WO2018135021A1 - Roasting machine - Google Patents

Roasting machine Download PDF

Info

Publication number
WO2018135021A1
WO2018135021A1 PCT/JP2017/025865 JP2017025865W WO2018135021A1 WO 2018135021 A1 WO2018135021 A1 WO 2018135021A1 JP 2017025865 W JP2017025865 W JP 2017025865W WO 2018135021 A1 WO2018135021 A1 WO 2018135021A1
Authority
WO
WIPO (PCT)
Prior art keywords
roasting
temperature
processing circuit
parameter
roasting machine
Prior art date
Application number
PCT/JP2017/025865
Other languages
French (fr)
Japanese (ja)
Inventor
秀樹 定方
藤田 敏広
洋一 藤原
山本 雅弘
久美子 鈴木
慎 中野
佐藤 誠
暁史 宮野
智治 三宅
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017102207A external-priority patent/JP6706739B2/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018135021A1 publication Critical patent/WO2018135021A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23FCOFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
    • A23F5/00Coffee; Coffee substitutes; Preparations thereof
    • A23F5/04Methods of roasting coffee
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23NMACHINES OR APPARATUS FOR TREATING HARVESTED FRUIT, VEGETABLES OR FLOWER BULBS IN BULK, NOT OTHERWISE PROVIDED FOR; PEELING VEGETABLES OR FRUIT IN BULK; APPARATUS FOR PREPARING ANIMAL FEEDING- STUFFS
    • A23N12/00Machines for cleaning, blanching, drying or roasting fruits or vegetables, e.g. coffee, cocoa, nuts
    • A23N12/08Machines for cleaning, blanching, drying or roasting fruits or vegetables, e.g. coffee, cocoa, nuts for drying or roasting

Definitions

  • the present invention relates to a roasting machine for roasting coffee beans.
  • a roasting machine is manufactured and sold as a device for roasting coffee beans.
  • a roasting machine there are known a gas roasting machine that performs roasting using gas and an electric roasting machine that performs heating by heating a heater with electricity (see, for example, Patent Document 1). ).
  • a control operation at the time of restarting a roasting machine stopped due to a power failure or a power supply voltage drop is disclosed.
  • a roasting machine includes a power supply, a detection circuit that detects that the voltage of the power supply has dropped below a predetermined value, and outputs a detection signal, a nonvolatile storage device, It is a processing circuit for controlling a roasting operation for roasting an object to be roasted. And a processing circuit that stores parameters relating to the roasting operation in a storage device when a detection signal is received during the roasting operation. Further, the processing circuit determines whether or not the parameter is stored in the storage device after the power supply voltage is recovered and the restart is completed, and if the parameter is stored in the storage device, the roasting operation is performed. To resume.
  • the roasting machine that has been stopped due to a power failure or a power supply voltage drop restarts the roasting operation based on whether the parameter is stored in the non-volatile storage device after the restart. Judge whether or not. Even when the operation is stopped due to the occurrence of a power failure or the like, the roasting operation can be continued if the parameters are stored in the nonvolatile storage device.
  • FIG. 1 is an external view of a roasting machine according to an exemplary embodiment of the present invention.
  • FIG. 2 is a diagram showing an internal configuration of a roasting machine according to an exemplary embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an internal configuration of a roasting machine according to an exemplary embodiment of the present invention, in which a roasting cylinder cover is transparently displayed.
  • FIG. 4 is a diagram showing an internal configuration of the roasting machine according to the exemplary embodiment of the present invention in a state where the roasting cylinder cover is removed.
  • FIG. 5 is a diagram showing the flow of air inside the roasting machine according to the exemplary embodiment of the present invention by arrows.
  • FIG. 1 is an external view of a roasting machine according to an exemplary embodiment of the present invention.
  • FIG. 2 is a diagram showing an internal configuration of a roasting machine according to an exemplary embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an internal configuration of a roasting machine according to an
  • FIG. 6A is a perspective view of a heater unit of a roasting machine according to an exemplary embodiment of the present invention.
  • FIG. 6B is a perspective view of the heater unit of the roasting machine according to the first modification of the present invention.
  • FIG. 6C is a top view of the heater unit of the roasting machine according to the second modified example of the present invention.
  • FIG. 7 is a diagram showing a configuration of an information providing system including a roasting machine according to an exemplary embodiment of the present invention.
  • FIG. 8 is a hardware configuration diagram of a DB server operated by a green bean provider in an information providing system including a roasting machine according to an exemplary embodiment of the present invention.
  • FIG. 9 is a diagram showing an example of the first roasting profile 2 used in the information providing system including the roasting machine according to the exemplary embodiment of the present invention.
  • FIG. 10 is a diagram showing an example of the second roasting profile 2 used in the information providing system including the roasting machine according to the exemplary embodiment of the present invention.
  • FIG. 11 is a block diagram showing a hardware configuration of a terminal device and a roasting machine that constitute an information providing system including a roasting machine according to an exemplary embodiment of the present invention.
  • FIG. 12 shows communication performed between the roaster and the terminal device constituting the information providing system including the roaster according to the exemplary embodiment of the present invention, and each of the roaster and the terminal device. It is a flowchart which shows the procedure of a process.
  • FIG. 12 shows communication performed between the roaster and the terminal device constituting the information providing system including the roaster according to the exemplary embodiment of the present invention, and each of the roaster and the terminal device. It is a flowchart which shows the procedure of
  • FIG. 13 is a block diagram showing a detailed circuit configuration related to the electronic circuit board of the roasting machine and the power supply constituting the information providing system including the roasting machine according to the exemplary embodiment of the present invention.
  • FIG. 14 is a circuit diagram of an instantaneous power failure detection circuit constituting an information providing system including a roasting machine according to an exemplary embodiment of the present invention.
  • FIG. 15A is a flowchart showing a procedure of a first operation of the roasting machine when an instantaneous voltage drop is detected in the information providing system including the roasting machine according to the exemplary embodiment of the present invention.
  • FIG. 15B is a flowchart showing a procedure of the second operation of the roaster when an instantaneous voltage drop is detected in the information providing system including the roaster according to the exemplary embodiment of the present invention.
  • FIG. 16 is a flowchart showing a process in which the roasting machine constituting the information providing system including the roasting machine according to the exemplary embodiment of the present invention operates in cooperation with the terminal device instead of operating alone. It is.
  • FIG. 17 is a flowchart showing a procedure of processing performed by a microcomputer that is a processing circuit of a roasting machine when a switch is pressed in the information providing system including the roasting machine according to the exemplary embodiment of the present invention. .
  • FIG. 18 is a diagram illustrating an example of a first method of applying AC power to the heater unit of the roasting machine according to the exemplary embodiment of the present invention.
  • FIG. 19 is a diagram illustrating an example of a second method of applying AC power to the heater unit of the roasting machine according to the exemplary embodiment of the present invention.
  • FIG. 20 is a diagram illustrating a third method of applying AC power to the heater unit of the roaster according to the exemplary embodiment of the present invention and the waveform of the power control signal.
  • FIG. 21 is a diagram showing a third method of applying AC power to the heater unit of the roaster according to the exemplary embodiment of the present invention and the waveform of the power control signal.
  • FIG. 19 is a diagram illustrating an example of a first method of applying AC power to the heater unit of the roasting machine according to the exemplary embodiment of the present invention.
  • FIG. 19 is a diagram illustrating an example of a second method of applying AC power to the heater unit of the roasting machine according to the exemplary embodiment
  • FIG. 22 is a diagram showing the roasting temperature, the amount of temperature change, the number of set control cycles, and the time change in the roasting machine according to the exemplary embodiment of the present invention.
  • FIG. 23 is a diagram for explaining a duty determination method based on the number of control cycles determined in the roasting machine according to the exemplary embodiment of the present invention.
  • an object to be roasted is green coffee beans.
  • the roasting machine is a hot-air roasting machine that roasts green beans with hot hot air.
  • a heat source that produces hot air will be described by exemplifying a heater unit having a heating wire.
  • FIG. 17 can also be applied to a roaster using gas, charcoal fire or the like as a heat source.
  • it may include any of green beans that have not been roasted, green beans that are being roasted, and coffee beans that have been roasted.
  • FIG. 1 is an external view of a hot-air roaster 100.
  • the axis, the Y axis, and the Z axis are used for the description as illustrated.
  • the ⁇ Z direction may be referred to as “downward” or “downward”
  • the + Z direction may be referred to as “upward” or “upward”.
  • the hot air roasting machine 100 is abbreviated as “roasting machine 100”.
  • the same reference numerals are assigned to the same components.
  • the roasting machine 100 includes a housing 110, a switch 111, a status display LED 112, an electronic circuit board 113, a bean throwing cup 114, an exhaust port 115, a lid 116, and a container 117.
  • the roasting machine 100 may be provided with a switch (not shown) for turning on / off the main power.
  • the housing 110 functions as a container that accommodates various elements provided in various interiors of the roasting machine 100, and also functions as a support that supports some elements. Further, the housing 110 has a function of confining heat generated in the roasting process and preventing a rapid temperature change during roasting.
  • the switch 111 is pressed by the user to start / stop roasting and discharge beans. How the roasting machine 100 operates when the switch 111 is pressed depends on the state of the roasting machine 100. Details of this operation will be described later with reference to FIG.
  • the status display LED 112 is lit in green, for example, until the roasting machine 100 is turned on and receives the roasting profile, and flashes in red after receiving the roasting profile.
  • the “roasting profile” is control information for controlling the roasting machine 100 owned by the user.
  • the roasting profile includes, for example, a temperature profile indicating a relationship between a roasting time and a roasting temperature in the roasting machine 100, and a roasting time and the number of rotations per unit time of the fan motor of the roasting machine 100. Includes a rotational speed profile that shows the relationship.
  • the status display LED 112 lights up in red during preheating and blinks in orange during roasting, for example.
  • the electronic circuit board 113 is mounted with various electronic circuits.
  • a microcomputer 301 which is a processing circuit, a wireless communication circuit 302, a memory 303, a storage 306, a communication bus 307, and the like are provided.
  • the electronic circuit board 113 shown in FIG. As will be described later, the electronic circuit board 113 extends over a relatively wide range inside the housing.
  • the bean throwing cup 114 is a container that can be attached to and detached from the opening of the casing 110 and can be filled with raw beans below a specified amount.
  • the bean throwing cup 114 has openings on the upper surface and the lower surface, respectively.
  • the opening on the top surface is used by the user to fill the bean input cup 114 with green beans.
  • the opening on the bottom surface is used for charging the green beans filled in the bean input cup 114 into a roasting pot (described later) inside the roasting machine 100.
  • the exhaust port 115 is an opening through which hot air being roasted is discharged out of the casing 110.
  • the lid 116 is detachably attached to the housing 110.
  • the lid 116 has an opening in which the bean throwing cup 114 is mounted and an opening in which the exhaust port 115 is provided.
  • the container 117 stores the discharged beans.
  • FIG. 2 shows the internal configuration of the roasting machine 100.
  • FIG. 3 shows an internal configuration of the roasting machine 100 in which the roasting cylinder cover 121 is transparently displayed.
  • FIG. 4 shows the internal configuration of the roasting machine 100 with the roasting cylinder cover 121 removed.
  • the roasting machine 100 includes a fan unit 120, a roasting cylinder cover 121, a roasting cylinder 122, a wind tunnel structure 123, and a discharge cylinder 124.
  • FIG. 2 shows an example of the size and structure of the electronic circuit board 113.
  • the fan unit 120 takes in air outside the roasting machine 100 into the casing 110 of the roasting machine 100.
  • the fan unit 120 includes a fan motor 120a, a fan 120b, and an air outlet 120c.
  • the fan 120b is attached to the fan motor 120a. As the fan motor 120a rotates, the fan 120b also rotates, and air outside the roasting machine 100 is taken into the roasting machine 100. The taken-in air is heated by the heater unit 127 (FIG. 4) and used for roasting green beans.
  • the roasting cylinder cover 121 is a cover arranged so as to cover a part of the roasting cylinder 122.
  • the roasting cylinder cover 121 is made of a resin material such as polybutylene terephthalate (PBT). As shown in FIG. 3, the inner wall of the roasting cylinder cover 121 is not in contact with the outer peripheral wall of the roasting cylinder 122, and a predetermined gap is provided.
  • PBT polybutylene terephthalate
  • the roasting cylinder 122 has a cylindrical shape having two openings (not shown) on the + Z side (upper side) and the ⁇ Z side (lower side).
  • the roasting cylinder 122 is formed of a metal material such as aluminum. However, this is an example. It may be formed of other materials.
  • FIG. 4 shows a position where the roasting chamber 126 and the heater unit 127 are provided. Note that the lower end of the heater unit 127 is below the lower end of the roasting cylinder cover 121. Therefore, strictly speaking, the heater unit 127 is not completely accommodated inside the roasting cylinder cover 121.
  • the air sucked into the casing 110 of the roasting machine 100 by the fan unit 120 enters the roasting cylinder 122 from the lower opening and is discharged from the upper opening.
  • the lower opening is an air inlet
  • the upper opening is an air outlet.
  • a heater unit 127 and a roasting chamber 126 are provided in this order.
  • the wind tunnel structure 123 is a member made of a metal material having openings at positions corresponding to the upper opening of the roasting cylinder 122 and positions corresponding to the upper opening of the discharge cylinder 124.
  • the wind tunnel structure 123 also has a groove-shaped passage connecting the two openings.
  • the metal material is, for example, aluminum.
  • the discharge cylinder 124 is a bean discharge path when the beans in the roasting chamber 126 are discharged into the container 117.
  • the fan unit 120 rotates at a high speed and sends a strong wind into the housing 110.
  • Each bean is blown off from the roasting chamber 126 by a strong wind, passes through the wind path of the wind tunnel structure 123, and reaches a position corresponding to the upper opening of the discharge tube 124. Then, the inside of the discharge cylinder 124 is dropped by gravity from this opening and discharged into the container 117.
  • the roasting machine 100 has a plurality of spacers 128.
  • the plurality of spacers 128 are provided between the wind tunnel structure 123 and the housing 110 to support the housing 110.
  • the plurality of spacers 128 are made of, for example, a phenol resin (bakelite) or a polyphenylene sulfide (PPS) resin.
  • FIG. 5 shows the flow of air inside the roasting machine 100 with arrows.
  • the flow of air passing through the fan unit 120, the roasting tube cover 121, the roasting tube 122, and the wind tunnel structure 123 is indicated by broken-line arrows.
  • the inventor of the present application intentionally placed the electronic circuit board 113 on the air path between the fan unit 120 and the wind tunnel structure 123. The reason is that the electronic circuit board 113 can be effectively cooled.
  • various electronic components mounted on the electronic circuit board 113 generate heat.
  • the outside air temperature (low temperature) air sucked in by the fan unit 120 is blown onto the electronic circuit board 113 and takes heat of the electronic components and the electronic circuit board 113. Thereby, the electronic circuit board 113 can be cooled.
  • the temperature of the air rises due to the heat of the electronic circuit board 113. This is because it is not necessary to use only the heater unit 127 as a heat source. If the temperature of the air is raised as much as possible, heating by the heater unit 127 can be performed effectively.
  • the air then proceeds upward, hits the outer surface (outer peripheral wall) of the wind tunnel structure 123, and changes its course in the + Y direction.
  • the heated air passes through the wind tunnel structure 123 and is discharged from the exhaust port 115.
  • the wind tunnel structure 123 is made of a metal material, the heat of the air passing through the wind tunnel structure 123 is transmitted to the outer peripheral wall of the wind tunnel structure 123, and the temperature rises.
  • the wind tunnel structure 123 can be cooled to suppress an increase in temperature.
  • the air enters the gap air passage 125 travels downward between the roasting cylinder cover 121 and the roasting cylinder 122, and reaches the air inlet of the roasting cylinder 122.
  • the air is also heated while passing through the gap air passage 125. This is because when the roasting process starts, the temperature of the outer peripheral wall of the roasting cylinder 122 rises for the same reason as the reason that the temperature of the outer peripheral wall of the wind tunnel structure 123 increases. Therefore, when the air travels through the gap air passage 125 and reaches the air inlet of the roasting cylinder 122, the air is heated to a considerable extent. According to the configuration of the present embodiment, very efficient heat exchange can be performed.
  • the air enters the roasting cylinder 122 from the air inlet of the roasting cylinder 122 and is heated by the heater unit 127 to become hot air.
  • the hot air stirs the green beans put into the roasting chamber 126 by the wind force.
  • the hot air enters the wind tunnel structure 123 from the upper opening (air outlet) of the roasting cylinder 122, passes through the air channel in the wind tunnel structure 123, and is discharged from the exhaust port 115.
  • the roasting cylinder cover 121 covers a part of the outer peripheral wall of the roasting cylinder 122, the air passing through the gap air passage 125 can take the heat of the outer peripheral wall of the roasting cylinder 122. Therefore, the roasting cylinder cover 121 only needs to cover the outer peripheral wall of the roasting cylinder 122 corresponding to the position (range) where the heater unit 127 is provided, for example. However, the inventors of the present application decided to cover not only the heater unit 127 but also the outer peripheral wall of the roasting cylinder 122 corresponding to the position (range) where the roasting chamber 126 was provided with the roasting cylinder cover 121. As a result, the air can be heated more effectively in the gap air passage 125.
  • a certain gap is formed between the lowermost surface of the fan unit 120 and the surface on which the roasting machine 100 is installed, so that air is sucked into the fan unit 120 from the gap.
  • FIG. 6A shows the configuration of the heater unit 127. As shown in FIG. 4, the heater unit 127 is disposed inside the roasting cylinder 122.
  • the heater unit 127 includes a plurality of heating wires 140a to 140c, a first rectifying plate 141, a second rectifying plate 142, and a temperature sensor 143.
  • the partition plate 126 a is described, but the partition plate 126 a is not a component of the heater unit 127.
  • the plurality of heating wires 140a to 140c all convert electric power into heat.
  • the plurality of heating wires 140a to 140c are arranged in the vicinity of the inner peripheral wall of the roasting cylinder 122 and aligned in the Z direction along the inner peripheral wall. Since the plurality of heating wires 140a to 140c are arranged along the inner peripheral wall of the roasting cylinder 122, the heating wires can be secured longer. Thereby, the contact area of a heating wire and air becomes large, and can raise air temperature effectively.
  • three heating wires are used, but the number is arbitrary. It is sufficient that at least one heating wire is provided. A structure in which a single heating wire is spirally wound may be used.
  • the temperature sensor 143 is a platinum temperature sensor whose heat-resistant temperature is about 450 degrees, for example.
  • the temperature sensor 143 detects the temperature of the air heated by the heater unit 127.
  • the temperature sensor 143 may detect the temperature of the heater unit 127.
  • the temperature sensor 143 only needs to detect one of the roasting temperature and the temperature of the heater unit 127.
  • the heating wires 140a to 140c are divided into a plurality of sections by heater holding members 145a and 145b made of mica.
  • the three heating wires 140a to 140c are arranged in the section located in the ⁇ Z direction of the temperature sensor 143, which is partitioned by the heater holding members 145a and 145b.
  • the number of heat rays is an example.
  • FIG. 6B is a perspective view of the heater unit 127a according to the first modification.
  • the heater unit 127 according to the modified example two heating wires 140b and 140c are provided in a section located in the ⁇ Z direction of the temperature sensor 143, which is partitioned by the heater holding members 145a and 145b. That is, the heating wire 140a does not exist as compared with the configuration example of FIG. 6A.
  • three heating wires are provided in the Z direction.
  • the number of heating wires positioned in the ⁇ Z direction of the temperature sensor 143 is set to be smaller than the number of heating wires not positioned in the ⁇ Z direction of the temperature sensor 143.
  • FIG. 6C is a top view of the heater unit 127b according to the second modification.
  • four heater holding members 145a to 145d divide the inner space from the heating wire of the heater unit 127 into eight spaces. That is, the air flow path is divided into eight.
  • the number of heaters is two in the section located in the ⁇ Z direction of the temperature sensor 143, which is partitioned by the heater holding members 145a and 145b, and the number of heaters is three in the other sections. Therefore, it is possible to obtain the same effect as that described for the configuration of FIG. 6B.
  • Both the first rectifying plate 141 and the second rectifying plate 142 are provided to control the flow of air. Air enters through the opening 144 on the lower side of the drawing and is heated by the heating wires 140a-140c. Thereafter, the heated air passes through the air path formed by the first rectifying plate 141 and the second rectifying plate 142 and enters the roasting chamber 126 through the slit of the partition plate 126a.
  • This configuration can be adopted for any of the configurations shown in FIGS. 6A to 6C described above.
  • the roasting machine 100 acquires a roasting profile from the outside.
  • the terminal device 200 acquires a roasting profile from a database (DB) server 400 (hereinafter referred to as the DB server 400).
  • the DB server 400 is a server operated by a green bean provider.
  • the green bean provider stores a roast profile in the DB server 400 by, for example, having a roaster create a roast profile for each type of green bean to be sold.
  • FIG. 7 shows the configuration of the information providing system 10.
  • FIG. 7 shows different users A and B.
  • user A will be explained below, but the same explanation can be applied to user B as well.
  • the terminal device 200 is a smartphone with a camera.
  • the user photographs (reads) the information code 5 with the camera of the terminal device 200.
  • the information code 5 is information used to acquire a roasting profile of green beans displayed on a green bean packaging container purchased by the user.
  • the terminal device 200 of the user A extracts the green bean identification information 4 from the information code 5 given to the green bean packaging container, and acquires the attribute information of the green bean based on the identification information 4.
  • the identification information may be a product number
  • the information code 5 may be a QR code (registered trademark).
  • the green bean information code 5 and the identification information are described as different, but it is not essential.
  • the identification information may be handled as the information code 5 as it is.
  • the signal processing circuit (signal processing processor or CPU) of the terminal device 200 executes the application program and extracts the identification information 4 from the read information code 5.
  • the identification information 4 is extracted from the information code read by the dedicated processing circuit (DSP) of the terminal device 200.
  • DSP dedicated processing circuit
  • the terminal device 200 transmits the obtained identification information 4 to the DB server 400 of the green bean provider via the communication network 9 and requests transmission of the attribute information 6 of the green bean.
  • the communication network 9 is, for example, the Internet.
  • Attribute information 6 includes one or more roasting profiles 2 of the green beans.
  • the DB server 400 transmits the raw bean attribute information 6 stored together with the roasting profile 2 to the user terminal device 200 via the communication network 9.
  • the terminal device 200 receives the attribute information 6.
  • the user terminal device 200 extracts the roasting profile 2 from the acquired attribute information 6 and transmits it to the roasting machine 100 owned by itself.
  • the roasting machine 100 receives the roasting profile 2 and sets the roasting profile 2 as control information before the start of the roasting operation. Thereby, the roasting machine 100 can perform roasting under the same conditions as when the roaster roasted the green beans.
  • the user can obtain the roasted beans 8a according to the roasting profile 2, and can grind it to enjoy coffee.
  • a roasting profile determined by the roaster is prepared, and the roasting profile is set in the roasting machine 100 from the terminal device 200 owned by the user. Accordingly, it is possible to easily and appropriately perform roasting, and to improve user satisfaction through the operation of roasting green beans.
  • FIG. 8 is a hardware configuration diagram of the DB server 400 operated by the green bean provider.
  • the DB server 400 is a computer system having a signal processing circuit (hereinafter referred to as “CPU”) 401, a communication circuit 402, and a memory 403.
  • the CPU 401, the communication circuit 402, and the memory 403 are connected to the communication bus 404, and can transmit / receive data to / from each other.
  • the communication circuit 402 performs, for example, Ethernet (registered trademark) standard wired communication.
  • a computer program 403a read from a non-volatile memory (not shown) is read and expanded.
  • the computer program 403a is, for example, a profile database (DB) construction program and a profile DB management program.
  • the CPU 401 executes communication and processing described later by executing these computer programs.
  • a profile database (DB) 410 is connected to the DB server 400.
  • the profile DB 410 stores the roasting profile 2 received from the roaster by the green bean provider.
  • FIGS. 9 and 10 show examples of different roasting profiles 2.
  • the horizontal axis represents the roasting time t, and the vertical axis represents the roasting temperature and the rotation speed of the fan motor 120a.
  • the roasting profile is control information indicating a roasting method for each green bean by the roasting machine 100.
  • the roasting profile includes a temperature profile indicating the relationship between the roasting time and the roasting temperature in the roasting machine 100, and a rotation speed profile indicating the relationship between the roasting time and the rotation speed of the fan motor 120a.
  • the two roast profiles shown in FIGS. 9 and 10 have the same temperature change until time t 1 , but are different after time t 1 . Also it is understood that the rotation speed of the fan motor 120a is different from the original time t 0.
  • “Characteristics of green beans” refers to the size, water content, various carbohydrates, acids, lipids, amino acids, proteins, caffeine, chlorogenic acid, etc. of individual green beans.
  • the “degree of roasting” is light roasting, medium roasting or deep roasting.
  • At least three roasting profiles with different degrees of roasting that is, three roasting profiles for shallow roasting, medium roasting, and deep roasting may be prepared.
  • the degree of roasting is further subdivided in order from light roast to deep roast, like light roast, cinnamon roast, medium roast, high roast, city roast, full city roast, Italian roast, French roast. Can be done.
  • the roasting machine 100 controls the temperature and the rotation speed of the fan motor 120a so as to follow the roasting profile shown in FIGS.
  • a microcomputer (described later) that is a processing circuit of the roasting machine 100 adjusts the input to the heater unit 127 based on the output value of the temperature sensor 143. Thereby, the temperature in the roasting chamber 126 of the roasting machine 100 is controlled.
  • the heater unit 127 is started up and the fan motor 120 a is rotated at the time t ⁇ b> 0 as a reference for the roast start time. It starts at the same time.
  • the waveforms shown in FIG. 9 and FIG. 10 are shown as continuous functions for the convenience of understanding. However, actually, it can be prepared as a data string in which the temperature and the number of rotations are shown for each elapsed time with the roasting start time as a reference.
  • the profile DB 410 is also connected to the bus 404 via a communication interface (not shown), and the search and update of the profile DB 410 can be performed by the CPU 401 or the like.
  • the profile DB 410 may be provided in the DB server 400.
  • FIG. 11 is a hardware configuration diagram of the terminal device 200 and the roasting machine 100.
  • the terminal device 200 includes a signal processing circuit (hereinafter referred to as “CPU”) 201, a wireless communication circuit 202, an input interface (I / F) device 203, a memory 204, an image processing circuit 205, and a display 206. , A computer system having a camera module 207, a storage 208, and a speaker 209.
  • the terminal device 200 is a smartphone or a tablet computer.
  • the above-described components of the terminal device 200 are connected to the communication bus 210 and can transmit / receive data to / from each other.
  • the communication circuit 202 can perform communication of a plurality of communication standards.
  • the wireless communication circuit 202 performs communication using a communication method (for example, CDMA communication) provided by a communication company, Wi-Fi (registered trademark, the same applies hereinafter) standard communication, and Bluetooth (registered trademark) standard communication. It is possible.
  • the former two can be used for communication with the DB server 400.
  • the Bluetooth (registered trademark) standard communication can be used for communication with the roasting machine 100.
  • the input I / F device 203 is a device for a user to input a command to the terminal device 200.
  • the input I / F device 203 is a touch screen panel provided so as to be superimposed on the display 206.
  • the touch screen panel is an example of the input I / F device 203.
  • the input I / F device 203 may be a physical button.
  • the input I / F device 203 may be configured by a microphone and a voice recognition circuit. The input I / F device 203 recognizes the user's voice and inputs an instruction to the terminal device 200.
  • a computer program 204a read from a nonvolatile memory (not shown) is expanded.
  • the computer program 204a is provided by, for example, a green bean provider, and describes a processing procedure that the green bean provider wants the terminal device 200 to execute.
  • the computer program 204 a activates the camera module 207 according to an instruction from the CPU 201, causes the information code to be photographed, and causes the CPU 201 to extract green bean identification information from the information code.
  • the computer program 204 a causes the CPU 201 to communicate with the DB server 400, receives raw bean attribute information from the DB server 400, and causes the display 206 to display characters and images.
  • the image processing circuit 205 may perform processing for display.
  • the computer program 204 a causes the CPU 201 to store the received attribute information in the storage 208.
  • the image processing circuit 205 is a circuit that performs calculations for displaying characters, graphics, and the like on the display 206.
  • the display 206 is an example of an output device.
  • the display 206 is, for example, a liquid crystal display panel or an organic EL panel, and displays characters and / or images based on the calculation result of the image processing circuit 205.
  • the camera module 207 is an example of a so-called imaging device.
  • the camera module 207 includes, for example, one or a plurality of lenses, an actuator that moves the lenses in the optical axis direction, and an imaging device.
  • the camera module 207 is used to read a QR code (registered trademark).
  • the storage 208 is, for example, a non-volatile flash memory and stores raw bean attribute information acquired by the terminal device 200.
  • the speaker 209 is an example of an output device.
  • the speaker 209 notifies the user by voice of the normal end of roasting by the roasting machine 100, the occurrence of an abnormality, or the like.
  • the roasting machine 100 includes a microcontroller (hereinafter referred to as “microcomputer”) 301 that is a processing circuit, a wireless communication circuit 302, a memory 303, a power supply 304, and a storage 306.
  • the fan motor 120a, the heater unit 127, and the temperature sensor 143 are included.
  • the above-described components of the roasting machine 100 are connected to the communication bus 307 and can transmit and receive data to and from each other. These are mounted on an electronic circuit board 113, for example.
  • the communication circuit 302 can perform Bluetooth (registered trademark) standard communication.
  • the wireless communication circuit 302 can perform communication of this standard with the wireless communication circuit 202 of the terminal device 200.
  • the microcomputer 301 communicates with the terminal device 200 via the wireless communication circuit 302, receives the roasting profile 2 from the terminal device 200, temporarily stores it in the memory 303, and stores it in the storage 306.
  • the microcomputer 301 controls the rotation speed of the fan motor 120a (the number of rotations per unit time. Hereinafter, abbreviated as “the number of rotations”) during the roasting operation using the roasting profile 2, and further the heater unit 127. Control the temperature.
  • the power source 304 supplies power necessary for the roasting machine 100 to operate.
  • the storage 306 is a non-volatile storage device such as a flash memory.
  • the microcomputer 301 in FIG. 11 stores a computer program in advance in an EEPROM (not shown) in the microcomputer 301 so as to perform a predetermined operation in advance.
  • the microcomputer 301 executes the computer program using an internal buffer and a register (not shown).
  • the microcomputer 301 may execute the computer program loaded in the memory 303 in the roasting machine 100.
  • FIG. 12 is a flowchart showing communication performed between the roasting machine 100 and the terminal device 200 and the processing procedure of each of the roasting machine 100 and the terminal device 200.
  • step S1 the CPU 201 of the terminal device 200 acquires the green bean code by reading the information code given to the packaging container with the terminal device 200.
  • step S2 the CPU 201 determines whether or not the attribute information corresponding to the green bean code exists in the storage 208. For example, the CPU 201 determines whether or not there is attribute information having the same green bean code as the acquired green bean code. The product name can be used instead of the green bean code. If attribute information having the same green bean code as the acquired green bean code exists in the storage 208, the process proceeds to step S3. If attribute information does not exist in the storage 208, the process proceeds to step S4.
  • step S3 the CPU 201 confirms with the user whether or not to update to the latest information.
  • the process proceeds to step S5.
  • step S4 the CPU 201 stores the attribute information in the storage 208 in association with the green bean code.
  • Step S5 and subsequent steps relate to processing for transmitting control information to the roasting machine 100.
  • step S5 the CPU 201 of the terminal device 200 extracts control information (roasting profile), priority information, and the like from the attribute information corresponding to the green bean code, and prompts the user to select a roasting method. Is displayed.
  • step S6 the CPU 201 accepts, for example, a touch on a transmission button displayed on the display 206 as a transmission instruction for control information corresponding to the selected roasting method.
  • the CPU 201 transmits control information (roasting profile) corresponding to the selected roasting method to the roasting machine 100.
  • the CPU 201 desirably transmits only control information (roasting profile) corresponding to the selected roasting method to the roasting machine 100. For example, even when there are three roasting profiles stored in the storage 208 for shallow roasting, medium roasting, and deep roasting, any one of them is transmitted to the roasting machine 100. The Since the capacity of the memory 303 or storage 306 of the roasting machine 100 can be reduced by suppressing the amount of data transmitted and received, the roasting machine 100 can be provided at low cost.
  • step S8 the microcomputer 301 of the roasting machine 100 receives the control information and stores it in the storage 306. Further, the microcomputer 301 sets the received control information as an operation parameter of the microcomputer 301.
  • the microcomputer 301 holds in advance a table, a function, or a program for determining a current value to be passed through the fan motor 120a and the heater unit 127 according to the operation parameter. When the operation parameter is set, the microcomputer 301 can roast green beans according to the operation parameter.
  • step S9 the microcomputer 301 of the roasting machine 100 starts roasting according to the set operation parameters.
  • instantaneous voltage drop means a power failure in which the voltage of the power source drops below a predetermined value, and a short time for supplying power from the power source, for example, from several microseconds to several hundred microseconds Includes both a period of seconds and a power failure that will be cut off.
  • FIG. 13 is a hardware diagram showing a detailed circuit configuration related to the electronic circuit board 113 and the power supply 304 of the roasting machine 100.
  • the roasting machine 100 includes a shunt resistor 310, a voltage sag detection circuit 312, and a switching element 314.
  • the power source 304 has an AC-DC converter 304a. Since the LED 112 and the wireless communication circuit 302 shown in FIG. 13 have been described above, description thereof will be omitted.
  • the power source 304 converts an AC voltage into a DC voltage by an AC-DC converter 304a.
  • the AC-DC converter 304a converts a household 100 volt AC voltage into a DC voltage of 24V by, for example, a transformer method or a switching method.
  • a known AC-DC converter can be used as the AC-DC converter 304a. In this specification, further detailed description of the AC-DC converter 304a is omitted.
  • the shunt resistor 310 further reduces the voltage generated by the AC-DC converter 304a to a voltage at which the microcomputer 301 can operate. For example, shunt resistor 310 reduces a DC voltage of 7.5 volts to a DC voltage of 5 volts.
  • the instantaneous voltage drop detection circuit 312 outputs a detection signal when it detects that the output voltage Vdd1 of the power supply 304 has dropped below a predetermined value.
  • the detection signal is input to the microcomputer 301.
  • FIG. 14 shows a specific configuration example of the instantaneous power failure detection circuit 312.
  • the instantaneous power failure detection circuit 312 includes a Zener diode 312a and transistors 312b and 312c.
  • the Zener diode 312a is inserted between the output voltage Vdd1 of the AC / DC converter 304a and the ground GND.
  • the anode terminal of the Zener diode 312a is connected to the base of the transistor 312b.
  • the collector of the transistor 312b is connected to the base of the transistor 312c, and the terminal voltage of the collector of the transistor 312c is input to the interrupt terminal (not shown) of the microcomputer 301.
  • the Zener diode 312a When the voltage Vdd1 is larger than the Zener voltage, the Zener diode 312a is turned on, a current of a predetermined magnitude flows between the base and emitter of the transistor 312b, and the transistor 312b is turned on. As a result, the current flow transistor 312c having a predetermined magnitude is turned on between the emitter and base of the transistor 312c, and thus a terminal voltage having a predetermined magnitude is detected at the collector.
  • the transistor 312b is turned off and the transistor 312c is also turned off.
  • the terminal voltage of the collector of the transistor 312c decreases.
  • the voltage connected to the interrupt terminal of the microcomputer 301 is relatively lowered from the high level to the low level.
  • the microcomputer 301 detects that an instantaneous voltage drop has occurred by detecting a voltage drop.
  • FIG. 14 is an example. A person skilled in the art can adopt alternative configurations that realize functions and operations equivalent to those described above.
  • the power source 304 is a DC power source when viewed from the shunt resistor 310 and the like, and is an AC power source when viewed from the heater unit 127.
  • the switching element 314 is provided between the power supply 304 and the heater unit 127.
  • the switching element 314 is turned on or off based on a power control signal output from the microcomputer 301, and controls supply and interruption of AC power from the AC power source to the heater unit 127.
  • the power control signal is a rectangular wave. Details of the power control signal will be described later.
  • FIG. 15A shows an operation procedure of the roasting machine 100 when an instantaneous voltage drop is detected.
  • step S11 the microcomputer 301 executes a roasting operation based on the operation parameters.
  • the microcomputer 301 updates state parameters related to the roasting operation.
  • the state parameter is, for example, the following information.
  • the update of the state parameter is realized by rewriting data on the memory 303, for example.
  • the operation parameter such as the roasting profile and the state parameter described above may be collectively referred to as “parameter regarding roasting operation” or simply “parameter”.
  • step S12 the microcomputer 301 determines whether a detection signal is received from the voltage sag detection circuit 312. Until receiving, the microcomputer 301 executes the process of step S11. When the microcomputer 301 receives a detection signal from the instantaneous drop detection circuit 312, the process proceeds to step S13.
  • step S13 the microcomputer 301 saves the parameters (operation parameters and state parameters) regarding the roasting operation from the memory 303 to the storage 306.
  • the output voltage Vdd1 of the power supply 304 is in a state of decreasing below a predetermined value.
  • the process of step S13 is executed before the power output from the power supply 304 is shut off. Note that when an instantaneous interruption occurs, power is lost in an instant. However, for example, a backup power source such as a capacitor or a secondary battery (not shown) may be prepared for the power source 304. When an instantaneous interruption occurs, power is immediately supplied from the capacitor or the backup power source to the microcomputer 301 and the memory 303, so that the parameters are surely saved from the memory 303 to the storage 306.
  • Step S14 and subsequent steps are processing of the microcomputer 301 after restart.
  • step S14 the microcomputer 301 determines whether or not the parameter is stored in the storage 306. If the parameter is stored in the storage 306, the process proceeds to step S15, and if not stored, the process ends. That is, the microcomputer 301 performs a normal startup process.
  • step S15 the microcomputer 301 reads the parameter stored in the storage 306 into the memory 303, and restarts the roasting operation using this parameter.
  • the microcomputer 301 reads the roasting profile and elapsed time included in the parameters, and determines the roasting temperature at the elapsed time from the roasting profile.
  • the microcomputer 301 heats the heater unit 127 until the roasting temperature is reached.
  • the microcomputer 301 controls the temperature and the rotation of the fan motor 120a of the fan unit 120 based on the roasting profile, and resumes roasting of the beans remaining in the roasting chamber 126. To do.
  • the operation parameter is deleted from the memory 303.
  • FIGS. 15B and 16 Next, another example of the operation of the roasting machine 100 when the instantaneous voltage drop shown in FIG. 15A is detected will be described with reference to FIGS. 15B and 16.
  • the steps included in FIGS. 15B and 16 are assigned the same step numbers, and description of these steps is omitted.
  • step S20 is provided between step S14 and step S15.
  • Step S20 is processing for determining a new condition when the microcomputer 301 determines whether or not to resume the roasting operation.
  • step S20 the microcomputer 301 determines whether or not the difference between the roasting temperature in the state parameter and the current roasting temperature satisfies the roasting continuation condition.
  • the roasting temperature in the state parameter is the roasting temperature when it was evacuated in step S13.
  • the current roasting temperature is the output value of the temperature sensor 143 when step S20 is executed.
  • the microcomputer 301 determines whether or not the difference between these values satisfies a predetermined roasting continuation condition.
  • the “predetermined roasting continuation condition” is, for example, “less than 30 degrees”.
  • step S20 If the roasting continuation condition is satisfied in step S20, the process proceeds to step S15, and the roasting operation is resumed. If the roasting continuation condition is not satisfied, the roasting operation is not resumed and the microcomputer 301 executes a normal startup process.
  • FIG. 16 shows a process in which the roasting machine 100 operates in cooperation with the terminal device 200 rather than operating alone.
  • the terminal device 200 is typically a terminal device that transmits a roasting profile to the roasting machine 100. Even after the roasting profile is transmitted from the terminal device 200 to the roasting machine 100, the Bluetooth (registered trademark) standard communication is continuously established between the terminal device 200 and the roasting machine 100.
  • the wireless communication circuit 302 of the roasting machine 100 periodically transmits an operation confirmation signal to the terminal device 200 after the start of roasting.
  • the terminal device 200 can know that the roasting machine 100 is operating normally by receiving the operation confirmation signal periodically.
  • the CPU 201 of the terminal device 200 has a timer (not shown) inside in order to confirm that the operation confirmation signal has been received periodically.
  • the CPU 201 counts up the timer using the clock signal.
  • step S50 the CPU 201 resets this timer every time an operation confirmation signal is received. Therefore, if the operation confirmation signal is not received from the roasting machine 100, the count value of the timer continues to increase.
  • the microcomputer 301 of the roasting machine 100 restarts after the end of step S13. After the instantaneous voltage drop occurs, the roasting machine 100 cannot transmit an operation confirmation signal at least until the restart is completed. During this period, the count value of the timer of the CPU 201 continues to increase.
  • step S40 When the restart of the process of the roasting machine 100 is completed and the parameter is stored in the storage 306 in step S14, the process proceeds to step S40.
  • the microcomputer 301 automatically establishes a connection with the terminal device 200 that has been connected immediately before.
  • step S40 the microcomputer 301 transmits a startup completion notification via the wireless communication circuit 302.
  • the CPU 201 of the terminal device 200 that has received the activation completion notification executes the process of step S51.
  • step S51 the CPU 201 determines whether or not the count value of the timer is equal to or less than a predetermined threshold value. In terms of time, the threshold value is “10 seconds”, for example. If the count value is equal to or smaller than the threshold value, the process proceeds to step S52. If not, the process proceeds to step S53.
  • step S ⁇ b> 52 the CPU 201 of the terminal device 200 transmits a roasting continuation request to the roasting machine 100 via the wireless communication circuit 202. Receiving the roasting continuation request, the microcomputer 301 of the roasting machine 100 restarts the roasting operation in step S15.
  • step S ⁇ b> 53 the CPU 201 of the terminal device 200 transmits a roasting end request to the roasting machine 100 via the wireless communication circuit 202. Receiving the roasting end request, the microcomputer 301 of the roasting machine 100 ends the process without restarting the roasting operation.
  • the roasting operation is not resumed when a roasting end request is received, but this is an example. If the roasting continuation request or the roasting end request is not received after a predetermined time has elapsed from the terminal device 200 after the activation completion notification is transmitted in step S40, the microcomputer 301 determines that the roasting operation is not resumed. Processing may be terminated.
  • FIG. 17 shows a processing procedure of the roasting machine 100 when the switch 111 is pressed.
  • step S61 the microcomputer 301 waits until the switch 111 is pressed. If the switch 111 is pressed, the process proceeds to step S62.
  • step S62 the microcomputer 301 determines whether or not the operation parameter is stored in the memory 303.
  • This process is a process for determining whether or not the roasting machine 100 has received the roasting profile from the terminal device 200 and stored it in the memory 303. If the operation parameter is stored in the memory 303, the process proceeds to step S63, and if not stored, the process proceeds to step S64.
  • step S63 the microcomputer 301 starts the roasting operation using the operation parameters, and stops the roasting operation.
  • the microcomputer 301 can determine whether to start or stop the roasting operation based on the state parameters existing in the memory 303.
  • the memory 303 stores a flag indicating the operating state of the roasting machine as the state parameter. By referring to this flag, the microcomputer 301 can determine whether or not the roasting machine 100 is currently performing the roasting operation. If the roasting operation is not in progress, the microcomputer 301 starts the roasting operation using the operation parameters. If the roasting operation is being performed, the microcomputer 301 stops the roasting operation. Thereafter, the process ends.
  • step S64 the microcomputer 301 executes a discharging operation.
  • the beans are discharged even if they exist in the roasting chamber 126 of the roasting machine 100.
  • the operation parameter (roasting profile) is deleted from the memory 303 after the roasting is completed. Even if the user forgets to take out the roasted beans from the roasting machine 100, the beans can be discharged from the roasting machine 100 at any time by pressing the switch 111. At this time, since the roasting operation is not performed, the roasting is not performed again.
  • the switch 111 is used not only for the start or end of roasting but also for discharging beans depending on the state of the roasting machine 100. Since there is no need to provide a switch for starting or ending roasting and a switch for discharging beans, the cost of parts can be reduced. In addition, since the number of parts is small, the complexity of the external design can be suppressed.
  • This power control method is a method of applying power to the heater unit 127 for causing the heater unit 127 to generate heat.
  • the power control method described below can be applied during any of the roasting operations described above.
  • FIG. 18 shows an example of a first method of applying AC power to the heater unit 127.
  • a broken line indicates an alternating current waveform output from the power supply 304.
  • the solid line shows the current waveform cut off near the peak of the sine wave by the switching element 314 (FIG. 13).
  • the microcomputer 301 supplies a power control signal having a pulse waveform that rises / falls at a predetermined timing to the switching element 314.
  • the switching element 314 is turned off at the timing when the pulse waveform falls, and interrupts the current. Since the switching element 314 can be turned on or off at any position of the current waveform, the temperature of the heater unit 127 can be easily controlled.
  • FIG. 19 shows an example of a second method of applying AC power to the heater unit 127.
  • FIG. 20A shows an example of a third method of applying AC power to the heater unit 127.
  • the switching element 314 is turned on or off in synchronization with the zero crossing of the current. Thereby, noise at the time of current interruption and heat generation of the switching element 314 can be suppressed.
  • the on / off timing of the switching element 314 depends on the AC frequency, for example, 50 Hz or 60 Hz. As shown in FIG. 19 and FIG. 20A, it is necessary to wait for a half cycle of the alternating current even if it is turned on and off the earliest. That is, it is difficult to finely control the current or power control signal flowing through the heater unit 127 at a timing less than a half cycle. As a result, there is a limit even if the accuracy of temperature control of the heater unit 127 is improved.
  • FIG. 20B shows the waveform of the power control signal.
  • the duty ratio D of the power control signal is as follows.
  • the temperature of the heater unit 127 can vary depending on the duty ratio. In the example of FIGS. 19 and 20, since the duty ratio cannot be changed with less than 1/6, it is difficult to make the change width of the temperature of the heater unit 127 less than the change width corresponding to the duty ratio 1/6. is there.
  • the inventor of the present application has studied a technique for simultaneously solving the problem of reducing the heat generation amount and noise of the switching element 314 and the problem of improving the power control accuracy of the heater unit 127.
  • the former problem it is appropriate to turn on or off the switching element 314 in synchronization with the zero crossing of the current as shown in FIG.
  • the inventor of the present application considered that the switching element 314 is controlled to be turned on or off over a plurality of temporally continuous control cycles instead of being controlled in units of the control cycle T.
  • the inventor of the present application indicates that the average value of the power supplied to the heater unit 127 within each period of N consecutive control periods (N: an integer of 2 or more) is the heater unit 127.
  • N an integer of 2 or more
  • each power control signal to be supplied during N control periods should be generated so as to match the target power to be supplied.
  • the duty ratios of the power control signals do not always match and differ between two control periods that are temporally adjacent.
  • the target power to be supplied to the heater unit 127 is determined according to the target temperature. By increasing or decreasing the above-described value of N, it becomes possible to finely control at a timing less than a half cycle of the alternating current.
  • FIG. 21A shows an example of a fourth method of applying AC power to the heater unit 127.
  • FIG. 21B shows the waveform of the power control signal.
  • the first control period T 1 of the of the two control period T temporally consecutive period t ON1 which the switching element 314 is turned on is 4, is turned off
  • the period t OFF1 is 2.
  • the control period T 2 the period t ON2 which the switching element 314 is turned on is 3, the period t OFF2 is turned off is 3.
  • on and off of the switching element 314 is not controlled in units of control cycles, but is controlled over a plurality of control cycles.
  • the switching element 314 is turned on for a period of 3.5 per control cycle.
  • the duty ratio D when viewed in two control cycles is as follows.
  • the average power P 2 in the control cycles T 1 and T 2 is calculated by the following equation, where P 0 is the half cycle power of the alternating current.
  • the average power P N when viewed over N control periods can be obtained as follows.
  • the duty ratio in the control cycle T k is represented as D k (k: an integer equal to or greater than 1).
  • the temperature of the heater unit 127 can be controlled with higher accuracy by adjusting the on / off in each control cycle by increasing / decreasing the number N of control cycles.
  • the microcomputer 301 determines the temperature (target temperature) of the heater unit 127 to be targeted from the roasting profile or the like.
  • the power (target power) for causing the heater unit 127 to generate heat at the target temperature can be determined from the specifications of the heating wire of the heater unit 127 and the like.
  • the microcomputer 301 determines the number N and the ON period of each control period of the control period so that the average power P N calculated by the method described above coincide with the target power may be generated a power control signal.
  • the microcomputer 301 changes the number N of control cycles in accordance with the amount of change in target power. More specifically, the control cycle number N is set to be smaller as the target power change amount is larger, and the control cycle number N is set to be larger as the target power change amount is smaller. For the sake of understanding, an example in which the number N of control cycles is changed according to the target temperature will be described.
  • FIG. 22 shows the relationship between roasting temperature and time.
  • the illustrated relationship corresponds to, for example, the roasting profile shown in FIG. Now, let the temperature change amounts from time t0 to t1, from time t1 to t2, and from time t2 to time t3 be E 1 , E 2, and E 3 , respectively.
  • FIG. 22 (b) shows E 1 , E 2 and E 3 and two thresholds Ea and Eb.
  • the relationship of the temperature change amount E indicated by the vertical axis in FIG. 22B is E 2 ⁇ E 3 ⁇ E 1 .
  • the microcomputer 301 classifies each of the temperature change amounts E 1 , E 2, and E 3 described above into at least three sections C 1 , C 2, and C 3 according to the following conditions.
  • the classification criteria are as follows. In the following description, a value corresponding to each value of each temperature change amount E 1 , E 2, and E 3 is represented as “E”. Ea and Eb are threshold values.
  • (C) of FIG. 22 shows the number N of the set control periods.
  • the vertical axis of (c) in FIG. 22 indicates the value of N adopted by the microcomputer 301.
  • the microcomputer 301 sets the value of the number N of control cycles to the smallest value 1 when the temperature change amount E is classified into the category C1.
  • N is 1, power control is performed for each control period, so the power system is the same as before and the control accuracy is rough. However, the heater unit 127 can be heated quickly.
  • the microcomputer 301 sets the value of the number N of control cycles to the largest value 3. Since the average power can be determined by adjusting the ON period and the OFF period of the power control signal over three control cycles, highly accurate power control and temperature control are possible. As described above, it is said that if the temperature differs by 1 ° C. immediately after the start of roasting, the flavor of the coffee after roasting changes greatly. According to the method of the present embodiment, since the amount of temperature change can be finely adjusted, the roasting process can be advanced very faithfully to the roasting profile. In the above example, three sections are given, but the number of sections may be two or four or more. As the amount of change in power to be supplied is smaller, the number of N may be set larger to increase the accuracy.
  • FIG. 23 is a diagram for explaining a duty determination method based on the determined number N of control cycles. “Duty” indicates the ON period of the power control signal.
  • the horizontal axis Ptarget represents the target power required for temperature control
  • the vertical axis DutyN represents the duty set for each N period.
  • the target power at the intersection of the vertical axis and the horizontal axis is 1, and exemplary numerical values are described on the horizontal and vertical axes.
  • the numerical value in the vertical axis direction indicates the total on-period.
  • N 3
  • FIG. 23 shows three lines.
  • the solid line indicates duty pattern 1 (Duty1) applied to the first control period
  • the thick broken line indicates duty pattern 2 (Duty2) applied to the second control period
  • the thin broken line applies to the third control period.
  • the duty pattern 3 (Duty3) to be performed is shown.
  • a register (not shown) in the memory 303 or the microcomputer 301 holds the duty patterns 1 to 3 in advance.
  • the target power can be realized and the roasting temperature can be accurately controlled by controlling the switching element 314 on and off not in units of control periods but over a plurality of control periods. become.
  • the first invention includes a power supply, a detection circuit that detects that the voltage of the power supply has dropped below a predetermined value, and outputs a detection signal, and a nonvolatile storage device.
  • the processing circuit controls a roasting operation for roasting the material to be roasted, and includes a processing circuit that stores parameters relating to the roasting operation in a storage device when a detection signal is received during the roasting operation. Further, the processing circuit determines whether or not the parameter is stored in the storage device after the power supply voltage is recovered and the restart is completed, and if the parameter is stored in the storage device, the roasting operation is performed. Is a roasting machine.
  • the roasting machine is stopped due to a power failure or a power supply voltage drop, and after power is restored and restarted, based on whether the parameter is stored in the non-volatile storage device, It is determined whether or not the roasting operation is resumed. Even when the operation is stopped due to the occurrence of a power failure or the like, the roasting operation can be continued if the parameters are stored in the nonvolatile storage device.
  • the second invention is a roasting machine further comprising a temperature sensor for detecting the roasting temperature, and the processing circuit updates the roasting temperature as a parameter every predetermined time.
  • the parameter at the time when the detection signal is received is stored in the storage device, and after the power supply voltage is restored and the restart is completed, the processing circuit calculates the roasting temperature included in the parameter and the current roasting temperature. It is determined whether or not the difference satisfies a predetermined roasting continuation condition. Then, when the roasting continuation condition is satisfied, the roasting operation may be resumed.
  • the third invention is the above-described roasting machine, wherein the processing circuit has a value set such that a difference between the roasting temperature included in the parameter and the current roasting temperature is equal to or lower than a preset target temperature. When it is less, it is good also as a structure which determines with satisfy
  • the fourth invention is the above-described roasting machine, wherein the processing circuit specifies a roasting profile that specifies a temporal change in the roasting temperature, an elapsed time from the start of the roasting operation, and a roasting temperature. It is stored in the storage device as a parameter. Then, after the power supply voltage is recovered and the restart is completed, when the roasting continuation condition is satisfied, the processing circuit may restart the roasting operation based on the roasting profile and the elapsed time.
  • the fifth invention further includes a communication circuit for communicating with an external terminal device.
  • the communication circuit periodically transmits a signal to the terminal device during the roasting operation and the power supply voltage is restored and the restart is completed, the parameter is stored in the storage device. Send a startup completion notification to.
  • the processing circuit may resume the roasting operation.
  • the processing circuit may end the roasting operation.
  • the processing circuit may delete the parameters stored in the storage device.
  • An AC power source a heater unit that generates heat by the power supplied from the AC power source, and is used as a heat source for roasting an object to be roasted, a processing circuit that generates a power control signal, and the power A switching element that is turned on or off based on a control signal to control the supply and interruption of the electric power from the AC power supply to the heater unit, and the power control signal controls on or off of the switching element.
  • the signal is controlled in units of a cycle T
  • the processing circuit is an average value of electric power supplied to the heater unit in each of N control cycles (N: an integer equal to or larger than 2) that is continuous in time.
  • N an integer equal to or larger than 2
  • the processing circuit performs power control with a duty ratio D1 in the first control cycle T1 for the first control cycle T1 and the second control cycle T2 that are temporally continuous.
  • the processing circuit calculates the product of the power P0 and the sum of the duty ratios of each control cycle as the control cycle. Additional remark 1 for generating each power control signal supplied during the N control periods so that the average value calculated by dividing by the number N matches the target power to be supplied to the heater unit. Roasting machine.
  • the processing circuit sets the control cycle number N to be smaller as the change amount of the target power is larger, and sets the control cycle number N to be larger as the change amount of the target power is smaller.
  • Roasting machine as described in.
  • the apparatus further includes a temperature sensor that detects the temperature of the heater unit, and the processing circuit sets a larger amount of change in the target power as the temperature change amount of the heater unit is larger, and the temperature change amount is smaller.
  • the temperature change amount is less than a first threshold value that is a change amount that is greater than or equal to a first threshold value, less than the second threshold value that is less than the first threshold value and greater than or equal to a second threshold value, and less than the second threshold value.
  • the processing circuit sets the value of the number N of the control cycles to the smallest when the temperature change is classified into the first division. And when the said temperature change amount is classified into the said 3rd division, the value of the number N of the said control period is set to the largest value, The roasting machine of Additional remark 3.
  • the processing circuit supplies an average value of the power supplied to the heater unit to the heater unit using each of N duty patterns corresponding to the number N prepared in advance.
  • the roasting machine according to appendix 8 which defines a relationship between the target power and a duty that is a period during which the switching element is turned on.
  • the treatment when an instantaneous voltage drop occurs according to the present invention can be used for a roasting machine that performs roasting using a heat source such as electricity, gas, and charcoal.
  • the power control method of the present invention is useful for a roasting machine that performs a roasting operation using electric power.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Apparatuses For Bulk Treatment Of Fruits And Vegetables And Apparatuses For Preparing Feeds (AREA)

Abstract

This roasting machine (100) is provided with: a power source (304); a momentary interruption detection circuit (312) which detects that the voltage of the power source (304) has decreased to a predetermined level or below, and outputs a detection signal; a non-volatile storage device; and a processing circuit (301) for controlling a roasting operation for roasting an object to be roasted. When the detection signal is received during the roasting operation, the processing circuit (301) causes the storage device to store a parameter relating to the roasting operation. After the voltage of the power source (304) is restored and a restart is completed, the processing circuit (301) determines whether or not the parameter is stored in the storage device. When it is determined that the parameter is stored in the storage device, the roasting machine (100) restarts the roasting operation.

Description

焙煎機Roasting machine
 本発明は、コーヒーの生豆などを焙煎する焙煎機に関する。 The present invention relates to a roasting machine for roasting coffee beans.
 コーヒーの生豆を焙煎する装置として、焙煎機が製造、販売されている。焙煎機として、ガスを利用して焙煎を行うガス式焙煎機、および、電気でヒータを発熱させて焙煎を行う電気式焙煎機が知られている(例えば、特許文献1参照)。 A roasting machine is manufactured and sold as a device for roasting coffee beans. As a roasting machine, there are known a gas roasting machine that performs roasting using gas and an electric roasting machine that performs heating by heating a heater with electricity (see, for example, Patent Document 1). ).
特開2009-268428号公報JP 2009-268428 A
 焙煎動作中に停電が発生し、または電源電圧が低下した場合、電力の回復後、焙煎機が継続して焙煎を行うよう動作すれば、ユーザには便利である。ただし、停電が長時間にわたって継続した場合には、当初設定した焙煎はもはや不可能であるため、電力の回復後に焙煎を再開することは適切ではない場合がある。 If a power failure occurs during the roasting operation or the power supply voltage drops, it is convenient for the user if the roaster continues to roast after power is restored. However, if the power outage continues for a long time, the initially set roasting is no longer possible, so it may not be appropriate to resume roasting after power is restored.
 本発明の、限定的ではない例示的な実施の形態では、停電または電源電圧低下に伴って停止した焙煎機の再稼働時の制御動作を開示する。 In a non-limiting exemplary embodiment of the present invention, a control operation at the time of restarting a roasting machine stopped due to a power failure or a power supply voltage drop is disclosed.
 本発明の例示的な実施の形態にかかる焙煎機は、電源と、電源の電圧が所定値以下に低下したことを検知し、検知信号を出力する検知回路と、不揮発性の記憶装置と、被焙煎物を焙煎する焙煎動作を制御する処理回路である。また、焙煎動作中に検知信号を受信すると、焙煎動作に関するパラメータを記憶装置に記憶させる処理回路とを備える。さらに、処理回路は、電源の電圧が回復して再起動が完了した後、記憶装置にパラメータが記憶されているか否かを判定し、記憶装置にパラメータが記憶されている場合には焙煎動作を再開する。 A roasting machine according to an exemplary embodiment of the present invention includes a power supply, a detection circuit that detects that the voltage of the power supply has dropped below a predetermined value, and outputs a detection signal, a nonvolatile storage device, It is a processing circuit for controlling a roasting operation for roasting an object to be roasted. And a processing circuit that stores parameters relating to the roasting operation in a storage device when a detection signal is received during the roasting operation. Further, the processing circuit determines whether or not the parameter is stored in the storage device after the power supply voltage is recovered and the restart is completed, and if the parameter is stored in the storage device, the roasting operation is performed. To resume.
 この構成によれば、停電または電源電圧低下に伴って停止した焙煎機は、再起動後に、パラメータが不揮発性の記憶装置に格納されているか否かに基づいて、焙煎動作を再開するか否かを判断する。停電等の発生に伴って停止した場合でも、パラメータが不揮発性の記憶装置に格納されていれば、焙煎動作を継続することができる。 According to this configuration, the roasting machine that has been stopped due to a power failure or a power supply voltage drop restarts the roasting operation based on whether the parameter is stored in the non-volatile storage device after the restart. Judge whether or not. Even when the operation is stopped due to the occurrence of a power failure or the like, the roasting operation can be continued if the parameters are stored in the nonvolatile storage device.
図1は、本発明の例示的な実施の形態にかかる焙煎機の外観図である。FIG. 1 is an external view of a roasting machine according to an exemplary embodiment of the present invention. 図2は、本発明の例示的な実施の形態にかかる焙煎機の内部の構成を示す図である。FIG. 2 is a diagram showing an internal configuration of a roasting machine according to an exemplary embodiment of the present invention. 図3は、本発明の例示的な実施の形態にかかる焙煎機の、焙煎筒カバーを透過表示した内部の構成を示す図である。FIG. 3 is a diagram illustrating an internal configuration of a roasting machine according to an exemplary embodiment of the present invention, in which a roasting cylinder cover is transparently displayed. 図4は、本発明の例示的な実施の形態にかかる焙煎機の、焙煎筒カバーを取り外した状態における内部の構成を示す図である。FIG. 4 is a diagram showing an internal configuration of the roasting machine according to the exemplary embodiment of the present invention in a state where the roasting cylinder cover is removed. 図5は、本発明の例示的な実施の形態にかかる焙煎機内部の空気の流れを矢印で示す図である。FIG. 5 is a diagram showing the flow of air inside the roasting machine according to the exemplary embodiment of the present invention by arrows. 図6Aは、本発明の例示的な実施の形態にかかる焙煎機のヒータユニットの斜視図である。FIG. 6A is a perspective view of a heater unit of a roasting machine according to an exemplary embodiment of the present invention. 図6Bは、本発明の第1変形例にかかる焙煎機のヒータユニットの斜視図である。FIG. 6B is a perspective view of the heater unit of the roasting machine according to the first modification of the present invention. 図6Cは、本発明の第2変形例にかかる焙煎機のヒータユニットの上面図である。FIG. 6C is a top view of the heater unit of the roasting machine according to the second modified example of the present invention. 図7は、本発明の例示的な実施の形態にかかる焙煎機を含む情報提供システムの構成を示す図である。FIG. 7 is a diagram showing a configuration of an information providing system including a roasting machine according to an exemplary embodiment of the present invention. 図8は、本発明の例示的な実施の形態にかかる焙煎機を含む情報提供システムにおいて生豆提供業者が運用するDBサーバのハードウェア構成図である。FIG. 8 is a hardware configuration diagram of a DB server operated by a green bean provider in an information providing system including a roasting machine according to an exemplary embodiment of the present invention. 図9は、本発明の例示的な実施の形態にかかる焙煎機を含む情報提供システムに用いられる第1の焙煎プロファイル2の例を示す図である。FIG. 9 is a diagram showing an example of the first roasting profile 2 used in the information providing system including the roasting machine according to the exemplary embodiment of the present invention. 図10は、本発明の例示的な実施の形態にかかる焙煎機を含む情報提供システムに用いられる第2の焙煎プロファイル2の例を示す図である。FIG. 10 is a diagram showing an example of the second roasting profile 2 used in the information providing system including the roasting machine according to the exemplary embodiment of the present invention. 図11は、本発明の例示的な実施の形態にかかる焙煎機を含む情報提供システムを構成する端末装置および焙煎機のハードウェア構成を示すブロック図である。FIG. 11 is a block diagram showing a hardware configuration of a terminal device and a roasting machine that constitute an information providing system including a roasting machine according to an exemplary embodiment of the present invention. 図12は、本発明の例示的な実施の形態にかかる焙煎機を含む情報提供システムを構成する焙煎機と端末装置との間で行われる通信と、焙煎機および端末装置の各々の処理の手順を示すフローチャートである。FIG. 12 shows communication performed between the roaster and the terminal device constituting the information providing system including the roaster according to the exemplary embodiment of the present invention, and each of the roaster and the terminal device. It is a flowchart which shows the procedure of a process. 図13は、本発明の例示的な実施の形態にかかる焙煎機を含む情報提供システムを構成する焙煎機の電子回路基板と、電源に関連する詳細な回路構成を示すブロック図である。FIG. 13 is a block diagram showing a detailed circuit configuration related to the electronic circuit board of the roasting machine and the power supply constituting the information providing system including the roasting machine according to the exemplary embodiment of the present invention. 図14は、本発明の例示的な実施の形態にかかる焙煎機を含む情報提供システムを構成する瞬停検知回路の回路図である。FIG. 14 is a circuit diagram of an instantaneous power failure detection circuit constituting an information providing system including a roasting machine according to an exemplary embodiment of the present invention. 図15Aは、本発明の例示的な実施の形態にかかる焙煎機を含む情報提供システムにおける瞬時電圧低下検出時の焙煎機の第1の動作の手順を示すフローチャートである。FIG. 15A is a flowchart showing a procedure of a first operation of the roasting machine when an instantaneous voltage drop is detected in the information providing system including the roasting machine according to the exemplary embodiment of the present invention. 図15Bは、本発明の例示的な実施の形態にかかる焙煎機を含む情報提供システムにおける瞬時電圧低下検出時の焙煎機の第2の動作の手順を示すフローチャートである。FIG. 15B is a flowchart showing a procedure of the second operation of the roaster when an instantaneous voltage drop is detected in the information providing system including the roaster according to the exemplary embodiment of the present invention. 図16は、本発明の例示的な実施の形態にかかる焙煎機を含む情報提供システムを構成する焙煎機が単独で動作するのではなく、端末装置と連携して動作する処理を示すフローチャートである。FIG. 16 is a flowchart showing a process in which the roasting machine constituting the information providing system including the roasting machine according to the exemplary embodiment of the present invention operates in cooperation with the terminal device instead of operating alone. It is. 図17は、本発明の例示的な実施の形態にかかる焙煎機を含む情報提供システムにおいてスイッチが押下された時の焙煎機の処理回路であるマイコンが行う処理の手順を示すフローチャートである。FIG. 17 is a flowchart showing a procedure of processing performed by a microcomputer that is a processing circuit of a roasting machine when a switch is pressed in the information providing system including the roasting machine according to the exemplary embodiment of the present invention. . 図18は、本発明の例示的な実施の形態にかかる焙煎機のヒータユニットへの交流電力の第1の印加方法の例を示す図である。FIG. 18 is a diagram illustrating an example of a first method of applying AC power to the heater unit of the roasting machine according to the exemplary embodiment of the present invention. 図19は、本発明の例示的な実施の形態にかかる焙煎機のヒータユニットへの交流電力の第2の印加方法の例を示す図である。FIG. 19 is a diagram illustrating an example of a second method of applying AC power to the heater unit of the roasting machine according to the exemplary embodiment of the present invention. 図20は、本発明の例示的な実施の形態にかかる焙煎機のヒータユニットへの交流電力の第3の印加方法および電力制御信号の波形を示す図である。FIG. 20 is a diagram illustrating a third method of applying AC power to the heater unit of the roaster according to the exemplary embodiment of the present invention and the waveform of the power control signal. 図21は、本発明の例示的な実施の形態にかかる焙煎機のヒータユニットへの交流電力の第3の印加方法および電力制御信号の波形を示す図である。FIG. 21 is a diagram showing a third method of applying AC power to the heater unit of the roaster according to the exemplary embodiment of the present invention and the waveform of the power control signal. 図22は、本発明の例示的な実施の形態にかかる焙煎機における焙煎温度、温度変化量および設定された制御周期の個数と時間変化を示す図である。FIG. 22 is a diagram showing the roasting temperature, the amount of temperature change, the number of set control cycles, and the time change in the roasting machine according to the exemplary embodiment of the present invention. 図23は、本発明の例示的な実施の形態にかかる焙煎機において決定した制御周期の個数に基づくデューティの決定方法を説明するための図である。FIG. 23 is a diagram for explaining a duty determination method based on the number of control cycles determined in the roasting machine according to the exemplary embodiment of the present invention.
 以下、添付の図面を参照しながら、本発明の例示的な実施の形態にかかる焙煎機を説明する。以下に説明する実施の形態では焙煎を行う対象(被焙煎物)はコーヒーの生豆であるとする。焙煎機は、高温の熱風によって生豆を焙煎する熱風式焙煎機とする。熱風を産み出す熱源は電熱線を有するヒータユニットを例示して説明する。ただし、図17までの説明は、熱源としてガス、炭火等を利用する焙煎機にも適用することが可能である。なお、単に「豆」と記載した場合には、焙煎されていない生豆、焙煎されている途中の生豆、および、焙煎されたコーヒー豆のいずれをも含み得る。 Hereinafter, a roasting machine according to an exemplary embodiment of the present invention will be described with reference to the accompanying drawings. In the embodiment described below, it is assumed that an object to be roasted (an object to be roasted) is green coffee beans. The roasting machine is a hot-air roasting machine that roasts green beans with hot hot air. A heat source that produces hot air will be described by exemplifying a heater unit having a heating wire. However, the description up to FIG. 17 can also be applied to a roaster using gas, charcoal fire or the like as a heat source. In addition, when it is only described as “beans”, it may include any of green beans that have not been roasted, green beans that are being roasted, and coffee beans that have been roasted.
 本明細書では、まず焙煎機の機械的な構造を説明し、その後、焙煎機の電気的な構造を説明する。その後、焙煎機の動作を説明する。 In this specification, first, the mechanical structure of the roasting machine will be described, and then the electrical structure of the roasting machine will be described. Then, operation | movement of a roasting machine is demonstrated.
 1.焙煎機の機械的な構造
 図1は、熱風式焙煎機100の外観図である。以下の説明では、図示されたように軸、Y軸およびZ軸を取って説明に利用する。特に-Z方向を「下方向」または「下」、+Z方向を「上方向」または「上」と呼ぶことがある。以下、熱風式焙煎機100を「焙煎機100」と略記する。各図において、同じ構成要素には同じ参照符号を付す。
1. FIG. 1 is an external view of a hot-air roaster 100. In the following description, the axis, the Y axis, and the Z axis are used for the description as illustrated. In particular, the −Z direction may be referred to as “downward” or “downward”, and the + Z direction may be referred to as “upward” or “upward”. Hereinafter, the hot air roasting machine 100 is abbreviated as “roasting machine 100”. In each figure, the same reference numerals are assigned to the same components.
 焙煎機100は、筐体110と、スイッチ111と、状態表示LED112と、電子回路基板113と、豆投入カップ114と、排気口115と、蓋116と、容器117とを有する。なお焙煎機100には主電源をオン/オフするスイッチ(図示せず)が設けられてもよい。 The roasting machine 100 includes a housing 110, a switch 111, a status display LED 112, an electronic circuit board 113, a bean throwing cup 114, an exhaust port 115, a lid 116, and a container 117. The roasting machine 100 may be provided with a switch (not shown) for turning on / off the main power.
 筐体110は、焙煎機100の種々の内部に設けられる種々の要素を収容する収容体として機能するとともに、一部の要素を支持する支持体としても機能する。さらに筐体110は、焙煎工程において発生する熱を閉じ込め、焙煎時の急激な温度変化を防ぐ機能をも有する。 The housing 110 functions as a container that accommodates various elements provided in various interiors of the roasting machine 100, and also functions as a support that supports some elements. Further, the housing 110 has a function of confining heat generated in the roasting process and preventing a rapid temperature change during roasting.
 スイッチ111は、焙煎開始/停止、および、豆の排出を行うためにユーザによって押下される。スイッチ111が押下された時、焙煎機100がどのように動作するかは、焙煎機100の状態に応じて変わる。この動作の詳細は後に図17を参照しながら詳述する。 The switch 111 is pressed by the user to start / stop roasting and discharge beans. How the roasting machine 100 operates when the switch 111 is pressed depends on the state of the roasting machine 100. Details of this operation will be described later with reference to FIG.
 状態表示LED112は、焙煎機100に電源が投入され、焙煎機100が焙煎プロファイルを受信するまでの間は、たとえば緑色に点灯し、焙煎プロファイルを受信した後は、たとえば赤色に点滅する。ここで「焙煎プロファイル」とは、ユーザが所有する焙煎機100を制御するための制御情報である。焙煎プロファイルは、たとえば、焙煎機100における焙煎時間と焙煎温度との関係を示す温度プロファイル、および、焙煎時間と、焙煎機100のファンモータの単位時間当たりの回転数との関係を示す回転数プロファイルを含む。また、状態表示LED112は、予熱中にはたとえば赤色に点灯し、焙煎中にはたとえば橙色に点滅する。 The status display LED 112 is lit in green, for example, until the roasting machine 100 is turned on and receives the roasting profile, and flashes in red after receiving the roasting profile. To do. Here, the “roasting profile” is control information for controlling the roasting machine 100 owned by the user. The roasting profile includes, for example, a temperature profile indicating a relationship between a roasting time and a roasting temperature in the roasting machine 100, and a roasting time and the number of rotations per unit time of the fan motor of the roasting machine 100. Includes a rotational speed profile that shows the relationship. Further, the status display LED 112 lights up in red during preheating and blinks in orange during roasting, for example.
 電子回路基板113は、種々の電子回路が搭載されている。たとえば電子回路基板113上には、図11を参照しながら後に説明するように、処理回路であるマイコン301、無線通信回路302、メモリ303、ストレージ306および通信バス307等が設けられている。なお、図1に示す電子回路基板113は非常に簡略化して記載している。後述の通り、電子回路基板113は筐体内部で比較的広範な範囲に亘って広がりを有している。 The electronic circuit board 113 is mounted with various electronic circuits. For example, on the electronic circuit board 113, as will be described later with reference to FIG. 11, a microcomputer 301 which is a processing circuit, a wireless communication circuit 302, a memory 303, a storage 306, a communication bus 307, and the like are provided. It should be noted that the electronic circuit board 113 shown in FIG. As will be described later, the electronic circuit board 113 extends over a relatively wide range inside the housing.
 豆投入カップ114は、筐体110の開口部に着脱可能で、かつ、規定量以下の生豆を充填可能な容器である。豆投入カップ114は上面および下面にそれぞれ開口を有する。上面の開口は、ユーザが生豆を豆投入カップ114に充填するために利用される。底面の開口は、豆投入カップ114に充填された生豆を、焙煎機100内部の焙煎釜(後述)に投入するために利用される。 The bean throwing cup 114 is a container that can be attached to and detached from the opening of the casing 110 and can be filled with raw beans below a specified amount. The bean throwing cup 114 has openings on the upper surface and the lower surface, respectively. The opening on the top surface is used by the user to fill the bean input cup 114 with green beans. The opening on the bottom surface is used for charging the green beans filled in the bean input cup 114 into a roasting pot (described later) inside the roasting machine 100.
 排気口115は、焙煎中の高温空気を筐体110の外に排出する開口である。 The exhaust port 115 is an opening through which hot air being roasted is discharged out of the casing 110.
 蓋116は、筐体110に取り外し可能に装着される。蓋116には豆投入カップ114が装着される開口部と、排気口115が設けられる開口部を有している。 The lid 116 is detachably attached to the housing 110. The lid 116 has an opening in which the bean throwing cup 114 is mounted and an opening in which the exhaust port 115 is provided.
 容器117は、排出された豆を収容する。 The container 117 stores the discharged beans.
 次に、図2~図4を参照しながら焙煎機100の内部構造を説明する。 Next, the internal structure of the roasting machine 100 will be described with reference to FIGS.
 図2は、焙煎機100の内部の構成を示す。図3は、焙煎筒カバー121を透過表示した焙煎機100の内部の構成を示す。図4は、焙煎筒カバー121を取り外した状態の焙煎機100の内部の構成を示す。 FIG. 2 shows the internal configuration of the roasting machine 100. FIG. 3 shows an internal configuration of the roasting machine 100 in which the roasting cylinder cover 121 is transparently displayed. FIG. 4 shows the internal configuration of the roasting machine 100 with the roasting cylinder cover 121 removed.
 図2に示すように、焙煎機100は、ファンユニット120と、焙煎筒カバー121と、焙煎筒122と、風洞構造体123と、排出筒124とを有する。また、図2には、電子回路基板113の大きさおよび構造の例が示されている。 As shown in FIG. 2, the roasting machine 100 includes a fan unit 120, a roasting cylinder cover 121, a roasting cylinder 122, a wind tunnel structure 123, and a discharge cylinder 124. FIG. 2 shows an example of the size and structure of the electronic circuit board 113.
 ファンユニット120は、焙煎機100の外部の空気を焙煎機100の筐体110内に取り込む。図3に示すように、ファンユニット120は、ファンモータ120aと、ファン120bと、エア・アウトレット120cとを有する。ファン120bはファンモータ120aに取り付けられている。ファンモータ120aが回転することによってファン120bも回転し、焙煎機100外部の空気を焙煎機100内部に取り込む。取り込まれた空気はヒータユニット127(図4)よって熱せられ、生豆の焙煎に利用される。 The fan unit 120 takes in air outside the roasting machine 100 into the casing 110 of the roasting machine 100. As shown in FIG. 3, the fan unit 120 includes a fan motor 120a, a fan 120b, and an air outlet 120c. The fan 120b is attached to the fan motor 120a. As the fan motor 120a rotates, the fan 120b also rotates, and air outside the roasting machine 100 is taken into the roasting machine 100. The taken-in air is heated by the heater unit 127 (FIG. 4) and used for roasting green beans.
 焙煎筒カバー121は、焙煎筒122の一部を覆って配置されたカバーである。焙煎筒カバー121は、樹脂材料、たとえばポリブチレンテレフタレート(PBT)で形成されている。図3に示すように、焙煎筒カバー121の内壁は焙煎筒122の外周壁とは接しておらず、所定の間隙が設けられている。 The roasting cylinder cover 121 is a cover arranged so as to cover a part of the roasting cylinder 122. The roasting cylinder cover 121 is made of a resin material such as polybutylene terephthalate (PBT). As shown in FIG. 3, the inner wall of the roasting cylinder cover 121 is not in contact with the outer peripheral wall of the roasting cylinder 122, and a predetermined gap is provided.
 焙煎筒122は、図示しない2つの開口を+Z側(上側)および-Z側(下側)に有する円筒形状を有する。本実施形態では、焙煎筒122は金属材料、たとえばアルミ、で形成されている。ただしこれは一例である。他の材料で形成されていてもよい。 The roasting cylinder 122 has a cylindrical shape having two openings (not shown) on the + Z side (upper side) and the −Z side (lower side). In the present embodiment, the roasting cylinder 122 is formed of a metal material such as aluminum. However, this is an example. It may be formed of other materials.
 図4に示されるように、焙煎筒122の内部には、焙煎室126およびヒータユニット127が設けられる。図4は、焙煎室126およびヒータユニット127が設けられる位置を示している。なお、ヒータユニット127の下端は、焙煎筒カバー121の下端よりも下にある。よって、厳密にいえば、ヒータユニット127は焙煎筒カバー121の内部に完全に収容されるわけではない。 As shown in FIG. 4, a roasting chamber 126 and a heater unit 127 are provided inside the roasting cylinder 122. FIG. 4 shows a position where the roasting chamber 126 and the heater unit 127 are provided. Note that the lower end of the heater unit 127 is below the lower end of the roasting cylinder cover 121. Therefore, strictly speaking, the heater unit 127 is not completely accommodated inside the roasting cylinder cover 121.
 ファンユニット120によって焙煎機100の筐体110内に吸い込まれた空気は、下側の開口から焙煎筒122内に入り、上側の開口から排出される。下側の開口は空気流入口であり、上側の開口は空気流出口ということができる。空気流入口から空気流出口までの焙煎筒122の内部には、ヒータユニット127および焙煎室126がこの順序で設けられる。 The air sucked into the casing 110 of the roasting machine 100 by the fan unit 120 enters the roasting cylinder 122 from the lower opening and is discharged from the upper opening. The lower opening is an air inlet, and the upper opening is an air outlet. Inside the roasting cylinder 122 from the air inlet to the air outlet, a heater unit 127 and a roasting chamber 126 are provided in this order.
 風洞構造体123は、焙煎筒122の上側の開口に対応する位置、および、排出筒124の上側の開口に対応する位置にそれぞれ開口を有する、金属材料で形成された部材である。風洞構造体123は、この2つの開口を接続する溝状の通路も有している。金属材料は、たとえばアルミである。風洞構造体123に、排気口115を有する蓋116が被せられることにより、風洞構造体123の溝状の通路は、蓋116とともに焙煎筒122から排気口115に至る風路を形成する。 The wind tunnel structure 123 is a member made of a metal material having openings at positions corresponding to the upper opening of the roasting cylinder 122 and positions corresponding to the upper opening of the discharge cylinder 124. The wind tunnel structure 123 also has a groove-shaped passage connecting the two openings. The metal material is, for example, aluminum. By covering the wind tunnel structure 123 with the lid 116 having the exhaust port 115, the groove-shaped passage of the wind tunnel structure 123 forms an air path from the roasting cylinder 122 to the exhaust port 115 together with the lid 116.
 排出筒124は、焙煎室126内の豆を容器117に排出する際の豆の排出路である。豆の排出時には、ファンユニット120は高速に回転して強風を筐体110内に送る。個々の豆は強風によって焙煎室126から吹き飛ばされ、風洞構造体123の風路を通過して、排出筒124の上側の開口に対応する位置に到達する。そして、この開口から重力によって排出筒124内を落下し、容器117に排出される。 The discharge cylinder 124 is a bean discharge path when the beans in the roasting chamber 126 are discharged into the container 117. When the beans are discharged, the fan unit 120 rotates at a high speed and sends a strong wind into the housing 110. Each bean is blown off from the roasting chamber 126 by a strong wind, passes through the wind path of the wind tunnel structure 123, and reaches a position corresponding to the upper opening of the discharge tube 124. Then, the inside of the discharge cylinder 124 is dropped by gravity from this opening and discharged into the container 117.
 焙煎機100は、複数のスペーサー128を有する。複数のスペーサー128は、風洞構造体123と筐体110との間に設けられて筐体110を支持する。複数のスペーサー128は、たとえばフェノール樹脂(ベークライト)製、または、ポリフェニレンサルファイド(PPS)樹脂製である。 The roasting machine 100 has a plurality of spacers 128. The plurality of spacers 128 are provided between the wind tunnel structure 123 and the housing 110 to support the housing 110. The plurality of spacers 128 are made of, for example, a phenol resin (bakelite) or a polyphenylene sulfide (PPS) resin.
 次に、図5を参照しながら、焙煎機100内部の空気の流れを説明する。 Next, the flow of air inside the roasting machine 100 will be described with reference to FIG.
 図5は、焙煎機100内部の空気の流れを矢印で示す。ファンユニット120、焙煎筒カバー121、焙煎筒122および風洞構造体123内部を通過する空気の流れは破線の矢印で示している。 FIG. 5 shows the flow of air inside the roasting machine 100 with arrows. The flow of air passing through the fan unit 120, the roasting tube cover 121, the roasting tube 122, and the wind tunnel structure 123 is indicated by broken-line arrows.
 まず、ファンユニット120のファンモータ120aが回転することにより、筐体110の下方(-Z側)から空気が吸い込まれる。焙煎機100内部に取り込まれた空気は、主として電子回路基板113に吹き付けられる。 First, when the fan motor 120a of the fan unit 120 rotates, air is sucked from below the casing 110 (−Z side). The air taken into the roasting machine 100 is mainly blown onto the electronic circuit board 113.
 本願発明者は、電子回路基板113を、意図的にファンユニット120と風洞構造体123との間の風路上に配置した。その理由は、電子回路基板113を効果的に冷却できるためである。焙煎機100の動作中は、電子回路基板113に搭載された種々の電子部品が発熱する。ファンユニット120によって吸い込まれた外気温(低温)の空気は、電子回路基板113に吹き付けられて、電子部品および電子回路基板113の熱を奪う。これにより、電子回路基板113を冷却することができる。 The inventor of the present application intentionally placed the electronic circuit board 113 on the air path between the fan unit 120 and the wind tunnel structure 123. The reason is that the electronic circuit board 113 can be effectively cooled. During operation of the roasting machine 100, various electronic components mounted on the electronic circuit board 113 generate heat. The outside air temperature (low temperature) air sucked in by the fan unit 120 is blown onto the electronic circuit board 113 and takes heat of the electronic components and the electronic circuit board 113. Thereby, the electronic circuit board 113 can be cooled.
 電子回路基板113の熱によって空気の温度が上昇することは、好都合である。その理由は、ヒータユニット127のみを熱源としなくて済むからである。少しでも空気の温度を上昇させておけば、ヒータユニット127による加熱を効果的に行うことができる。 It is convenient that the temperature of the air rises due to the heat of the electronic circuit board 113. This is because it is not necessary to use only the heater unit 127 as a heat source. If the temperature of the air is raised as much as possible, heating by the heater unit 127 can be performed effectively.
 空気は、続いて上方向に進み、風洞構造体123の外表面(外周壁)に当たってその進路を+Y方向に変える。焙煎工程では、ヒータユニット127の加熱が継続されると、加熱された空気が風洞構造体123内を通過して排気口115から排出される。上述のように、風洞構造体123は金属材料で構成されているため、風洞構造体123内を通過する空気の熱が、風洞構造体123の外周壁に伝達されその温度が上昇する。その結果、空気は風洞構造体123に当たることによって風洞構造体123からも熱を奪い、その結果、空気はさらに熱せられる。これにより、加熱効率を大きく向上させることができる。同時に風洞構造体123を冷却し、その温度の上昇を抑制することができる。 The air then proceeds upward, hits the outer surface (outer peripheral wall) of the wind tunnel structure 123, and changes its course in the + Y direction. In the roasting process, when the heating of the heater unit 127 is continued, the heated air passes through the wind tunnel structure 123 and is discharged from the exhaust port 115. As described above, since the wind tunnel structure 123 is made of a metal material, the heat of the air passing through the wind tunnel structure 123 is transmitted to the outer peripheral wall of the wind tunnel structure 123, and the temperature rises. As a result, when the air hits the wind tunnel structure 123, heat is also taken from the wind tunnel structure 123, and as a result, the air is further heated. Thereby, heating efficiency can be improved greatly. At the same time, the wind tunnel structure 123 can be cooled to suppress an increase in temperature.
 次に、空気は間隙風路125に入り、焙煎筒カバー121と焙煎筒122との間を下方向に進んで、焙煎筒122の空気流入口に到達する。間隙風路125を通過する間にも空気は加熱される。焙煎工程が始まると、上述の風洞構造体123の外周壁の温度が上昇した理由と同じ理由により、焙煎筒122の外周壁の温度が上昇するからである。よって、空気が間隙風路125内を進んで焙煎筒122の空気流入口に到達した時点で、相当程度、空気の加熱が進んでいることになる。本実施形態の構成によれば、非常に効率的な熱交換が可能になる。 Next, the air enters the gap air passage 125, travels downward between the roasting cylinder cover 121 and the roasting cylinder 122, and reaches the air inlet of the roasting cylinder 122. The air is also heated while passing through the gap air passage 125. This is because when the roasting process starts, the temperature of the outer peripheral wall of the roasting cylinder 122 rises for the same reason as the reason that the temperature of the outer peripheral wall of the wind tunnel structure 123 increases. Therefore, when the air travels through the gap air passage 125 and reaches the air inlet of the roasting cylinder 122, the air is heated to a considerable extent. According to the configuration of the present embodiment, very efficient heat exchange can be performed.
 空気は焙煎筒122の空気流入口から焙煎筒122内部に入り、ヒータユニット127によって加熱されて熱風となる。熱風は、焙煎室126に投入された生豆をその風力によって撹拌する。その結果、焙煎室126内の生豆がむらなく焙煎される。熱風は焙煎筒122の上側の開口(空気流出口)から風洞構造体123に入り、風洞構造体123内の風路を経て、排気口115から排出される。 The air enters the roasting cylinder 122 from the air inlet of the roasting cylinder 122 and is heated by the heater unit 127 to become hot air. The hot air stirs the green beans put into the roasting chamber 126 by the wind force. As a result, the green beans in the roasting chamber 126 are roasted uniformly. The hot air enters the wind tunnel structure 123 from the upper opening (air outlet) of the roasting cylinder 122, passes through the air channel in the wind tunnel structure 123, and is discharged from the exhaust port 115.
 なお、焙煎筒カバー121が焙煎筒122の外周壁の一部を覆っていれば、間隙風路125を通過する空気は、焙煎筒122の外周壁の熱を奪うことができる。よって、焙煎筒カバー121は、たとえばヒータユニット127が設けられた位置(範囲)に対応する焙煎筒122の外周壁を覆っていればよい。ただし本願発明者は、ヒータユニット127だけでなく焙煎室126が設けられた位置(範囲)に対応する焙煎筒122の外周壁をも焙煎筒カバー121で覆うことにした。これにより、間隙風路125においてさらに効果的に空気を加熱することが可能になった。 Note that if the roasting cylinder cover 121 covers a part of the outer peripheral wall of the roasting cylinder 122, the air passing through the gap air passage 125 can take the heat of the outer peripheral wall of the roasting cylinder 122. Therefore, the roasting cylinder cover 121 only needs to cover the outer peripheral wall of the roasting cylinder 122 corresponding to the position (range) where the heater unit 127 is provided, for example. However, the inventors of the present application decided to cover not only the heater unit 127 but also the outer peripheral wall of the roasting cylinder 122 corresponding to the position (range) where the roasting chamber 126 was provided with the roasting cylinder cover 121. As a result, the air can be heated more effectively in the gap air passage 125.
 前述の通り、ファンユニット120の最下面と焙煎機100が設置された面との間は或る程度の隙間を形成することによって、その隙間から空気がファンユニット120内に吸い込まれる。 As described above, a certain gap is formed between the lowermost surface of the fan unit 120 and the surface on which the roasting machine 100 is installed, so that air is sucked into the fan unit 120 from the gap.
 しかし、何らかの原因でその隙間が異物等で塞がれてしまった場合は、空気がファンユニット120に吸い込まれなくなり、焙煎できなくなってしまう。このため、本実施形態では、以下の3条件が成立した場合、前述の隙間に異物等があると判断して、ユーザに吸気エラーを通知するとともに、焙煎機100を安全に動作停止させるものとする。 However, if the gap is blocked by a foreign matter for some reason, air cannot be sucked into the fan unit 120 and cannot be roasted. For this reason, in the present embodiment, when the following three conditions are satisfied, it is determined that there is a foreign substance or the like in the gap, and the user is notified of an intake error, and the roasting machine 100 is safely stopped. And
 1.TR_T(=たとえば2秒)毎に反映する焙煎プロファイルに従ったヒータ制御デューティ(Duty:Dh%)が以下のいずれかの条件に連続Nduty(=たとえば5)回該当した場合、
(1)焙煎プロファイルに従ったヒータ制御デューティ(Duty:Dh%)が前回の値以上、または(2)焙煎プロファイルに従ったヒータ制御デューティ(Duty:Dh%)がヒータ制御デューティの上限値(Duty Limit)以上、
 2.To(=たとえば、200msec)毎に取得するヒータ温度センサ値が連続Nt(=たとえば50)回、前回値以下の場合、
 3.To(=たとえば、200msec)毎に取得するヒータ温度センサ値が目標温度よりΔTLOW(=たとえば、40℃)以上低い状態が連続Nt(=たとえば50)回続いている場合、
が該当する。
1. When the heater control duty (Duty: Dh%) according to the roasting profile reflected every TR_T (= 2 seconds, for example) corresponds to one of the following conditions continuously Nduty (= 5) times,
(1) The heater control duty (Duty: Dh%) according to the roasting profile is equal to or greater than the previous value, or (2) the heater control duty (Duty: Dh%) according to the roasting profile is the upper limit value of the heater control duty. (Duty Limit)
2. When the heater temperature sensor value acquired every To (= 200 msec, for example) is continuously Nt (= 50) times or less, for example,
3. When the heater temperature sensor value acquired every To (= 200 msec, for example) is lower than the target temperature by ΔTLOW (= 40 ° C.) or more continuously Nt (= 50, for example)
Is applicable.
 図6Aは、ヒータユニット127の構成を示す。図4に示すように、ヒータユニット127は焙煎筒122の内部に配置される。 FIG. 6A shows the configuration of the heater unit 127. As shown in FIG. 4, the heater unit 127 is disposed inside the roasting cylinder 122.
 ヒータユニット127は、複数の電熱線140a~140cと、第1整流板141と、第2整流板142と、温度センサ143とを有する。図6Aには、仕切り板126aが記載されているが、仕切り板126aはヒータユニット127の構成要素ではない。 The heater unit 127 includes a plurality of heating wires 140a to 140c, a first rectifying plate 141, a second rectifying plate 142, and a temperature sensor 143. In FIG. 6A, the partition plate 126 a is described, but the partition plate 126 a is not a component of the heater unit 127.
 複数の電熱線140a~140cは、いずれも電力を熱に変換する。複数の電熱線140a~140cは、焙煎筒122の内周壁の近傍に、内周壁に沿ってZ方向に並んで配列されている。複数の電熱線140a~140cが焙煎筒122の内周壁に沿って配置されるため、電熱線をより長く確保できる。これにより、電熱線と空気の接触面積が大きくなり、効果的に空気温度を上昇させることができる。なお、本実施形態では3本の電熱線を用いているが、本数は任意である。少なくとも1本の電熱線が設けられていればよい。一本の電熱線をらせん状に巻いた構造であっても良い。 The plurality of heating wires 140a to 140c all convert electric power into heat. The plurality of heating wires 140a to 140c are arranged in the vicinity of the inner peripheral wall of the roasting cylinder 122 and aligned in the Z direction along the inner peripheral wall. Since the plurality of heating wires 140a to 140c are arranged along the inner peripheral wall of the roasting cylinder 122, the heating wires can be secured longer. Thereby, the contact area of a heating wire and air becomes large, and can raise air temperature effectively. In the present embodiment, three heating wires are used, but the number is arbitrary. It is sufficient that at least one heating wire is provided. A structure in which a single heating wire is spirally wound may be used.
 温度センサ143は、たとえば耐熱温度が約450度である白金温度センサである。温度センサ143は、ヒータユニット127によって加熱された空気の温度を検出する。または、温度センサ143は、ヒータユニット127の温度を検出してもよい。本明細書では、温度センサ143は、焙煎温度およびヒータユニット127の温度の一方を検出できればよい。 The temperature sensor 143 is a platinum temperature sensor whose heat-resistant temperature is about 450 degrees, for example. The temperature sensor 143 detects the temperature of the air heated by the heater unit 127. Alternatively, the temperature sensor 143 may detect the temperature of the heater unit 127. In the present specification, the temperature sensor 143 only needs to detect one of the roasting temperature and the temperature of the heater unit 127.
 電熱線140a~140cは、マイカ製のヒータ保持材145a、145b等によって複数の区画に分けられている。本実施の形態においては、ヒータ保持材145aおよび145bによって仕切られた、温度センサ143の-Z方向に位置する区画には3本の電熱線140a~140cが配置されているが、区画内の電熱線の本数は一例である。 The heating wires 140a to 140c are divided into a plurality of sections by heater holding members 145a and 145b made of mica. In the present embodiment, the three heating wires 140a to 140c are arranged in the section located in the −Z direction of the temperature sensor 143, which is partitioned by the heater holding members 145a and 145b. The number of heat rays is an example.
 図6Bは、第1変形例にかかるヒータユニット127aの斜視図である。変形例にかかるヒータユニット127では、ヒータ保持材145aおよび145bによって仕切られた、温度センサ143の-Z方向に位置する区画には2本の電熱線140bおよび140cが設けられている。すなわち、図6Aの構成例と比較すると電熱線140aは存在していない。一方、他の区画ではZ方向には3本の電熱線が設けられている。 FIG. 6B is a perspective view of the heater unit 127a according to the first modification. In the heater unit 127 according to the modified example, two heating wires 140b and 140c are provided in a section located in the −Z direction of the temperature sensor 143, which is partitioned by the heater holding members 145a and 145b. That is, the heating wire 140a does not exist as compared with the configuration example of FIG. 6A. On the other hand, in other sections, three heating wires are provided in the Z direction.
 図6Bの例では、温度センサの143の-Z方向に位置する電熱線の本数を、温度センサ143の-Z方向に位置しない電熱線の本数より少なくしている。これにより、豆が焙煎される焙煎室126の空気温度と温度センサ143の検知温度の相関関係を高くすることが可能になる。使用者は焙煎プロファイルの設定温度値と焙煎仕上がりの関係を把握し易くなり、焙煎プロファイルの温度を設定する際の取り扱い易さを飛躍的に向上させることが可能となる。 In the example of FIG. 6B, the number of heating wires positioned in the −Z direction of the temperature sensor 143 is set to be smaller than the number of heating wires not positioned in the −Z direction of the temperature sensor 143. Thereby, the correlation between the air temperature of the roasting chamber 126 where the beans are roasted and the temperature detected by the temperature sensor 143 can be increased. It becomes easy for the user to grasp the relationship between the set temperature value of the roasting profile and the roasting finish, and the ease of handling when setting the temperature of the roasting profile can be dramatically improved.
 さらに、図6Cは、第2変形例にかかるヒータユニット127bの上面図である。図6Cでは、4枚のヒータ保持材145a~145dがヒータユニット127の電熱線から内側の空間を8つに区画している。つまり、空気の流路は8つに分割されている。このうち、ヒータ保持材145aおよび145bによって仕切られた、温度センサ143の-Z方向に位置する区画ではヒータの本数は2本であり、その他の区画ではヒータの本数は3本である。よって、先の図6Bの構成について説明した効果と同じ効果を得ることができる。 Furthermore, FIG. 6C is a top view of the heater unit 127b according to the second modification. In FIG. 6C, four heater holding members 145a to 145d divide the inner space from the heating wire of the heater unit 127 into eight spaces. That is, the air flow path is divided into eight. Of these, the number of heaters is two in the section located in the −Z direction of the temperature sensor 143, which is partitioned by the heater holding members 145a and 145b, and the number of heaters is three in the other sections. Therefore, it is possible to obtain the same effect as that described for the configuration of FIG. 6B.
 再び図6Aを参照する。 Refer to FIG. 6A again.
 第1整流板141および第2整流板142はいずれも、空気の流れを制御するために設けられている。空気は図面の下側の開口部144から入り、電熱線140a~140cによって加熱される。その後、加熱された空気は、第1整流板141および第2整流板142によって形成される風路を通過して、仕切り板126aのスリットから焙煎室126に入る。この構成は、上述の図6A~図6Cの構成のいずれの構成についても採用され得る。 Both the first rectifying plate 141 and the second rectifying plate 142 are provided to control the flow of air. Air enters through the opening 144 on the lower side of the drawing and is heated by the heating wires 140a-140c. Thereafter, the heated air passes through the air path formed by the first rectifying plate 141 and the second rectifying plate 142 and enters the roasting chamber 126 through the slit of the partition plate 126a. This configuration can be adopted for any of the configurations shown in FIGS. 6A to 6C described above.
 2.焙煎機の動作環境
 次に、焙煎機100の動作環境を説明する。上述のとおり、焙煎機100は、外部から焙煎プロファイルを取得する。本実施形態では、端末装置200から焙煎プロファイルを取得する例を説明する。なお、端末装置200はデータベース(DB)サーバ400(以下DBサーバ400と記す)から焙煎プロファイルを取得する。DBサーバ400は生豆提供業者が運用するサーバである。生豆提供業者は、販売する生豆の種類ごとに、たとえば焙煎士に焙煎プロファイルを作成させて、各焙煎プロファイルをDBサーバ400に蓄積している。
2. Next, the operating environment of the roasting machine 100 will be described. As described above, the roasting machine 100 acquires a roasting profile from the outside. In the present embodiment, an example in which a roasting profile is acquired from the terminal device 200 will be described. The terminal device 200 acquires a roasting profile from a database (DB) server 400 (hereinafter referred to as the DB server 400). The DB server 400 is a server operated by a green bean provider. The green bean provider stores a roast profile in the DB server 400 by, for example, having a roaster create a roast profile for each type of green bean to be sold.
 図7は、情報提供システム10の構成を示す。図7には異なるユーザAおよびBが示されている。説明の重複を避けるため、以下ではユーザAについてのみ説明するが、ユーザBにも同様の説明が適用され得る。 FIG. 7 shows the configuration of the information providing system 10. FIG. 7 shows different users A and B. In order to avoid duplication of explanation, only user A will be explained below, but the same explanation can be applied to user B as well.
 ユーザAは、焙煎機100の他、端末装置200を保持している。たとえば端末装置200はカメラ付きスマートフォンである。ユーザは端末装置200のカメラで情報コード5を撮影(読み取り)する。本実施形態では、情報コード5は、ユーザが購入した生豆の包装容器に表示された、生豆の焙煎プロファイルを取得するために利用する情報である。ユーザAの端末装置200は、生豆の包装容器に付与された情報コード5から生豆の識別情報4を抽出し、識別情報4に基づいて、その生豆の属性情報を取得する。たとえば、識別情報は商品番号であり、情報コード5はQRコード(登録商標)であり得る。文字情報からQRコード(登録商標)を生成する技術は公知であるためその詳細な説明は省略する。なお、本明細書では生豆の情報コード5と識別情報とは異なるとして説明するが、異なることは必須ではない。たとえば識別情報をそのまま情報コード5として取り扱ってもよい。 User A holds the terminal device 200 in addition to the roasting machine 100. For example, the terminal device 200 is a smartphone with a camera. The user photographs (reads) the information code 5 with the camera of the terminal device 200. In the present embodiment, the information code 5 is information used to acquire a roasting profile of green beans displayed on a green bean packaging container purchased by the user. The terminal device 200 of the user A extracts the green bean identification information 4 from the information code 5 given to the green bean packaging container, and acquires the attribute information of the green bean based on the identification information 4. For example, the identification information may be a product number, and the information code 5 may be a QR code (registered trademark). Since a technique for generating a QR code (registered trademark) from character information is known, detailed description thereof is omitted. In the present specification, the green bean information code 5 and the identification information are described as different, but it is not essential. For example, the identification information may be handled as the information code 5 as it is.
 たとえば、端末装置200の信号処理回路(信号処理プロセッサまたはCPU)がアプリケーション・プログラムを実行して、読み取った情報コード5から識別情報4を抽出する。または、端末装置200の専用の処理回路(DSP)が読み取った情報コードから識別情報4を抽出する。 For example, the signal processing circuit (signal processing processor or CPU) of the terminal device 200 executes the application program and extracts the identification information 4 from the read information code 5. Alternatively, the identification information 4 is extracted from the information code read by the dedicated processing circuit (DSP) of the terminal device 200.
 端末装置200は得られた識別情報4を、通信ネットワーク9を介して生豆提供業者のDBサーバ400に送信し、その生豆の属性情報6の送信を要求する。通信ネットワーク9は、たとえばインターネットである。 The terminal device 200 transmits the obtained identification information 4 to the DB server 400 of the green bean provider via the communication network 9 and requests transmission of the attribute information 6 of the green bean. The communication network 9 is, for example, the Internet.
 属性情報6は、その生豆の1または複数の焙煎プロファイル2を含む。DBサーバ400は、焙煎プロファイル2とともに予め格納していたその生豆の属性情報6を、通信ネットワーク9を介してユーザの端末装置200に送信する。端末装置200は属性情報6を受信する。 Attribute information 6 includes one or more roasting profiles 2 of the green beans. The DB server 400 transmits the raw bean attribute information 6 stored together with the roasting profile 2 to the user terminal device 200 via the communication network 9. The terminal device 200 receives the attribute information 6.
 ユーザの端末装置200は、取得した属性情報6から焙煎プロファイル2を抽出し、自己が所有する焙煎機100に送信する。焙煎機100は焙煎プロファイル2を受信して、焙煎動作の開始前に制御情報として焙煎プロファイル2を設定する。これにより、焙煎機100は、焙煎士がその生豆を焙煎した時と同じ条件で焙煎を行うことができる。焙煎が終了すると、ユーザは焙煎プロファイル2に従って焙煎された豆8aを得ることができ、それをグラインドして、コーヒーを愉しむことができる。 The user terminal device 200 extracts the roasting profile 2 from the acquired attribute information 6 and transmits it to the roasting machine 100 owned by itself. The roasting machine 100 receives the roasting profile 2 and sets the roasting profile 2 as control information before the start of the roasting operation. Thereby, the roasting machine 100 can perform roasting under the same conditions as when the roaster roasted the green beans. When the roasting is completed, the user can obtain the roasted beans 8a according to the roasting profile 2, and can grind it to enjoy coffee.
 焙煎作業は、生豆ごとに温度管理、送風管理、時間管理を別個独立して適切に行わなければならないため、一般人が満足のゆく焙煎を行うためには時間と労力が必要である。たとえば温度管理に関しては、焙煎開始直後の初期に温度が1℃異なると焙煎後のコーヒーの風味が大きく変わると言われる。 In roasting work, temperature management, air flow management, and time management must be performed separately and appropriately for each green bean, so time and labor are required for ordinary people to perform satisfactory roasting. For example, regarding temperature control, it is said that if the temperature differs by 1 ° C. immediately after the start of roasting, the flavor of the coffee after roasting changes greatly.
 本実施形態では、焙煎士が決定した焙煎プロファイルを用意し、ユーザが所有する端末装置200から焙煎プロファイルを焙煎機100に設定する。これにより、手軽に、かつ適切な焙煎を行うことができ、生豆を焙煎する作業を通じてユーザの満足感を向上させることができる。 In the present embodiment, a roasting profile determined by the roaster is prepared, and the roasting profile is set in the roasting machine 100 from the terminal device 200 owned by the user. Accordingly, it is possible to easily and appropriately perform roasting, and to improve user satisfaction through the operation of roasting green beans.
 以下、図8から図11を参照しながら、DBサーバ400、端末装置200および焙煎機100の情報処理に関するハードウェア構造を説明する。 Hereinafter, a hardware structure related to information processing of the DB server 400, the terminal device 200, and the roasting machine 100 will be described with reference to FIGS.
 図8は、生豆提供業者が運用するDBサーバ400のハードウェア構成図である。DBサーバ400は、信号処理回路(以下「CPU」と呼ぶ。)401と、通信回路402と、メモリ403とを有するコンピュータシステムである。CPU401、通信回路402およびメモリ403は通信バス404に接続され、相互にデータを送受信できる。通信回路402は、たとえば、イーサネット(登録商標)規格の有線接続の通信を行う。 FIG. 8 is a hardware configuration diagram of the DB server 400 operated by the green bean provider. The DB server 400 is a computer system having a signal processing circuit (hereinafter referred to as “CPU”) 401, a communication circuit 402, and a memory 403. The CPU 401, the communication circuit 402, and the memory 403 are connected to the communication bus 404, and can transmit / receive data to / from each other. The communication circuit 402 performs, for example, Ethernet (registered trademark) standard wired communication.
 メモリ403には、図示されない不揮発性メモリから読み出されたコンピュータプログラム403aが読み出されて展開されている。コンピュータプログラム403aは、たとえば、プロファイルデータベース(DB)の構築用プログラム、プロファイルDBの管理プログラムである。CPU401はこれらのコンピュータプログラムを実行することにより、後述する通信および処理を行う。 In the memory 403, a computer program 403a read from a non-volatile memory (not shown) is read and expanded. The computer program 403a is, for example, a profile database (DB) construction program and a profile DB management program. The CPU 401 executes communication and processing described later by executing these computer programs.
 またDBサーバ400には、プロファイルデータベース(DB)410が接続されている。プロファイルDB410には、生豆提供業者が焙煎士から受け取った焙煎プロファイル2が蓄積されている。 Also, a profile database (DB) 410 is connected to the DB server 400. The profile DB 410 stores the roasting profile 2 received from the roaster by the green bean provider.
 図9および図10は、異なる焙煎プロファイル2の例を示す。横軸は焙煎時間tを示し、縦軸は、焙煎温度およびファンモータ120aの回転数を示す。焙煎プロファイルは、焙煎機100による各生豆の焙煎方法を示す制御情報である。焙煎プロファイルは、焙煎機100における焙煎時間と焙煎温度との関係を示す温度プロファイル、および、焙煎時間とファンモータ120aの回転数との関係を示す回転数プロファイルを含む。 FIGS. 9 and 10 show examples of different roasting profiles 2. The horizontal axis represents the roasting time t, and the vertical axis represents the roasting temperature and the rotation speed of the fan motor 120a. The roasting profile is control information indicating a roasting method for each green bean by the roasting machine 100. The roasting profile includes a temperature profile indicating the relationship between the roasting time and the roasting temperature in the roasting machine 100, and a rotation speed profile indicating the relationship between the roasting time and the rotation speed of the fan motor 120a.
 図9および図10に示す2つの焙煎プロファイルは、時刻t1までは温度変化は同じであるが、時刻t1以降は異なっている。またファンモータ120aの回転数については当初の時刻t0から異なっていることが理解される。 The two roast profiles shown in FIGS. 9 and 10 have the same temperature change until time t 1 , but are different after time t 1 . Also it is understood that the rotation speed of the fan motor 120a is different from the original time t 0.
 このように焙煎時の温度および風量の各条件が異なる理由は、たとえば生豆の特徴および目標とする焙煎の程度が異なるためである。「生豆の特徴」とは個々の生豆の大きさ、水分含有量、各種炭水化物、酸、脂質、アミノ酸、たんぱく質、カフェイン、クロロゲン酸等を言う。「焙煎の程度」とは、浅煎り、中煎り、深煎りである。 The reason why the conditions of the temperature and the air volume at the time of roasting are different is that, for example, the characteristics of raw beans and the target roasting degree are different. “Characteristics of green beans” refers to the size, water content, various carbohydrates, acids, lipids, amino acids, proteins, caffeine, chlorogenic acid, etc. of individual green beans. The “degree of roasting” is light roasting, medium roasting or deep roasting.
 生豆ごとに、焙煎の程度が異なる少なくとも3つの焙煎プロファイル、つまり、浅煎り用、中煎り用、深煎り用の3つの焙煎プロファイルが用意されてもよい。 For each green bean, at least three roasting profiles with different degrees of roasting, that is, three roasting profiles for shallow roasting, medium roasting, and deep roasting may be prepared.
 なお、焙煎の程度は、浅煎りから深煎りに向かって、順に、ライトロースト、シナモンロースト、ミディアムロースト、ハイロースト、シティロースト、フルシティロースト、イタリアンロースト、フレンチロースト、のようにさらに細分化され得る。 In addition, the degree of roasting is further subdivided in order from light roast to deep roast, like light roast, cinnamon roast, medium roast, high roast, city roast, full city roast, Italian roast, French roast. Can be done.
 焙煎機100は図9および図10に示す焙煎プロファイルに沿うよう、温度およびファンモータ120aの回転数を制御する。焙煎機100の処理回路であるマイコン(後述)は、温度センサ143の出力値に基づいて、ヒータユニット127への入力を調整する。これにより、焙煎機100の焙煎室126内の温度が制御される。 The roasting machine 100 controls the temperature and the rotation speed of the fan motor 120a so as to follow the roasting profile shown in FIGS. A microcomputer (described later) that is a processing circuit of the roasting machine 100 adjusts the input to the heater unit 127 based on the output value of the temperature sensor 143. Thereby, the temperature in the roasting chamber 126 of the roasting machine 100 is controlled.
 本実施形態では、図9および図10に示すように、通常の焙煎操作では、焙煎開始時刻の基準となる時刻t0の時点で、ヒータユニット127を立ち上げると共に、ファンモータ120aの回転を同時に開始している。 In this embodiment, as shown in FIGS. 9 and 10, in a normal roasting operation, the heater unit 127 is started up and the fan motor 120 a is rotated at the time t <b> 0 as a reference for the roast start time. It starts at the same time.
 なお、ユーザが故意または誤って、豆投入カップ114の回転、または容器117の脱着を必要な場合以外に頻繁に繰り返した場合、焙煎機100の本体内部に熱が籠ってしまうため、その後、焙煎を継続させるときは、まずファンモータ120aを回転させた所定時間の経過後にヒータユニット127を立ち上げることが望ましい。 In addition, if the user intentionally or mistakenly repeats the rotation of the bean throwing cup 114 or the removal of the container 117 frequently, heat will be generated inside the main body of the roasting machine 100. When continuing roasting, it is desirable to start up the heater unit 127 after a predetermined time has elapsed since the fan motor 120a is rotated.
 なお、図9および図10に示す波形は、理解の便宜のため連続関数で示した。しかしながら実際には、焙煎開始時刻を基準とした経過時刻ごとに温度および回転数が示されたデータ列として用意され得る。 The waveforms shown in FIG. 9 and FIG. 10 are shown as continuous functions for the convenience of understanding. However, actually, it can be prepared as a data string in which the temperature and the number of rotations are shown for each elapsed time with the roasting start time as a reference.
 図示されない通信インタフェースを介して、プロファイルDB410もまたバス404に接続され、CPU401等によってプロファイルDB410の検索、更新等が行われ得る。プロファイルDB410はDBサーバ400内に設けられてもよい。 The profile DB 410 is also connected to the bus 404 via a communication interface (not shown), and the search and update of the profile DB 410 can be performed by the CPU 401 or the like. The profile DB 410 may be provided in the DB server 400.
 図11は、端末装置200および焙煎機100のハードウェア構成図である。 FIG. 11 is a hardware configuration diagram of the terminal device 200 and the roasting machine 100.
 端末装置200は、信号処理回路(以下「CPU」と呼ぶ。)201と、無線通信回路202と、入力インタフェース(I/F)装置203と、メモリ204と、画像処理回路205と、ディスプレイ206と、カメラモジュール207と、ストレージ208と、スピーカ209とを有するコンピュータシステムである。たとえば、端末装置200はスマートフォンまたはタブレット型コンピュータである。端末装置200の上述の構成要素は通信バス210に接続され、相互にデータを送受信できる。 The terminal device 200 includes a signal processing circuit (hereinafter referred to as “CPU”) 201, a wireless communication circuit 202, an input interface (I / F) device 203, a memory 204, an image processing circuit 205, and a display 206. , A computer system having a camera module 207, a storage 208, and a speaker 209. For example, the terminal device 200 is a smartphone or a tablet computer. The above-described components of the terminal device 200 are connected to the communication bus 210 and can transmit / receive data to / from each other.
 本実施形態では、通信回路202は、複数の通信規格の通信を行うことが可能であるとする。たとえば無線通信回路202は、通信会社が提供する通信方式(たとえばCDMA通信)での通信、Wi-Fi(登録商標。以下同じ。)規格の通信、および、Bluetooth(登録商標)規格の通信を行うことが可能である。一例として、前二者はDBサーバ400との通信に利用され得る。Bluetooth(登録商標)規格の通信は、焙煎機100との通信に利用され得る。 In this embodiment, it is assumed that the communication circuit 202 can perform communication of a plurality of communication standards. For example, the wireless communication circuit 202 performs communication using a communication method (for example, CDMA communication) provided by a communication company, Wi-Fi (registered trademark, the same applies hereinafter) standard communication, and Bluetooth (registered trademark) standard communication. It is possible. As an example, the former two can be used for communication with the DB server 400. The Bluetooth (registered trademark) standard communication can be used for communication with the roasting machine 100.
 入力I/F装置203は、ユーザが指令を端末装置200に入力するための装置である。本実施形態では、入力I/F装置203は、ディスプレイ206に重畳して設けられたタッチスクリーンパネルであるとする。ただし、タッチスクリーンパネルは入力I/F装置203の一例である。入力I/F装置203は、物理ボタンであってもよい。または、入力I/F装置203は、マイクおよび音声認識回路によって構成されてもよい。入力I/F装置203は、ユーザの音声を認識して端末装置200への指示を入力する。 The input I / F device 203 is a device for a user to input a command to the terminal device 200. In the present embodiment, it is assumed that the input I / F device 203 is a touch screen panel provided so as to be superimposed on the display 206. However, the touch screen panel is an example of the input I / F device 203. The input I / F device 203 may be a physical button. Alternatively, the input I / F device 203 may be configured by a microphone and a voice recognition circuit. The input I / F device 203 recognizes the user's voice and inputs an instruction to the terminal device 200.
 メモリ204には、図示されない不揮発性メモリから読み出されたコンピュータプログラム204aが展開されている。コンピュータプログラム204aは、たとえば生豆提供業者によって提供され、生豆提供業者が端末装置200に実行させたい処理手順が記述されている。たとえば、コンピュータプログラム204aは、CPU201の指示によってカメラモジュール207を起動させ、情報コードを撮影させて、CPU201に情報コードから生豆の識別情報を抽出させる。そしてコンピュータプログラム204aは、CPU201にDBサーバ400と通信させ、DBサーバ400から生豆の属性情報を受信させ、ディスプレイ206に文字および画像を表示させる。このとき、画像処理回路205に表示のための処理を行わせることもある。さらにコンピュータプログラム204aは、CPU201に、受信した属性情報をストレージ208に格納させる。 In the memory 204, a computer program 204a read from a nonvolatile memory (not shown) is expanded. The computer program 204a is provided by, for example, a green bean provider, and describes a processing procedure that the green bean provider wants the terminal device 200 to execute. For example, the computer program 204 a activates the camera module 207 according to an instruction from the CPU 201, causes the information code to be photographed, and causes the CPU 201 to extract green bean identification information from the information code. Then, the computer program 204 a causes the CPU 201 to communicate with the DB server 400, receives raw bean attribute information from the DB server 400, and causes the display 206 to display characters and images. At this time, the image processing circuit 205 may perform processing for display. Further, the computer program 204 a causes the CPU 201 to store the received attribute information in the storage 208.
 画像処理回路205は、ディスプレイ206に文字、図形等を表示するための演算を行う回路である。 The image processing circuit 205 is a circuit that performs calculations for displaying characters, graphics, and the like on the display 206.
 ディスプレイ206は出力装置の一例である。ディスプレイ206は、たとえば液晶表示パネル、または有機ELパネルであり、画像処理回路205の演算結果に基づいて、文字および/または画像を表示する。 The display 206 is an example of an output device. The display 206 is, for example, a liquid crystal display panel or an organic EL panel, and displays characters and / or images based on the calculation result of the image processing circuit 205.
 カメラモジュール207は、いわゆる撮像装置の一例である。カメラモジュール207は、たとえば、一枚または複数枚のレンズ、このレンズを光軸方向に移動させるアクチュエータおよび撮像素子を含む。本実施形態では、カメラモジュール207はQRコード(登録商標)を読み取るために利用される。 The camera module 207 is an example of a so-called imaging device. The camera module 207 includes, for example, one or a plurality of lenses, an actuator that moves the lenses in the optical axis direction, and an imaging device. In the present embodiment, the camera module 207 is used to read a QR code (registered trademark).
 ストレージ208は、たとえば不揮発性のフラッシュメモリであり、端末装置200が取得した生豆の属性情報等が記憶される。 The storage 208 is, for example, a non-volatile flash memory and stores raw bean attribute information acquired by the terminal device 200.
 スピーカ209は出力装置の一例である。本実施形態では、スピーカ209は、焙煎機100による焙煎の正常終了、異常発生等をユーザに音声によって知らせる。 The speaker 209 is an example of an output device. In the present embodiment, the speaker 209 notifies the user by voice of the normal end of roasting by the roasting machine 100, the occurrence of an abnormality, or the like.
 端末装置200の動作の詳細は後述する。 Details of the operation of the terminal device 200 will be described later.
 3.焙煎機の電気的な構造
 焙煎機100は、処理回路であるマイクロコントローラ(以下「マイコン」と記述する。)301と、無線通信回路302と、メモリ303と、電源304と、ストレージ306と、ファンモータ120aと、ヒータユニット127と、温度センサ143とを有している。焙煎機100の上述の構成要素は通信バス307に接続され、相互にデータを送受信できる。これらは、たとえば電子回路基板113上に搭載されている。
3. The electrical structure of the roasting machine The roasting machine 100 includes a microcontroller (hereinafter referred to as “microcomputer”) 301 that is a processing circuit, a wireless communication circuit 302, a memory 303, a power supply 304, and a storage 306. The fan motor 120a, the heater unit 127, and the temperature sensor 143 are included. The above-described components of the roasting machine 100 are connected to the communication bus 307 and can transmit and receive data to and from each other. These are mounted on an electronic circuit board 113, for example.
 本実施形態では、通信回路302は、Bluetooth(登録商標)規格の通信を行うことが可能であるとする。無線通信回路302は、端末装置200の無線通信回路202とこの規格の通信を行うことができる。 In the present embodiment, it is assumed that the communication circuit 302 can perform Bluetooth (registered trademark) standard communication. The wireless communication circuit 302 can perform communication of this standard with the wireless communication circuit 202 of the terminal device 200.
 マイコン301は無線通信回路302を介して端末装置200と通信し、端末装置200から焙煎プロファイル2を受信して、一時的にメモリ303に格納してストレージ306に蓄積する。そしてマイコン301は、焙煎プロファイル2を利用した焙煎動作時に、ファンモータ120aの回転速度(単位時間当たりの回転数。以下「回転数」と略記する。)を制御し、さらにヒータユニット127の温度を制御する。電源304は、焙煎機100が動作するために必要な電力を供給する。ストレージ306は不揮発性の記憶装置、たとえばフラッシュメモリ、である。 The microcomputer 301 communicates with the terminal device 200 via the wireless communication circuit 302, receives the roasting profile 2 from the terminal device 200, temporarily stores it in the memory 303, and stores it in the storage 306. The microcomputer 301 controls the rotation speed of the fan motor 120a (the number of rotations per unit time. Hereinafter, abbreviated as “the number of rotations”) during the roasting operation using the roasting profile 2, and further the heater unit 127. Control the temperature. The power source 304 supplies power necessary for the roasting machine 100 to operate. The storage 306 is a non-volatile storage device such as a flash memory.
 図11のマイコン301は、予め所定の動作を行うよう、マイコン301内部のEEPROM(図示せず)にコンピュータプログラムが予め記憶されている。マイコン301は内部のバッファおよびレジスタ(図示せず)を利用してそのコンピュータプログラムを実行する。なお、DBサーバ400および端末装置200の例と同様、焙煎機100においてもメモリ303に展開されたコンピュータプログラムを、マイコン301が実行してもよい。 The microcomputer 301 in FIG. 11 stores a computer program in advance in an EEPROM (not shown) in the microcomputer 301 so as to perform a predetermined operation in advance. The microcomputer 301 executes the computer program using an internal buffer and a register (not shown). As in the examples of the DB server 400 and the terminal device 200, the microcomputer 301 may execute the computer program loaded in the memory 303 in the roasting machine 100.
 4.焙煎機の通常動作
 図12は、焙煎機100と端末装置200との間で行われる通信と、焙煎機100および端末装置200の各々の処理の手順を示すフローチャートである。
4). Normal Operation of Roasting Machine FIG. 12 is a flowchart showing communication performed between the roasting machine 100 and the terminal device 200 and the processing procedure of each of the roasting machine 100 and the terminal device 200.
 ステップS1において、端末装置200のCPU201は、包装容器に付与された情報コードを端末装置200で読み取って生豆コードを取得する。 In step S1, the CPU 201 of the terminal device 200 acquires the green bean code by reading the information code given to the packaging container with the terminal device 200.
 ステップS2において、CPU201は、生豆コードに対応する属性情報がストレージ208に存在するか否かを判定する。たとえばCPU201は、取得した生豆コードと同じ生豆コードを有する属性情報が存在するか否かを判定する。生豆コードに代えて製品名を用いることもできる。取得した生豆コードと同じ生豆コードを有する属性情報がストレージ208に存在する場合には処理はステップS3に進み、属性情報がストレージ208に存在しない場合には処理はステップS4に進む。 In step S2, the CPU 201 determines whether or not the attribute information corresponding to the green bean code exists in the storage 208. For example, the CPU 201 determines whether or not there is attribute information having the same green bean code as the acquired green bean code. The product name can be used instead of the green bean code. If attribute information having the same green bean code as the acquired green bean code exists in the storage 208, the process proceeds to step S3. If attribute information does not exist in the storage 208, the process proceeds to step S4.
 ステップS3において、CPU201は、最新の情報に更新するか否かをユーザに確認する。CPU201が最新の情報に更新する指示を受け取ると、処理はステップS5に進む。一方、ステップS4において、CPU201は、生豆コードに対応づけて属性情報をストレージ208に記憶する。 In step S3, the CPU 201 confirms with the user whether or not to update to the latest information. When the CPU 201 receives an instruction to update to the latest information, the process proceeds to step S5. On the other hand, in step S4, the CPU 201 stores the attribute information in the storage 208 in association with the green bean code.
 ステップS5以降は、焙煎機100に制御情報を送信する処理に関する。 Step S5 and subsequent steps relate to processing for transmitting control information to the roasting machine 100.
 ステップS5において、端末装置200のCPU201は、生豆コードに対応する属性情報から、制御情報(焙煎プロファイル)、優先度情報等を抽出して、ユーザに焙煎方法の選択を促すための通知を表示する。 In step S5, the CPU 201 of the terminal device 200 extracts control information (roasting profile), priority information, and the like from the attribute information corresponding to the green bean code, and prompts the user to select a roasting method. Is displayed.
 ステップS6において、CPU201は、たとえばディスプレイ206に表示された送信ボタンへのタッチを、選択された焙煎方法に対応する制御情報の送信指示として受け付ける。CPU201は選択された焙煎方法に対応する制御情報(焙煎プロファイル)を焙煎機100に送信する。 In step S6, the CPU 201 accepts, for example, a touch on a transmission button displayed on the display 206 as a transmission instruction for control information corresponding to the selected roasting method. The CPU 201 transmits control information (roasting profile) corresponding to the selected roasting method to the roasting machine 100.
 なお、CPU201は選択された焙煎方法に対応する制御情報(焙煎プロファイル)のみを焙煎機100に送信することが望ましい。たとえば、ストレージ208に格納された、浅煎り用、中煎り用、深煎り用の3つの焙煎プロファイルが存在するときであっても、それらのうちのいずれか1つが焙煎機100に送信される。送受信されるデータ量を抑制することにより、焙煎機100のメモリ303またはストレージ306の容量を削減できるため、焙煎機100を低コストで提供できる。 Note that the CPU 201 desirably transmits only control information (roasting profile) corresponding to the selected roasting method to the roasting machine 100. For example, even when there are three roasting profiles stored in the storage 208 for shallow roasting, medium roasting, and deep roasting, any one of them is transmitted to the roasting machine 100. The Since the capacity of the memory 303 or storage 306 of the roasting machine 100 can be reduced by suppressing the amount of data transmitted and received, the roasting machine 100 can be provided at low cost.
 ステップS8において、焙煎機100のマイコン301は、制御情報を受信して、ストレージ306に記憶する。さらにマイコン301は、受信した制御情報をマイコン301の動作パラメータとして設定する。マイコン301は、動作パラメータに応じてファンモータ120aおよびヒータユニット127に流すべき電流値を決定するためのテーブル、関数またはプログラムを予め保持している。マイコン301は、動作パラメータが設定されると、その動作パラメータにしたがって生豆を焙煎することができる。 In step S8, the microcomputer 301 of the roasting machine 100 receives the control information and stores it in the storage 306. Further, the microcomputer 301 sets the received control information as an operation parameter of the microcomputer 301. The microcomputer 301 holds in advance a table, a function, or a program for determining a current value to be passed through the fan motor 120a and the heater unit 127 according to the operation parameter. When the operation parameter is set, the microcomputer 301 can roast green beans according to the operation parameter.
 ステップS9において、焙煎機100のマイコン301は、設定した動作パラメータに従って焙煎を開始する。 In step S9, the microcomputer 301 of the roasting machine 100 starts roasting according to the set operation parameters.
 以上、焙煎機100の基本的な一連の動作を説明した。 The basic series of operations of the roasting machine 100 has been described above.
 5.瞬時電圧低下発生時の焙煎機の動作
 次に、瞬時電圧低下発生時の焙煎機100の動作を説明する。本明細書では、「瞬時電圧低下」とは、電源の電圧が予め定められた所定値以下に低下してしまう電源障害と、電源からの電力供給が短い時間、たとえば数マイクロ秒から数百マイクロ秒の期間、絶たれてしまう電源障害、の両方を含む。
5). Operation of the roasting machine when the instantaneous voltage drop occurs Next, the operation of the roasting machine 100 when the instantaneous voltage drop occurs will be described. In this specification, “instantaneous voltage drop” means a power failure in which the voltage of the power source drops below a predetermined value, and a short time for supplying power from the power source, for example, from several microseconds to several hundred microseconds Includes both a period of seconds and a power failure that will be cut off.
 まず、瞬時電圧低下の発生を検出するための構成を説明し、その後動作を説明する。 First, a configuration for detecting the occurrence of an instantaneous voltage drop will be described, and then the operation will be described.
 図13は、焙煎機100の電子回路基板113と、電源304に関連する詳細な回路構成を示すハードウェア図である。 FIG. 13 is a hardware diagram showing a detailed circuit configuration related to the electronic circuit board 113 and the power supply 304 of the roasting machine 100.
 これまで図1、図11等を参照しながら説明した構成要素に加え、焙煎機100は、シャント抵抗310と、瞬低検知回路312と、スイッチング素子314とを有する。また電源304は交流-直流変換器304aを有している。なお図13に示すLED112および無線通信回路302は前述したので再度の説明は省略する。 In addition to the components described above with reference to FIGS. 1 and 11, the roasting machine 100 includes a shunt resistor 310, a voltage sag detection circuit 312, and a switching element 314. The power source 304 has an AC-DC converter 304a. Since the LED 112 and the wireless communication circuit 302 shown in FIG. 13 have been described above, description thereof will be omitted.
 電源304は、交流-直流変換器304aによって、交流電圧を直流電圧に変換する。たとえば交流-直流変換器304aは、家庭用の100ボルト交流電圧を、たとえば、トランス方式またはスイッチング方式で24Vの直流電圧に変換する。なお、交流-直流変換器304aとして周知の交流-直流変換器を用いることができる。本明細書では交流-直流変換器304aのこれ以上の詳細な説明は省略する。 The power source 304 converts an AC voltage into a DC voltage by an AC-DC converter 304a. For example, the AC-DC converter 304a converts a household 100 volt AC voltage into a DC voltage of 24V by, for example, a transformer method or a switching method. As the AC-DC converter 304a, a known AC-DC converter can be used. In this specification, further detailed description of the AC-DC converter 304a is omitted.
 シャント抵抗310は、交流-直流変換器304aが生成した電圧を、マイコン301が動作可能な電圧にさらに低減する。たとえばシャント抵抗310は、7.5ボルトの直流電圧を5ボルトの直流電圧に低減する。 The shunt resistor 310 further reduces the voltage generated by the AC-DC converter 304a to a voltage at which the microcomputer 301 can operate. For example, shunt resistor 310 reduces a DC voltage of 7.5 volts to a DC voltage of 5 volts.
 瞬低検知回路312は、電源304の出力電圧Vdd1が所定値以下に低下したことを検知すると検知信号を出力する。検知信号はマイコン301に入力される。 The instantaneous voltage drop detection circuit 312 outputs a detection signal when it detects that the output voltage Vdd1 of the power supply 304 has dropped below a predetermined value. The detection signal is input to the microcomputer 301.
 図14は、瞬停検知回路312の具体的な構成例を示す。図示されるように、瞬停検知回路312は、ツェナーダイオード312aおよびトランジスタ312bおよび312cを有している。ツェナーダイオード312aは、交流-直流変換器304aの出力電圧Vdd1とグランドGNDとの間に挿入されている。ツェナーダイオード312aのアノード端子はトランジスタ312bのベースに接続されている。トランジスタ312bのコレクタはトランジスタ312cのベースに接続されており、トランジスタ312cのコレクタの端子電圧は、マイコン301の割り込み端子(図示せず)に入力される。 FIG. 14 shows a specific configuration example of the instantaneous power failure detection circuit 312. As illustrated, the instantaneous power failure detection circuit 312 includes a Zener diode 312a and transistors 312b and 312c. The Zener diode 312a is inserted between the output voltage Vdd1 of the AC / DC converter 304a and the ground GND. The anode terminal of the Zener diode 312a is connected to the base of the transistor 312b. The collector of the transistor 312b is connected to the base of the transistor 312c, and the terminal voltage of the collector of the transistor 312c is input to the interrupt terminal (not shown) of the microcomputer 301.
 電圧Vdd1がツェナー電圧より大きい状態では、ツェナーダイオード312aがオンしてトランジスタ312bのベースとエミッタ間には所定の大きさの電流が流れ、トランジスタ312bはオンする。これによりトランジスタ312cのエミッタとベース間に所定の大きさの電流流れトランジスタ312cはオンするため、コレクタでは所定の大きさの端子電圧が検出される。 When the voltage Vdd1 is larger than the Zener voltage, the Zener diode 312a is turned on, a current of a predetermined magnitude flows between the base and emitter of the transistor 312b, and the transistor 312b is turned on. As a result, the current flow transistor 312c having a predetermined magnitude is turned on between the emitter and base of the transistor 312c, and thus a terminal voltage having a predetermined magnitude is detected at the collector.
 その後、電圧Vdd1がツェナー電圧以下に低下すると、トランジスタ312bがオフし、トランジスタ312cもオフされる。その結果、トランジスタ312cのコレクタの端子電圧は低下する。マイコン301の割り込み端子に接続された電圧が、相対的にハイレベルからローレベルに低下する。マイコン301は、電圧低下の検出により、瞬時電圧低下が発生したことを検出する。 Thereafter, when the voltage Vdd1 drops below the Zener voltage, the transistor 312b is turned off and the transistor 312c is also turned off. As a result, the terminal voltage of the collector of the transistor 312c decreases. The voltage connected to the interrupt terminal of the microcomputer 301 is relatively lowered from the high level to the low level. The microcomputer 301 detects that an instantaneous voltage drop has occurred by detecting a voltage drop.
 なお、図14に示す構成は一例である。当業者であれば、上述した説明と同等の機能および動作を実現する代替構成を採用することができる。 Note that the configuration shown in FIG. 14 is an example. A person skilled in the art can adopt alternative configurations that realize functions and operations equivalent to those described above.
 電源304内部では、交流電力は、交流-直流変換器304aへ入力されるとともに、ヒータユニット127へ入力されるよう、電力線が分岐している。つまり、電源304は、シャント抵抗310等から見れば直流電源であり、ヒータユニット127から見れば交流電源である。 In the power supply 304, AC power is branched so that AC power is input to the AC-DC converter 304a and also to the heater unit 127. That is, the power source 304 is a DC power source when viewed from the shunt resistor 310 and the like, and is an AC power source when viewed from the heater unit 127.
 スイッチング素子314は、電源304とヒータユニット127の間に設けられている。スイッチング素子314は、マイコン301から出力される電力制御信号に基づいてオンまたはオフされて、交流電源からヒータユニット127への交流電力の供給および遮断を制御する。本実施形態では電力制御信号は矩形波である。電力制御信号の詳細は後述する。 The switching element 314 is provided between the power supply 304 and the heater unit 127. The switching element 314 is turned on or off based on a power control signal output from the microcomputer 301, and controls supply and interruption of AC power from the AC power source to the heater unit 127. In the present embodiment, the power control signal is a rectangular wave. Details of the power control signal will be described later.
 図15Aは、瞬時電圧低下検出時の焙煎機100の動作の手順を示す。 FIG. 15A shows an operation procedure of the roasting machine 100 when an instantaneous voltage drop is detected.
 ステップS11において、マイコン301は、動作パラメータに基づいて焙煎動作を実行する。併せて、マイコン301は、焙煎動作に関連する状態パラメータを更新する。状態パラメータとは、たとえば以下の情報である。 In step S11, the microcomputer 301 executes a roasting operation based on the operation parameters. At the same time, the microcomputer 301 updates state parameters related to the roasting operation. The state parameter is, for example, the following information.
 ・焙煎機の動作状態、たとえば現在焙煎中であるか否か、を示すフラグ
 ・焙煎動作の開始からの経過時間
 ・接続している端末装置200を一意に特定する識別情報(ID)
 ・温度センサ143が検出した現在の焙煎温度またはヒータユニット127の温度
 ・豆投入カップ114の開閉状態
 ・容器117の開閉状態
 マイコン301は、所定の時間間隔で状態パラメータを更新する。なお、全ての状態パラメータを毎回更新する必要はなく、たとえば焙煎動作の開始からの経過時間および温度センサ143が検出した温度のみを更新してもよい。上述の動作パラメータおよび状態パラメータはメモリ303に記憶されている。状態パラメータの更新は、たとえばメモリ303上のデータを書き換えることによって実現される。なお、本明細書では、焙煎プロファイル等の動作パラメータおよび上述の状態パラメータの一方または両方を総称して「焙煎動作に関するパラメータ」または単に「パラメータ」と呼ぶことがある。
A flag indicating whether the roasting machine is operating, for example, whether or not it is currently roasting. Elapsed time from the start of the roasting operation. Identification information (ID) that uniquely identifies the connected terminal device 200.
The current roasting temperature detected by the temperature sensor 143 or the temperature of the heater unit 127. The open / close state of the bean throwing cup 114. The open / close state of the container 117. The microcomputer 301 updates the state parameter at predetermined time intervals. Note that it is not necessary to update all the state parameters every time. For example, only the elapsed time from the start of the roasting operation and the temperature detected by the temperature sensor 143 may be updated. The above-described operation parameters and state parameters are stored in the memory 303. The update of the state parameter is realized by rewriting data on the memory 303, for example. In the present specification, one or both of the operation parameter such as the roasting profile and the state parameter described above may be collectively referred to as “parameter regarding roasting operation” or simply “parameter”.
 ステップS12において、マイコン301は、瞬低検知回路312から検知信号を受信したか否かを判定する。受信するまではマイコン301はステップS11の処理を実行する。マイコン301が瞬低検知回路312から検知信号を受信したときは、処理はステップS13に進む。 In step S12, the microcomputer 301 determines whether a detection signal is received from the voltage sag detection circuit 312. Until receiving, the microcomputer 301 executes the process of step S11. When the microcomputer 301 receives a detection signal from the instantaneous drop detection circuit 312, the process proceeds to step S13.
 ステップS13において、マイコン301は、焙煎動作に関するパラメータ(動作パラメータおよび状態パラメータ)をメモリ303からストレージ306に退避する。ステップS12からステップS13に進む際には、電源304の出力電圧Vdd1が所定値以下に低下している状態にある。ステップS13の処理は、電源304から出力される電力が遮断される前に実行される。なお、瞬断が発生した場合には、一瞬にして電力が失われる。しかしながら、たとえば電源304に図示しないコンデンサまたは二次電池等によるバックアップ電源を用意しておけばよい。瞬断発生時にはこのコンデンサまたはバックアップ電源から即座に電力がマイコン301およびメモリ303に供給されることにより、メモリ303からストレージ306へのパラメータの退避が確実に実行される。 In step S13, the microcomputer 301 saves the parameters (operation parameters and state parameters) regarding the roasting operation from the memory 303 to the storage 306. When the process proceeds from step S12 to step S13, the output voltage Vdd1 of the power supply 304 is in a state of decreasing below a predetermined value. The process of step S13 is executed before the power output from the power supply 304 is shut off. Note that when an instantaneous interruption occurs, power is lost in an instant. However, for example, a backup power source such as a capacitor or a secondary battery (not shown) may be prepared for the power source 304. When an instantaneous interruption occurs, power is immediately supplied from the capacitor or the backup power source to the microcomputer 301 and the memory 303, so that the parameters are surely saved from the memory 303 to the storage 306.
 パラメータの退避後、瞬時電圧低下が発生したことによって焙煎機100の電源は遮断される。そして電力が回復した後、焙煎機100は再起動する。ステップS14以降は再起動後のマイコン301の処理である。 After the parameter is saved, the power of the roasting machine 100 is cut off due to the instantaneous voltage drop. After the power is restored, the roaster 100 is restarted. Step S14 and subsequent steps are processing of the microcomputer 301 after restart.
 ステップS14において、マイコン301は、パラメータがストレージ306に記憶されているか否かを判定する。パラメータがストレージ306に記憶されている場合には、処理はステップS15に進み、記憶されていない場合には処理は終了する。つまり、マイコン301は通常の起動処理を実行する。 In step S14, the microcomputer 301 determines whether or not the parameter is stored in the storage 306. If the parameter is stored in the storage 306, the process proceeds to step S15, and if not stored, the process ends. That is, the microcomputer 301 performs a normal startup process.
 ステップS15において、マイコン301はストレージ306に記憶されているパラメータをメモリ303に読み込み、このパラメータを利用して焙煎動作を再開する。たとえばマイコン301は、パラメータに含まれる焙煎プロファイルおよび経過時間を読み出し、焙煎プロファイルから経過時間における焙煎温度を決定する。マイコン301はこの焙煎温度に到達するまでヒータユニット127を加熱させる。この焙煎温度に到達すると、マイコン301は、この焙煎プロファイルに基づいて温度およびファンユニット120のファンモータ120aの回転を制御しながら、焙煎室126内にとどまっている豆の焙煎を再開する。焙煎が完了すると、動作パラメータ(焙煎プロファイル)はメモリ303から消去される。 In step S15, the microcomputer 301 reads the parameter stored in the storage 306 into the memory 303, and restarts the roasting operation using this parameter. For example, the microcomputer 301 reads the roasting profile and elapsed time included in the parameters, and determines the roasting temperature at the elapsed time from the roasting profile. The microcomputer 301 heats the heater unit 127 until the roasting temperature is reached. When the roasting temperature is reached, the microcomputer 301 controls the temperature and the rotation of the fan motor 120a of the fan unit 120 based on the roasting profile, and resumes roasting of the beans remaining in the roasting chamber 126. To do. When the roasting is completed, the operation parameter (roasting profile) is deleted from the memory 303.
 次に、図15Bおよび図16を参照しながら、図15Aに示す瞬時電圧低下検出時の焙煎機100の動作の他の例を説明する。なお、図15Bおよび図16に含まれるステップのうち、図15Aにも含まれるステップには同じステップ番号を付し、このステップの説明は省略する。 Next, another example of the operation of the roasting machine 100 when the instantaneous voltage drop shown in FIG. 15A is detected will be described with reference to FIGS. 15B and 16. Of the steps included in FIGS. 15B and 16, the steps included in FIG. 15A are assigned the same step numbers, and description of these steps is omitted.
 図15Bでは、ステップS14とステップS15の間に、ステップS20が設けられている。ステップS20は、マイコン301が焙煎動作を再開するか否かを決定する際の、新たな条件を判定する処理である。 In FIG. 15B, step S20 is provided between step S14 and step S15. Step S20 is processing for determining a new condition when the microcomputer 301 determines whether or not to resume the roasting operation.
 ステップS20において、マイコン301は状態パラメータ内の焙煎温度と現在の焙煎温度との差分が焙煎継続条件を満たすか否かを判定する。まず「状態パラメータ内の焙煎温度」は、ステップS13において退避された時の焙煎温度である。現在の焙煎温度とは、ステップS20実行時における温度センサ143の出力値である。マイコン301はこれらの値の差分が所定の焙煎継続条件を満たすか否かを判定する。「所定の焙煎継続条件」は、たとえば「30度未満」である。 In step S20, the microcomputer 301 determines whether or not the difference between the roasting temperature in the state parameter and the current roasting temperature satisfies the roasting continuation condition. First, “the roasting temperature in the state parameter” is the roasting temperature when it was evacuated in step S13. The current roasting temperature is the output value of the temperature sensor 143 when step S20 is executed. The microcomputer 301 determines whether or not the difference between these values satisfies a predetermined roasting continuation condition. The “predetermined roasting continuation condition” is, for example, “less than 30 degrees”.
 ステップS20において焙煎継続条件が満足される場合には処理はステップS15に進み、焙煎動作が再開される。焙煎継続条件が満足されない場合には、焙煎動作は再開されずマイコン301は通常の起動処理を実行する。 If the roasting continuation condition is satisfied in step S20, the process proceeds to step S15, and the roasting operation is resumed. If the roasting continuation condition is not satisfied, the roasting operation is not resumed and the microcomputer 301 executes a normal startup process.
 図16は、焙煎機100は単独で動作するのではなく、端末装置200と連携して動作する処理を示す。端末装置200は、典型的には焙煎機100に焙煎プロファイルを送信した端末装置である。焙煎プロファイルが端末装置200から焙煎機100に送信した後も、端末装置200と焙煎機100との間にはBluetooth(登録商標)規格の通信が引き続き確立されている。 FIG. 16 shows a process in which the roasting machine 100 operates in cooperation with the terminal device 200 rather than operating alone. The terminal device 200 is typically a terminal device that transmits a roasting profile to the roasting machine 100. Even after the roasting profile is transmitted from the terminal device 200 to the roasting machine 100, the Bluetooth (registered trademark) standard communication is continuously established between the terminal device 200 and the roasting machine 100.
 図16に示す例では、焙煎機100の無線通信回路302は、少なくとも焙煎開始後、端末装置200に定期的に動作確認信号を送信する。端末装置200は、動作確認信号を定期的に受信することにより、焙煎機100が正常に動作していることを知ることができる。 In the example shown in FIG. 16, the wireless communication circuit 302 of the roasting machine 100 periodically transmits an operation confirmation signal to the terminal device 200 after the start of roasting. The terminal device 200 can know that the roasting machine 100 is operating normally by receiving the operation confirmation signal periodically.
 端末装置200のCPU201は、動作確認信号を定期的に受信したことを確認するために、内部にタイマ(図示せず)を有している。CPU201は、クロック信号を利用してタイマをカウントアップする。 The CPU 201 of the terminal device 200 has a timer (not shown) inside in order to confirm that the operation confirmation signal has been received periodically. The CPU 201 counts up the timer using the clock signal.
 ステップS50として示すように、CPU201は、動作確認信号を受信する度にこのタイマをリセットする。そのため、焙煎機100から動作確認信号を受信しなければ、タイマのカウント値は増加し続ける。焙煎機100のマイコン301は、ステップS13の終了後、再起動する。瞬時電圧低下発生後、少なくとも再起動が完了するまでは焙煎機100は動作確認信号を送信することができない。この期間中はCPU201のタイマのカウント値は増加し続ける。 As shown in step S50, the CPU 201 resets this timer every time an operation confirmation signal is received. Therefore, if the operation confirmation signal is not received from the roasting machine 100, the count value of the timer continues to increase. The microcomputer 301 of the roasting machine 100 restarts after the end of step S13. After the instantaneous voltage drop occurs, the roasting machine 100 cannot transmit an operation confirmation signal at least until the restart is completed. During this period, the count value of the timer of the CPU 201 continues to increase.
 焙煎機100の処理の再起動が完了して、ステップS14においてパラメータがストレージ306に記憶されている場合には、処理はステップS40に進む。なお、焙煎機100の再起動が完了すると、マイコン301は、直前まで接続されていた端末装置200との接続を自動的に確立する。 When the restart of the process of the roasting machine 100 is completed and the parameter is stored in the storage 306 in step S14, the process proceeds to step S40. When the restart of the roasting machine 100 is completed, the microcomputer 301 automatically establishes a connection with the terminal device 200 that has been connected immediately before.
 ステップS40において、マイコン301は無線通信回路302を介して起動完了通知を送信する。 In step S40, the microcomputer 301 transmits a startup completion notification via the wireless communication circuit 302.
 起動完了通知を受信した端末装置200のCPU201は、ステップS51の処理を実行する。ステップS51において、CPU201は、タイマのカウント値が予め定められた閾値以下か否かを判定する。時間に換算すると、閾値はたとえば「10秒」である。カウント値が閾値以下の場合には、処理はステップS52に進み、そうでない場合には処理はステップS53に進む。 The CPU 201 of the terminal device 200 that has received the activation completion notification executes the process of step S51. In step S51, the CPU 201 determines whether or not the count value of the timer is equal to or less than a predetermined threshold value. In terms of time, the threshold value is “10 seconds”, for example. If the count value is equal to or smaller than the threshold value, the process proceeds to step S52. If not, the process proceeds to step S53.
 カウント値が閾値以下の場合には、焙煎機100の動作停止期間は許容時間内である。ヒータユニット127は依然として焙煎動作を速やかに再開することが可能な温度を有している。ステップS52において、端末装置200のCPU201は無線通信回路202を介して、焙煎継続要求を焙煎機100に送信する。焙煎継続要求を受信した焙煎機100のマイコン301は、ステップS15において焙煎動作を再開する。 When the count value is less than or equal to the threshold value, the operation stop period of the roasting machine 100 is within the allowable time. The heater unit 127 still has a temperature at which the roasting operation can be resumed quickly. In step S <b> 52, the CPU 201 of the terminal device 200 transmits a roasting continuation request to the roasting machine 100 via the wireless communication circuit 202. Receiving the roasting continuation request, the microcomputer 301 of the roasting machine 100 restarts the roasting operation in step S15.
 一方、カウント値が閾値以下の場合には、焙煎機100の動作停止期間は許容時間を超えている。CPU201はステップS53において、端末装置200のCPU201は無線通信回路202を介して、焙煎終了要求を焙煎機100に送信する。焙煎終了要求を受信した焙煎機100のマイコン301は、焙煎動作を再開せず処理を終了する。 On the other hand, when the count value is less than or equal to the threshold value, the operation stop period of the roasting machine 100 exceeds the allowable time. In step S <b> 53, the CPU 201 of the terminal device 200 transmits a roasting end request to the roasting machine 100 via the wireless communication circuit 202. Receiving the roasting end request, the microcomputer 301 of the roasting machine 100 ends the process without restarting the roasting operation.
 なお、図16では、焙煎終了要求を受信した場合に焙煎動作を再開しないと説明したが、これは一例である。ステップS40における起動完了通知の送信後、端末装置200から一定時間経過しても焙煎継続要求または焙煎終了要求を受信しない場合には、マイコン301は、焙煎動作を再開しないと判断して処理を終了してもよい。 In FIG. 16, it has been described that the roasting operation is not resumed when a roasting end request is received, but this is an example. If the roasting continuation request or the roasting end request is not received after a predetermined time has elapsed from the terminal device 200 after the activation completion notification is transmitted in step S40, the microcomputer 301 determines that the roasting operation is not resumed. Processing may be terminated.
 6.焙煎機のスイッチ押下時の動作
 次に、図17を参照しながら、スイッチ111が押下された時の焙煎機100の動作を説明する。なお、図17の処理は、瞬時電圧低下が発生したか否かにかかわりなく実行される。さらには、図17の処理は、焙煎動作中であっても実行され得る。
6). Next, the operation of the roasting machine 100 when the switch 111 is pressed will be described with reference to FIG. Note that the process of FIG. 17 is executed regardless of whether or not an instantaneous voltage drop has occurred. Furthermore, the process of FIG. 17 can be executed even during the roasting operation.
 図17は、スイッチ111が押下された時の焙煎機100の処理の手順を示す。 FIG. 17 shows a processing procedure of the roasting machine 100 when the switch 111 is pressed.
 ステップS61において、マイコン301はスイッチ111が押下されるまで待つ。スイッチ111が押下された場合には処理はステップS62に進む。 In step S61, the microcomputer 301 waits until the switch 111 is pressed. If the switch 111 is pressed, the process proceeds to step S62.
 ステップS62において、マイコン301は、動作パラメータがメモリ303に記憶されているか否かを判定する。この処理は、焙煎機100が端末装置200から焙煎プロファイルを受信してメモリ303に格納しているか否かの判定処理である。動作パラメータがメモリ303に記憶されている場合には、処理はステップS63に進み、記憶されていない場合には処理はステップS64に進む。 In step S62, the microcomputer 301 determines whether or not the operation parameter is stored in the memory 303. This process is a process for determining whether or not the roasting machine 100 has received the roasting profile from the terminal device 200 and stored it in the memory 303. If the operation parameter is stored in the memory 303, the process proceeds to step S63, and if not stored, the process proceeds to step S64.
 ステップS63において、マイコン301は、動作パラメータを利用して焙煎動作を開始し、焙煎動作を停止する。マイコン301は、メモリ303に存在する状態パラメータに基づいて、焙煎動作を開始するか停止するかを判定することができる。上述のとおり、メモリ303には状態パラメータとして、焙煎機の動作状態を示すフラグが格納されている。このフラグを参照することにより、マイコン301は現在焙煎機100が焙煎動作中か否かを判定することができる。焙煎動作中でなければ、マイコン301は動作パラメータを利用して焙煎動作を開始する。焙煎動作中であれば、マイコン301は焙煎動作を停止する。その後、処理は終了する。 In step S63, the microcomputer 301 starts the roasting operation using the operation parameters, and stops the roasting operation. The microcomputer 301 can determine whether to start or stop the roasting operation based on the state parameters existing in the memory 303. As described above, the memory 303 stores a flag indicating the operating state of the roasting machine as the state parameter. By referring to this flag, the microcomputer 301 can determine whether or not the roasting machine 100 is currently performing the roasting operation. If the roasting operation is not in progress, the microcomputer 301 starts the roasting operation using the operation parameters. If the roasting operation is being performed, the microcomputer 301 stops the roasting operation. Thereafter, the process ends.
 ステップS64では、マイコン301は排出動作を実行する。この処理によれば、焙煎プロファイルが焙煎機100に送信されていない状態では、豆が焙煎機100の焙煎室126に存在していても排出される。本実施形態では、焙煎完了後には、動作パラメータ(焙煎プロファイル)はメモリ303から消去される。ユーザが、焙煎完了後の豆を焙煎機100から取り出し忘れていたとしても、スイッチ111を押下すればいつでも豆を焙煎機100から排出させることができる。このとき、焙煎動作が行われることはないため、再度の焙煎が行われることもない。 In step S64, the microcomputer 301 executes a discharging operation. According to this process, in the state where the roasting profile is not transmitted to the roasting machine 100, the beans are discharged even if they exist in the roasting chamber 126 of the roasting machine 100. In the present embodiment, the operation parameter (roasting profile) is deleted from the memory 303 after the roasting is completed. Even if the user forgets to take out the roasted beans from the roasting machine 100, the beans can be discharged from the roasting machine 100 at any time by pressing the switch 111. At this time, since the roasting operation is not performed, the roasting is not performed again.
 図17から理解されるように、スイッチ111は、焙煎機100の状態に応じて、焙煎の開始または終了だけではなく、豆の排出にも利用される。焙煎の開始または終了のためのスイッチと、豆の排出のためのスイッチとを併設する必要がないため、部品コストを低減することができる。また、部品点数が少ないため、外観デザインの煩雑さを抑制できる。 As understood from FIG. 17, the switch 111 is used not only for the start or end of roasting but also for discharging beans depending on the state of the roasting machine 100. Since there is no need to provide a switch for starting or ending roasting and a switch for discharging beans, the cost of parts can be reduced. In addition, since the number of parts is small, the complexity of the external design can be suppressed.
 7.焙煎機の焙煎時電力制御
 次に、焙煎機100の焙煎時の電力制御方法を説明する。この電力制御方法は、ヒータユニット127を発熱させるためのヒータユニット127への電力の印加方法である。以下に説明する電力制御方法は、上述したいずれの焙煎動作時においても適用され得る。
7). Next, a power control method for roasting machine 100 during roasting will be described. This power control method is a method of applying power to the heater unit 127 for causing the heater unit 127 to generate heat. The power control method described below can be applied during any of the roasting operations described above.
 まず図18~図20を参照しながら電力制御の一例を説明する。 First, an example of power control will be described with reference to FIGS.
 図18は、ヒータユニット127への交流電力の第1の印加方法の例を示す。破線は電源304から出力される交流の電流波形を示す。一方、実線は、スイッチング素子314(図13)によって正弦波の山の近傍で遮断された電流波形を示す。マイコン301は、所定のタイミングで立ち上がる/立ち下がるパルス波形を有する電力制御信号をスイッチング素子314に供給する。スイッチング素子314は、パルス波形が立ち下がるタイミングでオフされ、電流を遮断する。電流波形の任意の位置でスイッチング素子314をオンまたはオフすることができるため、ヒータユニット127の温度を容易に制御できる。 FIG. 18 shows an example of a first method of applying AC power to the heater unit 127. A broken line indicates an alternating current waveform output from the power supply 304. On the other hand, the solid line shows the current waveform cut off near the peak of the sine wave by the switching element 314 (FIG. 13). The microcomputer 301 supplies a power control signal having a pulse waveform that rises / falls at a predetermined timing to the switching element 314. The switching element 314 is turned off at the timing when the pulse waveform falls, and interrupts the current. Since the switching element 314 can be turned on or off at any position of the current waveform, the temperature of the heater unit 127 can be easily controlled.
 ただし、実線波形から理解されるように電流遮断時には波形が乱れ、ノイズが発生する。スイッチング素子314の発熱量が多くなるため、冷却系の大型化、およびノイズ対策部品の追加を検討する必要が生じる。 However, as understood from the solid line waveform, when the current is interrupted, the waveform is disturbed and noise is generated. Since the amount of heat generated by the switching element 314 increases, it is necessary to consider increasing the size of the cooling system and adding noise countermeasure components.
 図19は、ヒータユニット127への交流電力の第2の印加方法の例を示す。また、図20の(a)は、ヒータユニット127への交流電力の第3の印加方法の例を示す。 FIG. 19 shows an example of a second method of applying AC power to the heater unit 127. FIG. 20A shows an example of a third method of applying AC power to the heater unit 127.
 図19および図20の(a)に示すように、スイッチング素子314は、電流のゼロクロスに同期してオンまたはオフされる。これにより、電流遮断時のノイズおよびスイッチング素子314の発熱を抑制できる。 As shown in FIG. 19 and FIG. 20A, the switching element 314 is turned on or off in synchronization with the zero crossing of the current. Thereby, noise at the time of current interruption and heat generation of the switching element 314 can be suppressed.
 ただし、スイッチング素子314のオンおよびオフのタイミングが交流の周波数、たとえば50Hzまたは60Hzに依存する。図19および図20の(a)に示すように、最も早くオンおよびオフするとしても交流電流の半周期だけ待つ必要がある。すなわちヒータユニット127に流れる電流または電力制御信号を半周期未満のタイミングで細かく制御することが困難である。その結果、ヒータユニット127の温度制御の精度を向上させるとしても限界がある。 However, the on / off timing of the switching element 314 depends on the AC frequency, for example, 50 Hz or 60 Hz. As shown in FIG. 19 and FIG. 20A, it is necessary to wait for a half cycle of the alternating current even if it is turned on and off the earliest. That is, it is difficult to finely control the current or power control signal flowing through the heater unit 127 at a timing less than a half cycle. As a result, there is a limit even if the accuracy of temperature control of the heater unit 127 is improved.
 図20の(b)は、電力制御信号の波形を示す。図示される例では電力制御信号は、スイッチング素子314のオンまたはオフを制御周期T(=6)単位で制御する。スイッチング素子314がオンされる期間tON=4であり、オフされる期間tOFF=2である。電力制御信号のデューティ比Dは以下のとおりである。 FIG. 20B shows the waveform of the power control signal. In the illustrated example, the power control signal controls the switching element 314 to be turned on or off in units of control cycle T (= 6). The period t ON = 4 when the switching element 314 is turned on and the period t OFF = 2 when the switching element 314 is turned off. The duty ratio D of the power control signal is as follows.
 D=tON/T=2/3
 ヒータユニット127の温度はデューティ比によって変化し得る。図19および図20の例では、デューティ比は1/6未満で変化させることができないため、ヒータユニット127の温度の変化幅もデューティ比1/6に対応する変化幅未満にすることが困難である。
D = t ON / T = 2/3
The temperature of the heater unit 127 can vary depending on the duty ratio. In the example of FIGS. 19 and 20, since the duty ratio cannot be changed with less than 1/6, it is difficult to make the change width of the temperature of the heater unit 127 less than the change width corresponding to the duty ratio 1/6. is there.
 本願発明者は、スイッチング素子314の発熱量およびノイズを低減させる課題、および、ヒータユニット127の電力制御の精度を向上させる課題を同時に解決する技術を検討した。前者の課題については、図20に示すように電流のゼロクロスに同期してスイッチング素子314をオンまたはオフすることが妥当である。 The inventor of the present application has studied a technique for simultaneously solving the problem of reducing the heat generation amount and noise of the switching element 314 and the problem of improving the power control accuracy of the heater unit 127. As for the former problem, it is appropriate to turn on or off the switching element 314 in synchronization with the zero crossing of the current as shown in FIG.
 後者の課題について、本願発明者は、スイッチング素子314のオンまたはオフを、制御周期T単位で制御するのではなく、時間的に連続する複数の制御周期に亘って制御することを考えた。具体的には、本願発明者は、時間的に連続するN個の制御周期(N:2以上の整数)の各々の期間内にヒータユニット127に供給される電力の平均値が、ヒータユニット127に供給すべき目標電力に一致するよう、N個の制御周期中に供給する各電力制御信号を生成すればよいことを着想した。この制御方法によれば、時間的に隣接する2つの制御周期間では電力制御信号の各デューティ比は常に一致せず、相違する。ヒータユニット127に供給すべき目標電力は目標温度に応じて決定される。上述したNの値を増減させることにより、交流電流の半周期未満のタイミングで細かく制御することが可能になる。 Regarding the latter problem, the inventor of the present application considered that the switching element 314 is controlled to be turned on or off over a plurality of temporally continuous control cycles instead of being controlled in units of the control cycle T. Specifically, the inventor of the present application indicates that the average value of the power supplied to the heater unit 127 within each period of N consecutive control periods (N: an integer of 2 or more) is the heater unit 127. It was conceived that each power control signal to be supplied during N control periods should be generated so as to match the target power to be supplied. According to this control method, the duty ratios of the power control signals do not always match and differ between two control periods that are temporally adjacent. The target power to be supplied to the heater unit 127 is determined according to the target temperature. By increasing or decreasing the above-described value of N, it becomes possible to finely control at a timing less than a half cycle of the alternating current.
 図21の(a)は、ヒータユニット127への交流電力の第4の印加方法の例を示す。また図21の(b)は電力制御信号の波形を示す。図21の(b)に示されるように、時間的に連続する2つの制御周期Tのうちの最初の制御周期T1では、スイッチング素子314がオンされる期間tON1は4であり、オフされる期間tOFF1は2である。一方、制御周期T2では、スイッチング素子314がオンされる期間tON2は3であり、オフされる期間tOFF2は3である。制御周期T1におけるデューティ比D1および制御周期T2におけるデューティ比D2はそれぞれ以下の通りである。なお制御周期T1=T2=6である。 FIG. 21A shows an example of a fourth method of applying AC power to the heater unit 127. FIG. 21B shows the waveform of the power control signal. As shown in (b) of FIG. 21, the first control period T 1 of the of the two control period T temporally consecutive period t ON1 which the switching element 314 is turned on is 4, is turned off The period t OFF1 is 2. On the other hand, in the control period T 2, the period t ON2 which the switching element 314 is turned on is 3, the period t OFF2 is turned off is 3. The duty ratio D 2 in the duty ratio D 1 and the control period T 2 in the control period T 1 is as follows. Note that the control cycle T 1 = T 2 = 6.
 D1=tON1/T1=2/3=約0.67
 D2=tON2/T2=1/2=0.5
 デューティ比D1およびD2が相違していることが理解される。
D 1 = t ON1 / T 1 = 2/3 = about 0.67
D 2 = t ON2 / T 2 = 1/2 = 0.5
It can be seen that the duty ratios D 1 and D 2 are different.
 上述のとおり、本実施形態では、スイッチング素子314のオンおよびオフを制御周期単位で制御するのではなく、複数の制御周期にわたって制御する。図21に示す2制御周期の例の場合、スイッチング素子314は、1制御周期あたり期間3.5だけオンされる。また、2制御周期でみたときのデューティ比Dは、以下のとおりである。 As described above, in the present embodiment, on and off of the switching element 314 is not controlled in units of control cycles, but is controlled over a plurality of control cycles. In the example of the two control cycles shown in FIG. 21, the switching element 314 is turned on for a period of 3.5 per control cycle. Further, the duty ratio D when viewed in two control cycles is as follows.
 D=(tON1+tON2)/(T1+T2)=7/12=約0.58
 オン期間3.5およびデューティ比約0.58は、いずれも、図20に示す交流電流(50Hzまたは60Hz)のゼロクロスでオンおよびオフする場合には実現できない。
D = (t ON1 + t ON2 ) / (T 1 + T 2) = 7/12 = about 0.58
Neither the on-period 3.5 nor the duty ratio of about 0.58 can be realized when turning on and off at the zero cross of the alternating current (50 Hz or 60 Hz) shown in FIG.
 制御周期T1およびT2の平均電力P2は、交流電流の半周期の電力をP0とすると以下の式によって算出される。 The average power P 2 in the control cycles T 1 and T 2 is calculated by the following equation, where P 0 is the half cycle power of the alternating current.
 P2=(P0・D1+P0・D2)/2=(D1+D2)P0/2
 より一般化して、N個の制御周期にわたってみたときの平均電力PNは、以下のように求めることができる。なお制御周期Tkにおけるデューティ比をDkと表す(k:1以上の整数)。
P 2 = (P 0 · D 1 + P 0 · D 2 ) / 2 = (D 1 + D 2 ) P 0/2.
More generally, the average power P N when viewed over N control periods can be obtained as follows. The duty ratio in the control cycle T k is represented as D k (k: an integer equal to or greater than 1).
 PN=(D1+D2+・・・+Dn)P0/N
 つまり、制御周期の個数Nを増減させて各制御周期におけるオンおよびオフを調整することにより、ヒータユニット127の温度をより精度よく制御できる。
P N = (D 1 + D 2 +... + D n ) P 0 / N
That is, the temperature of the heater unit 127 can be controlled with higher accuracy by adjusting the on / off in each control cycle by increasing / decreasing the number N of control cycles.
 マイコン301は、焙煎プロファイル等から目標とすべきヒータユニット127の温度(目標温度)を決定する。ヒータユニット127をこの目標温度で発熱させるための電力(目標電力)は、ヒータユニット127の電熱線の仕様等から決定することができる。マイコン301は、上述の方法によって計算した平均電力PNが目標電力に一致するよう制御周期の個数Nおよび各制御周期のオン期間を決定し、電力制御信号を生成すればよい。 The microcomputer 301 determines the temperature (target temperature) of the heater unit 127 to be targeted from the roasting profile or the like. The power (target power) for causing the heater unit 127 to generate heat at the target temperature can be determined from the specifications of the heating wire of the heater unit 127 and the like. The microcomputer 301 determines the number N and the ON period of each control period of the control period so that the average power P N calculated by the method described above coincide with the target power may be generated a power control signal.
 制御周期の個数Nの決定方法として、本実施形態では、マイコン301は、目標電力の変化量の大きさに応じて制御周期の個数Nを変化させる。より具体的には、目標電力の変化量が大きいほど制御周期の個数Nを小さく設定し、目標電力の変化量が小さいほど制御周期の個数Nを大きく設定する。理解のため、目標温度に応じて制御周期の個数Nを変更する例を説明する。 As a method for determining the number N of control cycles, in this embodiment, the microcomputer 301 changes the number N of control cycles in accordance with the amount of change in target power. More specifically, the control cycle number N is set to be smaller as the target power change amount is larger, and the control cycle number N is set to be larger as the target power change amount is smaller. For the sake of understanding, an example in which the number N of control cycles is changed according to the target temperature will be described.
 図22の(a)は、焙煎温度と時間との関係を示す。図示される関係は、たとえば図9に示す焙煎プロファイルに対応する。いま、時刻t0からt1まで、時刻t1からt2まで、および、時刻t2から時刻t3までの各温度変化量をそれぞれE1、E2およびE3とする。図22の(b)は、E1、E2およびE3と、2つの閾値EaおよびEbとを示す。図22の(b)の縦軸が示す温度変化量Eの関係は、E2<E3<E1である。 (A) of FIG. 22 shows the relationship between roasting temperature and time. The illustrated relationship corresponds to, for example, the roasting profile shown in FIG. Now, let the temperature change amounts from time t0 to t1, from time t1 to t2, and from time t2 to time t3 be E 1 , E 2, and E 3 , respectively. FIG. 22 (b) shows E 1 , E 2 and E 3 and two thresholds Ea and Eb. The relationship of the temperature change amount E indicated by the vertical axis in FIG. 22B is E 2 <E 3 <E 1 .
 マイコン301は、上述の各温度変化量E1、E2およびE3の各々を、以下の条件によって少なくとも3つの区分C1、C2およびC3のいずれかに分類する。分類の基準は以下のとおりである。以下の説明では、各温度変化量E1、E2およびE3の各値に相当する値を「E」と表記している。EaおよびEbは閾値である。 The microcomputer 301 classifies each of the temperature change amounts E 1 , E 2, and E 3 described above into at least three sections C 1 , C 2, and C 3 according to the following conditions. The classification criteria are as follows. In the following description, a value corresponding to each value of each temperature change amount E 1 , E 2, and E 3 is represented as “E”. Ea and Eb are threshold values.
 温度変化量EがEa≦Eのとき、区分はC1。 When the temperature change amount E is Ea ≦ E, the classification is C1.
 温度変化量EがEb≦E<Eaのとき、区分はC2。 When the temperature change amount E is Eb ≦ E <Ea, the classification is C2.
 温度変化量EがE<Ebのとき、区分はC3。 When the temperature change amount E is E <Eb, the classification is C3.
 マイコン301は、区分Ck(k=1、2、3)には制御周期の個数NをN=kに設定する。図22の(c)は、設定された制御周期の個数Nを示す。図22の(c)の縦軸は、マイコン301が採用するNの値を示す。マイコン301は、温度変化量Eが区分C1に分類されるときは、制御周期の個数Nの値を最も小さい値1に設定する。Nが1の場合には1制御周期ごとの電力制御が行われるため、電力制度はこれまでと同様であり、制御の精度は粗い。ただしヒータユニット127を速く加熱することが可能である。 The microcomputer 301 sets the number N of control cycles to N = k for the section Ck (k = 1, 2, 3). (C) of FIG. 22 shows the number N of the set control periods. The vertical axis of (c) in FIG. 22 indicates the value of N adopted by the microcomputer 301. The microcomputer 301 sets the value of the number N of control cycles to the smallest value 1 when the temperature change amount E is classified into the category C1. When N is 1, power control is performed for each control period, so the power system is the same as before and the control accuracy is rough. However, the heater unit 127 can be heated quickly.
 一方、マイコン301は、温度変化量Eが区分C3に分類されるときは、制御周期の個数Nの値を最も大きい値3に設定する。電力制御信号のオン期間およびオフ期間を3制御周期にわたって調整し、平均電力を決定できるため、精度の高い電力制御および温度制御が可能になる。上述のとおり、焙煎開始直後の初期に温度が1℃異なると焙煎後のコーヒーの風味が大きく変わると言われる。本実施形態の方法によれば、温度変化量を微調整できるため、焙煎プロファイルに極めて忠実に焙煎工程を進めることができる。上述の例では3つの区分を挙げたが、区分の数は2つでもよいし、4以上でもよい。供給すべき電力の変化量が小さいほど、Nの数を大きく設定して精度を高めればよい。 On the other hand, when the temperature change amount E is classified into the category C3, the microcomputer 301 sets the value of the number N of control cycles to the largest value 3. Since the average power can be determined by adjusting the ON period and the OFF period of the power control signal over three control cycles, highly accurate power control and temperature control are possible. As described above, it is said that if the temperature differs by 1 ° C. immediately after the start of roasting, the flavor of the coffee after roasting changes greatly. According to the method of the present embodiment, since the amount of temperature change can be finely adjusted, the roasting process can be advanced very faithfully to the roasting profile. In the above example, three sections are given, but the number of sections may be two or four or more. As the amount of change in power to be supplied is smaller, the number of N may be set larger to increase the accuracy.
 次に図23を参照しながら、電力制御の他の例を説明する。 Next, another example of power control will be described with reference to FIG.
 図23は、決定した制御周期の個数Nに基づくデューティの決定方法を説明するための図である。「デューティ」とは、電力制御信号のオン期間を示す。 FIG. 23 is a diagram for explaining a duty determination method based on the determined number N of control cycles. “Duty” indicates the ON period of the power control signal.
 図23の横軸Ptargetは温度制御に必要とされる目標電力を示し、縦軸DutyNは各Nの期間に設定されるデューティを示す。縦軸と横軸との交点における目標電力は1と、横軸および縦軸には例示的な数値を記載している。縦軸方向の数値がオン期間の合計を示す。 23, the horizontal axis Ptarget represents the target power required for temperature control, and the vertical axis DutyN represents the duty set for each N period. The target power at the intersection of the vertical axis and the horizontal axis is 1, and exemplary numerical values are described on the horizontal and vertical axes. The numerical value in the vertical axis direction indicates the total on-period.
 以下、温度変化量EがE<Ebであって区分C3に分類され、制御周期の個数NがN=3に決定された例で説明する。N=3であるため、第1制御周期でのデューティDuty1、第2制御周期でのデューティDuty2、および第3のデューティDuty3は個々に設定される。なお、N=1~3のいずれの場合も、期間の比率を変えることで電力を制御することも可能であるが、本実施の形態では簡略化するため期間は同じであるとする。 Hereinafter, an example in which the temperature change amount E is E <Eb and is classified into the category C3, and the number N of control cycles is determined as N = 3 will be described. Since N = 3, the duty duty 1 in the first control period, the duty duty 2 in the second control period, and the third duty duty 3 are individually set. Note that in any case of N = 1 to 3, it is possible to control the power by changing the ratio of the periods. However, in this embodiment, it is assumed that the periods are the same for simplification.
 図23には、3本のラインが記載されている。たとえば、実線は第1制御周期に適用されるデューティパターン1(Duty1)を示し、太破線は第2制御周期に適用されるデューティパターン2(Duty2)を示し、細破線は第3制御周期に適用されるデューティパターン3(Duty3)を示す。メモリ303またはマイコン301内部のレジスタ(図示せず)は、デューティパターン1~3を予め保持している。 FIG. 23 shows three lines. For example, the solid line indicates duty pattern 1 (Duty1) applied to the first control period, the thick broken line indicates duty pattern 2 (Duty2) applied to the second control period, and the thin broken line applies to the third control period. The duty pattern 3 (Duty3) to be performed is shown. A register (not shown) in the memory 303 or the microcomputer 301 holds the duty patterns 1 to 3 in advance.
 図23によれば、Ptarget=2のときDuty1=6、Duty2=Duty3=0になる。よって電力P3はP3=(6+0+0)×1/3=2である。 According to FIG. 23, when Ptarget = 2, Duty1 = 6 and Duty2 = Duty3 = 0. Therefore, the electric power P 3 is P 3 = (6 + 0 + 0) × 1/3 = 2.
 また、Ptarget=4のときDuty1=6、Duty2=6、Duty3=0になる。よって電力P3はP3=(6+6+0)×1/3=4である。 When Ptarget = 4, Duty1 = 6, Duty2 = 6, and Duty3 = 0. Therefore, the electric power P 3 is P 3 = (6 + 6 + 0) × 1/3 = 4.
 また、Ptarget=6のときDuty1=6、Duty2=6、Duty3=6になる。よって電力P3はP3=(6+6+6)×100/3=6である。 When Ptarget = 6, Duty1 = 6, Duty2 = 6, and Duty3 = 6. Therefore, the electric power P 3 is P 3 = (6 + 6 + 6) × 100/3 = 6.
 3つの制御周期にわたる平均電力P3はいずれも、目標電力Ptargetに一致していることが理解される。 It will be understood that the average power P 3 over the three control periods is consistent with the target power Ptarget.
 以上のとおり、スイッチング素子314のオンおよびオフを制御周期単位で制御するのではなく、複数の制御周期にわたって制御することにより、目標電力を実現でき、かつ焙煎温度を精度よく制御することが可能になる。 As described above, the target power can be realized and the roasting temperature can be accurately controlled by controlling the switching element 314 on and off not in units of control periods but over a plurality of control periods. become.
 なお、上記説明ではN=3を例示したが、N=2の場合には2つの制御周期の各々に適用される2本のデューティを用意すればよい。 In the above description, N = 3 is exemplified, but in the case of N = 2, two duties applied to each of the two control cycles may be prepared.
 以上説明したように、第1の発明は、電源と、電源の電圧が所定値以下に低下したことを検知し、検知信号を出力する検知回路と、不揮発性の記憶装置とを備える。また、被焙煎物を焙煎する焙煎動作を制御する処理回路であって、焙煎動作中に検知信号を受信すると、焙煎動作に関するパラメータを記憶装置に記憶させる処理回路とを備える。さらに、処理回路は、電源の電圧が回復して再起動が完了した後、記憶装置にパラメータが記憶されているか否かを判定し、記憶装置にパラメータが記憶されている場合には焙煎動作を再開する、焙煎機である。 As described above, the first invention includes a power supply, a detection circuit that detects that the voltage of the power supply has dropped below a predetermined value, and outputs a detection signal, and a nonvolatile storage device. The processing circuit controls a roasting operation for roasting the material to be roasted, and includes a processing circuit that stores parameters relating to the roasting operation in a storage device when a detection signal is received during the roasting operation. Further, the processing circuit determines whether or not the parameter is stored in the storage device after the power supply voltage is recovered and the restart is completed, and if the parameter is stored in the storage device, the roasting operation is performed. Is a roasting machine.
 上記構成によれば、焙煎機が、停電または電源電圧低下に伴って停止し、電力が回復して再起動した後に、パラメータが不揮発性の記憶装置に格納されているか否かに基づいて、焙煎動作を再開するか否かを判断する。停電等の発生に伴って停止した場合でも、パラメータが不揮発性の記憶装置に格納されていれば、焙煎動作を継続することができる。 According to the above configuration, after the roasting machine is stopped due to a power failure or a power supply voltage drop, and after power is restored and restarted, based on whether the parameter is stored in the non-volatile storage device, It is determined whether or not the roasting operation is resumed. Even when the operation is stopped due to the occurrence of a power failure or the like, the roasting operation can be continued if the parameters are stored in the nonvolatile storage device.
 また、第2の発明は、焙煎温度を検出する温度センサをさらに備える焙煎機であって、処理回路は、焙煎温度をパラメータとして所定時刻ごとに更新する。しかも、検知信号を受信した時点におけるパラメータを記憶装置に記憶させ、電源の電圧が回復して再起動が完了した後、処理回路は、パラメータに含まれる焙煎温度と現在の焙煎温度との差分が、予め定められた焙煎継続条件を満たすか否かを判定する。そして、焙煎継続条件を満たす場合には焙煎動作を再開してもよい。 The second invention is a roasting machine further comprising a temperature sensor for detecting the roasting temperature, and the processing circuit updates the roasting temperature as a parameter every predetermined time. In addition, the parameter at the time when the detection signal is received is stored in the storage device, and after the power supply voltage is restored and the restart is completed, the processing circuit calculates the roasting temperature included in the parameter and the current roasting temperature. It is determined whether or not the difference satisfies a predetermined roasting continuation condition. Then, when the roasting continuation condition is satisfied, the roasting operation may be resumed.
 また、第3の発明は、上述の焙煎機であって、処理回路が、パラメータに含まれる焙煎温度と現在の焙煎温度との差分が予め設定された目標温度以下で設定された値未満であるとき、焙煎継続条件を満たすと判定する構成としてもよい。 Further, the third invention is the above-described roasting machine, wherein the processing circuit has a value set such that a difference between the roasting temperature included in the parameter and the current roasting temperature is equal to or lower than a preset target temperature. When it is less, it is good also as a structure which determines with satisfy | filling roasting continuation conditions.
 また、第4の発明は、上述の焙煎機であって、処理回路が、焙煎温度の時間的変化を指定する焙煎プロファイル、焙煎動作の開始からの経過時間、および焙煎温度をパラメータとして記憶装置に記憶させる。そして、電源の電圧が回復して再起動が完了した後、焙煎継続条件を満たす場合には、処理回路が、焙煎プロファイルおよび経過時間に基づいて焙煎動作を再開してもよい。 The fourth invention is the above-described roasting machine, wherein the processing circuit specifies a roasting profile that specifies a temporal change in the roasting temperature, an elapsed time from the start of the roasting operation, and a roasting temperature. It is stored in the storage device as a parameter. Then, after the power supply voltage is recovered and the restart is completed, when the roasting continuation condition is satisfied, the processing circuit may restart the roasting operation based on the roasting profile and the elapsed time.
 また、第5の発明は、外部の端末装置と通信する通信回路をさらに備える。そして、通信回路が、焙煎動作中、定期的に端末装置に信号を送信し、電源の電圧が回復して再起動が完了した後、記憶装置にパラメータが記憶されている場合には端末装置に起動完了通知を送信する。さらに、通信回路が端末装置から焙煎継続要求を受信したときは、処理回路が焙煎動作を再開してもよい。 Further, the fifth invention further includes a communication circuit for communicating with an external terminal device. When the communication circuit periodically transmits a signal to the terminal device during the roasting operation and the power supply voltage is restored and the restart is completed, the parameter is stored in the storage device. Send a startup completion notification to. Furthermore, when the communication circuit receives a roasting continuation request from the terminal device, the processing circuit may resume the roasting operation.
 第6の発明は、通信回路が端末装置から焙煎終了要求を受信したとき、または、起動完了通知の送信時刻から起算して所定時間内に端末装置からの要求を受信しなかったときは、処理回路が焙煎動作を終了してもよい。 When the communication circuit receives a roasting end request from the terminal device, or when the communication circuit does not receive the request from the terminal device within a predetermined time from the transmission completion notification transmission time, The processing circuit may end the roasting operation.
 第7の発明は、焙煎動作が終了した後、処理回路が記憶装置に記憶されているパラメータを消去してもよい。 In the seventh invention, after the roasting operation is finished, the processing circuit may delete the parameters stored in the storage device.
 (課題を解決するための手段に関する付記)
 〔付記1〕交流電源と、前記交流電源から供給される電力によって発熱し、被焙煎物を焙煎するための熱源として用いられるヒータユニットと、電力制御信号を生成する処理回路と、前記電力制御信号に基づいてオンまたはオフされて、前記交流電源から前記ヒータユニットへの前記電力の供給および遮断を制御するスイッチング素子とを備え、前記電力制御信号は、前記スイッチング素子のオンまたはオフを制御周期T単位で制御する信号であり、前記処理回路は、時間的に連続するN個の制御周期(N:2以上の整数)の各々の期間内に前記ヒータユニットに供給される電力の平均値が、前記ヒータユニットに供給すべき目標電力に一致するよう、N個の制御周期中に供給する各電力制御信号を生成する焙煎機。
(Additional note regarding means for solving the problem)
[Appendix 1] An AC power source, a heater unit that generates heat by the power supplied from the AC power source, and is used as a heat source for roasting an object to be roasted, a processing circuit that generates a power control signal, and the power A switching element that is turned on or off based on a control signal to control the supply and interruption of the electric power from the AC power supply to the heater unit, and the power control signal controls on or off of the switching element. The signal is controlled in units of a cycle T, and the processing circuit is an average value of electric power supplied to the heater unit in each of N control cycles (N: an integer equal to or larger than 2) that is continuous in time. Is a roasting machine that generates each power control signal to be supplied during N control periods so as to match the target power to be supplied to the heater unit.
 〔付記2〕前記N個の制御周期のうちの、時間的に連続する第1制御周期T1および第2制御周期T2について、前記処理回路が、前記第1制御周期T1ではデューティ比D1の電力制御信号を生成し、前記第2制御周期T2では、デューティ比D1と異なるデューティ比D2の電力制御信号を生成する付記1に記載の焙煎機。 [Supplementary Note 2] Of the N control cycles, the processing circuit performs power control with a duty ratio D1 in the first control cycle T1 for the first control cycle T1 and the second control cycle T2 that are temporally continuous. The roasting machine according to appendix 1, wherein a signal is generated and a power control signal having a duty ratio D2 different from the duty ratio D1 is generated in the second control cycle T2.
 〔付記3〕前記交流電源が交流電流の半周期あたり電力P0の交流電力を供給するとき、前記処理回路が、前記電力P0と各制御周期のデューティ比の和との積を、前記制御周期の個数Nで除算することによって計算される前記平均値が、前記ヒータユニットに供給すべき目標電力に一致するよう、前記N個の制御周期中に供給する各電力制御信号を生成する付記1に記載の焙煎機。 [Supplementary Note 3] When the AC power supply supplies AC power of power P0 per half cycle of AC current, the processing circuit calculates the product of the power P0 and the sum of the duty ratios of each control cycle as the control cycle. Additional remark 1 for generating each power control signal supplied during the N control periods so that the average value calculated by dividing by the number N matches the target power to be supplied to the heater unit. Roasting machine.
 〔付記4〕前記処理回路が、前記目標電力の変化量の大きさに応じて前記制御周期の個数Nの変化させる付記3に記載の焙煎機。 [Appendix 4] The roaster according to appendix 3, wherein the processing circuit changes the number N of the control cycles in accordance with the amount of change in the target power.
 〔付記5〕前記処理回路が、前記目標電力の変化量が大きいほど前記制御周期の個数Nを小さく設定し、前記目標電力の変化量が小さいほど前記制御周期の個数Nを大きく設定する付記3に記載の焙煎機。 [Supplementary Note 5] The processing circuit sets the control cycle number N to be smaller as the change amount of the target power is larger, and sets the control cycle number N to be larger as the change amount of the target power is smaller. Roasting machine as described in.
 〔付記6〕前記ヒータユニットの温度を検出する温度センサをさらに備え、前記処理回路は、前記ヒータユニットの温度変化量が大きいほど前記目標電力の変化量を大きく設定し、前記温度変化量が小さいほど前記目標電力の変化量を小さく設定する付記3に記載の焙煎機。 [Appendix 6] The apparatus further includes a temperature sensor that detects the temperature of the heater unit, and the processing circuit sets a larger amount of change in the target power as the temperature change amount of the heater unit is larger, and the temperature change amount is smaller. The roasting machine according to attachment 3, wherein the change amount of the target power is set to be smaller.
 〔付記7〕前記温度変化量が、第1閾値以上の変化量である第1区分、前記第1閾値未満かつ第2閾値以上の変化量である第2区分、および、前記第2閾値未満の変化量である第3区分のいずれかに分類可能であるとき、前記処理回路が、前記温度変化量が前記第1区分に分類されるときは、前記制御周期の個数Nの値を最も小さく設定し、前記温度変化量が前記第3区分に分類されるときは、前記制御周期の個数Nの値を最も大きく設定する付記3に記載の焙煎機。 [Supplementary Note 7] The temperature change amount is less than a first threshold value that is a change amount that is greater than or equal to a first threshold value, less than the second threshold value that is less than the first threshold value and greater than or equal to a second threshold value, and less than the second threshold value. When the change can be classified into any one of the third divisions, the processing circuit sets the value of the number N of the control cycles to the smallest when the temperature change is classified into the first division. And when the said temperature change amount is classified into the said 3rd division, the value of the number N of the said control period is set to the largest value, The roasting machine of Additional remark 3.
 〔付記8〕前記処理回路が、予め用意された、前記個数Nに対応するN個のデューティパターンの各々を利用して、前記ヒータユニットに供給される電力の平均値を、前記ヒータユニットに供給すべき目標電力に一致させる付記1に記載の焙煎機。 [Supplementary Note 8] The processing circuit supplies an average value of the power supplied to the heater unit to the heater unit using each of N duty patterns corresponding to the number N prepared in advance. The roasting machine according to appendix 1, wherein the roasting machine is made to match the target power to be obtained.
 〔付記9〕前記N個のデューティパターンが、第k制御周期に適用される第kデューティパターン(k=1、・・・、N)の集合であり、前記N個のデューティパターンの各々は、前記目標電力と前記スイッチング素子がオンされる期間であるデューティとの関係を規定する付記8に記載の焙煎機。 [Supplementary Note 9] The N duty patterns are a set of kth duty patterns (k = 1,..., N) applied to the kth control period, and each of the N duty patterns is: The roasting machine according to appendix 8, which defines a relationship between the target power and a duty that is a period during which the switching element is turned on.
 付記1に記載の構成によれば、スイッチング素子の発熱量およびノイズを低減させ、ヒータユニットの電力制御の精度を向上させることが可能になる。 According to the configuration described in Supplementary Note 1, it is possible to reduce the heat generation amount and noise of the switching element and improve the power control accuracy of the heater unit.
 本発明の瞬時電圧低下発生時の処理は、電気、ガス、炭火等の熱源を用いて焙煎を行う焙煎機に利用可能である。また、本発明の電力制御方法は、電力を利用して焙煎動作を行う焙煎機に有用である。 The treatment when an instantaneous voltage drop occurs according to the present invention can be used for a roasting machine that performs roasting using a heat source such as electricity, gas, and charcoal. The power control method of the present invention is useful for a roasting machine that performs a roasting operation using electric power.
 10 情報提供システム
 100 焙煎機
 110 筐体
 111 スイッチ
 112 状態表示LED
 113 電子回路基板
 114 豆投入カップ
 115 排気口
 116 蓋
 117 容器
 120 ファンユニット
 120a ファンモータ
 120b ファン
 120c エア・アウトレット
 121 焙煎筒カバー
 122 焙煎筒
 123 風洞構造体
 124 排出筒
 125 間隙風路
 126 焙煎室
 127 ヒータユニット
 128 スペーサー
 143 温度センサ
 200 端末装置
 201 信号処理回路(CPU)
 202 無線通信回路
 203 入力インタフェース(I/F)装置
 204 メモリ
 205 画像処理回路
 206 ディスプレイ
 207 カメラモジュール
 208 ストレージ
 209 スピーカ
 210 通信バス
 300 焙煎機
 301 マイコン(処理回路)
 302 無線通信回路
 303 メモリ
 304 電源
 306 ストレージ
 307 通信バス
 312 瞬低検知回路
 400 データベース(DB)サーバ
 401 信号処理回路(CPU)
 402 通信回路
 403 メモリ
 404 通信バス
10 Information Providing System 100 Roasting Machine 110 Case 111 Switch 112 Status LED
DESCRIPTION OF SYMBOLS 113 Electronic circuit board 114 Bean input cup 115 Exhaust port 116 Lid 117 Container 120 Fan unit 120a Fan motor 120b Fan 120c Air outlet 121 Roasting cylinder cover 122 Roasting cylinder 123 Wind tunnel structure 124 Outlet cylinder 125 Gap air passage 126 Roasting Chamber 127 Heater unit 128 Spacer 143 Temperature sensor 200 Terminal device 201 Signal processing circuit (CPU)
202 wireless communication circuit 203 input interface (I / F) device 204 memory 205 image processing circuit 206 display 207 camera module 208 storage 209 speaker 210 communication bus 300 roasting machine 301 microcomputer (processing circuit)
302 wireless communication circuit 303 memory 304 power supply 306 storage 307 communication bus 312 instantaneous drop detection circuit 400 database (DB) server 401 signal processing circuit (CPU)
402 Communication circuit 403 Memory 404 Communication bus

Claims (7)

  1.  電源と、
     前記電源の電圧が所定値以下に低下したことを検知し、検知信号を出力する検知回路と、
     不揮発性の記憶装置と、
     被焙煎物を焙煎する焙煎動作を制御する処理回路であって、前記焙煎動作中に前記検知信号を受信すると、前記焙煎動作に関するパラメータを前記記憶装置に記憶させる処理回路と、を備え、
     前記処理回路は、前記電源の電圧が回復して再起動が完了した後、前記記憶装置に前記パラメータが記憶されているか否かを判定し、前記記憶装置に前記パラメータが記憶されている場合には前記焙煎動作を再開する、焙煎機。
    Power supply,
    A detection circuit for detecting that the voltage of the power source has dropped below a predetermined value and outputting a detection signal;
    A non-volatile storage device;
    A processing circuit for controlling a roasting operation for roasting an object to be roasted, wherein when the detection signal is received during the roasting operation, a processing circuit for storing parameters relating to the roasting operation in the storage device; With
    The processing circuit determines whether or not the parameter is stored in the storage device after the power supply voltage is recovered and the restart is completed, and when the parameter is stored in the storage device Is a roasting machine that resumes the roasting operation.
  2.  焙煎温度を検出する温度センサをさらに備え、
     前記処理回路は、前記焙煎温度を前記パラメータとして所定時刻ごとに更新し、かつ、前記検知信号を受信した時点における前記パラメータを前記記憶装置に記憶させ、
     前記電源の電圧が回復して再起動が完了した後、前記処理回路は、前記パラメータに含まれる前記焙煎温度と現在の焙煎温度との差分が、予め定められた焙煎継続条件を満たすか否かを判定し、前記焙煎継続条件を満たす場合には前記焙煎動作を再開する、請求項1に記載の焙煎機。
    A temperature sensor for detecting the roasting temperature;
    The processing circuit updates the roasting temperature as the parameter every predetermined time, and stores the parameter at the time of receiving the detection signal in the storage device,
    After the power supply voltage is restored and the restart is completed, the processing circuit determines that a difference between the roasting temperature included in the parameter and the current roasting temperature satisfies a predetermined roasting continuation condition. The roasting machine according to claim 1, wherein the roasting operation is resumed when the roasting operation condition is satisfied.
  3.  前記処理回路は、前記パラメータに含まれる前記焙煎温度と前記現在の焙煎温度との差分が、予め設定された目標温度以下で設定された値未満であるとき、前記焙煎継続条件を満たすと判定する、請求項2に記載の焙煎機。 The processing circuit satisfies the roasting continuation condition when a difference between the roasting temperature included in the parameter and the current roasting temperature is less than a preset value not more than a preset target temperature. The roasting machine according to claim 2, which is determined as follows.
  4.  前記処理回路は、前記焙煎温度の時間的変化を指定する焙煎プロファイル、前記焙煎動作の開始からの経過時間、および前記焙煎温度を前記パラメータとして前記記憶装置に記憶させ、
     前記電源の電圧が回復して再起動が完了した後、前記処理回路は、前記焙煎継続条件を満たす場合には、前記焙煎プロファイルおよび前記経過時間に基づいて前記焙煎動作を再開する、請求項2または3のいずれか1項に記載の焙煎機。
    The processing circuit stores a roasting profile that specifies a temporal change in the roasting temperature, an elapsed time from the start of the roasting operation, and the roasting temperature as the parameters in the storage device,
    After the voltage of the power source is recovered and the restart is completed, the processing circuit resumes the roasting operation based on the roasting profile and the elapsed time when the roasting continuation condition is satisfied. The roasting machine according to any one of claims 2 and 3.
  5.  外部の端末装置と通信する通信回路をさらに備え、
     前記通信回路は、前記焙煎動作中、定期的に前記端末装置に信号を送信し、前記電源の電圧が回復して再起動が完了した後、前記記憶装置に前記パラメータが記憶されている場合には前記端末装置に起動完了通知を送信し、
     前記通信回路が前記端末装置から焙煎継続要求を受信したときは、前記処理回路は前記焙煎動作を再開する、請求項1から4のいずれか1項に記載の焙煎機。
    A communication circuit that communicates with an external terminal device;
    The communication circuit periodically transmits a signal to the terminal device during the roasting operation, and the parameter is stored in the storage device after the power supply voltage is recovered and the restart is completed. Sends a startup completion notification to the terminal device,
    The roasting machine according to any one of claims 1 to 4, wherein when the communication circuit receives a roasting continuation request from the terminal device, the processing circuit restarts the roasting operation.
  6.  前記通信回路が前記端末装置から焙煎終了要求を受信したとき、または、前記起動完了通知の送信時刻から起算して所定時間内に前記端末装置からの要求を受信しなかったときは、前記処理回路は前記焙煎動作を終了する、請求項5に記載の焙煎機。 When the communication circuit receives a roasting end request from the terminal device, or when the request from the terminal device is not received within a predetermined time from the transmission time of the activation completion notification, the processing The roasting machine according to claim 5, wherein the circuit ends the roasting operation.
  7.  前記処理回路は、前記焙煎動作が終了した後、前記記憶装置に記憶されている前記パラメータを消去する、請求項1から6のいずれか1項に記載の焙煎機。 The roasting machine according to any one of claims 1 to 6, wherein the processing circuit deletes the parameter stored in the storage device after the roasting operation is completed.
PCT/JP2017/025865 2017-01-17 2017-07-18 Roasting machine WO2018135021A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017005826 2017-01-17
JP2017-005826 2017-01-17
JP2017102207A JP6706739B2 (en) 2017-01-17 2017-05-24 Roasting machine
JP2017-102207 2017-05-24

Publications (1)

Publication Number Publication Date
WO2018135021A1 true WO2018135021A1 (en) 2018-07-26

Family

ID=62907854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025865 WO2018135021A1 (en) 2017-01-17 2017-07-18 Roasting machine

Country Status (1)

Country Link
WO (1) WO2018135021A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109007914A (en) * 2018-09-19 2018-12-18 云南兴农家烘烤设备股份有限公司 A kind of dryer
WO2020127350A1 (en) * 2018-12-17 2020-06-25 Société des Produits Nestlé S.A. Method for roasting coffee beans
JP7356502B2 (en) 2018-12-17 2023-10-04 ソシエテ・デ・プロデュイ・ネスレ・エス・アー How to roast coffee beans

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04333120A (en) * 1991-05-08 1992-11-20 Sony Corp Information processor
JP2001522593A (en) * 1997-11-11 2001-11-20 フレッシュ ロースト システムズ インコーポレイテッド Roasting system
JP2009268428A (en) * 2008-05-09 2009-11-19 Key Coffee Inc Roasting system and roasting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04333120A (en) * 1991-05-08 1992-11-20 Sony Corp Information processor
JP2001522593A (en) * 1997-11-11 2001-11-20 フレッシュ ロースト システムズ インコーポレイテッド Roasting system
JP2009268428A (en) * 2008-05-09 2009-11-19 Key Coffee Inc Roasting system and roasting method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109007914A (en) * 2018-09-19 2018-12-18 云南兴农家烘烤设备股份有限公司 A kind of dryer
WO2020127350A1 (en) * 2018-12-17 2020-06-25 Société des Produits Nestlé S.A. Method for roasting coffee beans
JP7356502B2 (en) 2018-12-17 2023-10-04 ソシエテ・デ・プロデュイ・ネスレ・エス・アー How to roast coffee beans
JP7425063B2 (en) 2018-12-17 2024-01-30 ソシエテ・デ・プロデュイ・ネスレ・エス・アー How to roast coffee beans

Similar Documents

Publication Publication Date Title
WO2018135021A1 (en) Roasting machine
US7473872B2 (en) Cooking tool
US20180063897A1 (en) Cooking apparatus and method of controlling the same
JP6719055B2 (en) Hot air roasting machine
JP6706739B2 (en) Roasting machine
US11493222B2 (en) Advanced monitoring of an HVAC system
CN106050710A (en) Control method and device for head shaking system, head shaking system, fan and fan heater
CN105157237B (en) The control method and control device of heater
WO2018105163A1 (en) Hot air roasting machine
JP2007031942A (en) Toilet equipment
US11877373B2 (en) Cooking apparatus and control method thereof
JP4448083B2 (en) Induction heating cooker
WO2013030719A1 (en) Appliance control device
JP2012235813A (en) Electrical heater
JP2005050725A (en) Induction heating cooker
CN203812033U (en) Multi-direction sensing power supply control device
JP5359065B2 (en) Electric rice cooker
KR20190106579A (en) Apparatus for both humidification and air cleaning and method thereof
US20230402883A1 (en) Wireless power transmission device, method for controlling wireless power transmission device, and wireless power system
JP3173458B2 (en) Electric rice cooker
KR102493846B1 (en) Apparatus for both humidification and air cleaning and method thereof
JP6357399B2 (en) State determination method and electrical equipment
JP2012040292A (en) Electric rice cooker
KR0170879B1 (en) Method and apparatus of auto-controlling for an air heater
CN116880610A (en) Intelligent pre-starting control method and system for temperature controller and household appliance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893210

Country of ref document: EP

Kind code of ref document: A1