WO2018137238A1 - 非授权频谱上系统信息的传输方法及装置 - Google Patents

非授权频谱上系统信息的传输方法及装置 Download PDF

Info

Publication number
WO2018137238A1
WO2018137238A1 PCT/CN2017/072739 CN2017072739W WO2018137238A1 WO 2018137238 A1 WO2018137238 A1 WO 2018137238A1 CN 2017072739 W CN2017072739 W CN 2017072739W WO 2018137238 A1 WO2018137238 A1 WO 2018137238A1
Authority
WO
WIPO (PCT)
Prior art keywords
system information
information
period
data channel
merge
Prior art date
Application number
PCT/CN2017/072739
Other languages
English (en)
French (fr)
Inventor
韩金侠
任占阳
李志军
李振宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/072739 priority Critical patent/WO2018137238A1/zh
Publication of WO2018137238A1 publication Critical patent/WO2018137238A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • the present application relates to the field of communication methods for unlicensed frequency points, and in particular, to a method and apparatus for transmitting system information on an unlicensed spectrum.
  • the current 3rd Generation Partnership Project (English: 3rd0Generation Partnership Project, 3GPP for short) has transferred some data services to unlicensed frequency points.
  • the MulteFire Alliance is mainly dedicated to researching deployment of services on unlicensed frequencies. . Because MulteFire no longer relies on authorized frequency, it is more suitable for enterprise and campus self-organizing networks. In an actual communication application scenario, there are many scenarios that require coverage enhancement. Therefore, it is necessary to study how to perform coverage enhancement on unlicensed frequency points.
  • the terminal device In the process of the terminal device accessing the cell, the terminal device needs to receive system information to obtain parameters of the random access cell according to the system information.
  • system information is divided into a main information block (English: Master Information Block, MIB for short) and multiple system information blocks (English: System Information Blocks, Abbreviation: SIB), such as SIB1, SIB2, ... SIB12, SIB13.
  • SIB System Information Blocks, Abbreviation: SIB
  • the system information is an important parameter for the terminal device to randomly access the cell, when researching how to perform coverage enhancement on the unlicensed frequency point, one research focus is how to achieve coverage enhancement of the system information, for example, how to implement the SIB-MF1
  • the coverage enhancement is consistent with LTE. Unless otherwise stated, the SIB can be equivalent to SIB-MF1.
  • the existing coverage enhancement means for example, in the frequency division duplex (English: Frequency Division Dual (FDD) narrowband enhancement scheme, the original SIB1 resource in the LTE system is not reused, and the resource allocation manner of the NSIB1 is separately designed. The overhead of the spectrum resource is caused, and the scheme is repeatedly transmitted by the time domain resource.
  • the coverage enhancement of the downlink signal is implemented, the solution is only applicable to the scenario where the downlink channel continuously occupies the authorized frequency point, and for the unlicensed frequency point scenario. Because the channel needs to be detected first and then sent (English: Listen-Before-Talk, referred to as: LBT), the channel cannot be continuously occupied, so the existing The technical solution does not apply to business scenarios where unlicensed frequencies are used.
  • the present application provides a method and apparatus for transmitting system information on an unlicensed spectrum to solve the problem of enhanced system information coverage of an unlicensed spectrum.
  • an embodiment of the present invention provides a method for transmitting system information on an unlicensed spectrum, including:
  • the network device determines configuration information of the first system information (SIB), wherein the configuration information includes a merge period of the first system information, control information of the first system information, and the control information carries the control Location information in the control channel of the information;
  • SIB first system information
  • control information of the first system information and the control information are the same in the location information of the control channel carrying the control information in one of the combining periods.
  • the network device configures a merge period of the first system information, and in a merge period of the first system information, the control information of the first system information and the location information of the control channel of the bearer control information are both The same, the first system information is unchanged in the data domain, and when the data content of the first system information is also unchanged, the terminal device is supported to merge the control channels in one merge period to implement the control of the first system information.
  • the coverage of the information is enhanced, and the terminal device is supported to merge the first system information in one merge period to achieve coverage enhancement of the first system information data content, thereby achieving coverage enhancement of the first system information on the unlicensed spectrum.
  • the merge period is pre-configured; or,
  • the network device configures the merge period through a primary information block MIB.
  • the merge period is a fixed value, or the merge period includes a plurality of enumerated values.
  • the combining period is a preset number of radio frames or a preset duration.
  • the combining period is less than or equal to the number of radio frames corresponding to one superframe; or the combining period is less than or equal to a duration corresponding to one superframe.
  • an embodiment of the present invention provides a method for transmitting system information on an unlicensed spectrum, including:
  • the terminal device determines a merge period of the first system information
  • the terminal device combines control channels for carrying control information of the first system information in the combining period to obtain control information of the first system information;
  • the terminal device determines the first system information according to the at least one first system information.
  • the terminal device determines a merge period of the first system information, including:
  • the terminal device determines a merge period of the first system information according to a pre-configuration.
  • the method before the terminal device merges the control channels of the control information for carrying the first system information in the combining period, the method further includes:
  • the terminal device performs merging of the first system information from a next merge period of the first system information.
  • the terminal device merges the control channels of the control information for carrying the first system information in the combining period, including:
  • the terminal device merges the currently received control channel for carrying control information of the first system information with at least the last received control channel carrying the control information in one of the combining periods,
  • the control channel combining length of the control information carrying the first system information in the combining period is less than or equal to the combining period.
  • the merge period is a fixed value, or the merge period is one of a plurality of enumerated values.
  • the combining period is a preset number of radio frames or a preset duration.
  • the combining period is less than or equal to the number of radio frames corresponding to one superframe; or the combining period is less than or equal to a duration corresponding to one superframe.
  • an embodiment of the present invention provides a method for transmitting system information on an unlicensed spectrum, including:
  • the network device determines configuration information of the first system information, where the configuration information includes a merge period of the first system information and data channel configuration information of the first system information;
  • the network device also sends the second system information, where the second system information carries the configuration information.
  • the data channel configuration information includes a transport block size (TBSize, the same below) of the data channel carrying the first system information, or a transport block index and a data channel carrying the first system information. Resource location.
  • TBSize transport block size
  • the data channel configuration information includes a transport block size of a data channel carrying the first system information
  • the resource location of the data channel carrying the first system information is a preset location.
  • an embodiment of the present invention provides a method for transmitting system information on an unlicensed spectrum, including:
  • the terminal device receives the second system information, where the second system information carries configuration information of the first system information, where the configuration information includes a merge period of the first system information and a data channel of the first system information.
  • Configuration information
  • the terminal device acquires at least one of the merge periods according to the data channel configuration information a data channel for carrying the first system information;
  • the terminal device merges the at least one data channel for carrying the first system information.
  • the data channel configuration information includes a transport block size of a data channel carrying the first system information and a resource location of a data channel carrying the first system information.
  • the data channel configuration information includes a transport block size of a data channel carrying the first system information
  • the resource location of the data channel carrying the first system information is a preset location.
  • an embodiment of the present invention provides a device for transmitting system information on an unlicensed spectrum, and the device has a function of implementing network device behavior in the foregoing transmission method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the transmission device of the system information on the unlicensed spectrum includes:
  • a determining unit configured to determine configuration information of the first system information (SIB), where the configuration information includes a merge period of the first system information, control information of the first system information, and the control information is carried Location information in a control channel of the control information;
  • SIB system information
  • a sending unit configured to send, by the network device, the first system information and the control information according to the combining period
  • control information of the first system information and the control information are the same in the location information of the control channel carrying the control information in one of the combining periods.
  • the merge period is pre-configured; or,
  • the determining unit configures the merge period by the master information block MIB.
  • the merge period is a fixed value, or the merge period includes a plurality of enumerated values.
  • the combining period is a preset number of radio frames or a preset duration.
  • the combining period is less than or equal to the number of radio frames corresponding to one superframe; or the combining period is less than or equal to a duration corresponding to one superframe.
  • an embodiment of the present invention provides a device for transmitting system information on an unlicensed spectrum, where the device has a function of implementing behavior of a terminal device in the foregoing transmission method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the transmission device of the system information on the unlicensed spectrum includes:
  • a first determining unit configured to determine a merge period of the first system information
  • a merging unit configured to merge control channels for carrying control information of the first system information in one of the combining periods to obtain control information of the first system information
  • An acquiring unit configured to acquire, according to the control information, at least one first system in the one merge period information
  • a second determining unit configured to determine the first system information according to the at least one first system information.
  • the first determining unit determines a merge period of the first system information, and specifically includes:
  • the merge period of the first system information is determined according to a pre-configuration.
  • the merging unit is further configured to merge the control channels of the control information for carrying the first system information in one of the combining periods before:
  • the merging of the first system information is performed from a next merge period of the first system information.
  • the merging unit merges the control channels of the control information for carrying the first system information in the merging period, and specifically includes:
  • the merge period is a fixed value, or the merge period is one of a plurality of enumerated values.
  • the combining period is a preset number of radio frames or a preset duration.
  • the combining period is less than or equal to the number of radio frames corresponding to one superframe; or the combining period is less than or equal to a duration corresponding to one superframe.
  • the embodiment of the present invention provides a device for transmitting system information on an unlicensed spectrum, and the device has a function of implementing network device behavior in the foregoing transmission method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the transmission device of the system information on the unlicensed spectrum includes:
  • a processing unit configured to determine configuration information of the first system information, where the configuration information includes a merge period of the first system information and data channel configuration information of the first system information;
  • a sending unit configured to send the first system information according to the combining period and the data channel configuration information; and send the second system information, where the second system information carries the configuration information.
  • the data channel configuration information includes a transport block size of a data channel carrying the first system information and a resource location of a data channel carrying the first system information.
  • the data channel configuration information includes a transport block size of a data channel carrying the first system information
  • the resource location of the data channel carrying the first system information is a preset location.
  • the embodiment of the present invention provides a system for transmitting system information on an unlicensed spectrum, and the device has a function of implementing behavior of the terminal device in the foregoing transmission method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the transmission device of the system information on the unlicensed spectrum includes:
  • a receiving unit configured to receive second system information, where the second system information carries configuration information of the first system information, where the configuration information includes a merge period of the first system information and the first system information Data channel configuration information;
  • An acquiring unit configured to acquire, according to the data channel configuration information, at least one data channel for carrying the first system information in the combining period;
  • a merging unit configured to merge the at least one data channel used to carry the first system information.
  • the data channel configuration information includes a transport block size of a data channel carrying the first system information and a resource location of a data channel carrying the first system information.
  • the data channel configuration information includes a transport block size of a data channel carrying the first system information
  • the resource location of the data channel carrying the first system information is a preset location.
  • the embodiment of the present invention further provides a device for transmitting system information on an unlicensed spectrum, the device comprising: a processor, a memory, and a transceiver; the processor may execute a program stored in the memory or The instructions, thereby implementing the transmission method of the various implementations of any of the first to fourth aspects.
  • an embodiment of the present invention provides a storage medium, where the computer storage medium may store a program, and when the program is executed, each embodiment of any one of the first aspect to the fourth aspect provided by the embodiment of the present invention may be implemented. Some or all of the steps.
  • the method and device for transmitting system information on the unlicensed spectrum provided by the embodiment of the present invention can solve the problem of enhanced system information coverage of the unlicensed spectrum.
  • FIG. 1 is a schematic diagram of a possible application scenario of the present application
  • FIG. 2 is a flowchart of a system information transmission method according to an embodiment of the present application.
  • 3 is a schematic diagram of transmission of SIB-MF1 in MulteFire
  • 5 is a schematic diagram of the merge of SIB-MF1 in MulteFire
  • FIG. 6 is a flowchart of a system information transmission method according to another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an apparatus for system information transmission on an unlicensed spectrum according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another apparatus for system information transmission on an unlicensed spectrum according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of another apparatus for system information transmission on an unlicensed spectrum according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of another apparatus for system information transmission on an unlicensed spectrum according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram showing a possible structure of an access device involved in the foregoing embodiment.
  • FIG. 1 is a schematic diagram of a possible application scenario of the present application.
  • the terminal device is represented as a UE in FIG. 1 , and the UE accesses the service network through a Radio Access Network (RAN) and a Core Network (CN).
  • RAN Radio Access Network
  • CN Core Network
  • the techniques described in the present invention can be applied to communication systems capable of using unlicensed frequency points, such as LTE systems, LTE evolution systems, and fifth generation 5G communication systems.
  • the terminal device referred to in the present application may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to a wireless modem, and various forms of user equipment (User Equipment, Referred to as UE), mobile station (MS), terminal, user equipment (Terminal Equipment) and so on.
  • the network device involved in the present invention may be a device in a radio access network, such as a base station, or a device in a core network, such as a Mobility Management Entity.
  • the above-mentioned base station (BS) is a device deployed in a radio access network to provide a wireless communication function for a terminal device.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and the like. In systems using different radio access technologies, devices with base station functions may use different naming schemes.
  • an embodiment of the present invention provides a method for transmitting system information on an unlicensed spectrum.
  • system information is sent to a control channel and a data channel.
  • the control channel configures the resource location of the data channel and the modulation and coding mode of the data information carried by the data channel.
  • the system information corresponds to the data information carried by the data channel, and can be understood as scheduling system information through the control channel, specifically, setting system information.
  • the merge period, and within one merge period of the system information, the control information and control information of the system information are in the control letter carrying the control information
  • the location information of the track does not change.
  • the control information and the control information of the system information are unchanged in the resource location of the control channel carrying the control information, and the terminal device may merge the control channels corresponding to the bearer system information in the merge period to achieve the purpose of enhancing the control information of the system information. Since the control information of the system information is unchanged, the mapping position of the data channel of the system information is unchanged, and when the data content of the system information does not change, the terminal device can merge the data channels of the system information in the merge period. In order to achieve the purpose of enhancing the data information of the system information, thereby realizing the coverage enhancement of the system information.
  • the combining period of the control channel and the combining period of the data channel are the same combining period.
  • FIG. 2 is a flow chart of a system information transmission method applying for an embodiment. As shown in FIG. 2, the processing steps of the method include:
  • Step S101 The network device determines configuration information of the first system information, where the configuration information includes a merge period of the first system information, control information of the first system information, and the control information in the bearer control information. The resource location of the control channel.
  • the network device configures the merge period by using an MIB, or the merge period is pre-configured.
  • Step S102 The network device sends the first system information and the control information according to the combining period.
  • control information of the first system information and the control information are the same in the resource locations of the control channel carrying the control information in one of the combining periods.
  • the first system information may be SIB-MF1.
  • the first system information is scheduled by using a control channel, such as a physical downlink control channel (English: Physical Downlink Control Channel, PDCCH for short), so that the network device configures the first system when configuring the first system information.
  • a control channel such as a physical downlink control channel (English: Physical Downlink Control Channel, PDCCH for short)
  • PDCCH Physical Downlink Control Channel
  • the merge period of the information, and in one merge period, the control information of the first system information, and the control information remain unchanged in the resource location of the control channel carrying the control information, thus ensuring that in a merge period, the first
  • the resource location of the data channel to which the system information is mapped remains unchanged.
  • the resource location of the physical downlink shared channel (English: Physical Downlink Shared Channel, PDSCH for short) of the first system information is unchanged.
  • the control channels of the first system information in the same merge period may be merged to achieve the purpose of enhancing control information of the first system information; and the terminal device demodulates according to the control information.
  • the data channel of a system information fails, if the data channel fails to be demodulated in a single time, the data channels can be combined to achieve the purpose of enhancing the data information of the first system information, thereby realizing the coverage enhancement of the system information.
  • the step of the network device receiving the first system information is as follows.
  • Step S103 When receiving the first system information sent by the network device, the terminal device first determines the first The merge period of system information.
  • the manner in which the network device determines the merge period of the first system information includes one or more of the following:
  • the terminal device and the network device pre-agreed according to the communication protocol to determine the merge period of the first system information according to the pre-configuration.
  • the terminal device determines the merge period of the first system information according to the MIB.
  • the terminal device demodulates the MIB information sent by the network device to obtain the merge period.
  • the merging period may be a specific period value, and further, may be a merging period index.
  • the three merge periods are included, and the indexes of the three merge periods are 0, 1, and 2.
  • the terminal device and the network device are in agreement, or indicated by the MIB, only the index of the merge period may be indicated.
  • the merging period may be a fixed value, and the terminal device uses the fixed value as a merging period each time the merging is performed.
  • Step S104 The terminal device combines control channels for carrying control information of the first system information in one merge period to obtain control information of the first system information.
  • the terminal device after acquiring the control information of the first system information, determines the data channel carrying the first system information according to the control information, and acquires the data content of the first system information from the data channel.
  • Step S105 The terminal device acquires at least one first system information in the one merge period according to the control information.
  • the merge period in step S105 is the same merge period as the merge period in step S104.
  • the terminal device determines a data channel carrying the first system information according to the control information, and demodulates the data content of the first system information from the data channel.
  • the control information of the first system information does not change during a merge period
  • the resource locations of the data channels carrying the first system information are the same during the merge period, so the terminal device can acquire a merge according to the control information. At least one first system information within the period.
  • Step S106 The terminal device determines the first system information according to the at least one first system information.
  • the terminal device demodulates the at least one first system information to obtain the final first system information, and the terminal may perform a merge period. Multiple data channels are combined to enhance the content of the first system information data.
  • the merging period may be a preset number of radio frames, or may be a preset duration.
  • the merge period is set to be less than or The number of radio frames corresponding to one superframe is equal to; or the merge period is less than or equal to a duration corresponding to one superframe.
  • the terminal device when receiving the first system information, the terminal device combines the control channel and the data channel of the first system information in the same merge period to achieve control information and data information coverage of the first system information. Enhanced purpose.
  • the manner in which the terminal device combines the first system information in the same merge period includes at least one of the following:
  • the terminal device determines a radio frame number of the control information of the first system information that is started to be received in the current merge period, and a frame difference number of the end frame number of the current merge period;
  • the terminal device performs merging of the first system information from a next merge period of the first system information.
  • the period of the first system information merge is 512 frames
  • the radio frame number of the first first system information received by the terminal device in the current merge period is 500
  • the frame of the end frame number (511) of the current merge period is 11, and it is assumed that the frame difference is set to 100. Since 11 is less than 100, even if the remaining first system information in the current merge period is merged, it is difficult to achieve a good enhancement effect, so the terminal device does not have the current merge period.
  • the first system information is merged, but the first system information is merged from the next merge period of the first system information.
  • the terminal device adopts a sliding window to merge the first system information. Specifically, the terminal device combines the currently received control channel for carrying control information of the first system information with the control information received at least last time in one of the combining periods, where The length of the merging by the terminal device is less than or equal to the merging period.
  • the terminal device combines the currently received first system information with the last received first system information to achieve coverage enhancement each time the first system information is received in a merge period.
  • the solution of the embodiment of the present invention is mainly applied to a scenario in which the LTE system is in an unlicensed frequency.
  • the system information transmission method according to the embodiment of the present invention will be specifically described below by taking the SIB-MF1 in the MulteFire as an example.
  • FIG 3 is a schematic diagram of the transmission of SIB-MF1 in MulteFire.
  • MulteFire focuses on the design of communication systems on unlicensed spectrum.
  • the network device needs to perform the idle channel evaluation (English: Clear Channel Assessment, CCA for short), and the network device can send the signal when the channel is idle.
  • CCA Clear Channel Assessment
  • CCA can be divided into different categories, namely Cat.1 (category1), Cat.2, Cat.3 and Cat.4, where Cat.4 requires the channel to idle for a specified period of time before it can proceed.
  • Signal transmission while Cat.2 monitors the channel idle duration less than Cat.4.
  • MulteFire stipulates that for business data transmission, CCA of Cat.4 must be performed, but signals that have a greater impact on system performance, such as Discovery signal (English: discovery reference signal, referred to as: DRS), can only carry out CCA of Cat.2.
  • DRS discovery reference signal
  • the Dult signal of MulteFire includes the following contents:
  • PSS/SSS Primary and secondary synchronization signals
  • MulteFire enhanced primary and secondary synchronization signals (English: MulteFire enhanced Primary and secondary synchronization signals, referred to as: MF-PSS/MF-SSS);
  • Cell reference signal Cell-specific reference signals, CRS for short
  • Configured channel state information reference signals (English: Configurable channel state information reference signals, referred to as: CSI-RS);
  • MulteFire enhanced PBCH Master information broadcast (MIB-MF) via the MF enhanced PBCH (MF-PBCH) channel);
  • MulteFire enhanced system information broadcast (English: MulteFire enhanced system information broadcast, referred to as: SIB-MF).
  • the terminal device can perform the cell search and the subsequent random access procedure only after demodulating the DRS signal.
  • Data transmission so MulteFire defines a transmission opportunity window for DRS, namely DRS measurement and timing configuration (DMTC) opportunity window, as shown in Figure 3, the opportunity window period configuration, and configuration During the period, the network device can continue the CCA of Cat.2 within 10ms until the detection channel is idle, and the DRS signal is sent out.
  • DMTC DRS measurement and timing configuration
  • the DRS signal can also be transmitted in the subframe 0 outside the DMTC window, that is, the CCA of the Cat. 4 needs to be performed when the DRS is transmitted in the subframe 0.
  • the DRS signal will not be transmitted.
  • the protocol specifies the use of Quadrature Phase Shift Keying (QPSK) modulation.
  • QPSK Quadrature Phase Shift Keying
  • the SIB-MF1 is carried on the PDSCH channel, and the scheduling information of the PDSCH channel, such as the frequency domain resource location, the transport block size (TBSize), and the like are scheduled through the PDCCH channel, and the PDCCH and the PDSCH channel are time-division multiplexed in one subframe.
  • the scheduling information of the PDSCH channel such as the frequency domain resource location, the transport block size (TBSize), and the like are scheduled through the PDCCH channel, and the PDCCH and the PDSCH channel are time-division multiplexed in one subframe.
  • one scheduling unit is one subframe. Under the normal cyclic prefix, one subframe occupies 14 orthogonal frequency division multiplexing (English: Orthogonal Frequency Division Multiplexing, referred to as: OFDM) symbol.
  • the first few OFDM symbols (such as the first three OFDM symbols) are control domains, the other OFDM symbols are data fields, the physical control format indicator channel (English: Physical Control Format Indicator Channel, PCFICH for short), and the physical hybrid automatic retransmission.
  • the indication channel (English: Physical Hybrid ARQ Indicator Channel, PHICH for short) and the PDCCH are both mapped in the control domain, and the data channel PDSCH is mapped in the data domain.
  • LTE defines two dedicated control channel resource units: Resource Element Group (REG) and Control Channel Element (English: Control Channel Element, CCE for short).
  • REG Resource Element Group
  • CCE Control Channel Element
  • One REG consists of four consecutive non-RS REs located on the same OFDM symbol, and one CCE consists of nine REGs.
  • the resource unit such as REG is defined to effectively support the resource allocation of control channels with small data rates such as PCFICH and PHICH. That is, the resource allocation of PCFICH and PHICH is in units of REG;
  • the CCE is used for resource allocation of a PDCCH with a relatively large amount of data.
  • the PCFICH channel is fixed to occupy 4 REGs in symbol 0, and is equally distributed over the entire bandwidth. The specific location is related to the cell ID.
  • the PHICH channel is used to feed back ACK/NACK of PUSCH uplink data.
  • Each PHICH Group consists of 3 REGs.
  • the number of PHICH groups in the cell can be configured.
  • the PHICH time-frequency resource can occupy one OFDM or multiple OFDM symbols. It is configured by the upper layer and is equally distributed over the entire bandwidth on the REG outside the PCFICH.
  • the downlink control information (English: Downlink Control Information, DCI) is carried in the PDCCH channel, and includes resource allocation and other control information on one or more terminal devices. In general, there may be multiple PDCCHs within one subframe.
  • the terminal device first needs to demodulate the DCI in the PDCCH, and then can demodulate the PDSCH (including broadcast messages, paging, data of the terminal device, etc.) belonging to the terminal device at the corresponding resource location.
  • the PDCCH is transmitted on one or more consecutive CCEs, occupying all REGs except PCFICH and PHICH.
  • Table 1 Four different types of PDCCHs are supported in LTE, as shown in Table 1:
  • the number of CCEs occupied by the PDCCH depends on the downlink channel environment in which the UE is located. For a UE with a good downlink channel environment, the eNodeB may only need to allocate one CCE. For a UE with a poor downlink channel environment, the eNodeB may need to allocate up to 8 CCE.
  • the physical layer processing of the PDCCH channel includes: CRC, RNTI scrambling, tail biting convolutional coding, rate matching, PDCCH multiplexing, scrambling, QPSK modulation, layer mapping and precoding, and resource mapping.
  • the CRC, the RNTI scrambling, the tail-biting convolutional coding, and the rate matching module are processed according to each DCI, and the PDCCH multiplexing performs bit cascading on multiple DCIs, and then performs unified scrambling, QPSK modulation, layer mapping, and pre-processing. Processing such as encoding.
  • the PDCCH multiplexed data is as follows: As shown in FIG. 4, it is assumed that there are four DCIs (PDCCHs) occupying 4, 2, 1, and 1 CCEs, respectively.
  • the SIB-MF1 has a chance of periodically transmitting in the DMTC window, and there is also a transmission opportunity in the subframe 0 outside the DMTC window, and the SIB-MF1 is scheduled by the PDCCH.
  • the network device can ensure that the logical resource location of the CCE corresponding to the PDCCH corresponding to the SIB-MF1, that is, the CCE index, the CCE sequence number, and the DCI information of the downlink control information are unchanged, the terminal device can be in the time.
  • the PDCCH performs data merging, such as soft bit data merging, that is, data merging after descrambling, thereby achieving the purpose of enhancing downlink control information; since the downlink control information is unchanged, the mapping position of the PDSCH resource corresponding to the SIB-MF1 is unchanged, if the network device In the same time, if the SIB-MF1 data information is not changed, the terminal can also perform data combining on the PDSCH in this time, thereby achieving the purpose of SIB-MF1 data information enhancement, thereby realizing the coverage enhancement of the entire SIB-MF1. .
  • data merging such as soft bit data merging, that is, data merging after descrambling
  • the index of the CCE or the CCE number is unchanged, which means that if the CCE index occupied by the PDCCH corresponding to the last transmission of the SIB-MF1 is n, n+1, ..., n+L, the next time the PDCCH needs to be sent, the The CCE index occupied by the PDCCH is still n, n+1, ..., n+L, where L is the number of CCEs occupied by the PDCCH, that is, the aggregation level, so that when the receiving end is subjected to solution resource mapping, layer mapping and precoding After demodulation and descrambling, soft bit information is obtained, and only the soft bit data corresponding to the same CCE index needs to be merged.
  • the merge period of the SIB-MF1 is at most 10240 ms, or 1024 radio frames, that is, sf1024; Increase the flexibility of the network device to send SIB-MF1, combined with SIB-MF1 need to cover the enhanced benefits, can reduce the merge period.
  • the configuration of the merge period may be as follows:
  • the specified merge period is a fixed value, which is agreed in the protocol, such as fixed to sf1024 or sf512.
  • the idle field of the MIB is used to occupy 2 bits of information, and the following configuration is performed:
  • the terminal device may merge the SIB-MF1 according to the manner of starting to receive the SIB-MF1 as follows:
  • the terminal may start SIB-MF1 from the next merge period.
  • Data merge for example, M can take a value of 8.
  • the terminal uses the sliding window to merge data, and the window length is less than or equal to the merge period.
  • the merge period can be set according to the degree of coverage enhancement required. For example, if the PDCCH and the PDSCH corresponding to the SIB-MF1 need to be enhanced by 8 dB, respectively, it is theoretically required to combine 7 times, that is, the terminal combines the PDCCH and the PDSCH 7 times respectively.
  • the terminal performs PDCCH merging, the PDSCH can be pre-stored. However, since each subframe of the PDSCH scrambling sequence changes, the data symbols of the constellation point modulation cannot be merged. The terminal needs to save the PDSCH of the full bandwidth of each subframe, and therefore stores the terminal. The space requirement is too high.
  • the processing of the terminal with limited storage space needs to be considered, that is, the terminal is allowed to perform PDCCH merging first, and then the PDSCH is received according to the DCI scheduling information, and the PDSCH is demodulated and descrambled. Therefore, considering PDCCH merging 7 times, assuming 40% transmission probability, the combined PDCCH and PDSCH need about 20 radio frames respectively, that is, 40 radio frames are required for demodulating SIB-MF1, so the combining period can be set to 64 radio frames. , ie sf64.
  • the terminal Before calling the DCI scheduling information and reaching the merge period boundary, the terminal needs to restart the SIB-MF1 control channel and the data channel in the next merge period.
  • the existing SIB-MF1 transmission scheme by using the existing SIB-MF1 transmission scheme, it is only required to specify the resource location and the scheduling content of the scheduled DCI in the merge period, and the coverage enhancement of the control channel can be implemented.
  • the data information does not change, and the coverage enhancement of the data channel can be achieved without increasing the system overhead.
  • the first system information is scheduled by the control channel, and the data channel position of the first system information is configured through the control channel, and the merging of the first system information in the merge period is supported.
  • the embodiment of the present invention further provides a manner of scheduling first system information by using other system information (corresponding to the second system information herein), such as MIB scheduling first system information, and in the second system information scheduling first system.
  • the coverage enhancement of the first system information is implemented in the manner of information.
  • the system information transmission method according to the embodiment of the present invention includes:
  • Step S201 The network device determines configuration information of the first system information, where the configuration information includes a merge period of the first system information and data channel configuration information of the first system information.
  • Step S202 When the network device preempts the channel in the unlicensed spectrum, the network device sends the first system information according to the combining period and the data channel configuration information.
  • the network device sends the first system information at least once in a merge period.
  • the network device sends the first system information multiple times in one merge period.
  • the data content of the first system information is the same in one merge period.
  • Step S203 The network device sends the second system information, where the second system information carries the configuration information.
  • Step S204 The terminal device receives the second system information, where the second system information carries configuration information of the first system information, where the configuration information includes a merge period of the first system information and the first system information. Data channel configuration information.
  • Step S205 The terminal device acquires, according to the data channel configuration information, at least one data channel for carrying the first system information in the combining period.
  • Step S206 The terminal device merges the at least one data channel for carrying the first system information.
  • the first system information is scheduled by using the second system information, and the network device determines, according to the configuration information of the first system information carried in the second system information, a merge period of the first system information, and the first system information.
  • the data channel position is merged, and the data channels of the first system information in the same merge period are combined, thereby achieving the effect of the first system information coverage enhancement.
  • the data channel configuration information includes a TBsize index of a data channel carrying the first system information and a resource location of a data channel carrying the first system information.
  • the data channel configuration information may include only the TBsize index, and the resource location of the data channel carrying the first system information is a preset location, and the terminal device receives the first After the second system information, the data channel of the first system is determined according to the TBsize index in the second system information and the resource location of the data channel of the agreed first system information.
  • the network device schedules the SIB-MF1 through the MIB, and the MIB uses the existing idle field to indicate the configuration information of the SIB-MF1, for example:
  • the MIB uses the existing idle field to indicate the merge period of the data channel of the SIB-MF1;
  • the MIB uses the existing idle field to indicate the frequency domain resource block location of the SIB-MF1 data channel PDSCH and the index of the TBSize;
  • the network device guarantees that the data content of the SIB-MF1 remains unchanged during the repetition period
  • the terminal device obtains the repetition period, the TBSize index, and the frequency domain resource location of the SIB-MF1 after successfully demodulating the MIB content, and then starts to merge the PDSCHs on the same frequency domain resource in the merge period.
  • the network device may indicate the repetition period of the SIB-MF1 through a spare field in the MIB, for example, the SIB-MF repetition period/merging period may take values of ⁇ sf2, sf4, sf8, sf16, sf32, sf64, sf128, Sf256, sf512, sf1024 ⁇ , you need 4bit indication;
  • the solution proposes to uniformly indicate the location of the TBSize index and the PDSCH frequency domain resource block, and only indicates the number of RBs, and does not indicate the RB starting position.
  • the network device and the user equipment can agree on the data of the SIB-MF1.
  • the resource location of the channel for example, occupies the center RB. If the number of RBs is an odd number, that is, the center symmetric distribution cannot be achieved, the number of RBs of the high frequency point is one more than the number of low frequency points RB.
  • Table 2 For the TBsize and RB number indications, as shown in Table 2:
  • the PDCCH scheduling SIB-MF1 is not required, so that the PDCCH is not required to be enhanced in the PDCCH, and only the data is merged on the PDSCH, and the system scheduling SIB can be added because the combining period can be configured through the MIB. - MF1 flexibility.
  • the solution of the embodiment of the present invention indicates the merge period of the SIB-MF1 in the MIB, and is applicable to an application scenario of the unlicensed spectrum.
  • the embodiment of the present invention further provides an apparatus for performing the above system information transmission method.
  • an apparatus for system information transmission according to an embodiment of the present invention will be described with reference to the accompanying drawings.
  • FIG. 7 is a schematic structural diagram of an apparatus for system information transmission on an unlicensed spectrum according to an embodiment of the present invention.
  • the device shown in Figure 7 is deployed on a network device.
  • the main structure includes:
  • a determining unit 301 configured to determine configuration information of the first system information (SIB), where the configuration information includes a merge period of the first system information, control information of the first system information, and the control information Location information in a control channel carrying the control information;
  • the sending unit 302 is configured to send, by the network device, the first system information and the control information according to the combining period;
  • control information of the first system information and the control information are the same in the location information of the control channel carrying the control information in one of the combining periods.
  • the merge period is pre-configured; or,
  • the determining unit 301 configures the merge period by the master information block MIB.
  • the merge period is a fixed value, or the merge period includes a plurality of enumerated values.
  • the combining period is a preset number of radio frames or a preset duration.
  • the combining period is less than or equal to the number of radio frames corresponding to one superframe; or the combining period is less than or equal to a duration corresponding to one superframe.
  • FIG. 8 is a schematic structural diagram of another apparatus for system information transmission on an unlicensed spectrum according to an embodiment of the present invention.
  • the device shown in Figure 8 is deployed on the terminal device, including:
  • a first determining unit 401 configured to determine a merge period of the first system information
  • the merging unit 402 is configured to merge control channels for carrying control information of the first system information in the combining period to obtain control information of the first system information;
  • the obtaining unit 403 is configured to acquire, according to the control information, at least one first system information in the one merge period;
  • the second determining unit 404 is configured to determine the first system information according to the at least one first system information.
  • the first determining unit 401 determines a merge period of the first system information, and specifically includes:
  • the merge period of the first system information is determined according to a pre-configuration.
  • the merging unit 402 is further configured to merge the control channels of the control information for carrying the first system information in one of the combining periods before:
  • the merging of the first system information is performed from a next merge period of the first system information.
  • the merging unit 402 merges the control channels used to carry the control information of the first system information in the merging period, and specifically includes:
  • the merge period is a fixed value, or the merge period is one of a plurality of enumerated values.
  • the combining period is a preset number of radio frames or a preset duration.
  • the combining period is less than or equal to the number of radio frames corresponding to one superframe; or the combining period is less than or equal to a duration corresponding to one superframe.
  • FIG. 9 is a schematic diagram of another apparatus for system information transmission on an unlicensed spectrum according to an embodiment of the present invention.
  • the device shown in Figure 9 is deployed on a network device, including:
  • the processing unit 501 is configured to determine configuration information of the first system information, where the configuration information includes a merge period of the first system information and data channel configuration information of the first system information;
  • the sending unit 502 is configured to send the first system information according to the combining period and the data channel configuration information; and send the second system information, where the second system information carries the configuration information.
  • the data channel configuration information includes a TBsize index of a data channel carrying the first system information and a resource location of a data channel carrying the first system information.
  • the data channel configuration information includes a TBsize index of a data channel carrying the first system information
  • the resource location of the data channel carrying the first system information is a preset location.
  • FIG. 10 is a schematic diagram of another apparatus for system information transmission on an unlicensed spectrum according to an embodiment of the present invention.
  • the device shown in FIG. 10 is deployed on the terminal device, and includes:
  • the receiving unit 601 is configured to receive second system information, where the second system information carries configuration information of the first system information, where the configuration information includes a merge period of the first system information, and the first system Data channel configuration information of the information;
  • the obtaining unit 602 is configured to acquire, according to the data channel configuration information, at least one data channel for carrying the first system information in the combining period;
  • a merging unit 603 configured to combine the at least one data channel used to carry the first system information and.
  • the data channel configuration information includes a TBsize index of a data channel carrying the first system information and a resource location of a data channel carrying the first system information.
  • the data channel configuration information includes a TBsize index of a data channel carrying the first system information
  • the resource location of the data channel carrying the first system information is a preset location.
  • FIG. 11 is a schematic diagram showing a possible structure of a network device involved in the above embodiment.
  • the network device may be an access device, as shown in FIG. 11, and the access device includes a transmitter/receiver 1001, a controller/processor 1002, a memory 1003, and a communication unit 1004.
  • the transmitter/receiver 1001 is configured to support the transmission and reception of information between the access device and the terminal device in the foregoing embodiment, and to support radio communication between the terminal device and other terminal devices.
  • the controller/processor 1002 performs various functions for communicating with the terminal device. On the uplink, the uplink signal from the terminal device is received via the antenna, coordinated by the receiver 1001, and further processed by the controller/processor 1002 to recover the service data and signaling information transmitted by the terminal device.
  • traffic data and signaling messages are processed by controller/processor 1002 and mediated by transmitter 1001 to generate downlink signals for transmission to the terminal device via the antenna.
  • the controller/processor 1002 also performs a system information transmission method performed by the network device in the solution of the embodiment of the present invention.
  • the memory 1003 is used to store program codes and data of the access device.
  • the communication unit 1004 is configured to support the access device to communicate with other network entities.
  • the controller/processor 1002 in FIG. 11 is independent or through the memory 1003.
  • the cooperation implements the function implemented by the determining unit 301 in FIG. 7, and the transmitter/receiver 1001 is used to implement the functions implemented by the transmitting unit 302 in FIG.
  • the controller/processor 1002 in FIG. 11 is independent or through cooperation with the memory 1003.
  • the transmitter/receiver 1001 is used to implement the functions implemented by the transmitting unit 502 in FIG.
  • Figure 11 only shows a simplified design of the access device.
  • the access device may include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all access devices that can implement the present invention are within the scope of the present invention. .
  • FIG. 12 is a schematic diagram showing a possible structure of a terminal device involved in the above embodiment.
  • the terminal device includes a transmitter 1101, a receiver 1102, a controller/processor 1103, a memory 1104, and a modem processor 1105.
  • Transmitter 1101 conditions (e.g., analog transforms, filters, amplifies, and upconverts, etc.) the output samples and generates an uplink signal that is transmitted via an antenna to the access device described in the above embodiments.
  • the antenna receives the downlink signal transmitted by the access device in the above embodiment.
  • Receiver 1102 conditions (eg, filters, amplifies, downconverts, digitizes, etc.) the signals received from the antenna and provides input samples.
  • encoder 1106 receives the traffic data and signaling messages to be transmitted on the uplink and processes (e.g., formats, codes, and interleaves) the traffic data and signaling messages.
  • Modulator 1107 further processes (e.g., symbol maps and modulates) the encoded traffic data and signaling messages and provides output samples.
  • Demodulator 1109 processes (e.g., demodulates) the input samples and provides symbol estimates.
  • the decoder 1108 processes (e.g., deinterleaves and decodes) the symbol estimate and provides decoded data and signaling messages that are sent to the terminal device.
  • Encoder 1106, modulator 1107, demodulator 1109, and decoder 1108 may be implemented by a composite modem processor 1105. These units are processed according to the radio access technology employed by the radio access network (e.g., access technologies of LTE and other evolved systems).
  • the controller/processor 1103 performs control management on the action of the terminal device, and is used to execute the system information transmission method performed by the terminal device in the embodiment of the present invention.
  • the memory 1104 is for storing program codes and data for the terminal device 110.
  • the controller/processor 1103 in FIG. 12 is implemented independently or through cooperation with the memory 1003.
  • the controller/processor 1103 in FIG. 12 is independent or through cooperation with the memory 1003.
  • the functions implemented by the obtaining unit 602 and the merging unit 603 in FIG. 10 are implemented, and the transmitter/receiver 1001 is used to implement the functions implemented by the receiving unit 601 in FIG.
  • the controller/processor for performing the above access device of the present invention may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and field programmable Gate array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware, or may be implemented by a processor executing software instructions.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be The components of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the terminal device.
  • the processor and the storage medium can also exist as discrete components in the terminal device.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及非授权频点的通信方法领域,尤其涉及一种非授权频谱上系统信息的传输方法及装置。所述方法包括:网络设备确定第一系统信息(SIB)的配置信息,其中,所述配置信息包括所述第一系统信息的合并周期、所述第一系统信息的控制信息及所述控制信息在承载所述控制信息的控制信道中的位置信息;所述网络设备根据所述合并周期发送所述第一系统信息以及所述控制信息;其中,在一个所述合并周期内,所述第一系统信息的控制信息及所述控制信息在承载所述控制信息的控制信道的位置信息均相同。本申请的非授权频谱上系统信息的传输方法及装置,能够解决非授权频谱的系统信息覆盖增强的问题。

Description

非授权频谱上系统信息的传输方法及装置 技术领域
本申请涉及非授权频点的通信方法领域,尤其涉及一种非授权频谱上系统信息的传输方法及装置。
背景技术
随着无线技术的不断发展,频谱资源日益稀缺,授权(licensed)频点已经不能满足日益增长的业务需求。因此,目前第三代合作伙伴计划(英文:3rd0Generation Partnership Project,简称:3GPP)已经将部分数据业务转移到非授权(unlicensed)频点,例如MulteFire联盟主要致力于研究在非授权频点上部署业务。由于MulteFire不再依赖于授权频点,所以更加适应于企业、园区自组网。在实际的通信应用场景中,存在许多需要覆盖增强的场景,因此,需要研究如何在非授权频点上进行覆盖增强。
在终端设备接入小区的过程中,终端设备需要接收系统信息,以根据系统信息获取随机接入小区的参数。例如在长期演进(英文:Long Term Evolution,简称:LTE)系统中,系统信息被划分为主信息块(英文:Master Information Block,简称:MIB)和多个系统信息块(英文:System Information Blocks,简称:SIB),如SIB1、SIB2……SIB12、SIB13……。在非授权频点的业务场景中,由于需要在检测到信道空闲时才能进行信号发送,信道资源比较紧张,为了尽快将随机接入需要的必要参数在一次信道抢占后就发送给终端设备,MulteFire联盟将LTE中的SIB1和SIB2合并为SIB-MF1。
由于系统信息是终端设备随机接入到小区的重要参数,因此在研究如何在非授权频点上进行覆盖增强时,一个研究重点是如何实现系统信息的覆盖增强,例如,如何实现对SIB-MF1的覆盖增强,为与LTE保持一致,以下如无特殊说明,SIB可以等效为SIB-MF1。
在现有的覆盖增强手段中,例如在频分双工(英文:Frequency Division Dual,简称:FDD)窄带增强方案中,不复用LTE系统中原有的SIB1资源,单独设计了NSIB1的资源分配方式,造成频谱资源的额外开销,并且该方案通过时域资源的重复发送,虽然实现了下行信号的覆盖增强,但该方案只适用于下行信道连续占用的授权频点场景,对于非授权频点场景,由于需要进行信道的先检测后发送(英文:Listen-Before-Talk,简称:LBT),不能保证信道连续占用,因此现有 技术方案不适用于非授权频点的业务场景。
发明内容
本申请提供了一种非授权频谱上系统信息的传输方法及装置,以解决非授权频谱的系统信息覆盖增强的问题。
第一方面,本发明实施例提供了一种非授权频谱上系统信息的传输方法,包括:
网络设备确定第一系统信息(SIB)的配置信息,其中,所述配置信息包括所述第一系统信息的合并周期、所述第一系统信息的控制信息及所述控制信息在承载所述控制信息的控制信道中的位置信息;
所述网络设备根据所述合并周期发送所述第一系统信息以及所述控制信息;
其中,在一个所述合并周期内,所述第一系统信息的控制信息及所述控制信息在承载所述控制信息的控制信道的位置信息均相同。
在本发明实施例实现方式中,网络设备配置第一系统信息的合并周期,并且在第一系统信息的一个合并周期内,第一系统信息的控制信息及承载控制信息的控制信道的位置信息均相同,由此第一系统信息在数据域的位置不变,当第一系统信息的数据内容也不变时,支持终端设备对一个合并周期内的控制信道合并,以实现第一系统信息的控制信息的覆盖增强,并且支持终端设备对一个合并周期内的第一系统信息合并,以实现第一系统信息数据内容的覆盖增强,由此实现在非授权频谱上第一系统信息的覆盖增强。
在一种可能的设计中,所述合并周期预先配置;或者,
所述网络设备通过主信息块MIB配置所述合并周期。
在一种可能的设计中,所述合并周期为一个固定值,或者,所述合并周期包括多个枚举值。
在一种可能的设计中,所述合并周期为预设的无线帧个数或者预设时长。
在一种可能的设计中,所述合并周期小于或等于一个超帧所对应的无线帧个数;或者,所述合并周期小于或等于一个超帧对应的时长。
第二方面,本发明实施例提供了一种非授权频谱上系统信息的传输方法,包括:
终端设备确定第一系统信息的合并周期;
所述终端设备将一个所述合并周期内用于承载所述第一系统信息的控制信息的控制信道合并,以获取第一系统信息的控制信息;
所述终端设备根据所述控制信息获取所述一个合并周期内的至少一个第一系统信息;
所述终端设备根据所述至少一个第一系统信息确定第一系统信息。
在一种可能的设计中,所述终端设备确定第一系统信息的合并周期,包括:
所述终端设备根据MIB确定所述第一系统信息的合并周期;或者,
所述终端设备根据预先配置确定所述第一系统信息的合并周期。
在一种可能的设计中,所述终端设备将一个所述合并周期内用于承载所述第一系统信息的控制信息的控制信道合并之前,所述方法还包括:
所述终端设备确定在当前合并周期内开始接收的所述第一系统信息的第一个控制信息的无线帧号,与当前合并周期的结束帧号的帧差数;
如果所述帧差数小于预设帧数,则所述终端设备从所述第一系统信息的下一个合并周期开始进行所述第一系统信息的合并。
在一种可能的设计中,所述终端设备将一个所述合并周期内用于承载所述第一系统信息的控制信息的控制信道合并,包括:
所述终端设备在一个所述合并周期内,将当前接收到的用于承载所述第一系统信息的控制信息的控制信道与至少上一次接收到的承载所述控制信息的控制信道进行合并,其中,所述终端设备在一个所述合并周期内对承载所述第一系统信息的控制信息的控制信道合并长度小于或等于所述合并周期。
在一种可能的设计中,所述合并周期为一个固定值,或者,所述合并周期为多个枚举值中的其中一个。
在一种可能的设计中,所述合并周期为预设的无线帧个数或者预设时长。
在一种可能的设计中,所述合并周期小于或等于一个超帧所对应的无线帧个数;或者,所述合并周期小于或等于一个超帧对应的时长。
第三方面,本发明实施例提供了一种非授权频谱上系统信息的传输方法,包括:
网络设备确定第一系统信息的配置信息,其中,所述配置信息包括所述第一系统信息的合并周期和所述第一系统信息的数据信道配置信息;
所述网络设备根据所述合并周期和所述数据信道配置信息发送第一系统信息;
所述网络设备还发送第二系统信息,所述第二系统信息中携带所述配置信息。
在一种可能的设计中,所述数据信道配置信息包括承载所述第一系统信息的数据信道的传输块大小(TBSize,下同)或者传输块索引和承载所述第一系统信息的数据信道的资源位置。
在一种可能的设计中,所述数据信道配置信息包括承载所述第一系统信息的数据信道的传输块大小;
承载所述第一系统信息的数据信道的资源位置为预设位置。
第四方面,本发明实施例提供了一种非授权频谱上系统信息的传输方法,包括:
终端设备接收第二系统信息,其中,所述第二系统信息中携带第一系统信息的配置信息,所述配置信息包括所述第一系统信息的合并周期和所述第一系统信息的数据信道配置信息;
所述终端设备根据所述数据信道配置信息,获取一个所述合并周期内的至少一个 用于承载所述第一系统信息的数据信道;
所述终端设备将所述至少一个用于承载所述第一系统信息的数据信道合并。
在一种可能的设计中,所述数据信道配置信息包括承载所述第一系统信息的数据信道的传输块大小和承载所述第一系统信息的数据信道的资源位置。
在一种可能的设计中,所述数据信道配置信息包括承载所述第一系统信息的数据信道的传输块大小;
承载所述第一系统信息的数据信道的资源位置为预设位置。
第五方面,为了实现上述第一方面的传输方法,本发明实施例提供了一种非授权频谱上系统信息的传输装置,该装置具有实现上述传输方法中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,所述非授权频谱上系统信息的传输装置,包括:
确定单元,用于确定第一系统信息(SIB)的配置信息,其中,所述配置信息包括所述第一系统信息的合并周期、所述第一系统信息的控制信息及所述控制信息在承载所述控制信息的控制信道中的位置信息;
发送单元,用于所述网络设备根据所述合并周期发送所述第一系统信息以及所述控制信息;
其中,在一个所述合并周期内,所述第一系统信息的控制信息及所述控制信息在承载所述控制信息的控制信道的位置信息均相同。
在一种可能的设计中,所述合并周期预先配置;或者,
所述确定单元通过主信息块MIB配置所述合并周期。
在一种可能的设计中,所述合并周期为一个固定值,或者,所述合并周期包括多个枚举值。
在一种可能的设计中,所述合并周期为预设的无线帧个数或者预设时长。
在一种可能的设计中,所述合并周期小于或等于一个超帧所对应的无线帧个数;或者,所述合并周期小于或等于一个超帧对应的时长。
第六方面,为了实现上述第二方面的传输方法,本发明实施例提供了一种非授权频谱上系统信息的传输装置,该装置具有实现上述传输方法中终端设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,所述非授权频谱上系统信息的传输装置,包括:
第一确定单元,用于确定第一系统信息的合并周期;
合并单元,用于将一个所述合并周期内用于承载所述第一系统信息的控制信息的控制信道合并,以获取第一系统信息的控制信息;
获取单元,用于根据所述控制信息获取所述一个合并周期内的至少一个第一系统 信息;
第二确定单元,用于根据所述至少一个第一系统信息确定第一系统信息。
在一种可能的设计中,所述第一确定单元确定第一系统信息的合并周期,具体包括执行:
根据MIB确定所述第一系统信息的合并周期;或者,
根据预先配置确定所述第一系统信息的合并周期。
在一种可能的设计中,所述合并单元还用于将一个所述合并周期内用于承载所述第一系统信息的控制信息的控制信道合并之前:
确定在当前合并周期内开始接收的所述第一系统信息的第一个控制信息的无线帧号,与当前合并周期的结束帧号的帧差数;
如果所述帧差数小于预设帧数,则从所述第一系统信息的下一个合并周期开始进行所述第一系统信息的合并。
在一种可能的设计中,所述合并单元将一个所述合并周期内用于承载所述第一系统信息的控制信息的控制信道合并,具体包括执行:
在一个所述合并周期内,将当前接收到的用于承载所述第一系统信息的控制信息的控制信道与至少上一次接收到的所述控制信息进行合并,其中,所述终端设备进行一次合并的长度小于或等于所述合并周期。
在一种可能的设计中,所述合并周期为一个固定值,或者,所述合并周期为多个枚举值中的其中一个。
在一种可能的设计中,所述合并周期为预设的无线帧个数或者预设时长。
在一种可能的设计中,所述合并周期小于或等于一个超帧所对应的无线帧个数;或者,所述合并周期小于或等于一个超帧对应的时长。
第七方面,为了实现上述第三方面的传输方法,本发明实施例提供了一种非授权频谱上系统信息的传输装置,该装置具有实现上述传输方法中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,所述非授权频谱上系统信息的传输装置,包括:
处理单元,用于确定第一系统信息的配置信息,其中,所述配置信息包括所述第一系统信息的合并周期和所述第一系统信息的数据信道配置信息;
发送单元,用于根据所述合并周期和所述数据信道配置信息发送第一系统信息;以及,发送第二系统信息,所述第二系统信息中携带所述配置信息。
在一种可能的设计中,所述数据信道配置信息包括承载所述第一系统信息的数据信道的传输块大小和承载所述第一系统信息的数据信道的资源位置。
在一种可能的设计中,所述数据信道配置信息包括承载所述第一系统信息的数据信道的传输块大小;
承载所述第一系统信息的数据信道的资源位置为预设位置。
第八方面,为了实现上述第四方面的传输方法,本发明实施例提供了一种非授权频谱上系统信息的传输装置,该装置具有实现上述传输方法中终端设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,所述非授权频谱上系统信息的传输装置,包括:
接收单元,用于接收第二系统信息,其中,所述第二系统信息中携带第一系统信息的配置信息,所述配置信息包括所述第一系统信息的合并周期和所述第一系统信息的数据信道配置信息;
获取单元,用于根据所述数据信道配置信息,获取一个所述合并周期内的至少一个用于承载所述第一系统信息的数据信道;
合并单元,用于将所述至少一个用于承载所述第一系统信息的数据信道合并。
在一种可能的设计中,所述数据信道配置信息包括承载所述第一系统信息的数据信道的传输块大小和承载所述第一系统信息的数据信道的资源位置。
在一种可能的设计中,所述数据信道配置信息包括承载所述第一系统信息的数据信道的传输块大小;
承载所述第一系统信息的数据信道的资源位置为预设位置。
第九方面,本发明实施例还提供了一种非授权频谱上系统信息的传输装置,该装置包括:处理器、存储器及收发器;所述处理器可以执行所述存储器中所存储的程序或指令,从而实现第一方面至第四方面任一方面的各种实现方式的所述传输方法。
第十方面,本发明实施例提供了一种存储介质,该计算机存储介质可存储有程序,该程序执行时可实现本发明实施例提供的第一方面至第四方面任一方面的各实施例中的部分或全部步骤。
本发明实施例提供的非授权频谱上系统信息的传输方法及装置,能够解决非授权频谱的系统信息覆盖增强的问题。
附图说明
图1是本申请的一种可能的应用场景示意图;
图2是本申请一个实施例的系统信息传输方法的流程图;
图3是MulteFire中的SIB-MF1的传输示意图;
图4是第一系统信息的控制信息占用信道资源的示意图;
图5是MulteFire中SIB-MF1的合并示意图;
图6是本申请另一个实施例的系统信息传输方法的流程图;
图7是本发明实施例提供的一种用于非授权频谱上系统信息传输的装置结构示意图;
图8是本发明实施例提供的另一种用于非授权频谱上系统信息传输的装置结构示意图;
图9是本发明实施例提供的又一种用于非授权频谱上系统信息传输的装置示意图;
图10是本发明实施例提供的再一种用于非授权频谱上系统信息传输的装置示意图;
图11是本发明实施例所涉及的网络设备的一种可能的结构示意图;
图12示出了上述实施例中所涉及的接入设备的一种可能的结构示意图
具体实施方式
图1是本申请的一种可能的应用场景示意图。在本发明实施例方案中,终端设备在图1中表示为UE,UE通过无线接入网(Radio Access Network,简称RAN)及核心网(Core Network,简称CN)接入业务网络。本发明描述的技术可以适用于能够使用非授权频点的通信系统,如LTE系统、LTE演进系统和第五代5G通信系统等。
本申请所涉及到的终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,简称UE),移动台(Mobile station,简称MS),终端(terminal),用户设备(Terminal Equipment)等等。本发明所涉及的网络设备根据需要可以为无线接入网中的设备,如基站,也可以是核心网中的设备,如移动性管理实体(Mobility Management Entity)。上述的基站(base station,简称BS)是一种部署在无线接入网中用以为终端设备提供无线通信功能的装置。所述基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的可以采用不同的命名方式。
基于图1所示的系统,本发明实施例提供了一种非授权频谱上系统信息的传输方法,在本发明实施例的系统信息传输方法中,系统信息的发送涉及到控制信道和数据信道,其中,控制信道配置数据信道的资源位置以及数据信道承载的数据信息的调制编码方式等,系统信息对应数据信道承载的数据信息,可以理解为通过控制信道调度系统信息,具体的,设置系统信息的合并周期,并且在系统信息的一个合并周期内,系统信息的控制信息和控制信息在承载控制信息的控制信 道的位置信息不变。系统信息的控制信息和控制信息在承载控制信息的控制信道的资源位置不变,则终端设备可以对合并周期内的与承载系统信息对应的控制信道进行合并,达到系统信息的控制信息增强的目的;由于系统信息的控制信息不变,所以系统信息的数据信道的映射位置不变,当系统信息的数据内容也不发生变化时,则终端设备可以在合并周期内对系统信息的数据信道进行合并,从而达到系统信息的数据信息增强的目的,从而实现系统信息的覆盖增强。
控制信道的合并周期和数据信道的合并周期为同一个合并周期。
以下将结合附图对本发明实施例的系统信息传输方法进行具体说明。
图2是申请一个实施例的系统信息传输方法的流程图。如图2所示,该方法的处理步骤包括:
步骤S101:网络设备确定第一系统信息的配置信息,其中,所述配置信息包括所述第一系统信息的合并周期、所述第一系统信息的控制信息及所述控制信息在承载控制信息的控制信道的资源位置。
可选的,网络设备通过MIB配置所述合并周期,或者,所述合并周期是预先配置的。
步骤S102:所述网络设备根据所述合并周期发送所述第一系统信息以及所述控制信息。
其中,在一个所述合并周期内,所述第一系统信息的控制信息及所述控制信息在承载控制信息的控制信道的资源位置均相同。
在本发明实施例方案中,所述第一系统信息可以是SIB-MF1。
在本发明实施例方案中,通过控制信道,如物理下行控制信道(英文:Physical Downlink Control Channel,简称:PDCCH)调度第一系统信息,因此网络设备在配置第一系统信息时,配置第一系统信息的合并周期,并且在一个合并周期内,第一系统信息的控制信息,以及所述控制信息在承载控制信息的控制信道的资源位置保持不变,如此可以确保在一个合并周期内,第一系统信息所映射的数据信道的资源位置保持不变,如第一系统信息的物理下行共享信道(英文:Physical Downlink Shared Channel,简称:PDSCH)的资源位置不变。因此,当终端设备接收第一系统信息时,可以将同一个合并周期内的第一系统信息的控制信道合并,达到第一系统信息的控制信息增强的目的;终端设备在根据控制信息解调第一系统信息的数据信道时,如果单次解调数据信道失败,可以将数据信道合并,达到第一系统信息的数据信息增强的目的,从而实现系统信息的覆盖增强。其中,网络设备接收第一系统信息的步骤参见下文。
步骤S103:终端设备在接收网络设备发送的第一系统信息时,首先确定第一 系统信息的合并周期。
其中,网络设备确定第一系统信息的合并周期的方式包括以下一种或多种:
(1)终端设备和网络设备按照通信协议预先约定根据预先配置确定第一系统信息的合并周期。
(2)终端设备根据MIB确定第一系统信息的合并周期。终端设备解调网络设备发送的MIB信息,得到所述合并周期。
在本发明实施例方案中,所述合并周期可以为具体的周期数值,进一步,还可以为合并周期索引。例如,包括三个合并周期,该三个合并周期的索引分别为0,1,2,终端设备和网络设备在约定,或者通过MIB指示时,可以只指示合并周期的索引。
可选的,所述合并周期可以为一个固定值,终端设备每次合并时均使用该固定值作为合并周期。
步骤S104:终端设备将一个合并周期内用于承载第一系统信息的控制信息的控制信道合并,以获取第一系统信息的控制信息。
在本发明实施例方案中,终端设备获取第一系统信息的控制信息后,根据控制信息确定承载第一系统信息的数据信道,并且从数据信道获取第一系统信息的数据内容。
步骤S105:终端设备根据控制信息获取所述一个合并周期内的至少一个第一系统信息。
其中,步骤S105中的合并周期与步骤S104中的合并周期是同一个合并周期。
终端设备根据控制信息确定承载第一系统信息的数据信道,并从数据信道解调第一系统信息的数据内容。另外,因为在一个合并周期内,第一系统信息的控制信息不变,因此,在该合并周期内,承载第一系统信息的数据信道的资源位置相同,因此终端设备可以根据控制信息获取一个合并周期内的至少一个第一系统信息。
步骤S106:终端设备根据至少一个第一系统信息确定第一系统信息。
在本发明实施例方案中,在一个合并周期内,终端设备获取至少一个第一系统信息后,将至少一个第一系统信息解调,得到最终的第一系统信息,终端可以将一个合并周期内多个数据信道合并,实现第一系统信息数据内容的增强。
在本发明实施例方案中,合并周期可以为预设的无线帧个数,也可以为预设时长。
另外,由于系统中超帧的存在,在本发明实施例方案中设定合并周期小于或 等于一个超帧所对应的无线帧个数;或者,所述合并周期小于或等于一个超帧对应的时长。
在本发明实施例方案中,终端设备在接收第一系统信息时,通过将同一个合并周期内的第一系统信息的控制信道和数据信道合并,达到第一系统信息的控制信息和数据信息覆盖增强的目的。
在本发明实施例方案中,终端设备将同一个合并周期内的第一系统信息进行合并的方式包括以下至少一种:
(1)所述终端设备确定在当前合并周期内开始接收的所述第一系统信息的控制信息的无线帧号,与当前合并周期的结束帧号的帧差数;
如果所述帧差数小于预设帧数,则所述终端设备从所述第一系统信息的下一个合并周期开始进行所述第一系统信息的合并。
例如,第一系统信息合并的周期为512帧,终端设备在当前合并周期内接收到的第一个第一系统信息的无线帧号为500,与当前合并周期的结束帧号(511)的帧差数为11,假设设定帧差数为100,由于11小于100,即使对当前合并周期内的剩余第一系统信息合并,也难以实现很好的增强效果,因此终端设备不对当前合并周期的第一系统信息进行合并,而是从第一系统信息的下一个合并周期开始进行第一系统信息的合并。
(2)终端设备采用滑窗的方式进行第一系统信息的合并。具体的,所述终端设备在一个所述合并周期内,将当前接收到的用于承载所述第一系统信息的控制信息的控制信道与至少上一次接收到的所述控制信息进行合并,其中,所述终端设备进行一次合并的长度小于或等于所述合并周期。
例如,终端设备在一个合并周期内,每次接收到第一系统信息时,均将当前接收到的第一系统信息与上一次接收到的第一系统信息合并,实现覆盖增强。
本发明实施例方案主要应用于LTE系统在无授权频点的场景中。以下将以MulteFire中的SIB-MF1为例,对本发明实施例的系统信息传输方法进行具体说明。
图3是MulteFire中的SIB-MF1的传输示意图。如图3所示,MulteFire主要聚焦于非授权频谱上的通信系统设计。在上行和/或下行发送信号之前,网络设备都需要进行空闲信道评测(英文:Clear Channel Assessment,简称:CCA),当信道空闲时网络设备才可以发送信号。
根据对信道空闲监测的时间长短,CCA可以分成不同的类别,即Cat.1(category1),Cat.2,Cat.3和Cat.4,其中Cat.4要求信道空闲达到规定时长后才可以进行信号发送,而Cat.2对信道空闲时长监测小于Cat.4。MulteFire规定,对于业务数据传输,必须进行Cat.4的CCA,但对系统性能影响较大的信号,比如 发现信号(英文:discovery reference signal,简称:DRS),可以只进行Cat.2的CCA。
具体的,MulteFire的DRS信号包含如下内容:
主辅同步信号(英文:Primary and secondary synchronization signals,简称:PSS/SSS);
MulteFire增强的主辅同步信号(英文:MulteFire enhanced Primary and secondary synchronization signals,简称:MF-PSS/MF-SSS);
小区参考信号(英文:Cell-specific reference signals,简称:CRS));
配置的信道状态信息参考信号(英文:Configurable channel state information reference signals,简称:CSI-RS);
MulteFire增强的PBCH(Master information broadcast(MIB-MF)via the MF enhanced PBCH(MF-PBCH)channel);
MulteFire增强的系统信息广播(英文:MulteFire enhanced system information broadcast,简称:SIB-MF)。
从DRS包含的信息内容可以得知,因为DRS中包含小区搜索和随机接入的关键信号和数据参数,终端设备只有解调出DRS信号才可以完成小区搜索以及后续的随机接入流程才可以进行数据传输,因此MulteFire为DRS定义了一个发送机会窗,即DRS测量和配置(英文:DRS measurement and timing configuration,简称:DMTC)机会窗,如图3所示,该机会窗周期配置,并且在配置周期内,网络设备可以在10ms内一直进行Cat.2的CCA,直到检测信道空闲,将DRS信号发送出去。
如图3所示,如果子帧0有业务数据发送,DRS信号还可以在DMTC窗外的子帧0发送,即子帧0发送的DRS时需要进行Cat.4的CCA。
不论是在DMTC窗内还是在DMTC窗外的子帧0,如果CCA失败,都不会进行DRS信号的发送。
DRS中的SIB-MF1,协议规定采用正交相移键控(英文:Quadrature Phase Shift Keying,简称:QPSK)调制方式。
SIB-MF1承载在PDSCH信道,PDSCH信道的调度信息,比如频域资源位置,传输块大小(TBSize)等信息通过PDCCH信道调度,PDCCH和PDSCH信道在一个子帧中时分复用。
在LTE系统中,一个调度单位为一个子帧,在正常循环前缀下,一个子帧占据14个正交频分复用(英文:Orthogonal Frequency Division Multiplexing,简称: OFDM)符号。其中,前几个OFDM符号(如前三个OFDM符号)为控制域,其它OFDM符号为数据域;物理控制格式指示信道(英文:Physical Control Format Indicator Channel,简称:PCFICH)、物理混合自动重传指示信道(英文:Physical Hybrid ARQ Indicator Channel,简称:PHICH)和PDCCH都映射在控制域,数据信道PDSCH映射在数据域。
为了更有效地配置下行控制信道的时频资源,LTE定义了两个专用的控制信道资源单位:资源单元组(Resource Element Group,REG)和控制信道单元(英文:Control Channel Element,简称:CCE)。1个REG由位于同一OFDM符号上的4个连续非RS的RE组成,一个CCE由9个REG构成。定义REG这样的资源单位,主要是为了有效地支持PCFICH、PHICH等数据率很小的控制信道的资源分配,也就是说,PCFICH,PHICH的资源分配是以REG为单位的;而定义相对较大的CCE,是为了用于数据量相对较大的PDCCH的资源分配。
PCFICH信道固定占用符号0中4个REG,等间隔分布在整个带宽,具体的位置与小区ID相关;PHICH信道用于反馈PUSCH上行数据的ACK/NACK,每个PHICH Group由3个REG组成,一个小区中PHICH Group个数可以配置,PHICH时频资源上可以占用1个OFDM也可以占用多个OFDM符号,由高层配置,在PCFICH以外的REG上等间隔分布在整个带宽。PDCCH信道中承载的是下行控制信息(英文:Downlink Control Information,简称:DCI),包含一个或多个终端设备上的资源分配和其它的控制信息。一般来说,在一个子帧内,可以有多个PDCCH。因此终端设备首先需要解调PDCCH中的DCI,然后才能够在相应的资源位置上解调属于终端设备的PDSCH(包括广播消息,寻呼,终端设备的数据等)。PDCCH在一个或多个连续的CCE上传输,占用除PCFICH和PHICH以外的所有REG。LTE中支持4种不同类型的PDCCH,如表1所示:
表1四种类型的PDCCH
Figure PCTCN2017072739-appb-000001
PDCCH所占用的CCE数目取决于UE所处的下行信道环境,对于下行信道环境好的UE,eNodeB可能只需分配一个CCE,对于下行信道环境较差的UE,eNodeB可能需要为之分配多达8个的CCE。
PDCCH信道的物理层处理包括:CRC、RNTI加扰、咬尾卷积编码、速率匹配、PDCCH复用、加扰、QPSK调制、层映射和预编码、资源映射。其中,CRC、RNTI加扰、咬尾卷积编码、速率匹配模块是按照每个DCI进行处理,PDCCH复用将多个DCI进行比特级联,后续统一进行加扰、QPSK调制、层映射和预编码等处理。
PDCCH复用后的数据举例如下:如图4所示,假定有4个DCI(PDCCH),分别占用4,2,1,1个CCE。
如图5所示,SIB-MF1在DMTC窗内有周期性发送的机会,并且在DMTC窗外的子帧0,也有发送机会,SIB-MF1由PDCCH调度。本实施例提出,网络设备在一定时间内,只要保证SIB-MF1对应的PDCCH的CCE的逻辑资源位置即CCE索引或CCE序号、下行控制信息DCI信息不变,终端设备就可以在该时间内对PDCCH进行数据合并,比如软比特数据合并,即解扰之后数据合并,从而达到下行控制信息增强的目的;由于下行控制信息不变,所以SIB-MF1对应的PDSCH资源映射位置不变,如果网络设备在相同时间内,保证SIB-MF1数据信息也不发生改变,则终端也可以在该时间内对PDSCH进行数据合并,从而达到SIB-MF1数据信息增强的目的,从而实现整个SIB-MF1的覆盖增强。
所谓CCE的索引或CCE序号不变,指的是如果上一次发送SIB-MF1对应的PDCCH占用的CCE索引为n,n+1,…,n+L,则需要下一次发送该PDCCH时,该PDCCH占用的CCE索引依旧为n,n+1,…,n+L,其中L为该PDCCH占用的CCE个数,即聚合等级,这样,当接收端经过解资源映射,解层映射和预编码、解调,解扰后,得到软比特信息,只需要把相同CCE索引对应的软比特数据合并即可。
进一步,由于SIB-MF1的数据信息包含超帧(1024个无线帧构成一个超帧,超帧长度为10240ms),因此SIB-MF1的合并周期最大为10240ms,或者1024个无线帧,即sf1024;为了增加网络设备发送SIB-MF1的灵活性,结合SIB-MF1需要覆盖增强的收益,可以减小合并周期。
在本发明实施例方案中,合并周期的配置,可以有以下几种方式:
(1)规定合并周期为一个固定值,该值在协议中约定,比如固定为sf1024或者sf512等。
(2)规定合并周期的枚举值,采用MIB的空闲字段配置合并周期的索引值,比如,采用MIB的空闲(spare)字段,占用2bit信息,进行如下配置:
配置索引 合并周期T(无线帧号)
0 32
1 64
10 128
11 256
其中,合并周期的起始点满足无线帧号SFN mod T=0。
终端设备在获取SIB-MF1的合并周期后,根据开始接收SIB-MF1的时刻,可以采用如下方式对SIB-MF1进行合并:
(1)根据开始接收SIB-MF1的无线帧号,判断是否即将到达合并周期边界,如果当前无线帧号距离合并周期边界小于M个无线帧,终端可以从下一个合并周期开始进行SIB-MF1的数据合并,比如M可以取值为8。
(2)终端采用滑窗的方式进行数据合并,窗长小于等于合并周期。
下面对合并周期的设置进行进一步说明:
为了增加网络设备调度SIB-MF1的灵活性,可以根据需要覆盖增强的程度设置合并周期。比如如果SIB-MF1对应的PDCCH和PDSCH分别需要增强8dB,则理论上需要合并7次,即终端对PDCCH和PDSCH分别合并7次。终端进行PDCCH合并时,可以预存PDSCH,但由于PDSCH扰码序列每个子帧都进行变化,因此无法进行星座点调制的数据符号的合并,终端需要保存每个子帧全带宽的PDSCH,因此对终端存储空间要求过高,因此需要考虑存储空间有限的终端的处理,即允许终端先进行PDCCH的合并,之后根据DCI调度信息再接收PDSCH,对PDSCH进行解调、解扰之后的数据合并。因此,考虑PDCCH合并7次,假设40%的发送概率,合并PDCCH和PDSCH大概分别需要20个无线帧,即解调SIB-MF1共需40个无线帧,因此可以设置合并周期为64个无线帧,即sf64。但由于LBT抢占信道的不确定性,如果终端已经解调出DCI调度信息,但在PDSCH数据信道合并次数满足之前已经到达合并周期边界,终端只能对已接收的数据进行合并,如果终端在解调出DCI调度信息之前到达合并周期边界,终端需要在下一个合并周期进行SIB-MF1控制信道和数据信道的重新开始合并。
在本发明实施例方案中,利用现有SIB-MF1的发送方案,只需要规定合并周期内调度DCI所在的资源位置和调度内容不变,就可以实现控制信道的覆盖增强,可选的,如果数据信息不发生改变,可以实现数据信道的覆盖增强,并且不增加系统开销。
上述系统信息的传输方案中,通过控制信道调度第一系统信息,并通过控制信道配置第一系统信息的数据信道位置不变,支持合并周期内第一系统信息的合并。进一步,本发明实施例还提供了一种采用其它系统信息(对应本文的第二系统信息)调度第一系统信息的方式,如MIB调度第一系统信息,并且在第二系统信息调度第一系统信息的方式下实现第一系统信息的覆盖增强。以下将结合附图对此方案进行具体说明。
如图6所示,本发明实施例的系统信息传输方法包括:
步骤S201:网络设备确定第一系统信息的配置信息,其中,所述配置信息包括所述第一系统信息的合并周期和所述第一系统信息的数据信道配置信息。
步骤S202:当所述网络设备在非授权频谱抢占到信道时,所述网络设备根据所述合并周期和所述数据信道配置信息发送第一系统信息。
其中,在一个合并周期内,网络设备发送至少一次第一系统信息,可选的,网络设备在一个合并周期内发送多次第一系统信息。
可选的,在一个合并周期内第一系统信息的数据内容相同。
步骤S203:网络设备发送第二系统信息,其中,第二系统信息中携带所述配置信息。
步骤S204:终端设备接收第二系统信息,其中,所述第二系统信息中携带第一系统信息的配置信息,所述配置信息包括所述第一系统信息的合并周期和所述第一系统信息的数据信道配置信息。
步骤S205:所述终端设备根据所述数据信道配置信息,获取一个所述合并周期内的至少一个用于承载所述第一系统信息的数据信道。
步骤S206:所述终端设备将所述至少一个用于承载所述第一系统信息的数据信道合并。
在本发明实施例方案中,通过第二系统信息调度第一系统信息,网络设备根据第二系统信息中携带的第一系统信息的配置信息确定第一系统信息的合并周期,以及第一系统信息的数据信道位置,并且将同一个合并周期内第一系统信息的数据信道进行合并,从而实现第一系统信息覆盖增强的效果。
在一种可能的设计中,所述数据信道配置信息包括承载所述第一系统信息的数据信道的TBsize索引和承载所述第一系统信息的数据信道的资源位置。终端设备接收到第二系统信息后,根据第二系统信息中的TBsize索引和承载所述第一系统信息的数据信道的资源位置确定承载第一系统信息的数据信道。
为了节约第二系统信息所占用的信息资源,所述数据信道配置信息可以只包括TBsize索引,承载所述第一系统信息的数据信道的资源位置为预设位置,由此终端设备在接收到第二系统信息后,根据第二系统信息中的TBsize索引和约定的第一系统信息的数据信道的资源位置确定第一系统的数据信道。
在一个可能的具体示例中,网络设备通过MIB调度SIB-MF1,MIB利用现有的空闲字段指示SIB-MF1的配置信息,例如:
MIB利用现有的空闲字段指示SIB-MF1的数据信道的合并周期;
MIB利用现有的空闲字段指示SIB-MF1数据信道PDSCH的频域资源块位置和TBSize的索引;
网络设备保证在重复周期内SIB-MF1的数据内容保持不变;
通过以上约束,终端设备在成功解调MIB内容后,获得SIB-MF1的重复周期、TBSize索引和频域资源位置,之后开始在合并周期内,对相同频域资源上的PDSCH进行合并即可。
例如,网络设备可以通过MIB中的空闲(spare)字段指示SIB-MF1的重复周期,比如SIB-MF重复周期/合并周期可能取值为{sf2,sf4,sf8,sf16,sf32,sf64,sf128,sf256,sf512,sf1024},则需要4bit指示;
由于MIB信息bit长度受限,本方案提出将TBSize索引和PDSCH频域资源块位置统一指示,并且只指示RB个数,不指示RB起始位置,网络设备和用户设备可以约定SIB-MF1的数据信道的资源位置,例如占据中心RB,如果RB个数为奇数,即不能做到中心对称分布,则高频点的RB个数比低频点RB个数多1个。对TBsize和RB个数指示举例如表2所示:
表2
索引值 TBSize RB个数
0 152 2
1 300 4
2 360 6
3 488 8
4 600 12
5 720 15
在本发明实施例方案中,不需要PDCCH调度SIB-MF1,因此不再需要对PDCCH进行覆盖增强,只需要对PDSCH进行数据合并即可,并且由于合并周期通过MIB可配,可以增加系统调度SIB-MF1的灵活性。
进一步,本发明实施例方案在MIB中指示SIB-MF1的合并周期,适用于非授权频谱的应用场景。
对应上述的系统信息传输方法,本发明实施例还提供了用于执行上述系统信息传输方法的装置,以下将结合附图对本发明实施例的用于系统信息传输的装置进行说明。
图7是本发明实施例提供的一种用于非授权频谱上系统信息传输的装置结构示意图。图7所示装置部署于网络设备,主要结构包括:
确定单元301,用于确定第一系统信息(SIB)的配置信息,其中,所述配置信息包括所述第一系统信息的合并周期、所述第一系统信息的控制信息及所述控制信息在承载所述控制信息的控制信道中的位置信息;
发送单元302,用于所述网络设备根据所述合并周期发送所述第一系统信息以及所述控制信息;
其中,在一个所述合并周期内,所述第一系统信息的控制信息及所述控制信息在承载所述控制信息的控制信道的位置信息均相同。
在一种可能的设计中,所述合并周期预先配置;或者,
所述确定单元301通过主信息块MIB配置所述合并周期。
在一种可能的设计中,所述合并周期为一个固定值,或者,所述合并周期包括多个枚举值。
在一种可能的设计中,所述合并周期为预设的无线帧个数或者预设时长。
在一种可能的设计中,所述合并周期小于或等于一个超帧所对应的无线帧个数;或者,所述合并周期小于或等于一个超帧对应的时长。
图8是本发明实施例提供的另一种用于非授权频谱上系统信息传输的装置结构示意图。图8所示装置部署于终端设备,包括:
第一确定单元401,用于确定第一系统信息的合并周期;
合并单元402,用于将一个所述合并周期内用于承载所述第一系统信息的控制信息的控制信道合并,以获取第一系统信息的控制信息;
获取单元403,用于根据所述控制信息获取所述一个合并周期内的至少一个第一系统信息;
第二确定单元404,用于根据所述至少一个第一系统信息确定第一系统信息。
在一种可能的设计中,所述第一确定单元401确定第一系统信息的合并周期,具体包括执行:
根据MIB确定所述第一系统信息的合并周期;或者,
根据预先配置确定所述第一系统信息的合并周期。
在一种可能的设计中,所述合并单元402还用于将一个所述合并周期内用于承载所述第一系统信息的控制信息的控制信道合并之前:
确定在当前合并周期内开始接收的第一个所述第一系统信息的无线帧号,与当前 合并周期的结束帧号的帧差数;
如果所述帧差数小于预设帧数,则从所述第一系统信息的下一个合并周期开始进行所述第一系统信息的合并。
在一种可能的设计中,所述合并单元402将一个所述合并周期内用于承载所述第一系统信息的控制信息的控制信道合并,具体包括执行:
在一个所述合并周期内,将当前接收到的用于承载所述第一系统信息的控制信息的控制信道与至少上一次接收到的所述控制信息进行合并,其中,所述终端设备进行一次合并的长度小于或等于所述合并周期。
在一种可能的设计中,所述合并周期为一个固定值,或者,所述合并周期为多个枚举值中的其中一个。
在一种可能的设计中,所述合并周期为预设的无线帧个数或者预设时长。
在一种可能的设计中,所述合并周期小于或等于一个超帧所对应的无线帧个数;或者,所述合并周期小于或等于一个超帧对应的时长。
图9是本发明实施例提供的又一种用于非授权频谱上系统信息传输的装置示意图。图9所示的装置部署于网络设备,包括:
处理单元501,用于确定第一系统信息的配置信息,其中,所述配置信息包括所述第一系统信息的合并周期和所述第一系统信息的数据信道配置信息;
发送单元502,用于根据所述合并周期和所述数据信道配置信息发送第一系统信息;以及,发送第二系统信息,所述第二系统信息中携带所述配置信息。
在一种可能的设计中,所述数据信道配置信息包括承载所述第一系统信息的数据信道的TBsize索引和承载所述第一系统信息的数据信道的资源位置。
在一种可能的设计中,所述数据信道配置信息包括承载所述第一系统信息的数据信道的TBsize索引;
承载所述第一系统信息的数据信道的资源位置为预设位置。
图10是本发明实施例提供的再一种用于非授权频谱上系统信息传输的装置示意图。图10所示的装置部署于终端设备,包括:
接收单元601,用于接收第二系统信息,其中,所述第二系统信息中携带第一系统信息的配置信息,所述配置信息包括所述第一系统信息的合并周期和所述第一系统信息的数据信道配置信息;
获取单元602,用于根据所述数据信道配置信息,获取一个所述合并周期内的至少一个用于承载所述第一系统信息的数据信道;
合并单元603,用于将所述至少一个用于承载所述第一系统信息的数据信道合 并。
在一种可能的设计中,所述数据信道配置信息包括承载所述第一系统信息的数据信道的TBsize索引和承载所述第一系统信息的数据信道的资源位置。
在一种可能的设计中,所述数据信道配置信息包括承载所述第一系统信息的数据信道的TBsize索引;
承载所述第一系统信息的数据信道的资源位置为预设位置。
图11示出了上述实施例中所涉及的网络设备的一种可能的结构示意图。其中,所述网络设备可以为接入设备如图11所示,接入设备包括发射器/接收器1001,控制器/处理器1002,存储器1003以及通信单元1004。所述发射器/接收器1001用于支持接入设备与上述实施例中的所述的终端设备之间收发信息,以及支持所述终端设备与其他终端设备之间进行无线电通信。所述控制器/处理器1002执行各种用于与终端设备通信的功能。在上行链路,来自所述终端设备的上行链路信号经由天线接收,由接收器1001进行调解,并进一步由控制器/处理器1002进行处理来恢复终端设备所发送到业务数据和信令信息。在下行链路上,业务数据和信令消息由控制器/处理器1002进行处理,并由发射器1001进行调解来产生下行链路信号,并经由天线发射给终端设备。控制器/处理器1002还执行本发明实施例方案中网络设备所执行的系统信息传输方法。存储器1003用于存储接入设备的程序代码和数据。通信单元1004用于支持接入设备与其他网络实体进行通信。
可选的,当图11所示的接入设备作为图7所示的传输装置装置执行本发明实施例的系统信息传输方法时,图11中的控制器/处理器1002独立或者通过与存储器1003的配合来实现图7中确定单元301所实现的功能,发射器/接收器1001用于实现图7中发送单元302所实现的功能。
可选的,当图11所示的接入设备作为图9所示的装置执行本发明实施例的系统信息传输方法时,图11中的控制器/处理器1002独立或者通过与存储器1003的配合来实现图9中处理单元501所实现的功能,发射器/接收器1001用于实现图9中发送单元502所实现的功能。
可以理解的是,图11仅仅示出了接入设备的简化设计。在实际应用中,接入设备可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本发明的接入设备都在本发明的保护范围之内。
图12示出了上述实施例中所涉及的终端设备的一种可能的结构示意图。如图12所示,所述终端设备包括发射器1101,接收器1102,控制器/处理器1103,存贮器1104和调制解调处理器1105。
发射器1101调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的接入设备。在下行链路上,天线接收上述实施例中接入设备发射的下行链路信号。接收器1102调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。在调制解调处理器1105中,编码器1106接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器1107进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器1109处理(例如,解调)该输入采样并提供符号估计。解码器1108处理(例如,解交织和解码)该符号估计并提供发送给终端设备的已解码的数据和信令消息。编码器1106、调制器1107、解调器1109和解码器1108可以由合成的调制解调处理器1105来实现。这些单元根据无线接入网采用的无线接入技术(例如,LTE及其他演进系统的接入技术)来进行处理。
控制器/处理器1103对终端设备的动作进行控制管理,用于执行本发明实施例中终端设备所执行的系统信息传输方法。存储器1104用于存储用于终端设备110的程序代码和数据。
可选的,当图12所示的终端设备作为图8所示装置执行本发明实施例的系统信息传输方法时,图12中的控制器/处理器1103独立或者通过与存储器1003的配合来实现图8中第一确定单元401、合并单元402、获取单元403和第二确定单元404所实现的功能。
可选的,当图12所示的终端设备作为图10所示的装置执行本发明实施例的系统信息传输方法时,图12中的控制器/处理器1103独立或者通过与存储器1003的配合来实现图10中获取单元602和合并单元603所实现的功能,发射器/接收器1001用于实现图10中接收单元601所实现的功能。
用于执行本发明上述接入设备,终端设备功能的控制器/处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
结合本发明公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处 理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于终端设备中。当然,处理器和存储介质也可以作为分立组件存在于终端设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (36)

  1. 一种非授权频谱上系统信息的传输方法,其特征在于,包括:
    网络设备确定第一系统信息(SIB)的配置信息,其中,所述配置信息包括所述第一系统信息的合并周期、所述第一系统信息的控制信息及所述控制信息在承载所述控制信息的控制信道中的位置信息;
    所述网络设备根据所述合并周期发送所述第一系统信息以及所述控制信息;
    其中,在一个所述合并周期内,所述第一系统信息的控制信息及所述控制信息在承载所述控制信息的控制信道的位置信息均相同。
  2. 如权利要求1所述的方法,其特征在于,所述合并周期预先配置;或者,所述网络设备通过主信息块MIB配置所述合并周期。
  3. 如权利要求1或2所述的方法,其特征在于,所述合并周期为一个固定值,或者,所述合并周期包括多个枚举值。
  4. 如权利要求1或2所述的方法,其特征在于,所述合并周期为预设的无线帧个数或者预设时长。
  5. 如权利要求4所述的方法,其特征在于,所述合并周期小于或等于一个超帧所对应的无线帧个数;或者,所述合并周期小于或等于一个超帧对应的时长。
  6. 一种非授权频谱上系统信息的传输方法,其特征在于,包括:
    终端设备确定第一系统信息的合并周期;
    所述终端设备将一个所述合并周期内用于承载所述第一系统信息的控制信息的控制信道合并,以获取第一系统信息的控制信息;
    所述终端设备根据所述控制信息获取所述一个合并周期内的至少一个第一系统信息;
    所述终端设备根据所述至少一个第一系统信息确定第一系统信息。
  7. 如权利要求6所述的方法,其特征在于,所述终端设备确定第一系统信息的合并周期,包括:
    所述终端设备根据MIB确定所述第一系统信息的合并周期;或者,
    所述终端设备根据预先配置确定所述第一系统信息的合并周期。
  8. 如权利要求6或7所述的方法,其特征在于,所述终端设备将一个所述 合并周期内用于承载所述第一系统信息的控制信息的控制信道合并之前,所述方法还包括:
    所述终端设备确定在当前合并周期内开始接收的所述第一系统信息的第一个控制信息的无线帧号,与当前合并周期的结束帧号的帧差数;
    如果所述帧差数小于预设帧数,则所述终端设备从所述第一系统信息的下一个合并周期开始进行所述第一系统信息的合并。
  9. 如权利要求6或7所述的方法,其特征在于,所述终端设备将一个所述合并周期内用于承载所述第一系统信息的控制信息的控制信道合并,包括:
    所述终端设备在一个所述合并周期内,将当前接收到的用于承载所述第一系统信息的控制信息的控制信道与至少上一次接收到的承载所述控制信息的控制信道进行合并,其中,所述终端设备在一个所述合并周期内对承载所述第一系统信息的控制信息的控制信道合并长度小于或等于所述一个合并周期。
  10. 如权利要求6至9中任一项所述的方法,其特征在于,所述合并周期为一个固定值,或者,所述合并周期为多个枚举值中的其中一个。
  11. 如权利要求6至10中任一项所述的方法,其特征在于,所述合并周期为预设的无线帧个数或者预设时长。
  12. 如权利要求11所述的方法,其特征在于,所述合并周期小于或等于一个超帧所对应的无线帧个数;或者,所述合并周期小于或等于一个超帧对应的时长。
  13. 一种非授权频谱上系统信息的传输方法,其特征在于,包括:
    网络设备确定第一系统信息的配置信息,其中,所述配置信息包括所述第一系统信息的合并周期和所述第一系统信息的数据信道配置信息;
    所述网络设备根据所述合并周期和所述数据信道配置信息发送第一系统信息;
    所述网络设备还发送第二系统信息,所述第二系统信息中携带所述配置信息。
  14. 如权利要求13所述的方法,其特征在于,所述数据信道配置信息包括承载所述第一系统信息的数据信道的传输块大小(TBsize)和承载所述第一系统信息的数据信道的资源位置。
  15. 如权利要求14所述的方法,其特征在于,所述数据信道配置信息包括承载所述第一系统信息的数据信道的传输块大小;
    承载所述第一系统信息的数据信道的资源位置为预设位置。
  16. 一种非授权频谱上系统信息的传输方法,其特征在于,包括:
    终端设备接收第二系统信息,其中,所述第二系统信息中携带第一系统信息的配置信息,所述配置信息包括所述第一系统信息的合并周期和所述第一系统信息的数据信道配置信息;
    所述终端设备根据所述数据信道配置信息,获取一个所述合并周期内的至少一个用于承载所述第一系统信息的数据信道;
    所述终端设备将所述至少一个用于承载所述第一系统信息的数据信道合并。
  17. 如权利要求16所述的方法,其特征在于,所述数据信道配置信息包括承载所述第一系统信息的数据信道的传输块大小和承载所述第一系统信息的数据信道的资源位置。
  18. 如权利要求16所述的方法,其特征在于,所述数据信道配置信息包括承载所述第一系统信息的数据信道的传输块大小;
    承载所述第一系统信息的数据信道的资源位置为预设位置。
  19. 一种用于非授权频谱上系统信息传输的装置,其特征在于,所述装置部署于网络设备,包括:
    确定单元,用于确定第一系统信息(SIB)的配置信息,其中,所述配置信息包括所述第一系统信息的合并周期、所述第一系统信息的控制信息及所述控制信息在承载所述控制信息的控制信道中的位置信息;
    发送单元,用于所述网络设备根据所述合并周期发送所述第一系统信息以及所述控制信息;
    其中,在一个所述合并周期内,所述第一系统信息的控制信息及所述控制信息在承载所述控制信息的控制信道的位置信息均相同。
  20. 如权利要求19所述的装置,其特征在于,所述合并周期预先配置;或者,
    所述确定单元通过主信息块MIB配置所述合并周期。
  21. 如权利要求19或20所述的装置,其特征在于,所述合并周期为一个固定值,或者,所述合并周期包括多个枚举值。
  22. 如权利要求19或20所述的装置,其特征在于,所述合并周期为预设的无线帧个数或者预设时长。
  23. 如权利要求22所述的装置,其特征在于,所述合并周期小于或等于一个超帧所对应的无线帧个数;或者,所述合并周期小于或等于一个超帧对应的时长。
  24. 一种用于非授权频谱上系统信息传输的装置,其特征在于,所述装置部署于终端设备,包括:
    第一确定单元,用于确定第一系统信息的合并周期;
    合并单元,用于将一个所述合并周期内用于承载所述第一系统信息的控制信息的控制信道合并,以获取第一系统信息的控制信息;
    获取单元,用于根据所述控制信息获取所述一个合并周期内的至少一个第一系统信息;
    第二确定单元,用于根据所述至少一个第一系统信息确定第一系统信息。
  25. 如权利要求24所述的装置,其特征在于,所述第一确定单元确定第一系统信息的合并周期,具体包括执行:
    根据MIB确定所述第一系统信息的合并周期;或者,
    根据预先配置确定所述第一系统信息的合并周期。
  26. 如权利要求24或25所述的装置,其特征在于,所述合并单元还用于将一个所述合并周期内用于承载所述第一系统信息的控制信息的控制信道合并之前:
    确定在当前合并周期内开始接收的所述第一系统信息的第一个控制信息的无线帧号,与当前合并周期的结束帧号的帧差数;
    如果所述帧差数小于预设帧数,则从所述第一系统信息的下一个合并周期开始进行所述第一系统信息的合并。
  27. 如权利要求24或25所述的装置,其特征在于,所述合并单元将一个所述合并周期内用于承载所述第一系统信息的控制信息的控制信道合并,具体包括执行:
    在一个所述合并周期内,将当前接收到的用于承载所述第一系统信息的控制信息的控制信道与至少上一次接收到的承载所述控制信息的控制信道进行合并, 其中,所述终端设备在一个所述合并周期内对承载所述第一系统信息的控制信息的控制信道合并长度小于或等于所述合并周期。
  28. 如权利要求24至27中任一项所述的装置,其特征在于,所述合并周期为一个固定值,或者,所述合并周期为多个枚举值中的其中一个。
  29. 如权利要求24至28中任一项所述的装置,其特征在于,所述合并周期为预设的无线帧个数或者预设时长。
  30. 如权利要求29所述的装置,其特征在于,所述合并周期小于或等于一个超帧所对应的无线帧个数;或者,所述合并周期小于或等于一个超帧对应的时长。
  31. 一种用于非授权频谱上系统信息传输的装置,其特征在于,所述装置部署于网络设备,包括:
    处理单元,用于确定第一系统信息的配置信息,其中,所述配置信息包括所述第一系统信息的合并周期和所述第一系统信息的数据信道配置信息;
    发送单元,用于根据所述合并周期和所述数据信道配置信息发送第一系统信息;以及,发送第二系统信息,所述第二系统信息中携带所述配置信息。
  32. 如权利要求31所述的装置,其特征在于,所述数据信道配置信息包括承载所述第一系统信息的数据信道的传输块大小(TBsize)和承载所述第一系统信息的数据信道的资源位置。
  33. 如权利要求31所述的装置,其特征在于,所述数据信道配置信息包括承载所述第一系统信息的数据信道的传输块大小;
    承载所述第一系统信息的数据信道的资源位置为预设位置。
  34. 一种用于非授权频谱上系统信息传输的装置,其特征在于,所述装置部署于终端设备,包括:
    接收单元,用于接收第二系统信息,其中,所述第二系统信息中携带第一系统信息的配置信息,所述配置信息包括所述第一系统信息的合并周期和所述第一系统信息的数据信道配置信息;
    获取单元,用于根据所述数据信道配置信息,获取一个所述合并周期内的至少一个用于承载所述第一系统信息的数据信道;
    合并单元,用于将所述至少一个用于承载所述第一系统信息的数据信道合并。
  35. 如权利要求34所述的装置,其特征在于,所述数据信道配置信息包括承载所述第一系统信息的数据信道的传输块大小和承载所述第一系统信息的数据信道的资源位置。
  36. 如权利要求34所述的装置,其特征在于,所述数据信道配置信息包括承载所述第一系统信息的数据信道的传输块大小;
    承载所述第一系统信息的数据信道的资源位置为预设位置。
PCT/CN2017/072739 2017-01-26 2017-01-26 非授权频谱上系统信息的传输方法及装置 WO2018137238A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/072739 WO2018137238A1 (zh) 2017-01-26 2017-01-26 非授权频谱上系统信息的传输方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/072739 WO2018137238A1 (zh) 2017-01-26 2017-01-26 非授权频谱上系统信息的传输方法及装置

Publications (1)

Publication Number Publication Date
WO2018137238A1 true WO2018137238A1 (zh) 2018-08-02

Family

ID=62977893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072739 WO2018137238A1 (zh) 2017-01-26 2017-01-26 非授权频谱上系统信息的传输方法及装置

Country Status (1)

Country Link
WO (1) WO2018137238A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104219767A (zh) * 2014-03-20 2014-12-17 中兴通讯股份有限公司 一种系统信息传输方法、基站及终端
CN104348573A (zh) * 2013-07-25 2015-02-11 中兴通讯股份有限公司 一种传输系统信息的方法、系统及装置
WO2016123292A1 (en) * 2015-01-30 2016-08-04 Qualcomm Incorporated System information block channel design for enhanced machine type communication with coverage enhancements

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104348573A (zh) * 2013-07-25 2015-02-11 中兴通讯股份有限公司 一种传输系统信息的方法、系统及装置
CN104219767A (zh) * 2014-03-20 2014-12-17 中兴通讯股份有限公司 一种系统信息传输方法、基站及终端
WO2016123292A1 (en) * 2015-01-30 2016-08-04 Qualcomm Incorporated System information block channel design for enhanced machine type communication with coverage enhancements

Similar Documents

Publication Publication Date Title
US10673566B2 (en) Determining DCI format
US11139926B2 (en) User equipments, base stations and methods for physical downlink control channel monitoring in downlink
WO2020145223A1 (en) User equipments, base stations and methods for a physical sidelink (sl) control channel monitoring
CN106851744B (zh) 无线通信的方法和装置
CN106413105B (zh) 一种资源传输的指示方法、装置、网络侧设备及终端
US20190349147A1 (en) User equipments, base stations and methods for uplink control information multiplexing in uplink
CN108141737B (zh) 系统信息传输方法、基站和用户设备
US10742465B2 (en) Systems and methods for multi-physical structure system
WO2020145267A1 (en) User equipments, base stations and methods for sidelink channel state information (sl csi) reporting
WO2020255531A1 (en) User equipments, base stations and methods for downlink control information (dci) in dci format(s)
CN111867038B (zh) 一种通信方法及装置
CN106961315B (zh) 一种窄带pbch传输方法及装置
WO2020222295A1 (en) User equipment, base stations and signaling for multiple active configured grants
CN105635018B (zh) 功能指示的方法、装置及系统
US10616888B2 (en) Multiple slot long physical uplink control channel (PUCCH) design for 5th generation (5G) new radio (NR)
CN115134927A (zh) 一种通信方法、装置以及系统
JP2020145759A (ja) 通信システム
WO2021090604A1 (en) User equipments, base stations and methods for configurable downlink control information for demodulation reference signal for a physical uplink shared channel
WO2021090606A1 (en) User equipments, base stations and methods for transmission configuration indication for pdsch
WO2015058401A1 (zh) 数据调度方法、装置、基站和终端
CN111066273B (zh) 用户设备、基站和方法
RU2712431C1 (ru) Способ и система передачи информации и устройство
EP3562070B1 (en) Data receiving and transmitting method and receiving and transmitting device
WO2020145320A1 (en) User equipments, base stations and methods for multiple active configurations for uplink transmission
WO2021190521A1 (zh) 由用户设备执行的方法以及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894194

Country of ref document: EP

Kind code of ref document: A1