WO2018137672A1 - 下行控制信息发送和接收方法及设备 - Google Patents

下行控制信息发送和接收方法及设备 Download PDF

Info

Publication number
WO2018137672A1
WO2018137672A1 PCT/CN2018/074057 CN2018074057W WO2018137672A1 WO 2018137672 A1 WO2018137672 A1 WO 2018137672A1 CN 2018074057 W CN2018074057 W CN 2018074057W WO 2018137672 A1 WO2018137672 A1 WO 2018137672A1
Authority
WO
WIPO (PCT)
Prior art keywords
aggregation level
scale factor
aggregation
level set
dci format
Prior art date
Application number
PCT/CN2018/074057
Other languages
English (en)
French (fr)
Inventor
马蕊香
吕永霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18744091.2A priority Critical patent/EP3565166B1/en
Priority to JP2019540447A priority patent/JP2020509645A/ja
Publication of WO2018137672A1 publication Critical patent/WO2018137672A1/zh
Priority to US16/521,770 priority patent/US11219003B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/003Adaptive formatting arrangements particular to signalling, e.g. variable amount of bits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present application relates to communications technologies, and in particular, to a downlink control information sending and receiving method and device.
  • the terminal device needs to know the downlink control information (DCI) configured by the base station to the terminal device before receiving or transmitting data, and the DCI passes the physical downlink control channel ( Physical Downlink Control channel (PDCCH) bearer.
  • DCI downlink control information
  • PDCCH Physical Downlink Control channel
  • one or more candidate PDCCHs constitute a search space.
  • the search space includes a Common Search Space (CSS) and a specific search space.
  • the CSS refers to a search space that needs to be monitored by multiple UEs in a cell, and is generally used for scheduling indication signaling for transmitting common control information.
  • a specific search space refers to its own search space that each terminal device in the cell needs to listen to, and is generally used to transmit scheduling indication signaling for user uplink and downlink data transmission.
  • the base station selects an appropriate PDCCH in the candidate PDCCH to transmit the DCI of the terminal device according to the condition of the channel, and the terminal device performs blind detection on the candidate PDCCH in the specific search space to obtain the DCI.
  • Ultra-Reliable and Low Latency Communication (URLLC) services are introduced in the fifth generation mobile communication 5G.
  • the DCI in the prior art is mainly directed to the traditional enhanced mobile broadband (eMBB) service with low reliability.
  • eMBB enhanced mobile broadband
  • the reliability of the URLLC service control channel is compared. Low, unable to meet the ultra-reliable communication needs.
  • the present application provides a downlink control information sending and receiving method and device, which can ensure the reliability of control channels of various services.
  • the application provides a downlink control information sending method, including:
  • the network device sends configuration information to the terminal device, where the configuration information includes a scaling factor corresponding to each aggregation level in the first aggregation level set, where the first aggregation level set includes n aggregation levels and the first
  • the aggregation level set corresponds to the first downlink control information DCI format, where n is a positive integer greater than or equal to 1, and the scale factor is used to determine the number of candidate physical downlink control channel PDCCHs of the aggregation level corresponding to the scale factor;
  • the data to be scheduled by the terminal device supports a service type, where the service type corresponds to a DCI format, and the network device determines the configuration information according to the DCI format corresponding to the service type supported by the data to be scheduled by the user equipment;
  • the network device sends the DCI of the first DCI format to the terminal device, and the aggregation level corresponding to the DCI of the first DCI format is an aggregation level in the first aggregation level set.
  • the present application configures a first aggregation level set corresponding to the DCI format for different DCI formats. After the first DCI format is determined, the first aggregation level set corresponding to the first DCI format is determined, so that the reliability requirement of the service can be satisfied.
  • the configuration information further includes information indicating the first aggregation level set.
  • the information may be identification information of the first aggregation level, or the information includes values of all aggregation levels in the first aggregation level set.
  • the scale factor P X corresponding to each aggregation level in the first aggregation level set satisfies 0 ⁇ P X ⁇ 1, and the scale factor corresponding to the high aggregation level is not greater than the corresponding low-level aggregation level.
  • the scale factor that is, the scale factor corresponding to the aggregation level 2 i+1 is not greater than the scale factor corresponding to the aggregation level 2 i , where i is a non-negative integer, the value of i includes 0, or the scale factor corresponding to the low aggregation level is not greater than
  • the scale factor corresponding to the high aggregation level that is, the scale factor corresponding to the aggregation level 2 i is not greater than the scale factor corresponding to the aggregation level 2 i+1 , where i is a non-negative integer and the value of i includes 0.
  • the configuration information further includes: a scaling factor corresponding to each aggregation level in the second aggregation level set, wherein the second aggregation level set includes m aggregation levels and the second aggregation The level set corresponds to the second downlink control information DCI format, and m is a positive integer greater than or equal to 1;
  • the first DCI format is different from the second DCI format, and the n aggregation levels in the first aggregation level set and the m aggregation levels in the second aggregation level set are the same or at least one different;
  • the method further includes: the network device transmitting the DCI of the second DCI format to the terminal device, and the aggregation level corresponding to the DCI of the second DCI format is an aggregation level in the second aggregation level set.
  • the terminal device supports two service types, and the terminal device needs to detect two DCI formats at the same time, and the network device sends configuration information corresponding to the two DCI formats to the terminal device.
  • the configuration information further includes information indicating the second aggregation level set.
  • the scale factor P X corresponding to each aggregation level in the first aggregation level set satisfies 0 ⁇ P X ⁇ 1, and the scale factor corresponding to the high aggregation level is not greater than the corresponding low-level aggregation level.
  • the scale factor that is, the scale factor corresponding to the aggregation level 2 i+1 is not greater than the scale factor corresponding to the aggregation level 2 i , where i is a non-negative integer, and the value of i includes 0;
  • the possible PDCCH may be adopted, so that the candidate PDCCHs for the blind detection of the user equipment are concentrated in a smaller aggregation level, that is, the number of candidate PDCCHs corresponding to the low aggregation level is greater than or equal to the high aggregation level.
  • the number of corresponding candidate PDCCHs For example, the number of blind detection candidate PDCCHs corresponding to a smaller aggregation level in the aggregation level set is larger, and the number of blind detection candidate PDCCHs corresponding to a higher aggregation level is relatively small.
  • the aggregation level set is ⁇ 1, 2, 4, 8 ⁇ , and the number of blind detection candidate PDCCHs corresponding to each aggregation level is 6, 6, 2, 2, respectively.
  • the scale factor for each aggregation level aggregation level corresponding to a second set of P Y satisfy 0 ⁇ P Y ⁇ 1, and the scale factor corresponding to a low aggregation level not greater than the scale factor corresponding to a high polymerization grade, i.e. aggregation level 2 i
  • the corresponding scale factor is not greater than the scale factor corresponding to the aggregation level 2 i+1 , where i is a non-negative integer and the value of i includes 0.
  • the possible design may be adopted, so that the candidate PDCCHs for the blind detection of the user equipment are concentrated at a higher aggregation level, that is, the number of candidate PDCCHs corresponding to the high aggregation level is greater than or equal to the low aggregation level.
  • the number of corresponding candidate PDCCHs For example, the number of blind detection candidate PDCCHs corresponding to a higher aggregation level in the aggregation level set is larger, and the number of blind detection candidate PDCCHs corresponding to a lower aggregation level is relatively small.
  • the aggregation level set is ⁇ 2, 4, 8, 16 ⁇ , and the number of blind detection candidate PDCCHs corresponding to each aggregation level is 2, 2, 6, and 6, respectively.
  • the method before the network device sends the configuration information to the terminal device, the method further includes:
  • the network device Determining, by the network device, the configuration information according to the search space information and the blind detection capability of the terminal device, where the search space information includes an available third aggregation level set and each aggregation in the third aggregation level set. The number of available candidate PDCCHs corresponding to the level.
  • the application provides a downlink control information receiving method, including:
  • the configuration information includes a scaling factor corresponding to each aggregation level in the first aggregation level set, where the first aggregation level set includes n aggregation levels and the An aggregation level set corresponds to a first downlink control information DCI format, where n is a positive integer greater than or equal to 1, and the scale factor is used to determine an aggregation level candidate physical downlink control channel PDCCH number corresponding to the scale factor ;
  • the terminal device receives the DCI of the first DCI format according to the number of candidate PDCCHs corresponding to each aggregation level in the first aggregation level set.
  • the configuration information further includes information indicating the first aggregation level set.
  • the scale factor P X corresponding to each aggregation level in the first aggregation level set satisfies 0 ⁇ P X ⁇ 1, and the scale factor corresponding to the high aggregation level is not greater than the corresponding low-level aggregation level.
  • the scale factor; or, the scale factor corresponding to the low aggregation level is not greater than the scale factor corresponding to the high aggregation level.
  • the configuration information further includes: a scaling factor corresponding to each aggregation level in the second aggregation level set, wherein the second aggregation level set includes m aggregation levels and the second aggregation The level set corresponds to the second downlink control information DCI format, and m is a positive integer greater than or equal to 1;
  • the first DCI format is different from the second DCI format, and the n aggregation levels in the first aggregation level set and the m aggregation levels in the second aggregation level set are the same or at least one different;
  • the method further includes:
  • the terminal device receives the DCI of the second DCI format according to the number of candidate PDCCHs corresponding to each aggregation level in the second aggregation level set.
  • the configuration information further includes information indicating the second aggregation level set.
  • the scale factor P X corresponding to each aggregation level in the first aggregation level set satisfies 0 ⁇ P X ⁇ 1, and the scale factor corresponding to the high aggregation level is not greater than the corresponding low-level aggregation level.
  • Each scale factor corresponding to the aggregation level set in the second aggregation level P Y satisfy 0 ⁇ P Y ⁇ 1, and low aggregation level not greater than the scale factor corresponding to a scale factor corresponding to a high polymerization level.
  • the terminal device determines, according to the configuration information and the search space information, the number of candidate PDCCHs corresponding to the first aggregation level in the first aggregation level set, where the search space information includes the available The third aggregation level set and the number of available candidate PDCCHs corresponding to each aggregation level in the third aggregation level set.
  • the first aggregation level set is a subset of the third aggregation level set
  • the candidate PDCCH number of the aggregation level i in the first aggregation level set is according to the aggregation level i
  • Corresponding scale factor an integer determined by the number of available candidate PDCCHs corresponding to the aggregation level i in the third aggregation level set.
  • the first aggregation level set and the second aggregation level set are all a subset of the third aggregation level set
  • the candidate PDCCH of the aggregation level i in the first aggregation level set is The number is an integer determined according to the scale factor corresponding to the aggregation level i and the number of candidate PDCCHs corresponding to the aggregation level i in the third aggregation level set, and the candidate PDCCH of the aggregation level i in the second aggregation level set
  • the number is an integer determined according to the scale factor corresponding to the aggregation level i and the number of candidate PDCCHs corresponding to the aggregation level i in the third aggregation level set.
  • the sum of the number of candidate PDCCHs corresponding to the aggregation level i in the first aggregation level set and the number of candidate PDCCHs corresponding to the aggregation level i in the second aggregation level set is not greater than The number of candidate PDCCHs corresponding to the aggregation level i in the third aggregation level set.
  • the application provides a network device, including:
  • a sending module configured to send configuration information to the terminal device, where the configuration information includes a scaling factor corresponding to each aggregation level in the first aggregation level set, where the first aggregation level set includes n aggregation levels and The first aggregation level set corresponds to the first downlink control information DCI format, and n is a positive integer greater than or equal to 1, and the scale factor is used to determine an aggregation level candidate physical downlink control channel PDCCH corresponding to the scale factor.
  • the sending module is further configured to send the DCI of the first DCI format to the terminal device, where an aggregation level corresponding to the DCI of the first DCI format is an aggregation level in the first aggregation level set.
  • the configuration information further includes information indicating the first aggregation level set.
  • the scale factor P X corresponding to each aggregation level in the first aggregation level set satisfies 0 ⁇ P X ⁇ 1, and the scale factor corresponding to the high aggregation level is not greater than the corresponding low-level aggregation level.
  • the scale factor; or, the scale factor corresponding to the low aggregation level is not greater than the scale factor corresponding to the high aggregation level.
  • the configuration information further includes: a scaling factor corresponding to each aggregation level in the second aggregation level set, wherein the second aggregation level set includes m aggregation levels and the second aggregation The level set corresponds to the second downlink control information DCI format, and m is a positive integer greater than or equal to 1;
  • the first DCI format is different from the second DCI format, and the n aggregation levels in the first aggregation level set and the m aggregation levels in the second aggregation level set are the same or at least one different;
  • the sending module is further configured to send the DCI of the second DCI format to the terminal device, where an aggregation level corresponding to the DCI of the second DCI format is an aggregation level in the second aggregation level set.
  • the configuration information further includes information indicating the second aggregation level set.
  • the scale factor P X corresponding to each aggregation level in the first aggregation level set satisfies 0 ⁇ P X ⁇ 1, and the scale factor corresponding to the high aggregation level is not greater than the corresponding low-level aggregation level.
  • Each scale factor corresponding to the aggregation level set in the second aggregation level P Y satisfy 0 ⁇ P Y ⁇ 1, and low aggregation level not greater than the scale factor corresponding to a scale factor corresponding to a high polymerization level.
  • the method further includes a processing module, configured to determine the configuration information according to the search space information and the blind detection capability of the terminal device, where the search space information includes a third aggregation level set and an available The number of available candidate PDCCHs corresponding to each aggregation level in the third aggregation level set.
  • the application provides a terminal device, including:
  • a receiving module configured to receive configuration information sent by the network device, where the configuration information includes a scaling factor corresponding to each aggregation level in the first aggregation level set, where the first aggregation level set includes n aggregation levels
  • the first aggregation level set corresponds to a first downlink control information DCI format, where n is a positive integer greater than or equal to 1, and the scale factor is used to determine a candidate physical downlink control channel of an aggregation level corresponding to the scale factor. Number of PDCCHs;
  • a processing module configured to determine, according to a scaling factor corresponding to each aggregation level in the first aggregation level set, a number of candidate PDCCHs corresponding to each aggregation level in the first aggregation level set;
  • the receiving module is further configured to receive the DCI of the first DCI format according to the number of candidate PDCCHs corresponding to each aggregation level in the first aggregation level set.
  • the configuration information further includes information indicating the first aggregation level set.
  • the scale factor P X corresponding to each aggregation level in the first aggregation level set satisfies 0 ⁇ P X ⁇ 1, and the scale factor corresponding to the high aggregation level is not greater than the corresponding low-level aggregation level.
  • the scale factor; or, the scale factor corresponding to the low aggregation level is not greater than the scale factor corresponding to the high aggregation level.
  • the configuration information further includes: a scaling factor corresponding to each aggregation level in the second aggregation level set, wherein the second aggregation level set includes m aggregation levels and the second aggregation The level set corresponds to the second downlink control information DCI format, and m is a positive integer greater than or equal to 1;
  • the first DCI format is different from the second DCI format, and the n aggregation levels in the first aggregation level set and the m aggregation levels in the second aggregation level set are the same or at least one different;
  • the processing module is further configured to determine, according to a scaling factor corresponding to each aggregation level in the second aggregation level set, a number of candidate PDCCHs corresponding to each aggregation level in the second aggregation level set;
  • the receiving module is further configured to receive the DCI of the second DCI format according to the number of candidate PDCCHs corresponding to each aggregation level in the second aggregation level set.
  • the configuration information further includes information indicating the second aggregation level set.
  • the scale factor P X corresponding to each aggregation level in the first aggregation level set satisfies 0 ⁇ P X ⁇ 1, and the scale factor corresponding to the high aggregation level is not greater than the corresponding low-level aggregation level.
  • Each scale factor corresponding to the aggregation level set in the second aggregation level P Y satisfy 0 ⁇ P Y ⁇ 1, and low aggregation level not greater than the scale factor corresponding to a scale factor corresponding to a high polymerization level.
  • the processing module is further configured to determine, according to the configuration information and the search space information, the number of candidate PDCCHs corresponding to the first aggregation level in the first aggregation level set, where the search
  • the spatial information includes a third set of aggregation levels that are available and a number of available candidate PDCCHs corresponding to each of the third aggregation level sets.
  • the application provides a downlink control information sending apparatus, including: at least one processor and a memory;
  • the memory stores a computer execution instruction
  • the at least one processor executes the computer-executed instructions stored by the memory such that the apparatus performs the downlink control information transmission method of the first aspect and various possible designs of the first aspect.
  • the application provides a downlink control information receiving apparatus, including: at least one processor and a memory;
  • the memory stores a computer execution instruction
  • the at least one processor executes the computer-executed instructions stored by the memory such that the apparatus performs the downlink control information receiving method as described in various possible designs of the second aspect and the second aspect.
  • the present application provides a computer readable storage medium, where computer executable instructions are stored, and when the processor executes the computer to execute an instruction, implementing the first aspect and the first A method of transmitting downlink control information provided by various possible designs in the aspect.
  • the present application provides a computer readable storage medium, where computer executable instructions are stored, and when the processor executes the computer to execute an instruction, implementing the second aspect and the second A method of receiving downlink control information provided by various possible designs in the aspects.
  • the present application provides a computer program product comprising instructions, when executed on a network device, causing the network device to perform the first aspect as described above and various possible designs in the first aspect
  • the method of sending uplink control information is provided.
  • the present application provides a computer program product comprising instructions, when executed on a terminal device, causing the terminal device to perform the second aspect as described above and various possible designs in the second aspect
  • the uplink control information receiving method provided.
  • the method for transmitting and receiving the downlink control information provided by the embodiment the determining, by the network device, the first DCI format according to the service type, and then determining the first aggregation level set corresponding to the first DCI format, that is, determining the targeting of the network device.
  • the first aggregation level set corresponding to the first DCI format so that the aggregation level of the blind detection of different services and the number of candidate PDCCHs are all configured to meet the reliability requirement of the communication service.
  • the network device sends configuration information to the terminal device, where the configuration information includes a scaling factor corresponding to each aggregation level in the first aggregation level set, the first aggregation level set corresponds to the first DCI format, and the terminal device is configured according to the first DCI format.
  • the configuration information determines the number of candidate PDCCHs corresponding to each aggregation level.
  • the network device performs blind detection according to the number of candidate PDCCHs corresponding to each aggregation level, because the configuration information is based on the network device.
  • the DCI format is determined, and the first DCI format is corresponding to the service type, so that the reliability of the PDCCH can be guaranteed.
  • FIG. 1 shows a network architecture that may be applicable to an embodiment of the present application
  • FIG. 2 is a signaling flowchart 1 of a method for transmitting downlink control information according to an embodiment of the present application
  • FIG. 3 is a signaling flowchart 2 of a method for transmitting downlink control information according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of hardware of a network device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of hardware of a terminal device according to an embodiment of the present disclosure.
  • the network architecture and the service scenario described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are equally applicable to similar technical problems.
  • FIG. 1 shows a network architecture that may be applicable to an embodiment of the present application.
  • the network architecture provided by this embodiment includes a network device 10 and a terminal device 20.
  • the network device 10 is a device that accesses the terminal device to the wireless network, and may be in Global System of Mobile communication (GSM) or Code Division Multiple Access (CDMA).
  • Base station (Base Transceiver Station, BTS for short), may also be a base station (NodeB, NB for short) in Wideband Code Division Multiple Access (WCDMA), or Long Term Evolution (LTE).
  • the evolved base station (Evolutional Node B, eNB or eNodeB for short), or the relay station or the access point, or the base station in the future 5G network, is not limited herein.
  • FIG. 1 is a schematic diagram showing a possible schematic diagram, and the network device is taken as an example for a base station.
  • the terminal device 20 may be a wireless terminal or a wired terminal, the wireless terminal may be a device that provides voice and/or other service data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem. .
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a mobile terminal.
  • RAN Radio Access Network
  • the computer for example, can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
  • the wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal.
  • the access terminal, the user terminal (User Terminal), and the user agent (User Agent) are not limited herein.
  • FIG. 1 schematically depicts a possible schematic diagram in which the terminal device is a mobile phone as an example.
  • a data channel of a terminal device includes a physical downlink shared channel (PDSCH) for transmitting downlink data and a physical uplink shared channel (PUSCH) for transmitting uplink data
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • the uplink and downlink resource scheduling of the data channel needs to notify the terminal device by using Downlink Control Information (DCI).
  • DCI is carried by a Physical Downlink Control Channel (PDCCH).
  • a time-frequency resource allocated to a PDCCH is divided into a plurality of Control Channel Elements (CCEs).
  • the CCE is the smallest unit that constitutes the PDCCH.
  • the PDCCH can be aggregated by L CCEs.
  • the L is called the Aggregation Level (AL).
  • the network device selects a suitable aggregation level to transmit the PDCCH of the terminal device according to the condition of the channel, and the DCI is carried on the PDCCH, and the terminal device uses the specific scrambling code to perform blind detection on the candidate PDCCH in the specific search space to obtain the DCI. .
  • 5G 5th Generation Mobile Communication
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra-Reliable and Low Latency Communication
  • the scenario corresponding to URLLC includes unmanned driving, industrial control, etc.
  • the specific requirements of the URLLC service include: the transmission reliability is 99.999%, and the transmission delay is less than 1 ms.
  • the reliability of the URLLC user control channel needs to be improved.
  • the URLLC monitors the control channel period. Relatively short.
  • the eMBB service is a traditional service, and the reliability and delay requirements are lower than that of the URLLC service. Therefore, the reliability requirement of the control channel is relatively low, and the period in which the user monitors the control channel is relatively long. Therefore, the DCI format of the URLLC service is different from the DCI format of the eMBB service, and the period for the user to monitor the DCI of different formats is also different.
  • the URLLC service is introduced in the 5G service, and the method for transmitting and receiving downlink control information in the prior art cannot meet the high reliability and low latency requirements of the URLLC service control channel.
  • a method for transmitting and receiving downlink control information is proposed, which can be applied not only to an eMBB service but also to a URLLC service.
  • the present embodiment distinguishes the aggregation level set by the first, second, and third.
  • the first aggregation level set and the second aggregation level set are two aggregation level sets corresponding to the DCI formats with different reliability requirements, and the third aggregation level set is an available aggregation level set.
  • FIG. 2 is a signaling flowchart of a method for transmitting downlink control information according to an embodiment of the present disclosure. As shown in Figure 2, the method includes:
  • the network device sends configuration information to the terminal device, where the configuration information includes a scaling factor corresponding to each aggregation level in the first aggregation level set.
  • the service type of the data to be scheduled of the terminal device has a corresponding relationship with the DCI format.
  • the data to be scheduled of the terminal device may be uplink data or downlink data.
  • the service type of the data to be scheduled may be an eMBB service, a URLLC service, or another service type.
  • the terminal device currently supports a service type, and the base station configures configuration information corresponding to a DCI format for the terminal device for the service type, and the DCI format is referred to as a first DCI format.
  • the base station configures configuration information corresponding to a first DCI format for each terminal device according to the service type corresponding to the data to be scheduled of each terminal device.
  • the network device sends configuration information to a terminal device currently supporting one DCI format.
  • the configuration information includes a scaling factor corresponding to each aggregation level in the first aggregation level set.
  • the first aggregation level set includes n aggregation levels, and the first aggregation level set corresponds to the first DCI format, n is a positive integer greater than or equal to 1, and the scale factor is used to determine candidate physics of the aggregation level corresponding to the scale factor.
  • the number of downlink control channel PDCCHs For the same aggregation level, the larger the scale factor, the more the number of corresponding candidate PDCCH channels.
  • the DCI format has a corresponding relationship with the first aggregation level set
  • the network device may determine, according to the correspondence, the first aggregation level set corresponding to the first DCI format, and then determine each aggregation level in the first aggregation level set. Corresponding scale factor.
  • the eMBB service and the URLLC service are taken as an example for description.
  • the service type is eMBB service
  • the corresponding first DCI format is called DCI format X
  • the corresponding scale factor is P X
  • the service type is URLLC service
  • the corresponding first DCI format is called DCI format.
  • the corresponding scale factor is P Y .
  • the corresponding first DCI format is DCI format X
  • the scale factor corresponding to each aggregation level of the terminal device is as shown in Table 1, in Table 1, The first column is the first aggregation level set, and the second column is the scale factor corresponding to each aggregation level.
  • the first aggregation level set includes aggregation levels 1, 2, 4, 8, and 16.
  • the aggregation level of the aggregation level set configured by the terminal device is relatively low, and the candidate PDCCHs for blind detection of the terminal device are concentrated in a smaller aggregation. grade.
  • the "lower aggregation level” is a relative concept, which is relative to the aggregation level of user equipment required for high reliability.
  • the scale factor corresponding to the high aggregation level is not greater than the scale factor corresponding to the low aggregation level, that is, the scale factor corresponding to the aggregation level 2 i+1 is not greater than the scale factor corresponding to the aggregation level 2 i , where i is a non-negative integer.
  • the value of i includes 0.
  • the high aggregation level refers to the larger one of the two aggregation levels in the first aggregation level set
  • the low aggregation level refers to the smaller aggregation level.
  • the first aggregation level set is ⁇ 1, 2, 4, 8, 16 ⁇ , that is, the scale factor corresponding to the aggregation level 4 is not greater than the scale factor corresponding to the aggregation level 2, and the scale factor corresponding to the aggregation level 16 is not greater than the aggregation level 8.
  • Corresponding scale factor For the first table, a 0 ⁇ a 1 ⁇ a 2 ⁇ a 3 ⁇ a 4 .
  • the corresponding first DCI format is DCI format Y
  • the scale factor corresponding to each aggregation level of the terminal device is as shown in Table 1, and the first column is A set of aggregation levels, the second column is the scale factor corresponding to each aggregation level.
  • the first aggregation level set includes aggregation levels 2, 4, 8, 16, 32.
  • the aggregation level in the aggregation level set configured by the terminal is relatively high, and the candidate PDCCHs for blind detection of the terminal device are concentrated in a higher aggregation.
  • the level, in which "the aggregation level is relatively high" is a relative concept, which is relative to the aggregation level of the terminal device required for low reliability.
  • the scale factor corresponding to the low aggregation level is not greater than the scale factor corresponding to the high aggregation level, that is, the scale factor corresponding to the aggregation level 2 i is not greater than the scale factor corresponding to the aggregation level 2 i+1 , where i is a non-negative integer.
  • the value of i includes 0.
  • b 1 ⁇ b 2 ⁇ b 3 ⁇ b 4 ⁇ b 5 For the concept of the high aggregation level and the low aggregation level, refer to the foregoing embodiment, and details are not described herein again.
  • the aggregation level set is ⁇ 2, 4, 8, 16, 32 ⁇ , that is, the scale factor corresponding to the aggregation level 2 is not greater than the scale factor corresponding to the aggregation level 8, and the scale factor corresponding to the aggregation level 16 is not greater than the aggregation level 32.
  • Scale Factor the scale factor corresponding to the aggregation level 2 is not greater than the scale factor corresponding to the aggregation level 8
  • the scale factor corresponding to the aggregation level 16 is not greater than the aggregation level 32.
  • the present application configures a first aggregation level set corresponding to the DCI format of the service type for terminal devices having different service types. After the service type of the terminal device is determined, the first aggregation level set corresponding to the first DCI format of the service type is determined, so that the reliability requirement of the service can be met.
  • the network device After determining the configuration information, the network device sends configuration information to the terminal device, where the configuration information includes a scaling factor corresponding to each aggregation level in the first aggregation level set.
  • the network device may send configuration information to the terminal device by using high layer signaling.
  • the configuration information may be semi-static information, that is, valid for a period of time, and the configuration information may also be static information, that is, valid for a long time. That is, for the same configuration information, the network device can send multiple DCIs.
  • the base station may perform a scale factor corresponding to each aggregation level in an order of aggregation level from low to high, that is, an aggregation level of 1, 2, 4, 8, 16, 32, .
  • the order of the scale factors in the configuration information is a 0 , a 1 , a 2 , a 3 , a 4 ; for the first aggregation level shown in Table 2
  • the set, the order of the scale factors in the configuration information is 0, b 1 , b 2 , b 3 , b 4 , b 5 , where 0 represents the scale factor corresponding to the aggregation level 1 is 0. Therefore, the network device does not need to indicate the first aggregation level set to the terminal device, and the terminal device can obtain the scale factor corresponding to each aggregation level according to the ranking.
  • the configuration information further includes information indicating a first aggregation level set.
  • the information may be the identification information of the first aggregation level, the different first aggregation level sets, and the identification information is different.
  • the identification information may be, for example, group 1.
  • the first aggregation level set indicated by group 1 includes aggregation levels 1, 2, 4, 8, and 16.
  • the scale factors are ranked as a 0 , a 1 , a 2 , a 3 , and a 4 , and sequentially from low to high aggregation levels. correspond.
  • the identification information may be, for example, group 2, and the first aggregation level set indicated by the group 2 includes aggregation levels 2, 4, 8, 16, 32, and the scale factor is ordered as b 1 , b 2 , b 3 , b 4 , b 5 , which in turn correspond to the aggregation level from low to high.
  • the information includes values for all of the aggregation levels in the first aggregation level set.
  • the configuration information is implemented as shown in Table 1.
  • the configuration information is implemented as shown in Table 2.
  • several implementations of the information indicating the first aggregation level set are listed.
  • the present embodiment can also be applied to the present embodiment. The embodiment is not particularly limited herein.
  • the terminal device determines, according to a scaling factor corresponding to each aggregation level in the first aggregation level set, a number of candidate PDCCHs corresponding to each aggregation level in the first aggregation level set.
  • the terminal device After receiving the configuration information, acquires a scaling factor corresponding to each aggregation level in the first aggregation level set according to the configuration information. It can be seen from the above that the terminal device can obtain the scale factor corresponding to each aggregation level according to the order of the scale factors in the configuration information according to the order of the aggregation level from low to high. Optionally, the terminal device may obtain, according to the information indicating the first aggregation level set included in the configuration information, a scaling factor corresponding to each aggregation level.
  • the terminal device determines, according to the scaling factor corresponding to each aggregation level in the first aggregation level set, the number of candidate PDCCHs corresponding to each aggregation level in the first aggregation level set.
  • the scaling factor corresponding to each aggregation level has a corresponding relationship with the number of candidate PDCCHs in the aggregation level.
  • the terminal device can obtain the number of candidate PDCCHs corresponding to each aggregation level according to the scale factor and the corresponding relationship.
  • the number of candidate PDCCHs corresponding to b 1 is M real-1
  • the number of candidate PDCCHs corresponding to b 2 is M real -2
  • the number of candidate PDCCHs corresponding to b 3 is M real - 3
  • the number of candidate PDCCHs for blind detection corresponding to b 4 is M real-4
  • the number of candidate PDCCHs for blind detection corresponding to b 5 is M real-5 .
  • blind detection M real-1 times at aggregation level 2, blind detection M real-1 times, at aggregation level 4, blind detection M real-2 times, at aggregation level 8, blind detection M real-4 times, at aggregation level 16, blind detection M real -4 times, at aggregation level 32, blind detection M real -5 times.
  • the network device sends the DCI of the first DCI format to the terminal device.
  • the aggregation level corresponding to the DCI of the first DCI format is an aggregation level in the first aggregation level set.
  • the aggregation level corresponding to the first DCI format is one aggregation level in the first aggregation level set.
  • the terminal device receives the DCI of the first DCI format according to the number of candidate PDCCHs corresponding to each aggregation level in the first aggregation level set.
  • a person skilled in the art can understand that when the network device sends the DCI of the first DCI format to the terminal device, it does not know whether the terminal device determines the number of candidate PDCCHs corresponding to each aggregation level. The terminal device does not know whether the network device sends the DCI of the first DCI format, but acquires it through blind detection. Therefore, S102 and S103 do not have strict timing relationships for network devices and terminal devices.
  • the terminal device After the terminal device determines the number of candidate PDCCHs corresponding to each aggregation level, after the network device sends the DCI of the first DCI format to the terminal device, the terminal device selects candidates corresponding to each aggregation level in the first aggregation level set.
  • the number of PDCCHs is blindly detected to receive the DCI of the first DCI format.
  • the network device determines the first DCI format of the terminal device according to the service type of the terminal device, and then determines the first aggregation level set corresponding to the first DCI format, that is, Determining, by the network device, the first aggregation level set corresponding to the first DCI format, so that the aggregation level of the blind detection of different services and the number of candidate PDCCHs are all configured to meet the reliability of the communication service. Demand.
  • the network device sends configuration information to the terminal device, where the configuration information includes a scaling factor corresponding to each aggregation level in the first aggregation level set, the first aggregation level set corresponds to the first DCI format, and the terminal device is configured according to the first DCI format.
  • the configuration information determines the number of candidate PDCCHs corresponding to each aggregation level.
  • the network device performs blind detection according to the number of candidate PDCCHs corresponding to each aggregation level, because the configuration information is based on the network device.
  • the DCI format is determined, and the first DCI format is corresponding to the service type, so that the reliability of the PDCCH can be guaranteed.
  • the network device determines configuration information corresponding to the first DCI according to the search space information and the blind detection capability of the terminal device, where the search space information includes the available third aggregation level set and each aggregation in the third aggregation level set. The number of available candidate PDCCHs corresponding to the level.
  • the terminal device can report the blind detection capability of the terminal device to the network device.
  • the blind detection capability of the terminal device may specifically be the maximum number of blind detections of the terminal device.
  • the search space information may be a preset set of available third set level levels and a number of available candidate PDCCHs corresponding to each of the third aggregation level sets.
  • the search space information is the same for both the network device and the terminal device, and is pre-configured. This pre-set can be pre-defined for various communication protocols. Table 3 shows a possible implementation of search space information.
  • the first aggregation level set includes aggregation levels 1, 2, 4, 8, 16.
  • the first aggregation level set includes aggregation levels 2, 4, 8, 16, 32 for format Y. That is, the first aggregation level set is a true subset of the third aggregation level set.
  • the network device determines the configuration information corresponding to the first DCI format according to the search space information and the blind detection capability of the terminal device, that is, determines the scale factor corresponding to each aggregation level, so that the total number of blind detections of the terminal device is not greater than that of the terminal device. Blind detection capability.
  • the number of candidate PDCCHs of the aggregation level i in the first aggregation level set is an integer determined according to the scale factor corresponding to the aggregation level i and the number of available candidate PDCCHs corresponding to the aggregation level i in the third aggregation level set.
  • the number of candidate PDCCHs that need to be blindly detected in each aggregation level can be obtained by any one of Equations 1 to 3 below.
  • the M real (L, format) is the number of candidate PDCCHs that need to be blindly detected in each aggregation level in the first DCI format
  • p(L, format) represents the scale factor corresponding to the aggregation level i
  • M (L) ) is the number of available candidate PDCCHs corresponding to the third aggregation level.
  • the total number of blind detections corresponding to the first aggregation level set needs to be no more than the blind detection capability of the terminal device.
  • the format X of the above Table 1 is satisfied.
  • the network device can solve the scale factor corresponding to each first aggregation level.
  • the network device may also combine the constraints of a 0 ⁇ a 1 ⁇ a 2 ⁇ a 3 ⁇ a 4 to solve the scaling factor corresponding to each aggregation level.
  • the network device can solve the scale factor corresponding to each aggregation level.
  • the network device may also combine the constraints of b 1 ⁇ b 2 ⁇ b 3 ⁇ b 4 ⁇ b 5 to solve the scaling factor corresponding to each aggregation level.
  • the scale factor corresponding to each aggregation level finally solved by the network device may not be unique, and the network device may select a specific scale factor according to a preset rule.
  • the network device determines the scaling factor corresponding to each aggregation level in the first aggregation level set, thereby determining the configuration information sent to the terminal device.
  • the terminal device After receiving the configuration information, the terminal device acquires the number of candidate PDCCHs corresponding to each aggregation level according to the configuration information.
  • format X a possible implementation of the configuration information is as shown in Table 1.
  • format Y a possible implementation manner of the configuration information is shown in Table 2.
  • the terminal device determines, according to the configuration information and the search space information, the number of candidate PDCCHs corresponding to the aggregation level in the first aggregation level set.
  • the number of candidate PDCCHs of the aggregation level i in the first aggregation level set is an integer determined according to the scale factor corresponding to the aggregation level i and the number of available candidate PDCCHs corresponding to the aggregation level i in the third aggregation level set.
  • the implementation of the number of candidate PDCCHs corresponding to each aggregation level may be as shown in Table 4.
  • the implementation manner of the number of candidate PDCCHs corresponding to each aggregation level may be as shown in Table 5.
  • the terminal device After the terminal device obtains the number of candidate PDCCHs corresponding to each aggregation level, after the network device sends the DCI of the first DCI format, the terminal device performs blind detection to receive the DCI of the first DCI format. Specifically, how many candidate PDCCHs are in each aggregation level, and how many times the terminal device blindly detects the aggregation level.
  • the blind detection period of the two services is different. Therefore, the PDCCH of the URLLC service and the PDCCH of the eMBB service may be blindly detected at a certain time.
  • the blind detection capability of the terminal device (the total number of blind detections) is certain. How to properly allocate the blind detection times of the terminal device can ensure the reliability requirement of the URLLC service control channel and ensure the control channel of the eMBB service. Being monitored is also a problem that needs to be addressed in this application. The details will be described below with reference to FIG. 3.
  • FIG. 3 is a signaling flowchart 2 of a method for transmitting downlink control information according to an embodiment of the present disclosure. As shown in FIG. 3, the method includes:
  • the network device sends configuration information to the terminal device, where the configuration information includes a scaling factor corresponding to each aggregation level in the first aggregation level set and a scaling factor corresponding to each aggregation level in the second aggregation level set.
  • the first aggregation level set includes n aggregation levels and the first aggregation level set corresponds to the first downlink control information DCI format, n is a positive integer greater than or equal to 1;
  • the second aggregation level set includes m aggregation levels and The second aggregation level set corresponds to the second downlink control information DCI format, and m is a positive integer greater than or equal to 1;
  • the first DCI format is different from the second DCI format, and the n aggregation levels and the first aggregation level set m aggregation levels in the aggregation level set are the same or at least one different;
  • the terminal device determines, according to a scaling factor corresponding to each aggregation level in the first aggregation level set, a number of candidate PDCCHs corresponding to each aggregation level in the first aggregation level set, and according to each of the second aggregation level sets. a scale factor corresponding to the aggregation level, determining a number of candidate PDCCHs corresponding to each aggregation level in the second aggregation level set;
  • the network device sends the DCI in the first DCI format and the DCI in the second DCI format to the terminal device.
  • the aggregation level corresponding to the DCI of the first DCI format is an aggregation level in the first aggregation level set.
  • the aggregation level corresponding to the DCI of the second DCI format is the aggregation level in the second aggregation level set.
  • the aggregation level corresponding to the first DCI format is one aggregation level in the first aggregation level set.
  • the aggregation level corresponding to the second DCI format is one aggregation level in the second aggregation level set.
  • the terminal device receives the DCI of the first DCI format according to the number of candidate PDCCHs corresponding to each aggregation level in the first aggregation level set, and aggregates according to each of the second aggregation level sets. The number of candidate PDCCHs corresponding to the level, and receiving the DCI of the second DCI format.
  • the terminal device supports two service types.
  • the terminal device supports URLLC services and eMBB services.
  • Each type of service corresponds to a DCI format.
  • the eMBB service corresponds to the first DCI format, that is, DCI format X
  • the URLLC service corresponds to the second DCI format, that is, DCI format Y. Determining, by the network device, the first aggregation level set corresponding to the first DCI format and the size factor corresponding to each aggregation level in the first aggregation level set, determining a second aggregation level set corresponding to the second DCI format, and A scale factor corresponding to each aggregation level in the second aggregation level set.
  • the network device Determining, by the network device, the first aggregation level set corresponding to the first DCI format and the size factor corresponding to each aggregation level in the first aggregation level set, determining a second aggregation level set corresponding to the second DCI format, and A
  • the configuration information further includes information indicating a first aggregation level set and information indicating a second aggregation level set.
  • the information indicating the aggregation level of each aggregation level is similar to the implementation of the information indicating the first aggregation level set in the embodiment shown in FIG. 2, and details are not described herein again.
  • the eMBB service corresponds to the first DCI format, the first DCI format is format X, and the corresponding scale factor is P X, for example, corresponding to
  • the first aggregation level set of the DCI format X and the scale factor corresponding to each aggregation level may be as shown in Table 6;
  • the URL LC service corresponds to the second DCI format, and the second DCI format is format Y, and the corresponding scale factor is
  • P Y the second aggregation level set corresponding to the DCI format Y and the scale factor corresponding to each aggregation level may be as shown in Table 7.
  • the scaling factor corresponding to the high aggregation level in the configuration information is not greater than the scaling factor corresponding to the low aggregation level, that is, c 0 ⁇ c 1 ⁇ c 2 ⁇ c 3 ⁇ c 4 .
  • the scale factor corresponding to the low aggregation level in the configuration information is not greater than the scale factor corresponding to the high aggregation level, that is, r 1 ⁇ r 2 ⁇ r 3 ⁇ r 4 ⁇ r 5 .
  • the terminal device After receiving the configuration information sent by the network device, the terminal device determines, according to a scaling factor corresponding to each aggregation level in the first aggregation level set, the number of candidate PDCCHs corresponding to each aggregation level in the first aggregation level set, and according to the A scaling factor corresponding to each aggregation level in the second aggregation level set determines a number of candidate PDCCHs corresponding to each aggregation level in the second aggregation level set. In this embodiment, the terminal device determines the implementation manner of the number of candidate PDCCHs corresponding to each aggregation level according to the scale factor. For reference, refer to the foregoing embodiment, which is not described herein again.
  • the terminal device After the network device sends the DCI of the first DCI format and the DCI of the second DCI format to the terminal device, the terminal device receives the first DCI format according to the number of candidate PDCCHs corresponding to each aggregation level in the first aggregation level set.
  • the network device determines, according to the two service types to which the data to be scheduled of the terminal device belongs, the first DCI format corresponding to the first service type, and the second service type corresponding to the second service type.
  • the second DCI format is the first DCI format corresponding to the first service type.
  • the network device determines, in a targeted manner, a first aggregation level set corresponding to the first DCI format and a scaling factor corresponding to each aggregation level in the first aggregation level set, a second aggregation level set corresponding to the second DCI format, and a second A scale factor corresponding to each aggregation level in the aggregation level set, and sending configuration information to the terminal device, where the configuration information includes a scale factor corresponding to each aggregation level in the first aggregation level set and each aggregation in the second aggregation level set
  • the scale corresponding to the level the terminal performs blind detection according to the configuration information, and receives the DCI of the first DCI format and the DCI of the second DCI format, so that the aggregation level of the blind detection of different services and the number of candidate PDCCHs are both
  • the targeted configuration can ensure the reliability requirements of the URLLC service control channel and ensure that the control channel of the eMBB service can be monitored.
  • the network device determines the configuration information according to the search space information and the blind detection capability of the terminal device.
  • the search space information includes the available third aggregation level set and the available candidate PDCCH numbers corresponding to each aggregation level in the third aggregation level set.
  • the implementation of the search space information may be as shown in Table 3.
  • the first aggregation level set and the second aggregation level set are true subsets of the third aggregation level set, and the network device determines the first aggregation level set according to the search space information and the blind detection capability of the terminal device.
  • the scale factor corresponding to each aggregation level and the scale factor corresponding to each aggregation level in the second aggregation level set so that the total number of blind detections of the terminal device is not greater than the blind detection capability of the terminal device.
  • the number of candidate PDCCHs of the aggregation level i in the first aggregation level set is an integer determined according to the scaling factor corresponding to the aggregation level i and the number of candidate PDCCHs corresponding to the aggregation level i in the third aggregation level set, and second.
  • the number of candidate PDCCHs of the aggregation level i in the aggregation level set is an integer determined according to the scale factor corresponding to the aggregation level i and the number of candidate PDCCHs corresponding to the aggregation level i in the third aggregation level set.
  • the network device determines a scaling factor corresponding to the aggregation level in the first aggregation level set and a scaling factor corresponding to the aggregation level in the second aggregation degree level set, so that the constraint condition as shown in the following formula is satisfied. .
  • the following constraint condition is further met: the sum of the number of candidate PDCCHs corresponding to the aggregation level i in the first aggregation level set and the number of candidate PDCCHs corresponding to the aggregation level i in the second aggregation level set is not greater than the third The number of candidate PDCCHs corresponding to the aggregation level i in the aggregation level set. That is, the constraint conditions shown in any one of the following formulas 4 to 6 are satisfied. The meaning of this constraint is that the number of candidate PDCCHs for the actual blind detection corresponding to the terminal device at the aggregation level L cannot exceed the maximum number of candidate PDCCHs of the user equipment at the aggregation level L.
  • M real is the total number of candidate PDCCHs that need to be blindly detected for each aggregation level i
  • P X represents a scale factor corresponding to the aggregation level i in the first aggregation level set
  • P Y represents the second aggregation level set.
  • M (L) is the number of candidate PDCCHs corresponding to the aggregation level i in the third aggregation level set.
  • round ⁇ stands for rounding off, The representative is rounded down, The representative is rounded up.
  • the blind detection capability of the terminal device is not exceeded, and the blind detection times of the terminal device are reasonably allocated on the other hand, which can ensure the reliability requirement of the URLLC service control channel and ensure the control channel of the eMBB service. Can be monitored.
  • the network device solves the scale factor corresponding to the aggregation level in each first aggregation level set and the scale factor corresponding to the aggregation level in the second aggregation level set according to various constraints described above.
  • the network device determines the configuration information.
  • the network device sends configuration information to the terminal device.
  • the terminal device After receiving the configuration information, the terminal device performs blind detection according to the configuration information.
  • the configuration information may include the contents of Table 6 and Table 7 above.
  • the terminal device determines, according to the configuration information, the number of candidate PDCCHs corresponding to each aggregation level in the first aggregation level set, which is similar to that shown in the foregoing Table 4, and details are not described herein again, and each aggregation in the second aggregation level set is not described herein.
  • the number of candidate PDCCHs corresponding to the level is similar to that shown in Table 5 above, and is not described herein again in this embodiment.
  • the terminal device When the network device sends the DCI of the first DCI format and the DCI of the second DCI format to the terminal device, the terminal device receives the DCI of the first DCI format according to the number of candidate PDCCHs corresponding to each aggregation level in the first aggregation level set. And receiving the DCI of the second DCI format according to the number of candidate PDCCHs corresponding to each aggregation level in the second aggregation level set.
  • the control channel of the eMBB service can be monitored, and the low aggregation level can only be used for format X blind detection and high aggregation.
  • the implementation of the first aggregation level set may also be as shown in Table 1.
  • the implementation manner of the second aggregation level set may also be as shown in Table 2. That is, regardless of whether the network device determines a DCI format or determines two DCI formats, the aggregation level set for the DCI format is always unchanged.
  • a proportional parameter w can be configured through high-level signaling, so that the total number of blind detections does not exceed the blind detection capability of the terminal device, and the constraints shown in Equations 4 to 6 above.
  • the constraint conditions are:
  • the network device can be configured to configure the proportional parameter w for the terminal device, and the terminal device performs scaling by using the proportional parameter, and can obtain the number of candidate PDCCHs corresponding to each aggregation level, thereby performing blind detection.
  • the network device may further configure the first aggregation level ratio parameter w1 and the second aggregation level ratio parameter w2 for the terminal device, so that the total number of blind detections does not exceed the blind detection capability of the terminal device.
  • the constraint conditions are:
  • a method for transmitting and receiving DCI when the terminal device supports two service types is described.
  • the method for transmitting and receiving DCI is similar to that for the terminal device, that is, the total number of blind detections is not greater than the blind detection capability of the terminal device.
  • the aggregation level, the sum of the number of blind detection candidate PDCCHs corresponding to each DCI format is not greater than the number of candidate PDCCHs in the aggregation level in the search space information.
  • the first aggregation level set or the second aggregation level set may also be the same as the aggregation level in the third aggregation level set. That is, in order to standardize and unify the network device configuration, the aggregation level sets corresponding to different DCIs are identical in form. However, in order to ensure that the aggregation level sets corresponding to different DCIs are substantially different, thereby implementing different reliability requirements corresponding to different DCI formats, at this time, a small value corresponding to a partial aggregation level may be set, for example, directly Set to 0.
  • the aggregation level includes all available aggregation levels, but for the high aggregation level, the scale factor is set to a smaller value, for example, directly set to 0, that is, the high aggregation level is not blindly detected.
  • the aggregation level includes all available aggregation levels, but for the low aggregation level, the scale factor is set to a smaller value, for example, directly set to 0, that is, the low aggregation level is not blindly detected.
  • the solution provided by the embodiment of the present application is introduced from the perspective of the interaction between the network device and the terminal device.
  • the network device and the terminal device include corresponding hardware structures and/or software modules for performing the respective functions in order to implement the above functions.
  • the embodiments of the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements of the examples and algorithm steps described in the embodiments disclosed in the application. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of the technical solutions of the embodiments of the present application.
  • the embodiments of the present application may divide the function modules of the network device and the terminal device according to the foregoing method.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 4 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • the network device 300 includes: a sending module 301;
  • the sending module 301 is configured to send configuration information to the terminal device, where the configuration information includes a scaling factor corresponding to each aggregation level in the first aggregation level set, where the first aggregation level set includes n aggregations. And the first aggregation level set corresponds to the first downlink control information DCI format, where n is a positive integer greater than or equal to 1, the scale factor is used to determine a candidate physical downlink of the aggregation level corresponding to the scale factor Control channel PDCCH number;
  • the sending module 301 is further configured to send the DCI of the first DCI format to the terminal device, where an aggregation level corresponding to the DCI of the first DCI format is an aggregation level in the first aggregation level set.
  • the network device 300 may further include other modules such as the processing module 302.
  • the configuration information further includes information indicating the first aggregation level set.
  • the scale factor P X corresponding to each aggregation level in the first aggregation level set satisfies 0 ⁇ P X ⁇ 1, and the scale factor corresponding to the high aggregation level is not greater than the scale factor corresponding to the low aggregation level; or The scale factor corresponding to the low aggregation level is not greater than the scale factor corresponding to the high aggregation level.
  • the configuration information further includes: a scaling factor corresponding to each aggregation level in the second aggregation level set, where the second aggregation level set includes m aggregation levels and the second aggregation level set corresponds to a second downlink control information DCI format, and m is a positive integer greater than or equal to 1;
  • the first DCI format is different from the second DCI format, and the n aggregation levels in the first aggregation level set and the m aggregation levels in the second aggregation level set are the same or at least one different;
  • the sending module 301 is further configured to send the DCI of the second DCI format to the terminal device, where an aggregation level corresponding to the DCI of the second DCI format is an aggregation level in the second aggregation level set.
  • the configuration information further includes information indicating the second aggregation level set.
  • the scale factor P X corresponding to each aggregation level in the first aggregation level set satisfies 0 ⁇ P X ⁇ 1, and the scale factor corresponding to the high aggregation level is not greater than the scale factor corresponding to the low aggregation level;
  • Each scale factor corresponding to the aggregation level set in the second aggregation level P Y satisfy 0 ⁇ P Y ⁇ 1, and low aggregation level not greater than the scale factor corresponding to a scale factor corresponding to a high polymerization level.
  • FIG. 5 is a schematic structural diagram of hardware of a network device according to an embodiment of the present disclosure. As shown in FIG. 5, the network device 400 includes:
  • At least one processor 401 memory 402, transmitter 403.
  • a receiver 404 is also included.
  • the memory 402 stores computer executed instructions; the at least one processor 401 executes computer executed instructions stored by the memory 402 to enable the network device 400 to perform the method embodiments as described above.
  • the processor 401 determines configuration information, and the transmitter 403 sends configuration information to the terminal device, where the configuration information includes a scaling factor corresponding to each aggregation level in the first aggregation level set, wherein the first aggregation level set Include n aggregation levels and the first aggregation level set corresponds to a first downlink control information DCI format, n is a positive integer greater than or equal to 1, the scale factor is used to determine an aggregation level corresponding to the scale factor Number of candidate physical downlink control channel PDCCHs;
  • the transmitter 403 sends the DCI of the first DCI format to the terminal device, and the aggregation level corresponding to the DCI of the first DCI format is an aggregation level in the first aggregation level set.
  • the network device provided in this embodiment can perform the foregoing method embodiments, and the implementation principles and technical effects are similar, and details are not described herein again.
  • FIG. 6 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • the terminal device 500 includes a receiving module 501 and a processing module 502. among them
  • the receiving module 501 is configured to receive configuration information sent by the network device, where the configuration information includes a scaling factor corresponding to each aggregation level in the first aggregation level set, where the first aggregation level set includes n aggregation levels. And the first aggregation level set corresponds to a first downlink control information DCI format, where n is a positive integer greater than or equal to 1, and the scale factor is used to determine a candidate physical downlink control of an aggregation level corresponding to the scale factor. Number of channel PDCCHs;
  • the processing module 502 is configured to determine, according to a scaling factor corresponding to each aggregation level in the first aggregation level set, a number of candidate PDCCHs corresponding to each aggregation level in the first aggregation level set;
  • the receiving module 502 is further configured to receive the DCI of the first DCI format according to the number of candidate PDCCHs corresponding to each aggregation level in the first aggregation level set.
  • the configuration information further includes information indicating the first aggregation level set.
  • the scale factor P X corresponding to each aggregation level in the first aggregation level set satisfies 0 ⁇ P X ⁇ 1, and the scale factor corresponding to the high aggregation level is not greater than the scale factor corresponding to the low aggregation level; or The scale factor corresponding to the low aggregation level is not greater than the scale factor corresponding to the high aggregation level.
  • the configuration information further includes: a scaling factor corresponding to each aggregation level in the second aggregation level set, where the second aggregation level set includes m aggregation levels and the second aggregation level set corresponds to a second downlink control information DCI format, and m is a positive integer greater than or equal to 1;
  • the first DCI format is different from the second DCI format, and the n aggregation levels in the first aggregation level set and the m aggregation levels in the second aggregation level set are the same or at least one different;
  • the processing module 502 is further configured to determine, according to a scaling factor corresponding to each aggregation level in the second aggregation level set, a number of candidate PDCCHs corresponding to each aggregation level in the second aggregation level set;
  • the receiving module 501 is further configured to receive the DCI of the second DCI format according to the number of candidate PDCCHs corresponding to each aggregation level in the second aggregation level set.
  • the configuration information further includes information indicating the second aggregation level set.
  • the scale factor P X corresponding to each aggregation level in the first aggregation level set satisfies 0 ⁇ P X ⁇ 1, and the scale factor corresponding to the high aggregation level is not greater than the scale factor corresponding to the low aggregation level;
  • Each scale factor corresponding to the aggregation level set in the second aggregation level P Y satisfy 0 ⁇ P Y ⁇ 1, and low aggregation level not greater than the scale factor corresponding to a scale factor corresponding to a high polymerization level.
  • FIG. 7 is a schematic structural diagram of hardware of a terminal device according to an embodiment of the present disclosure. As shown in FIG. 7, the terminal device 600 includes:
  • a transmitter 604 is also included.
  • the memory 602 stores computer-executed instructions; the at least one processor 601 executes computer-executed instructions stored by the memory 602 to enable the terminal device 600 to perform the method embodiments as described above.
  • the receiver 603 receives the configuration information sent by the network device, where the configuration information includes a scaling factor corresponding to each aggregation level in the first aggregation level set, where the first aggregation level set includes n aggregation levels and The first aggregation level set corresponds to a first downlink control information DCI format, where n is a positive integer greater than or equal to 1, and the scale factor is used to determine a candidate physical downlink control channel of an aggregation level corresponding to the scale factor. Number of PDCCHs;
  • the processor 601 determines, according to a scaling factor corresponding to each aggregation level in the first aggregation level set, a number of candidate PDCCHs corresponding to each aggregation level in the first aggregation level set;
  • the processor 601 controls the receiver 603 to receive the DCI of the first DCI format according to the number of candidate PDCCHs corresponding to each aggregation level in the first aggregation level set.
  • the terminal device provided in this embodiment can perform the foregoing method embodiments, and the implementation principles and technical effects are similar, and details are not described herein again.
  • the embodiment of the present application further provides a computer readable storage medium, where computer execution instructions are stored, and when at least one processor of the network device executes the computer to execute an instruction, the network device performs the foregoing various possibilities.
  • the downlink control information transmission method
  • the embodiment of the present application further provides a computer readable storage medium.
  • the computer readable storage medium stores computer execution instructions.
  • the terminal device executes the computer to execute an instruction, the terminal device performs the foregoing various possible downlinks. Control information receiving method.
  • the embodiment of the present application further provides a computer program product including instructions, when it is running on a network device, causing the network device to perform the above various possible downlink control information sending methods.
  • the embodiment of the present application further provides a computer program product comprising instructions, which when executed on a terminal device, causes the terminal device to perform the above various possible downlink control information receiving methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种下行控制信息发送和接收方法及设备,该方法包括:网络设备向终端设备发送配置信息,其中,配置信息包括第一聚合等级集合中每个聚合等级对应的比例因子,网络设备向终端设备发送第一DCI格式的DCI,第一DCI格式的DCI对应的聚合等级为第一聚合等级集合中的聚合等级,终端设备接收网络设备发送的配置信息,终端设备根据第一聚合等级集合中的每个聚合等级对应的比例因子,确定第一聚合等级集合中每个聚合等级对应的候选PDCCH个数;终端设备根据第一聚合等级集合中的每个聚合等级对应的候选PDCCH个数,接收第一DCI格式的DCI。本申请能够保证各种业务的控制信道的可靠性。

Description

下行控制信息发送和接收方法及设备
本申请要求于2017年1月26日提交中国专利局、申请号为201710061672.7、申请名称为“下行控制信息发送和接收方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,尤其涉及一种下行控制信息发送和接收方法及设备。
背景技术
在长期演进(Long Term Evolution,LTE)系统中,终端设备在接收或发送数据之前,需要获知基站配置给该终端设备的下行控制信息(Downlink control channel,DCI),该DCI通过物理下行控制信道(Physical Downlink Control channel,PDCCH)承载。
现有技术中,一个或多个候选PDCCH组成搜索空间。该搜索空间包括公共搜索空间(Common Search Space,CSS)和特定搜索空间。其中,CSS是指小区内多个UE都需要监听的搜索空间,通常用于传输公共控制信息的调度指示信令。特定搜索空间是指小区内每个终端设备需要监听的自己的搜索空间,通常用于传输用于用户上下行数据传输的调度指示信令。针对特定搜索空间,基站根据信道的状况,在候选的PDCCH中选择合适的PDCCH来传输该终端设备的DCI,终端设备对该特定搜索空间中的候选PDCCH进行盲检测,以获取该DCI。
在第五代移动通信5G中引入了超可靠性低时延通信(Ultra-Reliable and Low Latency Communication,URLLC)业务。然而,现有技术中的DCI主要针对可靠性低的传统增强移动宽带(Enhanced Mobile Broadband,eMBB)业务,当URLLC业务采用现有的eMBB业务的DCI时,将导致URLLC业务控制信道的可靠性较低,无法满足超可靠性的通信需求。
发明内容
本申请提供一种下行控制信息发送和接收方法及设备,可以保证各种业务的控制信道的可靠性。
第一方面,本申请提供一种下行控制信息发送方法,包括:
网络设备向终端设备发送配置信息,其中,所述配置信息包括第一聚合等级集合中每个聚合等级对应的比例因子,其中,所述第一聚合等级集合包括n个聚合等级且所述第一聚合等级集合对应于第一下行控制信息DCI格式,n为大于或等于1的正整数,所述比例因子用于确定与所述比例因子对应的聚合等级的候选物理下行控制信道PDCCH个数;可选地,终端设备待调度的数据支持一种业务类型,该业务类型对应一种DCI格式, 网络设备根据用户设备待调度的数据支持的业务类型对应的DCI格式,来确定配置信息;
所述网络设备向所述终端设备发送所述第一DCI格式的DCI,所述第一DCI格式的DCI对应的聚合等级为所述第一聚合等级集合中的聚合等级。
本申请针对不同的DCI格式,配置了与该DCI格式对应的第一聚合等级集合。在确定第一DCI格式之后,确定该第一DCI格式对应的第一聚合等级集合,从而可以满足该业务对可靠性的要求。
在一种可能的设计中,所述配置信息还包括指示所述第一聚合等级集合的信息。
可选地,该信息可以为第一聚合等级的标识信息,或者,该信息包括第一聚合等级集合中的所有的聚合等级的数值。
在一种可能的设计中,所述第一聚合等级集合中的每个聚合等级对应的比例因子P X满足0≤P X≤1,且高聚合等级对应的比例因子不大于低聚合等级对应的比例因子,即聚合等级2 i+1对应的比例因子不大于聚合等级2 i对应的比例因子,其中i为非负整数,i的取值包括0,或者,低聚合等级对应的比例因子不大于高聚合等级对应的比例因子,即聚合等级2 i对应的比例因子不大于聚合等级2 i+1对应的比例因子,其中i为非负整数,i的取值包括0。
在一种可能的设计中,所述配置信息还包括:第二聚合等级集合中每个聚合等级对应的比例因子,其中,所述第二聚合等级集合包括m个聚合等级且所述第二聚合等级集合对应于第二下行控制信息DCI格式,并且m为大于或等于1的正整数;
其中,所述第一DCI格式与所述第二DCI格式不同,所述第一聚合等级集合中的n个聚合等级和所述第二聚合等级集合中的m个聚合等级相同或至少一个不同;
所述方法还包括:所述网络设备向所述终端设备发送所述第二DCI格式的DCI,所述第二DCI格式的DCI对应的聚合等级为所述第二聚合等级集合中的聚合等级。
可选地,终端设备支持两种业务类型,则终端设备需要同时检测两种DCI格式,网络设备给该终端设备发送对应两种DCI格式的配置信息。
在一种可能的设计中,所述配置信息还包括指示所述第二聚合等级集合的信息。
在一种可能的设计中,所述第一聚合等级集合中的每个聚合等级对应的比例因子P X满足0≤P X≤1,且高聚合等级对应的比例因子不大于低聚合等级对应的比例因子,即聚合等级2 i+1对应的比例因子不大于聚合等级2 i对应的比例因子,其中i为非负整数,i的取值包括0;
对于对可靠性要求比较低的业务,可以采用此种可能的设计,从而用户设备盲检测的候选PDCCH集中在较小的聚合等级,即低聚合等级对应的候选PDCCH个数大于或等于高聚合等级对应的候选PDCCH个数。例如在聚合等级集合中较小的聚合等级对应的盲检测候选PDCCH个数较多,较高的聚合等级对应的盲检测候选PDCCH个数比较少。例如,聚合等级集合为{1,2,4,8},每个聚合等级对应的盲检测候选PDCCH个数分别为6,6,2,2。
所述第二聚合等级集合中的每个聚合等级对应的比例因子P Y满足0≤P Y≤1,且低聚合等级对应的比例因子不大于高聚合等级对应的比例因子,即聚合等级2 i对应的比例因子不大于聚合等级2 i+1对应的比例因子,其中i为非负整数,i的取值包括0。
对于对可靠性要求比较高的业务,可以采用此种可能的设计,从而用户设备盲检测的 候选PDCCH集中在较高的聚合等级,即高聚合等级对应的候选PDCCH个数大于或等于低聚合等级对应的候选PDCCH个数。例如,在聚合等级集合中较高的聚合等级对应的盲检测候选PDCCH个数较多,较低的聚合等级对应的盲检测候选PDCCH个数比较少。例如,聚合等级集合为{2,4,8,16},每个聚合等级对应的盲检测候选PDCCH个数分别为2,2,6,6。
在一种可能的设计中,所述网络设备向终端设备发送配置信息之前,还包括:
所述网络设备根据搜索空间信息和终端设备的盲检测能力,确定所述配置信息,其中,所述搜索空间信息包括可用的第三聚合等级集合以及所述第三聚合等级集合中的每个聚合等级对应的可用的候选PDCCH个数。
第二方面,本申请提供一种下行控制信息接收方法,包括:
终端设备接收网络设备发送的配置信息,其中,所述配置信息包括第一聚合等级集合中每个聚合等级对应的比例因子,其中,所述第一聚合等级集合包括n个聚合等级且所述第一聚合等级集合对应于第一下行控制信息DCI格式,n为大于或等于1的正整数,所述比例因子用于确定与所述比例因子对应的聚合等级的候选物理下行控制信道PDCCH个数;
所述终端设备根据所述第一聚合等级集合中的每个聚合等级对应的比例因子,确定所述第一聚合等级集合中每个聚合等级对应的候选PDCCH个数;
所述终端设备根据所述第一聚合等级集合中的每个聚合等级对应的候选PDCCH个数,接收所述第一DCI格式的DCI。
在一种可能的设计中,所述配置信息还包括指示所述第一聚合等级集合的信息。
在一种可能的设计中,所述第一聚合等级集合中的每个聚合等级对应的比例因子P X满足0≤P X≤1,且高聚合等级对应的比例因子不大于低聚合等级对应的比例因子;或者,低聚合等级对应的比例因子不大于高聚合等级对应的比例因子。
在一种可能的设计中,所述配置信息还包括:第二聚合等级集合中每个聚合等级对应的比例因子,其中,所述第二聚合等级集合包括m个聚合等级且所述第二聚合等级集合对应于第二下行控制信息DCI格式,并且m为大于或等于1的正整数;
其中,所述第一DCI格式与所述第二DCI格式不同,所述第一聚合等级集合中的n个聚合等级和所述第二聚合等级集合中的m个聚合等级相同或至少一个不同;
所述方法还包括:
所述终端设备根据所述第二聚合等级集合中的每个聚合等级对应的比例因子,确定所述第二聚合等级集合中每个聚合等级对应的候选PDCCH个数;
所述终端设备根据所述第二聚合等级集合中的每个聚合等级对应的候选PDCCH个数,接收所述第二DCI格式的DCI。
在一种可能的设计中,所述配置信息还包括指示所述第二聚合等级集合的信息。
在一种可能的设计中,所述第一聚合等级集合中的每个聚合等级对应的比例因子P X满足0≤P X≤1,且高聚合等级对应的比例因子不大于低聚合等级对应的比例因子;
所述第二聚合等级集合中的每个聚合等级对应的比例因子P Y满足0≤P Y≤1,且低聚合等级对应的比例因子不大于高聚合等级对应的比例因子。
在一种可能的设计中,终端设备根据所述配置信息和搜索空间信息,确定第一聚 合等级集合中的第一聚合等级对应的候选PDCCH个数,其中,所述搜索空间信息包括可用的第三聚合等级集合以及所述第三聚合等级集合中的每个聚合等级对应的可用的候选PDCCH个数。
在上述的第一方面和第二方面中,还包括以下可能的设计:
在一种可能的设计中,所述第一聚合等级集合为所述第三聚合等级集合的子集,所述第一聚合等级集合中聚合等级i的候选PDCCH个数是根据所述聚合等级i对应的比例因子、与所述第三聚合等级集合中聚合等级i对应的可用的候选PDCCH个数确定的整数。
在一种可能的设计中,所述第一聚合等级集合、所述第二聚合等级集合均为所述第三聚合等级集合的子集,所述第一聚合等级集合中聚合等级i的候选PDCCH个数是根据所述聚合等级i对应的比例因子、与所述第三聚合等级集合中聚合等级i对应的候选PDCCH个数确定的整数,所述第二聚合等级集合中聚合等级i的候选PDCCH个数是根据所述聚合等级i对应的比例因子、与所述第三聚合等级集合中聚合等级i对应的候选PDCCH个数确定的整数。
在一种可能的设计中,所述第一聚合等级集合中的聚合等级i对应的候选PDCCH个数和所述第二聚合等级集合中的聚合等级i对应的候选PDCCH个数之和不大于所述第三聚合等级集合中聚合等级i对应的候选PDCCH个数。
第三方面,本申请提供一种网络设备,包括:
发送模块,用于向终端设备发送配置信息,其中,所述配置信息包括第一聚合等级集合中每个聚合等级对应的比例因子,其中,所述第一聚合等级集合包括n个聚合等级且所述第一聚合等级集合对应于第一下行控制信息DCI格式,n为大于或等于1的正整数,所述比例因子用于确定与所述比例因子对应的聚合等级的候选物理下行控制信道PDCCH个数;
所述发送模块,还用于向所述终端设备发送所述第一DCI格式的DCI,所述第一DCI格式的DCI对应的聚合等级为所述第一聚合等级集合中的聚合等级。
在一种可能的设计中,所述配置信息还包括指示所述第一聚合等级集合的信息。
在一种可能的设计中,所述第一聚合等级集合中的每个聚合等级对应的比例因子P X满足0≤P X≤1,且高聚合等级对应的比例因子不大于低聚合等级对应的比例因子;或者,低聚合等级对应的比例因子不大于高聚合等级对应的比例因子。
在一种可能的设计中,所述配置信息还包括:第二聚合等级集合中每个聚合等级对应的比例因子,其中,所述第二聚合等级集合包括m个聚合等级且所述第二聚合等级集合对应于第二下行控制信息DCI格式,并且m为大于或等于1的正整数;
其中,所述第一DCI格式与所述第二DCI格式不同,所述第一聚合等级集合中的n个聚合等级和所述第二聚合等级集合中的m个聚合等级相同或至少一个不同;
所述发送模块,还用于向所述终端设备发送所述第二DCI格式的DCI,所述第二DCI格式的DCI对应的聚合等级为所述第二聚合等级集合中的聚合等级。
在一种可能的设计中,所述配置信息还包括指示所述第二聚合等级集合的信息。
在一种可能的设计中,所述第一聚合等级集合中的每个聚合等级对应的比例因子P X满足0≤P X≤1,且高聚合等级对应的比例因子不大于低聚合等级对应的比例因子;
所述第二聚合等级集合中的每个聚合等级对应的比例因子P Y满足0≤P Y≤1,且低聚 合等级对应的比例因子不大于高聚合等级对应的比例因子。
在一种可能的设计中,还包括处理模块,用于根据搜索空间信息和终端设备的盲检测能力,确定所述配置信息,其中,所述搜索空间信息包括可用的第三聚合等级集合以及所述第三聚合等级集合中的每个聚合等级对应的可用的候选PDCCH个数。
第四方面,本申请提供一种终端设备,包括:
接收模块,用于接收网络设备发送的配置信息,其中,所述配置信息包括第一聚合等级集合中每个聚合等级对应的比例因子,其中,所述第一聚合等级集合包括n个聚合等级且所述第一聚合等级集合对应于第一下行控制信息DCI格式,n为大于或等于1的正整数,所述比例因子用于确定与所述比例因子对应的聚合等级的候选物理下行控制信道PDCCH个数;
处理模块,用于根据所述第一聚合等级集合中的每个聚合等级对应的比例因子,确定所述第一聚合等级集合中每个聚合等级对应的候选PDCCH个数;
所述接收模块,还用于根据所述第一聚合等级集合中的每个聚合等级对应的候选PDCCH个数,接收所述第一DCI格式的DCI。
在一种可能的设计中,所述配置信息还包括指示所述第一聚合等级集合的信息。
在一种可能的设计中,所述第一聚合等级集合中的每个聚合等级对应的比例因子P X满足0≤P X≤1,且高聚合等级对应的比例因子不大于低聚合等级对应的比例因子;或者,低聚合等级对应的比例因子不大于高聚合等级对应的比例因子。
在一种可能的设计中,所述配置信息还包括:第二聚合等级集合中每个聚合等级对应的比例因子,其中,所述第二聚合等级集合包括m个聚合等级且所述第二聚合等级集合对应于第二下行控制信息DCI格式,并且m为大于或等于1的正整数;
其中,所述第一DCI格式与所述第二DCI格式不同,所述第一聚合等级集合中的n个聚合等级和所述第二聚合等级集合中的m个聚合等级相同或至少一个不同;
所述处理模块,还用于根据所述第二聚合等级集合中的每个聚合等级对应的比例因子,确定所述第二聚合等级集合中每个聚合等级对应的候选PDCCH个数;
所述接收模块,还用于根据所述第二聚合等级集合中的每个聚合等级对应的候选PDCCH个数,接收所述第二DCI格式的DCI。
在一种可能的设计中,所述配置信息还包括指示所述第二聚合等级集合的信息。
在一种可能的设计中,所述第一聚合等级集合中的每个聚合等级对应的比例因子P X满足0≤P X≤1,且高聚合等级对应的比例因子不大于低聚合等级对应的比例因子;
所述第二聚合等级集合中的每个聚合等级对应的比例因子P Y满足0≤P Y≤1,且低聚合等级对应的比例因子不大于高聚合等级对应的比例因子。
在一种可能的设计中,所述处理模块,还用于根据所述配置信息和搜索空间信息,确定第一聚合等级集合中的第一聚合等级对应的候选PDCCH个数,其中,所述搜索空间信息包括可用的第三聚合等级集合以及所述第三聚合等级集合中的每个聚合等级对应的可用的候选PDCCH个数。
第五方面,本申请提供一种下行控制信息发送装置,包括:至少一个处理器和存储器;
所述存储器存储计算机执行指令;
所述至少一个处理器执行所述存储器存储的计算机执行指令,使得所述装置执行如上第一方面及第一方面的各种可能的设计所述的下行控制信息发送方法。
第六方面,本申请提供一种下行控制信息接收装置,包括:至少一个处理器和存储器;
所述存储器存储计算机执行指令;
所述至少一个处理器执行所述存储器存储的计算机执行指令,使得所述装置执行如上第二方面及第二方面的各种可能的设计所述的下行控制信息接收方法。
第七方面,本申请提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当处理器执行该计算机执行指令时,实现如上所述的第一方面以及所述第一方面中的各种可能的设计所提供的下行控制信息发送方法。
第八方面,本申请提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当处理器执行该计算机执行指令时,实现如上所述的第二方面以及所述第二方面中的各种可能的设计所提供的下行控制信息接收方法。
第九方面,本申请提供一种包含指令的计算机程序产品,当其在网络设备上运行时,使得网络设备执行如上所述的第一方面以及所述第一方面中的各种可能的设计所提供的上行控制信息发送方法。
第十方面,本申请提供一种包含指令的计算机程序产品,当其在终端设备上运行时,使得终端设备执行如上所述的第二方面以及所述第二方面中的各种可能的设计所提供的上行控制信息接收方法。
本实施例提供的下行控制信息的发送和接收方法,通过网络设备根据业务类型来确定第一DCI格式,然后确定该第一DCI格式对应的第一聚合等级集合,即网络设备针对性的确定该第一DCI格式对应的第一聚合等级集合,从而使得不同的业务的盲检测的聚合等级以及候选PDCCH个数都为有针对性的配置,以适应通信业务对可靠性的需求。网络设备向终端设备发送配置信息,该配置信息包括第一聚合等级集合中每个聚合等级对应的比例因子,该第一聚合等级集合对应于第一DCI格式,终端设备根据针对第一DCI格式的配置信息确定每个聚合等级对应的候选PDCCH个数,在网络设备发送第一格式的DCI时,根据每个聚合等级对应的候选PDCCH个数,进行盲检测,由于该配置信息是网络设备根据第一DCI格式确定的,而该第一DCI格式是与业务类型对应的,从而可以使得PDCCH的可靠性得到保证。
附图说明
图1示出了本申请实施例可能适用的一种网络架构;
图2为本申请实施例提供的下行控制信息的传输方法的信令流程图一;
图3为本申请实施例提供的下行控制信息的传输方法的信令流程图二;
图4为本申请实施例提供的网络设备的结构示意图;
图5为本申请实施例提供的网络设备的硬件结构示意图;
图6为本申请实施例提供的终端设备的结构示意图;
图7为本申请实施例提供的终端设备的硬件结构示意图。
具体实施方式
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合图1对本申请实施例的可能的网络架构进行介绍。图1示出了本申请实施例可能适用的一种网络架构。如图1所示,本实施例提供的网络架构包括网络设备10和终端设备20。
其中,网络设备10是一种将终端设备接入到无线网络的设备,可以是全球移动通讯(Global System of Mobile communication,简称GSM)或码分多址(Code Division Multiple Access,简称CDMA)中的基站(Base Transceiver Station,简称BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)中的基站(NodeB,简称NB),还可以是长期演进(Long Term Evolution,简称LTE)中的演进型基站(Evolutional Node B,简称eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站等,在此并不限定。图1示意性的绘出了一种可能的示意,以该网络设备为基站为例进行了绘示。
终端设备20可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,简称RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,简称PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,简称SIP)话机、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字助理(Personal Digital Assistant,简称PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent),在此不作限定。图1示意性的绘出了一种可能的示意,以该终端设备为移动电话为例进行了绘示。
在无线通信系统中,终端设备的数据信道包括用于传输下行数据的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)和用于传输上行数据的物理上行共享信道(Physical Uplink Shared Channel,PUSCH),数据信道的上下行的资源调度均需要通过下行控制信息(Downlink Control Information,DCI)通知终端设备。其中,DCI是通过下行控制信道(Physical Downlink Control Channel,PDCCH)来承载的。
在LTE系统中,分配给PDCCH的时频资源被分为多个控制信道单元(Control Channel Element,CCE)。其中,CCE是组成PDCCH的最小单元,PDCCH可以由L个CCE聚合而成,L称为聚合等级(Aggregation Level,AL)。网络设备根据信道的状况,选择合适的聚合等级传输该终端设备的PDCCH,DCI被承载在该PDCCH上, 终端设备用自身特定的扰码对特定搜索空间中的候选PDCCH进行盲检测,以获取DCI。
在第五代移动通信(the 5th Generation Mobile Communication,5G)新无线接入技术(New Radio Access Technology,NR)中,5G的三大典型业务包括:增强移动宽带(Enhanced Mobile Broadband,eMBB)、海量机器类通信以及超高可靠低时延通信(Ultra-Reliable and Low Latency Communication,URLLC)。其中,URLLC对应的场景包括无人驾驶、工业控制等,这些应用场景在可靠性及时延方面提出了更加严格的要求。
URLLC业务具体的需求包括:传输可靠性达到99.999%,传输时延低于1ms,为了满足可靠性需求,需要提高URLLC用户控制信道的可靠性,为了满足时延的需求,URLLC监测控制信道的周期比较短。而eMBB业务为传统业务,可靠性和时延需求相比URLLC业务来说较低,因此控制信道的可靠性需求比较低,用户监测控制信道的周期比较长。因此URLLC业务的DCI格式与eMBB业务的DCI格式不同,用户监测不同格式DCI的周期也不相同。
5G业务中引入了URLLC业务,而现有技术中的下行控制信息的发送和接收方法不能满足URLLC业务控制信道高可靠性和低时延要求。在本申请中,提出一种下行控制信息的发送和接收方法,不仅能够适用eMBB业务,还可以适用URLLC业务。
首先需要说明的是,本实施例为了便于描述,通过第一、第二、第三来区分聚合等级集合。其中,第一聚合等级集合和第二聚合等级集合为两种可靠性需求不同的DCI格式对应的聚合等级集合,第三聚合等级集合为可用的聚合等级集合。
下面采用详细的实施例,对本申请提供的下行控制信息的发送和接收方法进行详细说明。
图2为本申请实施例提供的下行控制信息的传输方法的信令流程图。如图2所示,该方法包括:
S101、网络设备向终端设备发送配置信息,所述配置信息包括第一聚合等级集合中每个聚合等级对应的比例因子;
在本实施例中,终端设备的待调度的数据的业务类型与DCI格式具有对应关系。在本实施例中,该终端设备的待调度的数据可以为上行数据或下行数据。该待调度的数据的业务类型可以为eMBB业务、URLLC业务或其它业务类型。本领域技术人员可以理解,该终端设备当前支持一种业务类型,则基站针对该业务类型为该终端设备配置对应于一种DCI格式的配置信息,该DCI格式称为第一DCI格式。当终端设备为多个时,基站会根据每个终端设备的待调度的数据对应的业务类型,为每个终端设备分别配置对应于一第一DCI格式的配置信息。
网络设备向当前支持一种DCI格式的终端设备发送配置信息。该配置信息包括第一聚合等级集合中每个聚合等级对应的比例因子。其中,第一聚合等级集合包括n个聚合等级且第一聚合等级集合对应于第一DCI格式,n为大于或等于1的正整数,比例因子用于确定与比例因子对应的聚合等级的候选物理下行控制信道PDCCH个数。针对同一聚合等级,比例因子越大,则对应的候选PDCCH信道的个数越多。
可选地,DCI格式与第一聚合等级集合具有对应关系,网络设备可以根据该对应 关系来确定第一DCI格式对应的第一聚合等级集合,然后再确定第一聚合等级集合中每个聚合等级对应的比例因子。
在本实施例中,以eMBB业务、URLLC业务为例进行说明。为了便于描述,若业务类型为eMBB业务,则对应的第一DCI格式称为DCI format X,对应的比例因子为P X;若业务类型为URLLC业务,则对应的第一DCI格式称为DCI format Y,对应的比例因子为P Y
当当前终端设备支持的业务类型为eMBB业务,则其对应的第一DCI格式为DCI format X,对应于该终端设备的每个聚合等级对应的比例因子如表一所示,在表一中,第一列为第一聚合等级集合,第二列为每个聚合等级对应的比例因子。
表一
聚合等级L 比例因子P X
1 a 0
2 a 1
4 a 2
8 a 3
16 a 4
如表一所示,该第一聚合等级集合中包括聚合等级1、2、4、8、16。
对于eMBB业务的终端设备来说,由于eMBB业务的控制信道可靠性要求比较低,因此该终端设备配置的聚合等级集合中聚合等级比较低,且终端设备盲检测的候选PDCCH集中在较小的聚合等级。其中“聚合等级比较低”是一种相对概念,是相对于高可靠性要求的用户设备的聚合等级来说的。可选地,高聚合等级对应的比例因子不大于低聚合等级对应的比例因子,即聚合等级2 i+1对应的比例因子不大于聚合等级2 i对应的比例因子,其中i为非负整数,i的取值包括0。例如,高聚合等级是指第一聚合等级集合内两个聚合等级中比较大的那个聚合等级,低聚合等级是指比较小的那个聚合等级。例如,第一聚合等级集合为{1,2,4,8,16},即聚合等级4对应的比例因子不大于聚合等级2对应的比例因子,聚合等级16对应的比例因子不大于聚合等级8对应的比例因子。针对表一即a 0≥a 1≥a 2≥a 3≥a 4
当当前终端设备支持的业务类型为URLLC业务,则其对应的第一DCI格式为DCI format Y,对应于该终端设备的每个聚合等级对应的比例因子如表一所示,第一列为第一聚合等级集合,第二列为每个聚合等级对应的比例因子。
表二
聚合等级L 比例因子P Y
2 b 1
4 b 2
8 b 3
16 b 4
32 b 5
如表二所示,该第一聚合等级集合中包括聚合等级2、4、8、16、32。
对于只有URLLC业务的终端设备来说,由于URLLC业务的控制信道可靠性要求比较高,因此该终端配置的聚合等级集合中的聚合等级比较高,终端设备盲检测的候 选PDCCH集中在较高的聚合等级,其中“聚合等级比较高”是一种相对概念,是相对于低可靠性要求的终端设备的聚合等级来说的。可选地,低聚合等级对应的比例因子不大于高聚合等级对应的比例因子,即聚合等级2 i对应的比例因子不大于聚合等级2 i+1对应的比例因子,其中i为非负整数,i的取值包括0。针对表二即b 1≤b 2≤b 3≤b 4≤b 5。其中,高聚合等级与低聚合等级的概念可参见上述实施例,本实施例此处不再赘述。例如,聚合等级集合为{2,4,8,16,32},即聚合等级2对应的比例因子不大于聚合等级8对应的比例因子,聚合等级16对应的比例因子不大于聚合等级32对应的比例因子。
由上可知,本申请针对具有不同业务类型的终端设备,配置了与该业务类型的DCI格式对应的第一聚合等级集合。在确定该终端设备的业务类型之后,确定该业务类型的第一DCI格式对应的第一聚合等级集合,从而可以满足该业务对可靠性的要求。
网络设备在确定配置信息之后,向终端设备发送配置信息,该配置信息包括第一聚合等级集合中每个聚合等级对应的比例因子。具体地,网络设备可以通过高层信令向终端设备发送配置信息。该配置信息可以为半静态的信息,即在一段时间内有效,该配置信息也可以为静态信息,即在较长的时间内有效。即针对同一个配置信息,网络设备可以发送多个DCI。可选地,针对配置信息中的比例因子,基站可以按照聚合等级从低到高的顺序,即聚合等级1、2、4、8、16、32…的顺序,对各聚合等级对应的比例因子依次排序,例如针对表一所示的第一聚合等级集合,配置信息中的比例因子的排序为a 0、a 1、a 2、a 3、a 4;针对表二所示的第一聚合等级集合,配置信息中的比例因子的排序为0、b 1、b 2、b 3、b 4、b 5,其中0代表聚合等级1对应的比例因子为0。由此,网络设备不需要向终端设备指示第一聚合等级集合,终端设备就可以根据该排序,来获取每个聚合等级对应的比例因子。
可选地,该配置信息还包括指示第一聚合等级集合的信息。具体地,该信息可以为第一聚合等级的标识信息,不同的第一聚合等级集合,标识信息不同,例如,针对表一所示的第一聚合等级集合,标识信息例如可以为group 1,该group 1指示的第一聚合等级集合包括聚合等级1、2、4、8、16,比例因子排序为a 0、a 1、a 2、a 3、a 4,依次与从低到高的聚合等级对应。针对表二所示的第一聚合等级集合,标识信息例如可以为group 2,该group 2指示的第一聚合等级集合包括聚合等级2、4、8、16、32,比例因子排序为b 1、b 2、b 3、b 4、b 5,依次与从低到高的聚合等级对应。
或者,该信息包括第一聚合等级集合中的所有的聚合等级的数值。例如,针对embb业务的终端设备来说,则配置信息的实现方式如表一所示,针对URLLC业务的终端设备来说,则配置信息的实现方式如表二所示。在本实施例中,列举了指示第一聚合等级集合的信息的几种实现方式,对于其他的能够指示第一聚合等级集合的信息的实现方式,也可以应用到本实施例中,对此本实施例此处不做特别限定。
S102、终端设备根据第一聚合等级集合中的每个聚合等级对应的比例因子,确定第一聚合等级集合中每个聚合等级对应的候选PDCCH个数。
终端设备在接收到该配置信息之后,根据该配置信息获取第一聚合等级集合中的每个聚合等级对应的比例因子。由上所述可知,终端设备可以根据配置信息中的比例因子的排序,按照聚合等级从低到高的顺序来获取每个聚合等级对应的比例因子。可选地,终端设备可以根据配置信息中包括的指示第一聚合等级集合的信息,来获取每个 聚合等级对应的比例因子。
然后,终端设备根据第一聚合等级集合中的每个聚合等级对应的比例因子,确定第一聚合等级集合中每个聚合等级对应的候选PDCCH个数。
可选地,在一种可能的实现方式中,每个聚合等级对应的比例因子与该聚合等级下的候选PDCCH个数具有对应关系。终端设备根据比例因子和该对应关系,可以获取每个聚合等级对应的候选PDCCH个数。以表二所示为例,b 1对应的候选PDCCH个数为M real-1,b 2对应的候选PDCCH个数为M real-2,b 3对应的候选PDCCH个数为M real-3,b 4对应的盲检测的候选PDCCH个数为M real-4,b 5对应的盲检测的候选PDCCH个数为M real-5
本领域技术人员可以理解,每个聚合等级对应的候选PDCCH个数即为盲检测的次数。因此,在聚合等级2,盲检测M real-1次,在聚合等级4,盲检测M real-2次,在聚合等级8,盲检测M real-4次,在聚合等级16,盲检测M real-4次,在聚合等级32,盲检测M real-5次。
S103、网络设备向终端设备发送第一DCI格式的DCI。
其中,第一DCI格式的DCI对应的聚合等级为第一聚合等级集合中的聚合等级。本领域技术人员可以理解,该第一DCI格式对应的聚合等级为第一聚合等级集中的一个聚合等级。
S104、终端设备根据第一聚合等级集合中的每个聚合等级对应的候选PDCCH个数,接收第一DCI格式的DCI。
本领域技术人员可以理解,网络设备在向终端设备发送第一DCI格式的DCI时,并不知道终端设备是否确定了每个聚合等级对应的候选PDCCH个数。而终端设备也不知道网络设备是否发送了第一DCI格式的DCI,而是通过盲检测来获取。因此,单纯的针对网络设备和终端设备而言,S102与S103没有严格的时序关系。
终端设备在确定了每个聚合等级对应的候选PDCCH个数之后,当网络设备向终端设备发送了第一DCI格式的DCI之后,终端设备根据第一聚合等级集合中的每个聚合等级对应的候选PDCCH个数,进行盲检测,从而接收第一DCI格式的DCI。
本实施例提供的下行控制信息的发送和接收方法,通过网络设备根据终端设备的业务类型来确定该终端设备的第一DCI格式,然后确定该第一DCI格式对应的第一聚合等级集合,即网络设备针对性的确定该第一DCI格式对应的第一聚合等级集合,从而使得不同的业务的盲检测的聚合等级以及候选PDCCH个数都为有针对性的配置,以适应通信业务对可靠性的需求。网络设备向终端设备发送配置信息,该配置信息包括第一聚合等级集合中每个聚合等级对应的比例因子,该第一聚合等级集合对应于第一DCI格式,终端设备根据针对第一DCI格式的配置信息确定每个聚合等级对应的候选PDCCH个数,在网络设备发送第一格式的DCI时,根据每个聚合等级对应的候选PDCCH个数,进行盲检测,由于该配置信息是网络设备根据第一DCI格式确定的,而该第一DCI格式是与业务类型对应的,从而可以使得PDCCH的可靠性得到保证。
下面在上述实施例的基础上,以具体的实施例,来说明网络设备确定配置信息的实现过程,以及终端设备根据该配置信息确定候选PDCCH个数的实现方式。
首先说明网络设备侧的实现方式。具体地,网络设备根据搜索空间信息和终端设备的盲检测能力,确定第一DCI对应的配置信息,其中,搜索空间信息包括可用的第三聚合等级集合以及第三聚合等级集合中的每个聚合等级对应的可用的候选PDCCH个数。
可选地,终端设备可以向网络设备上报该终端设备的盲检测能力。终端设备的盲检测能力具体可以为终端设备的最大盲检测次数。
搜索空间信息可以为预先设定的可用的第三集合等级集合以及第三聚合等级集合中的每个聚合等级对应的可用的候选PDCCH个数。该搜索空间信息针对网络设备和终端设备而言,都是相同的,且都是预先配置的。该预先设定可以为各种通信协议预先规定。表三示出了一种搜索空间信息的可能的实现方式。
表三
聚合等级L 可用的候选PDCCH个数M (L)
1 M 0
2 M 1
4 M 2
8 M 3
16 M 4
32 M 5
由表三所示,第三聚合等级集合中包括聚合等级1、2、4、8、16、32…2 m-1,其中m=1、2、3、4…。
由上可知,不同的DCI格式,对应不同的聚合等级集合。例如,针对format X,该第一聚合等级集合中包括聚合等级1、2、4、8、16。针对format Y该第一聚合等级集合中包括聚合等级2、4、8、16、32。即第一聚合等级集合为第三聚合等级集合的真子集。
网络设备根据搜索空间信息和终端设备的盲检测能力来确定第一DCI格式对应的配置信息,即确定每个聚合等级对应的比例因子,使其满足终端设备的盲检测总次数不大于终端设备的盲检测能力。
可选地,第一聚合等级集合中聚合等级i的候选PDCCH个数是根据聚合等级i对应的比例因子、与第三聚合等级集合中聚合等级i对应的可用的候选PDCCH个数确定的整数。具体地,每个聚合等级实际需要盲检测的候选PDCCH个数可通过如下公式1至公式3中的任一公式来获取。
M real(L,format)=round{p(L,format)×M (L)}                 公式1
Figure PCTCN2018074057-appb-000001
Figure PCTCN2018074057-appb-000002
其中,M real(L,format)为在该第一DCI格式下,每个聚合等级实际需要盲检测的候选PDCCH个数,p(L,format)代表聚合等级i对应的比例因子,M (L)为第三聚合等级对应的可用的候选PDCCH个数。其中,round代表四舍五入取整,
Figure PCTCN2018074057-appb-000003
代表向下取整,
Figure PCTCN2018074057-appb-000004
代表向上取整。
在此基础上,第一聚合等级集合对应的盲检测总次数还需要不大于终端设备的盲检测能力。具体地,针对上述表一的format X,即满足
round(a 0×M 0)+round(a 1×M 1)+round(a 2×M 2)+round(a 3×M 3)+round(a 4×M 4)≤N;或
Figure PCTCN2018074057-appb-000005
Figure PCTCN2018074057-appb-000006
其中,N为终端设备的最大盲检测次数。在满足上述公式的基础上,网络设备可以求解每个第一聚合等级对应的比例因子。可选地,网络设备还可以结合a 0≥a 1≥a 2≥a 3≥a 4的约束条件,来求解每个聚合等级对应的比例因子。
针对上述表二的format Y,即满足
round(b 1×M 1)+round(b 2×M 2)+round(b 3×M 3)+round(b 4×M 4)+round(b 5×M 5)≤N;或
Figure PCTCN2018074057-appb-000007
Figure PCTCN2018074057-appb-000008
其中,N为终端设备的最大盲检测次数。在满足上述公式的基础上,网络设备可以求解每个聚合等级对应的比例因子。可选地,网络设备还可以结合b 1≤b 2≤b 3≤b 4≤b 5的约束条件,来求解每个聚合等级对应的比例因子。
本领域技术人员可以理解,网络设备最终求解的每个聚合等级对应的比例因子可能不唯一,网络设备可以在根据预设规则来选取具体的比例因子。
由此,网络设备在确定了第一聚合等级集合中每个聚合等级对应的比例因子,从而确定了向终端设备发送的配置信息。
下面说明终端设备侧在接收到该配置信息之后,接收第一DCI格式的DCI的实现过程。
终端设备在接收到配置信息之后,根据该配置信息获取每个聚合等级对应的候选PDCCH个数。针对第一DCI格式为format X,则配置信息的一种可能的实现方式如表一所示,针对第一DCI格式为format Y,则配置信息的一种可能的实现方式如表二所示。
终端设备根据配置信息和搜索空间信息,确定第一聚合等级集合中的聚合等级对应的候选PDCCH个数。具体地,第一聚合等级集合中聚合等级i的候选PDCCH个数是根据聚合等级i对应的比例因子、与第三聚合等级集合中聚合等级i对应的可用的候选PDCCH个数确定的整数。
例如,针对format X,每个聚合等级对应的候选PDCCH个数的实现方式可如表四所示。
表四
Figure PCTCN2018074057-appb-000009
针对format Y,每个聚合等级对应的候选PDCCH个数的实现方式可如表五所示。
表五
Figure PCTCN2018074057-appb-000010
当终端设备获取了每个聚合等级对应的候选PDCCH个数之后,在网络设备发送了第一DCI格式的DCI之后,终端设备进行盲检测,以接收该第一DCI格式的DCI。具体地,每个聚合等级有多少个候选PDCCH,则终端设备针对该聚合等级盲检测多少次。
在本实施例中,当终端设备同时支持URLLC业务和eMBB业务时,由于两种业务的盲检测周期不同,因此,在某一时刻可能需要同时对URLLC业务的PDCCH和eMBB业务的PDCCH进行盲检测,而终端设备的盲检测能力(总的盲检测次数)是一定的,如何合理分配终端设备的盲检测次数,既能保证URLLC业务控制信道的可靠性需求,又能保证eMBB业务的控制信道能够被监测,也是本申请需要解决的一个问题。下面结合图3进行详细说明。
图3为本申请实施例提供的下行控制信息的传输方法的信令流程图二。如图3所示,该方法包括:
S201、网络设备向终端设备发送配置信息,所述配置信息包括第一聚合等级集合中每个聚合等级对应的比例因子和第二聚合等级集合中每个聚合等级对应的比例因子;
其中,第一聚合等级集合包括n个聚合等级且第一聚合等级集合对应于第一下行控制信息DCI格式,n为大于或等于1的正整数;第二聚合等级集合包括m个聚合等级且第二聚合等级集合对应于第二下行控制信息DCI格式,并且m为大于或等于1的正整数;第一DCI格式与第二DCI格式不同,第一聚合等级集合中的n个聚合等级和第二聚合等级集合中的m个聚合等级相同或至少一个不同;
S202、终端设备根据第一聚合等级集合中的每个聚合等级对应的比例因子,确定第一聚合等级集合中每个聚合等级对应的候选PDCCH个数,以及根据第二聚合等级集合中的每个聚合等级对应的比例因子,确定第二聚合等级集合中每个聚合等级对应的候选PDCCH个数;
S203、网络设备向终端设备发送第一DCI格式的DCI和第二DCI格式的DCI;
其中,第一DCI格式的DCI对应的聚合等级为第一聚合等级集合中的聚合等级。第二DCI格式的DCI对应的聚合等级为第二聚合等级集合中的聚合等级。本领域技术人员可以理解,该第一DCI格式对应的聚合等级为第一聚合等级集中的一个聚合等级。该第二DCI格式对应的聚合等级为第二聚合等级集中的一个聚合等级。
S204、终端设备根据根据所述第一聚合等级集合中的每个聚合等级对应的候选PDCCH个数,接收所述第一DCI格式的DCI,以及根据所述第二聚合等级集合中的每个聚合等级对应的候选PDCCH个数,接收所述第二DCI格式的DCI。
在具体实现过程中,终端设备支持两种业务类型。例如,该终端设备支持URLLC业务和eMBB业务。每种业务类型对应一种DCI格式,例如,eMBB业务对应第一DCI格式,即DCI format X,URLLC业务对应第二DCI格式,即DCI format Y。网络设备针对该终端设备,确定第一DCI格式对应的第一聚合等级集合以及第一聚合等级集合中的每个聚合等级对应的尺度因子,确定第二DCI格式对应的第二聚合等级集合以及第二聚合等级集合中的每个聚合等级对应的尺度因子。具体的实现方式,可参见上述实施例,本实施例此处不再赘述。
可选地,配置信息还包括指示第一聚合等级集合的信息以及指示第二聚合等级集合的信息。针对指示每个聚合等级集合的信息,与上述图2所示实施例中指示第一聚合等级集合的信息的实现方式类似,本实施例此处不再赘述。
在一种可能的实现方式中,对于有两种业务类型的终端设备来说,以eMBB业务对应第一DCI格式,该第一DCI格式为format X,对应的比例因子为P X为例,对应于该DCI format X的第一聚合等级集合以及每个聚合等级对应的比例因子可如表六所示;以URLLC业务对应第二DCI格式,该第二DCI格式为format Y,对应的比例因子为P Y为例,对应于该DCI format Y的第二聚合等级集合以及每个聚合等级对应的比例因子可如表七所示。
表六
聚合等级L 比例因子P X
1 c 0
2 c 1
4 c 2
8 c 3
16 c 4
可选地,如上所述,针对两种业务中的eMBB业务,配置信息中高聚合等级对应的比例因子不大于低聚合等级对应的比例因子,即c 0≥c 1≥c 2≥c 3≥c 4
表七
聚合等级L 比例因子P Y
2 r 1
4 r 2
8 r 3
16 r 4
32 r 5
可选地,如上所述,针对两种业务中的URLLC业务,配置信息中低聚合等级对应的比例因子不大于高聚合等级对应的比例因子,即r 1≤r 2≤r 3≤r 4≤r 5
终端设备在接收到网络设备发送的配置信息之后,根据第一聚合等级集合中的每个聚合等级对应的比例因子,确定第一聚合等级集合中每个聚合等级对应的候选PDCCH个数,以及根据第二聚合等级集合中的每个聚合等级对应的比例因子,确定第二聚合等级集合中每个聚合等级对应的候选PDCCH个数。在本实施例中,终端设备根据比例因子确定每个聚合等级对应的候选PDCCH个数的实现方式,可参见上述实施例,本实施例此处不再赘述。
当网络设备向终端设备发送第一DCI格式的DCI和第二DCI格式的DCI后,终端设备根据根据第一聚合等级集合中的每个聚合等级对应的候选PDCCH个数,接收第一DCI格式的DCI,以及根据第二聚合等级集合中的每个聚合等级对应的候选PDCCH个数,接收第二DCI格式的DCI。
本实施例提供的下行控制信息的发送和接收方法,通过网络设备根据终端设备的待调度的数据所属的两种业务类型,确定第一业务类型对应的第一DCI格式,第二业务类型对应的第二DCI格式。然后网络设备针对性的确定该第一DCI格式对应的第一聚合等级集合以及第一聚合等级集合中的每个聚合等级对应的比例因子,第二DCI格式对应的第二聚合等级集合以及第二聚合等级集合中的每个聚合等级对应的比例因子,并向终端设备发送配置信息,该配置信息包括第一聚合等级集合中每个聚合等级对应的比例因子和第二聚合等级集合中每个聚合等级对应的比例因子,终端根据该配置信息进行盲检测,以接收第一DCI格式的DCI和第二DCI格式的DCI,从而使得不同的业务的盲检测的聚合等级以及候选PDCCH个数都为有针对性的配置,从而既能保证URLLC业务控制信道的可靠性需求,又能保证eMBB业务的控制信道能够被监测。
下面在上述实施例的基础上,以具体的实施例,来说明网络设备确定配置信息的实现过程,以及终端设备根据配置信息确定候选PDCCH个数的实现方式。
首先说明网络设备侧的实现方式。具体地,网络设备根据搜索空间信息和终端设备的盲检测能力,确定配置信息。其中,搜索空间信息包括可用的第三聚合等级集合以及第三聚合等级集合中的每个聚合等级对应的可用的候选PDCCH个数。在本实施例中,搜索空间信息的实现方式可如表三所示,终端设备的盲检测能力的实现方式参见上述实施例,本实施例此处不再赘述。
由表六和表七可知,第一聚合等级集合和第二聚合等级集合为第三聚合等级集合的真子集,网络设备根据搜索空间信息和终端设备的盲检测能力,确定第一聚合等级集合中每个聚合等级对应的比例因子以及第二聚合等级集合中每个聚合等级对应的比例因子,使得终端设备的盲检测总次数不大于终端设备的盲检测能力。
可选地,第一聚合等级集合中聚合等级i的候选PDCCH个数是根据聚合等级i对应的比例因子、与第三聚合等级集合中聚合等级i对应的候选PDCCH个数确定的整数,第二聚合等级集合中聚合等级i的候选PDCCH个数是根据聚合等级i对应的比例因子、与第三聚合等级集合中聚合等级i对应的候选PDCCH个数确定的整数。
以一个具体的例子为例,网络设备确定第一聚合等级集合中的聚合等级对应的比例因子和第二聚合度等级集合中的聚合等级对应的比例因子,使其满足如下公式所示的约束条件。
Figure PCTCN2018074057-appb-000011
Figure PCTCN2018074057-appb-000012
Figure PCTCN2018074057-appb-000013
可选地,还需满足如下约束条件:第一聚合等级集合中的聚合等级i对应的候选PDCCH个数和第二聚合等级集合中的聚合等级i对应的候选PDCCH个数之和不大于第三聚合等级集合中聚合等级i对应的候选PDCCH个数。即满足如下公式4至公式6任一项所示的约束条件。这个约束条件的含义是终端设备在聚合等级L对应的实际盲检测的候选PDCCH个数不能超过该用户设备在该聚合等级L的最大候选PDCCH个数。
M real=round{P X×M (L)}+round{P Y×M (L)}≤M (L)             公式4
Figure PCTCN2018074057-appb-000014
Figure PCTCN2018074057-appb-000015
其中,M real为每个聚合等级i实际需要盲检测的候选PDCCH的总个数,P X代表第一聚合等级集合中的聚合等级i对应的比例因子,P Y代表第二聚合等级集合中的聚合等级i对应的比例因子,M (L)为第三聚合等级集合中的聚合等级i对应的候选PDCCH个数。其中,round{}代表四舍五入取整,
Figure PCTCN2018074057-appb-000016
代表向下取整,
Figure PCTCN2018074057-appb-000017
代表向上取整。
以聚合等级为8、向上取整为例,即满足
Figure PCTCN2018074057-appb-000018
其它类似,本实施例此处不再赘述。
满足了上述约束条件,一方面不会超出终端设备的盲检测能力,另一方面合理分配终端设备的盲检测次数,既能保证URLLC业务控制信道的可靠性需求,又能保证eMBB业务的控制信道能够被监测。
在满足上述约束条件的情况下,还需满足0≤P X≤1,0≤P Y≤1,可选地,还满足c 0≥c 1≥c 2≥c 3≥c 4、r 1≤r 2≤r 3≤r 4≤r 5的约束条件。
网络设备根据上述的各种约束条件,来求解每个第一聚合等级集合中的聚合等级对应的比例因子以及第二聚合等级集合中的聚合等级对应的比例因子。
由此,网络设备确定配置信息。网络设备向终端设备发送配置信息。
终端设备在接收到配置信息之后,根据该配置信息进行盲检测。在一种可能的实现方式中,该配置信息可以包括上述表六和表七的内容。
终端设备根据配置信息来确定第一聚合等级集合中每个聚合等级对应的候选PDCCH个数,与上述表四所示类似,实施例此处不再赘述,以及第二聚合等级集合中每个聚合等级对应的候选PDCCH个数,与上述表五所示类似,本实施例此处不再赘述。
当网络设备向终端设备发送第一DCI格式的DCI和第二DCI格式的DCI时,终端设备根据第一聚合等级集合中的每个聚合等级对应的候选PDCCH个数,接收第一DCI格式的DCI,以及根据第二聚合等级集合中的每个聚合等级对应的候选PDCCH个数,接收第二DCI格式的DCI。
可选地,在上述实施例的基础上,为了保证URLLC业务控制信道的可靠性需求,又能保证eMBB业务的控制信道能够被监测,还可以使低聚合等级只进行format X盲检测,高聚合等级只进行format Y盲检测。例如,使得c 3=0、c 4=0,即在低聚合等级(L=1、2、4)进行盲检测。r 1=0、r 2=0,即在高聚合等级(L=8、16、32)进行盲检 测。
可选地,本实施例中,针对format X,第一聚合等级集合的实现方式还可以如表一所示,针对format Y,第二聚合等级集合的实现方式还可以如表二所示。即无论网络设备是确定一种DCI格式,还是确定两种DCI格式,针对该DCI格式的聚合等级集合始终不变。而针对两种DCI格式时,可以通过高层信令配置一个比例参数w,使得总的盲检测次数不超过终端设备的盲检测能力,以及上述公式4至公式六所示的约束条件。
以一个具体的例子为例,网络设备在确定比例因子时,满足的约束条件为:
round(w×c 0×M 0)+round(w×c 1×M 1)+round(w×r 1×M 1)+round(w×c 2×M 2)
+round(w×r 2×M 2)+round(w×c 3×M 3)+round(w×r 3×M 3)+round(w×c 4×M 4);或
+round(w×r 4×M 4)+round(w×r 5×M 5)≤N
Figure PCTCN2018074057-appb-000019
Figure PCTCN2018074057-appb-000020
对于终端设备而言,可以接收网络设备给该终端设备配置比例参数w,终端设备通过该比例参数进行缩放,可以获取每个聚合等级对应的候选PDCCH个数,从而进行盲检测。
可选地,网络设备还可以为终端设备配置第一聚合等级比例参数w1,第二聚合等级比例参数w2,使得总的盲检测次数不超过终端设备的盲检测能力。
以一个具体的例子为例,网络设备在确定比例因子时,满足的约束条件为:
round(w1×c 0×M 0)+round(w1×c 1×M 1)+round(w2×r 1×M 1)+round(w1×c 2×M 2)
+round(w2×r 2×M 2)+round(w1×c 3×M 3)+round(w2×r 3×M 3)+round(w1×c 4×M 4);或
+round(w2×r 4×M 4)+round(w2×r 5×M 5)≤N
Figure PCTCN2018074057-appb-000021
Figure PCTCN2018074057-appb-000022
本领域技术人员可以理解,在上述实施例的基础上,针对一个终端设备,描述了该终端设备支持两种业务类型时进行DCI的发送和接收的方法。针对一个终端设备支持两种以上的业务类型时,其DCI的发送和接收的方法与终端设备支持两种业务类型类似,即都需要满足盲检测总次数不大于终端设备的盲检测能力,针对同一聚合等级,各个DCI格式对应的盲检测候选PDCCH个数的之和不大于搜索空间信息中的该聚合等级下的候选PDCCH个数。
可选地,在上述实施例的基础上,第一聚合等级集合或者第二聚合等级集合也可以与第三聚合等级集合中的聚合等级相同。即为了实现网络设备配置的规范化和统一化,不同的DCI对应的聚合等级集合,在形式上是相同的。然而,为了保证不同的DCI对应的聚合等级集合在实质上不同,从而实现不同DCI格式对应不同的可靠性需 求,此时,可通过将部分聚合等级对应的比例因子设置较小的值,例如直接设置为0。
例如,针对format X,一种可能的实现方式如表八所示。
表八
聚合等级L 比例因子P X
1 a 0
2 a 1
4 a 2
8 a 3
16 a 4
32 0
0
由表八可知,聚合等级包括了所有可用的聚合等级,但是对于高聚合等级,则将比例因子设置为较小的值,例如直接设置为0,即对高聚合等级不进行盲检测。
针对format Y,一种可能的实现方式如表九所示。
表九
聚合等级L 比例因子P Y
1 0
2 b 1
4 b 2
8 b 3
16 b 4
32 b 5
由表九可知,聚合等级包括了所有可用的聚合等级,但是对于低聚合等级,则将比例因子设置为较小的值,例如直接设置为0,即对低聚合等级不进行盲检测。
上述主要从网络设备和终端设备交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,网络设备和终端设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本申请中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的技术方案的范围。
本申请实施例可以根据上述方法示例对网络设备、终端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图4为本申请实施例提供的网络设备的结构示意图。如图4所示,该网络设备300包括:发送模块301;其中
所述发送模块301,用于向终端设备发送配置信息,其中,所述配置信息包括第一聚 合等级集合中每个聚合等级对应的比例因子,其中,所述第一聚合等级集合包括n个聚合等级且所述第一聚合等级集合对应于第一下行控制信息DCI格式,n为大于或等于1的正整数,所述比例因子用于确定与所述比例因子对应的聚合等级的候选物理下行控制信道PDCCH个数;
所述发送模块301,还用于向所述终端设备发送所述第一DCI格式的DCI,所述第一DCI格式的DCI对应的聚合等级为所述第一聚合等级集合中的聚合等级。
需要说明的是,可以理解的,该网络设备300还可以包括处理模块302等其他模块。
可选地,所述配置信息还包括指示所述第一聚合等级集合的信息。
可选地,所述第一聚合等级集合中的每个聚合等级对应的比例因子P X满足0≤P X≤1,且高聚合等级对应的比例因子不大于低聚合等级对应的比例因子;或者,低聚合等级对应的比例因子不大于高聚合等级对应的比例因子。
可选地,所述配置信息还包括:第二聚合等级集合中每个聚合等级对应的比例因子,其中,所述第二聚合等级集合包括m个聚合等级且所述第二聚合等级集合对应于第二下行控制信息DCI格式,并且m为大于或等于1的正整数;
其中,所述第一DCI格式与所述第二DCI格式不同,所述第一聚合等级集合中的n个聚合等级和所述第二聚合等级集合中的m个聚合等级相同或至少一个不同;
所述发送模块301,还用于向所述终端设备发送所述第二DCI格式的DCI,所述第二DCI格式的DCI对应的聚合等级为所述第二聚合等级集合中的聚合等级。
可选地,所述配置信息还包括指示所述第二聚合等级集合的信息。
可选地,所述第一聚合等级集合中的每个聚合等级对应的比例因子P X满足0≤P X≤1,且高聚合等级对应的比例因子不大于低聚合等级对应的比例因子;
所述第二聚合等级集合中的每个聚合等级对应的比例因子P Y满足0≤P Y≤1,且低聚合等级对应的比例因子不大于高聚合等级对应的比例因子。
前述的网络设备的具体实现中,发送模块可以被实现为发射器,数据和程序代码可存储在存储器中,由处理器根据相应的程序指令控制执行。图5为本申请实施例提供的网络设备的硬件结构示意图。如图5所示,该网络设备400包括:
至少一个处理器401、存储器402、发射器403。可选地,还包括接收器404。所述存储器402存储计算机执行指令;所述至少一个处理器401执行所述存储器402存储的计算机执行指令,使得所述网络设备400能够执行如上所述的方法实施例。
例如,处理器401确定配置信息,发射器403向终端设备发送配置信息,其中,所述配置信息包括第一聚合等级集合中每个聚合等级对应的比例因子,其中,所述第一聚合等级集合包括n个聚合等级且所述第一聚合等级集合对应于第一下行控制信息DCI格式,n为大于或等于1的正整数,所述比例因子用于确定与所述比例因子对应的聚合等级的候选物理下行控制信道PDCCH个数;
发射器403向所述终端设备发送所述第一DCI格式的DCI,所述第一DCI格式的DCI对应的聚合等级为所述第一聚合等级集合中的聚合等级。
本实施例提供的网络设备,可执行上述方法实施例,其实现原理和技术效果类似,此处不再赘述。
图6为本申请实施例提供的终端设备的结构示意图。如图6所示,该终端设备500包 括:接收模块501和处理模块502。其中
接收模块501,用于接收网络设备发送的配置信息,其中,所述配置信息包括第一聚合等级集合中每个聚合等级对应的比例因子,其中,所述第一聚合等级集合包括n个聚合等级且所述第一聚合等级集合对应于第一下行控制信息DCI格式,n为大于或等于1的正整数,所述比例因子用于确定与所述比例因子对应的聚合等级的候选物理下行控制信道PDCCH个数;
处理模块502,用于根据所述第一聚合等级集合中的每个聚合等级对应的比例因子,确定所述第一聚合等级集合中每个聚合等级对应的候选PDCCH个数;
所述接收模块502,还用于根据所述第一聚合等级集合中的每个聚合等级对应的候选PDCCH个数,接收所述第一DCI格式的DCI。
可选地,所述配置信息还包括指示所述第一聚合等级集合的信息。
可选地,所述第一聚合等级集合中的每个聚合等级对应的比例因子P X满足0≤P X≤1,且高聚合等级对应的比例因子不大于低聚合等级对应的比例因子;或者,低聚合等级对应的比例因子不大于高聚合等级对应的比例因子。
可选地,所述配置信息还包括:第二聚合等级集合中每个聚合等级对应的比例因子,其中,所述第二聚合等级集合包括m个聚合等级且所述第二聚合等级集合对应于第二下行控制信息DCI格式,并且m为大于或等于1的正整数;
其中,所述第一DCI格式与所述第二DCI格式不同,所述第一聚合等级集合中的n个聚合等级和所述第二聚合等级集合中的m个聚合等级相同或至少一个不同;
所述处理模块502,还用于根据所述第二聚合等级集合中的每个聚合等级对应的比例因子,确定所述第二聚合等级集合中每个聚合等级对应的候选PDCCH个数;
所述接收模块501,还用于根据所述第二聚合等级集合中的每个聚合等级对应的候选PDCCH个数,接收所述第二DCI格式的DCI。
可选地,所述配置信息还包括指示所述第二聚合等级集合的信息。
可选地,所述第一聚合等级集合中的每个聚合等级对应的比例因子P X满足0≤P X≤1,且高聚合等级对应的比例因子不大于低聚合等级对应的比例因子;
所述第二聚合等级集合中的每个聚合等级对应的比例因子P Y满足0≤P Y≤1,且低聚合等级对应的比例因子不大于高聚合等级对应的比例因子。
前述的终端设备的具体实现中,接收模块可以被实现为接收器,处理模块可以被实现为处理器,数据和程序代码可存储在存储器中,由处理器根据相应的程序指令控制执行。图7为本申请实施例提供的终端设备的硬件结构示意图。如图7所示,该终端设备600包括:
至少一个处理器601、存储器602、接收器603。可选地,还包括发射器604。所述存储器602存储计算机执行指令;所述至少一个处理器601执行所述存储器602存储的计算机执行指令,使得所述终端设备600能够执行如上所述的方法实施例。
例如,接收器603接收网络设备发送的配置信息,其中,所述配置信息包括第一聚合等级集合中每个聚合等级对应的比例因子,其中,所述第一聚合等级集合包括n个聚合等级且所述第一聚合等级集合对应于第一下行控制信息DCI格式,n为大于或等于1的正整数,所述比例因子用于确定与所述比例因子对应的聚合等级的候选物理下行控制信 道PDCCH个数;
处理器601根据所述第一聚合等级集合中的每个聚合等级对应的比例因子,确定所述第一聚合等级集合中每个聚合等级对应的候选PDCCH个数;
处理器601根据所述第一聚合等级集合中的每个聚合等级对应的候选PDCCH个数,控制接收器603接收所述第一DCI格式的DCI。
本实施例提供的终端设备,可执行上述方法实施例,其实现原理和技术效果类似,此处不再赘述。
此外,本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当网络设备的至少一个处理器执行该计算机执行指令时,网络设备执行上述各种可能的下行控制信息发送方法。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当终端设备的至少一个处理器执行该计算机执行指令时,终端设备执行上述各种可能的下行控制信息接收方法。
此外,本申请实施例还提供一种包含指令的计算机程序产品,当其在网络设备上运行时,使得网络设备执行上述各种可能的下行控制信息发送方法。
本申请实施例还提供一种包含指令的计算机程序产品,当其在终端设备上运行时,使得终端设备执行上述各种可能的下行控制信息接收方法。

Claims (28)

  1. 一种下行控制信息发送方法,其特征在于,包括:
    向终端设备发送配置信息,其中,所述配置信息包括第一聚合等级集合中每个聚合等级对应的比例因子,其中,所述第一聚合等级集合包括n个聚合等级且所述第一聚合等级集合对应于第一下行控制信息DCI格式,n为大于或等于1的正整数,所述比例因子用于确定与所述比例因子对应的聚合等级的候选物理下行控制信道PDCCH个数;
    向所述终端设备发送所述第一DCI格式的DCI,所述第一DCI格式的DCI对应的聚合等级为所述第一聚合等级集合中的聚合等级。
  2. 根据权利要求1所述的方法,其特征在于,所述配置信息还包括指示所述第一聚合等级集合的信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一聚合等级集合中的每个聚合等级对应的比例因子P X满足0≤P X≤1,且高聚合等级对应的比例因子不大于低聚合等级对应的比例因子;或者,低聚合等级对应的比例因子不大于高聚合等级对应的比例因子。
  4. 根据权利要求1或2所述的方法,其特征在于,所述配置信息还包括:第二聚合等级集合中每个聚合等级对应的比例因子,其中,所述第二聚合等级集合包括m个聚合等级且所述第二聚合等级集合对应于第二下行控制信息DCI格式,并且m为大于或等于1的正整数;
    其中,所述第一DCI格式与所述第二DCI格式不同,所述第一聚合等级集合中的n个聚合等级和所述第二聚合等级集合中的m个聚合等级相同或至少一个不同;
    所述方法还包括:向所述终端设备发送所述第二DCI格式的DCI,所述第二DCI格式的DCI对应的聚合等级为所述第二聚合等级集合中的聚合等级。
  5. 根据权利要求4所述的方法,其特征在于,所述配置信息还包括指示所述第二聚合等级集合的信息。
  6. 根据权利要求4或5所述的方法,其特征在于,
    所述第一聚合等级集合中的每个聚合等级对应的比例因子P X满足0≤P X≤1,且高聚合等级对应的比例因子不大于低聚合等级对应的比例因子;
    所述第二聚合等级集合中的每个聚合等级对应的比例因子P Y满足0≤P Y≤1,且低聚合等级对应的比例因子不大于高聚合等级对应的比例因子。
  7. 一种下行控制信息接收方法,其特征在于,包括:
    接收网络设备发送的配置信息,其中,所述配置信息包括第一聚合等级集合中每个聚合等级对应的比例因子,其中,所述第一聚合等级集合包括n个聚合等级且所述第一聚合等级集合对应于第一下行控制信息DCI格式,n为大于或等于1的正整数,所述比例因子用于确定与所述比例因子对应的聚合等级的候选物理下行控制信道PDCCH个数;
    根据所述第一聚合等级集合中的每个聚合等级对应的比例因子,确定所述第一聚合等级集合中每个聚合等级对应的候选PDCCH个数;
    根据所述第一聚合等级集合中的每个聚合等级对应的候选PDCCH个数,接收所述第一DCI格式的DCI。
  8. 根据权利要求7所述的方法,其特征在于,所述配置信息还包括指示所述第一聚合等级集合的信息。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第一聚合等级集合中的每个聚合等级对应的比例因子P X满足0≤P X≤1,且高聚合等级对应的比例因子不大于低聚合等级对应的比例因子;或者,低聚合等级对应的比例因子不大于高聚合等级对应的比例因子。
  10. 根据权利要求7或8所述的方法,其特征在于,所述配置信息还包括:第二聚合等级集合中每个聚合等级对应的比例因子,其中,所述第二聚合等级集合包括m个聚合等级且所述第二聚合等级集合对应于第二下行控制信息DCI格式,并且m为大于或等于1的正整数;
    其中,所述第一DCI格式与所述第二DCI格式不同,所述第一聚合等级集合中的n个聚合等级和所述第二聚合等级集合中的m个聚合等级相同或至少一个不同;
    所述方法还包括:
    根据所述第二聚合等级集合中的每个聚合等级对应的比例因子,确定所述第二聚合等级集合中每个聚合等级对应的候选PDCCH个数;
    根据所述第二聚合等级集合中的每个聚合等级对应的候选PDCCH个数,接收所述第二DCI格式的DCI。
  11. 根据权利要求10所述的方法,其特征在于,所述配置信息还包括指示所述第二聚合等级集合的信息。
  12. 根据权利要求10或11所述的方法,其特征在于,
    所述第一聚合等级集合中的每个聚合等级对应的比例因子P X满足0≤P X≤1,且高聚合等级对应的比例因子不大于低聚合等级对应的比例因子;
    所述第二聚合等级集合中的每个聚合等级对应的比例因子P Y满足0≤P Y≤1,且低聚合等级对应的比例因子不大于高聚合等级对应的比例因子。
  13. 一种网络设备,其特征在于,包括:
    发送模块,用于向终端设备发送配置信息,其中,所述配置信息包括第一聚合等级集合中每个聚合等级对应的比例因子,其中,所述第一聚合等级集合包括n个聚合等级且所述第一聚合等级集合对应于第一下行控制信息DCI格式,n为大于或等于1的正整数,所述比例因子用于确定与所述比例因子对应的聚合等级的候选物理下行控制信道PDCCH个数;
    所述发送模块,还用于向所述终端设备发送所述第一DCI格式的DCI,所述第一DCI格式的DCI对应的聚合等级为所述第一聚合等级集合中的聚合等级。
  14. 根据权利要求13所述的网络设备,其特征在于,所述配置信息还包括指示所述第一聚合等级集合的信息。
  15. 根据权利要求13或14所述的网络设备,其特征在于,所述第一聚合等级集合中的每个聚合等级对应的比例因子P X满足0≤P X≤1,且高聚合等级对应的比例因子不大于低聚合等级对应的比例因子;或者,低聚合等级对应的比例因子不大于高聚合等级对应的比例因子。
  16. 根据权利要求13或14所述的网络设备,其特征在于,所述配置信息还包括:第 二聚合等级集合中每个聚合等级对应的比例因子,其中,所述第二聚合等级集合包括m个聚合等级且所述第二聚合等级集合对应于第二下行控制信息DCI格式,并且m为大于或等于1的正整数;
    其中,所述第一DCI格式与所述第二DCI格式不同,所述第一聚合等级集合中的n个聚合等级和所述第二聚合等级集合中的m个聚合等级相同或至少一个不同;
    所述DCI发送模块,还用于向所述终端设备发送所述第二DCI格式的DCI,所述第二DCI格式的DCI对应的聚合等级为所述第二聚合等级集合中的聚合等级。
  17. 根据权利要求16所述的网络设备,其特征在于,所述配置信息还包括指示所述第二聚合等级集合的信息。
  18. 根据权利要求16或17所述的网络设备,其特征在于,
    所述第一聚合等级集合中的每个聚合等级对应的比例因子P X满足0≤P X≤1,且高聚合等级对应的比例因子不大于低聚合等级对应的比例因子;
    所述第二聚合等级集合中的每个聚合等级对应的比例因子P Y满足0≤P Y≤1,且低聚合等级对应的比例因子不大于高聚合等级对应的比例因子。
  19. 一种终端设备,其特征在于,包括:
    接收模块,用于接收网络设备发送的配置信息,其中,所述配置信息包括第一聚合等级集合中每个聚合等级对应的比例因子,其中,所述第一聚合等级集合包括n个聚合等级且所述第一聚合等级集合对应于第一下行控制信息DCI格式,n为大于或等于1的正整数,所述比例因子用于确定与所述比例因子对应的聚合等级的候选物理下行控制信道PDCCH个数;
    处理模块,用于根据所述第一聚合等级集合中的每个聚合等级对应的比例因子,确定所述第一聚合等级集合中每个聚合等级对应的候选PDCCH个数;
    所述接收模块,还用于根据所述第一聚合等级集合中的每个聚合等级对应的候选PDCCH个数,接收所述第一DCI格式的DCI。
  20. 根据权利要求19所述的终端设备,其特征在于,所述配置信息还包括指示所述第一聚合等级集合的信息。
  21. 根据权利要求19或20所述的终端设备,其特征在于,所述第一聚合等级集合中的每个聚合等级对应的比例因子P X满足0≤P X≤1,且高聚合等级对应的比例因子不大于低聚合等级对应的比例因子;或者,低聚合等级对应的比例因子不大于高聚合等级对应的比例因子。
  22. 根据权利要求19或20所述的终端设备,其特征在于,所述配置信息还包括:第二聚合等级集合中每个聚合等级对应的比例因子,其中,所述第二聚合等级集合包括m个聚合等级且所述第二聚合等级集合对应于第二下行控制信息DCI格式,并且m为大于或等于1的正整数;
    其中,所述第一DCI格式与所述第二DCI格式不同,所述第一聚合等级集合中的n个聚合等级和所述第二聚合等级集合中的m个聚合等级相同或至少一个不同;
    所述处理模块,还用于根据所述第二聚合等级集合中的每个聚合等级对应的比例因子,确定所述第二聚合等级集合中每个聚合等级对应的候选PDCCH个数;
    所述接收模块,还用于根据所述第二聚合等级集合中的每个聚合等级对应的候选 PDCCH个数,接收所述第二DCI格式的DCI。
  23. 根据权利要求22所述的终端设备,其特征在于,所述配置信息还包括指示所述第二聚合等级集合的信息。
  24. 根据权利要求22或23所述的终端设备,其特征在于,
    所述第一聚合等级集合中的每个聚合等级对应的比例因子P X满足0≤P X≤1,且高聚合等级对应的比例因子不大于低聚合等级对应的比例因子;
    所述第二聚合等级集合中的每个聚合等级对应的比例因子P Y满足0≤P Y≤1,且低聚合等级对应的比例因子不大于高聚合等级对应的比例因子。
  25. 一种下行控制信息发送装置,其特征在于,包括:至少一个处理器和存储器;
    所述存储器存储计算机执行指令;
    所述至少一个处理器执行所述存储器存储的计算机执行指令,使得所述装置执行如权利要求1至6任一项所述的下行控制信息发送方法。
  26. 一种下行控制信息接收装置,其特征在于,包括:至少一个处理器和存储器;
    所述存储器存储计算机执行指令;
    所述至少一个处理器执行所述存储器存储的计算机执行指令,使得所述装置执行如权利要求7至12任一项所述的下行控制信息接收方法。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现如权利要求1至6任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现如权利要求7至12任一项所述的方法。
PCT/CN2018/074057 2017-01-26 2018-01-24 下行控制信息发送和接收方法及设备 WO2018137672A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18744091.2A EP3565166B1 (en) 2017-01-26 2018-01-24 Method for sending and receiving downlink control information, and device
JP2019540447A JP2020509645A (ja) 2017-01-26 2018-01-24 下りリンク制御情報送信方法、下りリンク制御情報受信方法および装置
US16/521,770 US11219003B2 (en) 2017-01-26 2019-07-25 Downlink control information sending method, downlink control information receiving method, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710061672.7 2017-01-26
CN201710061672.7A CN108365913B (zh) 2017-01-26 2017-01-26 下行控制信息发送和接收方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/521,770 Continuation US11219003B2 (en) 2017-01-26 2019-07-25 Downlink control information sending method, downlink control information receiving method, and device

Publications (1)

Publication Number Publication Date
WO2018137672A1 true WO2018137672A1 (zh) 2018-08-02

Family

ID=62979144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074057 WO2018137672A1 (zh) 2017-01-26 2018-01-24 下行控制信息发送和接收方法及设备

Country Status (5)

Country Link
US (1) US11219003B2 (zh)
EP (1) EP3565166B1 (zh)
JP (2) JP2020509645A (zh)
CN (1) CN108365913B (zh)
WO (1) WO2018137672A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113300789A (zh) * 2020-02-21 2021-08-24 大唐移动通信设备有限公司 信道监听及其控制方法及装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11438123B2 (en) * 2017-09-07 2022-09-06 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for realizing signaling detection, user equipment, and base station
CN109474384B (zh) 2017-09-08 2021-02-12 华为技术有限公司 通信方法、终端设备和网络设备
US20190313385A1 (en) * 2018-04-05 2019-10-10 Qualcomm Incorporated Compact dci for urllc
WO2020056752A1 (zh) * 2018-09-21 2020-03-26 Oppo广东移动通信有限公司 Pdcch的监听方法、装置、设备及系统
CN111435897B (zh) * 2019-01-11 2021-10-26 华为技术有限公司 信息传输的方法和通信装置
US11109432B2 (en) * 2019-02-15 2021-08-31 At&T Intellectual Property I, L.P. Location based coreset configuration for transmitting the physical downlink control channel in 5G wireless communication systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594537A (zh) * 2009-08-28 2012-07-18 华为技术有限公司 确定搜索空间、候选控制信道资源的方法及装置
US20150029958A1 (en) * 2013-07-25 2015-01-29 Lg Electronics Inc. Method and apparatus for transmitting interference information
CN104584460A (zh) * 2012-08-11 2015-04-29 Lg电子株式会社 在无线通信系统中接收下行链路控制信道的方法和设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103327591A (zh) * 2012-03-21 2013-09-25 北京三星通信技术研究有限公司 一种探测参考信号的功率控制方法
AU2013313884B2 (en) * 2012-09-04 2016-10-20 Samsung Electronics Co., Ltd. Adaptating a number of aggregation levels for control channel elements
WO2014067141A1 (zh) * 2012-11-02 2014-05-08 华为技术有限公司 控制信道候选个数和盲检次数分配方法、基站和用户设备
KR101959123B1 (ko) * 2016-05-12 2019-07-04 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서의 서로 다른 전송 시간 간격들을 통한 제어 채널들의 원활한 탐지
US20170373793A1 (en) * 2016-06-24 2017-12-28 Qualcomm Incorporated Techniques for managing blind decoding reduction for control channel search spaces
US10506603B2 (en) * 2016-11-04 2019-12-10 Qualcomm Incorporated Power control, reporting techniques, and control channel configuration in unlicensed spectrum and licensed assisted access

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594537A (zh) * 2009-08-28 2012-07-18 华为技术有限公司 确定搜索空间、候选控制信道资源的方法及装置
CN104584460A (zh) * 2012-08-11 2015-04-29 Lg电子株式会社 在无线通信系统中接收下行链路控制信道的方法和设备
US20150029958A1 (en) * 2013-07-25 2015-01-29 Lg Electronics Inc. Method and apparatus for transmitting interference information

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3565166A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113300789A (zh) * 2020-02-21 2021-08-24 大唐移动通信设备有限公司 信道监听及其控制方法及装置
CN113300789B (zh) * 2020-02-21 2022-09-23 大唐移动通信设备有限公司 信道监听及其控制方法及装置

Also Published As

Publication number Publication date
EP3565166A1 (en) 2019-11-06
CN108365913A (zh) 2018-08-03
JP2020509645A (ja) 2020-03-26
EP3565166A4 (en) 2020-01-08
US20190349910A1 (en) 2019-11-14
JP2021122140A (ja) 2021-08-26
CN108365913B (zh) 2023-06-02
US11219003B2 (en) 2022-01-04
EP3565166B1 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
WO2018137672A1 (zh) 下行控制信息发送和接收方法及设备
WO2019080836A1 (zh) 一种检测下行控制信息的方法、终端设备和网络设备
US9681427B2 (en) Method for transmitting feedback information for downlink data, terminal, and base station
US10277363B2 (en) Hybrid automatic repeat request acknowledgement transmission method, user equipment, and base station
US20190215812A1 (en) Method for Sending or Receiving Physical Downlink Control Channel and Device
EP3531766B1 (en) Control information detection method and transmission method, and device
US10778381B2 (en) Method and user equipment for compacting HARQ feedback
US11985688B2 (en) Transmission direction configuration method, device, and system
EP3553980B1 (en) Method for transmitting data, terminal device and network device
US20200404646A1 (en) Slot Format Indication Method, Device, and System
CN114208100A (zh) 每监测跨段的非重叠cce和盲解码的最大数量
US10873430B2 (en) Signal sending method and apparatus
CN113424618B (zh) 一种通信方法、装置及计算机可读存储介质
US20210336755A1 (en) Communications method and apparatus
CN111034287A (zh) 资源配置方法、确定方法及其装置、通信系统
US11171751B2 (en) Indicating contiguous resource allocation
WO2019137011A1 (zh) 一种通信方法及上行资源确定方法
WO2017024565A1 (zh) 数据传输方法、装置及系统
WO2016168967A1 (zh) 一种分量载波组的配置方法及设备
CN110612684B (zh) 一种应答反馈方法、终端及网络设备
WO2020199609A1 (zh) 一种通信方法及设备
WO2018227596A1 (zh) 时域资源指示方法、数据传输方法、装置和通信系统
WO2017173775A1 (zh) 一种控制信道的资源配置方法
CN115189845A (zh) Pucch资源的分配方法、装置及设备
CN114499787A (zh) Pdcch传输配置方法、装置、设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744091

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540447

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018744091

Country of ref document: EP

Effective date: 20190802