WO2018137270A1 - Iron-based amorphous alloy - Google Patents

Iron-based amorphous alloy Download PDF

Info

Publication number
WO2018137270A1
WO2018137270A1 PCT/CN2017/075158 CN2017075158W WO2018137270A1 WO 2018137270 A1 WO2018137270 A1 WO 2018137270A1 CN 2017075158 W CN2017075158 W CN 2017075158W WO 2018137270 A1 WO2018137270 A1 WO 2018137270A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
based amorphous
amorphous alloy
alloy
heat treatment
Prior art date
Application number
PCT/CN2017/075158
Other languages
French (fr)
Chinese (zh)
Inventor
李晓雨
庞靖
李庆华
杨东
刘红玉
Original Assignee
青岛云路先进材料技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛云路先进材料技术有限公司 filed Critical 青岛云路先进材料技术有限公司
Publication of WO2018137270A1 publication Critical patent/WO2018137270A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent

Definitions

  • the invention relates to the technical field of soft magnetic materials, in particular to an iron-based amorphous alloy.
  • Iron-based amorphous ribbon is a new type of energy-saving material. It is prepared by rapid quenching and solidification production process. This new material is used in transformer core. Compared with traditional silicon steel transformer, the magnetization process is quite easy, which greatly reduces the no-load of the transformer. loss, if the transformer oil for further reduction CO, SO, NO x and other harmful gases, known as "green material" 21 century.
  • iron-based amorphous ribbons with a saturation magnetic induction of about 1.56T are generally used.
  • iron-based amorphous has the disadvantage of increasing volume when preparing a transformer.
  • Hitachi Metals in Chinese Patent Application Publication No. CN1721563A, discloses a Fe-Si-BC alloy of the name HB1 having a saturation magnetic induction strength of 1.64T, but the disclosed process conditions mentions blowing in the preparation process.
  • the process of controlling the C element content distribution on the surface of the strip by C gas which directly leads to the difficulty in controlling the production process conditions of the product, and the stability of industrial production cannot be guaranteed.
  • the technical problem to be solved by the present invention is to provide an iron-based amorphous alloy.
  • the iron-based amorphous alloy provided by the present application has high saturation magnetic induction strength and amorphous forming ability.
  • the present application provides an iron-based amorphous alloy as shown in formula (I).
  • the iron-based amorphous alloy has a saturation magnetic induction of ⁇ 1.62T.
  • the atomic percentage of the Fe is 81.3 ⁇ a ⁇ 82.8.
  • the atomic percentage of the Fe is 81.5 ⁇ a ⁇ 82.5.
  • the atomic percentage of the Si is 2.5 ⁇ b ⁇ 4.2.
  • the atomic percentage of the B is 13.0 ⁇ c ⁇ 15.5.
  • the atomic percentage of the B is 13.7 ⁇ c ⁇ 14.7.
  • a 81.5, 2.5 ⁇ b ⁇ 4.5, and 14.0 ⁇ c ⁇ 16.0.
  • a 82, 3.0 ⁇ b ⁇ 4.0, and 14.0 ⁇ c ⁇ 15.0.
  • the iron-based amorphous alloy 82.3 ⁇ a ⁇ 82.8, 2.5 ⁇ b ⁇ 4.5, and 13.0 ⁇ c ⁇ 15.0.
  • the iron-based amorphous alloy having the composition according to the above scheme is prepared into a strip, and then subjected to longitudinal magnetic field heat treatment to obtain a heat-treated strip; the heat treatment temperature is 300-360 ° C, and the heat preservation time is 60 ⁇ . At 120 min, the magnetic field strength is 800 to 1400 m/A.
  • the iron core loss of the heat-treated strip is ⁇ 0.1800 W/kg
  • the excitation power is ⁇ 0.2200 VA/kg
  • the coercive force is ⁇ 4 A/m.
  • the present application provides an iron-based amorphous alloy represented by the formula Fe a Si b B c M d , which comprises Fe, Si, B, wherein the Fe element acts as a ferromagnetic element and is the main magnetic of the iron-based amorphous alloy.
  • the source is to ensure the high saturation magnetic induction intensity of the amorphous alloy; Si and B are amorphous forming elements, and the proper amount can ensure the iron-based amorphous alloy has good amorphous forming ability.
  • the present invention uses a low silicon and high boron ratio to make the iron-based amorphous alloy have high saturation magnetic induction and amorphous forming ability.
  • Figure 2 is a graph showing the relationship between magnetic properties and heat treatment temperature of an embodiment of the present invention and a comparative example
  • Figure 3 is a graph comparing the loss curves of the embodiment of the present invention and the comparative example at 50 Hz.
  • the embodiment of the invention discloses an iron-based amorphous alloy as shown in formula (I),
  • the iron-based amorphous alloy of the present application has a chemical composition expression of Fe a Si b B c M d , wherein M is an unavoidable impurity element, wherein the atomic ratios of a, b, and c are respectively: 81.0 ⁇ a ⁇ 83.0, 0.5 ⁇ b ⁇ 4.5, 12.5 ⁇ c ⁇ 16.0; the rest is d, d ⁇ 0.4.
  • the invention makes the iron-based amorphous alloy have better comprehensive magnetic properties by adding the above elements and defining the atomic percentage thereof.
  • the Fe element in the iron-based amorphous alloy is a ferromagnetic element, which is a main source of magnetic properties of the iron-based amorphous alloy, and the high Fe content makes the iron-based amorphous alloy have an important guarantee of high saturation magnetic induction strength.
  • the atomic percentage of Fe in the present application is 81.0 to 83.0.
  • the atomic percentage of Fe is 81.3 to 82.8. More specifically, the atomic percentage of Fe is 81.5 to 82.5. More specifically, the atomic percentage of the Fe is 81.3, 81.45, 81.5, 81.7, 81.85, 82.05, 82.30, 82.42, 82.5, 82.6, 82.65, 82.80 or 82.9.
  • the content of Fe exceeding 83.0 leads to a decrease in the amorphous forming ability of the alloy, an increase in the antegrade difficulty and a production cost, and industrial production is difficult to achieve.
  • the Si element and the B element as amorphous forming elements are necessary conditions for the alloy system to form amorphous under industrial production conditions.
  • the content of Si is 0.5 to 4.5, and in the embodiment, the content of Si is 2.5 to 4.2, and more specifically, the content of Si is 2.75, 2.8, 2.85, 3.02, 3.1, 3.3, 3.5, 3.7, 3.8, 3.95, 4.0, 4.12, 4.2, 4.28, 4.3, 4.45 or 4.5.
  • Si atom A percentage of less than 0.5 results in a decrease in the ability to form amorphous and a decrease in the magnetic properties of the strip.
  • the content of B is from 12.5 to 16.0.
  • the content of B is 13.0 ⁇ c ⁇ 15.5. In a specific embodiment, the content of B is 13.7 ⁇ c ⁇ 14.7; In a specific embodiment, the content of B is 13.2, 13.3, 13.5, 13.8, 13.9, 14.0, 14.1, 14.2, 14.5, 14.8, 14.9, 15.1, 15.2 or 15.5.
  • the atomic percentage of B is greater than 16.0, the alloy composition deviates from the eutectic point, and the amorphous forming ability of the alloy is lowered.
  • M is an impurity element, and the content thereof is of course as low as possible. Therefore, the content of M in the present application is not particularly limited as long as it is ⁇ 0.4.
  • the composition and content of the iron-based amorphous alloy of the present application form a high-saturation magnetic induction-strength iron-based amorphous alloy from a reasonable combination of improving magnetic induction, improving amorphous forming ability, and reducing preparation difficulty.
  • the preparation method of the iron-based amorphous alloy described in the present application comprises the following steps:
  • the raw material after the compounding is smelted, and the melted molten metal is heated and kept warm, and then subjected to single-roll quenching to obtain an iron-based amorphous alloy strip.
  • the present application employs the technical means conventional in the art to prepare an iron-based amorphous alloy of the specific composition of the present application.
  • the specific operation means of the present application are not specifically described.
  • the smelting temperature is 1300 to 1600 ° C and the time is 80 to 130 min.
  • the melted molten metal is heated and maintained, and then subjected to single-roll quenching to obtain an iron-based amorphous alloy strip.
  • the temperature for the temperature rise is preferably from 1,350 to 1,550 ° C, and the time for the heat retention is preferably from 90 to 120 minutes.
  • the single-roll quenching spray belt temperature is 1350 ⁇ 1450 ° C, and the cooling roll linear speed is 20-30 m/s.
  • the present invention obtains an iron-based amorphous alloy strip which is completely amorphous, has a critical thickness of at least 45 ⁇ m, and has a good toughness of the strip, and is folded 180 degrees continuously.
  • the amorphous forming ability (GFA) of an alloy refers to the size of an amorphous alloy that can be obtained under certain preparation conditions. The larger the size, the stronger the amorphous forming ability.
  • the critical thickness is an important indicator for evaluating its amorphous forming ability. Large, amorphous forming ability is stronger.
  • the critical thickness is at least 45 ⁇ m, which has a considerable margin of preparation for the industrial production of the product, reducing the requirements for cooling equipment during its industrialization.
  • ductile and brittleness is an important application index. Because the strip needs to be sheared in the next application, if the strip is brittle, it will lead to more debris during the shearing process.
  • the strip of the invention has good toughness, can be folded 180 degrees continuously, and no fragments are generated during the subsequent shearing process.
  • the iron-based amorphous alloy strip prepared by the present application has a thickness of 23 to 32 ⁇ m and a width of 100 to 300 mm.
  • strip thickness is one of the important parameters affecting the core loss, which is also the main factor for amorphous strips superior to silicon steel sheets in terms of no-load loss.
  • the core loss of soft magnetic materials mainly consists of three parts: hysteresis loss, eddy current loss and residual loss. The thickness of the thickness directly affects the eddy current loss. For the magnetic material, eddy current will appear at the magnetic domain wall, and the eddy current will generate a magnetic flux opposite to the magnetic flux generated by the external magnetic field at each moment.
  • the present application prepares an iron-based amorphous alloy strip having a thickness of 23 to 32 ⁇ m by the selection of a preparation process.
  • the width of the strip commonly used on the market is 142 mm, 170 mm, 213 mm, and the wider the width of the strip, the more difficult it is to prepare.
  • the present application heat-treats after obtaining an iron-based amorphous alloy strip having a temperature of 300 to 360 ° C, a holding time of 60 to 120 min, and a magnetic field strength of 800 to 1400 A/m.
  • Influencing factors of magnetic properties of amorphous and nanocrystalline soft magnetic materials In addition to the composition of the alloy itself, the heat treatment process is also a key factor. In general, the annealing process can eliminate the stress of the amorphous magnetic material, reduce the coercive force, increase the magnetic permeability, and obtain excellent magnetic properties.
  • the heat treatment process mainly includes three parameters: the holding temperature, the holding time and the magnetic field strength. First, the holding temperature must be lower than the crystallization temperature.
  • the alloy of the present invention has a crystallization temperature of less than 500 °C. Under the premise of lower than the crystallization temperature, the suitable temperature range of insulation is a guarantee for the excellent magnetic properties of the amorphous ribbon.
  • the research of the present application shows that the relationship between the core loss of the strip, the excitation power and the holding temperature of the heat treatment is that as the holding temperature is increased, the two parameters have a tendency to decrease first and then increase, that is, for the present invention, When the holding temperature is less than 300 ° C or greater than 360 At °C, performance deterioration occurs, and acceptable magnetic properties can be obtained between 300 and 360 °C.
  • the principle is similar to the holding temperature, and there is a suitable time interval, and the holding time is too short or too long to achieve the optimal performance of the present invention.
  • a suitable magnetic field strength is a necessary guarantee for the magnetization of the material.
  • the main reason for magnetic field annealing of amorphous materials is that the fixed direction, fixed intensity magnetic field promotes the magnetic domain deflection of the material toward the magnetic field, reduces the magnetic anisotropy of the material, and optimizes the soft magnetic properties.
  • the magnetic field strength is less than 800 A/m, the magnetization process of the material is incomplete and the best effect cannot be achieved.
  • the magnetic field strength is >1400 A/m, the material is completely magnetized, and the magnetic properties are not increased due to the magnetic field strength. Large and optimized, it will increase the difficulty and cost of the heat treatment process.
  • Coercivity is an important indicator for evaluating the properties of soft magnetic materials. The smaller the coercivity, the better the soft magnetic properties.
  • the parameters for evaluating their magnetic properties mainly include two parameters: core loss and excitation power. The smaller these two parameters, the better the performance of the subsequent core and transformer. Therefore, the iron-based amorphous alloy prepared by the present application can be applied to a core material of a transformer, an engine, and a generator.
  • the metal raw material is remelted by using an intermediate frequency smelting furnace (melting temperature is 1300-1600 ° C, holding time is 80-130 min), and the molten steel is discharged to the intermediate frequency after the smelting is completed.
  • Bottom furnace after heating and sedation (heating to 1350 ⁇ 1550 ° C, holding 90 ⁇ 120min), using a single roll quenching (spray temperature of 1350 ⁇ 1450 ° C, cooling roller line speed of 20 ⁇ 30m / s)
  • An iron-based amorphous broadband having a width of 142 mm and a thickness of 23 to 28 ⁇ m was prepared.
  • Table 1 lists the alloy composition, saturation magnetic induction value (Bs), excitation power (Pe) and core loss (P) of the inventive examples and comparative examples; wherein Examples 1 to 15 are Examples of the present invention, Comparative Example 16, 17 is the comparative example.
  • the annular sample is used for heat treatment: inner diameter 50.5mm, outer diameter 52.5 ⁇ 54.5mm, test condition: 1.35T/50Hz.
  • the heat treatment temperature in the present application is 300 to 360 ° C, the holding time is 60 to 120 minutes, and the magnetic field strength is 800 to 1400 A/m.
  • the iron-based amorphous alloy of the embodiment of the present invention can obtain a good saturation magnetic induction intensity, and the value is not less than 1.62 T, which exceeds the conventional iron of the conventional magnetic transformer with a saturation magnetic induction of 1.56 T.
  • Amorphous material (Comparative Example 16).
  • the improvement of the saturation magnetic induction strength can further optimize the design of the transformer core, reduce the volume of the transformer, and reduce the cost.
  • the alloy composition according to the example of the present invention has good magnetic properties. Under the condition of 50 Hz and 1.35 T, the excitation power of the iron core after heat treatment is ⁇ 0.2200 VA/kg, and the core loss is ⁇ 0.1800 W/kg. The use requirements were met compared to conventional amorphous materials (Comparative Example 16).
  • FIG. 2 is a graph showing the relationship between the magnetic properties and the heat treatment temperature of the exemplary embodiment of the present invention and the comparative example.
  • the curve in FIG. 2(a) is the relationship between the excitation power and the heat treatment temperature of the embodiment 2, and the curve is the embodiment 10.
  • the relationship between the excitation power and the heat treatment temperature, and the curve ⁇ is the relationship between the excitation power of Example 15 and the heat treatment temperature.
  • the curve is the relationship between the excitation power of Comparative Example 16 and the heat treatment temperature.
  • the curve in Fig. 2(b) is the relationship between the core loss and the heat treatment temperature of Example 2, and the curve is the core loss and heat treatment of Example 10.
  • the relationship between the temperature and the ⁇ curve is the relationship between the core loss and the heat treatment temperature of Example 15.
  • the curve is the relationship between the core loss of Comparative Example 16 and the heat treatment temperature; as can be seen from Fig. 2, the alloy of the present invention has stable magnetic properties at a temperature of at least 20 ° C in a wide temperature range, that is, the excitation power (Pe) and The core loss (P) fluctuates within ⁇ 0.01.
  • the optimum heat treatment temperature is at least 20 °C, which can reduce the temperature control requirements of the heat treatment equipment, increase the service life of the heat treatment equipment, and indirectly reduce the cost of the heat treatment process.
  • FIG. 3 is a comparison diagram of loss curves of a typical invention example and a comparative example of 50 Hz.
  • the curve in FIG. 3 is the loss curve of the embodiment 2, the curve is the loss curve of the embodiment 10, and the curve is the embodiment 15.
  • Loss curve, The curve is the iron loss curve of Comparative Example 16; as can be seen from Figure 3, the alloy of the present invention has better performance advantages in comparison with conventional iron-based amorphous materials under higher working magnetic density conditions, that is, the alloy of the present invention.
  • the core and transformer prepared from the iron-based amorphous material prepared by the component can be operated under higher working magnetic density conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

Disclosed is an iron-based amorphous alloy, FeaSibBcMd, wherein a, b, c and d respectively represent an atomic percentage content of the corresponding component; 81.0≤a≤83.0, 0.5≤b≤4.5, 12.5≤c≤16.0, d≤0.4, and a+b+c+d=100; and M represents an impurity element. The alloy material has a saturation magnetic induction not less than 1.62 T.

Description

一种铁基非晶合金Iron-based amorphous alloy
本申请要求于2017年01月25日提交中国专利局、申请号为201710060805.9、发明名称为“一种铁基非晶合金”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。The present application claims priority to Chinese Patent Application No. JP-A No. No. No. No. No. No. No. No. No. No. No. No. No. .
技术领域Technical field
本发明涉及软磁材料技术领域,尤其涉及一种铁基非晶合金。The invention relates to the technical field of soft magnetic materials, in particular to an iron-based amorphous alloy.
背景技术Background technique
铁基非晶带材是一种新型节能材料,采用快速急冷凝固生产工艺制备,这种新材料用于变压器铁心,与传统硅钢变压器相比,磁化过程相当容易,从而大幅度降低变压器的空载损耗,若用于油浸变压器还可减排CO、SO、NOx等有害气体,被称为21世纪的“绿色材料”。Iron-based amorphous ribbon is a new type of energy-saving material. It is prepared by rapid quenching and solidification production process. This new material is used in transformer core. Compared with traditional silicon steel transformer, the magnetization process is quite easy, which greatly reduces the no-load of the transformer. loss, if the transformer oil for further reduction CO, SO, NO x and other harmful gases, known as "green material" 21 century.
目前,国内外在非晶变压器的制备过程中,普遍使用的均为饱和磁感应强度为1.56T左右的铁基非晶带材。与硅钢接近2.0T的饱和磁感应强度相比,铁基非晶在制备变压器时存在着体积增大的缺点。为了增强铁基非晶材料在变压器行业的竞争力,需开发饱和磁感应强度大于1.6T的铁基非晶材料。At present, in the preparation process of amorphous transformers at home and abroad, iron-based amorphous ribbons with a saturation magnetic induction of about 1.56T are generally used. Compared with the saturation magnetic induction strength of silicon steel close to 2.0T, iron-based amorphous has the disadvantage of increasing volume when preparing a transformer. In order to enhance the competitiveness of iron-based amorphous materials in the transformer industry, it is necessary to develop an iron-based amorphous material having a saturation magnetic induction of more than 1.6T.
对于具有高饱和磁感应强度的非晶材料研发,已经开展了很多年。最具有代表性的是美国Allied-Signal公司开发的一款牌号为Metglas2605Co的合金,这种合金的饱和磁感应强度达到1.8T,但其合金中包含18%的Co元素使其成本过高无法在工业生产中应用。The development of amorphous materials with high saturation magnetic induction has been carried out for many years. The most representative is an alloy developed by Allied-Signal of the United States under the brand name Metglas 2605Co. The alloy has a saturation magnetic induction of 1.8T, but the alloy contains 18% of Co. Application in production.
日立金属在公开号为CN1721563A的中国专利申请中公开了一种名HB1的Fe-Si-B-C合金,其饱和磁感应强度在1.64T,但其公开的工艺条件中提到了在制备过程中通过吹含C气体而控制带材表面C元素含量分布的工艺,这将直接导致其产品生产工艺条件难以控制,工业生产稳定性无法保证。Hitachi Metals, in Chinese Patent Application Publication No. CN1721563A, discloses a Fe-Si-BC alloy of the name HB1 having a saturation magnetic induction strength of 1.64T, but the disclosed process conditions mentions blowing in the preparation process. The process of controlling the C element content distribution on the surface of the strip by C gas, which directly leads to the difficulty in controlling the production process conditions of the product, and the stability of industrial production cannot be guaranteed.
新日本制铁公司在专利CN1356403A中公布了一种Fe-Si-B-P-C合金,虽然其饱和磁感应强度达到1.75T,但由于其Fe含量过高非晶形成能力较差,导致在其工业化生产中无法形成非晶态,带材磁性能较差;同时其在专利中一方面未提到关于P元素添加的问题,另一方面P元素的添加含量较大,结合目前国内外磷铁行业的实际情况,磷铁的制备条件相对粗放,杂质含量过高,无法达到 非晶合金的使用条件。在制备过程中,大量使用常规条件的磷铁会导致带材晶化、偏脆,且热处理后性能较差。若使用此种合金成分进行工业化成产,必须添加磷铁精炼的环节,一方面增加工艺流程的复杂性,另一方面需提高目前的冶炼水平,导致工业化生产难度加大。Nippon Steel Corporation announced a Fe-Si-BPC alloy in the patent CN1356403A. Although its saturation magnetic induction intensity reaches 1.75T, its amorphous Fe formation capacity is too high, resulting in its industrial production. The amorphous state is formed, and the magnetic properties of the strip are poor. At the same time, in the patent, the problem of adding P element is not mentioned on the one hand, and the addition content of P element is large on the other hand, combined with the actual situation of the domestic and international ferrophosphorus industry. The preparation conditions of ferrophosphorus are relatively extensive, and the impurity content is too high to be reached. Conditions of use of amorphous alloys. In the preparation process, the extensive use of conventional conditions of ferrophosphorus causes the strip to be crystallized, brittle, and poor in performance after heat treatment. If such alloy composition is used for industrial production, it is necessary to add a step of phosphorus iron refining, on the one hand, increasing the complexity of the process flow, on the other hand, it is necessary to raise the current level of smelting, which makes the industrial production more difficult.
发明内容Summary of the invention
本发明解决的技术问题在于提供一种铁基非晶合金,本申请提供的铁基非晶合金具有高饱和磁感应强度与非晶形成能力。The technical problem to be solved by the present invention is to provide an iron-based amorphous alloy. The iron-based amorphous alloy provided by the present application has high saturation magnetic induction strength and amorphous forming ability.
有鉴于此,本申请提供了一种如式(Ⅰ)所示的铁基非晶合金,In view of this, the present application provides an iron-based amorphous alloy as shown in formula (I).
FeaSibBcMd                 (Ⅰ);Fe a Si b B c M d (I);
其中,a、b、c与d分别表示对应组分的原子百子含量;81.0≤a≤83.0,0.5≤b≤4.5,12.5≤c≤16.0,d≤0.4,a+b+c+d=100;M为杂质元素。Where a, b, c and d respectively represent the atomic content of the corresponding component; 81.0 ≤ a ≤ 83.0, 0.5 ≤ b ≤ 4.5, 12.5 ≤ c ≤ 16.0, d ≤ 0.4, a + b + c + d = 100 ; M is an impurity element.
优选的,所述铁基非晶合金的饱和磁感应强度≥1.62T。Preferably, the iron-based amorphous alloy has a saturation magnetic induction of ≥ 1.62T.
优选的,所述Fe的原子百分含量为81.3≤a≤82.8。Preferably, the atomic percentage of the Fe is 81.3 ≤ a ≤ 82.8.
优选的,所述Fe的原子百分含量为81.5≤a≤82.5。Preferably, the atomic percentage of the Fe is 81.5 ≤ a ≤ 82.5.
优选的,所述Si的原子百分含量为2.5≤b≤4.2。Preferably, the atomic percentage of the Si is 2.5 ≤ b ≤ 4.2.
优选的,所述B的原子百分含量为13.0≤c≤15.5。Preferably, the atomic percentage of the B is 13.0 ≤ c ≤ 15.5.
优选的,所述B的原子百分含量为13.7≤c≤14.7。Preferably, the atomic percentage of the B is 13.7 ≤ c ≤ 14.7.
优选的,所述铁基非晶合金中,a=81.5,2.5≤b≤4.5,14.0≤c≤16.0。Preferably, in the iron-based amorphous alloy, a = 81.5, 2.5 ≤ b ≤ 4.5, and 14.0 ≤ c ≤ 16.0.
优选的,所述铁基非晶合金中,a=82,3.0≤b≤4.0,14.0≤c≤15.0。Preferably, in the iron-based amorphous alloy, a = 82, 3.0 ≤ b ≤ 4.0, and 14.0 ≤ c ≤ 15.0.
优选的,所述铁基非晶合金中,82.3≤a≤82.8,2.5≤b≤4.5,13.0≤c≤15.0。Preferably, in the iron-based amorphous alloy, 82.3 ≤ a ≤ 82.8, 2.5 ≤ b ≤ 4.5, and 13.0 ≤ c ≤ 15.0.
优选的,将成分符合上述方案所述的铁基非晶合金制备成带材,再进行纵向磁场热处理,得到热处理后的带材;所述热处理的温度为300~360℃,保温时间为60~120min,磁场强度为800~1400m/A。Preferably, the iron-based amorphous alloy having the composition according to the above scheme is prepared into a strip, and then subjected to longitudinal magnetic field heat treatment to obtain a heat-treated strip; the heat treatment temperature is 300-360 ° C, and the heat preservation time is 60 ~. At 120 min, the magnetic field strength is 800 to 1400 m/A.
优选的,所述热处理后的带材的铁芯损耗≤0.1800W/kg,激磁功率≤0.2200VA/kg,矫顽力≤4A/m。Preferably, the iron core loss of the heat-treated strip is ≤0.1800 W/kg, the excitation power is ≤0.2200 VA/kg, and the coercive force is ≤4 A/m.
本申请提供了一种如式FeaSibBcMd所示的铁基非晶合金,其包括Fe、Si、B,其中Fe元素作为铁磁性元素,为铁基非晶合金磁性的主要来源,以保证非晶合金的高饱和磁感应强度;Si与B为非晶形成元素,适量的含量才能保证铁基非晶合金具有较好的非晶形成能力。本申请在高Fe含量范围内,采用 低硅高硼的配比方式,使铁基非晶合金具有高饱和磁感应强度与非晶形成能力。The present application provides an iron-based amorphous alloy represented by the formula Fe a Si b B c M d , which comprises Fe, Si, B, wherein the Fe element acts as a ferromagnetic element and is the main magnetic of the iron-based amorphous alloy. The source is to ensure the high saturation magnetic induction intensity of the amorphous alloy; Si and B are amorphous forming elements, and the proper amount can ensure the iron-based amorphous alloy has good amorphous forming ability. In the high Fe content range, the present invention uses a low silicon and high boron ratio to make the iron-based amorphous alloy have high saturation magnetic induction and amorphous forming ability.
附图说明DRAWINGS
图1为本发明实施例与对比例不同厚度铁基非晶合金的XRD图谱;1 is an XRD pattern of an iron-based amorphous alloy having different thicknesses according to an embodiment of the present invention;
图2为本发明实施例与对比例的磁性能与热处理温度的关系图;Figure 2 is a graph showing the relationship between magnetic properties and heat treatment temperature of an embodiment of the present invention and a comparative example;
图3为本发明实施例与对比例的50Hz条件下的损耗曲线对比图。Figure 3 is a graph comparing the loss curves of the embodiment of the present invention and the comparative example at 50 Hz.
具体实施方式detailed description
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。The present invention has been described in detail with reference to the preferred embodiments of the present invention.
本发明实施例公开了一种如式(Ⅰ)所示的铁基非晶合金,The embodiment of the invention discloses an iron-based amorphous alloy as shown in formula (I),
FeaSibBcMd                (Ⅰ);Fe a Si b B c M d (I);
其中,a、b、c与d分别表示对应组分的原子百子含量;81.0≤a≤83.0,0.5≤b≤4.5,12.5≤c≤16.0,d≤0.4,a+b+c+d=100;M为杂质元素。Where a, b, c and d respectively represent the atomic content of the corresponding component; 81.0 ≤ a ≤ 83.0, 0.5 ≤ b ≤ 4.5, 12.5 ≤ c ≤ 16.0, d ≤ 0.4, a + b + c + d = 100 ; M is an impurity element.
本申请的铁基非晶合金按照原子百分比计,其化学成分表达式为FeaSibBcMd,其中M为不可避免的杂质元素,其中a、b、c的原子比含量分别为:81.0≤a≤83.0,0.5≤b≤4.5,12.5≤c≤16.0;其余为d,d≤0.4。本发明通过添加上述元素,并限定其原子百分含量,使铁基非晶合金具有较好的综合磁性能。The iron-based amorphous alloy of the present application has a chemical composition expression of Fe a Si b B c M d , wherein M is an unavoidable impurity element, wherein the atomic ratios of a, b, and c are respectively: 81.0 ≤ a ≤ 83.0, 0.5 ≤ b ≤ 4.5, 12.5 ≤ c ≤ 16.0; the rest is d, d ≤ 0.4. The invention makes the iron-based amorphous alloy have better comprehensive magnetic properties by adding the above elements and defining the atomic percentage thereof.
具体的,所述铁基非晶合金中Fe元素为铁磁性元素,为铁基非晶合金磁性的主要来源,高Fe含量使铁基非晶合金具有高饱和磁感应强度的重要保障。本申请中所述Fe的原子百分含量为81.0~83.0,在实施例中,所述Fe的原子百分含量为81.3~82.8,更具体的,所述Fe的原子百分含量为81.5~82.5,更具体的,所述Fe的原子百分含量为81.3、81.45、81.5、81.7、81.85、82.05、82.30、82.42、82.5、82.6、82.65、82.80或82.9。所述Fe的含量超过83.0会导致合金的非晶形成能力下降,增加顺行难度及生产成本,使工业生产难以实现。Specifically, the Fe element in the iron-based amorphous alloy is a ferromagnetic element, which is a main source of magnetic properties of the iron-based amorphous alloy, and the high Fe content makes the iron-based amorphous alloy have an important guarantee of high saturation magnetic induction strength. The atomic percentage of Fe in the present application is 81.0 to 83.0. In the embodiment, the atomic percentage of Fe is 81.3 to 82.8. More specifically, the atomic percentage of Fe is 81.5 to 82.5. More specifically, the atomic percentage of the Fe is 81.3, 81.45, 81.5, 81.7, 81.85, 82.05, 82.30, 82.42, 82.5, 82.6, 82.65, 82.80 or 82.9. The content of Fe exceeding 83.0 leads to a decrease in the amorphous forming ability of the alloy, an increase in the antegrade difficulty and a production cost, and industrial production is difficult to achieve.
所述Si元素与B元素作为非晶形成元素,是合金系统在工业生产条件下能形成非晶的必要条件。本申请中Si的含量为0.5~4.5,在实施例中,所述Si的含量为2.5~4.2,更具体的,所述Si的含量为2.75、2.8、2.85、3.02、3.1、3.3、3.5、3.7、3.8、3.95、4.0、4.12、4.2、4.28、4.3、4.45或4.5。Si的原子 百分含量低于0.5,则会导致非晶形成能力下降,还会导致带材磁性能下降。本申请中B的含量为12.5~16.0,在具体实施例中,所述B的含量为13.0≤c≤15.5,在具体实施例中,所述B的含量为13.7≤c≤14.7;在某些具体实施例中,所述B的含量为13.2、13.3、13.5、13.8、13.9、14.0、14.1、14.2、14.5、14.8、14.9、15.1、15.2或15.5。B的原子百分含量大于16.0,则合金成分偏离共晶点,使合金的非晶形成能力下降。The Si element and the B element as amorphous forming elements are necessary conditions for the alloy system to form amorphous under industrial production conditions. In the present application, the content of Si is 0.5 to 4.5, and in the embodiment, the content of Si is 2.5 to 4.2, and more specifically, the content of Si is 2.75, 2.8, 2.85, 3.02, 3.1, 3.3, 3.5, 3.7, 3.8, 3.95, 4.0, 4.12, 4.2, 4.28, 4.3, 4.45 or 4.5. Si atom A percentage of less than 0.5 results in a decrease in the ability to form amorphous and a decrease in the magnetic properties of the strip. In the present application, the content of B is from 12.5 to 16.0. In a specific embodiment, the content of B is 13.0 ≤ c ≤ 15.5. In a specific embodiment, the content of B is 13.7 ≤ c ≤ 14.7; In a specific embodiment, the content of B is 13.2, 13.3, 13.5, 13.8, 13.9, 14.0, 14.1, 14.2, 14.5, 14.8, 14.9, 15.1, 15.2 or 15.5. When the atomic percentage of B is greater than 16.0, the alloy composition deviates from the eutectic point, and the amorphous forming ability of the alloy is lowered.
M为杂质元素,其含量当然越低越好,因此,本申请对M的含量不进行具体限定,只要其≤0.4即可。M is an impurity element, and the content thereof is of course as low as possible. Therefore, the content of M in the present application is not particularly limited as long as it is ≤ 0.4.
在某些具体实施例中,所述非晶铁基合金中,a=81.5,2.5≤b≤4.5,14.0≤c≤16.0;在某些具体实施例中,所述铁基非晶合金中,a=82,3.0≤b≤4.0,14.0≤c≤15.0;在某些具体实施例中,所述铁基非晶合金中,82.3≤a≤82.8,2.5≤b≤4.5,13.0≤c≤15.0。In some embodiments, in the amorphous iron-based alloy, a=81.5, 2.5≤b≤4.5, 14.0≤c≤16.0; in some embodiments, in the iron-based amorphous alloy, a = 82, 3.0 ≤ b ≤ 4.0, 14.0 ≤ c ≤ 15.0; in some embodiments, in the iron-based amorphous alloy, 82.3 ≤ a ≤ 82.8, 2.5 ≤ b ≤ 4.5, 13.0 ≤ c ≤ 15.0 .
因此,本申请的铁基非晶合金的组分及含量分别从提高磁感应强度、提高非晶形成能力以及降低制备难度的合理组合,而形成了一种高饱和磁感应强度铁基非晶合金。Therefore, the composition and content of the iron-based amorphous alloy of the present application form a high-saturation magnetic induction-strength iron-based amorphous alloy from a reasonable combination of improving magnetic induction, improving amorphous forming ability, and reducing preparation difficulty.
本申请所述铁基非晶合金的制备方法,包括以下步骤:The preparation method of the iron-based amorphous alloy described in the present application comprises the following steps:
按照式FeaSibBc的铁基非晶合金的原子百分比配料,将配料后的原料进行熔炼,将熔炼后的熔液升温保温后进行单辊快淬,得到铁基非晶合金带材。According to the atomic percentage of the iron-based amorphous alloy of the formula Fe a Si b B c , the raw material after the compounding is smelted, and the melted molten metal is heated and kept warm, and then subjected to single-roll quenching to obtain an iron-based amorphous alloy strip. .
在制备铁基非晶合金的过程中,本申请采用了本领域常规的技术手段,制备了本申请具体成分的铁基非晶合金。对于其制备方法关于配料与熔炼的过程,本申请对其具体操作手段不进行特别的说明。在熔炼过程中,所述熔炼的温度为1300~1600℃,时间为80~130min。在熔炼之后,本申请将熔炼后的熔液升温保温后采用单辊快淬,而得到了铁基非晶合金带材。所述升温的温度优选为1350~1550℃,所述保温的时间优选为90~120min。所述单辊快淬的喷带温度为1350~1450℃,冷却辊线速度为20~30m/s。经过单辊快淬之后,本申请得到了铁基非晶合金带材,为完全非晶状态,其临界厚度至少为45μm,且带材韧性较好,对折180度不断。合金的非晶形成能力(GFA)是指在一定的制备条件下所能获得的非晶态合金的尺寸,尺寸越大,非晶形成能力越强。对于非晶带材而言,临界厚度就是评价其非晶形成能力的一项重要指标,临厚度越 大,非晶形成能力越强。对本发明而言,其临界厚度至少45μm,对于本产品的工业化生产有相当大的制备余量,降低了在其工业化过程中对冷却设备的要求。对于非晶带材的应用,韧脆性是一项重要的应用指标,因带材在下一步的应用过程中,需进行剪切,若带材脆性较大,则会导致在剪切过程中碎片增多,严重会影响铁芯的整形及变压器的组装。本发明带材其韧性较好,可对折180度不断,在后续剪切过程中无碎片产生。In the process of preparing an iron-based amorphous alloy, the present application employs the technical means conventional in the art to prepare an iron-based amorphous alloy of the specific composition of the present application. For the preparation process thereof regarding the process of compounding and smelting, the specific operation means of the present application are not specifically described. In the smelting process, the smelting temperature is 1300 to 1600 ° C and the time is 80 to 130 min. After the smelting, in the present application, the melted molten metal is heated and maintained, and then subjected to single-roll quenching to obtain an iron-based amorphous alloy strip. The temperature for the temperature rise is preferably from 1,350 to 1,550 ° C, and the time for the heat retention is preferably from 90 to 120 minutes. The single-roll quenching spray belt temperature is 1350~1450 ° C, and the cooling roll linear speed is 20-30 m/s. After a single roll quenching, the present invention obtains an iron-based amorphous alloy strip which is completely amorphous, has a critical thickness of at least 45 μm, and has a good toughness of the strip, and is folded 180 degrees continuously. The amorphous forming ability (GFA) of an alloy refers to the size of an amorphous alloy that can be obtained under certain preparation conditions. The larger the size, the stronger the amorphous forming ability. For amorphous ribbons, the critical thickness is an important indicator for evaluating its amorphous forming ability. Large, amorphous forming ability is stronger. For the purposes of the present invention, the critical thickness is at least 45 μm, which has a considerable margin of preparation for the industrial production of the product, reducing the requirements for cooling equipment during its industrialization. For the application of amorphous strip, ductile and brittleness is an important application index. Because the strip needs to be sheared in the next application, if the strip is brittle, it will lead to more debris during the shearing process. Seriously affect the shaping of the core and the assembly of the transformer. The strip of the invention has good toughness, can be folded 180 degrees continuously, and no fragments are generated during the subsequent shearing process.
本申请制备的铁基非晶合金带材的厚度为23~32μm,宽度为100~300mm。对于非晶带材而言,带厚是影响其铁芯损耗的重要参数之一,这也是非晶带材在空载损耗方面优于硅钢片的主要因素。软磁材料的铁芯损耗主要包含三个部分:磁滞损耗、涡流损耗与剩余损耗。而厚度的大小直接影响涡流损耗的大小,对于磁性材料而言,在磁畴壁处会出现涡电流,涡电流的流动,在每个瞬间都会产生与外磁场产生的磁通方向相反的磁通,越到材料内部,这种反向的作用就越强,致使磁感应强度和磁场强度沿样品截面严重不均匀。这就是软磁材料要制成薄带的原因-减少涡流的作用。但是对于非晶带材并不是越薄越好,带材越薄在后续铁芯的剪切加工过程中会增加刀具的磨损,增加带材组数,进而提高铁芯的成本。综合考虑以上两个方面,本申请通过制备工艺的选择,制备了厚度为23~32μm的铁基非晶合金带材。目前,市场上通用的带材的宽度为142mm、170mm、213mm,而带材的宽度越宽制备难度越大。The iron-based amorphous alloy strip prepared by the present application has a thickness of 23 to 32 μm and a width of 100 to 300 mm. For amorphous strips, strip thickness is one of the important parameters affecting the core loss, which is also the main factor for amorphous strips superior to silicon steel sheets in terms of no-load loss. The core loss of soft magnetic materials mainly consists of three parts: hysteresis loss, eddy current loss and residual loss. The thickness of the thickness directly affects the eddy current loss. For the magnetic material, eddy current will appear at the magnetic domain wall, and the eddy current will generate a magnetic flux opposite to the magnetic flux generated by the external magnetic field at each moment. The more the reverse action is applied to the inside of the material, the magnetic induction and magnetic field strength are severely uneven along the sample cross section. This is why soft magnetic materials are made into thin strips - reducing the effects of eddy currents. However, for amorphous ribbons, the thinner the better, the thinner the strip will increase the wear of the cutter during the subsequent processing of the core, increasing the number of strips, and thus increasing the cost of the core. Considering the above two aspects comprehensively, the present application prepares an iron-based amorphous alloy strip having a thickness of 23 to 32 μm by the selection of a preparation process. At present, the width of the strip commonly used on the market is 142 mm, 170 mm, 213 mm, and the wider the width of the strip, the more difficult it is to prepare.
本申请在得到铁基非晶合金带材之后进行了热处理,所述热处理的温度为300~360℃,保温时间为60~120min,磁场强度为800~1400A/m。非晶、纳米晶软磁材料磁性能的影响因素除自身合金成分外,热处理工艺也是一个关键因素。一般而言,通过退火处理可以消除非晶磁性材料的应力,降低矫顽力,提高磁导率,获得优良的磁性能。对于铁基非晶带材而言,其热处理工艺主要包含三个参数:保温温度、保温时间与磁场强度。首先对于保温温度必须低于晶化温度,一旦高于晶化温度,非晶带材会发生晶化,磁性能急剧恶化,本发明所述合金其晶化温度均小于500℃。在低于晶化温度的前提下,合适的保温温度区间是非晶带材获得优良磁性能的保障。本申请的研究表明:带材的铁芯损耗、激磁功率与热处理的保温温度的关系是随着保温温度提高的,此两项参数有先降低后增大的趋势,即对于本发明而言,当保温温度小于300℃或大于360 ℃时,都会出现性能恶化的现象,在300~360℃之间能获得合格的磁性能。其次,对于保温时间,其原理与保温温度相似,有一合适的时间区间,保温时间过短或过长,均不能使本发明达到最优的性能。最后,合适的磁场强度是材料磁化的必要保证。对非晶材料进行磁场退火的主要原因是固定方向、固定强度的磁场促使材料的磁畴偏转向磁场方向,降低材料的磁各向异性,优化软磁性能。对于本发明而言,当磁场强度小于800A/m时,材料磁化过程不完全,无法达到最佳的效果,当磁场强度>1400A/m时,材料磁化完全,磁性能不会因磁场强度的增大而优化,反而会增加热处理过程的难度及成本。The present application heat-treats after obtaining an iron-based amorphous alloy strip having a temperature of 300 to 360 ° C, a holding time of 60 to 120 min, and a magnetic field strength of 800 to 1400 A/m. Influencing factors of magnetic properties of amorphous and nanocrystalline soft magnetic materials In addition to the composition of the alloy itself, the heat treatment process is also a key factor. In general, the annealing process can eliminate the stress of the amorphous magnetic material, reduce the coercive force, increase the magnetic permeability, and obtain excellent magnetic properties. For the iron-based amorphous strip, the heat treatment process mainly includes three parameters: the holding temperature, the holding time and the magnetic field strength. First, the holding temperature must be lower than the crystallization temperature. Once higher than the crystallization temperature, the amorphous ribbon is crystallized and the magnetic properties are drastically deteriorated. The alloy of the present invention has a crystallization temperature of less than 500 °C. Under the premise of lower than the crystallization temperature, the suitable temperature range of insulation is a guarantee for the excellent magnetic properties of the amorphous ribbon. The research of the present application shows that the relationship between the core loss of the strip, the excitation power and the holding temperature of the heat treatment is that as the holding temperature is increased, the two parameters have a tendency to decrease first and then increase, that is, for the present invention, When the holding temperature is less than 300 ° C or greater than 360 At °C, performance deterioration occurs, and acceptable magnetic properties can be obtained between 300 and 360 °C. Secondly, for the holding time, the principle is similar to the holding temperature, and there is a suitable time interval, and the holding time is too short or too long to achieve the optimal performance of the present invention. Finally, a suitable magnetic field strength is a necessary guarantee for the magnetization of the material. The main reason for magnetic field annealing of amorphous materials is that the fixed direction, fixed intensity magnetic field promotes the magnetic domain deflection of the material toward the magnetic field, reduces the magnetic anisotropy of the material, and optimizes the soft magnetic properties. For the present invention, when the magnetic field strength is less than 800 A/m, the magnetization process of the material is incomplete and the best effect cannot be achieved. When the magnetic field strength is >1400 A/m, the material is completely magnetized, and the magnetic properties are not increased due to the magnetic field strength. Large and optimized, it will increase the difficulty and cost of the heat treatment process.
本发明经过退火后的铁基非晶带材的铁芯损耗P≤0.1800W/kg,激磁功率Pe≤0.2200VA/kg,矫顽力Hc≤4A/m。矫顽力为评价软磁材料性能的一项重要指标,矫顽力越小,软磁性能越好。对于应用于配电变压器行业的非晶带材而言,评价其磁性能的参数主要包含两个参数:铁芯损耗、激磁功率。此两项参数越小,对后续铁芯及变压器的性能越好。因此,本申请制备的铁基非晶合金可应用于变压器、发动机、发电机的铁芯材料上。The core loss P ≤ 0.1800 W/kg of the iron-based amorphous ribbon after annealing in the present invention, the excitation power Pe ≤ 0.2200 VA / kg, and the coercive force Hc ≤ 4 A / m. Coercivity is an important indicator for evaluating the properties of soft magnetic materials. The smaller the coercivity, the better the soft magnetic properties. For amorphous strips used in the distribution transformer industry, the parameters for evaluating their magnetic properties mainly include two parameters: core loss and excitation power. The smaller these two parameters, the better the performance of the subsequent core and transformer. Therefore, the iron-based amorphous alloy prepared by the present application can be applied to a core material of a transformer, an engine, and a generator.
为了进一步理解本发明,下面结合实施例对本发明提供的铁基非晶合金及其制备方法进行详细说明,本发明的保护范围不受以下实施例的限制。In order to further understand the present invention, the iron-based amorphous alloy provided by the present invention and the preparation method thereof will be described in detail below with reference to the examples, and the scope of protection of the present invention is not limited by the following examples.
按FeaSibBcdMf的合金组成进行配料,使用中频冶炼炉将金属原材料重熔(熔炼的温度为1300~1600℃、保温时间为80~130min),熔炼完成后出钢液至中频底筑炉,升温保温镇静后(升温至1350~1550℃,保温90~120min),使用单辊快淬(喷带温度为1350~1450℃,冷却辊线速度为20~30m/s)的方法制备了宽度为142mm,厚度为23~28μm的铁基非晶宽带。表1中列举了本发明例与对比例的合金成分、饱和磁感应强度值(Bs)、激磁功率(Pe)与铁芯损耗(P);其中实施例1~15为本发明实施例,对比例16、17为对比例。According to the alloy composition of Fe a Si b B cd M f , the metal raw material is remelted by using an intermediate frequency smelting furnace (melting temperature is 1300-1600 ° C, holding time is 80-130 min), and the molten steel is discharged to the intermediate frequency after the smelting is completed. Bottom furnace, after heating and sedation (heating to 1350 ~ 1550 ° C, holding 90 ~ 120min), using a single roll quenching (spray temperature of 1350 ~ 1450 ° C, cooling roller line speed of 20 ~ 30m / s) An iron-based amorphous broadband having a width of 142 mm and a thickness of 23 to 28 μm was prepared. Table 1 lists the alloy composition, saturation magnetic induction value (Bs), excitation power (Pe) and core loss (P) of the inventive examples and comparative examples; wherein Examples 1 to 15 are Examples of the present invention, Comparative Example 16, 17 is the comparative example.
表1本发明实施例与对比例的磁性能数据表Table 1 Magnetic performance data sheets of the examples and comparative examples of the present invention
Figure PCTCN2017075158-appb-000001
Figure PCTCN2017075158-appb-000001
Figure PCTCN2017075158-appb-000002
Figure PCTCN2017075158-appb-000002
备注:热处理时采用的为环形样品:内径50.5mm,外径52.5~54.5mm,测试条件:1.35T/50Hz。本申请中热处理的温度为300~360℃,保温时间为60~120min,磁场强度为800~1400A/m。Remarks: The annular sample is used for heat treatment: inner diameter 50.5mm, outer diameter 52.5~54.5mm, test condition: 1.35T/50Hz. The heat treatment temperature in the present application is 300 to 360 ° C, the holding time is 60 to 120 minutes, and the magnetic field strength is 800 to 1400 A/m.
从以上实施例可以看出,本发明实施例的铁基非晶合金均能获得较好的饱和磁感应强度,数值不小于1.62T,超过目前电力变压器常规使用的饱和磁感应强度为1.56T的常规铁基非晶材料(对比例16)。饱和磁感应强度的提高可进一步优化变压器铁芯的设计,降低变压器的体积,减少成本。从表2中还可 以看出,符合本发明例的合金成分具有较好的磁性能,在50Hz,1.35T的条件下,热处理后的铁芯的激磁功率≤0.2200VA/kg、铁芯损耗≤0.1800W/kg,与常规非晶材料(对比例16)相比,达到了使用要求。It can be seen from the above embodiments that the iron-based amorphous alloy of the embodiment of the present invention can obtain a good saturation magnetic induction intensity, and the value is not less than 1.62 T, which exceeds the conventional iron of the conventional magnetic transformer with a saturation magnetic induction of 1.56 T. Amorphous material (Comparative Example 16). The improvement of the saturation magnetic induction strength can further optimize the design of the transformer core, reduce the volume of the transformer, and reduce the cost. Can also be seen from Table 2. It can be seen that the alloy composition according to the example of the present invention has good magnetic properties. Under the condition of 50 Hz and 1.35 T, the excitation power of the iron core after heat treatment is ≤0.2200 VA/kg, and the core loss is ≤0.1800 W/kg. The use requirements were met compared to conventional amorphous materials (Comparative Example 16).
图2为本发明典型实施例与对比例的磁性能与热处理温度的关系图,图2(a)中■曲线为实施例2的激磁功率与热处理温度的关系曲线,●曲线为实施例10的激磁功率与热处理温度的关系曲线,▲曲线为实施例15的激磁功率与热处理温度的关系曲线,
Figure PCTCN2017075158-appb-000003
曲线为对比例16的激磁功率与热处理温度的关系曲线,图2(b)中■曲线为实施例2的铁芯损耗与热处理温度的关系曲线,●曲线为实施例10的铁芯损耗与热处理温度的关系曲线,▲曲线为实施例15的铁芯损耗与热处理温度的关系曲线,
Figure PCTCN2017075158-appb-000004
曲线为对比例16的铁芯损耗与热处理温度的关系曲线;由图2可知,本发明合金在较宽的温度范围内,至少20℃,均有稳定的磁性能,即激磁功率(Pe)与铁芯损耗(P)的波动在±0.01范围内。与常规1.56T的非晶带材相比,其最佳热处理温度偏低至少20℃,可以降低对热处理设备的温控要求,增加热处理设备的使用寿命,间接降低热处理过程的成本。
2 is a graph showing the relationship between the magnetic properties and the heat treatment temperature of the exemplary embodiment of the present invention and the comparative example. The curve in FIG. 2(a) is the relationship between the excitation power and the heat treatment temperature of the embodiment 2, and the curve is the embodiment 10. The relationship between the excitation power and the heat treatment temperature, and the curve ▲ is the relationship between the excitation power of Example 15 and the heat treatment temperature.
Figure PCTCN2017075158-appb-000003
The curve is the relationship between the excitation power of Comparative Example 16 and the heat treatment temperature. The curve in Fig. 2(b) is the relationship between the core loss and the heat treatment temperature of Example 2, and the curve is the core loss and heat treatment of Example 10. The relationship between the temperature and the ▲ curve is the relationship between the core loss and the heat treatment temperature of Example 15.
Figure PCTCN2017075158-appb-000004
The curve is the relationship between the core loss of Comparative Example 16 and the heat treatment temperature; as can be seen from Fig. 2, the alloy of the present invention has stable magnetic properties at a temperature of at least 20 ° C in a wide temperature range, that is, the excitation power (Pe) and The core loss (P) fluctuates within ±0.01. Compared with the conventional 1.56T amorphous ribbon, the optimum heat treatment temperature is at least 20 °C, which can reduce the temperature control requirements of the heat treatment equipment, increase the service life of the heat treatment equipment, and indirectly reduce the cost of the heat treatment process.
图3为本发明典型发明例与对比例的50Hz条件下的损耗曲线对比图,图3中■曲线为实施例2的损耗曲线,●曲线为实施例10的损耗曲线,▲曲线为实施例15的损耗曲线,
Figure PCTCN2017075158-appb-000005
曲线为对比例16的铁损耗曲线;由图3可知,本发明合金与常规铁基非晶对比,在较高的工作磁密条件下,有较好的性能优势,也就是说,由本发明合金成分制备的铁基非晶材料制备的铁芯及变压器可在更高的工作磁密条件下运行。
3 is a comparison diagram of loss curves of a typical invention example and a comparative example of 50 Hz. The curve in FIG. 3 is the loss curve of the embodiment 2, the curve is the loss curve of the embodiment 10, and the curve is the embodiment 15. Loss curve,
Figure PCTCN2017075158-appb-000005
The curve is the iron loss curve of Comparative Example 16; as can be seen from Figure 3, the alloy of the present invention has better performance advantages in comparison with conventional iron-based amorphous materials under higher working magnetic density conditions, that is, the alloy of the present invention. The core and transformer prepared from the iron-based amorphous material prepared by the component can be operated under higher working magnetic density conditions.
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。The above description of the embodiments is merely to assist in understanding the method of the present invention and its core idea. It should be noted that those skilled in the art can make various modifications and changes to the present invention without departing from the spirit and scope of the invention.
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而 是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。 The above description of the disclosed embodiments enables those skilled in the art to make or use the invention. Various modifications to these embodiments are obvious to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Therefore, the present invention will not be limited to the embodiments shown herein, but It is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (12)

  1. 一种如式(Ⅰ)所示的铁基非晶合金,An iron-based amorphous alloy as shown in formula (I),
    FeaSibBcMd        (Ⅰ);Fe a Si b B c M d (I);
    其中,a、b、c与d分别表示对应组分的原子百子含量;81.0≤a≤83.0,0.5≤b≤4.5,12.5≤c≤16.0,d≤0.4,a+b+c+d=100;M为杂质元素。Where a, b, c and d respectively represent the atomic content of the corresponding component; 81.0 ≤ a ≤ 83.0, 0.5 ≤ b ≤ 4.5, 12.5 ≤ c ≤ 16.0, d ≤ 0.4, a + b + c + d = 100 ; M is an impurity element.
  2. 根据权利要求1所述的铁基非晶合金,其特征在于,所述铁基非晶合金的饱和磁感应强度≥1.62T。The iron-based amorphous alloy according to claim 1, wherein the iron-based amorphous alloy has a saturation magnetic induction of ≥ 1.62T.
  3. 根据权利要求1所述的铁基非晶合金,其特征在于,所述Fe的原子百分含量为81.3≤a≤82.8。The iron-based amorphous alloy according to claim 1, wherein the atomic percentage of Fe is 81.3 ≤ a ≤ 82.8.
  4. 根据权利要求1所述的铁基非晶合金,其特征在于,所述Fe的原子百分含量为81.5≤a≤82.5。The iron-based amorphous alloy according to claim 1, wherein the atomic percentage of Fe is 81.5 ≤ a ≤ 82.5.
  5. 根据权利要求1所述的铁基非晶合金,其特征在于,所述Si的原子百分含量为2.5≤b≤4.2。The iron-based amorphous alloy according to claim 1, wherein said Si has an atomic percentage of 2.5 ≤ b ≤ 4.2.
  6. 根据权利要求1所述的铁基非晶合金,其特征在于,所述B的原子百分含量为13.0≤c≤15.5。The iron-based amorphous alloy according to claim 1, wherein said B has an atomic percentage of 13.0 ≤ c ≤ 15.5.
  7. 根据权利要求1所述的铁基非晶合金,其特征在于,所述B的原子百分含量为13.7≤c≤14.7。The iron-based amorphous alloy according to claim 1, wherein said B has an atomic percentage of 13.7 ≤ c ≤ 14.7.
  8. 根据权利要求1所述的铁基非晶合金,其特征在于,所述铁基非晶合金中,a=81.5,2.5≤b≤4.5,14.0≤c≤16.0。The iron-based amorphous alloy according to claim 1, wherein in the iron-based amorphous alloy, a = 81.5, 2.5 ≤ b ≤ 4.5, and 14.0 ≤ c ≤ 16.0.
  9. 根据权利要求1所述的铁基非晶合金,其特征在于,所述铁基非晶合金中,a=82,3.0≤b≤4.0,14.0≤c≤15.0。The iron-based amorphous alloy according to claim 1, wherein in the iron-based amorphous alloy, a = 82, 3.0 ≤ b ≤ 4.0, and 14.0 ≤ c ≤ 15.0.
  10. 根据权利要求1所述的铁基非晶合金,其特征在于,所述铁基非晶合金中,82.3≤a≤82.8,2.5≤b≤4.5,13.0≤c≤15.0。The iron-based amorphous alloy according to claim 1, wherein in the iron-based amorphous alloy, 82.3 ≤ a ≤ 82.8, 2.5 ≤ b ≤ 4.5, and 13.0 ≤ c ≤ 15.0.
  11. 根据权利要求1~10任一项所述的铁基非晶合金,其特征在于,将成分符合权利要求1~10任一项所述的铁基非晶合金制备成带材,再进行纵向磁场热处理,得到热处理后的带材;所述热处理的温度为300~360℃,保温时间为60~120min,磁场强度为800~1400m/A。The iron-based amorphous alloy according to any one of claims 1 to 10, wherein the iron-based amorphous alloy according to any one of claims 1 to 10 is prepared into a strip, and then a longitudinal magnetic field is applied. The heat treatment is performed to obtain a strip after the heat treatment; the heat treatment temperature is 300 to 360 ° C, the heat retention time is 60 to 120 min, and the magnetic field strength is 800 to 1400 m/A.
  12. 根据权利要求11所述的铁基非晶合金,其特征在于,所述热处理后 的带材的铁芯损耗≤0.1800W/kg,激磁功率≤0.2200VA/kg,矫顽力≤4A/m。 The iron-based amorphous alloy according to claim 11, wherein after said heat treatment The core loss of the strip is ≤0.1800W/kg, the excitation power is ≤0.2200VA/kg, and the coercive force is ≤4A/m.
PCT/CN2017/075158 2017-01-25 2017-02-28 Iron-based amorphous alloy WO2018137270A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710060805 2017-01-25
CN201710060805.9 2017-01-25

Publications (1)

Publication Number Publication Date
WO2018137270A1 true WO2018137270A1 (en) 2018-08-02

Family

ID=58846256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075158 WO2018137270A1 (en) 2017-01-25 2017-02-28 Iron-based amorphous alloy

Country Status (2)

Country Link
CN (1) CN106636984A (en)
WO (1) WO2018137270A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107799258A (en) * 2016-09-07 2018-03-13 天津大学 Cobalt base amorphous magnetically soft alloy material of iron of high saturated magnetic induction and preparation method thereof
CN107236911A (en) * 2017-07-31 2017-10-10 青岛云路先进材料技术有限公司 A kind of Fe-based amorphous alloy
CN108018504B (en) * 2017-12-21 2020-05-08 青岛云路先进材料技术股份有限公司 Iron-based amorphous alloy and preparation method thereof
CN109504924B (en) * 2018-12-17 2021-02-09 青岛云路先进材料技术股份有限公司 Iron-based amorphous alloy strip and preparation method thereof
CN110983112B (en) * 2019-12-30 2021-11-02 华南理工大学 Cobalt-based amorphous soft magnetic alloy for precise current detection and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217135A (en) * 1979-05-04 1980-08-12 General Electric Company Iron-boron-silicon ternary amorphous alloys
JPH05132744A (en) * 1991-07-30 1993-05-28 Nippon Steel Corp Production of amorphous alloy strip having high saturation magnetic flux density and amorphous alloy iron core
CN101840764A (en) * 2010-01-25 2010-09-22 安泰科技股份有限公司 Low-cost high-saturation magnetic induction intensity iron-based amorphous soft magnetism alloy
CN104745972A (en) * 2013-12-27 2015-07-01 井上明久 High magnetic flux density soft magnetic amorphous alloy with high ductility and high workability
CN105603305A (en) * 2014-11-17 2016-05-25 Lg伊诺特有限公司 Soft magnetic alloy, wireless power transmitting apparatus, and wireless power receiving apparatus including the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300950A (en) * 1978-04-20 1981-11-17 General Electric Company Amorphous metal alloys and ribbons thereof
EP0055327B2 (en) * 1980-12-29 1990-09-26 Allied Corporation Amorphous metal alloys having enhanced ac magnetic properties
AU9179282A (en) * 1982-05-27 1983-12-01 Allegheny Ludlum Steel Corp. Amorphous, magnetic iron base - boron silicon alloy
US8968490B2 (en) * 2010-09-09 2015-03-03 Metglas, Inc. Ferromagnetic amorphous alloy ribbon with reduced surface protrusions, method of casting and application thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217135A (en) * 1979-05-04 1980-08-12 General Electric Company Iron-boron-silicon ternary amorphous alloys
JPH05132744A (en) * 1991-07-30 1993-05-28 Nippon Steel Corp Production of amorphous alloy strip having high saturation magnetic flux density and amorphous alloy iron core
CN101840764A (en) * 2010-01-25 2010-09-22 安泰科技股份有限公司 Low-cost high-saturation magnetic induction intensity iron-based amorphous soft magnetism alloy
CN104745972A (en) * 2013-12-27 2015-07-01 井上明久 High magnetic flux density soft magnetic amorphous alloy with high ductility and high workability
CN105603305A (en) * 2014-11-17 2016-05-25 Lg伊诺特有限公司 Soft magnetic alloy, wireless power transmitting apparatus, and wireless power receiving apparatus including the same

Also Published As

Publication number Publication date
CN106636984A (en) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2018137269A1 (en) Iron-based amorphous alloy and preparation method therefor
WO2018137270A1 (en) Iron-based amorphous alloy
JP6062051B2 (en) High magnetic flux density directional silicon steel and manufacturing method thereof
JP6025864B2 (en) High silicon steel plate excellent in productivity and magnetic properties and method for producing the same
JP4771215B2 (en) Magnetic core and applied products using it
CN106636983A (en) Production method of iron-based amorphous alloy
Fan et al. Soft magnetic properties in Fe84− xB10C6Cux nanocrystalline alloys
JP5437476B2 (en) Method for producing non-oriented electrical steel sheet
JP5429613B2 (en) Nanocrystalline soft magnetic alloys and magnetic cores
TWI461544B (en) Low carbon steel sheet and fabricating method thereof
JP2008231463A (en) Fe-BASED SOFT MAGNETIC ALLOY, AMORPHOUS ALLOY STRIP, AND MAGNETIC COMPONENT
JP2008127612A (en) Non-oriented electromagnetic steel sheet for divided core
WO2020125094A1 (en) Iron-based amorphous alloy strip material and method for fabrication thereof
EP3243206A1 (en) Magnetic core based on a nanocrystalline magnetic alloy background
JP7454646B2 (en) High magnetic induction grain-oriented silicon steel and its manufacturing method
TWI473886B (en) Electromagnetic steel plate
JP6080094B2 (en) Winding core and magnetic component using the same
WO2018227792A1 (en) Iron-based amorphous alloy having low stress sensitivity, and preparation method therefor
US11970761B2 (en) Iron-based amorphous alloy and preparation method therefor
WO2018184273A1 (en) Iron-based amorphous alloy and preparation method therefor
WO2019024285A1 (en) Iron-based amorphous alloy
CN114694908A (en) Low-temperature-resistant nanocrystalline magnetically soft alloy iron core, manufacturing method and application
TWI421352B (en) Grain-oriented electrical steel sheet having forsterite clad layer and fabricating method thereof
CN110640104A (en) Non-oriented electrical steel plate with excellent magnetic property and manufacturing method thereof
JP2022161269A (en) Method for manufacturing grain-oriented electromagnetic steel sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894405

Country of ref document: EP

Kind code of ref document: A1