WO2018135243A1 - Sheet-like object - Google Patents

Sheet-like object Download PDF

Info

Publication number
WO2018135243A1
WO2018135243A1 PCT/JP2017/046354 JP2017046354W WO2018135243A1 WO 2018135243 A1 WO2018135243 A1 WO 2018135243A1 JP 2017046354 W JP2017046354 W JP 2017046354W WO 2018135243 A1 WO2018135243 A1 WO 2018135243A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
porous structure
polyurethane resin
elastic resin
pores
Prior art date
Application number
PCT/JP2017/046354
Other languages
French (fr)
Japanese (ja)
Inventor
孝宜 古井
隆司 宿利
現 小出
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US16/477,920 priority Critical patent/US20190368124A1/en
Priority to EP17892458.5A priority patent/EP3572580B1/en
Priority to JP2017567502A priority patent/JP7043841B2/en
Priority to CN201780083809.7A priority patent/CN110191987B/en
Priority to KR1020197019835A priority patent/KR20190104536A/en
Publication of WO2018135243A1 publication Critical patent/WO2018135243A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0004Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using ultra-fine two-component fibres, e.g. island/sea, or ultra-fine one component fibres (< 1 denier)
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0011Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using non-woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/004Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using flocked webs or pile fabrics upon which a resin is applied; Teasing, raising web before resin application
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0043Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by their foraminous structure; Characteristics of the foamed layer or of cellular layers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/007Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by mechanical or physical treatments
    • D06N3/0075Napping, teasing, raising or abrading of the resin coating
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • D06N3/146Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes characterised by the macromolecular diols used
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2201/00Chemical constitution of the fibres, threads or yarns
    • D06N2201/10Conjugate fibres, e.g. core-sheath, side-by-side
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2203/00Macromolecular materials of the coating layers
    • D06N2203/06Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N2203/068Polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2205/00Condition, form or state of the materials
    • D06N2205/24Coagulated materials
    • D06N2205/246Coagulated materials by extracting the solvent
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/28Artificial leather
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2213/00Others characteristics
    • D06N2213/04Perforated layer
    • D06N2213/045Perforated layer the coating layer does not completely close the openings between the fibres

Definitions

  • the present invention relates to a sheet-like material, particularly a sheet-like material such as napped leather.
  • suede or nubuck-like napped leather-like sheet-like material by raising the surface of the sheet-like material impregnated with polyurethane resin into a non-woven fabric base material using sandpaper etc. Is widely known.
  • the desired properties of the raised leather-like sheet-like material can be designed in a wide variety of ways depending on the combination of the substrate made of fibers and the polyurethane resin.
  • Napped leather-like sheet-like material has an appearance and surface very similar to natural leather, and has advantages such as uniformity and dyeing fastness that are not found in natural leather. It is spreading to applications that are used for a long time, such as furniture skins of automobiles and seat skins for automobiles. In particular, for apparel applications, artificial leather that achieves both excellent flexibility and crease resistance is required.
  • a flexible artificial leather can be obtained by making the polycarbonate polyol constituting the polyurethane resin have a specific structure with respect to the hardness of the polycarbonate-based polyurethane resin, which has been regarded as a conventional problem. Has been. However, in applications that require a soft texture such as clothing, the flexibility is still not sufficient.
  • a specific coagulation regulator is added to polyurethane resin to form a porous layer having fine pores, and by fuzzing it by grinding, a suede-like leather-like sheet having an elegant appearance that does not change color tone is obtained.
  • Patent Document 3 a fine texture is achieved by adjusting the pore diameter between the nonporous polyurethane resin layer having various molecular weights and the surface layer and the portion close to the fiber substrate layer. No consideration has been given to the compatibility between crease resistance and crease resistance, and flexibility has been impaired because of the porous polyurethane resin layer.
  • the polyurethane resin has good grindability, and has an elegant appearance with napping by grinding with sandpaper or the like.
  • a method for obtaining a sheet-like material has been proposed (see Patent Document 4).
  • Patent Document 4 A method for obtaining a sheet-like material.
  • the pores inside the polyurethane resin layer are coarse pores exceeding 20 ⁇ m, the pore film of the polyurethane resin layer between the pores becomes thick, and the effect and flexibility of improving the grindability of the polyurethane resin. It is difficult to achieve sufficient flexibility in applications that require flexible deformation along complicated shapes such as clothing applications. In addition, it was difficult to obtain fine and uniform holes.
  • an object of the present invention is to provide a napped leather-like sheet-like material that has a texture excellent in flexibility, and further has a soft and high crease resistance. It is in.
  • the sheet-like material of the present invention is a sheet-like material comprising a nonwoven fabric composed of ultrafine fibers having an average single fiber diameter of 0.3 to 7 ⁇ m and an elastic resin.
  • the surface of the sheet-like material has napping, and the elastic resin has a porous structure, and micropores having a pore diameter of 0.1 to 20 ⁇ m occupying all the pores of the porous structure. It is a sheet-like material with a ratio of 60% or more.
  • the elastic resin is present in the internal space of the nonwoven fabric.
  • the elastic resin is a polycarbonate-based polyurethane resin.
  • the polyurethane resin has a weight average molecular weight of 30,000 to 150,000.
  • the number of pores per unit cross-sectional area in the porous structure in the elastic resin is 50 or more / 1600 ⁇ m 2 .
  • the present invention it is possible to obtain a napped leather-like sheet-like material which has both a high texture rich in flexibility and crease resistance. Specifically, according to the present invention, it is possible to obtain a napped leather-like sheet-like material having an elegant appearance by napping and having excellent flexibility and crease resistance.
  • the high texture that is rich in flexibility means that if it is used for clothing, the sheet can be finished into a complex three-dimensional shape, and can be deformed following the movement of the body to provide good comfort
  • it enables the formation and processing of sheet-like objects along complex three-dimensional shapes, and it can be used flexibly following deformation such as sitting down. It means being able to provide a feeling.
  • the crease resistance means that the crease is excellent in recovery from crease, and even when wrinkles that are loaded due to deformation during use are generated, the wrinkles leave marks after being released from the load. It means to recover without it.
  • Appropriate elasticity must be imparted to the sheet-like material in order to exhibit folding resistance, and it is difficult to achieve both flexibility and resistance to bending because it is incompatible with flexibility. .
  • the sheet-like material of the present invention is a sheet-like material made of a non-woven fabric made of ultrafine fibers having an average single fiber diameter of 0.3 to 7 ⁇ m and an elastic resin, and has a nap on the surface of the sheet-like material.
  • the elastic resin has a porous structure, and the ratio of fine pores having a pore diameter of 0.1 to 20 ⁇ m occupying all pores of the porous structure is a sheet-like material of 60% or more.
  • the sheet-like material of the present invention is composed of a nonwoven fabric made of ultrafine fibers and an elastic resin.
  • the material of the ultrafine fibers constituting the nonwoven fabric used in the present invention includes heat-spinnable heat such as polyesters such as polyethylene terephthalate, polybutylene terephthalate and polytrimethylene terephthalate, and polyamides such as 6-nylon and 66-nylon.
  • a plastic resin can be used.
  • polyester is preferably used from the viewpoints of strength, dimensional stability and light resistance.
  • the nonwoven fabric can be mixed with ultrafine fibers of different materials.
  • a round cross-section may be used, but a polygonal shape such as an ellipse, a flat shape and a triangle, or a deformed cross-sectional shape such as a sector shape and a cross shape may be employed.
  • the average single fiber diameter of the ultrafine fibers constituting the nonwoven fabric is 7 ⁇ m or less from the viewpoint of the flexibility of the sheet-like material and the napped quality.
  • the average single fiber diameter is more preferably 6 ⁇ m or less, and further preferably 5 ⁇ m or less.
  • the average single fiber diameter is 0.3 ⁇ m or more.
  • the average single fiber diameter is more preferably 0.7 ⁇ m or more, and further preferably 1 ⁇ m or more.
  • the average single fiber diameter here refers to a cross section obtained by cutting the obtained sheet-like material in the thickness direction with a scanning electron microscope (SEM), and the fiber diameter of any 50 ultrafine fibers is measured at three locations. Thus, the average value of the diameters of a total of 150 fibers is calculated.
  • ultrafine fiber generation type fiber uses two component thermoplastic resins with different solubility in solvent as sea component and island component, and dissolves and removes only sea component with solvent etc. to make island component as ultrafine fiber.
  • Sea-island type composite fibers that can be made, and peelable composite fibers that allow two-component thermoplastic resins to be alternately arranged in a fiber cross-section radial or layered form and split into ultrafine fibers by separating and separating each component Or multilayer type composite fibers can be used.
  • the non-woven fabric can be a non-woven fabric formed by entanglement of single fibers of ultrafine fibers or a non-woven fabric formed by entanglement of fiber bundles of ultrafine fibers. From the viewpoint of the strength and texture of the sheet-like material, it is preferably used. Further, from the viewpoint of flexibility and texture, a nonwoven fabric having an appropriate gap between ultrafine fibers inside the fiber bundle is particularly preferably used. Thus, the nonwoven fabric in which the fiber bundles of ultrafine fibers are entangled can be obtained by generating ultrafine fibers after entanglement of the ultrafine fiber generating fibers in advance.
  • nonwoven fabric either a short fiber nonwoven fabric or a long fiber nonwoven fabric can be used, but a short fiber nonwoven fabric is preferably used from the viewpoint of texture and quality.
  • the fiber length of the short fiber in the short fiber nonwoven fabric is preferably 25 to 90 mm. By setting the fiber length to 25 mm or more, a sheet-like material having excellent abrasion resistance can be obtained by entanglement. In addition, when the fiber length is 90 mm or less, it is possible to obtain a sheet-like product having a better texture and quality.
  • the fiber length is more preferably 35 to 80 mm, particularly preferably 40 to 70 mm.
  • the ultrafine fiber or its fiber bundle constitutes a nonwoven fabric
  • a woven fabric or a knitted fabric can be inserted for the purpose of improving the strength.
  • the average single fiber diameter of the fibers constituting the woven fabric or knitted fabric used is preferably about 0.3 to 10 ⁇ m.
  • the elastic resin used in the present invention has a porous structure, and the proportion of fine pores having a pore diameter of 0.1 to 20 ⁇ m in all pores of the porous structure is 60% or more.
  • the proportion of the fine holes is more preferably 70% or more, and further preferably 80% or more.
  • the porous structure can also employ communication holes and closed cells.
  • wet coagulation described later as a method of fixing the elastic resin to the nonwoven fabric.
  • the elastic resin has a porous structure having fine pores, when bending deformation is applied to a sheet-like material, the deformation force can be distributed and received not as a part of the elastic resin. Further, the occurrence of folding wrinkles accompanied by buckling of the elastic resin is suppressed, and a sheet-like product having excellent folding wrinkle resistance can be obtained.
  • the diameter of 60% or more of all the pores of the porous structure of the elastic resin is 0.1 ⁇ m or more.
  • it is 0.5 micrometer or more, More preferably, it is 1 micrometer or more.
  • the hole diameter of 60% or more of all the holes of the porous structure of the elastic resin is 20 ⁇ m or less.
  • it is 15 micrometers or less, More preferably, it is 10 micrometers or less.
  • the pore diameter of the porous structure can be increased, both flexibility and appropriate strength can be achieved, and deformation force can be received by the entire elastic resin.
  • a sheet-like material having excellent flexibility and crease resistance can be obtained.
  • the number of pores per unit area in the porous structure of the elastic resin is 50/600 ⁇ m 2 or more, preferably 70/1600 ⁇ m 2 or more, more preferably 100/1600 ⁇ m 2 or more.
  • the number of pores in the porous structure per unit area is preferably 1000/1600 ⁇ m 2 or less, and more preferably 800/1600 ⁇ m 2 or less.
  • the porous structure can have a flexible texture, and can be received by the force of bending deformation of the sheet through a plurality of holes, and has excellent folding resistance. Wrinkle properties can be imparted. If the number of holes per unit area is too small, the deformation force concentrates on a specific hole and buckles, resulting in poor crease recovery. Moreover, when there are too many holes per unit area, the deformation
  • the elastic resin used in the present invention preferably holds the ultrafine fibers in the sheet-like material and is present in the internal space of the nonwoven fabric from the viewpoint of having napped on at least one side of the sheet-like material. It is.
  • a polyurethane resin is preferably used in that it has uniform fine pores in the sheet-like material.
  • the polyurethane resin obtained by reaction of polymer diol and organic diisocyanate is used preferably.
  • polycarbonate-based, polyester-based, polyether-based, silicone-based, and fluorine-based polymer diols can be employed, and a copolymer combining these can also be used.
  • polyurethane resin Appropriate rigidity can be imparted to the polyurethane resin, and by forming a porous structure with fine pores, excellent flexibility can be exhibited, and the polyurethane resin does not buckle and has high crease resistance Therefore, polycarbonate-based polymer diol is preferably used.
  • Polycarbonate-based diol can be produced by transesterification of alkylene glycol and carbonate, or reaction of phosgene or chloroformate with alkylene glycol.
  • alkylene glycols examples include ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, and 1,10-decanediol.
  • Chain alkylene glycol branched alkylene glycol such as neopentyl glycol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 2-methyl-1,8-octanediol, Alicyclic diols such as 1,4-cyclohexanediol, aromatic diols such as bisphenol A, glycerin, trimethylolpropane, and pentaerythritol. Either polycarbonate-based diols obtained from individual alkylene glycols or copolymerized polycarbonate-based diols obtained from two or more types of alkylene glycols can be used.
  • polyester diol examples include polyester diols obtained by condensing various low molecular weight polyols and polybasic acids.
  • Examples of the low molecular weight polyol include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butanediol, 1,4-butanediol, and 2,2-dimethyl-1,3-propane.
  • an adduct obtained by adding various alkylene oxides to bisphenol A can also be used as a low molecular weight polyol.
  • Polybasic acids include, for example, succinic acid, maleic acid, adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid, and hexahydro
  • succinic acid maleic acid, adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid, and hexahydro
  • succinic acid maleic acid, adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid, and hexahydro
  • isophthalic acid ter
  • polyether diols examples include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and copolymer diols combining them.
  • the number average molecular weight of the polymer diol is preferably 500 to 5,000. By setting the number average molecular weight to 500 or more, more preferably 1500 or more, it is possible to prevent the texture from becoming hard. Moreover, the intensity
  • organic diisocyanate used in the synthesis of the polyurethane resin examples include aromatic diisocyanates such as 4,4′-diphenylmethane diisocyanate, paraphenylene diisocyanate, 1,5-naphthalene diisocyanate, paraxylene diisocyanate, metaxylene diisocyanate, and 4,4 ′.
  • aromatic diisocyanates such as 4,4′-diphenylmethane diisocyanate, paraphenylene diisocyanate, 1,5-naphthalene diisocyanate, paraxylene diisocyanate, metaxylene diisocyanate, and 4,4 ′.
  • -Alicyclic diisocyanates such as dicyclohexylmethane diisocyanate, isophorone diisocyanate and aliphatic diisocyanates such as 1,6-hexamethylene diisocyanate.
  • organic diols organic diamines, hydrazine derivatives, and the like can be used.
  • organic diols examples include ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, methylpentanediol, 1,6-hexanediol, 1,7-heptanediol, Aliphatic diols such as 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,4-cyclohexanediol, and alicyclic diols such as hydrogenated xylylene glycol, and aromatics such as xylene glycol Group diols can be mentioned.
  • organic diamines examples include ethylene diamine, isophorone diamine, xylene diamine, phenyl diamine, and 4,4'-diaminodiphenyl methane.
  • hydrazine derivatives include hydrazine, adipic acid dihydrazide, and isophthalic acid hydrazide.
  • a crosslinking agent in the polyurethane resin, can be used in combination for the purpose of improving water resistance, abrasion resistance, hydrolysis resistance and the like.
  • the cross-linking agent may be an external cross-linking agent added as a third component to the polyurethane, or an internal cross-linking agent that introduces a reaction point that becomes a cross-linked structure in advance in the polyurethane molecular structure may be used.
  • amines such as triethylamine and tetramethylbutanediamine
  • metal compounds such as potassium acetate, zinc stearate, and tin octylate can be used as catalysts.
  • the weight average molecular weight (Mw) of the polyurethane resin used in the present invention is preferably 30,000 to 150,000, more preferably 50,000 to 130,000.
  • Mw weight average molecular weight
  • the elastic resin can contain polyester-based, polyamide-based, polyolefin-based elastomer resins, acrylic resins, ethylene-vinyl acetate resins, and the like as long as performance and texture are not impaired.
  • various additives e.g., pigments such as carbon black, a phosphorus flame retardant such as halogen-based and inorganic-based, phenol-based, oxidation prevention agent such as sulfur-based and phosphorus-based, benzotriazole-based, benzophenone-based, UV absorbers such as salicylates, cyanoacrylates and oxalic acid anilides, light stabilizers such as hindered amines and benzoates, hydrolysis stabilizers such as polycarbodiimides, plasticizers, antistatic agents, surfactants , A coagulation adjusting agent, and a dye.
  • the ratio of the elastic resin to the sheet-like material is preferably 10 to 50% by mass, and more preferably 15 to 35% by mass.
  • the ratio of the elastic resin is preferably 10 to 50% by mass, and more preferably 15 to 35% by mass.
  • the elastic resin N, N′-dimethylformamide, dimethyl sulfoxide, or the like can be used as a solvent used when applying a polyurethane resin.
  • the elastic resin can be solidified by applying the elastic resin to the non-woven fabric by immersing the non-woven fabric in an elastic resin solution dissolved in a solvent, and immersing it in an insoluble solvent. It can also be solidified by dipping in a mixture of a soluble solvent and an insoluble solvent.
  • the sheet-like material of the present invention can also be obtained by dividing into half or several sheets in the thickness direction of the sheet-like material before performing the napping treatment.
  • applying an antistatic agent before the napping treatment can be preferably used because the grinding powder generated from the sheet-like material by grinding tends to be difficult to deposit on the sandpaper.
  • the sheet-like material of the present invention can be suitably used as a napped leather-like sheet-like material in which ultrafine fibers are raised on at least one surface, and the napping treatment is performed using sandpaper, roll sander, or the like. It can be applied by a grinding method. In order to obtain good surface fiber napping, it is a preferable embodiment to apply a lubricant such as a silicone emulsion before napping treatment.
  • a lubricant such as a silicone emulsion before napping treatment.
  • the sheet-like material of the present invention can be suitably used as a nap-finished leather-like sheet-like material in which ultrafine fibers are finally raised on at least one surface thereof.
  • the sheet-like material of the present invention is a skin material having a very graceful appearance in clothing, such as furniture, chairs, wall coverings, seats, ceilings, and interiors in vehicle interiors such as automobiles, trains, and aircraft. Can be suitably used.
  • Average single fiber diameter A cross section perpendicular to the thickness direction of the nonwoven fabric containing the fibers of the sheet-like material was observed with a scanning electron microscope (VE-7800 manufactured by SEM KEYENCE) at a magnification of 3000 times, and randomly within a 30 ⁇ m ⁇ 30 ⁇ m field of view.
  • the diameters of 50 single fibers extracted in (1) were measured to the first decimal place in units of ⁇ m. However, this was performed at three locations, the diameter of a total of 150 single fibers was measured, and the average value was calculated to the first decimal place.
  • the fibers are excluded from the measurement target of the average fiber diameter as not corresponding to the ultrafine fibers.
  • the ultrafine fiber has an irregular cross section, first, the cross-sectional area of the single fiber was measured, and the diameter of the single fiber was calculated by calculating the diameter when the cross section was assumed to be circular. An average value of this as a population was calculated and used as the average single fiber diameter.
  • the diameters of a total of 150 holes are measured, the ratio of the number of holes having a diameter of 0.1 to 20 ⁇ m in 150 holes is calculated, and the ratio of 0.1 to 20 ⁇ m in the porous structure is calculated.
  • the percentage of fine pores is calculated.
  • the number of holes in the field of view divided by the effective area of the elastic resin is converted to the number of holes per 1600 ⁇ m 2.
  • the number per unit area of pores in the porous structure was used.
  • the pore diameter was larger than the field of view of 40 ⁇ m ⁇ 40 ⁇ m, the number of pores per unit area in the porous structure was 1.
  • Flexibility Based on method A (45 ° cantilever method) described in 8.21.1 of 8.21 “Bending softness” of JIS L 1096: 2010 “Testing method for fabrics and knitted fabrics”. Make 5 test pieces of 2 x 15 cm each, place them on a horizontal platform with a slope of 45 °, slide the test piece, read the scale when the center point of one end of the test piece touches the slope, The average value of 5 sheets was calculated. The flexibility was good at 45 mm or less.
  • Example 1 A sea-island composite fiber using polystyrene as the sea component and polyethylene terephthalate as the island component was drawn, crimped, and cut to obtain a nonwoven raw cotton. Subsequently, the obtained raw cotton was made into a fiber web using a cross wrapper, and was made into a nonwoven fabric by needle punching.
  • the nonwoven fabric composed of the sea-island type composite fibers thus obtained was impregnated with an aqueous polyvinyl alcohol solution and then dried. Thereafter, polystyrene, which is a sea component, was extracted and removed from trichlorethylene, and dried to obtain an average single fiber. A nonwoven fabric made of ultrafine fibers having a diameter of 2.0 ⁇ m was obtained.
  • the nonwoven fabric composed of the ultrafine fibers thus obtained was dipped in a resin solution in which the concentration of the polycarbonate-based polyurethane resin in DMF was adjusted to 11%, and the amount of polyurethane (PU) resin solution deposited was adjusted by a squeeze roll. Thereafter, the PU resin was coagulated in an aqueous solution having a DMF concentration of 30%, subsequently polyvinyl alcohol and DMF were removed by hot water, and dried to obtain a sheet-like material having a PU resin content of 17% by mass.
  • One side of the sheet-like material thus obtained was napped using a 180 mesh endless sandpaper, and then dyed with a disperse dye to obtain a napped leather-like sheet-like material.
  • the polyurethane resin was present only inside the nonwoven fabric, and the polyurethane resin had a porous structure with fine pores.
  • the proportion of fine pores having a pore diameter of 0.1 to 20 ⁇ m in the total pores of the porous structure was 85%, and the number of pores in the porous structure per unit area was 247/1600 ⁇ m.
  • the weight average molecular weight of the polyurethane resin measured by extracting from the napped-toned leather-like sheet was 110,000.
  • the obtained napped-leather-like sheet-like material had good nap length and dispersibility of fibers, and had excellent flexibility and crease resistance.
  • the results are shown in Table 1.
  • Examples 2 to 7, Comparative Examples 1 to 5 A napped-toned leather-like sheet-like shape in the same manner as in Example 1 except that the average single fiber diameter of the ultrafine fibers, the type of polyurethane resin, and the weight average molecular weight of the polyurethane resin were changed to those shown in Table 1, respectively. A product was made.
  • Table 1 shows the average single fiber diameter of the ultrafine fibers of each Example and Comparative Example, the type of polyurethane resin, the weight average molecular weight of the polyurethane resin, the average pore diameter of the porous structure of the polyurethane in the obtained sheet-like material, and the total porous structure The proportion of fine pores with a pore diameter of 0.1 to 20 ⁇ m in the pores, flexibility, and crease resistance were shown.
  • the polyurethane resin forms a porous structure having fine pores, and the weight average molecular weight of the polyurethane resin is adjusted to obtain an average of the pores in the porous structure.
  • the sheet-like materials of Comparative Examples 1 to 5 form a porous structure in the polyurethane resin as the weight average molecular weight of the polyurethane resin increases, but the pores are coarse and uneven, and the pore film is thick. As a result, the flexibility is lowered, and the non-uniform pore diameter prevents the entire polyurethane resin from undergoing bending deformation, resulting in poor crease resistance.

Abstract

The present invention provides a sheet-like object having an excellent flexible texture, and further, having high resistance to creases and wrinkles while being flexible. The sheet-like object according to the present invention comprises an elastic resin and a nonwoven fabric made of ultrafine fibers having an average monofilament diameter of 0.3-7 μm, wherein the surface of the sheet-like object has erected hairs formed therein, the elastic resin has a porous structure, and micropores each having a pore diameter of 0.1-20 μm account for at least 60% of all the pores in the porous structure.

Description

シート状物Sheet
 本発明は、シート状物、特に立毛調皮革様のシート状物に関するものである。 The present invention relates to a sheet-like material, particularly a sheet-like material such as napped leather.
 繊維からなる不織布等の基材にポリウレタン樹脂を含浸させたシート状物の表面を、サンドペーパーなどを用いて繊維を立毛させることによって、スエードやヌバックライクの立毛調皮革様シート状物を得ることは広く知られている。目的とする立毛調皮革様シート状物の特性は、繊維からなる基材とポリウレタン樹脂の組み合わせにより、任意に幅広く設計することができる。 To obtain suede or nubuck-like napped leather-like sheet-like material by raising the surface of the sheet-like material impregnated with polyurethane resin into a non-woven fabric base material using sandpaper etc. Is widely known. The desired properties of the raised leather-like sheet-like material can be designed in a wide variety of ways depending on the combination of the substrate made of fibers and the polyurethane resin.
 例えば、特定の構造を有するポリカーボネートポリオールと芳香族ポリイソシアネートを反応して得られるポリカーボネート系ポリウレタン樹脂を用いることにより、ポリカーボネート系ポリウレタン樹脂の柔軟性を改善し、サンドペーパーなどによる研削性の向上と、それによって発現する好ましい極細繊維の立毛長、および立毛による優美な外観やしなやかな表面タッチと柔軟な風合いを有する人工皮革を得られることが提案されている(特許文献1参照。)。 For example, by using a polycarbonate-based polyurethane resin obtained by reacting a polycarbonate polyol having a specific structure and an aromatic polyisocyanate, the flexibility of the polycarbonate-based polyurethane resin is improved, and the grindability with sandpaper is improved. It has been proposed that an artificial leather having a raised length of a preferable ultrafine fiber, an elegant appearance by the raised hair, a supple surface touch and a flexible texture can be obtained (see Patent Document 1).
 立毛調皮革様シート状物は、天然皮革に酷似した外観や表面を有し、かつ天然皮革にはない均一性や染色堅牢性などの長所が認められ、衣料用途に加えて、近年、ソファーなどの家具の表皮や自動車用のシート表皮など、長期にわたって使用される用途に広がりを見せている。中でも衣料用途においては、優れた柔軟性と耐折れシワ性を両立させる人工皮革が求められている。 Napped leather-like sheet-like material has an appearance and surface very similar to natural leather, and has advantages such as uniformity and dyeing fastness that are not found in natural leather. It is spreading to applications that are used for a long time, such as furniture skins of automobiles and seat skins for automobiles. In particular, for apparel applications, artificial leather that achieves both excellent flexibility and crease resistance is required.
 前記の提案では、従来課題とされていたポリカーボネート系ポリウレタン樹脂の硬さに対して、ポリウレタン樹脂を構成するポリカーボネートポリオールを特定の構造のものとすることにより、柔軟な人工皮革を得られることが提案されている。しかしながら、衣料用途のように柔軟な風合いが求められる用途においては、柔軟性はなお十分なものではなかった。 In the above proposal, it is proposed that a flexible artificial leather can be obtained by making the polycarbonate polyol constituting the polyurethane resin have a specific structure with respect to the hardness of the polycarbonate-based polyurethane resin, which has been regarded as a conventional problem. Has been. However, in applications that require a soft texture such as clothing, the flexibility is still not sufficient.
 また、植物由来のポリカーボネートポリオールを用いたポリウレタン樹脂を有することにより、優れた低温屈曲性と環境負荷低減に寄与する合成皮革を得られることが提案されている(特許文献2参照。)。しかしながら、この提案では、様々な分子量を有する無孔質のポリウレタン樹脂層と繊維布帛からなる合成皮革に関しては詳細に検討されている一方で、柔軟な風合いや耐折れシワ性を有する立毛調の人工皮革に関しては何ら検討されていなかった。 In addition, it has been proposed that synthetic leather contributing to excellent low-temperature flexibility and environmental load reduction can be obtained by having a polyurethane resin using plant-derived polycarbonate polyol (see Patent Document 2). However, in this proposal, a synthetic leather composed of a non-porous polyurethane resin layer having various molecular weights and a fiber fabric has been studied in detail, while an artificial nail-like material having a soft texture and a crease-resistant wrinkle resistance. No consideration was given to leather.
 また、ポリウレタン樹脂に特定の凝固調整剤を添加して微細孔を有する多孔質層を形成し、それを研削によって毛羽立てることにより、色調が変化しない優美な外観を有するスエード調皮革様シートを得られる方法が提案されている(特許文献3参照。)。しかしながら、この提案では、様々な分子量を有する無孔質のポリウレタン樹脂層、および表面層と繊維基体層に近い部分とで孔径を調整することにより、良好な風合いを達成しているが、柔軟性と耐折れシワ性を両立させる点については何ら検討されておらず、また多孔質ポリウレタン樹脂層を有することから柔軟性が損なわれていた。 In addition, a specific coagulation regulator is added to polyurethane resin to form a porous layer having fine pores, and by fuzzing it by grinding, a suede-like leather-like sheet having an elegant appearance that does not change color tone is obtained. Has been proposed (see Patent Document 3). However, in this proposal, a fine texture is achieved by adjusting the pore diameter between the nonporous polyurethane resin layer having various molecular weights and the surface layer and the portion close to the fiber substrate layer. No consideration has been given to the compatibility between crease resistance and crease resistance, and flexibility has been impaired because of the porous polyurethane resin layer.
 また別に、水分散型ポリウレタン樹脂の内部に直径10~200μmの孔を含ませることにより、ポリウレタン樹脂が良好な研削性を有するものとなり、サンドペーパーなどで研削することにより立毛を有する優美な外観のシート状物を得られる方法が提案されている(特許文献4参照。)。しかしながら、この提案では、ポリウレタン樹脂層内部の孔が20μmを超える粗大な孔である場合、孔同士の間にあるポリウレタン樹脂層の孔膜が厚くなり、ポリウレタン樹脂の研削性を高める効果と柔軟性を高める効果が十分に発揮されず、衣料用途など複雑な形状に沿って柔軟に変形することを要求される用途において十分な柔軟性とすることは困難であった。また、微細で均一な孔を得ることは困難であった。 In addition, by including pores with a diameter of 10 to 200 μm inside the water-dispersible polyurethane resin, the polyurethane resin has good grindability, and has an elegant appearance with napping by grinding with sandpaper or the like. A method for obtaining a sheet-like material has been proposed (see Patent Document 4). However, in this proposal, when the pores inside the polyurethane resin layer are coarse pores exceeding 20 μm, the pore film of the polyurethane resin layer between the pores becomes thick, and the effect and flexibility of improving the grindability of the polyurethane resin. It is difficult to achieve sufficient flexibility in applications that require flexible deformation along complicated shapes such as clothing applications. In addition, it was difficult to obtain fine and uniform holes.
 さらに、特定の孔径を有する多孔質の高分子弾性体と多孔中空繊維不織布からなる、軽量でしなやかな風合いを有する皮革様基材が得られることが提案されている(特許文献5参照。)。しかしながら、この提案では、多孔構造を有することにより柔軟な風合いとなり、均一であるが折れシワが残ることから、柔軟性と耐折れシワ性を両立することは困難であった。 Furthermore, it has been proposed that a leather-like substrate having a light and supple texture composed of a porous polymer elastic body having a specific pore size and a porous hollow fiber nonwoven fabric is obtained (see Patent Document 5). However, in this proposal, since it has a soft texture due to the porous structure, and it is uniform but creases remain, it is difficult to achieve both flexibility and crease resistance.
 以上のように、従来の技術では、柔軟性と耐折れシワ性の双方に優れた立毛調皮革様シート状物を、安定的に得ることは極めて困難であった。 As described above, with the conventional technology, it is extremely difficult to stably obtain a raised leather-like sheet-like material excellent in both flexibility and folding resistance.
WO2005/095706号WO2005 / 095706 特開2014-1475号公報JP 2014-1475 A 特開2000-303368号公報JP 2000-303368 A 特開2011-214210号公報JP 2011-214210 A 特開2012-214944号公報JP 2012-214944 A
 そこで本発明の目的は、上記従来技術の背景に鑑み、柔軟性に優れた風合いと、さらには柔軟でありながらも高い耐折れシワ性を兼ね備えた立毛調皮革様のシート状物を提供することにある。 Therefore, in view of the background of the above-described conventional technology, an object of the present invention is to provide a napped leather-like sheet-like material that has a texture excellent in flexibility, and further has a soft and high crease resistance. It is in.
 本発明は、前記課題を解決せんとするものであって、本発明のシート状物は、平均単繊維直径が0.3~7μmの極細繊維からなる不織布と弾性体樹脂からなるシート状物であって、前記のシート状物の表面には立毛を有し、前記の弾性体樹脂が多孔構造を有しており、前記の多孔構造の全孔に占める孔径0.1~20μmの微細孔の割合が60%以上のシート状物である。 The present invention is to solve the above-mentioned problems, and the sheet-like material of the present invention is a sheet-like material comprising a nonwoven fabric composed of ultrafine fibers having an average single fiber diameter of 0.3 to 7 μm and an elastic resin. The surface of the sheet-like material has napping, and the elastic resin has a porous structure, and micropores having a pore diameter of 0.1 to 20 μm occupying all the pores of the porous structure. It is a sheet-like material with a ratio of 60% or more.
 本発明のシート状物の好ましい態様によれば、前記の弾性体樹脂は、不織布の内部空間に存在していることである。 According to a preferred aspect of the sheet-like material of the present invention, the elastic resin is present in the internal space of the nonwoven fabric.
 本発明のシート状物の好ましい態様によれば、前記の弾性体樹脂は、ポリカーボネート系ポリウレタン樹脂である。 According to a preferred embodiment of the sheet-like material of the present invention, the elastic resin is a polycarbonate-based polyurethane resin.
 本発明のシート状物の好ましい態様によれば、前記のポリウレタン樹脂の重量平均分子量は、3万~15万である。 According to a preferred embodiment of the sheet-like material of the present invention, the polyurethane resin has a weight average molecular weight of 30,000 to 150,000.
 本発明のシート状物の好ましい態様によれば、前記の弾性体樹脂中の多孔構造における孔の単位断面積あたりの個数は、50個以上/1600μmである。 According to a preferred aspect of the sheet-like material of the present invention, the number of pores per unit cross-sectional area in the porous structure in the elastic resin is 50 or more / 1600 μm 2 .
 本発明によれば、柔軟性に富む高い風合いと耐折れシワ性を両立する立毛調皮革様シート状物が得られる。具体的には、本発明により、立毛による優美な外観を有し、さらに柔軟性と耐折れシワ性にも優れた立毛調皮革様シート状物が得られる。ここで、柔軟性に富む高い風合いとは、衣料用途であれば、シート状物を複雑な立体形状に仕上げることができ、さらに身体の動きに追従して変形して良好な着心地を提供できることを指し、家具や自動車内装材等の用途においては、複雑な立体形状に沿ったシート状物の成形や加工を可能とし、人が座るなどの変形に対しても柔軟に追従して良好な使用感を提供できることを指す。また、耐折れシワ性とは、折れシワ回復性に優れることであり、前記した使用時の変形等で荷重のかかるシワが発生した場合においても、荷重から開放された後、シワが跡を残すことなく回復することを指す。耐折れシワ性を発現させるにはシート状物に適度な弾性を付与する必要があり、柔軟性と相反する性質であることから、柔軟性および耐折れシワ性を両立させるのは困難であった。 According to the present invention, it is possible to obtain a napped leather-like sheet-like material which has both a high texture rich in flexibility and crease resistance. Specifically, according to the present invention, it is possible to obtain a napped leather-like sheet-like material having an elegant appearance by napping and having excellent flexibility and crease resistance. Here, the high texture that is rich in flexibility means that if it is used for clothing, the sheet can be finished into a complex three-dimensional shape, and can be deformed following the movement of the body to provide good comfort In applications such as furniture and automobile interior materials, it enables the formation and processing of sheet-like objects along complex three-dimensional shapes, and it can be used flexibly following deformation such as sitting down. It means being able to provide a feeling. In addition, the crease resistance means that the crease is excellent in recovery from crease, and even when wrinkles that are loaded due to deformation during use are generated, the wrinkles leave marks after being released from the load. It means to recover without it. Appropriate elasticity must be imparted to the sheet-like material in order to exhibit folding resistance, and it is difficult to achieve both flexibility and resistance to bending because it is incompatible with flexibility. .
 本発明のシート状物は、平均単繊維直径が0.3~7μmの極細繊維からなる不織布と弾性体樹脂からなるシート状物であって、前記のシート状物の表面には立毛を有し、前記の弾性体樹脂が多孔構造を有しており、前記の多孔構造の全孔に占める孔径0.1~20μmの微細孔の割合が60%以上のシート状物である。 The sheet-like material of the present invention is a sheet-like material made of a non-woven fabric made of ultrafine fibers having an average single fiber diameter of 0.3 to 7 μm and an elastic resin, and has a nap on the surface of the sheet-like material. The elastic resin has a porous structure, and the ratio of fine pores having a pore diameter of 0.1 to 20 μm occupying all pores of the porous structure is a sheet-like material of 60% or more.
 本発明のシート状物は、上記のように、極細繊維からなる不織布と弾性体樹脂からなるものである。 As described above, the sheet-like material of the present invention is composed of a nonwoven fabric made of ultrafine fibers and an elastic resin.
 本発明で用いられる不織布を構成する極細繊維の素材としては、ポリエチレンテレフタレート、ポリブチレンテレフタレートおよびポリトリメチレンテレフタレートなどのポリエステルや、6-ナイロンおよび66-ナイロンなどのポリアミドなどの、溶融紡糸可能な熱可塑性樹脂を用いることができる。なかでも、強度、寸法安定性および耐光性の観点から、ポリエステルが好ましく用いられる。また、不織布には、異なる他の素材の極細繊維を混合させることができる。 The material of the ultrafine fibers constituting the nonwoven fabric used in the present invention includes heat-spinnable heat such as polyesters such as polyethylene terephthalate, polybutylene terephthalate and polytrimethylene terephthalate, and polyamides such as 6-nylon and 66-nylon. A plastic resin can be used. Of these, polyester is preferably used from the viewpoints of strength, dimensional stability and light resistance. The nonwoven fabric can be mixed with ultrafine fibers of different materials.
 不織布を構成する単繊維の断面形状としては、丸断面でよいが、楕円、扁平および三角などの多角形や、扇形および十字型などの異形断面形状のものを採用することができる。 As the cross-sectional shape of the single fiber constituting the nonwoven fabric, a round cross-section may be used, but a polygonal shape such as an ellipse, a flat shape and a triangle, or a deformed cross-sectional shape such as a sector shape and a cross shape may be employed.
 不織布を構成する極細繊維の平均単繊維直径は、シート状物の柔軟性や立毛品位の観点から7μm以下であることが重要である。平均単繊維直径は、より好ましくは6μm以下であり、さらに好ましくは5μm以下である。一方、染色後の発色性やバフィングによる立毛処理時の束状繊維の分散性、およびさばけ易さの観点からは、平均単繊維直径は、0.3μm以上であることが重要である。平均単繊維直径は、より好ましくは0.7μm以上であり、さらに好ましくは1μm以上である。 It is important that the average single fiber diameter of the ultrafine fibers constituting the nonwoven fabric is 7 μm or less from the viewpoint of the flexibility of the sheet-like material and the napped quality. The average single fiber diameter is more preferably 6 μm or less, and further preferably 5 μm or less. On the other hand, from the viewpoints of color development after dyeing, dispersibility of bundled fibers during napping treatment by buffing, and ease of spreading, it is important that the average single fiber diameter is 0.3 μm or more. The average single fiber diameter is more preferably 0.7 μm or more, and further preferably 1 μm or more.
 ここでいう平均単繊維直径は、得られたシート状物を厚み方向に切断した断面を走査型電子顕微鏡(SEM)により観察し、任意の50本の極細繊維の繊維径を3ヶ所で測定して、合計150本の繊維径の平均値を算出して求められるものである。 The average single fiber diameter here refers to a cross section obtained by cutting the obtained sheet-like material in the thickness direction with a scanning electron microscope (SEM), and the fiber diameter of any 50 ultrafine fibers is measured at three locations. Thus, the average value of the diameters of a total of 150 fibers is calculated.
 本発明で用いられる極細繊維を得る手段としては、極細繊維発生型繊維を用いることが好ましい態様である。極細繊維発生型繊維は、溶剤に対する溶解性が異なる2成分の熱可塑性樹脂を海成分と島成分とし、海成分だけを溶剤などを用いて溶解除去することによって島成分を極細繊維とすることを可能にする海島型複合繊維や、2成分の熱可塑性樹脂を繊維断面放射状あるいは層状に交互に配置し、各成分を剥離分割することによって極細繊維に割繊することを可能にする剥離型複合繊維や多層型複合繊維などを採用することができる。 As a means for obtaining ultrafine fibers used in the present invention, it is preferable to use ultrafine fiber generating fibers. The ultrafine fiber generation type fiber uses two component thermoplastic resins with different solubility in solvent as sea component and island component, and dissolves and removes only sea component with solvent etc. to make island component as ultrafine fiber. Sea-island type composite fibers that can be made, and peelable composite fibers that allow two-component thermoplastic resins to be alternately arranged in a fiber cross-section radial or layered form and split into ultrafine fibers by separating and separating each component Or multilayer type composite fibers can be used.
 不織布は、極細繊維の単繊維それぞれが絡合してなる不織布や、極細繊維の繊維束が絡合してなる不織布を用いることができるが、極細繊維の繊維束が絡合してなる不織布が、シート状物の強度や風合いの観点から好ましく用いられる。さらに、柔軟性や風合いの観点から特に好ましくは、繊維束の内部の極細繊維間に適度な空隙を有する不織布が用いられる。このように、極細繊維の繊維束が絡合されてなる不織布は、極細繊維発生型繊維をあらかじめ絡合した後に極細繊維を発生させることによって得ることができる。また、繊維束の内部の極細繊維間に適度な空隙を有するものは、海成分を除去することによって島成分の間、すなわち繊維束の内部の極細繊維間に適度な空隙を与えることができる海島型複合繊維を用いることによって得ることができる。 The non-woven fabric can be a non-woven fabric formed by entanglement of single fibers of ultrafine fibers or a non-woven fabric formed by entanglement of fiber bundles of ultrafine fibers. From the viewpoint of the strength and texture of the sheet-like material, it is preferably used. Further, from the viewpoint of flexibility and texture, a nonwoven fabric having an appropriate gap between ultrafine fibers inside the fiber bundle is particularly preferably used. Thus, the nonwoven fabric in which the fiber bundles of ultrafine fibers are entangled can be obtained by generating ultrafine fibers after entanglement of the ultrafine fiber generating fibers in advance. Moreover, what has an appropriate space | gap between the ultrafine fibers inside a fiber bundle is a sea island which can give an appropriate space | gap between island components by removing a sea component, ie, an ultrafine fiber inside a fiber bundle. It can be obtained by using a mold composite fiber.
 不織布としては、短繊維不織布および長繊維不織布のいずれも用いることができるが、風合いや品位の観点から短繊維不織布が好ましく用いられる。 As the nonwoven fabric, either a short fiber nonwoven fabric or a long fiber nonwoven fabric can be used, but a short fiber nonwoven fabric is preferably used from the viewpoint of texture and quality.
 短繊維不織布における短繊維の繊維長は、25~90mmであることが好ましい。繊維長を25mm以上とすることにより、絡合により耐摩耗性に優れたシート状物を得ることができる。また、繊維長を90mm以下とすることにより、より風合いや品位に優れたシート状物を得ることができる。繊維長は、より好ましくは35~80mmであり、特に好ましくは40~70mmである。 The fiber length of the short fiber in the short fiber nonwoven fabric is preferably 25 to 90 mm. By setting the fiber length to 25 mm or more, a sheet-like material having excellent abrasion resistance can be obtained by entanglement. In addition, when the fiber length is 90 mm or less, it is possible to obtain a sheet-like product having a better texture and quality. The fiber length is more preferably 35 to 80 mm, particularly preferably 40 to 70 mm.
 極細繊維あるいはその繊維束が不織布を構成する場合、その内部に強度を向上させるなどの目的で、織物や編物を挿入することができる。用いられる織物や編物を構成する繊維の平均単繊維直径は、0.3~10μm程度であることが好ましい。 When the ultrafine fiber or its fiber bundle constitutes a nonwoven fabric, a woven fabric or a knitted fabric can be inserted for the purpose of improving the strength. The average single fiber diameter of the fibers constituting the woven fabric or knitted fabric used is preferably about 0.3 to 10 μm.
 本発明で用いられる弾性体樹脂は、多孔構造を有しており、多孔構造の全孔に占める孔径0.1~20μmの微細孔の割合は、60%以上である。この微細孔の割合は、より好ましくは70%以上であり、さらに好ましくは80%以上である。また、多孔構造は、連通孔と独立気泡も採用することができる。このように、弾性体樹脂中に微細孔を一定の割合以上有することにより、弾性樹脂の柔軟性を高めることができ、シート状物を柔軟性に富んだ風合いを有するものとすることができる。弾性体樹脂をこのような微細孔を有する多孔構造とするには、弾性体樹脂を不織布に固定する方法として、後述する湿式凝固を用いることが好ましい。 The elastic resin used in the present invention has a porous structure, and the proportion of fine pores having a pore diameter of 0.1 to 20 μm in all pores of the porous structure is 60% or more. The proportion of the fine holes is more preferably 70% or more, and further preferably 80% or more. The porous structure can also employ communication holes and closed cells. Thus, by having a micropore in a certain ratio or more in the elastic resin, the flexibility of the elastic resin can be increased, and the sheet-like material can have a soft texture. In order to make the elastic resin have a porous structure having such fine pores, it is preferable to use wet coagulation described later as a method of fixing the elastic resin to the nonwoven fabric.
 さらに弾性体樹脂を微細孔を有する多孔構造とすることにより、シート状物に折り曲げ変形を加えた際に、変形の力を弾性樹脂の一部ではなく、全体で分散して受けることができるため、弾性樹脂の座屈を伴う折れシワの発生が抑えられ、優れた耐折れシワ性を有するシート状物とすることができる。 Furthermore, since the elastic resin has a porous structure having fine pores, when bending deformation is applied to a sheet-like material, the deformation force can be distributed and received not as a part of the elastic resin. Further, the occurrence of folding wrinkles accompanied by buckling of the elastic resin is suppressed, and a sheet-like product having excellent folding wrinkle resistance can be obtained.
 また、弾性体樹脂の多孔構造の全孔のうち、60%以上の孔の孔径は、0.1μm以上であることが重要である。好ましくは0.5μm以上であり、より好ましくは1μm以上である。前記の孔径を0.1μm以上とすることにより、弾性樹脂の柔軟性を高めるとともに、変形に対するクッション性を高めることができる。一方で、弾性体樹脂の多孔構造の全孔のうち、60%以上の孔の孔径は、20μm以下であることも重要である。好ましくは15μm以下であり、より好ましくは10μm以下である。前記の孔径を20μm以下とすることにより、多孔構造の孔密度を高めることができ、柔軟性と適度な強度を両立することができ、また弾性体樹脂全体で変形の力を受けることができるため、柔軟性と耐折れシワ性に優れたシート状物とすることができる。 Also, it is important that the diameter of 60% or more of all the pores of the porous structure of the elastic resin is 0.1 μm or more. Preferably it is 0.5 micrometer or more, More preferably, it is 1 micrometer or more. By setting the hole diameter to 0.1 μm or more, the flexibility of the elastic resin can be enhanced and the cushioning property against deformation can be enhanced. On the other hand, it is also important that the hole diameter of 60% or more of all the holes of the porous structure of the elastic resin is 20 μm or less. Preferably it is 15 micrometers or less, More preferably, it is 10 micrometers or less. By setting the pore diameter to 20 μm or less, the pore density of the porous structure can be increased, both flexibility and appropriate strength can be achieved, and deformation force can be received by the entire elastic resin. Thus, a sheet-like material having excellent flexibility and crease resistance can be obtained.
 さらに、弾性体樹脂の多孔構造中の孔の単位面積あたりの数は、50個/1600μm以上であり、好ましくは70個/1600μm以上であり、より好ましくは100個/1600μm以上である。一方、多孔構造中の孔の単位面積あたりの数は、好ましくは1000個/1600μm以下であり、より好ましくは800個/1600μm以下である。 Further, the number of pores per unit area in the porous structure of the elastic resin is 50/600 μm 2 or more, preferably 70/1600 μm 2 or more, more preferably 100/1600 μm 2 or more. . On the other hand, the number of pores in the porous structure per unit area is preferably 1000/1600 μm 2 or less, and more preferably 800/1600 μm 2 or less.
 前記の単位面積あたりの孔数を50個/1600μm以上とすることにより、多孔構造を柔軟な風合いにするとともに、複数の孔によってシートの折り曲げ変形の力で受けることができ、優れた耐折れシワ性を付与することができる。単位面積あたりの孔数が少なすぎると、特定の孔に変形の力が集中して座屈し、折れシワ回復性に劣るものとなる。また、単位面積あたりの孔数が多すぎると、孔の変形余地が小さくなりすぎ、変形の力を分散できなくなり、折れシワ回復性に劣るものとなる。 By setting the number of holes per unit area to 50/1600 μm 2 or more, the porous structure can have a flexible texture, and can be received by the force of bending deformation of the sheet through a plurality of holes, and has excellent folding resistance. Wrinkle properties can be imparted. If the number of holes per unit area is too small, the deformation force concentrates on a specific hole and buckles, resulting in poor crease recovery. Moreover, when there are too many holes per unit area, the deformation | transformation space of a hole will become too small, it will become impossible to disperse | distribute the force of a deformation | transformation, and it will be inferior to a wrinkle recovery property.
 本発明で用いられる弾性体樹脂は、シート状物中で極細繊維同士を把持しており、シート状物の少なくとも片面に立毛を有する観点から、不織布の内部空間に存在していることが好ましい態様である。 The elastic resin used in the present invention preferably holds the ultrafine fibers in the sheet-like material and is present in the internal space of the nonwoven fabric from the viewpoint of having napped on at least one side of the sheet-like material. It is.
 本発明で用いられる弾性体樹脂としては、シート状物中で均一な微細孔を有するものとする点において、ポリウレタン樹脂が好ましく用いられる。また、ポリウレタン樹脂としては、ポリマージオールと有機ジイソシアネートとの反応により得られるポリウレタン樹脂が好ましく用いられる。 As the elastic resin used in the present invention, a polyurethane resin is preferably used in that it has uniform fine pores in the sheet-like material. Moreover, as a polyurethane resin, the polyurethane resin obtained by reaction of polymer diol and organic diisocyanate is used preferably.
 ポリマージオールとしては、例えば、ポリカーボネート系、ポリエステル系、ポリエーテル系、シリコーン系およびフッ素系のポリマージオールを採用することができ、これらを組み合わせた共重合体を用いることもできる。 As the polymer diol, for example, polycarbonate-based, polyester-based, polyether-based, silicone-based, and fluorine-based polymer diols can be employed, and a copolymer combining these can also be used.
 ポリウレタン樹脂に適度な剛性を付与することができ、微細孔を有する多孔構造を形成することにより、優れた柔軟性を発揮することができ、さらにポリウレタン樹脂が座屈することなく、高い耐折れシワ性を発揮することができることから、ポリカーボネート系のポリマージオールが好ましく用いられる。 Appropriate rigidity can be imparted to the polyurethane resin, and by forming a porous structure with fine pores, excellent flexibility can be exhibited, and the polyurethane resin does not buckle and has high crease resistance Therefore, polycarbonate-based polymer diol is preferably used.
 ポリカーボネート系ジオールは、アルキレングリコールと炭酸エステルのエステル交換反応、あるいはホスゲンまたはクロル蟻酸エステルとアルキレングリコールとの反応などによって製造することができる。 Polycarbonate-based diol can be produced by transesterification of alkylene glycol and carbonate, or reaction of phosgene or chloroformate with alkylene glycol.
 アルキレングリコールとしては、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、1,10-デカンジオールなどの直鎖アルキレングリコールや、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、2-メチル-1,8-オクタンジオールなどの分岐アルキレングリコール、1,4-シクロヘキサンジオールなどの脂環族ジオール、ビスフェノールAなどの芳香族ジオール、グリセリン、トリメチロールプロパン、および、ペンタエリスリトールなどが挙げられる。それぞれ単独のアルキレングリコールから得られるポリカーボネート系ジオールでも、2種類以上のアルキレングリコールから得られる共重合ポリカーボネート系ジオールのいずれも用いることができる。 Examples of alkylene glycols include ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, and 1,10-decanediol. Chain alkylene glycol, branched alkylene glycol such as neopentyl glycol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 2-methyl-1,8-octanediol, Alicyclic diols such as 1,4-cyclohexanediol, aromatic diols such as bisphenol A, glycerin, trimethylolpropane, and pentaerythritol. Either polycarbonate-based diols obtained from individual alkylene glycols or copolymerized polycarbonate-based diols obtained from two or more types of alkylene glycols can be used.
 ポリエステル系ジオールとしては、各種の低分子量ポリオールと多塩基酸とを縮合させて得られるポリエステルジオールを挙げることができる。 Examples of the polyester diol include polyester diols obtained by condensing various low molecular weight polyols and polybasic acids.
 低分子量ポリオールとしては、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、2,2-ジメチル-1,3-プロパンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,8-オクタンジオール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、シクロヘキサン-1,4-ジオール、およびシクロヘキサン-1,4-ジメタノールから選ばれる一種または二種以上を使用することができる。また、低分子量ポリオールとして、ビスフェノールAに、各種アルキレンオキサイドを付加させた付加物も使用可能である。 Examples of the low molecular weight polyol include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butanediol, 1,4-butanediol, and 2,2-dimethyl-1,3-propane. Diol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,8-octanediol, diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, cyclohexane-1,4-diol, and One or more selected from cyclohexane-1,4-dimethanol can be used. Further, as a low molecular weight polyol, an adduct obtained by adding various alkylene oxides to bisphenol A can also be used.
 また、多塩基酸としては、例えば、コハク酸、マレイン酸、アジピン酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、フタル酸、イソフタル酸、テレフタル酸、およびヘキサヒドロイソフタル酸から選ばれる一種または二種以上が挙げられる。 Polybasic acids include, for example, succinic acid, maleic acid, adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid, and hexahydro One kind or two or more kinds selected from isophthalic acid can be mentioned.
 ポリエーテル系ジオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、およびそれらを組み合わせた共重合ジオールを挙げることができる。 Examples of polyether diols include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and copolymer diols combining them.
 ポリマージオールの数平均分子量は、500~5000であることが好ましい態様である。数平均分子量を500以上、より好ましくは1500以上とすることにより、風合いが硬くなることを防ぐことができる。また、数平均分子量を5000以下、より好ましくは4000以下とすることにより、ポリウレタン樹脂としての強度を維持することができる。 The number average molecular weight of the polymer diol is preferably 500 to 5,000. By setting the number average molecular weight to 500 or more, more preferably 1500 or more, it is possible to prevent the texture from becoming hard. Moreover, the intensity | strength as a polyurethane resin is maintainable by making a number average molecular weight into 5000 or less, More preferably, 4000 or less.
 ポリウレタン樹脂の合成に用いられる有機ジイソシアネートとしては、例えば、4,4’-ジフェニルメタンジイソシアネート、パラフェニレンジイソシアネート、1,5-ナフタレンジイソシアネート、パラキシレンジイソシアネート、メタキシレンジイソシアネートなどの芳香族ジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネートなどの脂環式ジイソシアネート、および1,6-ヘキサメチレンジイソシアネートなどの脂肪族ジイソシアネートを挙げることができる。中でも、得られるポリウレタン樹脂の強度と耐熱性など耐久性の観点から、芳香族ジイソシアネート、特に4,4’-ジフェニルメタンジイソシアネートが好ましく用いられる。 Examples of the organic diisocyanate used in the synthesis of the polyurethane resin include aromatic diisocyanates such as 4,4′-diphenylmethane diisocyanate, paraphenylene diisocyanate, 1,5-naphthalene diisocyanate, paraxylene diisocyanate, metaxylene diisocyanate, and 4,4 ′. -Alicyclic diisocyanates such as dicyclohexylmethane diisocyanate, isophorone diisocyanate and aliphatic diisocyanates such as 1,6-hexamethylene diisocyanate. Of these, aromatic diisocyanates, particularly 4,4'-diphenylmethane diisocyanate, is preferably used from the viewpoint of durability such as strength and heat resistance of the resulting polyurethane resin.
 ポリウレタン樹脂の合成に用いられる鎖伸長剤としては、有機ジオール、有機ジアミン、およびヒドラジン誘導体などを用いることができる。 As the chain extender used for the synthesis of the polyurethane resin, organic diols, organic diamines, hydrazine derivatives, and the like can be used.
 有機ジオールの例としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、メチルペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオールなどの脂肪族ジオール、1,4-シクロヘキサンジオール、および水添キシリレングリコールなどの脂環式ジオール、キシレングリコールなどの芳香族ジオールを挙げることができる。 Examples of organic diols include ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, methylpentanediol, 1,6-hexanediol, 1,7-heptanediol, Aliphatic diols such as 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,4-cyclohexanediol, and alicyclic diols such as hydrogenated xylylene glycol, and aromatics such as xylene glycol Group diols can be mentioned.
 有機ジアミンの例としては、エチレンジアミン、イソホロンジアミン、キシレンジアミン、フェニルジアミン、および4,4’-ジアミノジフェニルメタンなどを挙げることができる。 Examples of organic diamines include ethylene diamine, isophorone diamine, xylene diamine, phenyl diamine, and 4,4'-diaminodiphenyl methane.
 ヒドラジン誘導体の例としては、ヒドラジン、アジピン酸ジヒドラジド、およびイソフタル酸ヒドラジドなどを挙げることができる。 Examples of hydrazine derivatives include hydrazine, adipic acid dihydrazide, and isophthalic acid hydrazide.
 ポリウレタン樹脂には、耐水性、耐摩耗性および耐加水分解性等を向上する目的で、架橋剤を併用することができる。架橋剤は、ポリウレタンに対し、第3成分として添加する外部架橋剤でもよく、またポリウレタン分子構造内に予め架橋構造となる反応点を導入する内部架橋剤を用いることもできる。 In the polyurethane resin, a crosslinking agent can be used in combination for the purpose of improving water resistance, abrasion resistance, hydrolysis resistance and the like. The cross-linking agent may be an external cross-linking agent added as a third component to the polyurethane, or an internal cross-linking agent that introduces a reaction point that becomes a cross-linked structure in advance in the polyurethane molecular structure may be used.
 ポリウレタン樹脂の合成には、触媒として、例えば、トリエチルアミン、テトラメチルブタンジアミンなどのアミン類、酢酸カリウム、ステアリン酸亜鉛、およびオクチル酸スズなどの金属化合物などを用いることができる。 For the synthesis of polyurethane resin, for example, amines such as triethylamine and tetramethylbutanediamine, metal compounds such as potassium acetate, zinc stearate, and tin octylate can be used as catalysts.
 本発明で用いられるポリウレタン樹脂の重量平均分子量(Mw)は、30,000~150,000であることが好ましく、より好ましくは50,000~130,000である。重量平均分子量(Mw)を、30,000以上とすることにより、得られるシート状物の強度を保持し、また立毛のモモケや毛玉の発生を防ぐことができる。また、重量平均分子量(Mw)を、150,000以下とすることにより、シート状物中のポリウレタン樹脂を均一な微細孔を有するものとすることができる。ポリウレタン樹脂の重量平均分子量(Mw)をこのような範囲にすることにより、後述する湿式凝固によってポリウレタン樹脂を不織布に固定した後に、非溶解性の溶剤、たとえば水を含むシート状物を加熱によって乾燥するという通常用いられる製造工程において、加熱によるポリウレタン樹脂の一時的な軟化と湿式凝固後にポリウレタン樹脂に含まれる溶解性の溶剤および非溶解性の溶剤の蒸発を起点として、均一で微細な多孔構造を得ることができるようになる。 The weight average molecular weight (Mw) of the polyurethane resin used in the present invention is preferably 30,000 to 150,000, more preferably 50,000 to 130,000. By setting the weight average molecular weight (Mw) to 30,000 or more, it is possible to maintain the strength of the obtained sheet-like material and to prevent the occurrence of nap and pills. Moreover, by setting the weight average molecular weight (Mw) to 150,000 or less, the polyurethane resin in the sheet-like material can have uniform fine pores. By setting the weight average molecular weight (Mw) of the polyurethane resin in such a range, after fixing the polyurethane resin to the nonwoven fabric by wet coagulation described later, a sheet-like material containing an insoluble solvent, such as water, is dried by heating. In the normally used manufacturing process, a uniform and fine porous structure starts with the temporary softening of the polyurethane resin by heating and the evaporation of the soluble and non-soluble solvents contained in the polyurethane resin after wet coagulation. Be able to get.
 また、弾性体樹脂には、性能や風合いを損なわない範囲で、ポリエステル系、ポリアミド系およびポリオレフィン系などのエラストマー樹脂、アクリル樹脂、およびエチレン-酢酸ビニル樹脂などを含有させることができる。また、各種の添加剤、例えば、カーボンブラックなどの顔料、リン系、ハロゲン系および無機系などの難燃剤、フェノール系、イオウ系およびリン系などの酸化止剤、ベンゾトリアゾール系、ベンゾフェノン系、サリシレート系、シアノアクリレート系およびオキザリックアシッドアニリド系などの紫外線吸収剤、ヒンダードアミン系やベンゾエート系などの光安定剤、ポリカルボジイミドなどの耐加水分解安定剤、可塑剤、耐電防止剤、界面活性剤、凝固調整剤、および染料などを含有させることができる。 In addition, the elastic resin can contain polyester-based, polyamide-based, polyolefin-based elastomer resins, acrylic resins, ethylene-vinyl acetate resins, and the like as long as performance and texture are not impaired. Further, various additives, e.g., pigments such as carbon black, a phosphorus flame retardant such as halogen-based and inorganic-based, phenol-based, oxidation prevention agent such as sulfur-based and phosphorus-based, benzotriazole-based, benzophenone-based, UV absorbers such as salicylates, cyanoacrylates and oxalic acid anilides, light stabilizers such as hindered amines and benzoates, hydrolysis stabilizers such as polycarbodiimides, plasticizers, antistatic agents, surfactants , A coagulation adjusting agent, and a dye.
 本発明のシート状物は、シート状物に占める弾性体樹脂の比率が10~50質量%であることが好ましく、より好ましくは15~35質量%である。弾性体樹脂の比率を10質量%以上とすることにより、シート状物の強度を得て、かつ繊維の脱落を防ぐことができる。また、弾性体樹脂の比率を50質量%以下とすることにより、風合いが硬くなることを防ぐことができ、目的とする良好な立毛品位を得ることができる。 In the sheet-like material of the present invention, the ratio of the elastic resin to the sheet-like material is preferably 10 to 50% by mass, and more preferably 15 to 35% by mass. By setting the ratio of the elastic resin to 10% by mass or more, the strength of the sheet-like material can be obtained, and the fibers can be prevented from falling off. Moreover, by setting the ratio of the elastic resin to 50% by mass or less, it is possible to prevent the texture from becoming hard and to obtain a desired good napped quality.
 また、弾性体樹脂を不織布に固定する方法としては、弾性体樹脂の溶液を不織布に含浸させ、湿式凝固または乾燥凝固する方法があるが、本発明のように均一で微細な多孔構造を得る観点から、湿式凝固が好ましく用いられる。弾性体樹脂として、ポリウレタン樹脂を付与させる際に用いられる溶媒としては、N,N’-ジメチルホルムアミドやジメチルスルホキシド等を用いることができる。具体的には、溶媒に溶解した弾性体樹脂溶液に、不織布を浸漬する等により、弾性体樹脂を不織布に付与し、非溶解性の溶剤に浸漬することにより凝固させることができる。また、溶解性の溶剤と非溶解性の溶剤の混合物に浸漬して凝固させることもできる。 Further, as a method of fixing the elastic resin to the nonwoven fabric, there is a method of impregnating the elastic resin solution into the nonwoven fabric and performing wet coagulation or dry coagulation, but from the viewpoint of obtaining a uniform and fine porous structure as in the present invention. Therefore, wet coagulation is preferably used. As the elastic resin, N, N′-dimethylformamide, dimethyl sulfoxide, or the like can be used as a solvent used when applying a polyurethane resin. Specifically, the elastic resin can be solidified by applying the elastic resin to the non-woven fabric by immersing the non-woven fabric in an elastic resin solution dissolved in a solvent, and immersing it in an insoluble solvent. It can also be solidified by dipping in a mixture of a soluble solvent and an insoluble solvent.
 本発明のシート状物は、立毛処理を行う前に、シート状物の厚み方向に半裁ないしは数枚に分割されて得ることもできる。 The sheet-like material of the present invention can also be obtained by dividing into half or several sheets in the thickness direction of the sheet-like material before performing the napping treatment.
 また、立毛処理の前に耐電防止剤を付与することは、研削によってシート状物から発生した研削粉がサンドペーパー上に堆積しにくくなる傾向にあるため、好ましく用いることができる。 Also, applying an antistatic agent before the napping treatment can be preferably used because the grinding powder generated from the sheet-like material by grinding tends to be difficult to deposit on the sandpaper.
 本発明のシート状物は、最終的には、その少なくとも片面に極細繊維を立毛させた立毛調皮革様シート状物として好適に用いることができ、その立毛処理は、サンドペーパーやロールサンダーなどを用いて研削する方法などにより施すことができる。良好な表面の繊維立毛を得るために、立毛処理の前にシリコーンエマルジョンなどの滑剤を付与することは好ましい態様である。 Finally, the sheet-like material of the present invention can be suitably used as a napped leather-like sheet-like material in which ultrafine fibers are raised on at least one surface, and the napping treatment is performed using sandpaper, roll sander, or the like. It can be applied by a grinding method. In order to obtain good surface fiber napping, it is a preferable embodiment to apply a lubricant such as a silicone emulsion before napping treatment.
 本発明のシート状物は、最終的にはその少なくとも片面に極細繊維を立毛させた立毛調皮革様シート状物として好適に用いることができる。 The sheet-like material of the present invention can be suitably used as a nap-finished leather-like sheet-like material in which ultrafine fibers are finally raised on at least one surface thereof.
 本発明のシート状物は、家具、椅子、壁装、自動車、電車および航空機などの車輛室内における座席、天井、および内装などの表皮材として、さらには衣料における非常に優美な外観を有する表皮材として好適に用いることができる。 The sheet-like material of the present invention is a skin material having a very graceful appearance in clothing, such as furniture, chairs, wall coverings, seats, ceilings, and interiors in vehicle interiors such as automobiles, trains, and aircraft. Can be suitably used.
 以下、実施例を用いて本発明のシート状物について、さらに具体的に説明する。 Hereinafter, the sheet-like material of the present invention will be described more specifically using examples.
 [評価方法]
 (1)平均単繊維直径:
 シート状物の繊維を含む不織布の厚さ方向に垂直な断面を、走査型電子顕微鏡(SEM キーエンス社製VE-7800型)を用いて3000倍で観察し、30μm×30μmの視野内で無作為に抽出した50本の単繊維直径をμm単位で、小数第1位まで測定した。ただし、これを3ヶ所で行い、合計150本の単繊維の直径を測定し、平均値を小数第1位までで算出した。繊維径が50μmを超える繊維が混在している場合には、当該繊維は極細繊維に該当しないものとして平均繊維径の測定対象から除外するものとする。また、極細繊維が異形断面の場合、まず単繊維の断面積を測定し、当該断面を円形と見立てた場合の直径を算出することによって単繊維の直径を求めた。これを母集団とした平均値を算出し、平均単繊維直径とした。
[Evaluation methods]
(1) Average single fiber diameter:
A cross section perpendicular to the thickness direction of the nonwoven fabric containing the fibers of the sheet-like material was observed with a scanning electron microscope (VE-7800 manufactured by SEM KEYENCE) at a magnification of 3000 times, and randomly within a 30 μm × 30 μm field of view. The diameters of 50 single fibers extracted in (1) were measured to the first decimal place in units of μm. However, this was performed at three locations, the diameter of a total of 150 single fibers was measured, and the average value was calculated to the first decimal place. When fibers having a fiber diameter of more than 50 μm are mixed, the fibers are excluded from the measurement target of the average fiber diameter as not corresponding to the ultrafine fibers. When the ultrafine fiber has an irregular cross section, first, the cross-sectional area of the single fiber was measured, and the diameter of the single fiber was calculated by calculating the diameter when the cross section was assumed to be circular. An average value of this as a population was calculated and used as the average single fiber diameter.
 (2)弾性体樹脂の多孔構造の孔径および多孔構造の全孔に占める孔径0.1~20μmの微細孔の割合:
 シート状物の弾性体樹脂を含む不織布の厚さ方向に垂直な断面を、走査型電子顕微鏡(SEM キーエンス社製VE-7800型)を用いて2000倍で観察し、40μm×40μmの視野内で無作為に抽出した50個の弾性体樹脂中の孔の孔径(直径)をμm単位で、小数第1位まで測定した。ただし、これを3ヶ所で行い、合計150個の孔の孔径を測定し、150個の孔に占める孔径0.1~20μmの孔数の割合を算出し、多孔構造に占める0.1~20μmの微細孔の割合とした。また、弾性樹脂内の孔が異形孔の場合、まず孔の断面積を測定し、当該断面を円形と見立てた場合の直径を算出することによって孔の孔径(直径)を求めた。
(2) The pore size of the porous structure of the elastic resin and the proportion of fine pores having a pore size of 0.1 to 20 μm in the total pores of the porous structure:
A cross section perpendicular to the thickness direction of the nonwoven fabric containing the elastic resin of the sheet-like material was observed at a magnification of 2000 using a scanning electron microscope (VE-7800 manufactured by SEM KEYENCE), and within a field of view of 40 μm × 40 μm. The pore diameter (diameter) of 50 randomly selected elastic resins was measured to the first decimal place in μm. However, this is performed at three locations, the diameters of a total of 150 holes are measured, the ratio of the number of holes having a diameter of 0.1 to 20 μm in 150 holes is calculated, and the ratio of 0.1 to 20 μm in the porous structure is calculated. The percentage of fine pores. When the hole in the elastic resin is an irregular hole, the cross-sectional area of the hole was first measured, and the diameter when the cross-section was assumed to be circular was calculated to obtain the hole diameter (diameter).
 (3)弾性体樹脂の多孔構造中の孔の単位面積あたりの数:
 シート状物の弾性体樹脂を含む不織布の厚さ方向に垂直な断面を、走査型電子顕微鏡(SEM キーエンス社製VE-7800型)を用いて2000倍で観察し、40μm×40μmの視野内で弾性体樹脂中の孔の数を測定した。ただし、これを3ヶ所で行い、孔の数の算術平均値を多孔構造中の孔の単位面積あたりの数とした。また、多孔構造を含む弾性体樹脂が40μm×40μmの視野よりも小さい場合、視野内にある孔の数を弾性体樹脂の有効面積で除したものを1600μmあたりの孔の数に換算して多孔構造中の孔の単位面積あたりの数とした。孔の孔径が40μm×40μmの視野よりも大きい場合、多孔構造中の孔の単位面積あたりの数は1とした。
(3) Number of pores per unit area in the porous structure of the elastic resin:
A cross section perpendicular to the thickness direction of the nonwoven fabric containing the elastic resin of the sheet-like material was observed at a magnification of 2000 using a scanning electron microscope (VE-7800 manufactured by SEM KEYENCE), and within a field of view of 40 μm × 40 μm. The number of holes in the elastic resin was measured. However, this was performed at three locations, and the arithmetic average value of the number of holes was defined as the number per unit area of the holes in the porous structure. When the elastic resin containing a porous structure is smaller than the field of view of 40 μm × 40 μm, the number of holes in the field of view divided by the effective area of the elastic resin is converted to the number of holes per 1600 μm 2. The number per unit area of pores in the porous structure was used. When the pore diameter was larger than the field of view of 40 μm × 40 μm, the number of pores per unit area in the porous structure was 1.
 (4)ポリウレタン樹脂の重量平均分子量:
 得られたシート状物から、N,N’-ジメチルホルムアミド(以下、DMFと記載することがある。)を用いてポリウレタン樹脂を抽出し、ポリウレタン樹脂濃度を1質量%となるように調整し、ゲルパーミュエーションクロマトグラフィー(GPC)により、次の条件で測定してポリウレタン樹脂の重量平均分子量を求めた
・機器 :GPC測定機 HLC-8020(東ソー株式会社製)
・カラム:TSK gel GMH-XL(東ソー株式会社製)
・溶媒 :N,N-ジメチルホルムアミド(以下、DMFと略す。)
・標準試料:ポリスチレン(TSK standard polystyrene; 東ソー株式会社製)
・温度:40℃
・流量:1.0ml/分。
(4) Weight average molecular weight of polyurethane resin:
From the obtained sheet-like material, a polyurethane resin was extracted using N, N′-dimethylformamide (hereinafter sometimes referred to as DMF), and the polyurethane resin concentration was adjusted to 1% by mass, The weight average molecular weight of the polyurethane resin was determined by gel permeation chromatography (GPC) and measured under the following conditions: Instrument: GPC measuring instrument HLC-8020 (manufactured by Tosoh Corporation)
Column: TSK gel GMH-XL (manufactured by Tosoh Corporation)
Solvent: N, N-dimethylformamide (hereinafter abbreviated as DMF)
・ Standard sample: Polystyrene (TSK standard polystyrene; manufactured by Tosoh Corporation)
・ Temperature: 40 ℃
-Flow rate: 1.0 ml / min.
 (5)柔軟性:
 JIS L 1096:2010「織物及び編物の生地試験方法」の8.21「剛軟度」の、8.21.1に記載のA法(45°カンチレバー法)に基づき、タテ方向とヨコ方向へそれぞれ2×15cmの試験片を5枚作成し、45°の角度の斜面を有する水平台へ置き、試験片を滑らせて試験片の一端の中央点が斜面と接したときのスケールを読み、5枚の平均値を求めた。柔軟性は、45mm以下を良好とした。
(5) Flexibility:
Based on method A (45 ° cantilever method) described in 8.21.1 of 8.21 “Bending softness” of JIS L 1096: 2010 “Testing method for fabrics and knitted fabrics”. Make 5 test pieces of 2 x 15 cm each, place them on a horizontal platform with a slope of 45 °, slide the test piece, read the scale when the center point of one end of the test piece touches the slope, The average value of 5 sheets was calculated. The flexibility was good at 45 mm or less.
 (6)耐折れシワ性:
 JIS L 1059-1:2009「繊維製品の防しわ性試験方法-第1部:水平折りたたみじわの回復性の測定(モンサント法)」の記載に基づき、10Nの荷重装置を用い、試験片5枚でのシワ回復角を測定して、10「しわ回復角及び防しわ率の計算」に記載の防しわ率の式によって耐折れシワ性を算出し、5枚の平均値を求めた。耐折れシワ性は、90%以上を良好とした。
(6) Folding resistance:
Based on the description of JIS L 1059-1: 2009 “Testing method for wrinkle resistance of textile products—Part 1: Measurement of horizontal folding wrinkle recovery (Monsanto method)”, test piece 5 The wrinkle recovery angle on the sheet was measured, and the crease resistance was calculated by the formula of wrinkle prevention rate described in 10 “Calculation of wrinkle recovery angle and wrinkle prevention rate”, and the average value of 5 sheets was obtained. Folding resistance of 90% or more was considered good.
 [化学物質の表記]
 実施例と比較例で用いた化学物質の略号の意味は、次のとおりである。
・PU  :ポリウレタン
・DMF :N,N-ジメチルホルムアミド。
[Notation of chemical substances]
The meanings of the abbreviations of chemical substances used in Examples and Comparative Examples are as follows.
PU: Polyurethane DMF: N, N-dimethylformamide
 (実施例1)
 海成分としてポリスチレンを用い、島成分としてポリエチレンテレフタレートを用いた海島型複合繊維を、延伸し、捲縮加工し、そしてカットして不織布の原綿を得た。続いて得られた原綿を、クロスラッパーを用いて繊維ウェブとし、ニードルパンチ処理により不織布とした。
Example 1
A sea-island composite fiber using polystyrene as the sea component and polyethylene terephthalate as the island component was drawn, crimped, and cut to obtain a nonwoven raw cotton. Subsequently, the obtained raw cotton was made into a fiber web using a cross wrapper, and was made into a nonwoven fabric by needle punching.
 このようにして得られた海島型複合繊維からなる不織布を、ポリビニルアルコール水溶液に含浸した後、乾燥し、その後、トリクロロエチレン中で海成分であるポリスチレンを抽出除去し、乾燥を行って、平均単繊維直径が2.0μmの極細繊維からなる不織布を得た。 The nonwoven fabric composed of the sea-island type composite fibers thus obtained was impregnated with an aqueous polyvinyl alcohol solution and then dried. Thereafter, polystyrene, which is a sea component, was extracted and removed from trichlorethylene, and dried to obtain an average single fiber. A nonwoven fabric made of ultrafine fibers having a diameter of 2.0 μm was obtained.
 このようにして得られた極細繊維からなる不織布を、ポリカーボネート系ポリウレタン樹脂のDMF溶液の濃度を11%に調整した樹脂液に浸漬し、絞りロールによってポリウレタン(PU)樹脂溶液の付着量を調節した後、DMF濃度が30%の水溶液中でPU樹脂を凝固し、続いて熱水によってポリビニルアルコールおよびDMFを除去し、乾燥して、PU樹脂含有量が17質量%のシート状物を得た。このようにして得られたシート状物の片面を、180メッシュのエンドレスサンドペーパーを用いて立毛処理し、次いで分散染料によって染色を施して立毛調皮革様シート状物を得た。 The nonwoven fabric composed of the ultrafine fibers thus obtained was dipped in a resin solution in which the concentration of the polycarbonate-based polyurethane resin in DMF was adjusted to 11%, and the amount of polyurethane (PU) resin solution deposited was adjusted by a squeeze roll. Thereafter, the PU resin was coagulated in an aqueous solution having a DMF concentration of 30%, subsequently polyvinyl alcohol and DMF were removed by hot water, and dried to obtain a sheet-like material having a PU resin content of 17% by mass. One side of the sheet-like material thus obtained was napped using a 180 mesh endless sandpaper, and then dyed with a disperse dye to obtain a napped leather-like sheet-like material.
 得られた皮革様シート状物の内部の厚み方向断面を走査型電子顕微鏡(SEM)で観察したところ、ポリウレタン樹脂は不織布内部にのみ存在しており、また、ポリウレタン樹脂は微細孔を有する多孔構造となっており、多孔構造の全孔に占める孔径0.1~20μmの微細孔の割合は85%であり、多孔構造中の孔の単位面積あたりの数は247個/1600μmであった。また、立毛調皮革様シート状物から抽出して測定したポリウレタン樹脂の重量平均分子量は11万であった。 When the cross section in the thickness direction inside the obtained leather-like sheet was observed with a scanning electron microscope (SEM), the polyurethane resin was present only inside the nonwoven fabric, and the polyurethane resin had a porous structure with fine pores. The proportion of fine pores having a pore diameter of 0.1 to 20 μm in the total pores of the porous structure was 85%, and the number of pores in the porous structure per unit area was 247/1600 μm. Moreover, the weight average molecular weight of the polyurethane resin measured by extracting from the napped-toned leather-like sheet was 110,000.
 得られた立毛調皮革様シート状物は、繊維の立毛長と分散性が良好で、優れた柔軟性と耐折れシワ性を有していた。結果を、表1に示す。 The obtained napped-leather-like sheet-like material had good nap length and dispersibility of fibers, and had excellent flexibility and crease resistance. The results are shown in Table 1.
 (実施例2~7、比較例1~5)
 極細繊維の平均単繊維直径、ポリウレタン樹脂の種類、およびポリウレタン樹脂の重量平均分子量を、それぞれ表1に示したものに変更したこと以外は、実施例1と同様にして、立毛調皮革様シート状物を作製した。
(Examples 2 to 7, Comparative Examples 1 to 5)
A napped-toned leather-like sheet-like shape in the same manner as in Example 1 except that the average single fiber diameter of the ultrafine fibers, the type of polyurethane resin, and the weight average molecular weight of the polyurethane resin were changed to those shown in Table 1, respectively. A product was made.
 各実施例と比較例における皮革様シート状物の内部の厚み方向断面を走査型電子顕微鏡(SEM)によって観察したところ、ポリウレタン樹脂は微細孔を有する多孔構造となっており、ポリウレタン樹脂は不織布内部にのみ存在していた。 When the cross section in the thickness direction inside the leather-like sheet material in each Example and Comparative Example was observed with a scanning electron microscope (SEM), the polyurethane resin had a porous structure with fine pores, and the polyurethane resin was inside the nonwoven fabric. Was only present.
 表1に各実施例と比較例の極細繊維の平均単繊維直径、ポリウレタン樹脂の種類、ポリウレタン樹脂の重量平均分子量、得られたシート状物中のポリウレタンの多孔構造の平均孔径、多孔構造の全孔に占める孔径0.1~20μmの微細孔の割合、柔軟性、および耐折れシワ性を示した。 Table 1 shows the average single fiber diameter of the ultrafine fibers of each Example and Comparative Example, the type of polyurethane resin, the weight average molecular weight of the polyurethane resin, the average pore diameter of the porous structure of the polyurethane in the obtained sheet-like material, and the total porous structure The proportion of fine pores with a pore diameter of 0.1 to 20 μm in the pores, flexibility, and crease resistance were shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~7のいずれの立毛調皮革様シート状物も、ポリウレタン樹脂は微細孔を有する多孔構造を形成しており、またポリウレタン樹脂の重量平均分子量を調整し、多孔構造中の孔の平均径および多孔構造の全孔に占める0.1~20μmの微細孔の割合、多孔構造中の孔の単位面積あたりの数、を調整することにより、優れた柔軟性および耐折れシワ性を両立している。これに対し、比較例1~5のシート状物は、ポリウレタン樹脂の重量平均分子量の増大に伴い、ポリウレタン樹脂に多孔構造を形成するが、孔が粗大かつ不均一なものとなり、孔膜が厚くなることによって柔軟性が低下しており、また孔径が不均一であることによって折り曲げ変形をポリウレタン樹脂全体で受けることができず、耐折れシワ性にも劣るものとなった。 In any napped leather-like sheet-like material of Examples 1 to 7, the polyurethane resin forms a porous structure having fine pores, and the weight average molecular weight of the polyurethane resin is adjusted to obtain an average of the pores in the porous structure. By adjusting the diameter and the proportion of fine pores of 0.1 to 20 μm in the total pores of the porous structure and the number of pores per unit area in the porous structure, both excellent flexibility and crease resistance are achieved. ing. In contrast, the sheet-like materials of Comparative Examples 1 to 5 form a porous structure in the polyurethane resin as the weight average molecular weight of the polyurethane resin increases, but the pores are coarse and uneven, and the pore film is thick. As a result, the flexibility is lowered, and the non-uniform pore diameter prevents the entire polyurethane resin from undergoing bending deformation, resulting in poor crease resistance.

Claims (5)

  1.  平均単繊維直径が0.3~7μmの極細繊維からなる不織布と弾性体樹脂からなるシート状物であって、前記シート状物の表面には立毛を有し、前記弾性体樹脂が多孔構造を有しており、前記多孔構造の全孔に占める孔径0.1~20μmの微細孔の割合が60%以上であることを特徴とするシート状物。 A sheet-like material made of a non-woven fabric made of ultrafine fibers having an average single fiber diameter of 0.3 to 7 μm and an elastic resin, and the surface of the sheet-like material has nappings, and the elastic resin has a porous structure. And a sheet-like material characterized in that the proportion of fine pores having a pore diameter of 0.1 to 20 μm in all the pores of the porous structure is 60% or more.
  2.  弾性体樹脂が、不織布の内部空間に存在していることを特徴とする請求項1記載のシート状物。 The sheet-like material according to claim 1, wherein the elastic resin is present in the internal space of the nonwoven fabric.
  3.  弾性体樹脂が、ポリカーボネート系ポリウレタン樹脂であることを特徴とする請求項1または2記載のシート状物。 3. The sheet-like material according to claim 1, wherein the elastic resin is a polycarbonate-based polyurethane resin.
  4.  ポリウレタン樹脂の重量平均分子量が、3万~15万であることを特徴とする請求項3記載のシート状物。 The sheet-like material according to claim 3, wherein the polyurethane resin has a weight average molecular weight of 30,000 to 150,000.
  5.  弾性体樹脂中の多孔構造における孔の単位断面積あたりの個数が50個以上/1600μmであることを特徴とする請求項1~4のいずれか記載のシート状物。 5. The sheet-like material according to claim 1, wherein the number of pores per unit cross-sectional area in the porous structure in the elastic resin is 50 or more / 1600 μm 2 .
PCT/JP2017/046354 2017-01-23 2017-12-25 Sheet-like object WO2018135243A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/477,920 US20190368124A1 (en) 2017-01-23 2017-12-25 Sheet-like material
EP17892458.5A EP3572580B1 (en) 2017-01-23 2017-12-25 Sheet-like object
JP2017567502A JP7043841B2 (en) 2017-01-23 2017-12-25 Sheet-like material
CN201780083809.7A CN110191987B (en) 2017-01-23 2017-12-25 Sheet-like article
KR1020197019835A KR20190104536A (en) 2017-01-23 2017-12-25 Sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-009507 2017-01-23
JP2017009507 2017-01-23

Publications (1)

Publication Number Publication Date
WO2018135243A1 true WO2018135243A1 (en) 2018-07-26

Family

ID=62908948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046354 WO2018135243A1 (en) 2017-01-23 2017-12-25 Sheet-like object

Country Status (7)

Country Link
US (1) US20190368124A1 (en)
EP (1) EP3572580B1 (en)
JP (1) JP7043841B2 (en)
KR (1) KR20190104536A (en)
CN (1) CN110191987B (en)
TW (1) TW201833406A (en)
WO (1) WO2018135243A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116110A1 (en) * 2018-12-03 2020-06-11 株式会社クラレ Napped artificial leather
EP3816343A1 (en) 2019-10-30 2021-05-05 Asahi Kasei Kabushiki Kaisha Artificial leather and production method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113696587A (en) * 2021-09-15 2021-11-26 清远市齐力合成革有限公司 Skin-feel silkete soft polyurethane synthetic leather with 3D effect

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303368A (en) 1999-04-26 2000-10-31 Kuraray Co Ltd Suede finish leather-like sheet
WO2005095706A1 (en) 2004-03-30 2005-10-13 Toray Industries, Inc. Sheetlike products and interior finishing materials
JP2011214210A (en) 2010-03-16 2011-10-27 Toray Ind Inc Sheet-like article and method for producing the same
JP2012214944A (en) 2011-03-31 2012-11-08 Kuraray Co Ltd Leather-like base material, artificial leather using the same and abrasive pad
JP2014001475A (en) 2012-06-18 2014-01-09 Seiren Co Ltd Synthetic leather
JP2014065980A (en) * 2012-09-24 2014-04-17 Kuraray Co Ltd Leather-like sheet and method of producing leather-like sheet
WO2015098271A1 (en) * 2013-12-25 2015-07-02 Dic株式会社 Porous body and polishing pad

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4198523B2 (en) 2002-05-20 2008-12-17 株式会社クラレ Leather-like sheet and method for producing the same
CN101525847B (en) * 2004-03-30 2011-01-19 东丽株式会社 Sheet and interior material
EP3112530B1 (en) * 2014-02-27 2023-11-22 Toray Industries, Inc. A sheet-like article and a production method thereof
KR20170072893A (en) * 2014-10-24 2017-06-27 도레이 카부시키가이샤 Sheet-like article

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303368A (en) 1999-04-26 2000-10-31 Kuraray Co Ltd Suede finish leather-like sheet
WO2005095706A1 (en) 2004-03-30 2005-10-13 Toray Industries, Inc. Sheetlike products and interior finishing materials
JP2011214210A (en) 2010-03-16 2011-10-27 Toray Ind Inc Sheet-like article and method for producing the same
JP2012214944A (en) 2011-03-31 2012-11-08 Kuraray Co Ltd Leather-like base material, artificial leather using the same and abrasive pad
JP2014001475A (en) 2012-06-18 2014-01-09 Seiren Co Ltd Synthetic leather
JP2014065980A (en) * 2012-09-24 2014-04-17 Kuraray Co Ltd Leather-like sheet and method of producing leather-like sheet
WO2015098271A1 (en) * 2013-12-25 2015-07-02 Dic株式会社 Porous body and polishing pad

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3572580A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116110A1 (en) * 2018-12-03 2020-06-11 株式会社クラレ Napped artificial leather
JP7455072B2 (en) 2018-12-03 2024-03-25 株式会社クラレ Raised artificial leather
EP3816343A1 (en) 2019-10-30 2021-05-05 Asahi Kasei Kabushiki Kaisha Artificial leather and production method therefor

Also Published As

Publication number Publication date
CN110191987B (en) 2022-05-13
JPWO2018135243A1 (en) 2019-11-07
KR20190104536A (en) 2019-09-10
EP3572580A4 (en) 2020-11-18
EP3572580A1 (en) 2019-11-27
EP3572580B1 (en) 2021-09-08
TW201833406A (en) 2018-09-16
JP7043841B2 (en) 2022-03-30
CN110191987A (en) 2019-08-30
US20190368124A1 (en) 2019-12-05

Similar Documents

Publication Publication Date Title
JP5919627B2 (en) Manufacturing method of sheet-like material
JP6007900B2 (en) Sheet material and method for producing the same
JPWO2015115290A1 (en) Sheet material and method for producing the same
JP2013112905A (en) Sheet-like material
JP7043841B2 (en) Sheet-like material
JPWO2016052189A1 (en) Manufacturing method of sheet-like material
JP6277591B2 (en) Sheet material and method for producing the same
JP2008106415A (en) Sheet body
JP4983470B2 (en) Sheet material, manufacturing method thereof, interior material using the same, clothing material, and industrial material
JP2008208499A (en) Sheet-like article and method for producing the same
JP2006307000A (en) Polyurethane composition, sheet-like product using the same and interior material
JP5070852B2 (en) Manufacturing method of sheet-like material
JP2017172074A (en) Sheet-like article and manufacturing method therefor
JP5162837B2 (en) Sheet material, method for producing the same, and interior material and clothing material using the same
JP6645432B2 (en) Sheet-like material and method for producing the same
JP2008208498A (en) Sheet-like article and method for producing sheet-like article
JP4392255B2 (en) Napped leather-like sheet
JP2006306999A (en) Polyurethane composition, sheet-like product using the same and interior material
JP4867398B2 (en) Manufacturing method of sheet-like material
WO2015037528A1 (en) Sheet-shaped object and process for producing same
EP4321679A2 (en) Artificial leather
JP2010216034A (en) Method for manufacturing sheet-like material
EP4253645A1 (en) Artificial leather and method for manufacturing same
JP2014019983A (en) Sheet-like object and production method of the same
JP5387653B2 (en) Sheet

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017567502

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892458

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197019835

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017892458

Country of ref document: EP