WO2018135117A1 - Separator structure, nickel-zinc secondary battery, and zinc-air secondary battery - Google Patents

Separator structure, nickel-zinc secondary battery, and zinc-air secondary battery Download PDF

Info

Publication number
WO2018135117A1
WO2018135117A1 PCT/JP2017/041082 JP2017041082W WO2018135117A1 WO 2018135117 A1 WO2018135117 A1 WO 2018135117A1 JP 2017041082 W JP2017041082 W JP 2017041082W WO 2018135117 A1 WO2018135117 A1 WO 2018135117A1
Authority
WO
WIPO (PCT)
Prior art keywords
ldh
separator
adhesive
porous substrate
zinc
Prior art date
Application number
PCT/JP2017/041082
Other languages
French (fr)
Japanese (ja)
Inventor
直美 橋本
雅晴 梶田
恵里 浅野
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2018562900A priority Critical patent/JP6803927B2/en
Publication of WO2018135117A1 publication Critical patent/WO2018135117A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a separator structure, a nickel zinc secondary battery, and a zinc-air secondary battery.
  • zinc secondary batteries such as nickel zinc secondary battery and air zinc secondary battery
  • metallic zinc is deposited in a dendrite shape from the negative electrode during charging, and reaches the positive electrode through the voids of a separator such as a nonwoven fabric. It is known to cause a short circuit. Such short circuit due to zinc dendrite repeatedly shortens the charge / discharge life.
  • Patent Document 1 International Publication No. 2013/118561 discloses that an LDH separator is provided between a positive electrode and a negative electrode in a nickel zinc secondary battery.
  • Patent Document 2 International Publication No. 2016/076047 discloses a separator structure including an LDH separator fitted or joined to a resin outer frame, and the LDH separator is gas impermeable and It is disclosed that it has high density enough to have water impermeability.
  • an LDH separator is used in the form of a composite plate combined with a porous substrate.
  • Patent Document 3 International Publication No. 2016/039349 discloses a configuration in which an LDH separator is bonded to a resin outer frame via an adhesive.
  • epoxy resin adhesives from the viewpoint of adhesiveness and alkali resistance, epoxy resin adhesives, natural resin adhesives, modified olefin resins are used for resin outer frames made of ABS resin, modified polyphenylene ether, and polypropylene resin.
  • An adhesive selected from a base adhesive and a modified silicone resin adhesive is used.
  • the LDH separator as described above can effectively prevent a short circuit between positive and negative electrodes due to zinc dendrite in a nickel-zinc battery, but further improvement in the performance of the nickel-zinc battery is desired.
  • the bonding portion between the composite plate including the LDH separator and the porous substrate and the resin outer frame Improvement of airtightness or liquid tightness is desired.
  • the porous base material side of the composite plate and the concave portion of the resin outer frame are now used.
  • the inventors obtained knowledge that an LDH separator structure excellent in reliability and durability can be provided by facing the surface and deeply soaking the adhesive into the porous substrate.
  • an object of the present invention is to improve reliability and durability in a separator structure including an LDH separator with a porous substrate in a resin outer frame.
  • a separator structure for a zinc secondary battery A composite plate comprising a layered double hydroxide (LDH) separator and a porous substrate provided on one side of the LDH separator; A resin outer frame having an opening into which the composite plate is fitted; With The resin outer frame has a recess that locks the porous substrate side of the composite plate along its inner periphery, and the recess and the composite plate are sealed and bonded with an adhesive,
  • the porous substrate has a thickness of 100 ⁇ m or more, and a portion of the porous substrate that faces the recess is infiltrated with the adhesive over a depth of 100 ⁇ m or more from the surface of the porous substrate.
  • a separator structure is provided.
  • a positive electrode comprising nickel hydroxide and / or nickel oxyhydroxide
  • a negative electrode comprising zinc, a zinc alloy and / or zinc oxide
  • An electrolyte containing an alkali metal hydroxide aqueous solution Separating the positive electrode and the negative electrode so that hydroxide ions can be conducted; and
  • a nickel zinc secondary battery is provided.
  • an air electrode comprising zinc, a zinc alloy and / or zinc oxide
  • An electrolyte containing an alkali metal hydroxide aqueous solution The separator structure for separating the air electrode and the negative electrode so that hydroxide ions can be conducted; and A zinc-air secondary battery is provided.
  • FIG. 2 is an enlarged view microscopically illustrating an adhesion portion of the separator structure shown in FIG. 1. It is a SEM image which shows the surface microstructure of the functional layer produced in Example A1. It is a SEM image which shows the cross-sectional microstructure of the functional layer produced in Example A1. It is a cross-sectional SEM image of the porous base material soaked with the adhesive agent produced in Example B1. FIG. 3B is a cross-sectional SEM image obtained by magnifying and observing the penetration interface portion shown in FIG. 3A. It is the photograph which image
  • FIG. 4B is a cross-sectional SEM image obtained by magnifying and observing the penetration interface portion shown in FIG. 4A. It is the photograph which image
  • FIG. 5 is an exploded perspective view of a measurement sealed container used in a denseness determination test of Examples B1 to B5.
  • FIG. 3 is a schematic cross-sectional view of a measurement system used in a denseness determination test of Examples B1 to B5.
  • FIG. 8B is a schematic cross-sectional view of a sample holder used in the measurement system shown in FIG. It is a figure which shows the structure of the sample produced in the tensile strength test of Examples B1-B6. It is a schematic cross section which shows the conventional separator structure. It is an enlarged view of the adhesion part of the separator structure shown by FIG. 8A.
  • FIG. 8B is a schematic cross-sectional view showing a separator structure in which the directions of the LDH separator and the porous substrate are reversed in the separator structure shown in FIG. 8A. It is an enlarged view of the junction part of the separator structure shown by FIG. 9A.
  • the separator structure of the present invention is used for a zinc secondary battery.
  • the zinc secondary battery is a nickel zinc secondary battery, a silver zinc oxide secondary battery, a manganese zinc secondary battery, a zinc-air secondary battery, and various other types of alkaline zinc secondary batteries, such as LDH separators.
  • a nickel zinc secondary battery and a zinc-air secondary battery are preferable, and a nickel zinc battery is particularly preferable.
  • a battery to which the separator structure can be applied may be a unit battery having a pair of a positive electrode and a negative electrode, or a stacked battery including two or more pairs of a positive electrode and a negative electrode, that is, two or more unit cells. May be.
  • the stacked battery may be a series-type stacked battery or a parallel-type stacked battery.
  • a zinc secondary battery in which the separator structure of the present invention is incorporated includes a positive electrode, a negative electrode, an electrolytic solution, and a separator structure. What is necessary is just to select a positive electrode and a negative electrode suitably according to the kind of secondary battery, respectively.
  • the positive electrode includes nickel hydroxide and / or nickel oxyhydroxide
  • the negative electrode includes zinc, a zinc alloy, and / or zinc oxide.
  • the positive electrode is an air electrode
  • the negative electrode contains zinc, a zinc alloy, and / or zinc oxide.
  • the separator structure is a structure including an LDH separator, and is provided so as to isolate the positive electrode and the negative electrode so as to conduct hydroxide ions.
  • a typical electrolyte includes an aqueous alkali metal hydroxide solution.
  • the separator structure 10 includes a composite plate 12 and a resin outer frame 18.
  • the composite plate 12 includes an LDH separator 14 and a porous substrate 16 provided on one side of the LDH separator 14.
  • the resin outer frame 18 includes an opening 18a, and the composite plate 12 is fitted into the opening 18a.
  • the resin outer frame 18 has a concave portion 18b that locks the porous substrate 16 side of the composite plate 12 along its inner periphery, and the concave portion 18b and the composite plate 12 are sealed and bonded with an adhesive 20. .
  • the porous substrate 16 has a thickness of 100 ⁇ m or more, and the portion facing the concave portion 18b of the porous substrate 16 is 100 ⁇ m from the surface of the porous substrate 16 as depicted in an enlarged view in FIG.
  • the adhesive 20 is soaked over the depth D described above.
  • the fact that the adhesive 20 soaks into the porous substrate 16 means that the pores in the porous substrate 16 are filled with the adhesive 20.
  • the composite plate 12 including the LDH separator 14 and the porous base material 16 is sealed and bonded to the resin outer frame 18 with the adhesive 20, the porous base material 16 side of the composite plate 12 is connected to the resin outer frame. Reliability and durability can be improved by facing the 18 recesses 18b and deeply soaking the adhesive 20 into the porous substrate 16.
  • FIG. 8A a separator structure in which the composite plate 12 is sealed and bonded to the resin outer frame 18 with the LDH separator 14 side facing the concave portion 18b of the resin outer frame 18 is already present.
  • It is known see, for example, Patent Document 2. That is, a structure in which the LDH separator 14 side of the composite plate 12 is positioned on the narrow side of the opening 18a and the porous substrate 16 side of the composite plate 12 is positioned on the wide side of the opening 18a is already known.
  • the LDH separator 14 and the resin outer frame 18 are bonded via the adhesive 20, so that a dense and excellent airtight or liquid-tight property as shown in FIG.
  • the direction of the composite plate 12 is reversed, specifically, the porous base material 16 side is opposed to the concave portion 18b of the resin outer frame 18.
  • a configuration in which the resin outer frame 18 is sealed and joined is conceivable. That is, the LDH separator 14 side of the composite plate 12 is positioned on the wide side of the opening 18a, and the porous substrate 16 side of the composite plate 12 is positioned on the narrow side of the opening 18a.
  • the zinc dendrite that develops from the negative electrode 24 during charging grows in a direction (compression direction; indicated by an arrow in FIG. 9A) that presses the bonded portion toward the concave portion 18b. improves.
  • FIG. 9A compression direction
  • the portion of the porous substrate 16 that faces the recess 18 b is the surface of the porous substrate 16.
  • the porous substrate 16 side of the composite plate 12 is opposed to the concave portion 18b of the resin outer frame 18, and the adhesive 20 is deeply soaked into the porous substrate 16, thereby improving reliability and durability.
  • the adhesive 20 (preferably an alkali-resistant resin) is deeply infiltrated into the porous substrate 16, the porous substrate 16 is porous even if the contact area between the LDH separator 14 and the adhesive 20 is extremely small. Airtightness and liquid-tightness can be ensured by the portion filled with the adhesive 20 of the base material 16, and high reliability of the bonded portion is ensured. In addition, since the adhesive 20 penetrates deeply into the porous base material 16, an improvement in the adhesive strength can be expected. Although this structure can be said to be a structure in which the adhesive 20 (preferably an alkali-resistant resin) has penetrated the end face of the porous substrate 16, the adhesive 20 is bonded to the composite plate 12 (especially the porous substrate 16).
  • the adhesion interface in the separator structure 10 of the present invention is not an interface where the surfaces are merely two-dimensionally bonded, but is more difficult to peel off due to a more three-dimensional adhesion structure due to the penetration of the adhesive. .
  • the composite plate composite plate 12 includes an LDH separator 14 and a porous substrate 16 provided on one side of the LDH separator 14.
  • the LDH separator 14 is a separator containing layered double hydroxide (LDH), and separates the positive electrode plate and the negative electrode plate so as to conduct hydroxide ions when incorporated in a zinc secondary battery. That is, the LDH separator 14 functions as a hydroxide ion conductive separator.
  • a preferred LDH separator 14 is gas impermeable and / or water impermeable. In other words, the LDH separator 14 is preferably so dense that it has impermeability and / or water impermeability.
  • “having gas impermeability” means that the gas impermeability is evaluated by the “denseness determination test” employed in the evaluation 4 of Example A1 described later or a method or configuration equivalent thereto.
  • “having water impermeability” means that water that contacts one surface side of the measurement object (for example, LDH separator) does not permeate the other surface side (see, for example, Patent Document 2). ). That is, the fact that the LDH separator 14 has gas impermeability and / or water impermeability means that the LDH separator 14 has a high degree of denseness that does not allow gas or water to pass through, and has water permeability.
  • the LDH separator 14 can selectively pass only hydroxide ions due to its hydroxide ion conductivity, and can exhibit a function as a battery separator. For this reason, it has a very effective configuration for physically preventing penetration of the separator by zinc dendrite generated during charging and preventing a short circuit between the positive and negative electrodes. Since the LDH separator 14 has hydroxide ion conductivity, it enables efficient transfer of necessary hydroxide ions between the positive electrode plate and the negative electrode plate, and realizes a charge / discharge reaction in the positive electrode plate and the negative electrode plate. Can do.
  • the LDH separator 14 preferably has a He permeability per unit area of 10 cm / min ⁇ atm or less, more preferably 5.0 cm / min ⁇ atm or less, and even more preferably 1.0 cm / min ⁇ atm or less. . It can be said that the LDH separator having the He permeability in such a range has extremely high density. Therefore, an LDH separator having a He permeability of 10 cm / min ⁇ atm or less can prevent substances other than hydroxide ions from passing at a high level when applied as a separator in a zinc secondary battery. For example, permeation of zinc ions and / or zincate ions in the electrolytic solution can be extremely effectively suppressed.
  • the He permeability a process of supplying He gas to one side of the separator or the functional layer to allow the He gas to pass through the separator or the functional layer, and calculating the He permeability to evaluate the density of the separator or the functional layer. It is measured through the process.
  • the He permeability is F / (P ⁇ S) using the He gas permeation amount F per unit time, the differential pressure P applied to the separator or functional layer when He gas permeates, and the membrane area S through which He gas permeates.
  • He gas permeability index defined by the above-described formula
  • objective evaluation regarding the denseness can be easily performed regardless of differences in various sample sizes and measurement conditions. In this way, it is possible to simply, safely and effectively evaluate whether the LDH separator has sufficiently high density suitable for a zinc secondary battery separator.
  • the measurement of He permeability can be preferably performed according to the procedure shown in Evaluation 5 of Example A1 described later.
  • the LDH separator 14 preferably contains a layered double hydroxide (LDH), more preferably LDH.
  • LDH is composed of a plurality of hydroxide base layers and an intermediate layer interposed between the plurality of hydroxide base layers.
  • the hydroxide base layer is mainly composed of metal elements (typically metal ions) and OH groups.
  • the intermediate layer of LDH is composed of anions and H 2 O.
  • the anion is a monovalent or higher anion, preferably a monovalent or divalent ion.
  • the anion in LDH comprises OH - and / or CO 3 2- .
  • LDH has excellent ionic conductivity due to its inherent properties.
  • LDH is M 2+ 1-x M 3+ x (OH) 2 A n ⁇ x / n ⁇ mH 2 O (where M 2+ is a divalent cation and M 3+ is a trivalent cation).
  • a n ⁇ is an n-valent anion, n is an integer of 1 or more, x is 0.1 to 0.4, and m is 0 or more). It is known as a representative.
  • M 2+ may be any divalent cation, and preferred examples include Mg 2+ , Ca 2+ and Zn 2+ , and more preferably Mg 2+ .
  • M 3+ may be any trivalent cation, but preferred examples include Al 3+ or Cr 3+ , and more preferred is Al 3+ .
  • a n- can be any anion, but preferred examples include OH - and CO 3 2- .
  • M 2+ comprises Mg 2+
  • M 3+ comprises Al 3+
  • a n-is OH - and / or CO preferably contains 3 2-.
  • n is an integer of 1 or more, preferably 1 or 2.
  • x is 0.1 to 0.4, preferably 0.2 to 0.35.
  • m is an arbitrary number which means the number of moles of water, and is a real number of 0 or more, typically more than 0 or 1 or more.
  • the above basic composition formula is merely a formula of “basic composition” that is typically exemplified with respect to LDH in general, and the constituent ions can be appropriately replaced.
  • the constituent ions can be appropriately replaced.
  • it may be replaced with some or all of the M 3+ tetravalent or higher valency cations in the basic formula, in which case, the anion A coefficient of n-x / n in the general formula May be changed as appropriate.
  • the hydroxide base layer of LDH may be composed of Ni, Ti, OH groups and possibly inevitable impurities.
  • the intermediate layer of LDH is composed of an anion and H 2 O.
  • the alternate layered structure of the hydroxide basic layer and the intermediate layer itself is basically the same as the commonly known alternate layered structure of LDH, but the LDH of this embodiment is mainly composed of Ni, By comprising Ti and OH groups, excellent alkali resistance can be exhibited.
  • an element for example, Al
  • the LDH of this embodiment can also exhibit high ionic conductivity suitable for use as a separator for an alkaline secondary battery.
  • Ni in LDH can take the form of nickel ions.
  • the nickel ions in LDH are typically considered to be Ni 2+ , but are not particularly limited because other valences such as Ni 3+ may also exist.
  • Ti in LDH can take the form of titanium ions.
  • the titanium ion in LDH is typically considered to be Ti 4+ , but is not particularly limited because other valences such as Ti 3+ may also exist.
  • Inevitable impurities are optional elements that can be inevitably mixed in the manufacturing process, and can be mixed in LDH, for example, derived from raw materials and base materials.
  • the hydroxide base layer is mainly composed of Ni 2+ , Ti 4+ and OH groups
  • the corresponding LDH has the general formula: Ni 2+ 1-x Ti 4+ x (OH) 2 An - 2x / n ⁇ mH 2 O (wherein, a n-n-valent anion, n is an integer of 1 or more, preferably 1 or 2, 0 ⁇ x ⁇ 1, preferably 0.01 ⁇ x ⁇ 0.5, m is 0 or more, typically greater than 0 or 1 or more real number).
  • the hydroxide basic layer of LDH may contain Ni, Al, Ti and OH groups.
  • the intermediate layer is composed of an anion and H 2 O.
  • the alternate layered structure of the hydroxide basic layer and the intermediate layer itself is basically the same as the generally known alternate layered structure of LDH, but the LDH of this embodiment uses the basic hydroxide layer of LDH as Ni, Al.
  • the LDH of this embodiment uses the basic hydroxide layer of LDH as Ni, Al.
  • the LDH of this embodiment is thought to be because Al, which was previously thought to be easily eluted in an alkaline solution, is less likely to be eluted in an alkaline solution due to some interaction with Ni and Ti.
  • the LDH of this embodiment can also exhibit high ionic conductivity suitable for use as a separator for an alkaline secondary battery.
  • Ni in LDH can take the form of nickel ions.
  • the nickel ions in LDH are typically considered to be Ni 2+ , but are not particularly limited because other valences such as Ni 3+ may also exist.
  • Al in LDH can take the form of aluminum ions.
  • Aluminum ions in LDH are typically considered to be Al 3+ , but are not particularly limited because other valences are possible.
  • Ti in LDH can take the form of titanium ions.
  • the titanium ion in LDH is typically considered to be Ti 4+ , but is not particularly limited because other valences such as Ti 3+ may also exist.
  • the hydroxide base layer may contain other elements or ions as long as it contains Ni, Al, Ti and OH groups. However, it is preferable that the hydroxide base layer contains Ni, Al, Ti, and OH groups as main components. That is, the hydroxide base layer is preferably mainly composed of Ni, Al, Ti and OH groups. Therefore, the hydroxide base layer is typically composed of Ni, Al, Ti, OH groups and possibly inevitable impurities. Inevitable impurities are optional elements that can be inevitably mixed in the manufacturing process, and can be mixed in LDH, for example, derived from raw materials and base materials. As described above, since the valences of Ni, Al, and Ti are not necessarily certain, it is impractical or impossible to specify LDH strictly by a general formula.
  • the hydroxide base layer is mainly composed of Ni 2+ , Al 3+ , Ti 4+ and OH groups
  • the corresponding LDH has the general formula: Ni 2+ 1-xy Al 3+ x Ti 4+ y (OH) 2 A n ⁇ (x + 2y) / n ⁇ mH 2 O
  • a n ⁇ is an n-valent anion
  • n is an integer of 1 or more, preferably 1 or 2, and 0 ⁇ x ⁇ 1, preferably 0.01 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 1, preferably 0.01 ⁇ y ⁇ 0.5, 0 ⁇ x + y ⁇ 1, m is 0 or more, typically 0.
  • the LDH separator 14 is combined with the porous substrate 16. That is, the LDH separator 14 may be a composite material including an LDH film and a porous substrate, or may be a composite material in which LDH is filled in the pores of the porous substrate (in this case, LDH There may be no film). A combination of both may also be used. That is, a configuration in which part of the LDH film is incorporated in the pores of the porous substrate may be used. In this case, the functional layer exhibiting the separator function is composed of a film-shaped portion made of an LDH film and a composite portion made of LDH and a porous substrate.
  • the porous substrate 16 has water permeability, and therefore, when incorporated in a zinc secondary battery, the electrolyte solution can reach the LDH separator 14. As a result, the hydroxide ions can be stably held by the LDH separator 14. Further, since the strength can be imparted by the porous substrate 16, the LDH separator 14 can be made thin to reduce the resistance.
  • the thickness of the porous substrate is 100 ⁇ m or more, preferably 100 to 600 ⁇ m, more preferably 100 to 500 ⁇ m, still more preferably 100 to 400 ⁇ m, particularly preferably 100 to 350 ⁇ m, and most preferably 100 to 300 ⁇ m. With such a thickness, sufficient strength can be imparted, and a deeper penetration portion of the adhesive 20 can be secured, thereby improving the air tightness or liquid tightness of the adhesive portion.
  • the porous substrate 16 is preferably composed of at least one selected from the group consisting of a ceramic material, a metal material, and a polymer material, more preferably a ceramic material and / or a polymer material, still more preferably. It is a polymer material. More preferably, the porous substrate is made of a ceramic material. In this case, preferable examples of the ceramic material include alumina, zirconia, titania, magnesia, spinel, calcia, cordierite, zeolite, mullite, ferrite, zinc oxide, silicon carbide, and any combination thereof, and more preferable.
  • Preferred examples of the metal material include aluminum, zinc, and nickel.
  • Preferred examples of the polymer material include polystyrene, polyethersulfone, polypropylene, epoxy resin, polyphenylene sulfide, hydrophilic fluororesin (tetrafluorinated resin: PTFE, etc.), cellulose, nylon, polyethylene, and any combination thereof. Is mentioned. It is more preferable to appropriately select a material excellent in alkali resistance as the resistance to the battery electrolyte from the various preferable materials described above.
  • the LDH separator 14 has an LDH film composed of an aggregate of a plurality of LDH plate-like particles, and the plurality of LDH plate-like particles have their plate surfaces on the surface of the porous substrate 16 (with a porous structure). It is oriented in a direction that intersects perpendicularly or obliquely with the main surface of the porous substrate when macroscopic observations resulting from negligible microscopic unevenness are observed.
  • the LDH film may be at least partially incorporated in the pores of the porous base material 16, and in that case, LDH plate-like particles may also exist in the pores of the porous base material 16.
  • LDH crystals are known to have the form of plate-like particles having a layered structure
  • the vertical or oblique orientation is a very advantageous property for the LDH separator 14.
  • the oriented LDH-containing separator has a much higher hydroxide ion conductivity in the direction in which the LDH plate-like particles are oriented (that is, the direction parallel to the LDH layer) than the conductivity in the direction perpendicular thereto. This is because of the conductivity anisotropy.
  • the conductivity (S / cm) in the orientation direction is one digit higher than the conductivity (S / cm) in the direction perpendicular to the orientation direction.
  • the above vertical or oblique alignment maximizes or significantly extracts the conductivity anisotropy that the LDH alignment body can have in the layer thickness direction (that is, the direction perpendicular to the surface of the LDH film or the porous substrate 16).
  • the conductivity in the layer thickness direction can be maximized or significantly increased.
  • the LDH film since the LDH film has a film form, lower resistance than the bulk form LDH can be realized. An LDH film having such an orientation easily conducts hydroxide ions in the layer thickness direction.
  • the LDH separator 14 preferably has a thickness of 100 ⁇ m or less, more preferably 75 ⁇ m or less, still more preferably 50 ⁇ m or less, particularly preferably 25 ⁇ m or less, and most preferably 5 ⁇ m or less.
  • the resistance of the LDH separator 14 can be reduced.
  • the lower limit of the thickness of the LDH separator 14 is not particularly limited because it varies depending on the application, but in order to ensure a certain degree of rigidity desired as a functional film such as a separator, the thickness is preferably 1 ⁇ m or more. Preferably it is 2 micrometers or more.
  • the manufacturing method of the composite plate 12, that is, the LDH separator 14 combined with the porous substrate 16 is not particularly limited, and is manufactured by referring to a known manufacturing method of an LDH separator (for example, Patent Documents 1 to 3). be able to.
  • the resin outer frame 18 has an opening 18a, and the composite plate 12 is fitted into the opening 18a. Moreover, the resin outer frame 18 has a recess 18b that locks the porous substrate 16 side of the composite plate 12 along its inner periphery. Accordingly, the size of the opening 18a is slightly smaller than that of the composite plate 12, but the size of the contour shape of the recess 18b is equal to or slightly larger than that of the composite plate 12. The presence of the resin outer frame 18 can reinforce the end of the composite plate 12, thereby preventing damage to the end of the composite plate 12 and improving reliability, and handling the composite plate 12. It becomes easy. Therefore, the assembly of the zinc secondary battery is facilitated. The resin outer frame 18 itself can also contribute to the prevention of zinc dendrite penetration and extension.
  • the resin constituting the resin outer frame 18 is preferably a resin having resistance to alkali metal hydroxide such as potassium hydroxide, more preferably polyolefin resin, ABS resin, polypropylene (PP) resin, polyethylene (PE).
  • a resin or a modified polyphenylene ether more preferably an ABS resin, a polypropylene (PP) resin, a polyethylene (PE) resin, or a modified polyphenylene ether, and particularly preferably an ABS resin or a modified polyphenylene from the viewpoint of alkali resistance and adhesiveness.
  • the modified polyphenylene ether may be a compound (for example, m-PPE / PS) combined with another polymer (for example, polystyrene).
  • the concave portion 18 b of the adhesive resin outer frame 18 and the composite plate 12 are sealed and bonded with an adhesive 20.
  • the portion of the porous substrate 16 that faces the concave portion 18b is infiltrated with the adhesive 20 from the surface of the porous substrate 16 over a predetermined depth D.
  • the penetration depth D of the adhesive 20 into the porous substrate 16 is 100 ⁇ m or more from the surface of the porous substrate 16, preferably 100 to 600 ⁇ m, more preferably 100 to 500 ⁇ m, still more preferably 100 to 400 ⁇ m, Particularly preferred is 100 to 350 ⁇ m, and most preferred is 100 to 300 ⁇ m.
  • Such a penetration depth can be realized by selecting an adhesive having a low viscosity.
  • the adhesive having a low viscosity can be, for example, an adhesive that does not contain a thickener or a filler (for example, Si component) or has a small content of the thickener or the filler.
  • the adhesive 20 preferably contains a resin having alkali resistance in order to prevent deterioration in an alkaline electrolyte.
  • the preferable adhesive 20 is at least one selected from the group consisting of an epoxy resin adhesive, a natural resin adhesive, a modified olefin resin adhesive, and a modified silicone resin adhesive. These adhesives are all excellent in adhesion to both ceramics and resin.
  • An epoxy resin adhesive is preferable because it is particularly excellent in alkali resistance.
  • the epoxy resin adhesive is not limited to what is called an epoxy adhesive as long as it is an adhesive mainly composed of an epoxy resin, and various epoxy adhesives such as an epoxy amide adhesive and an epoxy-modified silicone adhesive.
  • An agent may be used.
  • either a one-component type (heat curing type) or a two-component mixed type may be used.
  • Epoxy resins are generally high in crosslink density, and thus have low water absorption, and are considered to suppress reaction with an alkaline electrolyte (for example, KOH aqueous solution).
  • the epoxy resin-based adhesive preferably has a glass transition temperature Tg of 40 ° C. or higher, more preferably 43 ° C.
  • epoxy resin adhesives include epoxy amide adhesives, epoxy modified silicone adhesives, epoxy adhesives, epoxy modified amide adhesives, epoxy polysulfide adhesives, epoxy acid anhydride adhesives, and epoxy nitrile adhesives. However, epoxy amide adhesives and epoxy adhesives are particularly preferred.
  • the above-mentioned epoxy resin adhesive is a thermosetting adhesive, but a natural resin adhesive and / or a modified olefin resin adhesive can also be used as the thermoplastic resin adhesive.
  • the thermoplastic resin-based adhesive preferably has a softening point of 80 ° C. or higher (specifically, an R & B softening point), more preferably 90 ° C. or higher, and still more preferably 95 to 160 ° C.
  • the higher the softening point the more difficult it is to react. Therefore, the alkali resistance is improved at the above temperature.
  • the separator structure 10 as a whole can have gas impermeability and / or water impermeability.
  • Example A1 Production of composite plate containing LDH separator and porous substrate A functional layer containing LDH and a composite material were produced and evaluated by the following procedure.
  • the functional layer in this example is a layer corresponding to an “LDH separator”, specifically, a layer including an LDH film and LDH in a porous substrate.
  • the composite material in this example corresponds to a “composite plate”.
  • porous substrate 70 parts by weight of a dispersion medium (xylene: butanol 1: 1) and binder (polyvinyl butyral: Sekisui Chemical) with respect to 100 parts by weight of alumina powder (AES-12, manufactured by Sumitomo Chemical Co., Ltd.) BM-2 manufactured by Kogyo Co., Ltd. 11.1 parts by weight, 5.5 parts by weight of a plasticizer (DOP: manufactured by Kurokin Kasei Co., Ltd.), and 2.9 parts by weight of a dispersant (Rheodor SP-O30 manufactured by Kao Corporation)
  • a dispersant Rosodor SP-O30 manufactured by Kao Corporation
  • the slurry was molded into a sheet shape on a PET film using a tape molding machine so that the film thickness after drying was 220 ⁇ m to obtain a sheet molded body.
  • the obtained molded body was cut out to have a size of 2.0 cm ⁇ 2.0 cm ⁇ thickness 0.022 cm and fired at 1300 ° C. for 2 hours to obtain an alumina porous substrate.
  • the porosity of the porous substrate was measured by the Archimedes method and found to be 40%.
  • the average pore diameter of the porous substrate was measured, it was 0.3 ⁇ m.
  • the average pore diameter was measured by measuring the longest distance of the pores based on an electron microscope (SEM) image of the surface of the porous substrate. The magnification of the electron microscope (SEM) image used for this measurement is 20000 times. All obtained pore diameters are arranged in order of size, and the top 15 points and the bottom 15 points are arranged in order from the average value. An average value for two visual fields was calculated at 30 points to obtain an average pore diameter. For length measurement, the length measurement function of SEM software was used.
  • magnesium nitrate hexahydrate (Mg (NO 3) 2 ⁇ 6H 2 O, manufactured by Kanto Chemical Co., Inc.), aluminum nitrate nonahydrate (Al (NO 3) 3 ⁇ 9H 2 O, manufactured by Kanto Chemical Co., Ltd.) and urea ((NH 2 ) 2 CO, manufactured by Sigma-Aldrich) were prepared.
  • Mg (NO 3) 2 ⁇ 6H 2 O manufactured by Kanto Chemical Co., Inc.
  • Al (NO 3) 3 ⁇ 9H 2 O manufactured by Kanto Chemical Co., Ltd.
  • urea ((NH 2 ) 2 CO, manufactured by Sigma-Aldrich)
  • ion exchange water was added to make a total volume of 70 ml.
  • the substrate was taken out from the sealed container, washed with ion-exchanged water, dried at 70 ° C. for 10 hours, and a part of the functional layer containing LDH was incorporated into the porous substrate. Got in shape.
  • the thickness of the functional layer obtained was about 3 ⁇ m (including the thickness of the portion incorporated in the porous substrate).
  • Evaluation 1 Identification of functional layer
  • the crystal phase of the functional layer was measured with an X-ray diffractometer (RINT TTR III manufactured by Rigaku Corporation) under the measurement conditions of voltage: 50 kV, current value: 300 mA, measurement range: 10 to 70 °.
  • an XRD profile was obtained.
  • JCPDS card NO. Identification was performed using a diffraction peak of LDH (hydrotalcite compound) described in 35-0964. As a result, it was identified from the obtained XRD profile that the functional layer was LDH (hydrotalcite compound).
  • Evaluation 2 Observation of microstructure
  • the surface microstructure of the functional layer was observed with a scanning electron microscope (SEM, JSM-6610LV, manufactured by JEOL) at an acceleration voltage of 10 to 20 kV. Further, after obtaining a cross-sectional polished surface of a functional layer (a film-shaped portion made of an LDH film and a composite portion made of LDH and a base material) with an ion milling device (manufactured by Hitachi High-Technologies Corporation, IM4000) The structure was observed by SEM under the same conditions as the observation of the surface microstructure, and as a result, the SEM images of the surface microstructure and the cross-sectional microstructure of the functional layer were as shown in FIGS.
  • SEM scanning electron microscope
  • the functional layer was composed of a film-shaped portion made of an LDH film and a composite portion made of LDH and a porous substrate located under the film-shaped portion.
  • the LDH constituting the part is composed of an aggregate of a plurality of plate-like particles, and the plurality of plate-like particles are such that the plate surface is negligible on the surface of the porous substrate (fine irregularities due to the porous structure can be ignored).
  • Macroscopic view The surface of the porous substrate is oriented perpendicularly or obliquely to the surface of the porous substrate.On the other hand, the composite portion is filled with LDH in the pores of the porous substrate to form a dense layer. It was composed.
  • Evaluation 3 Elemental analysis evaluation (EDS) Polishing was performed with a cross section polisher (CP) so that the cross-section polished surface of the functional layer (a film-like portion made of an LDH film and a composite portion made of LDH and a substrate) could be observed.
  • FE-SEM ULTRA55, manufactured by Carl Zeiss
  • a cross-sectional image of the functional layer was obtained in one field of view at a magnification of 10,000 times.
  • Examples B1 to B5 (1) Production of porous substrate An alumina porous substrate was produced in the same manner as in Example A1. The porosity of the obtained porous substrate was 40%. The average pore diameter of the porous substrate was 0.3 ⁇ m.
  • Adhesive A Epoxy two-component adhesive (Henkel Japan, Hysol E30CL)
  • Adhesive B Epoxy two-component adhesive (viscosity adjusted using bisphenol A type epoxy resin as the main agent and modified alicyclic polyamine as the curing agent)
  • Adhesive C Epoxy two-component adhesive (viscosity adjusted using bisphenol A type epoxy resin as the main agent and modified alicyclic polyamine as the curing agent)
  • Adhesive D Epoxy 1-pack type adhesive (Cemedine, Inc., Cemedine EP171)
  • Adhesive E Epoxy two-component adhesive (Cemedine, Inc., Cemedine EP008)
  • the epoxy two-component adhesive includes an epoxy resin as a main agent and a polyamine type as a curing agent.
  • the epoxy one-part adhesive includes a mixture of an epoxy resin and an epoxy curing agent.
  • the viscosity of the main agent and the viscosity of the curing agent shown in Table 1 are values described in the product catalog of each adhesive, and the viscosity after mixing shown in Table 1 is manually mixed for 3 minutes and then allowed to stand for 5 minutes. The displayed value is 120 seconds after the sample is put into the viscometer receiver and the measurement is started.
  • the mixing ratio, pot life, and curing conditions shown in Table 1 adopt values described in the product catalog of each adhesive.
  • Adhesives A, B, C, or E were weighed so as to have the mixing ratio shown in Table 1, mixed with a spatula for 1 minute, and then defoamed with a defoamer at 2000 rpm for 1 minute.
  • the adhesive 20 was applied to the recess 18b of the resin outer frame 18 with a spatula, and the alumina porous substrate 16 was placed thereon.
  • the resin outer frame 18 is made of modified polyphenylene ether (ZYRON (registered trademark) EV103).
  • the four corners of the porous substrate 16 were lightly pressed toward the resin outer frame 18 so that the adhesive 20 was attached to the end face of the alumina porous substrate 16. Then, the adhesive 20 was cured by allowing to stand under the curing conditions shown in Table 1. After the adhesive 20 was cured, the bonded portion of the obtained sample was cut out and the cross section was mechanically polished. The polished cross section was observed with an SEM, and the depth from the surface of the porous substrate 16 where the adhesive 20 soaked (that is, the soaking depth) was measured. The measured penetration depth was as shown in Table 1.
  • FIG. 3A shows a cross-sectional SEM image of the sample obtained in Example B1
  • FIG. 3B shows a cross-sectional SEM image obtained by observing the penetration interface portion in an enlarged manner.
  • the adhesive A is sufficiently infiltrated into the alumina porous substrate over a depth of 170 ⁇ m.
  • FIG. 3C shows the photograph which image
  • FIG. 4A the cross-sectional SEM image of the sample obtained in Comparative Example B5 is shown in FIG. 4A, while the cross-sectional SEM image obtained by magnifying and observing the penetration interface portion is shown in FIG. 4B.
  • the penetration of the adhesive E into the alumina porous substrate was as shallow as about 50 ⁇ m in depth.
  • FIG. 4C the photograph which image
  • the square white area shown in FIG. 4C is a porous substrate, but no noticeable discoloration due to penetration of the adhesive A was observed in the outer peripheral portion of the porous substrate. From this point, it can be said that the penetration of the adhesive into the porous substrate was insufficient.
  • Example B4 As shown in FIGS. 1A and 1B, the adhesive D was applied to the recess 18b of the resin outer frame 18 with a spatula, and the alumina porous substrate 16 was placed thereon.
  • the resin outer frame 18 is made of modified polyphenylene ether (ZYRON (registered trademark) EV103).
  • ZYRON registered trademark
  • the four corners of the porous base material 16 were lightly pressed toward the resin outer frame 17 so that the adhesive 20 was attached to the end face of the alumina porous base material 16.
  • the adhesive 20 was cured by allowing to stand under the curing conditions shown in Table 1. After the adhesive 20 was cured, the bonded portion of the obtained sample was cut out and the cross section was mechanically polished. The polished cross section was observed with an SEM, and the depth from the surface of the porous substrate 16 where the adhesive 20 soaked (that is, the soaking depth) was measured. The measured penetration depth was as shown in Table 1.
  • Example A1 composite plate comprising an LDH separator and a porous substrate
  • Example A1 composite plate comprising an LDH separator and a porous substrate
  • the composite plate 12 was bonded to the resin outer frame 18 to obtain the separator structure 10.
  • Ten separator structure samples were prepared for each adhesive. The following denseness determination test and He permeability measurement were performed, and the ratio of the samples in which the airtightness was confirmed in 10 samples for each adhesive was determined, and was defined as the airtightness securing ratio.
  • the obtained airtightness securing ratio was as shown in Table 1.
  • a density determination test was performed as follows. First, as shown in FIGS. 5A and 5B, an acrylic container 130 without a lid and a separator structure 10 having a shape and size that can function as a lid for the acrylic container 130 were prepared. The acrylic container 130 is formed with a gas supply port 130a for supplying gas therein. Then, the separator structure 10 was adhered to the upper end of the acrylic container 130 in a gas-tight and liquid-tight manner using a silicone adhesive 138 so as to completely close the open portion of the acrylic container 130, thereby obtaining a measurement sealed container 140. .
  • the measurement sealed container 140 was placed in a water tank 142, and the gas supply port 130 a of the acrylic container 130 was connected to a pressure gauge 144 and a flow meter 146 so that helium gas could be supplied into the acrylic container 130.
  • Water 143 was put into the water tank 142 and the measurement sealed container 140 was completely submerged.
  • the inside of the measurement container 140 is sufficiently airtight and liquid-tight, and the LDH separator 14 side of the separator structure 10 is exposed to the internal space of the measurement container 140, while the porous substrate 140 The material 16 side is in contact with the water in the water tank 142.
  • helium gas was introduced into the measurement sealed container 140 into the acrylic container 130 via the gas supply port 130a.
  • the pressure gauge 144 and the flow meter 146 are controlled so that the differential pressure inside and outside the LDH separator 14 becomes 0.5 atm (that is, the pressure applied to the side in contact with the helium gas is 0.5 atm higher than the water pressure applied to the opposite side). Then, it was observed whether or not helium gas bubbles were generated in the water from the separator structure 10. As a result, when generation
  • He transmission measurement> In order to evaluate the denseness and airtightness of the separator structure 10 from the viewpoint of He permeability, a He permeation test was performed as follows. First, the He transmittance measurement system 310 shown in FIGS. 6A and 6B was constructed.
  • the He permeability measurement system 310 is a separator in which He gas from a gas cylinder filled with He gas is supplied to a sample holder 316 via a pressure gauge 312 and a flow meter 314 (digital flow meter), and is held by the sample holder 316.
  • the structure 10 is configured to be transmitted from one surface to the other surface and discharged.
  • the sample holder 316 has a structure including a gas supply port 316a, a sealed space 316b, and a gas discharge port 316c, and was assembled as follows.
  • Support members 328a and 328b (made of PTFE) provided with gaskets made of butyl rubber as sealing members 326a and 326b at the upper and lower ends of the separator structure 10 and further provided with openings made of flanges from the outside of the sealing members 326a and 326b. ).
  • the sealed space 316b was partitioned by the separator structure 10, the sealing member 326a, and the support member 328a.
  • the separator structure 10 was arrange
  • the support members 328a and 328b were firmly fastened to each other by fastening means 330 using screws so that He gas leakage did not occur from a portion other than the gas discharge port 316c.
  • a gas supply pipe 334 was connected to the gas supply port 316 a of the sample holder 316 assembled in this way via a joint 332.
  • He gas was supplied to the He permeability measurement system 310 via the gas supply pipe 334 and permeated through the separator structure 10 held in the sample holder 316.
  • the gas supply pressure and the flow rate were monitored by the pressure gauge 312 and the flow meter 314.
  • the He permeability was calculated. The calculation of the He permeability is based on the permeation amount F (cm 3 / min) of He gas per unit time, the differential pressure P (atm) applied to the LDH separator 14 during He gas permeation, and the membrane area S ( cm 2 ) and calculated by the formula of F / (P ⁇ S).
  • the permeation amount F (cm 3 / min) of He gas was directly read from the flow meter 314. Further, as the differential pressure P, the gauge pressure read from the pressure gauge 312 was used. The He gas was supplied so that the differential pressure P was in the range of 0.05 to 0.90 atm. As a result, when the He permeability of the separator structure 10 was less than 1.0 cm / min ⁇ atm, it was determined that the separator structure 10 had extremely high density and airtightness.
  • Example B4 As shown in Table 1, in Examples B1 to B4, the penetration depth of the adhesive reached 100 ⁇ m or more, and as a result, the airtightness securing ratio was 10 out of 10 samples, that is, 100%. On the other hand, in Example B5 which is a comparative example, the penetration depth of the adhesive did not reach 100 ⁇ m, and as a result, the airtightness securing ratio was 7 out of 10 samples, that is, 70%.

Abstract

Disclosed is a separator structure for a zinc secondary battery. This separator structure is provided with: a composite plate comprising a layered double hydroxide (LDH) separator and a porous substrate provided to one side of the LDH separator; and a resin outer frame having an opening in which the composite plate is to be fitted. The resin outer frame has a recess for locking the porous substrate side of the composite plate along the inner periphery of the resin outer frame, and the recess and the composite plate are seal-jointed with an adhesive. The porous substrate has a thickness of at least 100 μm, and the portion of the porous substrate that faces the recess is impregnated with the adhesive down to a depth of at least 100 μm from the surface of the porous substrate. The present invention makes it possible to improve reliability and durability of a separator structure in which a porous substrate-equipped LDH separator is provided in a resin outer frame.

Description

セパレータ構造体、ニッケル亜鉛二次電池及び亜鉛空気二次電池Separator structure, nickel-zinc secondary battery, and zinc-air secondary battery
 本発明は、セパレータ構造体、ニッケル亜鉛二次電池及び亜鉛空気二次電池に関する。 The present invention relates to a separator structure, a nickel zinc secondary battery, and a zinc-air secondary battery.
 ニッケル亜鉛二次電池、空気亜鉛二次電池等の亜鉛二次電池では、充電時に負極から金属亜鉛がデンドライト状に析出し、不織布等のセパレータの空隙を貫通して正極に到達し、その結果、短絡を引き起こすことが知られている。このような亜鉛デンドライトに起因する短絡は繰り返し充放電寿命の短縮を招く。 In zinc secondary batteries such as nickel zinc secondary battery and air zinc secondary battery, metallic zinc is deposited in a dendrite shape from the negative electrode during charging, and reaches the positive electrode through the voids of a separator such as a nonwoven fabric. It is known to cause a short circuit. Such short circuit due to zinc dendrite repeatedly shortens the charge / discharge life.
 上記問題に対処すべく、水酸化物イオンを選択的に透過させながら、亜鉛デンドライトの貫通を阻止する、層状複水酸化物(LDH)セパレータを備えた電池が提案されている。例えば、特許文献1(国際公開第2013/118561号)には、ニッケル亜鉛二次電池においてLDHセパレータを正極及び負極間に設けることが開示されている。また、特許文献2(国際公開第2016/076047号)には、樹脂製外枠に嵌合又は接合されたLDHセパレータを備えたセパレータ構造体が開示されており、LDHセパレータがガス不透過性及び/又は水不透過性を有する程の高い緻密性を有することが開示されている。また、この文献にはLDHセパレータが多孔質基材と複合化された複合板の形で用いられることも開示されている。 In order to cope with the above problem, a battery having a layered double hydroxide (LDH) separator that selectively penetrates hydroxide ions and prevents penetration of zinc dendrite has been proposed. For example, Patent Document 1 (International Publication No. 2013/118561) discloses that an LDH separator is provided between a positive electrode and a negative electrode in a nickel zinc secondary battery. Patent Document 2 (International Publication No. 2016/076047) discloses a separator structure including an LDH separator fitted or joined to a resin outer frame, and the LDH separator is gas impermeable and It is disclosed that it has high density enough to have water impermeability. This document also discloses that an LDH separator is used in the form of a composite plate combined with a porous substrate.
 また、特許文献3(国際公開第2016/039349号)には、LDHセパレータが接着剤を介して樹脂製外枠に接着された構成が開示されている。この文献では、接着性及び耐アルカリ性の観点から、ABS樹脂、変性ポリフェニレンエーテル、及びポリプロピレン樹脂で構成される樹脂製外枠に対して、エポキシ樹脂系接着剤、天然樹脂系接着剤、変性オレフィン樹脂系接着剤及び変成シリコーン樹脂系接着剤から選択される接着剤が用いられている。 Further, Patent Document 3 (International Publication No. 2016/039349) discloses a configuration in which an LDH separator is bonded to a resin outer frame via an adhesive. In this document, from the viewpoint of adhesiveness and alkali resistance, epoxy resin adhesives, natural resin adhesives, modified olefin resins are used for resin outer frames made of ABS resin, modified polyphenylene ether, and polypropylene resin. An adhesive selected from a base adhesive and a modified silicone resin adhesive is used.
国際公開第2013/118561号International Publication No. 2013/118561 国際公開第2016/076047号International Publication No. 2016/076047 国際公開第2016/039349号International Publication No. 2016/039349
 上述したようなLDHセパレータは、ニッケル亜鉛電池において、亜鉛デンドライトによる正負極間の短絡を効果的に防止することができるが、ニッケル亜鉛電池の性能の更なる改善が望まれる。特に、亜鉛デンドライトによる正負極間の短絡をより効果的に回避するためには、電解液を正負極間で完全に遮断することが望まれる。この点、特許文献2及び3に開示されるようなセパレータ構造体においても、信頼性向上の観点から、LDHセパレータ及び多孔質基材を含む複合板と樹脂製外枠との間の接着部分の気密性ないし液密性の改善が望まれる。また、アルカリ電解液中での電池の充放電運転を伴う長期使用における、接着部分の耐久性の改善も望まれる。 The LDH separator as described above can effectively prevent a short circuit between positive and negative electrodes due to zinc dendrite in a nickel-zinc battery, but further improvement in the performance of the nickel-zinc battery is desired. In particular, in order to more effectively avoid a short circuit between the positive and negative electrodes due to zinc dendrite, it is desired to completely block the electrolyte solution between the positive and negative electrodes. In this respect, also in the separator structure as disclosed in Patent Documents 2 and 3, from the viewpoint of improving the reliability, the bonding portion between the composite plate including the LDH separator and the porous substrate and the resin outer frame Improvement of airtightness or liquid tightness is desired. In addition, it is also desired to improve the durability of the bonded portion in long-term use involving battery charge / discharge operation in an alkaline electrolyte.
 本発明者らは、今般、LDHセパレータ及び多孔質基材を含む複合板を樹脂製外枠に接着剤で封止接合するに際し、複合板の多孔質基材側を樹脂製外枠の凹部と対向させ、かつ、接着剤を多孔質基材に深く染み込ませることで、信頼性及び耐久性に優れたLDHセパレータ構造体を提供できるとの知見を得た。 In the present invention, when sealing and bonding a composite plate including an LDH separator and a porous base material to a resin outer frame with an adhesive, the porous base material side of the composite plate and the concave portion of the resin outer frame are now used. The inventors obtained knowledge that an LDH separator structure excellent in reliability and durability can be provided by facing the surface and deeply soaking the adhesive into the porous substrate.
 したがって、本発明の目的は、多孔質基材付きLDHセパレータを樹脂製外枠内に備えたセパレータ構造体において、信頼性及び耐久性を改善することにある。 Therefore, an object of the present invention is to improve reliability and durability in a separator structure including an LDH separator with a porous substrate in a resin outer frame.
 本発明の一態様によれば、亜鉛二次電池用セパレータ構造体であって、
 層状複水酸化物(LDH)セパレータ、及び前記LDHセパレータの片側に設けられる多孔質基材を含む複合板と、
 前記複合板が嵌合される開口部を備えた樹脂製外枠と、
を備え、
 前記樹脂製外枠が、その内周に沿って前記複合板の前記多孔質基材側を係止する凹部を有し、前記凹部と前記複合板が接着剤で封止接合されており、
 前記多孔質基材が100μm以上の厚さを有し、かつ、前記多孔質基材の前記凹部と対向する部分が前記多孔質基材の表面から100μm以上の深さにわたって前記接着剤が染み込んでいる、セパレータ構造体が提供される。
According to one aspect of the present invention, there is provided a separator structure for a zinc secondary battery,
A composite plate comprising a layered double hydroxide (LDH) separator and a porous substrate provided on one side of the LDH separator;
A resin outer frame having an opening into which the composite plate is fitted;
With
The resin outer frame has a recess that locks the porous substrate side of the composite plate along its inner periphery, and the recess and the composite plate are sealed and bonded with an adhesive,
The porous substrate has a thickness of 100 μm or more, and a portion of the porous substrate that faces the recess is infiltrated with the adhesive over a depth of 100 μm or more from the surface of the porous substrate. A separator structure is provided.
 本発明の他の一態様によれば、水酸化ニッケル及び/又はオキシ水酸化ニッケルを含む正極と、
 亜鉛、亜鉛合金及び/又は酸化亜鉛を含む負極と、
 アルカリ金属水酸化物水溶液を含む電解液と、
 前記正極と前記負極とを水酸化物イオン伝導可能に隔離する、前記セパレータ構造体と、
を備えた、ニッケル亜鉛二次電池が提供される。
According to another aspect of the invention, a positive electrode comprising nickel hydroxide and / or nickel oxyhydroxide,
A negative electrode comprising zinc, a zinc alloy and / or zinc oxide;
An electrolyte containing an alkali metal hydroxide aqueous solution;
Separating the positive electrode and the negative electrode so that hydroxide ions can be conducted; and
A nickel zinc secondary battery is provided.
 本発明の他の一態様によれば、空気極と、
 亜鉛、亜鉛合金及び/又は酸化亜鉛を含む負極と、
 アルカリ金属水酸化物水溶液を含む電解液と、
 前記空気極と前記負極とを水酸化物イオン伝導可能に隔離する、前記セパレータ構造体と、
を備えた、亜鉛空気二次電池が提供される。
According to another aspect of the invention, an air electrode;
A negative electrode comprising zinc, a zinc alloy and / or zinc oxide;
An electrolyte containing an alkali metal hydroxide aqueous solution;
The separator structure for separating the air electrode and the negative electrode so that hydroxide ions can be conducted; and
A zinc-air secondary battery is provided.
本発明のセパレータ構造体を模式的に示す断面図である。It is sectional drawing which shows the separator structure of this invention typically. 図1に示されるセパレータ構造体の接着部分を微視的に描いた拡大図である。FIG. 2 is an enlarged view microscopically illustrating an adhesion portion of the separator structure shown in FIG. 1. 例A1において作製された機能層の表面微構造を示すSEM画像である。It is a SEM image which shows the surface microstructure of the functional layer produced in Example A1. 例A1において作製された機能層の断面微構造を示すSEM画像である。It is a SEM image which shows the cross-sectional microstructure of the functional layer produced in Example A1. 例B1で作製された、接着剤を染み込ませた多孔質基材の断面SEM像である。It is a cross-sectional SEM image of the porous base material soaked with the adhesive agent produced in Example B1. 図3Aにおいて示される染み込み界面部分を拡大観察した断面SEM像である。FIG. 3B is a cross-sectional SEM image obtained by magnifying and observing the penetration interface portion shown in FIG. 3A. 例B1で作製された、接着剤を染み込ませた多孔質基材を真上から撮影した写真である。It is the photograph which image | photographed the porous base material infiltrated with the adhesive agent produced in Example B1 from right above. 例B5(比較例)で作製された、接着剤を染み込ませた多孔質基材の断面SEM像である。It is a cross-sectional SEM image of the porous base material soaked with the adhesive agent produced in Example B5 (comparative example). 図4Aにおいて示される染み込み界面部分を拡大観察した断面SEM像である。FIG. 4B is a cross-sectional SEM image obtained by magnifying and observing the penetration interface portion shown in FIG. 4A. 例B5(比較例)で作製された、接着剤を染み込ませた多孔質基材を真上から撮影した写真である。It is the photograph which image | photographed the porous base material infiltrated with the adhesive agent produced in Example B5 (comparative example) from right above. 例B1~B5の緻密性判定試験で使用された測定用密閉容器の分解斜視図である。FIG. 5 is an exploded perspective view of a measurement sealed container used in a denseness determination test of Examples B1 to B5. 例B1~B5の緻密性判定試験で使用された測定系の模式断面図である。FIG. 3 is a schematic cross-sectional view of a measurement system used in a denseness determination test of Examples B1 to B5. 例B1~B5で使用されたHe透過度測定系の一例を示す概念図である。It is a conceptual diagram which shows an example of the He transmittance | permeability measurement system used in Examples B1-B5. 図6Aに示される測定系に用いられる試料ホルダ及びその周辺構成の模式断面図である。6B is a schematic cross-sectional view of a sample holder used in the measurement system shown in FIG. 例B1~B6の引張強度試験において作製されたサンプルの構成を示す図である。It is a figure which shows the structure of the sample produced in the tensile strength test of Examples B1-B6. 従来のセパレータ構造体を示す模式断面図である。It is a schematic cross section which shows the conventional separator structure. 図8Aに示されるセパレータ構造体の接着部分の拡大図である。It is an enlarged view of the adhesion part of the separator structure shown by FIG. 8A. 図8Aに示されるセパレータ構造体において、LDHセパレータ及び多孔質基材の向きを逆にしたセパレータ構造体を示す模式断面図である。FIG. 8B is a schematic cross-sectional view showing a separator structure in which the directions of the LDH separator and the porous substrate are reversed in the separator structure shown in FIG. 8A. 図9Aに示されるセパレータ構造体の接合部分の拡大図である。It is an enlarged view of the junction part of the separator structure shown by FIG. 9A.
 セパレータ構造体
 本発明のセパレータ構造体は、亜鉛二次電池に用いられるものである。本明細書において、亜鉛二次電池は、ニッケル亜鉛二次電池、酸化銀亜鉛二次電池、酸化マンガン亜鉛二次電池、亜鉛空気二次電池、及びその他各種のアルカリ亜鉛二次電池等、LDHセパレータを適用可能な各種亜鉛二次電池であることができる。特に、ニッケル亜鉛二次電池及び亜鉛空気二次電池が好ましく、特に好ましくはニッケル亜鉛電池である。セパレータ構造体を適用可能な電池は正極及び負極の対が1つの単位電池であってもよいし、正極及び負極の対を2つ以上、すなわち2つ以上の単位電池を備えた積層電池であってもよい。また、積層電池は直列型積層電池であってもよいし、並列型積層電池であってもよい。
Separator structure The separator structure of the present invention is used for a zinc secondary battery. In this specification, the zinc secondary battery is a nickel zinc secondary battery, a silver zinc oxide secondary battery, a manganese zinc secondary battery, a zinc-air secondary battery, and various other types of alkaline zinc secondary batteries, such as LDH separators. Can be applied to various zinc secondary batteries. In particular, a nickel zinc secondary battery and a zinc-air secondary battery are preferable, and a nickel zinc battery is particularly preferable. A battery to which the separator structure can be applied may be a unit battery having a pair of a positive electrode and a negative electrode, or a stacked battery including two or more pairs of a positive electrode and a negative electrode, that is, two or more unit cells. May be. In addition, the stacked battery may be a series-type stacked battery or a parallel-type stacked battery.
 本発明のセパレータ構造体が組み込まれた亜鉛二次電池は、正極と、負極と、電解液と、セパレータ構造体とを備えることになる。正極及び負極は二次電池の種類に応じてそれぞれ適宜選択すればよい。例えば、ニッケル亜鉛二次電池の場合、正極は水酸化ニッケル及び/又はオキシ水酸化ニッケルを含み、負極は亜鉛、亜鉛合金及び/又は酸化亜鉛を含む。亜鉛空気二次電池の場合、正極は空気極であり、負極は亜鉛、亜鉛合金及び/又は酸化亜鉛を含む。セパレータ構造体は、LDHセパレータを備えた構造体であって、正極と負極とを水酸化物イオン伝導可能に隔離するように設けられる。典型的な電解液はアルカリ金属水酸化物水溶液を含む。 A zinc secondary battery in which the separator structure of the present invention is incorporated includes a positive electrode, a negative electrode, an electrolytic solution, and a separator structure. What is necessary is just to select a positive electrode and a negative electrode suitably according to the kind of secondary battery, respectively. For example, in the case of a nickel zinc secondary battery, the positive electrode includes nickel hydroxide and / or nickel oxyhydroxide, and the negative electrode includes zinc, a zinc alloy, and / or zinc oxide. In the case of a zinc-air secondary battery, the positive electrode is an air electrode, and the negative electrode contains zinc, a zinc alloy, and / or zinc oxide. The separator structure is a structure including an LDH separator, and is provided so as to isolate the positive electrode and the negative electrode so as to conduct hydroxide ions. A typical electrolyte includes an aqueous alkali metal hydroxide solution.
 図1A及び1Bに本発明のセパレータ構造体の模式断面図を示す。図1A及び1Bに示されるように、セパレータ構造体10は、複合板12と、樹脂製外枠18とを備える。複合板12は、LDHセパレータ14と、LDHセパレータ14の片側に設けられる多孔質基材16とを含む。樹脂製外枠18は開口部18aを備え、開口部18aに複合板12が嵌合される。樹脂製外枠18は、その内周に沿って複合板12の多孔質基材16側を係止する凹部18bを有し、凹部18bと複合板12が接着剤20で封止接合されている。多孔質基材16は100μm以上の厚さを有しており、図1Bに拡大して描かれるように、多孔質基材16の凹部18bと対向する部分が多孔質基材16の表面から100μm以上の深さDにわたって接着剤20が染み込んでいる。本明細書において接着剤20が多孔質基材16に染み込んでいるということは、多孔質基材16内の気孔が接着剤20で充填されていることを意味する。このように、LDHセパレータ14及び多孔質基材16を含む複合板12を樹脂製外枠18に接着剤20で封止接合するに際し、複合板12の多孔質基材16側を樹脂製外枠18の凹部18bと対向させ、かつ、接着剤20を多孔質基材16に深く染み込ませることで、信頼性及び耐久性を改善することができる。これらの利点は、以下のとおり説明することができる。 1A and 1B are schematic cross-sectional views of the separator structure of the present invention. As shown in FIGS. 1A and 1B, the separator structure 10 includes a composite plate 12 and a resin outer frame 18. The composite plate 12 includes an LDH separator 14 and a porous substrate 16 provided on one side of the LDH separator 14. The resin outer frame 18 includes an opening 18a, and the composite plate 12 is fitted into the opening 18a. The resin outer frame 18 has a concave portion 18b that locks the porous substrate 16 side of the composite plate 12 along its inner periphery, and the concave portion 18b and the composite plate 12 are sealed and bonded with an adhesive 20. . The porous substrate 16 has a thickness of 100 μm or more, and the portion facing the concave portion 18b of the porous substrate 16 is 100 μm from the surface of the porous substrate 16 as depicted in an enlarged view in FIG. The adhesive 20 is soaked over the depth D described above. In the present specification, the fact that the adhesive 20 soaks into the porous substrate 16 means that the pores in the porous substrate 16 are filled with the adhesive 20. As described above, when the composite plate 12 including the LDH separator 14 and the porous base material 16 is sealed and bonded to the resin outer frame 18 with the adhesive 20, the porous base material 16 side of the composite plate 12 is connected to the resin outer frame. Reliability and durability can be improved by facing the 18 recesses 18b and deeply soaking the adhesive 20 into the porous substrate 16. These advantages can be explained as follows.
 前提として、図8Aに示されるように、複合板12を、LDHセパレータ14側が樹脂製外枠18の凹部18bに対向する向きで、樹脂製外枠18に封止接合させたセパレータ構造体が既に知られている(例えば特許文献2参照)。すなわち、複合板12のLDHセパレータ14側が開口部18aの狭い側に位置し、複合板12の多孔質基材16側が開口部18aの広い側に位置する構造が既に知られている。この配置の場合、LDHセパレータ14と樹脂製外枠18(特に凹部18b)が接着剤20を介して接着されることで、図8Bに示されるように、気密性ないし液密性に優れる緻密なLDHセパレータ14と接着できる面積が大きいため(図中の点線で囲まれる部分を参照)、接着部分において気密性ないし液密性を確保しやすく、それ故、接着部分の信頼性が高くなる。その反面、亜鉛デンドライトの貫通を阻止するためのLDHセパレータ14が負極24に面する配置となることで、充電中に負極24から伸展する亜鉛デンドライトが接着剤20を剥がす方向(引張方向;図8Aにおいて矢印で示される方向)にLDHセパレータ14を押すことになるため、接着部分の耐久性に問題がある。 As a premise, as shown in FIG. 8A, a separator structure in which the composite plate 12 is sealed and bonded to the resin outer frame 18 with the LDH separator 14 side facing the concave portion 18b of the resin outer frame 18 is already present. It is known (see, for example, Patent Document 2). That is, a structure in which the LDH separator 14 side of the composite plate 12 is positioned on the narrow side of the opening 18a and the porous substrate 16 side of the composite plate 12 is positioned on the wide side of the opening 18a is already known. In the case of this arrangement, the LDH separator 14 and the resin outer frame 18 (particularly, the recess 18b) are bonded via the adhesive 20, so that a dense and excellent airtight or liquid-tight property as shown in FIG. 8B. Since the area that can be bonded to the LDH separator 14 is large (see the portion surrounded by the dotted line in the figure), it is easy to ensure airtightness or liquid-tightness in the bonded portion, and therefore the reliability of the bonded portion is increased. On the other hand, since the LDH separator 14 for preventing the penetration of zinc dendrite faces the negative electrode 24, the zinc dendrite extending from the negative electrode 24 during charging peels off the adhesive 20 (tensile direction; FIG. 8A). In this case, the LDH separator 14 is pushed in the direction indicated by the arrow in FIG.
 かかる問題に対処すべく、図9Aに示されるように、複合板12の向きを逆にすること、具体的には、多孔質基材16側が樹脂製外枠18の凹部18bに対向する向きで、樹脂製外枠18に封止接合させる構成が考えられる。すなわち、複合板12のLDHセパレータ14側が開口部18aの広い側に位置し、複合板12の多孔質基材16側が開口部18aの狭い側に位置する構造である。この配置の場合、充電中に負極24から進展する亜鉛デンドライトが接着部分を凹部18bに向かって押し付ける方向(圧縮方向;図9Aにおいて矢印で示される方向)に成長するため、接着部分の耐久性が向上する。しかしながら、図9Bに示されるように、気密性ないし液密性に優れる緻密なLDHセパレータ14と接着剤20の接触する面積が極端に小さくなるため(図中の点線で囲まれる部分を参照)、気密性ないし液密性の確保が難しくなり、接着部分の信頼性が損なわれる。このように、複合板12の向きを図8A及び8Bに示されるような従来技術の向きに対して逆にするだけでは、接着部分の気密性ないし液密性の確保による信頼性向上と、充放電に対する耐久性の向上とを両立することは難しいといえる。 In order to cope with such a problem, as shown in FIG. 9A, the direction of the composite plate 12 is reversed, specifically, the porous base material 16 side is opposed to the concave portion 18b of the resin outer frame 18. A configuration in which the resin outer frame 18 is sealed and joined is conceivable. That is, the LDH separator 14 side of the composite plate 12 is positioned on the wide side of the opening 18a, and the porous substrate 16 side of the composite plate 12 is positioned on the narrow side of the opening 18a. In this arrangement, the zinc dendrite that develops from the negative electrode 24 during charging grows in a direction (compression direction; indicated by an arrow in FIG. 9A) that presses the bonded portion toward the concave portion 18b. improves. However, as shown in FIG. 9B, the contact area between the dense LDH separator 14 excellent in airtightness or liquid tightness and the adhesive 20 becomes extremely small (see the portion surrounded by a dotted line in the figure). It becomes difficult to ensure airtightness or liquid tightness, and the reliability of the bonded portion is impaired. Thus, simply reversing the orientation of the composite plate 12 with respect to the orientation of the prior art as shown in FIGS. 8A and 8B improves reliability by ensuring the airtightness or liquid tightness of the bonded portion. It can be said that it is difficult to achieve both improvement in durability against discharge.
 かかる技術的課題に対して、本発明のセパレータ構造体10にあっては、図1A及び1Bに示されるように、多孔質基材16の凹部18bと対向する部分が多孔質基材16の表面から100μm以上の深さDにわたって接着剤20が染み込んでいる構成を採用する。このように、複合板12の多孔質基材16側を樹脂製外枠18の凹部18bと対向させ、かつ、接着剤20を多孔質基材16に深く染み込ませることで、信頼性及び耐久性を改善することができる。すなわち、複合板12を上記のような向きに配置することで、充電中に析出する亜鉛デンドライトが接着部分を凹部18bに向かって押し付ける方向(圧縮方向)に成長するため、接着部分の耐久性が向上する。また、多孔質基材16の内部に接着剤20(好ましくはアルカリ耐性を有する樹脂)が深く染み込んだ構造のため、LDHセパレータ14と接着剤20の接触する面積が極端に小さくなっても、多孔質基材16の接着剤20で充填された部分によって気密性及び液密性の確保が可能になり、接着部分の高い信頼性が確保される。また、接着剤20が多孔質基材16に深く染み込むことで、その接着強度の向上も期待できる。この構造は、多孔質基材16の端面に接着剤20(好ましくはアルカリ耐性のある樹脂)が染み込んだ構造であるといえるが、接着剤20は接着時に複合板12(特に多孔質基材16)に染み込ませてもよいし、接着前に複合板12(特に多孔質基材16)に染み込ませてもよい。いずれにしても、本発明のセパレータ構造体10における接着界面は面と面が単なる二次元的に接着した界面ではなく、接着剤の染み込みによる、より三次元的な接着構造のため剥がれにくいといえる。 In response to such a technical problem, in the separator structure 10 of the present invention, as shown in FIGS. 1A and 1B, the portion of the porous substrate 16 that faces the recess 18 b is the surface of the porous substrate 16. To 100 μm or more of the depth D is adopted. Thus, the porous substrate 16 side of the composite plate 12 is opposed to the concave portion 18b of the resin outer frame 18, and the adhesive 20 is deeply soaked into the porous substrate 16, thereby improving reliability and durability. Can be improved. That is, by disposing the composite plate 12 in the above-described direction, the zinc dendrite that precipitates during charging grows in a direction (compression direction) that presses the bonded portion toward the concave portion 18b. improves. Further, since the adhesive 20 (preferably an alkali-resistant resin) is deeply infiltrated into the porous substrate 16, the porous substrate 16 is porous even if the contact area between the LDH separator 14 and the adhesive 20 is extremely small. Airtightness and liquid-tightness can be ensured by the portion filled with the adhesive 20 of the base material 16, and high reliability of the bonded portion is ensured. In addition, since the adhesive 20 penetrates deeply into the porous base material 16, an improvement in the adhesive strength can be expected. Although this structure can be said to be a structure in which the adhesive 20 (preferably an alkali-resistant resin) has penetrated the end face of the porous substrate 16, the adhesive 20 is bonded to the composite plate 12 (especially the porous substrate 16). Or the composite plate 12 (especially the porous substrate 16) before bonding. In any case, it can be said that the adhesion interface in the separator structure 10 of the present invention is not an interface where the surfaces are merely two-dimensionally bonded, but is more difficult to peel off due to a more three-dimensional adhesion structure due to the penetration of the adhesive. .
 複合板
 複合板12は、LDHセパレータ14と、LDHセパレータ14の片側に設けられる多孔質基材16とを含む。
The composite plate composite plate 12 includes an LDH separator 14 and a porous substrate 16 provided on one side of the LDH separator 14.
 LDHセパレータ14は層状複水酸化物(LDH)を含むセパレータであり、亜鉛二次電池に組み込まれた場合に、正極板と負極板とを水酸化物イオン伝導可能に隔離するものである。すなわち、LDHセパレータ14は水酸化物イオン伝導セパレータとしての機能を呈する。好ましいLDHセパレータ14はガス不透過性及び/又は水不透過性を有する。換言すれば、LDHセパレータ14は不透過性及び/又は水不透過性を有するほどに緻密化されているのが好ましい。なお、本明細書において「ガス不透過性を有する」とは、後述する例A1の評価4で採用される「緻密性判定試験」又はそれに準ずる手法ないし構成でガス不透過性を評価した場合に、水中で測定対象物(すなわちLDHセパレータ14)の一面側にヘリウムガスを0.5atmの差圧で接触させても他面側からヘリウムガスに起因する泡の発生がみられないことを意味する。また、本明細書において「水不透過性を有する」とは、測定対象物(例えばLDHセパレータ)の一面側に接触した水が他面側に透過しないことを意味する(例えば特許文献2を参照)。すなわち、LDHセパレータ14がガス不透過性及び/又は水不透過性を有するということは、LDHセパレータ14が気体又は水を通さない程の高度な緻密性を有することを意味し、透水性を有する多孔性フィルムやその他の多孔質材料ではないことを意味する。こうすることで、LDHセパレータ14は、その水酸化物イオン伝導性に起因して水酸化物イオンのみを選択的に通すものとなり、電池用セパレータとしての機能を呈することができる。このため、充電時に生成する亜鉛デンドライトによるセパレータの貫通を物理的に阻止して正負極間の短絡を防止するのに極めて効果的な構成となっている。LDHセパレータ14は水酸化物イオン伝導性を有するため、正極板と負極板との間で必要な水酸化物イオンの効率的な移動を可能として正極板及び負極板における充放電反応を実現することができる。 The LDH separator 14 is a separator containing layered double hydroxide (LDH), and separates the positive electrode plate and the negative electrode plate so as to conduct hydroxide ions when incorporated in a zinc secondary battery. That is, the LDH separator 14 functions as a hydroxide ion conductive separator. A preferred LDH separator 14 is gas impermeable and / or water impermeable. In other words, the LDH separator 14 is preferably so dense that it has impermeability and / or water impermeability. In the present specification, “having gas impermeability” means that the gas impermeability is evaluated by the “denseness determination test” employed in the evaluation 4 of Example A1 described later or a method or configuration equivalent thereto. This means that even if helium gas is brought into contact with one surface side of the measurement object (that is, LDH separator 14) in water at a differential pressure of 0.5 atm, no bubbles are generated due to helium gas from the other surface side. . Further, in the present specification, “having water impermeability” means that water that contacts one surface side of the measurement object (for example, LDH separator) does not permeate the other surface side (see, for example, Patent Document 2). ). That is, the fact that the LDH separator 14 has gas impermeability and / or water impermeability means that the LDH separator 14 has a high degree of denseness that does not allow gas or water to pass through, and has water permeability. It means not a porous film or other porous material. By doing so, the LDH separator 14 can selectively pass only hydroxide ions due to its hydroxide ion conductivity, and can exhibit a function as a battery separator. For this reason, it has a very effective configuration for physically preventing penetration of the separator by zinc dendrite generated during charging and preventing a short circuit between the positive and negative electrodes. Since the LDH separator 14 has hydroxide ion conductivity, it enables efficient transfer of necessary hydroxide ions between the positive electrode plate and the negative electrode plate, and realizes a charge / discharge reaction in the positive electrode plate and the negative electrode plate. Can do.
 LDHセパレータ14は、単位面積あたりのHe透過度が10cm/min・atm以下であるのが好ましく、より好ましくは5.0cm/min・atm以下、さらに好ましくは1.0cm/min・atm以下である。このような範囲内のHe透過度を有するLDHセパレータは緻密性が極めて高いといえる。したがって、He透過度が10cm/min・atm以下であるLDHセパレータは、亜鉛二次電池においてセパレータとして適用した場合に、水酸化物イオン以外の物質の通過を高いレベルで阻止することができる。例えば、電解液中において亜鉛イオン及び/又は亜鉛酸イオンの透過を極めて効果的に抑制することができる。こうして亜鉛イオン及び/又は亜鉛酸イオンの透過が顕著に抑制されることで、亜鉛二次電池に用いた場合に亜鉛デンドライトの成長を効果的に抑制できるものと原理的に考えられる。He透過度は、セパレータないし機能層の一方の面にHeガスを供給してセパレータないし機能層にHeガスを透過させる工程と、He透過度を算出してセパレータないし機能層の緻密性を評価する工程とを経て測定される。He透過度は、単位時間あたりのHeガスの透過量F、Heガス透過時にセパレータないし機能層に加わる差圧P、及びHeガスが透過する膜面積Sを用いて、F/(P×S)の式により算出する。このようにHeガスを用いてガス透過性の評価を行うことにより、極めて高いレベルでの緻密性の有無を評価することができ、その結果、水酸化物イオン以外の物質(特に亜鉛デンドライト成長を引き起こす亜鉛イオン及び/又は亜鉛酸イオン)を極力透過させない(極微量しか透過させない)といった高度な緻密性を効果的に評価することができる。これは、Heガスが、ガスを構成しうる多種多様な原子ないし分子の中でも最も小さい構成単位を有しており、しかも反応性が極めて低いためである。すなわち、Heは、分子を形成することなく、He原子単体でHeガスを構成する。そして、上述した式により定義されるHeガス透過度という指標を採用することで、様々な試料サイズや測定条件の相違を問わず、緻密性に関する客観的な評価を簡便に行うことができる。こうして、LDHセパレータが亜鉛二次電池用セパレータに適した十分に高い緻密性を有するのか否かを簡便、安全かつ効果的に評価することができる。He透過度の測定は、後述する例A1の評価5に示される手順に従って好ましく行うことができる。 The LDH separator 14 preferably has a He permeability per unit area of 10 cm / min · atm or less, more preferably 5.0 cm / min · atm or less, and even more preferably 1.0 cm / min · atm or less. . It can be said that the LDH separator having the He permeability in such a range has extremely high density. Therefore, an LDH separator having a He permeability of 10 cm / min · atm or less can prevent substances other than hydroxide ions from passing at a high level when applied as a separator in a zinc secondary battery. For example, permeation of zinc ions and / or zincate ions in the electrolytic solution can be extremely effectively suppressed. In this way, it is considered in principle that the transmission of zinc ions and / or zincate ions is remarkably suppressed, so that the growth of zinc dendrite can be effectively suppressed when used in a zinc secondary battery. For the He permeability, a process of supplying He gas to one side of the separator or the functional layer to allow the He gas to pass through the separator or the functional layer, and calculating the He permeability to evaluate the density of the separator or the functional layer. It is measured through the process. The He permeability is F / (P × S) using the He gas permeation amount F per unit time, the differential pressure P applied to the separator or functional layer when He gas permeates, and the membrane area S through which He gas permeates. It is calculated by the following formula. Thus, by evaluating the gas permeability using He gas, it is possible to evaluate the presence or absence of denseness at a very high level, and as a result, substances other than hydroxide ions (especially zinc dendrite growth can be performed). It is possible to effectively evaluate a high degree of denseness such that the zinc ion and / or zincate ion to be caused is not transmitted as much as possible (only a very small amount is transmitted). This is because the He gas has the smallest structural unit among a wide variety of atoms or molecules that can constitute the gas, and the reactivity is extremely low. That is, He forms He gas by a single He atom without forming a molecule. Then, by adopting the He gas permeability index defined by the above-described formula, objective evaluation regarding the denseness can be easily performed regardless of differences in various sample sizes and measurement conditions. In this way, it is possible to simply, safely and effectively evaluate whether the LDH separator has sufficiently high density suitable for a zinc secondary battery separator. The measurement of He permeability can be preferably performed according to the procedure shown in Evaluation 5 of Example A1 described later.
 LDHセパレータ14は層状複水酸化物(LDH)を含むのが好ましく、より好ましくはLDHで構成される。一般的に知られているように、LDHは、複数の水酸化物基本層と、これら複数の水酸化物基本層間に介在する中間層とから構成される。水酸化物基本層は主として金属元素(典型的には金属イオン)とOH基で構成される。LDHの中間層は、陰イオン及びHOで構成される。陰イオンは1価以上の陰イオン、好ましくは1価又は2価のイオンである。好ましくは、LDH中の陰イオンはOH及び/又はCO 2-を含む。また、LDHはその固有の性質に起因して優れたイオン伝導性を有する。 The LDH separator 14 preferably contains a layered double hydroxide (LDH), more preferably LDH. As is generally known, LDH is composed of a plurality of hydroxide base layers and an intermediate layer interposed between the plurality of hydroxide base layers. The hydroxide base layer is mainly composed of metal elements (typically metal ions) and OH groups. The intermediate layer of LDH is composed of anions and H 2 O. The anion is a monovalent or higher anion, preferably a monovalent or divalent ion. Preferably, the anion in LDH comprises OH - and / or CO 3 2- . LDH has excellent ionic conductivity due to its inherent properties.
 一般的に、LDHは、M2+ 1-x3+ (OH)n- x/n・mHO(式中、M2+は2価の陽イオンであり、M3+は3価の陽イオンであり、An-はn価の陰イオンであり、nは1以上の整数であり、xは0.1~0.4であり、mは0以上である)の基本組成式で代表されるものとして知られている。上記基本組成式において、M2+は任意の2価の陽イオンでありうるが、好ましい例としてはMg2+、Ca2+及びZn2+が挙げられ、より好ましくはMg2+である。M3+は任意の3価の陽イオンでありうるが、好ましい例としてはAl3+又はCr3+が挙げられ、より好ましくはAl3+である。An-は任意の陰イオンでありうるが、好ましい例としてはOH及びCO 2-が挙げられる。したがって、上記基本組成式において、M2+がMg2+を含み、M3+がAl3+を含み、An-がOH及び/又はCO 2-を含むのが好ましい。nは1以上の整数であるが、好ましくは1又は2である。xは0.1~0.4であるが、好ましくは0.2~0.35である。mは水のモル数を意味する任意の数であり、0以上、典型的には0を超える又は1以上の実数である。もっとも、上記基本組成式は、一般にLDHに関して代表的に例示される「基本組成」の式にすぎず、構成イオンを適宜置き換え可能なものである。例えば、上記基本組成式においてM3+の一部または全部を4価またはそれ以上の価数の陽イオンで置き換えてもよく、その場合は、上記一般式における陰イオンAn-の係数x/nは適宜変更されてよい。 In general, LDH is M 2+ 1-x M 3+ x (OH) 2 A n− x / n · mH 2 O (where M 2+ is a divalent cation and M 3+ is a trivalent cation). A n− is an n-valent anion, n is an integer of 1 or more, x is 0.1 to 0.4, and m is 0 or more). It is known as a representative. In the above basic composition formula, M 2+ may be any divalent cation, and preferred examples include Mg 2+ , Ca 2+ and Zn 2+ , and more preferably Mg 2+ . M 3+ may be any trivalent cation, but preferred examples include Al 3+ or Cr 3+ , and more preferred is Al 3+ . A n- can be any anion, but preferred examples include OH - and CO 3 2- . Accordingly, in the above basic formula, M 2+ comprises Mg 2+, M 3+ comprises Al 3+, A n-is OH - and / or CO preferably contains 3 2-. n is an integer of 1 or more, preferably 1 or 2. x is 0.1 to 0.4, preferably 0.2 to 0.35. m is an arbitrary number which means the number of moles of water, and is a real number of 0 or more, typically more than 0 or 1 or more. However, the above basic composition formula is merely a formula of “basic composition” that is typically exemplified with respect to LDH in general, and the constituent ions can be appropriately replaced. For example, it may be replaced with some or all of the M 3+ tetravalent or higher valency cations in the basic formula, in which case, the anion A coefficient of n-x / n in the general formula May be changed as appropriate.
 例えば、LDHの水酸化物基本層は、Ni、Ti、OH基、及び場合により不可避不純物で構成されてもよい。LDHの中間層は、上述のとおり、陰イオン及びHOで構成される。水酸化物基本層と中間層の交互積層構造自体は一般的に知られるLDHの交互積層構造と基本的に同じであるが、本態様のLDHは、LDHの水酸化物基本層を主としてNi、Ti及びOH基で構成することで、優れた耐アルカリ性を呈することができる。その理由は必ずしも定かではないが、本態様のLDHにはアルカリ溶液に溶出しやすいと考えられる元素(例えばAl)が意図的又は積極的に添加されていないためと考えられる。そうでありながらも、本態様のLDHは、アルカリ二次電池用セパレータとしての使用に適した高いイオン伝導性も呈することができる。LDH中のNiはニッケルイオンの形態を採りうる。LDH中のニッケルイオンは典型的にはNi2+であると考えられるが、Ni3+等の他の価数もありうるため、特に限定されない。LDH中のTiはチタンイオンの形態を採りうる。LDH中のチタンイオンは典型的にはTi4+であると考えられるが、Ti3+等の他の価数もありうるため、特に限定されない。不可避不純物は製法上不可避的に混入されうる任意元素であり、例えば原料や基材に由来してLDH中に混入しうる。上記のとおり、Ni及びTiの価数は必ずしも定かではないため、LDHを一般式で厳密に特定することは非実際的又は不可能である。仮に水酸化物基本層が主としてNi2+、Ti4+及びOH基で構成されるものと想定した場合には、対応するLDHは、一般式:Ni2+ 1-xTi4+ (OH)n- 2x/n・mHO(式中、An-はn価の陰イオン、nは1以上の整数、好ましくは1又は2であり、0<x<1、好ましくは0.01≦x≦0.5、mは0以上、典型的には0を超える又は1以上の実数である)なる基本組成で表すことができる。もっとも、上記一般式はあくまで「基本組成」と解されるべきであり、Ni2+やTi4+等の元素がLDHの基本的特性を損なわない程度に他の元素又はイオン(同じ元素の他の価数の元素又はイオンや製法上不可避的に混入されうる元素又はイオンを含む)で置き換え可能なものとして解されるべきである。 For example, the hydroxide base layer of LDH may be composed of Ni, Ti, OH groups and possibly inevitable impurities. As described above, the intermediate layer of LDH is composed of an anion and H 2 O. The alternate layered structure of the hydroxide basic layer and the intermediate layer itself is basically the same as the commonly known alternate layered structure of LDH, but the LDH of this embodiment is mainly composed of Ni, By comprising Ti and OH groups, excellent alkali resistance can be exhibited. Although the reason is not necessarily clear, it is considered that an element (for example, Al) that is considered to be easily eluted in an alkaline solution is not intentionally or actively added to the LDH of this embodiment. Nevertheless, the LDH of this embodiment can also exhibit high ionic conductivity suitable for use as a separator for an alkaline secondary battery. Ni in LDH can take the form of nickel ions. The nickel ions in LDH are typically considered to be Ni 2+ , but are not particularly limited because other valences such as Ni 3+ may also exist. Ti in LDH can take the form of titanium ions. The titanium ion in LDH is typically considered to be Ti 4+ , but is not particularly limited because other valences such as Ti 3+ may also exist. Inevitable impurities are optional elements that can be inevitably mixed in the manufacturing process, and can be mixed in LDH, for example, derived from raw materials and base materials. As described above, since the valences of Ni and Ti are not necessarily certain, it is impractical or impossible to specify LDH strictly by a general formula. If it is assumed that the hydroxide base layer is mainly composed of Ni 2+ , Ti 4+ and OH groups, the corresponding LDH has the general formula: Ni 2+ 1-x Ti 4+ x (OH) 2 An - 2x / n · mH 2 O ( wherein, a n-n-valent anion, n is an integer of 1 or more, preferably 1 or 2, 0 <x <1, preferably 0.01 ≦ x ≦ 0.5, m is 0 or more, typically greater than 0 or 1 or more real number). However, the above general formula should be construed as “basic composition” only, and other elements or ions (other valences of the same element) to the extent that elements such as Ni 2+ and Ti 4+ do not impair the basic characteristics of LDH. It should be understood that it can be replaced by a number of elements or ions, or elements or ions that may be inevitably mixed in the manufacturing process.
 あるいは、LDHの水酸化物基本層は、Ni、Al、Ti及びOH基を含むものであってもよい。中間層は、上述のとおり、陰イオン及びHOで構成される。水酸化物基本層と中間層の交互積層構造自体は一般的に知られるLDHの交互積層構造と基本的に同じであるが、本態様のLDHは、LDHの水酸化物基本層をNi、Al、Ti及びOH基を含む所定の元素ないしイオンで構成することで、優れた耐アルカリ性を呈することができる。その理由は必ずしも定かではないが、本態様のLDHは、従来はアルカリ溶液に溶出しやすいと考えられていたAlが、Ni及びTiとの何らかの相互作用によりアルカリ溶液に溶出しにくくなるためと考えられる。そうでありながらも、本態様のLDHは、アルカリ二次電池用セパレータとしての使用に適した高いイオン伝導性も呈することができる。LDH中のNiはニッケルイオンの形態を採りうる。LDH中のニッケルイオンは典型的にはNi2+であると考えられるが、Ni3+等の他の価数もありうるため、特に限定されない。LDH中のAlはアルミニウムイオンの形態を採りうる。LDH中のアルミニウムイオンは典型的にはAl3+であると考えられるが、他の価数もありうるため、特に限定されない。LDH中のTiはチタンイオンの形態を採りうる。LDH中のチタンイオンは典型的にはTi4+であると考えられるが、Ti3+等の他の価数もありうるため、特に限定されない。水酸化物基本層は、Ni、Al、Ti及びOH基を含んでいさえすれば、他の元素ないしイオンを含んでいてもよい。もっとも、水酸化物基本層は、Ni、Al、Ti及びOH基を主要構成要素として含むのが好ましい。すなわち、水酸化物基本層は、主としてNi、Al、Ti及びOH基からなるのが好ましい。したがって、水酸化物基本層は、Ni、Al、Ti、OH基及び場合により不可避不純物で構成されるのが典型的である。不可避不純物は製法上不可避的に混入されうる任意元素であり、例えば原料や基材に由来してLDH中に混入しうる。上記のとおり、Ni、Al及びTiの価数は必ずしも定かではないため、LDHを一般式で厳密に特定することは非実際的又は不可能である。仮に水酸化物基本層が主としてNi2+、Al3+、Ti4+及びOH基で構成されるものと想定した場合には、対応するLDHは、一般式:Ni2+ 1-x-yAl3+ Ti4+ (OH)n- (x+2y)/n・mHO(式中、An-はn価の陰イオン、nは1以上の整数、好ましくは1又は2であり、0<x<1、好ましくは0.01≦x≦0.5、0<y<1、好ましくは0.01≦y≦0.5、0<x+y<1、mは0以上、典型的には0を超える又は1以上の実数である)なる基本組成で表すことができる。もっとも、上記一般式はあくまで「基本組成」と解されるべきであり、Ni2+、Al3+、Ti4+等の元素がLDHの基本的特性を損なわない程度に他の元素又はイオン(同じ元素の他の価数の元素又はイオンや製法上不可避的に混入されうる元素又はイオンを含む)で置き換え可能なものとして解されるべきである。 Alternatively, the hydroxide basic layer of LDH may contain Ni, Al, Ti and OH groups. As described above, the intermediate layer is composed of an anion and H 2 O. The alternate layered structure of the hydroxide basic layer and the intermediate layer itself is basically the same as the generally known alternate layered structure of LDH, but the LDH of this embodiment uses the basic hydroxide layer of LDH as Ni, Al. By comprising a predetermined element or ion containing Ti and OH groups, excellent alkali resistance can be exhibited. The reason for this is not necessarily clear, but the LDH of this embodiment is thought to be because Al, which was previously thought to be easily eluted in an alkaline solution, is less likely to be eluted in an alkaline solution due to some interaction with Ni and Ti. It is done. Nevertheless, the LDH of this embodiment can also exhibit high ionic conductivity suitable for use as a separator for an alkaline secondary battery. Ni in LDH can take the form of nickel ions. The nickel ions in LDH are typically considered to be Ni 2+ , but are not particularly limited because other valences such as Ni 3+ may also exist. Al in LDH can take the form of aluminum ions. Aluminum ions in LDH are typically considered to be Al 3+ , but are not particularly limited because other valences are possible. Ti in LDH can take the form of titanium ions. The titanium ion in LDH is typically considered to be Ti 4+ , but is not particularly limited because other valences such as Ti 3+ may also exist. The hydroxide base layer may contain other elements or ions as long as it contains Ni, Al, Ti and OH groups. However, it is preferable that the hydroxide base layer contains Ni, Al, Ti, and OH groups as main components. That is, the hydroxide base layer is preferably mainly composed of Ni, Al, Ti and OH groups. Therefore, the hydroxide base layer is typically composed of Ni, Al, Ti, OH groups and possibly inevitable impurities. Inevitable impurities are optional elements that can be inevitably mixed in the manufacturing process, and can be mixed in LDH, for example, derived from raw materials and base materials. As described above, since the valences of Ni, Al, and Ti are not necessarily certain, it is impractical or impossible to specify LDH strictly by a general formula. If it is assumed that the hydroxide base layer is mainly composed of Ni 2+ , Al 3+ , Ti 4+ and OH groups, the corresponding LDH has the general formula: Ni 2+ 1-xy Al 3+ x Ti 4+ y (OH) 2 A n− (x + 2y) / n · mH 2 O (where A n− is an n-valent anion, n is an integer of 1 or more, preferably 1 or 2, and 0 <x <1, preferably 0.01 ≦ x ≦ 0.5, 0 <y <1, preferably 0.01 ≦ y ≦ 0.5, 0 <x + y <1, m is 0 or more, typically 0. It can be represented by a basic composition that exceeds or is one or more real numbers. However, the above general formula should be construed as “basic composition” only, and other elements or ions (of the same element) such that Ni 2+ , Al 3+ , Ti 4+ and the like do not impair the basic characteristics of LDH. It should be understood that it can be replaced by other valence elements or ions or elements or ions that may be inevitably mixed in the manufacturing process.
 LDHセパレータ14は多孔質基材16と複合化されている。すなわち、LDHセパレータ14は、LDH膜及び多孔質基材を含む複合材料であってもよいし、多孔質基材の孔内にLDHが充填された複合材料であってもよい(この場合はLDH膜が無くてもよい)。また、両者の組合せであってもよい。すなわち、LDH膜の一部が多孔質基材の孔内に組み込まれた構成であってもよい。この場合、セパレータ機能を呈する機能層は、LDH膜からなる膜状部と、LDH及び多孔質基材からなる複合部とで構成されることになる。 The LDH separator 14 is combined with the porous substrate 16. That is, the LDH separator 14 may be a composite material including an LDH film and a porous substrate, or may be a composite material in which LDH is filled in the pores of the porous substrate (in this case, LDH There may be no film). A combination of both may also be used. That is, a configuration in which part of the LDH film is incorporated in the pores of the porous substrate may be used. In this case, the functional layer exhibiting the separator function is composed of a film-shaped portion made of an LDH film and a composite portion made of LDH and a porous substrate.
 多孔質基材16は透水性を有し、それ故亜鉛二次電池に組み込まれた場合に、電解液がLDHセパレータ14に到達可能となることはいうまでもないが、多孔質基材16があることでLDHセパレータ14により安定に水酸化物イオンを保持することも可能となる。また、多孔質基材16により強度を付与できるため、LDHセパレータ14を薄くして低抵抗化を図ることもできる。多孔質基材の厚さは100μm以上であり、好ましくは100~600μm、より好ましくは100~500μm、さらに好ましくは100~400μm、特に好ましくは100~350μm、最も好ましくは100~300μmである。このような厚さであると十分な強度を付与できるととともに、接着剤20の染み込み部分をより深く確保することができ、それにより接着部分の気密性ないし液密性を向上することができる。 It goes without saying that the porous substrate 16 has water permeability, and therefore, when incorporated in a zinc secondary battery, the electrolyte solution can reach the LDH separator 14. As a result, the hydroxide ions can be stably held by the LDH separator 14. Further, since the strength can be imparted by the porous substrate 16, the LDH separator 14 can be made thin to reduce the resistance. The thickness of the porous substrate is 100 μm or more, preferably 100 to 600 μm, more preferably 100 to 500 μm, still more preferably 100 to 400 μm, particularly preferably 100 to 350 μm, and most preferably 100 to 300 μm. With such a thickness, sufficient strength can be imparted, and a deeper penetration portion of the adhesive 20 can be secured, thereby improving the air tightness or liquid tightness of the adhesive portion.
 多孔質基材16は、セラミックス材料、金属材料、及び高分子材料からなる群から選択される少なくとも1種で構成されるのが好ましく、より好ましくはセラミックス材料及び/又は高分子材料、さらに好ましくは高分子材料である。多孔質基材は、セラミックス材料で構成されるのがより好ましい。この場合、セラミックス材料の好ましい例としては、アルミナ、ジルコニア、チタニア、マグネシア、スピネル、カルシア、コージライト、ゼオライト、ムライト、フェライト、酸化亜鉛、炭化ケイ素、及びそれらの任意の組合せが挙げられ、より好ましくは、アルミナ、ジルコニア、チタニア、及びそれらの任意の組合せであり、特に好ましくはアルミナ及びジルコニアであり、最も好ましくはアルミナである。これらの多孔質セラミックスを用いると緻密性に優れたLDHセパレータ14を形成しやすい。金属材料の好ましい例としては、アルミニウム、亜鉛、及びニッケルが挙げられる。高分子材料の好ましい例としては、ポリスチレン、ポリエーテルサルフォン、ポリプロピレン、エポキシ樹脂、ポリフェニレンサルファイド、親水化したフッ素樹脂(四フッ素化樹脂:PTFE等)、セルロース、ナイロン、ポリエチレン及びそれらの任意の組合せが挙げられる。上述した各種の好ましい材料から電池の電解液に対する耐性として耐アルカリ性に優れたものを適宜選択するのが更に好ましい。 The porous substrate 16 is preferably composed of at least one selected from the group consisting of a ceramic material, a metal material, and a polymer material, more preferably a ceramic material and / or a polymer material, still more preferably. It is a polymer material. More preferably, the porous substrate is made of a ceramic material. In this case, preferable examples of the ceramic material include alumina, zirconia, titania, magnesia, spinel, calcia, cordierite, zeolite, mullite, ferrite, zinc oxide, silicon carbide, and any combination thereof, and more preferable. Is alumina, zirconia, titania, and any combination thereof, particularly preferably alumina and zirconia, most preferably alumina. When these porous ceramics are used, it is easy to form the LDH separator 14 having excellent denseness. Preferred examples of the metal material include aluminum, zinc, and nickel. Preferred examples of the polymer material include polystyrene, polyethersulfone, polypropylene, epoxy resin, polyphenylene sulfide, hydrophilic fluororesin (tetrafluorinated resin: PTFE, etc.), cellulose, nylon, polyethylene, and any combination thereof. Is mentioned. It is more preferable to appropriately select a material excellent in alkali resistance as the resistance to the battery electrolyte from the various preferable materials described above.
 好ましくは、LDHセパレータ14が、複数のLDH板状粒子の集合体で構成されるLDH膜を有し、複数のLDH板状粒子がそれらの板面が多孔質基材16の表面(多孔構造に起因する微細凹凸を無視できる程度に巨視的に観察した場合における多孔質基材の主面)と垂直に又は斜めに交差するような向きに配向している。なお、LDH膜は多孔質基材16の孔内に少なくとも部分的に組み込まれていてもよく、その場合、多孔質基材16の孔内にもLDH板状粒子は存在しうる。LDH結晶は層状構造を持った板状粒子の形態を有することが知られているが、上記垂直又は斜めの配向は、LDHセパレータ14にとって極めて有利な特性である。というのも、配向されたLDH含有セパレータは、LDH板状粒子が配向する方向(即ちLDHの層と平行方向)の水酸化物イオン伝導度が、これと垂直方向の伝導度よりも格段に高いという伝導度異方性があるためである。実際、LDHの配向バルク体において、配向方向における伝導度(S/cm)が配向方向と垂直な方向の伝導度(S/cm)と比べて1桁高いことが既に知られている。すなわち、上記垂直又は斜めの配向は、LDH配向体が持ちうる伝導度異方性を層厚方向(すなわちLDH膜又は多孔質基材16の表面に対して垂直方向)に最大限または有意に引き出すものであり、その結果、層厚方向への伝導度を最大限又は有意に高めることができる。その上、LDH膜は膜形態を有するため、バルク形態のLDHよりも低抵抗を実現することができる。このような配向性を備えたLDH膜は、層厚方向に水酸化物イオンを伝導させやすくなる。 Preferably, the LDH separator 14 has an LDH film composed of an aggregate of a plurality of LDH plate-like particles, and the plurality of LDH plate-like particles have their plate surfaces on the surface of the porous substrate 16 (with a porous structure). It is oriented in a direction that intersects perpendicularly or obliquely with the main surface of the porous substrate when macroscopic observations resulting from negligible microscopic unevenness are observed. The LDH film may be at least partially incorporated in the pores of the porous base material 16, and in that case, LDH plate-like particles may also exist in the pores of the porous base material 16. Although LDH crystals are known to have the form of plate-like particles having a layered structure, the vertical or oblique orientation is a very advantageous property for the LDH separator 14. This is because the oriented LDH-containing separator has a much higher hydroxide ion conductivity in the direction in which the LDH plate-like particles are oriented (that is, the direction parallel to the LDH layer) than the conductivity in the direction perpendicular thereto. This is because of the conductivity anisotropy. In fact, it is already known that in an oriented bulk body of LDH, the conductivity (S / cm) in the orientation direction is one digit higher than the conductivity (S / cm) in the direction perpendicular to the orientation direction. That is, the above vertical or oblique alignment maximizes or significantly extracts the conductivity anisotropy that the LDH alignment body can have in the layer thickness direction (that is, the direction perpendicular to the surface of the LDH film or the porous substrate 16). As a result, the conductivity in the layer thickness direction can be maximized or significantly increased. In addition, since the LDH film has a film form, lower resistance than the bulk form LDH can be realized. An LDH film having such an orientation easily conducts hydroxide ions in the layer thickness direction.
 LDHセパレータ14は100μm以下の厚さを有するのが好ましく、より好ましくは75μm以下、さらに好ましくは50μm以下、特に好ましくは25μm以下、最も好ましくは5μm以下である。このように薄いことでLDHセパレータ14の低抵抗化を実現できる。上記のような厚さであると、電池用途等への実用化に適した所望の低抵抗を実現することができる。LDHセパレータ14の厚さの下限値は用途に応じて異なるため特に限定されないが、セパレータ等の機能膜として望まれるある程度の堅さを確保するためには厚さ1μm以上であるのが好ましく、より好ましくは2μm以上である。 The LDH separator 14 preferably has a thickness of 100 μm or less, more preferably 75 μm or less, still more preferably 50 μm or less, particularly preferably 25 μm or less, and most preferably 5 μm or less. Thus, the resistance of the LDH separator 14 can be reduced. When the thickness is as described above, a desired low resistance suitable for practical use in battery applications and the like can be realized. The lower limit of the thickness of the LDH separator 14 is not particularly limited because it varies depending on the application, but in order to ensure a certain degree of rigidity desired as a functional film such as a separator, the thickness is preferably 1 μm or more. Preferably it is 2 micrometers or more.
 複合板12、すなわち多孔質基材16と複合化されたLDHセパレータ14の製造方法は特に限定されず、既に知られるLDHセパレータの製造方法(例えば特許文献1~3)を参照することにより作製することができる。 The manufacturing method of the composite plate 12, that is, the LDH separator 14 combined with the porous substrate 16 is not particularly limited, and is manufactured by referring to a known manufacturing method of an LDH separator (for example, Patent Documents 1 to 3). be able to.
 樹脂製外枠
 樹脂製外枠18は開口部18aを有し、開口部18aに複合板12が嵌合される。また、樹脂製外枠18は、その内周に沿って複合板12の多孔質基材16側を係止する凹部18bを有する。従って、開口部18aのサイズは複合板12よりも若干小さいが、凹部18bの輪郭形状のサイズは複合板12と同等ないし若干大きい。樹脂製外枠18が存在することで、複合板12の端部を補強することができ、それにより複合板12の端部の損傷を防いで信頼性を向上するとともに、複合板12をハンドリングしやすくなる。したがって、亜鉛二次電池の組み立てが容易となる。また、樹脂製外枠18自体も亜鉛デンドライトの貫通及び伸展の阻止に寄与しうる。樹脂製外枠18を構成する樹脂は水酸化カリウム等のアルカリ金属水酸化物に対する耐性を有する樹脂であるのが好ましく、より好ましくはポリオレフィン樹脂、ABS樹脂、ポリプロピレン(PP)樹脂、ポリエチレン(PE)樹脂、又は変性ポリフェニレンエーテルであり、さらに好ましくはABS樹脂、ポリプロピレン(PP)樹脂、ポリエチレン(PE)樹脂、又は変性ポリフェニレンエーテルであり、特に好ましくは耐アルカリ性及び接着性の観点からABS樹脂、変性ポリフェニレンエーテル(m-PPE)、及びポリプロピレン(PP)樹脂である。変性ポリフェニレンエーテルは他のポリマー(例えばポリスチレン)と複合されたもの(例えばm-PPE/PS)であってもよい。
Resin Outer Frame The resin outer frame 18 has an opening 18a, and the composite plate 12 is fitted into the opening 18a. Moreover, the resin outer frame 18 has a recess 18b that locks the porous substrate 16 side of the composite plate 12 along its inner periphery. Accordingly, the size of the opening 18a is slightly smaller than that of the composite plate 12, but the size of the contour shape of the recess 18b is equal to or slightly larger than that of the composite plate 12. The presence of the resin outer frame 18 can reinforce the end of the composite plate 12, thereby preventing damage to the end of the composite plate 12 and improving reliability, and handling the composite plate 12. It becomes easy. Therefore, the assembly of the zinc secondary battery is facilitated. The resin outer frame 18 itself can also contribute to the prevention of zinc dendrite penetration and extension. The resin constituting the resin outer frame 18 is preferably a resin having resistance to alkali metal hydroxide such as potassium hydroxide, more preferably polyolefin resin, ABS resin, polypropylene (PP) resin, polyethylene (PE). A resin or a modified polyphenylene ether, more preferably an ABS resin, a polypropylene (PP) resin, a polyethylene (PE) resin, or a modified polyphenylene ether, and particularly preferably an ABS resin or a modified polyphenylene from the viewpoint of alkali resistance and adhesiveness. Ether (m-PPE) and polypropylene (PP) resins. The modified polyphenylene ether may be a compound (for example, m-PPE / PS) combined with another polymer (for example, polystyrene).
 接着剤
 樹脂製外枠18の凹部18bと複合板12は接着剤20で封止接合されている。そして、多孔質基材16の凹部18bと対向する部分が多孔質基材16の表面から所定の深さDにわたって接着剤20が染み込んでいる。多孔質基材16への接着剤20の染み込み深さDは、多孔質基材16の表面から100μm以上であり、好ましくは100~600μm、より好ましくは100~500μm、さらに好ましくは100~400μm、特に好ましくは100~350μm、最も好ましくは100~300μmである。このような染み込み深さを実現するためには、粘度が低い接着剤を選択することで実現することができる。粘度が低い接着剤は多孔質基材16の気孔内に浸入しやすいためである。粘度の低い接着剤は、例えば増粘剤や充填剤(例えばSi成分)を含有しないか、もしくは増粘剤や充填剤の含有量が少ない接着剤でありうる。
The concave portion 18 b of the adhesive resin outer frame 18 and the composite plate 12 are sealed and bonded with an adhesive 20. The portion of the porous substrate 16 that faces the concave portion 18b is infiltrated with the adhesive 20 from the surface of the porous substrate 16 over a predetermined depth D. The penetration depth D of the adhesive 20 into the porous substrate 16 is 100 μm or more from the surface of the porous substrate 16, preferably 100 to 600 μm, more preferably 100 to 500 μm, still more preferably 100 to 400 μm, Particularly preferred is 100 to 350 μm, and most preferred is 100 to 300 μm. Such a penetration depth can be realized by selecting an adhesive having a low viscosity. This is because an adhesive having a low viscosity is likely to enter the pores of the porous substrate 16. The adhesive having a low viscosity can be, for example, an adhesive that does not contain a thickener or a filler (for example, Si component) or has a small content of the thickener or the filler.
 接着剤20は、アルカリ電解液中での劣化を防ぐため、耐アルカリ性を有する樹脂を含むのが好ましい。かかる観点から、好ましい接着剤20は、エポキシ樹脂系接着剤、天然樹脂系接着剤、変性オレフィン樹脂系接着剤及び変成シリコーン樹脂系接着剤からなる群から選択される少なくとも1種である。これらの接着剤はいずれもセラミックスと樹脂の双方への接着性に優れる。 The adhesive 20 preferably contains a resin having alkali resistance in order to prevent deterioration in an alkaline electrolyte. From this viewpoint, the preferable adhesive 20 is at least one selected from the group consisting of an epoxy resin adhesive, a natural resin adhesive, a modified olefin resin adhesive, and a modified silicone resin adhesive. These adhesives are all excellent in adhesion to both ceramics and resin.
 エポキシ樹脂系接着剤が耐アルカリ性に特に優れる点で好ましい。エポキシ樹脂系接着剤は、エポキシ樹脂を主成分とする接着剤であれば、エポキシ接着剤と称されるものに限定されず、エポキシアミド接着剤、エポキシ変性シリコーン接着剤等のエポキシ系の各種接着剤であってもよい。また、一液型(加熱硬化型)及び二液混合型のいずれであってもよい。エポキシ樹脂は架橋密度が一般的に高いことから吸水性が低く、アルカリ電解液(例えばKOH水溶液)との反応が抑制されるものと考えられる。特に、エポキシ樹脂系接着剤は40℃以上のガラス転位温度Tgを有するのが好ましく、より好ましくは43℃以上であり、さらに好ましくは45~95℃である。このように高いガラス転位温度Tgを有することで、耐アルカリ性(特に高温での耐アルカリ性)が更に向上する。エポキシ樹脂系接着剤の例としては、エポキシアミド接着剤、エポキシ変性シリコーン接着剤、エポキシ接着剤、エポキシ変性アミド接着剤、エポキシポリサルファイド接着剤、エポキシ酸無水物接着剤、エポキシニトリル接着剤が挙げられるが、エポキシアミド接着剤及びエポキシ接着剤が特に好ましい。 An epoxy resin adhesive is preferable because it is particularly excellent in alkali resistance. The epoxy resin adhesive is not limited to what is called an epoxy adhesive as long as it is an adhesive mainly composed of an epoxy resin, and various epoxy adhesives such as an epoxy amide adhesive and an epoxy-modified silicone adhesive. An agent may be used. Moreover, either a one-component type (heat curing type) or a two-component mixed type may be used. Epoxy resins are generally high in crosslink density, and thus have low water absorption, and are considered to suppress reaction with an alkaline electrolyte (for example, KOH aqueous solution). In particular, the epoxy resin-based adhesive preferably has a glass transition temperature Tg of 40 ° C. or higher, more preferably 43 ° C. or higher, and further preferably 45 to 95 ° C. By having such a high glass transition temperature Tg, alkali resistance (particularly alkali resistance at high temperatures) is further improved. Examples of epoxy resin adhesives include epoxy amide adhesives, epoxy modified silicone adhesives, epoxy adhesives, epoxy modified amide adhesives, epoxy polysulfide adhesives, epoxy acid anhydride adhesives, and epoxy nitrile adhesives. However, epoxy amide adhesives and epoxy adhesives are particularly preferred.
 上述したエポキシ樹脂系接着剤は熱硬化性接着剤であるが、熱可塑性樹脂系接着剤として天然樹脂系接着剤及び/又は変性オレフィン樹脂系接着剤を用いることもできる。この場合、熱可塑性樹脂系接着剤は80℃以上の軟化点(具体的にはR&B軟化点)を有するのが好ましく、より好ましくは90℃以上であり、さらに好ましくは95~160℃である。熱可塑性樹脂の場合、軟化点が高いものほど反応しにくい傾向があるため、上記温度であると耐アルカリ性が向上する。 The above-mentioned epoxy resin adhesive is a thermosetting adhesive, but a natural resin adhesive and / or a modified olefin resin adhesive can also be used as the thermoplastic resin adhesive. In this case, the thermoplastic resin-based adhesive preferably has a softening point of 80 ° C. or higher (specifically, an R & B softening point), more preferably 90 ° C. or higher, and still more preferably 95 to 160 ° C. In the case of a thermoplastic resin, the higher the softening point, the more difficult it is to react. Therefore, the alkali resistance is improved at the above temperature.
 上記のように樹脂製外枠18と複合板12が接着剤20で封止接合された結果、セパレータ構造体10は全体としてガス不透過性及び/又は水不透過性を有することができる。 As a result of sealing and joining the resin outer frame 18 and the composite plate 12 with the adhesive 20 as described above, the separator structure 10 as a whole can have gas impermeability and / or water impermeability.
 本発明を以下の例によってさらに具体的に説明する。 The present invention will be described more specifically with reference to the following examples.
 例A1:LDHセパレータと多孔質基材を含む複合板の作製
 LDHを含む機能層及び複合材料を以下の手順により作製し、評価した。なお、本例における機能層は「LDHセパレータ」に相当する層であり、具体的にはLDH膜と多孔質基材内のLDHとを含む層である。また、本例における複合材料は「複合板」に相当する。
Example A1 : Production of composite plate containing LDH separator and porous substrate A functional layer containing LDH and a composite material were produced and evaluated by the following procedure. The functional layer in this example is a layer corresponding to an “LDH separator”, specifically, a layer including an LDH film and LDH in a porous substrate. The composite material in this example corresponds to a “composite plate”.
(1)多孔質基材の作製
 アルミナ粉末(住友化学社製、AES-12)100重量部に対して、分散媒(キシレン:ブタノール=1:1)70重量部、バインダー(ポリビニルブチラール:積水化学工業株式会社製BM-2)11.1重量部、可塑剤(DOP:黒金化成株式会社製)5.5重量部、及び分散剤(花王株式会社製レオドールSP-O30)2.9重量部を混合し、この混合物を減圧下で攪拌して脱泡することにより、スラリーを得た。このスラリーを、テープ成型機を用いてPETフィルム上に、乾燥後膜厚が220μmとなるようにシート状に成型してシート成形体を得た。得られた成形体を2.0cm×2.0cm×厚さ0.022cmの大きさになるよう切り出し、1300℃で2時間焼成して、アルミナ製多孔質基材を得た。
(1) Preparation of porous substrate 70 parts by weight of a dispersion medium (xylene: butanol = 1: 1) and binder (polyvinyl butyral: Sekisui Chemical) with respect to 100 parts by weight of alumina powder (AES-12, manufactured by Sumitomo Chemical Co., Ltd.) BM-2 manufactured by Kogyo Co., Ltd. 11.1 parts by weight, 5.5 parts by weight of a plasticizer (DOP: manufactured by Kurokin Kasei Co., Ltd.), and 2.9 parts by weight of a dispersant (Rheodor SP-O30 manufactured by Kao Corporation) The mixture was stirred and degassed by stirring under reduced pressure to obtain a slurry. The slurry was molded into a sheet shape on a PET film using a tape molding machine so that the film thickness after drying was 220 μm to obtain a sheet molded body. The obtained molded body was cut out to have a size of 2.0 cm × 2.0 cm × thickness 0.022 cm and fired at 1300 ° C. for 2 hours to obtain an alumina porous substrate.
 得られた多孔質基材について、多孔質基材の気孔率をアルキメデス法により測定したところ、40%であった。 For the obtained porous substrate, the porosity of the porous substrate was measured by the Archimedes method and found to be 40%.
 また、多孔質基材の平均気孔径を測定したところ0.3μmであった。本発明において、平均気孔径の測定は多孔質基材の表面の電子顕微鏡(SEM)画像をもとに気孔の最長距離を測長することにより行った。この測定に用いた電子顕微鏡(SEM)画像の倍率は20000倍であり、得られた全ての気孔径をサイズ順に並べて、その平均値から近い順に上位15点及び下位15点、合わせて1視野あたり30点で2視野分の平均値を算出して、平均気孔径を得た。測長には、SEMのソフトウェアの測長機能を用いた。 Further, when the average pore diameter of the porous substrate was measured, it was 0.3 μm. In the present invention, the average pore diameter was measured by measuring the longest distance of the pores based on an electron microscope (SEM) image of the surface of the porous substrate. The magnification of the electron microscope (SEM) image used for this measurement is 20000 times. All obtained pore diameters are arranged in order of size, and the top 15 points and the bottom 15 points are arranged in order from the average value. An average value for two visual fields was calculated at 30 points to obtain an average pore diameter. For length measurement, the length measurement function of SEM software was used.
(2)ポリスチレンスピンコート及びスルホン化
 ポリスチレン基板0.6gをキシレン溶液10mlに溶かして、ポリスチレン濃度0.06g/mlのスピンコート液を作製した。得られたスピンコート液0.1mlをアルミナ多孔質基材上に滴下し、回転数8000rpmでスピンコートにより塗布した。このスピンコートは、滴下と乾燥を含めて200秒間行った。スピンコート液を塗布した多孔質基材を95%硫酸に25℃で4日間浸漬してスルホン化した。
(2) Polystyrene spin coating and sulfonation 0.6 g of a polystyrene substrate was dissolved in 10 ml of a xylene solution to prepare a spin coating solution having a polystyrene concentration of 0.06 g / ml. 0.1 ml of the obtained spin coating solution was dropped onto an alumina porous substrate and applied by spin coating at a rotation speed of 8000 rpm. This spin coating was performed for 200 seconds including dripping and drying. The porous substrate coated with the spin coating solution was immersed in 95% sulfuric acid at 25 ° C. for 4 days for sulfonation.
(3)原料水溶液の作製
 原料として、硝酸マグネシウム六水和物(Mg(NO・6HO、関東化学株式会社製)、硝酸アルミニウム九水和物(Al(NO・9HO、関東化学株式会社製)、及び尿素((NHCO、シグマアルドリッチ製)を用意した。カチオン比(Mg2+/Al3+)が2となり且つ全金属イオンモル濃度(Mg2++Al3+)が0.320mol/Lとなるように、硝酸マグネシウム六水和物と硝酸アルミニウム九水和物を秤量してビーカーに入れ、そこにイオン交換水を加えて全量を70mlとした。得られた溶液を攪拌した後、溶液中に尿素/NO =4の割合で秤量した尿素を加え、更に攪拌して原料水溶液を得た。
(3) As the manufacturing raw material of the raw aqueous solution, magnesium nitrate hexahydrate (Mg (NO 3) 2 · 6H 2 O, manufactured by Kanto Chemical Co., Inc.), aluminum nitrate nonahydrate (Al (NO 3) 3 · 9H 2 O, manufactured by Kanto Chemical Co., Ltd.) and urea ((NH 2 ) 2 CO, manufactured by Sigma-Aldrich) were prepared. Weigh magnesium nitrate hexahydrate and aluminum nitrate nonahydrate so that the cation ratio (Mg 2+ / Al 3+ ) is 2 and the total metal ion molar concentration (Mg 2+ + Al 3+ ) is 0.320 mol / L. In a beaker, ion exchange water was added to make a total volume of 70 ml. After stirring the obtained solution, urea weighed at a ratio of urea / NO 3 = 4 was added to the solution, and further stirred to obtain an aqueous raw material solution.
(4)水熱処理による成膜
 テフロン(登録商標)製密閉容器(内容量100ml、外側がステンレス製ジャケット)に上記(3)で作製した原料水溶液と上記(2)でスルホン化した多孔質基材を共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように水平に設置した。その後、水熱温度70℃で168時間(7日間)水熱処理を施すことにより基材表面にLDH配向膜の形成を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、LDHを含む機能層を、その一部が多孔質基材中に組み込まれた形で得た。得られた機能層の厚さは(多孔質基材に組み込まれた部分の厚さを含めて)約3μmであった。
(4) Film formation by hydrothermal treatment A Teflon (registered trademark) sealed container (with an internal volume of 100 ml, the outside is a stainless steel jacket) and the raw material aqueous solution prepared in (3) above and the porous substrate sulfonated in (2) above Was enclosed together. At this time, the base material was fixed by being floated from the bottom of a Teflon (registered trademark) sealed container, and placed horizontally so that the solution was in contact with both surfaces of the base material. Thereafter, a hydrothermal treatment was performed at a hydrothermal temperature of 70 ° C. for 168 hours (7 days) to form an LDH alignment film on the substrate surface. After a lapse of a predetermined time, the substrate was taken out from the sealed container, washed with ion-exchanged water, dried at 70 ° C. for 10 hours, and a part of the functional layer containing LDH was incorporated into the porous substrate. Got in shape. The thickness of the functional layer obtained was about 3 μm (including the thickness of the portion incorporated in the porous substrate).
(5)評価結果
 得られた機能層ないし複合材料に対して以下の評価を行った。
(5) Evaluation result The following evaluation was performed with respect to the obtained functional layer or composite material.
 評価1:機能層の同定
 X線回折装置(リガク社製 RINT TTR III)にて、電圧:50kV、電流値:300mA、測定範囲:10~70°の測定条件で、機能層の結晶相を測定してXRDプロファイルを得た。得られたXRDプロファイルについて、JCPDSカードNO.35-0964に記載されるLDH(ハイドロタルサイト類化合物)の回折ピークを用いて同定を行った。その結果、得られたXRDプロファイルから、機能層はLDH(ハイドロタルサイト類化合物)であることが同定された。
Evaluation 1 : Identification of functional layer The crystal phase of the functional layer was measured with an X-ray diffractometer (RINT TTR III manufactured by Rigaku Corporation) under the measurement conditions of voltage: 50 kV, current value: 300 mA, measurement range: 10 to 70 °. As a result, an XRD profile was obtained. About the obtained XRD profile, JCPDS card NO. Identification was performed using a diffraction peak of LDH (hydrotalcite compound) described in 35-0964. As a result, it was identified from the obtained XRD profile that the functional layer was LDH (hydrotalcite compound).
 評価2:微構造の観察
 機能層の表面微構造を走査型電子顕微鏡(SEM、JSM-6610LV、JEOL社製)を用いて10~20kVの加速電圧で観察した。また、イオンミリング装置(日立ハイテクノロジーズ社製、IM4000によって、機能層(LDH膜からなる膜状部とLDH及び基材からなる複合部)の断面研磨面を得た後に、この断面研磨面の微構造を表面微構造の観察と同様の条件でSEMにより観察した。その結果、機能層の表面微構造及び断面微構造のSEM画像はそれぞれ図2A及び2Bに示されるとおりであった。図2Bに示されるとおり、機能層は、LDH膜からなる膜状部と、膜状部の下に位置するLDH及び多孔質基材からなる複合部とから構成されていることが分かった。また、膜状部を構成するLDHは、複数の板状粒子の集合体で構成され、これら複数の板状粒子がそれらの板面が多孔質基材の表面(多孔構造に起因する微細凹凸を無視できる程度に巨視的に観察した場合における多孔質基材の面)と垂直に又は斜めに交差するような向きに配向していた。一方、複合部は、多孔質基材の孔内にLDHが充填されて緻密な層を構成していた。
Evaluation 2 : Observation of microstructure The surface microstructure of the functional layer was observed with a scanning electron microscope (SEM, JSM-6610LV, manufactured by JEOL) at an acceleration voltage of 10 to 20 kV. Further, after obtaining a cross-sectional polished surface of a functional layer (a film-shaped portion made of an LDH film and a composite portion made of LDH and a base material) with an ion milling device (manufactured by Hitachi High-Technologies Corporation, IM4000) The structure was observed by SEM under the same conditions as the observation of the surface microstructure, and as a result, the SEM images of the surface microstructure and the cross-sectional microstructure of the functional layer were as shown in FIGS. As shown, it was found that the functional layer was composed of a film-shaped portion made of an LDH film and a composite portion made of LDH and a porous substrate located under the film-shaped portion. The LDH constituting the part is composed of an aggregate of a plurality of plate-like particles, and the plurality of plate-like particles are such that the plate surface is negligible on the surface of the porous substrate (fine irregularities due to the porous structure can be ignored). Macroscopic view The surface of the porous substrate is oriented perpendicularly or obliquely to the surface of the porous substrate.On the other hand, the composite portion is filled with LDH in the pores of the porous substrate to form a dense layer. It was composed.
 評価3:元素分析評価(EDS)
 クロスセクションポリッシャ(CP)により、機能層(LDH膜からなる膜状部とLDH及び基材からなる複合部)の断面研磨面が観察できるように研磨した。FE-SEM(ULTRA55、カールツァイス製)により、機能層(LDH膜からなる膜状部とLDH及び基材からなる複合部)の断面イメージを10000倍の倍率で1視野取得した。この断面イメージの基材表面のLDH膜と基材内部のLDH部分(点分析)についてEDS分析装置(NORAN System SIX、サーモフィッシャーサイエンティフィック製)により、加速電圧15kVの条件にて、元素分析を行った。その結果、機能層に含まれるLDH、すなわち基材表面のLDH膜と基材内のLDH部分のいずれにおいても、LDH構成元素であるC、Mg及びAlが検出された。すなわち、Mg及びAlは水酸化物基本層の構成元素である一方、CはLDHの中間層を構成する陰イオンであるCO 2-に対応する。
Evaluation 3 : Elemental analysis evaluation (EDS)
Polishing was performed with a cross section polisher (CP) so that the cross-section polished surface of the functional layer (a film-like portion made of an LDH film and a composite portion made of LDH and a substrate) could be observed. With FE-SEM (ULTRA55, manufactured by Carl Zeiss), a cross-sectional image of the functional layer (a film-like portion made of an LDH film and a composite portion made of LDH and a base material) was obtained in one field of view at a magnification of 10,000 times. The elemental analysis of the LDH film on the substrate surface of this cross-sectional image and the LDH portion (point analysis) inside the substrate was performed with an EDS analyzer (NORAN System SIX, manufactured by Thermo Fisher Scientific) under the condition of an acceleration voltage of 15 kV. went. As a result, LDH constituent elements C, Mg, and Al were detected in both the LDH contained in the functional layer, that is, the LDH film on the substrate surface and the LDH portion in the substrate. That is, Mg and Al are constituent elements of the hydroxide basic layer, while C corresponds to CO 3 2− which is an anion constituting the intermediate layer of LDH.
 例B1~B5
(1)多孔質基材の作製
 例A1と同様にしてアルミナ製多孔質基材を作製した。得られた多孔質基材の気孔率は40%であった。また、多孔質基材の平均気孔径は0.3μmであった。
Examples B1 to B5
(1) Production of porous substrate An alumina porous substrate was produced in the same manner as in Example A1. The porosity of the obtained porous substrate was 40%. The average pore diameter of the porous substrate was 0.3 μm.
(2)接着剤の用意
 表1に示されるとおり以下の5種類の接着剤A~Eを用意した。
・接着剤A:エポキシ2液型接着剤(ヘンケルジャパン株式会社製、Hysol E30CL)
・接着剤B:エポキシ2液型接着剤(主剤としてビスフェノールA型エポキシ樹脂を、硬化剤として変性脂環式ポリアミンを用いて、粘度調整を行ったもの)
・接着剤C:エポキシ2液型接着剤(主剤としてビスフェノールA型エポキシ樹脂を、硬化剤として変性脂環式ポリアミンを用いて、粘度調整を行ったもの)
・接着剤D:エポキシ1液型接着剤(セメダイン株式会社製、セメダインEP171)
・接着剤E:エポキシ2液型接着剤(セメダイン株式会社製、セメダインEP008)
(2) Preparation of adhesives As shown in Table 1, the following five types of adhesives A to E were prepared.
-Adhesive A: Epoxy two-component adhesive (Henkel Japan, Hysol E30CL)
Adhesive B: Epoxy two-component adhesive (viscosity adjusted using bisphenol A type epoxy resin as the main agent and modified alicyclic polyamine as the curing agent)
-Adhesive C: Epoxy two-component adhesive (viscosity adjusted using bisphenol A type epoxy resin as the main agent and modified alicyclic polyamine as the curing agent)
-Adhesive D: Epoxy 1-pack type adhesive (Cemedine, Inc., Cemedine EP171)
Adhesive E: Epoxy two-component adhesive (Cemedine, Inc., Cemedine EP008)
 エポキシ2液型接着剤は、主剤がエポキシ樹脂を含み、硬化剤がポリアミン系を含む。エポキシ1液型接着剤はエポキシ樹脂とエポキシ硬化剤の混合物を含む。表1に示される主剤の粘度及び硬化剤の粘度は各接着剤の製品カタログに記載される値であり、表1に示される混合後の粘度は手動で3分間混合後、5分間静置した試料を粘度計受器へ投入し、測定開始から120秒後の表示値である。また、表1に示される、混合比、可使時間及び硬化条件は、各接着剤の製品カタログに記載される値を採用したものである。 The epoxy two-component adhesive includes an epoxy resin as a main agent and a polyamine type as a curing agent. The epoxy one-part adhesive includes a mixture of an epoxy resin and an epoxy curing agent. The viscosity of the main agent and the viscosity of the curing agent shown in Table 1 are values described in the product catalog of each adhesive, and the viscosity after mixing shown in Table 1 is manually mixed for 3 minutes and then allowed to stand for 5 minutes. The displayed value is 120 seconds after the sample is put into the viscometer receiver and the measurement is started. Moreover, the mixing ratio, pot life, and curing conditions shown in Table 1 adopt values described in the product catalog of each adhesive.
(3)染み込み深さの測定
 多孔質基材に対する各接着剤の染み込み深さを以下のようにして測定した。
(3) Measurement of penetration depth The penetration depth of each adhesive with respect to the porous substrate was measured as follows.
(例B1~B3及びB5)
 接着剤A、B、C又はEを表1に示される混合比になるように秤量し、ヘラで1分間混合した後、脱泡機にて2000rpmで1分間脱泡した。図1A及び1Bに示されるように、樹脂製外枠18の凹部18bにヘラで接着剤20を塗布し、そこにアルミナ多孔質基材16を載置した。樹脂製外枠18は変性ポリフェニレンエーテル(ZYRON(登録商標)EV103)製である。アルミナ多孔質基材16の端面に接着剤20を付着させるように、多孔質基材16の四隅を樹脂製外枠18に向かって軽く押した。そして、表1に示される硬化条件で静置して接着剤20を硬化させた。接着剤20の硬化後、得られたサンプルの接着部分を切り出し、断面を機械研磨した。研磨断面をSEMで観察して、接着剤20が染み込んでいる部分の多孔質基材16の表面からの深さ(すなわち染み込み深さ)を測定した。測定した染み込み深さは表1に示されるとおりであった。
(Examples B1 to B3 and B5)
Adhesives A, B, C, or E were weighed so as to have the mixing ratio shown in Table 1, mixed with a spatula for 1 minute, and then defoamed with a defoamer at 2000 rpm for 1 minute. As shown in FIGS. 1A and 1B, the adhesive 20 was applied to the recess 18b of the resin outer frame 18 with a spatula, and the alumina porous substrate 16 was placed thereon. The resin outer frame 18 is made of modified polyphenylene ether (ZYRON (registered trademark) EV103). The four corners of the porous substrate 16 were lightly pressed toward the resin outer frame 18 so that the adhesive 20 was attached to the end face of the alumina porous substrate 16. Then, the adhesive 20 was cured by allowing to stand under the curing conditions shown in Table 1. After the adhesive 20 was cured, the bonded portion of the obtained sample was cut out and the cross section was mechanically polished. The polished cross section was observed with an SEM, and the depth from the surface of the porous substrate 16 where the adhesive 20 soaked (that is, the soaking depth) was measured. The measured penetration depth was as shown in Table 1.
 例B1において得られたサンプルの断面SEM画像を図3Aに示す一方、染み込み界面部分を拡大観察した断面SEM像を図3Bに示す。これらの図から明らかなように、アルミナ多孔質基材に深さ170μmにわたって接着剤Aが十分に染み込んでいることが分かる。また、例B1で得られたサンプルを真上から撮影した写真を図3Cに示す。図3Cに示される正方形の白い領域が多孔質基材であり、その多孔質基材の外周部分が接着剤の染み込みにより変色していることが分かる。この点からも多孔質基材への接着剤の染み込みが十分であったことが裏付けられる。 FIG. 3A shows a cross-sectional SEM image of the sample obtained in Example B1, and FIG. 3B shows a cross-sectional SEM image obtained by observing the penetration interface portion in an enlarged manner. As is clear from these figures, it can be seen that the adhesive A is sufficiently infiltrated into the alumina porous substrate over a depth of 170 μm. Moreover, the photograph which image | photographed the sample obtained in Example B1 from right above is shown in FIG. 3C. It can be seen that the square white region shown in FIG. 3C is a porous substrate, and the outer peripheral portion of the porous substrate is discolored by the penetration of the adhesive. Also from this point, it is supported that the penetration of the adhesive into the porous substrate was sufficient.
 一方、比較例である例B5で得られたサンプルの断面SEM像を図4Aに示す一方、染み込み界面部分を拡大観察した断面SEM像を図4Bに示す。これらの図から明らかなように、アルミナ多孔質基材への接着剤Eの染み込みは深さ50μm程度と浅いものであった。また、例B5で得られたサンプルを真上から撮影した写真を図4Cに示す。図4Cに示される正方形の白い領域が多孔質基材であるが、その多孔質基材の外周部分には接着剤Aの染み込みによる目立った変色は観察されなかった。この点からも多孔質基材への接着剤の染み込みは不十分であったといえる。 On the other hand, the cross-sectional SEM image of the sample obtained in Comparative Example B5 is shown in FIG. 4A, while the cross-sectional SEM image obtained by magnifying and observing the penetration interface portion is shown in FIG. 4B. As is clear from these figures, the penetration of the adhesive E into the alumina porous substrate was as shallow as about 50 μm in depth. Moreover, the photograph which image | photographed the sample obtained in Example B5 from right above is shown in FIG. 4C. The square white area shown in FIG. 4C is a porous substrate, but no noticeable discoloration due to penetration of the adhesive A was observed in the outer peripheral portion of the porous substrate. From this point, it can be said that the penetration of the adhesive into the porous substrate was insufficient.
(例B4)
 図1A及び1Bに示されるように、樹脂製外枠18の凹部18bにヘラで接着剤Dを塗布し、そこにアルミナ多孔質基材16を載置した。樹脂製外枠18は変性ポリフェニレンエーテル(ZYRON(登録商標)EV103)製である。アルミナ多孔質基材16の端面に接着剤20を付着させるように、多孔質基材16の四隅を樹脂製外枠17に向かって軽く押した。そして、表1に示される硬化条件で静置して接着剤20を硬化させた。接着剤20の硬化後、得られたサンプルの接着部分を切り出し、断面を機械研磨した。研磨断面をSEMで観察して、接着剤20が染み込んでいる部分の多孔質基材16の表面からの深さ(すなわち染み込み深さ)を測定した。測定した染み込み深さは表1に示されるとおりであった。
(Example B4)
As shown in FIGS. 1A and 1B, the adhesive D was applied to the recess 18b of the resin outer frame 18 with a spatula, and the alumina porous substrate 16 was placed thereon. The resin outer frame 18 is made of modified polyphenylene ether (ZYRON (registered trademark) EV103). The four corners of the porous base material 16 were lightly pressed toward the resin outer frame 17 so that the adhesive 20 was attached to the end face of the alumina porous base material 16. Then, the adhesive 20 was cured by allowing to stand under the curing conditions shown in Table 1. After the adhesive 20 was cured, the bonded portion of the obtained sample was cut out and the cross section was mechanically polished. The polished cross section was observed with an SEM, and the depth from the surface of the porous substrate 16 where the adhesive 20 soaked (that is, the soaking depth) was measured. The measured penetration depth was as shown in Table 1.
(4)気密性確保割合の評価
 アルミナ多孔質基材の代わりに例A1で作製された複合材料(LDHセパレータと多孔質基材からなる複合板)を用いたこと以外は上記(3)と同様にして樹脂製外枠18に複合板12を接着させてセパレータ構造体10を得た。各接着剤についてセパレータ構造体サンプルを10個作製した。以下に示す緻密性判定試験とHe透過度測定を行い、各接着剤につき10個のサンプル中、気密性の確保が確認されたサンプルの割合を求めて、気密性確保割合とした。得られた気密性確保割合は表1に示されるとおりであった。
(4) Evaluation of airtightness securing ratio The same as (3) above except that the composite material prepared in Example A1 (composite plate comprising an LDH separator and a porous substrate) was used instead of the alumina porous substrate. Then, the composite plate 12 was bonded to the resin outer frame 18 to obtain the separator structure 10. Ten separator structure samples were prepared for each adhesive. The following denseness determination test and He permeability measurement were performed, and the ratio of the samples in which the airtightness was confirmed in 10 samples for each adhesive was determined, and was defined as the airtightness securing ratio. The obtained airtightness securing ratio was as shown in Table 1.
<緻密性判定試験>
 セパレータ構造体10が通気性を有しない程の緻密性を有する(すなわち気密性を有する)ことを確認すべく、緻密性判定試験を以下のとおり行った。まず、図5A及び5Bに示されるように、蓋の無いアクリル容器130と、このアクリル容器130の蓋として機能しうる形状及びサイズのセパレータ構造体10とを用意した。アクリル容器130にはその中にガスを供給するためのガス供給口130aが形成されている。そして、セパレータ構造体10を、アクリル容器130の開放部を完全に塞ぐようにシリコーン接着剤138を用いて気密かつ液密にアクリル容器130の上端に接着させて、測定用密閉容器140を得た。この測定用密閉容器140を水槽142に入れ、アクリル容器130のガス供給口130aを圧力計144及び流量計146に接続して、ヘリウムガスをアクリル容器130内に供給可能に構成した。水槽142に水143を入れて測定用密閉容器140を完全に水没させた。このとき、測定用密閉容器140の内部は気密性及び液密性が十分に確保されており、セパレータ構造体10のLDHセパレータ14側が測定用密閉容器140の内部空間に露出する一方、多孔質基材16側が水槽142内の水に接触している。この状態で、アクリル容器130内にガス供給口130aを介してヘリウムガスを測定用密閉容器140内に導入した。圧力計144及び流量計146を制御してLDHセパレータ14内外の差圧が0.5atmとなる(すなわちヘリウムガスに接する側に加わる圧力が反対側に加わる水圧よりも0.5atm高くなる)ようにして、セパレータ構造体10から水中にヘリウムガスの泡が発生するか否かを観察した。その結果、ヘリウムガスに起因する泡の発生は観察されなかった場合に、セパレータ構造体10は通気性を有しない程に高い緻密性を有する(すなわち気密性を有する)ものと判定した。
<Density judgment test>
In order to confirm that the separator structure 10 does not have air permeability (ie, has airtightness), a density determination test was performed as follows. First, as shown in FIGS. 5A and 5B, an acrylic container 130 without a lid and a separator structure 10 having a shape and size that can function as a lid for the acrylic container 130 were prepared. The acrylic container 130 is formed with a gas supply port 130a for supplying gas therein. Then, the separator structure 10 was adhered to the upper end of the acrylic container 130 in a gas-tight and liquid-tight manner using a silicone adhesive 138 so as to completely close the open portion of the acrylic container 130, thereby obtaining a measurement sealed container 140. . The measurement sealed container 140 was placed in a water tank 142, and the gas supply port 130 a of the acrylic container 130 was connected to a pressure gauge 144 and a flow meter 146 so that helium gas could be supplied into the acrylic container 130. Water 143 was put into the water tank 142 and the measurement sealed container 140 was completely submerged. At this time, the inside of the measurement container 140 is sufficiently airtight and liquid-tight, and the LDH separator 14 side of the separator structure 10 is exposed to the internal space of the measurement container 140, while the porous substrate 140 The material 16 side is in contact with the water in the water tank 142. In this state, helium gas was introduced into the measurement sealed container 140 into the acrylic container 130 via the gas supply port 130a. The pressure gauge 144 and the flow meter 146 are controlled so that the differential pressure inside and outside the LDH separator 14 becomes 0.5 atm (that is, the pressure applied to the side in contact with the helium gas is 0.5 atm higher than the water pressure applied to the opposite side). Then, it was observed whether or not helium gas bubbles were generated in the water from the separator structure 10. As a result, when generation | occurrence | production of the bubble resulting from helium gas was not observed, it determined with the separator structure 10 having a high density (that is, having airtightness) so as not to have air permeability.
<He透過度測定>
 He透過度の観点からセパレータ構造体10の緻密性及び気密性を評価すべくHe透過試験を以下のとおり行った。まず、図6A及び図6Bに示されるHe透過度測定系310を構築した。He透過度測定系310は、Heガスを充填したガスボンベからのHeガスが圧力計312及び流量計314(デジタルフローメーター)を介して試料ホルダ316に供給され、この試料ホルダ316に保持されたセパレータ構造体10の一方の面から他方の面に透過させて排出させるように構成した。
<He transmission measurement>
In order to evaluate the denseness and airtightness of the separator structure 10 from the viewpoint of He permeability, a He permeation test was performed as follows. First, the He transmittance measurement system 310 shown in FIGS. 6A and 6B was constructed. The He permeability measurement system 310 is a separator in which He gas from a gas cylinder filled with He gas is supplied to a sample holder 316 via a pressure gauge 312 and a flow meter 314 (digital flow meter), and is held by the sample holder 316. The structure 10 is configured to be transmitted from one surface to the other surface and discharged.
 試料ホルダ316は、ガス供給口316a、密閉空間316b及びガス排出口316cを備えた構造を有するものであり、次のようにして組み立てた。セパレータ構造体10の上端及び下端に密封部材326a,326bとしてブチルゴム製のパッキンを配設し、さらに密封部材326a,326bの外側から、フランジからなる開口部を備えた支持部材328a,328b(PTFE製)で挟持した。こうして、セパレータ構造体10、密封部材326a及び支持部材328aにより密閉空間316bを区画した。なお、セパレータ構造体10はLDHセパレータ14側がガス供給口316aに向くように配置した。支持部材328a,328bを、ガス排出口316c以外の部分からHeガスの漏れが生じないように、ネジを用いた締結手段330で互いに堅く締め付けた。こうして組み立てられた試料ホルダ316のガス供給口316aに、継手332を介してガス供給管334を接続した。 The sample holder 316 has a structure including a gas supply port 316a, a sealed space 316b, and a gas discharge port 316c, and was assembled as follows. Support members 328a and 328b (made of PTFE) provided with gaskets made of butyl rubber as sealing members 326a and 326b at the upper and lower ends of the separator structure 10 and further provided with openings made of flanges from the outside of the sealing members 326a and 326b. ). Thus, the sealed space 316b was partitioned by the separator structure 10, the sealing member 326a, and the support member 328a. In addition, the separator structure 10 was arrange | positioned so that the LDH separator 14 side might face the gas supply port 316a. The support members 328a and 328b were firmly fastened to each other by fastening means 330 using screws so that He gas leakage did not occur from a portion other than the gas discharge port 316c. A gas supply pipe 334 was connected to the gas supply port 316 a of the sample holder 316 assembled in this way via a joint 332.
 次いで、He透過度測定系310にガス供給管334を経てHeガスを供給し、試料ホルダ316内に保持されたセパレータ構造体10に透過させた。このとき、圧力計312及び流量計314によりガス供給圧と流量をモニタリングした。Heガスの透過を1~30分間行った後、He透過度を算出した。He透過度の算出は、単位時間あたりのHeガスの透過量F(cm/min)、Heガス透過時にLDHセパレータ14に加わる差圧P(atm)、及びHeガスが透過する膜面積S(cm)を用いて、F/(P×S)の式により算出した。Heガスの透過量F(cm/min)は流量計314から直接読み取った。また、差圧Pは圧力計312から読み取ったゲージ圧を用いた。なお、Heガスは差圧Pが0.05~0.90atmの範囲内となるように供給された。その結果、セパレータ構造体10のHe透過度が1.0cm/min・atm未満であった場合に、セパレータ構造体10は極めて高い緻密性及び気密性を有するものと判定した。 Next, He gas was supplied to the He permeability measurement system 310 via the gas supply pipe 334 and permeated through the separator structure 10 held in the sample holder 316. At this time, the gas supply pressure and the flow rate were monitored by the pressure gauge 312 and the flow meter 314. After permeation of He gas for 1 to 30 minutes, the He permeability was calculated. The calculation of the He permeability is based on the permeation amount F (cm 3 / min) of He gas per unit time, the differential pressure P (atm) applied to the LDH separator 14 during He gas permeation, and the membrane area S ( cm 2 ) and calculated by the formula of F / (P × S). The permeation amount F (cm 3 / min) of He gas was directly read from the flow meter 314. Further, as the differential pressure P, the gauge pressure read from the pressure gauge 312 was used. The He gas was supplied so that the differential pressure P was in the range of 0.05 to 0.90 atm. As a result, when the He permeability of the separator structure 10 was less than 1.0 cm / min · atm, it was determined that the separator structure 10 had extremely high density and airtightness.
<結果>
 表1に示されるように、例B1~B4については接着剤の染み込み深さが100μm以上に達し、その結果、気密性確保割合がサンプル10個中10個、すなわち100%となった。一方、比較例である例B5については接着剤の染み込み深さが100μmに達しないものであり、その結果、気密性確保割合がサンプル10個中7個、すなわち70%となった。
<Result>
As shown in Table 1, in Examples B1 to B4, the penetration depth of the adhesive reached 100 μm or more, and as a result, the airtightness securing ratio was 10 out of 10 samples, that is, 100%. On the other hand, in Example B5 which is a comparative example, the penetration depth of the adhesive did not reach 100 μm, and as a result, the airtightness securing ratio was 7 out of 10 samples, that is, 70%.
(6)接着性の評価
 図7に示されるように、アルミナ多孔質基材16の両面に接着剤20を塗布して樹脂棒102を接着させた。こうして得られたサンプル100を用いて引張強度試験を行った。その結果、例B1~B5のいずれにおいても、多孔質基材16と接着剤20との界面での剥がれが生じず、他の界面(具体的には樹脂棒102と接着剤20との界面)で剥がれが生じた。なお、アルカリ水溶液に浸漬させた後のサンプルであっても同様の結果が得られた。これらの結果から、接着剤の染み込みにより高い接着強度が得られることが分かる。
(6) Evaluation of Adhesiveness As shown in FIG. 7, the adhesive rod 20 was applied to both surfaces of the alumina porous substrate 16 to adhere the resin rod 102. A tensile strength test was performed using the sample 100 thus obtained. As a result, in any of Examples B1 to B5, peeling at the interface between the porous substrate 16 and the adhesive 20 does not occur, and the other interface (specifically, the interface between the resin rod 102 and the adhesive 20). The peeling occurred. In addition, the same result was obtained even if it was the sample after being immersed in alkaline aqueous solution. From these results, it can be seen that high adhesive strength can be obtained by the penetration of the adhesive.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (11)

  1.  亜鉛二次電池用セパレータ構造体であって、
     層状複水酸化物(LDH)セパレータ、及び前記LDHセパレータの片側に設けられる多孔質基材を含む複合板と、
     前記複合板が嵌合される開口部を備えた樹脂製外枠と、
    を備え、
     前記樹脂製外枠が、その内周に沿って前記複合板の前記多孔質基材側を係止する凹部を有し、前記凹部と前記複合板が接着剤で封止接合されており、
     前記多孔質基材が100μm以上の厚さを有し、かつ、前記多孔質基材の前記凹部と対向する部分が前記多孔質基材の表面から100μm以上の深さにわたって前記接着剤が染み込んでいる、セパレータ構造体。
    A separator structure for a zinc secondary battery,
    A composite plate comprising a layered double hydroxide (LDH) separator and a porous substrate provided on one side of the LDH separator;
    A resin outer frame having an opening into which the composite plate is fitted;
    With
    The resin outer frame has a recess that locks the porous substrate side of the composite plate along its inner periphery, and the recess and the composite plate are sealed and bonded with an adhesive,
    The porous substrate has a thickness of 100 μm or more, and a portion of the porous substrate that faces the recess is infiltrated with the adhesive over a depth of 100 μm or more from the surface of the porous substrate. The separator structure.
  2.  前記多孔質基材の厚さが100~600μmであり、かつ、前記多孔質部材における前記接着剤が染み込んでいる部分の深さが100~600μmである、請求項1に記載のセパレータ構造体。 2. The separator structure according to claim 1, wherein the thickness of the porous base material is 100 to 600 μm, and the depth of the porous member soaked with the adhesive is 100 to 600 μm.
  3.  前記接着剤が耐アルカリ性を有する樹脂を含む、請求項1又は2に記載のセパレータ構造体。 The separator structure according to claim 1 or 2, wherein the adhesive contains a resin having alkali resistance.
  4.  前記接着剤が、エポキシ樹脂系接着剤、天然樹脂系接着剤、変性オレフィン樹脂系接着剤及び変成シリコーン樹脂系接着剤からなる群から選択される少なくとも1種である、請求項1~3のいずれか一項に記載のセパレータ構造体。 The adhesive according to any one of claims 1 to 3, wherein the adhesive is at least one selected from the group consisting of an epoxy resin adhesive, a natural resin adhesive, a modified olefin resin adhesive, and a modified silicone resin adhesive. The separator structure according to claim 1.
  5.  前記樹脂製外枠が、ABS樹脂、変性ポリフェニレンエーテル、及びポリプロピレン樹脂からなる群から選択される少なくともいずれか1種で構成される、請求項1~4のいずれか一項に記載のセパレータ構造体。 The separator structure according to any one of claims 1 to 4, wherein the resin outer frame is composed of at least one selected from the group consisting of an ABS resin, a modified polyphenylene ether, and a polypropylene resin. .
  6.  前記多孔質基材が、セラミックス材料、金属材料、及び高分子材料からなる群から選択される少なくとも1種で構成される、請求項1~5のいずれか一項に記載のセパレータ構造体。 The separator structure according to any one of claims 1 to 5, wherein the porous substrate is composed of at least one selected from the group consisting of a ceramic material, a metal material, and a polymer material.
  7.  前記LDHセパレータがガス不透過性及び/又は水不透過性を有する、請求項1~6のいずれか一項に記載のセパレータ構造体。 The separator structure according to any one of claims 1 to 6, wherein the LDH separator has gas impermeability and / or water impermeability.
  8.  前記セパレータ構造体が全体としてガス不透過性及び/又は水不透過性を有する、請求項1~7のいずれか一項に記載のセパレータ構造体。 The separator structure according to any one of claims 1 to 7, wherein the separator structure as a whole is gas-impermeable and / or water-impermeable.
  9.  前記LDHセパレータが、複数のLDH板状粒子の集合体で構成されるLDH膜を有し、前記複数のLDH板状粒子がそれらの板面が前記多孔質基材の表面と垂直に又は斜めに交差するような向きに配向している、請求項1~8のいずれか一項に記載のセパレータ構造体。 The LDH separator has an LDH film composed of an aggregate of a plurality of LDH plate-like particles, and the plate surfaces of the plurality of LDH plate-like particles are perpendicular or oblique to the surface of the porous substrate. The separator structure according to any one of claims 1 to 8, wherein the separator structure is oriented in an intersecting direction.
  10.  水酸化ニッケル及び/又はオキシ水酸化ニッケルを含む正極と、
     亜鉛、亜鉛合金及び/又は酸化亜鉛を含む負極と、
     アルカリ金属水酸化物水溶液を含む電解液と、
     前記正極と前記負極とを水酸化物イオン伝導可能に隔離する、請求項1~9のいずれか一項に記載のセパレータ構造体と、
    を備えた、ニッケル亜鉛二次電池。
    A positive electrode comprising nickel hydroxide and / or nickel oxyhydroxide,
    A negative electrode comprising zinc, a zinc alloy and / or zinc oxide;
    An electrolyte containing an alkali metal hydroxide aqueous solution;
    The separator structure according to any one of claims 1 to 9, wherein the positive electrode and the negative electrode are separated so as to be able to conduct hydroxide ions.
    A nickel-zinc secondary battery comprising:
  11.  空気極と、
     亜鉛、亜鉛合金及び/又は酸化亜鉛を含む負極と、
     アルカリ金属水酸化物水溶液を含む電解液と、
     前記空気極と前記負極とを水酸化物イオン伝導可能に隔離する、請求項1~9のいずれか一項に記載のセパレータ構造体と、
    を備えた、亜鉛空気二次電池。
    The air electrode,
    A negative electrode comprising zinc, a zinc alloy and / or zinc oxide;
    An electrolyte containing an alkali metal hydroxide aqueous solution;
    The separator structure according to any one of claims 1 to 9, wherein the air electrode and the negative electrode are separated so as to conduct hydroxide ions.
    A zinc-air secondary battery comprising:
PCT/JP2017/041082 2017-01-19 2017-11-15 Separator structure, nickel-zinc secondary battery, and zinc-air secondary battery WO2018135117A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018562900A JP6803927B2 (en) 2017-01-19 2017-11-15 Separator structure, nickel-zinc secondary battery and zinc-air secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-007984 2017-01-19
JP2017007984 2017-01-19

Publications (1)

Publication Number Publication Date
WO2018135117A1 true WO2018135117A1 (en) 2018-07-26

Family

ID=62908702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041082 WO2018135117A1 (en) 2017-01-19 2017-11-15 Separator structure, nickel-zinc secondary battery, and zinc-air secondary battery

Country Status (2)

Country Link
JP (1) JP6803927B2 (en)
WO (1) WO2018135117A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121673A1 (en) * 2018-12-13 2020-06-18 日本碍子株式会社 Ldh separator and zinc secondary battery
JP2021125386A (en) * 2020-02-06 2021-08-30 日本碍子株式会社 Electrolyte material and alkaline fuel cell
CN115461923A (en) * 2020-05-11 2022-12-09 日本碍子株式会社 LDH separator and zinc secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3219288A1 (en) * 2022-05-02 2023-09-11 Lg Energy Solution, Ltd. Gas release member and secondary battery comprising the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596576U (en) * 1978-12-26 1980-07-04
JPH0896787A (en) * 1994-09-22 1996-04-12 Yuasa Corp Manufacture of battery separator
JPH10172525A (en) * 1996-12-12 1998-06-26 Toshiba Battery Co Ltd Alkaline dry cell
JP2003123712A (en) * 2001-10-12 2003-04-25 Matsushita Electric Ind Co Ltd Electrochemical element containing electrolyte
JP2007030175A (en) * 2005-07-22 2007-02-08 Japan Vilene Co Ltd Laminate and filter material
JP2009503840A (en) * 2005-07-27 2009-01-29 セラジー リミテッド Multilayer electrochemical energy storage device and manufacturing method thereof
WO2016039349A1 (en) * 2014-09-10 2016-03-17 日本碍子株式会社 Secondary cell using hydroxide-ion-conductive ceramic separator
WO2016051934A1 (en) * 2014-10-01 2016-04-07 日本碍子株式会社 Battery using layered double hydroxide

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596576U (en) * 1978-12-26 1980-07-04
JPH0896787A (en) * 1994-09-22 1996-04-12 Yuasa Corp Manufacture of battery separator
JPH10172525A (en) * 1996-12-12 1998-06-26 Toshiba Battery Co Ltd Alkaline dry cell
JP2003123712A (en) * 2001-10-12 2003-04-25 Matsushita Electric Ind Co Ltd Electrochemical element containing electrolyte
JP2007030175A (en) * 2005-07-22 2007-02-08 Japan Vilene Co Ltd Laminate and filter material
JP2009503840A (en) * 2005-07-27 2009-01-29 セラジー リミテッド Multilayer electrochemical energy storage device and manufacturing method thereof
WO2016039349A1 (en) * 2014-09-10 2016-03-17 日本碍子株式会社 Secondary cell using hydroxide-ion-conductive ceramic separator
WO2016051934A1 (en) * 2014-10-01 2016-04-07 日本碍子株式会社 Battery using layered double hydroxide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121673A1 (en) * 2018-12-13 2020-06-18 日本碍子株式会社 Ldh separator and zinc secondary battery
JPWO2020121673A1 (en) * 2018-12-13 2021-03-11 日本碍子株式会社 LDH separator and zinc secondary battery
US11211672B2 (en) 2018-12-13 2021-12-28 Ngk Insulators, Ltd. LDH separator and zinc secondary battery
JP2021125386A (en) * 2020-02-06 2021-08-30 日本碍子株式会社 Electrolyte material and alkaline fuel cell
CN115461923A (en) * 2020-05-11 2022-12-09 日本碍子株式会社 LDH separator and zinc secondary battery
CN115461923B (en) * 2020-05-11 2024-02-06 日本碍子株式会社 LDH separator and zinc secondary battery

Also Published As

Publication number Publication date
JPWO2018135117A1 (en) 2019-11-07
JP6803927B2 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
JP6262815B2 (en) Separator structure used for zinc secondary battery
JP6617200B2 (en) Functional layer and composite material containing layered double hydroxide
WO2017221989A1 (en) Functional layer including layered double hydroxide, and composite material
WO2018135117A1 (en) Separator structure, nickel-zinc secondary battery, and zinc-air secondary battery
WO2017086278A1 (en) Electrode cartridge and zinc secondary cell using same
WO2018105178A1 (en) Electrode/separator layered body and nickel zinc battery equipped therewith
JP2018026205A (en) Negative electrode structure and zinc secondary battery including the same
JP6864758B2 (en) Functional layers and composite materials containing layered double hydroxides
JP6949142B2 (en) LDH separator and zinc secondary battery
WO2017221988A1 (en) Functional layer including layered double hydroxide, and composite material
JP6243583B1 (en) Functional layer and composite material containing layered double hydroxide
WO2017221531A1 (en) Functional layer including layered double hydroxide, and composite material
JP6586221B2 (en) Method for selecting an adhesive suitable for manufacturing an alkaline secondary battery, and an alkaline secondary battery
JP6441693B2 (en) Evaluation method of hydroxide ion conductive dense membrane
WO2017221526A1 (en) Functional layer including layered double hydroxide, and composite material
JP6614728B2 (en) Layered double hydroxide-containing composite material and battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893322

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018562900

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893322

Country of ref document: EP

Kind code of ref document: A1