンプと、
     b)分析時に前記真空室内のガス圧が、前記真空ポンプを最大排気速度で作動させたときの前記真空室内のガス圧よりも高い所定のガス圧となるように、前記真空ポンプの排気速度を制御する制御部と、
     を備えることを特徴とする質量分析装置。
    A mass spectrometer comprising a quadrupole mass filter in a vacuum chamber for selectively passing ions having a predetermined mass-to-charge ratio or included in a predetermined mass-to-charge ratio range,
    a) a vacuum pump for evacuating the vacuum chamber;
    b) The pumping speed of the vacuum pump is set so that the gas pressure in the vacuum chamber at the time of analysis becomes a predetermined gas pressure higher than the gas pressure in the vacuum chamber when the vacuum pump is operated at the maximum pumping speed. A control unit to control;
    A mass spectrometer comprising:
  4.  請求項2に記載の質量分析装置であって、
     前記制御部の制御の下でのガス導入量が相対的に多い高精度測定モードと、該ガス導入量が相対的に少ない高感度測定モードとを、ユーザーによる選択可能に有することを特徴とする質量分析装置。
    The mass spectrometer according to claim 2,
    A high-accuracy measurement mode with a relatively large amount of gas introduction under the control of the control unit and a high-sensitivity measurement mode with a relatively small amount of gas introduction are selectable by the user. Mass spectrometer.
  5.  請求項3に記載の質量分析装置であって、
     前記制御部の制御の下でのガス圧の目標値が相対的に高い高精度測定モードと、該ガス圧の目標値が相対的に低い高感度測定モードとを、ユーザーによる選択可能に有することを特徴とする質量分析装置。
    The mass spectrometer according to claim 3,
    A high-accuracy measurement mode with a relatively high gas pressure target value under the control of the control unit and a high-sensitivity measurement mode with a relatively low gas pressure target value are selectable by the user. A mass spectrometer characterized by the above.
PCT/JP2017/002774 2017-01-26 2017-01-26 Mass spectrometry method and mass spectrometry device WO2018138838A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018564018A JPWO2018138838A1 (en) 2017-01-26 2017-01-26 Mass spectrometry method and mass spectrometer
PCT/JP2017/002774 WO2018138838A1 (en) 2017-01-26 2017-01-26 Mass spectrometry method and mass spectrometry device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/002774 WO2018138838A1 (en) 2017-01-26 2017-01-26 Mass spectrometry method and mass spectrometry device

Publications (1)

Publication Number Publication Date
WO2018138838A1 true WO2018138838A1 (en) 2018-08-02

Family

ID=62978156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002774 WO2018138838A1 (en) 2017-01-26 2017-01-26 Mass spectrometry method and mass spectrometry device

Country Status (2)

Country Link
JP (1) JPWO2018138838A1 (en)
WO (1) WO2018138838A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022034939A (en) * 2020-08-19 2022-03-04 株式会社島津製作所 Mass spectrometry method and mass spectrometer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259452A (en) * 2003-02-24 2004-09-16 Hitachi High-Technologies Corp Mass spectroscope and mass spectrometry

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259452A (en) * 2003-02-24 2004-09-16 Hitachi High-Technologies Corp Mass spectroscope and mass spectrometry

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022034939A (en) * 2020-08-19 2022-03-04 株式会社島津製作所 Mass spectrometry method and mass spectrometer
JP7409260B2 (en) 2020-08-19 2024-01-09 株式会社島津製作所 Mass spectrometry method and mass spectrometer

Also Published As

Publication number Publication date
JPWO2018138838A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
US10930482B2 (en) Adaptive and targeted control of ion populations to improve the effective dynamic range of mass analyser
JP5652473B2 (en) Ion analyzer and method of using the same
US9455132B2 (en) Ion mobility spectrometry-mass spectrometry (IMS-MS) with improved ion transmission and IMS resolution
JP6774958B2 (en) RF / DC filter to improve the robustness of the mass spectrometer
JP2010514103A (en) Differential pressure type double ion trap mass spectrometer and method of using the same
US7351965B2 (en) Rotating excitation field in linear ion processing apparatus
US7405399B2 (en) Field conditions for ion excitation in linear ion processing apparatus
US8822918B2 (en) Ion guide and mass spectrometry device
US20070158550A1 (en) Increasing ion kinetic energy along axis of linear ion processing devices
JP2012502433A (en) Two-dimensional radially emitted ion trap that can operate as a quadrupole mass filter
GB2381653A (en) A quadrupole ion trap device and methods of operating a quadrupole ion trap device
US20210327700A1 (en) RF/DC Cutoff to Reduce Contamination and Enhance Robustness of Mass Spectrometry Systems
WO2022107026A2 (en) Method of performing ms/ms of high intensity ion beams using a bandpass filtering collision cell to enhance mass spectrometry robustness
US7405400B2 (en) Adjusting field conditions in linear ion processing apparatus for different modes of operation
JP2022513801A (en) Effective potential matching at the boundaries of segmented quadrupoles in a mass spectrometer
WO2018138838A1 (en) Mass spectrometry method and mass spectrometry device
WO2020157655A1 (en) Auto gain control for optimum ion trap filling
WO2017094146A1 (en) Quadrupole mass filter and quadrupole-type mass spectrometry device
US7470900B2 (en) Compensating for field imperfections in linear ion processing apparatus
US11201047B2 (en) Time-of-flight mass spectrometer
US20230126290A1 (en) Ion activation and fragmentation in sub-ambient pressure for ion mobility and mass spectrometry
US20240234123A1 (en) Method of Performing MS/MS of High Intensity Ion Beams Using a Bandpass Filtering Collision Cell to Enhance Mass Spectrometry Robustness
CN116686065A (en) Method for performing MS/MS on high intensity ion beams using band pass filtered collision cell to enhance mass spectrometry robustness
JP2011014472A (en) Ion trapping mass spectrometry apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894472

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564018

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894472

Country of ref document: EP

Kind code of ref document: A1