WO2018134501A2 - High-permeability turbomachine combustion chamber - Google Patents

High-permeability turbomachine combustion chamber Download PDF

Info

Publication number
WO2018134501A2
WO2018134501A2 PCT/FR2018/050082 FR2018050082W WO2018134501A2 WO 2018134501 A2 WO2018134501 A2 WO 2018134501A2 FR 2018050082 W FR2018050082 W FR 2018050082W WO 2018134501 A2 WO2018134501 A2 WO 2018134501A2
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
combustion chamber
walls
combustion
orifices
Prior art date
Application number
PCT/FR2018/050082
Other languages
French (fr)
Inventor
Nicolas SAVARY
Lorenzo Huacan Hernandez
Original Assignee
Safran Helicopter Engines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Helicopter Engines filed Critical Safran Helicopter Engines
Publication of WO2018134501A2 publication Critical patent/WO2018134501A2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/52Toroidal combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03041Effusion cooled combustion chamber walls or domes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03042Film cooled combustion chamber walls or domes

Definitions

  • the invention relates to a turbomachine combustion chamber.
  • the invention relates to a wall of a combustion chamber and the configuration of this wall in order to obtain specific pressure drops in order to influence the specific consumption of the turbomachine equipped with this chamber.
  • a turbomachine combustion chamber comprises a closed chamber, housed in a chamber housing of this turbomachine, in which a mixture of air and fuel is produced. This mixture is burned in this chamber to produce a high energy gas for driving downstream of the combustion chamber one or more turbine stages of the turbomachine.
  • a combustion chamber comprises at least a first wall having a substantially axial orientation with respect to the general orientation of the chamber, a second transverse bottom wall which is contiguous with the at least one first wall and through of which is arranged a fuel injection system, and air supply means of this chamber.
  • the chamber housing in which the chamber is housed is supplied with air by the compressors of the turbomachine.
  • the air flow introduced into the chamber casing may or may not completely pass through the combustion chamber.
  • a minor portion of the airflow can be taken from the housing for cooling the turbine blades and thus be diverted from the combustion chamber.
  • a turbomachine may comprise a plurality of individual combustion chambers angularly distributed regularly around the axis of the turbomachine, or on the contrary a single annular combustion chamber arranged around the axis of the turbomachine.
  • each combustion chamber has a single first annular wall which is closed by the second bottom transverse wall.
  • the single combustion chamber comprises first substantially annular and coaxial inner and outer walls and a second transverse bottom wall, through which is arranged an injection system, and which is contiguous with the inner walls. and outdoor.
  • the air supply means of the chamber generally comprise holes of large diameter, which are, with respect to the flow direction of the gases, arranged in an upstream zone of the chamber in the vicinity of the fuel injection system, and which are intended to allow a mixture of air with the fuel from the injection system to allow the formation of a flammable fuel mixture.
  • this cooling is carried out by means of a large number of small diameter holes made only in a length-limited section of the first wall (s).
  • the air entering the combustion chamber through these holes forms a relatively cold film on the hot side of each wall, thus protecting the wall from the heat of combustion.
  • cooling holes Such an arrangement is described by the document FR-2.889.732-1 -A
  • most or all of the air introduced into the turbine engine Chamber casing therefore enters the combustion chamber through the various holes, and crosses it.
  • the air is used as an oxidizer to be mixed with the fuel, or is used as the cooling air of the walls of the combustion chamber. It further ensures, in a downstream zone of the so-called dilution zone, the dilution of the combustion gases in order to limit the temperature of these gases at the outlet of the combustion chamber.
  • the pressure drop of a combustion chamber is an intrinsic feature of the combustion chamber, which is independent of the presence or absence in the chamber housing of a leakage flow for cooling the turbine blades of the combustion chamber. the turbomachine. Indeed, the pressure drop only relates to the flow of air passing through the combustion chamber.
  • the pressure ratio between the pressure of the air passing through the combustion chamber at the combustion chamber inlet and the pressure of the air passing through the combustion chamber at the outlet of the combustion chamber thus defines the pressure drop of the combustion chamber. combustion.
  • a minimum of pressure drop is necessary to create strong aerodynamic flow structures, to atomize the liquid fuel in the injection system, then mix the fuel, the oxidizer and the flue gases within the chamber of combustion. In addition, this loss of charge makes it possible to stabilize the flame in the combustion chamber.
  • the pressure drop of a current combustion chamber is about 3 to 5% for aeronautical applications.
  • Such a pressure drop ensures the containment of the flame inside the combustion chamber by the production of high velocity gas flowing through the orifices of the chamber, which prevent any rise of flame.
  • the flame speed is an order of magnitude less than that of the gas passing through the orifices, so that the flame can not go through them.
  • the pressure drop also has an impact on the specific fuel consumption of the turbomachine.
  • a decrease of 1% in the pressure drop can lead to a 0.4% decrease in the specific kerosene consumption, and a 2.5% decrease in the pressure drop from a 3.5% loss of load can result in a 1% decrease in specific fuel consumption.
  • the invention aims to provide a combustion chamber having such characteristics.
  • the invention proposes a turbomachine combustion chamber, configured to be housed in a chamber casing of said turbomachine supplied with air, said combustion chamber being delimited by at least a first wall of substantially axial orientation and a second transverse bottom wall which is contiguous with said at least one first wall, and through which is arranged an injection system, characterized in that all the walls of said chamber are permeable and comprise only orifices of the same type, having a section not exceeding 0.8 mm 2 .
  • a combustion chamber equipped with such walls makes it possible to ensure that the supply air of said combustion chamber which does not not pass through the injection system necessarily passes through a permeable wall of this type.
  • the orifices are distributed over the walls of said chamber at a density configured to allow the passage through said orifices of between 40% and 100% of the flow rate of an air flow passing through said chamber. room 18.
  • Such walls thus make it possible to ensure the passage through the chamber of between 40% and 100% of the flow rate of air supplying the combustion chamber.
  • the injection system comprises air passage means such as holes or air inlets of an aerodynamic injection system
  • the remaining flow is at say between 0 and 60% of the air flow, passes through the injection system.
  • the walls provide 100% of the passage of the air flow.
  • the walls are pierced walls whose orifices consist of a multitude of holes whose diameter does not exceed 1 mm,
  • the walls are made of a porous material
  • the walls are made of a metal foam whose orifices consist of pores with a section less than 0.8 mm 2 ,
  • the pore section of said foam does not exceed 0.2 mm 2 ,
  • the combustion chamber comprises first inner and outer annular walls contiguous with an annular bottom wall whose injection system comprises a centrifugal injection wheel,
  • the injection system is an aerodynamic injection system comprising aerodynamic injectors configured to produce coaxial vortex flows to said injectors having a high intensity, the injection system is a mechanical injection system, and
  • the walls are devoid of primary holes and dilution.
  • the invention also relates to a turbomachine comprising a combustion chamber of the type described above.
  • FIG. 1 is an overall view in axial section of a turbomachine according to a prior art
  • FIG. 2 is a detail half-view in axial section of a combustion chamber of the turbomachine of FIG. 1;
  • FIG. 3 is a developed view of a section of the wall of the combustion chamber of FIG. 2;
  • FIG. 4 is a half-view of detail in axial section of a combustion chamber according to the invention.
  • FIG. 5 is a developed view of any section of one of the walls of the combustion chamber of FIG. 4.
  • a turbomachine more specifically in the form of a turbine engine 10, is schematically illustrated for explanatory purposes in FIG.
  • This turbine engine 10, of axis A comprises, in the flow direction F of the gases passing therethrough, an axial compressor 12 comprising three compression stages 12a, 12b, 12c, a centrifugal compressor 14, a casing 1 6 of a chamber combustion chamber receiving an annular combustion chamber 18, a first axial turbine 20 having two stages 20a, 20b, and a second axial turbine 22 said power which is a free turbine and which has two stages 22a, 22b.
  • the turbine engine 10 comprises a first rotary shaft 24 which connects the rotor of the axial compressor 12, the rotor of the centrifugal compressor 14, and the rotor of the axial turbine 20, so that the expansion of the working fluid in this Axial turbine 20 downstream of the combustion chamber 18 serves to actuate the compressors 12 and 14 upstream of the combustion chamber 18.
  • the turbine engine 10 also comprises a second rotary shaft 26 which comprises the rotor of the turbine 22 power.
  • the compression of the working fluid in the axial compressors 12 and centrifugal 14, followed by a heating of the working fluid in the combustion chamber 18, and its expansion in the axial turbines 20 and 22, allow the conversion of a part the thermal energy introduced by the combustion into the combustion chamber 18 in mechanical work extracted by the power turbine 22.
  • the driving fluid is air, to which is added and in which is burned a fuel in the combustion chamber 18, such as, for example, kerosene.
  • FIG. 2 shows a combustion chamber 18 according to the state of the art.
  • This combustion chamber 18 is substantially annular and has an inner wall 28 and an outer wall 30, also annular and concentric. Each annular wall 28, 30 is oriented axially along the axis A of the turbine engine 10 and extends to an outlet 32 of the chamber 18 through which the combustion gases exit.
  • the combustion chamber 18 comprises a bottom wall 34, arranged transversely with respect to the inner and outer annular walls 28 and 30, which joins these walls 28, 30 and which closes an upstream end of the chamber 1 8. injection 36 is arranged through this bottom wall 34.
  • the bottom wall 34 is annular and is arranged around the shaft 24.
  • the injection system 36 comprises an injection wheel 38 which is carried by the shaft 24 and whose openings 40 open opposite an annular opening 42 formed in the bottom wall 34 so as to deliver fuel to the chamber 1 8.
  • the combustion chamber 18 can be divided into a primary zone 18a, in which the injection system 36 is located, and a dilution zone 18b, located downstream of the primary zone 18a with respect to the direction of the injected fuel.
  • the combustion chamber 1 8 has a bend 44 to limit its axial size. This type of combustion chamber is widely known in the state of the art, and is particularly widespread among turbine engines similar to that of Figure 1 for which axial size is an important criterion.
  • the feed air of the chamber 1 8 is derived from the centrifugal compressor 14.
  • the air opens into the casing 1 6 chamber through a rectifier 46, then it enters the combustion chamber 18 by the annular opening 42 of the injection system 36 and by different orifices formed in the walls 28, 30 of the combustion chamber.
  • the walls 28, 30 of the combustion chamber 18 have three different types of holes.
  • FIG. 3 shows the development of a section of one of the walls
  • the section 30a has three sizes of through holes corresponding to the different zones of the chamber 18.
  • the section 30a has primary holes 48 of large size allowing the passage of air used to feed the combustion of the injected fuel. by the injection wheel 38.
  • the passage of air entering through the primary holes 48 has been represented by double arrows in FIG. 2.
  • the wall 30 includes holes called dilution holes 50, also of large size although smaller than the primary holes 48, allowing the passage of air for diluting the combustion gases resulting from the combustion of the fuel injected by the injection wheel 38 with the air entering through the primary holes 48
  • the passage of air entering through the dilution holes 50 has also been represented by double arrows in FIG. 2.
  • the wall 30 has cooling holes 52 of small size, allowing the passage of air for cooling the hot side of the wall 30.
  • the three types of holes 48, 50, 52 differ in particular in their different sizes.
  • the primary holes 48 and the dilution holes 50 have diameters substantially larger than the cooling holes 52. Indeed, while the latter, distributed in large numbers on the surface of the walls each have a reduced diameter, the diameter of which is greater. In the order of 1 mm, the dilution holes 50 have diameters of the order of 5 mm and more. Each type of hole thus has a different function from the other holes.
  • the primary holes 48 make it possible to produce the fuel mixture by a massive influx of air to the fuel injected by the injection wheel 38.
  • the air penetrating through the dilution holes 50 forms jets penetrating deeply into the combustion chamber 18 to mix with the combustion gases in the dilution zone 18b.
  • the air entering the chamber housing 16 through the holes 52 forms a relatively cold air film which remains adjacent to the interior of the wall 30a to protect it from the heat of the combustion gases.
  • the section 30a of the wall 30, at the level of the primary holes 48 is not perforated and therefore does not have any holes 52.
  • the holes 52 extend only over a well-defined section of the section 30a. and in any case not on the whole of the room 18.
  • This design gives satisfaction in terms of combustion quality, but it is however not optimized in terms of specific engine consumption.
  • the pressure ratio between the pressure of the air passing through the combustion chamber 18 at the inlet of the combustion chamber 18, and the pressure of the air passing through the combustion chamber 18 at the outlet of the combustion chamber 18 defines the pressure drop of the combustion chamber 18.
  • This characteristic is an intrinsic characteristic of the combustion chamber, regardless of the presence or absence of a cooling device of the turbine blades.
  • the turbomachine of FIG. 2, for example, does not include a device for cooling the turbine blades.
  • the pressure drop depends on the conformation of the walls of the combustion chamber 18.
  • a minimum of pressure drop is necessary because it contributes to the creation of strong aerodynamic flow structures, including vortex flows, allowing, d on the one hand, to atomize the liquid fuel in the injection system, then to mix fuel and oxidizer in the primary zone 18a. These flows make it possible, on the other hand, to mix the air with the burnt gases within the dilution zone 18b of the combustion chamber. These flows finally allow to stabilize the flame in the combustion chamber.
  • the pressure drop of a current combustion chamber is about 3 to 5% for aeronautical applications.
  • Such a pressure drop ensures the containment of the flame inside the combustion chamber by the production of high velocity gas flowing through the orifices of the chamber, which prevent any rise of flame.
  • the flame speed is an order of magnitude less than that of the gas passing through the orifices, so that the flame can not go through them.
  • the pressure drop also has an impact on the specific fuel consumption of the turbomachine.
  • a decrease of 1% in the pressure drop can lead to a 0.4% decrease in specific consumption of kerosene, and a 2.5% decrease in the pressure drop from a loss. load of 3.5% can result in a 1% decrease in specific kerosene consumption.
  • the invention provides a chamber 18 of the type described above, characterized in that all the walls 28, 30, 34 of said chamber 48 are permeable and have orifices 54 having a section not exceeding 0.8 mm 2 .
  • the orifices are distributed on the walls 28, 30, 34 of said chamber in a distribution density configured to allow passage through said orifices 52 between 40% and 100% of the flow rate of an air flow. passing through the chamber 18, the totality of the remaining air flow passing through the injection system 36.
  • the flow rate through the injection system 36 thus corresponds to 0% and 60% of the flow rate of the air flow passing through the chamber 18. When the flow rate through the injection system 36 is zero, all of the air passing through the chamber 18 thus passes entirely through the walls 28, 30, 34.
  • the chamber 18 is disposed in the chamber casing 1 6 in a similar manner to the chamber 18 previously described with reference to the state of the chamber. technique, and is fed in the same way by an injection wheel 38.
  • the chamber casing 1 6 is devoid of an air sampling device intended to ensure the cooling of the turbine blades, and that, therefore, the entire air flow supplying the chamber housing 1 6 passes through the chamber 18.
  • This configuration is not limiting of the invention.
  • the combustion chamber 18 according to the invention differs from the combustion chamber 18 of the prior art in that it has only one type of orifices 54, unlike the three types of holes previously described. Moreover, these orifices 54 extend over all the walls 28, 30, 34 of the chamber 18.
  • the orifices 54 extend in a distribution density which is preferably uniform, regardless of the wall 28, 30, 34 provided therewith.
  • the orifices 54 could be distributed according to different densities through walls 28, 30, 34 provided that, generally, the orifices 54 do not have a section exceeding 0.8 mm 2 .
  • the dilution holes being absent, the dilution of the combustion gases is carried out almost exclusively by the air entering the combustion chamber 18 through the orifices 54, the air of the adjacent the walls 28, 30, 34 effectively mixing with the combustion gases.
  • the proportion of the air flow that passes through these orifices 54 depends essentially on the configuration of the injection system 36.
  • a portion of the air flow passes through the opening 42 around the injection wheel 38, in a non-zero proportion and less than 60% and the other part of the air flow, between 40% and 100% of the air flow, passes through the orifices 54.
  • a different distribution of the flow can be obtained with another injection system 36.
  • the injection system 36 could be a mechanical injection system comprising a plurality of injectors (not shown) regularly distributed around the bottom wall 34, this bottom wall 34 being naturally provided with the orifices 54 In this case, the bottom wall 34 having no aperture of the type of the opening 42 previously described, the entire air flow, or 100% of this flow, would pass through the orifices 54.
  • the injection system 36 could also, alternatively, comprise aerodynamic injectors configured to produce coaxial vortex flows to said injectors having a high intensity.
  • a type of injector comprises, in known manner, a fuel supply conduit which opens into a venturi device supplied with pressurized air in order to produce a fuel mixture.
  • Such an injector therefore comprises an air supply. Therefore, with such a system injection, part of the air flow passes through the aerodynamic injectors, and the other part of the air flow through the orifices 54, in a proportion between 40 and 100%.
  • the maximum section of 0.8 mm 2 of the orifices 54 advantageously allows the flame to be confined inside the combustion chamber 18, avoiding any rise of flame in the space between the chamber 18 and the walls of the chamber casing 1 6. Indeed, a section of the orifices 54 not exceeding 0.8 mm 2 corresponds to a wedging diameter of the flame which guarantees its extinction through said orifice 54.
  • the walls 28, 30, 34 are pierced walls whose orifices consist of a multitude holes 54 whose diameter does not exceed 1 mm. This diameter corresponds substantially to the section not exceeding 0.8 mm 2 .
  • the diameter of each bore does not exceed 0.5 mm, which corresponds substantially to a section of 0.2 mm 2 .
  • the density of the bores is increased in return so as to achieve a portion of the air flow passing through the orifices 54, preferably always between 40% and 100%, all by improving the cooling of the chamber due to the presence of a greater number of holes 54.
  • the holes 54 may be oriented through the thickness of the walls 28, 30, 34 in specific directions depending on the zones 18a or 18b of the combustion chamber 18 in which they are located. For example, in the area 18b, the holes 54 may be oriented to print a helical path to the air entering the combustion chamber 18 through these holes 54 to dilute the combustion gases in a homogeneous and effective manner. This configuration makes it possible to dispense with specific dilution holes of large diameter, and thus avoids the drawbacks associated therewith.
  • the orifices 54 are not limited to bores. Indeed, according to another embodiment of the invention, the walls 28, 30, 34 may be made of a porous material.
  • This porous material can take all known forms of the state of the art capable of providing a porous wall 28, 30, 34.
  • a porous wall can be obtained from a laminated metal mesh or grids superimposed on each other, or a combination of laminates and grids.
  • the walls 28, 30, 34 are made of a metal foam whose orifices consist of pores with a cross-section less than 0.8 mm 2 , this foam meeting the same flow criteria and same flame-clamping requirements as the multi-pierced walls 28, 30, 34 previously described.
  • the pore section of said foam may not exceed 0.2 mm 2 , so that, as previously, a proportion of 40 to 100% of the air flow passes preferably by the walls 28, 30, 34, while improving the cooling of the chamber due to the presence of a greater number of holes 54.
  • the walls 28, 30, 34 can be made from a combination of the types of orifices 54 which have been previously described, for example by producing sandwich-type walls from multi-pierced sheets stacked with foams. metal, or any other type of combination.
  • the invention therefore makes it possible to propose a combustion chamber 18 with high permeability guaranteeing stable and efficient combustion, while allowing a reduction in the specific consumption of a turbomachine associated with such a chamber 18.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

The invention relates to a turbomachine combustion chamber, configured to be housed in a chamber housing of said turbomachine, which housing is provided with an air supply, said combustion chamber being delimited by at least a first substantially axial wall (28, 30) and a second transverse bottom wall (34) adjoining the at least first wall (28, 30) and through which an injection system is arranged, characterised in that all the walls of said chamber are permeable and have apertures (54) with a cross-section not exceeding 0.8 mm2.

Description

Chambre de combustion de turbomachine à haute perméabilité  Turbomachine combustion chamber with high permeability
L'invention se rapporte à une chambre de combustion de turbomachine. En particulier, l'invention concerne une paroi d'une chambre de combustion et la configuration de cette paroi en vue d'obtenir des pertes de charge déterminées dans le but d'influer sur la consommation spécifique de la turbomachine équipée de cette chambre. The invention relates to a turbomachine combustion chamber. In particular, the invention relates to a wall of a combustion chamber and the configuration of this wall in order to obtain specific pressure drops in order to influence the specific consumption of the turbomachine equipped with this chamber.
ETAT DE LA TECHNIQUE ANTERIEURE STATE OF THE PRIOR ART
Une chambre de combustion de turbomachine comprend une enceinte fermée, logée dans un carter de chambre de cette turbomachine, au sein de laquelle est réalisé un mélange d'air et de carburant. Ce mélange est brûlé dans cette enceinte afin de produire un gaz hautement énergétique destiné à entraîner en aval de cette chambre de combustion un ou plusieurs étages de turbines de la turbomachine. A turbomachine combustion chamber comprises a closed chamber, housed in a chamber housing of this turbomachine, in which a mixture of air and fuel is produced. This mixture is burned in this chamber to produce a high energy gas for driving downstream of the combustion chamber one or more turbine stages of the turbomachine.
Pour assurer son fonctionnement, une chambre de combustion comporte au moins une première paroi ayant une orientation sensiblement axiale par rapport à l'orientation générale de la chambre, une deuxième paroi transversale de fond qui est jointive avec ladite au moins une première paroi et au travers de laquelle est agencé un système d'injection de carburant, et des moyens d'alimentation en air de cette chambre.  To ensure its operation, a combustion chamber comprises at least a first wall having a substantially axial orientation with respect to the general orientation of the chamber, a second transverse bottom wall which is contiguous with the at least one first wall and through of which is arranged a fuel injection system, and air supply means of this chamber.
A cet effet, le carter de chambre dans lequel est logée la chambre est alimenté en air par les compresseurs de la turbomachine. Selon les configurations de la turbomachine, le flux d'air introduit dans le carter de chambre peut ou non traverser en totalité la chambre de combustion. Par exemple, une partie mineure du flux d'air peut être prélevé dans le carter à des fins de refroidissement des aubes de turbine et être ainsi dévié de la chambre de combustion. Une turbomachine peut comporter une pluralité de chambres de combustion individuelles réparties angulairement de manière régulière autour de l'axe de la turbomachine, ou au contraire une seule chambre de combustion annulaire agencée autour de l'axe de la turbomachine. Dans le premier cas, chaque chambre de combustion comporte une seule première paroi annulaire qui est fermée par la deuxième paroi transversale de fond. Dans le deuxième cas, l'unique chambre de combustion comporte des premières parois intérieure et extérieure sensiblement annulaires et coaxiales et une deuxième paroi transversale de fond, au travers de laquelle est agencé un système d'injection, et qui est jointive avec les parois intérieure et extérieure. For this purpose, the chamber housing in which the chamber is housed is supplied with air by the compressors of the turbomachine. Depending on the configurations of the turbomachine, the air flow introduced into the chamber casing may or may not completely pass through the combustion chamber. For example, a minor portion of the airflow can be taken from the housing for cooling the turbine blades and thus be diverted from the combustion chamber. A turbomachine may comprise a plurality of individual combustion chambers angularly distributed regularly around the axis of the turbomachine, or on the contrary a single annular combustion chamber arranged around the axis of the turbomachine. In the first case, each combustion chamber has a single first annular wall which is closed by the second bottom transverse wall. In the second case, the single combustion chamber comprises first substantially annular and coaxial inner and outer walls and a second transverse bottom wall, through which is arranged an injection system, and which is contiguous with the inner walls. and outdoor.
Les moyens d'alimentation en air de la chambre comprennent généralement des trous de grand diamètre, qui sont, par rapport au sens d'écoulement des gaz, agencés dans une zone amont de la chambre à proximité du système d'injection de carburant, et qui sont destinés à permettre un mélange de l'air avec le carburant issu du système d'injection pour permettre la constitution d'un mélange carburé inflammable.  The air supply means of the chamber generally comprise holes of large diameter, which are, with respect to the flow direction of the gases, arranged in an upstream zone of the chamber in the vicinity of the fuel injection system, and which are intended to allow a mixture of air with the fuel from the injection system to allow the formation of a flammable fuel mixture.
Par ailleurs, afin d'améliorer le rendement thermique des turbomachines, la température à l'intérieur de leur chambre de combustion tend à être de plus en plus élevée. L'élévation des températures entraîne des contraintes thermomécaniques considérables sur les parois des chambres. Ces parois doivent donc être refroidies pour limiter l'impact de ces contraintes et améliorer leur durée de vie.  Moreover, in order to improve the thermal efficiency of the turbomachines, the temperature inside their combustion chamber tends to be higher and higher. The rise in temperatures leads to considerable thermomechanical stresses on the walls of the rooms. These walls must be cooled to limit the impact of these constraints and improve their life.
Conventionnellement, ce refroidissement est effectué par le biais d'un grand nombre de trous de petit diamètre réalisés seulement dans un tronçon de longueur limitée de la ou les première(s) paroi(s). L'air entrant dans la chambre de combustion à travers ces trous, dits trous de refroidissement, forme un film relativement froid du côté chaud de chaque paroi, protégeant ainsi la paroi de la chaleur de combustion. Un tel agencement est décrit par le document FR-2.889.732-1 -A En résumé, selon la configuration de la turbomachine et en fonction de la présence ou de l'absence d'un débit de fuite destiné à refroidir les aubes de turbine de la turbomachine, la majeure partie ou la totalité de l'air introduit dans le carter de chambre pénètre donc dans la chambre de combustion par l'intermédiaire des différents trous, et la traverse. L'air est utilisé comme comburant pour être mélangé avec le carburant, ou est utilisé comme air de refroidissement des parois de la chambre de combustion. Il permet de plus d'assurer, dans une zone aval de la chambre dite zone de dilution, la dilution des gaz de combustion afin de limiter la température de ces gaz en sortie de la chambre de combustion. Conventionally, this cooling is carried out by means of a large number of small diameter holes made only in a length-limited section of the first wall (s). The air entering the combustion chamber through these holes, called cooling holes, forms a relatively cold film on the hot side of each wall, thus protecting the wall from the heat of combustion. Such an arrangement is described by the document FR-2.889.732-1 -A In summary, depending on the configuration of the turbomachine and depending on the presence or absence of a leakage flow for cooling the turbomachine turbine blades, most or all of the air introduced into the turbine engine Chamber casing therefore enters the combustion chamber through the various holes, and crosses it. The air is used as an oxidizer to be mixed with the fuel, or is used as the cooling air of the walls of the combustion chamber. It further ensures, in a downstream zone of the so-called dilution zone, the dilution of the combustion gases in order to limit the temperature of these gases at the outlet of the combustion chamber.
La perte de charge d'une chambre de combustion est une caractéristique intrinsèque de la chambre de combustion, qui est indépendante de la présence ou de l'absence dans le carter de chambre d'un débit de fuite destiné à refroidir les aubes de turbine de la turbomachine. En effet, la perte de charge ne concerne que le débit d'air traversant la chambre de combustion.  The pressure drop of a combustion chamber is an intrinsic feature of the combustion chamber, which is independent of the presence or absence in the chamber housing of a leakage flow for cooling the turbine blades of the combustion chamber. the turbomachine. Indeed, the pressure drop only relates to the flow of air passing through the combustion chamber.
Le rapport de pression entre la pression de l'air traversant la chambre de combustion en entrée de chambre de combustion et la pression de l'air traversant la chambre de combustion en sortie de chambre de combustion définit ainsi la perte de charge de la chambre de combustion. Un minimum de perte de charge est nécessaire à la création de structures d'écoulement aérodynamique fortes, permettant d'atomiser le carburant liquide dans le système d'injection, puis de mélanger le carburant, le comburant et les gaz brûlés au sein de la chambre de combustion. En outre, cette perte de charge permet de stabiliser la flamme dans la chambre de combustion.  The pressure ratio between the pressure of the air passing through the combustion chamber at the combustion chamber inlet and the pressure of the air passing through the combustion chamber at the outlet of the combustion chamber thus defines the pressure drop of the combustion chamber. combustion. A minimum of pressure drop is necessary to create strong aerodynamic flow structures, to atomize the liquid fuel in the injection system, then mix the fuel, the oxidizer and the flue gases within the chamber of combustion. In addition, this loss of charge makes it possible to stabilize the flame in the combustion chamber.
La perte de charge d'une chambre de combustion actuelle est d'environ 3 à 5% pour les applications aéronautiques. Une telle perte de charge garantit le confinement de la flamme à l'intérieur de la chambre de combustion par la production de gaz à vitesse élevée circulant au travers des orifices de la chambre, qui empêchent toute remontée de flamme. En effet, avec une telle perte de charge, la vitesse de flamme est d'un ordre de grandeur inférieur à celui des gaz traversant les orifices, de sorte que la flamme ne peut remonter à travers ceux-ci. The pressure drop of a current combustion chamber is about 3 to 5% for aeronautical applications. Such a pressure drop ensures the containment of the flame inside the combustion chamber by the production of high velocity gas flowing through the orifices of the chamber, which prevent any rise of flame. In Indeed, with such a pressure drop, the flame speed is an order of magnitude less than that of the gas passing through the orifices, so that the flame can not go through them.
La perte de charge a également un impact sur la consommation spécifique de carburant de la turbomachine. En l'occurrence, il existe une relation non linéaire entre la variation de perte de charge et la variation de la consommation spécifique de la turbomachine. A titre d'exemple non limitatif, une diminution de 1 % de la perte de charge peut entraîner une diminution de 0.4% de la consommation spécifique en kérosène, et une diminution de 2,5% de la perte de charge à partir d'une perte de charge de 3.5% peut entraîner une diminution de 1 % de la consommation spécifique en kérosène.  The pressure drop also has an impact on the specific fuel consumption of the turbomachine. In this case, there is a non-linear relationship between the variation of pressure drop and the variation of the specific consumption of the turbomachine. By way of non-limiting example, a decrease of 1% in the pressure drop can lead to a 0.4% decrease in the specific kerosene consumption, and a 2.5% decrease in the pressure drop from a 3.5% loss of load can result in a 1% decrease in specific fuel consumption.
Il existe donc un besoin de réduction de la perte de charge produite par la chambre de combustion, tout en maintenant celle-ci à un niveau minimum.  There is therefore a need for reducing the pressure drop produced by the combustion chamber, while keeping it at a minimum level.
L'invention vise à proposer une chambre de combustion présentant de telles caractéristiques.  The invention aims to provide a combustion chamber having such characteristics.
EXPOSÉ DE L'INVENTION STATEMENT OF THE INVENTION
Dans ce but, l'invention propose une chambre de combustion de turbomachine, configurée pour être logée dans un carter de chambre de ladite turbomachine alimenté en air, ladite chambre de combustion étant délimitée par au moins une première paroi d'orientation sensiblement axiale et une deuxième paroi transversale de fond qui est jointive avec ladite au moins une première paroi, et au travers de laquelle est agencé un système d'injection, caractérisée en ce que toutes les parois de ladite chambre sont perméables et comportent uniquement des orifices d'un même type, ayant une section ne dépassant pas 0.8 mm2. For this purpose, the invention proposes a turbomachine combustion chamber, configured to be housed in a chamber casing of said turbomachine supplied with air, said combustion chamber being delimited by at least a first wall of substantially axial orientation and a second transverse bottom wall which is contiguous with said at least one first wall, and through which is arranged an injection system, characterized in that all the walls of said chamber are permeable and comprise only orifices of the same type, having a section not exceeding 0.8 mm 2 .
Une chambre de combustion équipée de telles parois permet d'assurer que l'air d'alimentation de ladite chambre de combustion qui ne passe pas par le système d'injection passe nécessairement par une paroi perméable de ce type. A combustion chamber equipped with such walls makes it possible to ensure that the supply air of said combustion chamber which does not not pass through the injection system necessarily passes through a permeable wall of this type.
Selon une autre caractéristique de l'invention, les orifices sont répartis sur les parois de ladite chambre selon une densité configurée pour permettre le passage au travers desdits orifices d'entre 40% et 100% du débit d'un flux d'air traversant ladite chambre 18.  According to another characteristic of the invention, the orifices are distributed over the walls of said chamber at a density configured to allow the passage through said orifices of between 40% and 100% of the flow rate of an air flow passing through said chamber. room 18.
De telles parois permettent donc d'assurer le passage au travers de la chambre d'entre 40% et 100% du débit d'air alimentant la chambre de combustion. Dans le cas d'une chambre de combustion pour laquelle le système d'injection comporte des moyens de passage d'air comme des trous ou des arrivées d'air d'un système d'injection aérodynamique, le débit restant, c'est à dire entre 0 et 60% du débit d'air, passe par le système d'injection. Dans le cas particulier d'une chambre de combustion pour laquelle le système d'injection ne comporte pas de moyens de passage d'air, les parois assurent 100% du passage du débit d'air.  Such walls thus make it possible to ensure the passage through the chamber of between 40% and 100% of the flow rate of air supplying the combustion chamber. In the case of a combustion chamber for which the injection system comprises air passage means such as holes or air inlets of an aerodynamic injection system, the remaining flow is at say between 0 and 60% of the air flow, passes through the injection system. In the particular case of a combustion chamber for which the injection system does not include air passage means, the walls provide 100% of the passage of the air flow.
Selon d'autres caractéristiques de l'invention :  According to other features of the invention:
- les parois sont des parois percées dont les orifices sont constitués d'une multitude de perçages dont le diamètre ne dépasse pas 1 mm,  the walls are pierced walls whose orifices consist of a multitude of holes whose diameter does not exceed 1 mm,
- le diamètre de chaque perçage ne dépasse pas 0.5 mm,  - the diameter of each hole does not exceed 0.5 mm,
- les parois sont réalisées en un matériau poreux,  the walls are made of a porous material,
- les parois sont réalisées en une mousse métallique dont les orifices sont constitués de pores de section inférieure à 0.8 mm2, the walls are made of a metal foam whose orifices consist of pores with a section less than 0.8 mm 2 ,
- la section des pores de ladite mousse ne dépasse pas 0.2 mm2,the pore section of said foam does not exceed 0.2 mm 2 ,
- la chambre de combustion comporte des première parois annulaires intérieure et extérieure jointives avec une paroi de fond annulaire dont le système d'injection comporte une roue d'injection centrifuge, the combustion chamber comprises first inner and outer annular walls contiguous with an annular bottom wall whose injection system comprises a centrifugal injection wheel,
- le système d'injection est un système d'injection aérodynamique comportant des injecteurs aérodynamiques configurés pour produire des écoulements tourbillonnaires coaxiaux auxdits injecteurs ayant une intensité élevée, - le système d'injection est un système d'injection mécanique, etthe injection system is an aerodynamic injection system comprising aerodynamic injectors configured to produce coaxial vortex flows to said injectors having a high intensity, the injection system is a mechanical injection system, and
- les parois sont dépourvues de trous primaires et de dilution. - the walls are devoid of primary holes and dilution.
L'invention concerne aussi une turbomachine comportant une chambre de combustion du type décrit précédemment.  The invention also relates to a turbomachine comprising a combustion chamber of the type described above.
BREVE DESCRIPTION DES FIGURES BRIEF DESCRIPTION OF THE FIGURES
L'invention sera mieux comprise et d'autres détails, caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description qui suit faite à titre d'exemple non limitatif et en référence aux dessins annexés, dans lesquels : The invention will be better understood and other details, characteristics and advantages of the present invention will appear more clearly on reading the following description given by way of nonlimiting example and with reference to the accompanying drawings, in which:
- la figure 1 est une vue d'ensemble en coupe axiale d'une turbomachine selon un état antérieur de la technique ;  - Figure 1 is an overall view in axial section of a turbomachine according to a prior art;
- la figure 2 est une demi-vue de détail en coupe axiale d'une chambre de combustion de la turbomachine de la figure 1 ;  FIG. 2 is a detail half-view in axial section of a combustion chamber of the turbomachine of FIG. 1;
- la figure 3 est une vue développée d'un tronçon de la paroi de la chambre de combustion de la figure 2 ;  FIG. 3 is a developed view of a section of the wall of the combustion chamber of FIG. 2;
- la figure 4 est une demi-vue de détail en coupe axiale d'une chambre de combustion selon l'invention ;  - Figure 4 is a half-view of detail in axial section of a combustion chamber according to the invention;
- la figure 5 est une vue développée d'un tronçon quelconque d'une des parois de la chambre de combustion de la figure 4.  FIG. 5 is a developed view of any section of one of the walls of the combustion chamber of FIG. 4.
DESCRIPTION DETAILLEE Dans la description qui va suivre, des chiffres de référence identiques désignent des pièces identiques ou ayant des fonctions similaires. DETAILED DESCRIPTION In the following description, like reference numerals designate like parts or having similar functions.
Une turbomachine, plus spécifiquement sous la forme d'un turbomoteur 10, est illustrée schématiquement à titre explicatif sur la figure 1 . Ce turbomoteur 10, d'axe A, comporte, dans le sens d'écoulement F des gaz qui le traversent, un compresseur axial 12 comportant trois étages de compression 12a, 12b, 12c, un compresseur centrifuge 14, un carter 1 6 de chambre de combustion recevant une chambre de combustion annulaire 18, une première turbine axiale 20 comportant deux étages 20a, 20b, et une deuxième turbine axiale 22 dite de puissance qui est une turbine libre et qui comporte deux étages 22a, 22b. A turbomachine, more specifically in the form of a turbine engine 10, is schematically illustrated for explanatory purposes in FIG. This turbine engine 10, of axis A, comprises, in the flow direction F of the gases passing therethrough, an axial compressor 12 comprising three compression stages 12a, 12b, 12c, a centrifugal compressor 14, a casing 1 6 of a chamber combustion chamber receiving an annular combustion chamber 18, a first axial turbine 20 having two stages 20a, 20b, and a second axial turbine 22 said power which is a free turbine and which has two stages 22a, 22b.
En outre, le turbomoteur 10 comprend un premier arbre rotatif 24 qui relie le rotor du compresseur axial 12, le rotor du compresseur centrifuge 14, et le rotor de la turbine axiale 20, de manière à ce que la détente du fluide de travail dans cette turbine axiale 20 en aval de la chambre de combustion 18 serve à actionner les compresseurs 12 et 14 en amont de la chambre de combustion 18. Le turbomoteur 10 comprend également un second arbre rotatif 26 qui comprend le rotor de la turbine 22 de puissance.  In addition, the turbine engine 10 comprises a first rotary shaft 24 which connects the rotor of the axial compressor 12, the rotor of the centrifugal compressor 14, and the rotor of the axial turbine 20, so that the expansion of the working fluid in this Axial turbine 20 downstream of the combustion chamber 18 serves to actuate the compressors 12 and 14 upstream of the combustion chamber 18. The turbine engine 10 also comprises a second rotary shaft 26 which comprises the rotor of the turbine 22 power.
Ainsi, la compression du fluide de travail dans les compresseurs axial 12 et centrifuge 14, suivie par un réchauffement du fluide de travail dans la chambre de combustion 18, et sa détente dans les turbines axiales 20 et 22, permettent la conversion d'une partie de l'énergie thermique introduite par la combustion dans la chambre de combustion 18 en travail mécanique extrait par la turbine de puissance 22. Dans la turbomachine 10 illustrée, le fluide moteur est de l'air, auquel on ajoute et dans lequel on brûle un carburant dans la chambre de combustion 18, tel que, par exemple, du kérosène. Thus, the compression of the working fluid in the axial compressors 12 and centrifugal 14, followed by a heating of the working fluid in the combustion chamber 18, and its expansion in the axial turbines 20 and 22, allow the conversion of a part the thermal energy introduced by the combustion into the combustion chamber 18 in mechanical work extracted by the power turbine 22. In the illustrated turbine engine 10, the driving fluid is air, to which is added and in which is burned a fuel in the combustion chamber 18, such as, for example, kerosene.
On a représenté à la figure 2 une chambre de combustion 18 selon l'état de la technique. Cette chambre de combustion 18 est sensiblement annulaire et comporte une paroi intérieure 28 et une paroi extérieure 30, également annulaires et concentriques. Chaque paroi annulaire 28, 30 est orientée axialement selon l'axe A du turbomoteur 10 et s'étend jusqu'à une sortie 32 de la chambre 18 par laquelle sortent les gaz de combustion. La chambre de combustion 1 8 comporte une paroi de fond 34, agencée transversalement par rapport aux parois annulaires intérieure 28 et extérieure 30, qui assure la jonction de ces parois 28, 30 et qui ferme une extrémité amont de la chambre 1 8. Un système d'injection 36 est agencé au travers de cette paroi de fond 34. FIG. 2 shows a combustion chamber 18 according to the state of the art. This combustion chamber 18 is substantially annular and has an inner wall 28 and an outer wall 30, also annular and concentric. Each annular wall 28, 30 is oriented axially along the axis A of the turbine engine 10 and extends to an outlet 32 of the chamber 18 through which the combustion gases exit. The combustion chamber 18 comprises a bottom wall 34, arranged transversely with respect to the inner and outer annular walls 28 and 30, which joins these walls 28, 30 and which closes an upstream end of the chamber 1 8. injection 36 is arranged through this bottom wall 34.
Dans l'exemple de réalisation qui a été représenté à la figure 2, la paroi de fond 34 est annulaire et elle est agencée autour de l'arbre 24. Le système d'injection 36 comporte une roue d'injection 38 qui est portée par l'arbre 24 et dont des orifices 40 débouchent en regard d'une ouverture annulaire 42 pratiquée dans la paroi de fond 34 de manière à débiter du carburant dans la chambre 1 8.  In the exemplary embodiment which has been shown in FIG. 2, the bottom wall 34 is annular and is arranged around the shaft 24. The injection system 36 comprises an injection wheel 38 which is carried by the shaft 24 and whose openings 40 open opposite an annular opening 42 formed in the bottom wall 34 so as to deliver fuel to the chamber 1 8.
La chambre de combustion 18 peut être divisée en une zone primaire 18a, dans laquelle est situé le système d'injection 36, et une zone de dilution 1 8b, située en aval de la zone primaire 1 8a par rapport au sens du carburant injecté. Dans l'exemple illustré, la chambre de combustion 1 8 présente un coude 44 afin de limiter son encombrement axial. Ce type de chambre de combustion est largement connu de l'état de la technique, et est notamment très répandu parmi les turbomoteurs analogues à celui de la figure 1 pour lesquels l'encombrement axial est un critère important.  The combustion chamber 18 can be divided into a primary zone 18a, in which the injection system 36 is located, and a dilution zone 18b, located downstream of the primary zone 18a with respect to the direction of the injected fuel. In the illustrated example, the combustion chamber 1 8 has a bend 44 to limit its axial size. This type of combustion chamber is widely known in the state of the art, and is particularly widespread among turbine engines similar to that of Figure 1 for which axial size is an important criterion.
L'air d'alimentation de la chambre 1 8 est issu du compresseur centrifuge 14. L'air débouche dans le carter 1 6 de chambre par l'intermédiaire d'un redresseur 46, puis il pénètre dans la chambre de combustion 18 par l'ouverture annulaire 42 du système d'injection 36 et par différents orifices formés dans les parois 28, 30 de la chambre de combustion.  The feed air of the chamber 1 8 is derived from the centrifugal compressor 14. The air opens into the casing 1 6 chamber through a rectifier 46, then it enters the combustion chamber 18 by the annular opening 42 of the injection system 36 and by different orifices formed in the walls 28, 30 of the combustion chamber.
Dans l'exemple qui a été représenté à la figure 2, la totalité de l'air qui pénètre dans le carter de chambre 1 6 traverse la chambre de combustion 1 8, la turbomachine décrite ici ne comportant pas de dispositif de refroidissement des aubes de turbine permettant de prélever une partie du flux d'air pénétrant dans le carter de chambre 1 6 à destination des aubes de turbines, comme cela est connu de certaines configurations de l'état de la technique. In the example which has been shown in FIG. 2, all of the air entering the chamber casing 1 6 passes through the combustion chamber 1 8, the turbomachine described here having no cooling device for the blades turbine for taking a part of the air flow entering the chamber housing 1 6 to the turbine blades, as is known from certain configurations of the state of the art.
Les parois 28, 30 de la chambre de combustion 18 présentent trois types de trous différents.  The walls 28, 30 of the combustion chamber 18 have three different types of holes.
La figure 3 représente la développée d'un tronçon d'une des parois FIG. 3 shows the development of a section of one of the walls
28, 30 d'une chambre de combustion selon l'état de la technique, par exemple la développée d'un tronçon 30a de la paroi 30 dont les limites ont été représentées à la figure 2 par des traits pointillés. Le tronçon 30a présente trois tailles de trous de passage correspondant aux différentes zones de la chambre 18. Dans la zone primaire 18a, le tronçon 30a comporte des trous primaires 48 de grande dimension permettant le passage d'air servant à alimenter la combustion du carburant injecté par la roue d'injection 38. Le passage d'air entrant par les trous primaires 48 a été représenté par des flèches doubles sur la figure 2. Dans la zone de dilution 18b, la paroi 30 comporte des trous dits trous de dilution 50, également de grande dimension quoique de dimensions inférieure aux trous primaires 48, permettant le passage d'air servant à diluer les gaz de combustion résultant de la combustion du carburant injecté par la roue d'injection 38 avec l'air entrant par les trous primaires 48. Le passage d'air entrant par les trous de dilution 50 a aussi été représenté par des flèches doubles sur la figure 2. Enfin, dans une zone intermédiaire 18c interposée entre les zones primaire et de dilution 18a, 18b, ainsi que dans la zone de dilution 18b, la paroi 30 comporte des trous de refroidissement 52 de petite dimension, permettant le passage d'air servant à refroidir le côté chaud de la paroi 30. 28, 30 of a combustion chamber according to the state of the art, for example the development of a section 30a of the wall 30 whose boundaries have been shown in Figure 2 by dashed lines. The section 30a has three sizes of through holes corresponding to the different zones of the chamber 18. In the primary zone 18a, the section 30a has primary holes 48 of large size allowing the passage of air used to feed the combustion of the injected fuel. by the injection wheel 38. The passage of air entering through the primary holes 48 has been represented by double arrows in FIG. 2. In the dilution zone 18b, the wall 30 includes holes called dilution holes 50, also of large size although smaller than the primary holes 48, allowing the passage of air for diluting the combustion gases resulting from the combustion of the fuel injected by the injection wheel 38 with the air entering through the primary holes 48 The passage of air entering through the dilution holes 50 has also been represented by double arrows in FIG. 2. Finally, in an intermediate zone 18c interposed between the zones 18a, 18b, as well as in the dilution zone 18b, the wall 30 has cooling holes 52 of small size, allowing the passage of air for cooling the hot side of the wall 30.
Comme on le voit, les trois types de trous 48, 50, 52 se différentient notamment par leurs tailles différentes. Ainsi, les trous primaires 48 et les trous de dilution 50 présentent des diamètres sensiblement plus grands que les trous de refroidissement 52. En effet, tandis que ces derniers, distribués en grand nombre sur la surface des parois ont chacun un diamètre réduit, de l'ordre de 1 mm, les trous de dilution 50 ont des diamètres de l'ordre de 5 mm et plus. Chaque type de trou a ainsi une fonction différente des autres trous. Les trous primaires 48 permettent de réaliser le mélange carburé par un apport massif d'air au carburant injecté par la roue d'injection 38. L'air pénétrant à travers les trous de dilution 50 forme des jets pénétrant profondément dans la chambre de combustion 18 pour se mélanger avec les gaz de combustion dans la zone de dilution 18b. Enfin, l'air pénétrant dans le carter 1 6 de chambre qui traverse les trous 52 forme un film d'air relativement froid qui reste adjacent à l'intérieur de la paroi 30a afin de la protéger de la chaleur des gaz de combustion. On remarquera que le tronçon 30a de la paroi 30, au niveau des trous primaires 48, n'est pas perforé et ne comporte donc pas de trous 52. De même les trous 52 ne s'étendent que sur un tronçon bien déterminé du tronçon 30a et en tout état de cause pas sur la totalité de la chambre 18. As can be seen, the three types of holes 48, 50, 52 differ in particular in their different sizes. Thus, the primary holes 48 and the dilution holes 50 have diameters substantially larger than the cooling holes 52. Indeed, while the latter, distributed in large numbers on the surface of the walls each have a reduced diameter, the diameter of which is greater. In the order of 1 mm, the dilution holes 50 have diameters of the order of 5 mm and more. Each type of hole thus has a different function from the other holes. The primary holes 48 make it possible to produce the fuel mixture by a massive influx of air to the fuel injected by the injection wheel 38. The air penetrating through the dilution holes 50 forms jets penetrating deeply into the combustion chamber 18 to mix with the combustion gases in the dilution zone 18b. Finally, the air entering the chamber housing 16 through the holes 52 forms a relatively cold air film which remains adjacent to the interior of the wall 30a to protect it from the heat of the combustion gases. It will be noted that the section 30a of the wall 30, at the level of the primary holes 48, is not perforated and therefore does not have any holes 52. Similarly, the holes 52 extend only over a well-defined section of the section 30a. and in any case not on the whole of the room 18.
Cette conception donne satisfaction en termes de qualité de combustion, mais elle n'est toutefois pas optimisée en termes de consommation spécifique du moteur.  This design gives satisfaction in terms of combustion quality, but it is however not optimized in terms of specific engine consumption.
En effet, le rapport de pression entre la pression de l'air traversant la chambre de combustion 18 en entrée de la chambre de combustion 18, et la pression de l'air traversant la chambre de combustion 18 en sortie de la chambre de combustion 18 définit la perte de charge de la chambre de combustion 18. Cette caractéristique est une caractéristique intrinsèque de la chambre de combustion, indépendamment de la présence ou de l'absence d'un dispositif de refroidissement des aubes de turbine. La turbomachine de la figure 2, par exemple, ne comporte pas de dispositif de refroidissement des aubes de turbine.  Indeed, the pressure ratio between the pressure of the air passing through the combustion chamber 18 at the inlet of the combustion chamber 18, and the pressure of the air passing through the combustion chamber 18 at the outlet of the combustion chamber 18 defines the pressure drop of the combustion chamber 18. This characteristic is an intrinsic characteristic of the combustion chamber, regardless of the presence or absence of a cooling device of the turbine blades. The turbomachine of FIG. 2, for example, does not include a device for cooling the turbine blades.
Ainsi, la perte de charge dépend de la conformation des parois de la chambre de combustion 18. Un minimum de perte de charge est nécessaire, car il participe à la création de structures d'écoulement aérodynamique fortes, notamment des écoulements tourbillonnaires, permettant, d'une part, d'atomiser le carburant liquide dans le système d'injection, puis de mélanger carburant et comburant dans la zone primaire 18a. Ces écoulements permettent d'autre part de mélanger l'air aux gaz brûlés au sein de la zone de dilution 18b de la chambre de combustion. Ces écoulements permettent enfin de stabiliser la flamme dans la chambre de combustion. Thus, the pressure drop depends on the conformation of the walls of the combustion chamber 18. A minimum of pressure drop is necessary because it contributes to the creation of strong aerodynamic flow structures, including vortex flows, allowing, d on the one hand, to atomize the liquid fuel in the injection system, then to mix fuel and oxidizer in the primary zone 18a. These flows make it possible, on the other hand, to mix the air with the burnt gases within the dilution zone 18b of the combustion chamber. These flows finally allow to stabilize the flame in the combustion chamber.
La perte de charge d'une chambre de combustion actuelle est d'environ 3 à 5% pour les applications aéronautiques. Une telle perte de charge garantit le confinement de la flamme à l'intérieur de la chambre de combustion par la production de gaz à vitesse élevée circulant au travers des orifices de la chambre, qui empêchent toute remontée de flamme. En effet, avec une telle perte de charge, la vitesse de flamme est d'un ordre de grandeur inférieur à celui des gaz traversant les orifices, de sorte que la flamme ne peut remonter à travers ceux-ci.  The pressure drop of a current combustion chamber is about 3 to 5% for aeronautical applications. Such a pressure drop ensures the containment of the flame inside the combustion chamber by the production of high velocity gas flowing through the orifices of the chamber, which prevent any rise of flame. Indeed, with such a pressure drop, the flame speed is an order of magnitude less than that of the gas passing through the orifices, so that the flame can not go through them.
Or, la perte de charge a également un impact sur la consommation spécifique de carburant de la turbomachine. En l'occurrence, il existe une relation non linéaire entre la variation de perte de charge et la variation de la consommation spécifique de la turbomachine. A titre d'exemple non limitatif, une diminution de 1 % de la perte de charge peut entraîner une diminution de 0.4% de consommation spécifique en kérosène, et une diminution de 2,5% de la perte de charge à partir d'une perte de charge de 3.5% peut entraîner une diminution de 1 % de consommation spécifique en kérosène.  However, the pressure drop also has an impact on the specific fuel consumption of the turbomachine. In this case, there is a non-linear relationship between the variation of pressure drop and the variation of the specific consumption of the turbomachine. By way of non-limiting example, a decrease of 1% in the pressure drop can lead to a 0.4% decrease in specific consumption of kerosene, and a 2.5% decrease in the pressure drop from a loss. load of 3.5% can result in a 1% decrease in specific kerosene consumption.
Il existe donc un besoin de réduction de la perte de charge produite par la chambre de combustion pour réduire la consommation spécifique de carburant, tout en maintenant celle-ci à un niveau minimum pour garantir une bonne combustion.  There is therefore a need for reducing the pressure drop produced by the combustion chamber to reduce the specific fuel consumption, while maintaining it at a minimum level to ensure good combustion.
A cet effet, comme l'illustrent les figures 4 et 5, l'invention propose une chambre 18 du type décrit précédemment, caractérisée en ce que toutes les parois 28, 30, 34 de ladite chambre 48 sont perméables et comportent des orifices 54 ayant une section ne dépassant pas 0.8 mm2. De préférence, les orifices sont répartis sur les parois 28, 30, 34 de ladite chambre selon une densité de répartition configurée pour permettre le passage au travers desdits orifices 52 d'entre 40% et 100% du débit d'un flux d'air traversant la chambre 18, la totalité du débit d'air restant traversant le système d'injection 36. Le débit traversant le système d'injection 36 correspond donc à 0% et 60% du débit du flux d'air traversant la chambre 18. Lorsque le débit traversant le système d'injection 36 est nul, la totalité de l'air traversant la chambre 18 passe donc en totalité par les parois 28, 30, 34. For this purpose, as illustrated in Figures 4 and 5, the invention provides a chamber 18 of the type described above, characterized in that all the walls 28, 30, 34 of said chamber 48 are permeable and have orifices 54 having a section not exceeding 0.8 mm 2 . Preferably, the orifices are distributed on the walls 28, 30, 34 of said chamber in a distribution density configured to allow passage through said orifices 52 between 40% and 100% of the flow rate of an air flow. passing through the chamber 18, the totality of the remaining air flow passing through the injection system 36. The flow rate through the injection system 36 thus corresponds to 0% and 60% of the flow rate of the air flow passing through the chamber 18. When the flow rate through the injection system 36 is zero, all of the air passing through the chamber 18 thus passes entirely through the walls 28, 30, 34.
Comme l'illustre le mode de réalisation de l'invention qui a été représenté à la figure 4, la chambre 18 est disposée dans le carter 1 6 de chambre de manière analogue à la chambre 18 précédemment décrite en référence à l'état de la technique, et est alimentée de la même manière par une roue d'injection 38.  As illustrated by the embodiment of the invention which has been shown in FIG. 4, the chamber 18 is disposed in the chamber casing 1 6 in a similar manner to the chamber 18 previously described with reference to the state of the chamber. technique, and is fed in the same way by an injection wheel 38.
II sera donc compris également que dans le mode de réalisation de l'invention qui a été représenté à la figure 4, le carter de chambre 1 6 est dépourvu de dispositif de prélèvement d'air destiné à assurer le refroidissement des aubes de turbine, et que, par conséquent, l'intégralité du flux d'air alimentant le carter de chambre 1 6 traverse la chambre 18. Cette configuration n'est pas limitative de l'invention.  It will therefore also be understood that in the embodiment of the invention which has been shown in FIG. 4, the chamber casing 1 6 is devoid of an air sampling device intended to ensure the cooling of the turbine blades, and that, therefore, the entire air flow supplying the chamber housing 1 6 passes through the chamber 18. This configuration is not limiting of the invention.
La chambre de combustion 18 selon l'invention diffère de la chambre de combustion 18 de l'art antérieur en ce qu'elle ne présente qu'un type d'orifices 54, à la différence des trois types de trous précédemment décrits. Par ailleurs, ces orifices 54 s'étendent sur la totalité des parois 28, 30, 34 de la chambre 18.  The combustion chamber 18 according to the invention differs from the combustion chamber 18 of the prior art in that it has only one type of orifices 54, unlike the three types of holes previously described. Moreover, these orifices 54 extend over all the walls 28, 30, 34 of the chamber 18.
De plus, comme l'illustre la figure 5, les orifices 54 s'étendent selon une densité de répartition qui est de préférence uniforme, quelle que soit la paroi 28, 30, 34 qui en est pourvue.  In addition, as illustrated in Figure 5, the orifices 54 extend in a distribution density which is preferably uniform, regardless of the wall 28, 30, 34 provided therewith.
Toutefois, cette configuration n'est pas limitative de l'invention, et les orifices 54 pourraient être répartis suivant différentes densités au travers des parois 28, 30, 34 pourvu que, globalement, les orifices 54 n'aient pas une section dépassant 0.8 mm2. However, this configuration is not limiting of the invention, and the orifices 54 could be distributed according to different densities through walls 28, 30, 34 provided that, generally, the orifices 54 do not have a section exceeding 0.8 mm 2 .
Dans cette chambre de combustion 18, les trous de dilution étant absents, la dilution des gaz de combustion s'effectue de manière pratiquement exclusive par l'air pénétrant dans la chambre de combustion 18 à travers les orifices 54, l'air du film d'air adjacent aux parois 28, 30, 34 se mélangeant effectivement aux gaz de combustion.  In this combustion chamber 18, the dilution holes being absent, the dilution of the combustion gases is carried out almost exclusively by the air entering the combustion chamber 18 through the orifices 54, the air of the adjacent the walls 28, 30, 34 effectively mixing with the combustion gases.
La proportion du débit d'air qui passe par ces orifices 54 dépend essentiellement de la configuration du système d'injection 36.  The proportion of the air flow that passes through these orifices 54 depends essentially on the configuration of the injection system 36.
Ainsi, dans le cas d'une chambre 18, comme celle qui a été représentée à la figure 4, qui est associée à une roue d'injection 38, une partie du débit d'air passe à travers l'ouverture 42 autour de la roue d'injection 38, selon une proportion non nulle et inférieure à 60% et l'autre partie du débit d'air, comprise entre 40% et 100% du débit d'air, passe par les orifices 54.  Thus, in the case of a chamber 18, such as that shown in FIG. 4, which is associated with an injection wheel 38, a portion of the air flow passes through the opening 42 around the injection wheel 38, in a non-zero proportion and less than 60% and the other part of the air flow, between 40% and 100% of the air flow, passes through the orifices 54.
Une répartition différente du débit peut être obtenue avec un autre système d'injection 36.  A different distribution of the flow can be obtained with another injection system 36.
Par exemple, le système d'injection 36 pourrait être un système d'injection mécanique comportant une pluralité d'injecteurs (non représentés) répartis de manière régulière autour de la paroi de fond 34, cette paroi de fond 34 étant naturellement pourvue des orifices 54. Dans ce cas, la paroi de fond 34 ne comportant pas d'ouverture du type de l'ouverture 42 précédemment décrite, l'intégralité du débit d'air, soit 100% de ce débit, passerait par les orifices 54.  For example, the injection system 36 could be a mechanical injection system comprising a plurality of injectors (not shown) regularly distributed around the bottom wall 34, this bottom wall 34 being naturally provided with the orifices 54 In this case, the bottom wall 34 having no aperture of the type of the opening 42 previously described, the entire air flow, or 100% of this flow, would pass through the orifices 54.
Le système d'injection 36 pourrait aussi, en variante, comporter des injecteurs aérodynamiques configurés pour produire des écoulements tourbillonnaires coaxiaux auxdits injecteurs ayant une intensité élevée. Un tel type d'injecteur comporte, de manière connue, un conduit d'arrivée de carburant qui débouche dans un dispositif venturi alimenté en air sous pression afin d'y réaliser un mélange carburé. Un tel injecteur comporte donc une alimentation en air. Par conséquent, avec un tel système d'injection, une partie du débit d'air passe à travers les injecteurs aérodynamiques, et l'autre partie du débit d'air passe par les orifices 54, selon une proportion comprise entre 40 et 100%. The injection system 36 could also, alternatively, comprise aerodynamic injectors configured to produce coaxial vortex flows to said injectors having a high intensity. Such a type of injector comprises, in known manner, a fuel supply conduit which opens into a venturi device supplied with pressurized air in order to produce a fuel mixture. Such an injector therefore comprises an air supply. Therefore, with such a system injection, part of the air flow passes through the aerodynamic injectors, and the other part of the air flow through the orifices 54, in a proportion between 40 and 100%.
Le débit d'air réalisé au travers des parois 28, 30, 34 a été représenté par des flèches simples sur la figure 4.  The air flow achieved through the walls 28, 30, 34 has been represented by simple arrows in FIG. 4.
La section maximale de 0.8 mm2 des orifices 54 permet avantageusement de confiner la flamme à l'intérieur de la chambre de combustion 18 en évitant toute remontée de flamme dans l'espace entre la chambre 18 et les parois du carter 1 6 de chambre. En effet, une section des orifices 54 ne dépassant pas 0.8 mm2 correspond à un diamètre de coincement de la flamme qui garantit son extinction au travers dudit orifice 54. The maximum section of 0.8 mm 2 of the orifices 54 advantageously allows the flame to be confined inside the combustion chamber 18, avoiding any rise of flame in the space between the chamber 18 and the walls of the chamber casing 1 6. Indeed, a section of the orifices 54 not exceeding 0.8 mm 2 corresponds to a wedging diameter of the flame which guarantees its extinction through said orifice 54.
Selon un premier mode de réalisation de l'invention qui correspond aux figures 4 et 5, et qui a été représenté plus particulièrement à la figure 4, les parois 28, 30, 34 sont des parois percées dont les orifices sont constitués d'une multitude de perçages 54 dont le diamètre ne dépasse pas 1 mm. Ce diamètre correspond sensiblement à la section ne dépassant pas 0.8 mm2. According to a first embodiment of the invention which corresponds to FIGS. 4 and 5, and which has been shown more particularly in FIG. 4, the walls 28, 30, 34 are pierced walls whose orifices consist of a multitude holes 54 whose diameter does not exceed 1 mm. This diameter corresponds substantially to the section not exceeding 0.8 mm 2 .
De préférence, le diamètre de chaque perçage ne dépasse pas 0.5 mm, ce qui correspond sensiblement à une section de 0.2 mm2. Dans ce cas où la taille des perçages 54 est réduite, la densité des perçages est augmentée en contrepartie de manière à parvenir à une partie du débit d'air passant par les orifices 54, de préférence toujours comprise entre 40% et 100%, tout en améliorant le refroidissement de la chambre du fait de la présence d'un plus grand nombre de perçages 54. Preferably, the diameter of each bore does not exceed 0.5 mm, which corresponds substantially to a section of 0.2 mm 2 . In this case where the size of the bores 54 is reduced, the density of the bores is increased in return so as to achieve a portion of the air flow passing through the orifices 54, preferably always between 40% and 100%, all by improving the cooling of the chamber due to the presence of a greater number of holes 54.
On remarquera que ce premier mode de réalisation permet avantageusement d'optimiser le mélange en configurant les perçages selon une configuration particulière apte à faciliter le mélange. Ainsi, les perçages 54 peuvent être orientés à travers l'épaisseur des parois 28, 30, 34 selon des directions spécifiques en fonction des zones 18a ou 18b de la chambre de combustion 18 dans laquelle ils se trouvent. Par exemple, dans la zone de dilution 18b, les perçages 54 peuvent être orientés de manière à imprimer une trajectoire hélicoïdale à l'air pénétrant dans la chambre de combustion 18 à travers ces perçages 54 afin de diluer les gaz de combustion de manière homogène et effective. Cette configuration permet de se dispenser de trous de dilution spécifiques de grand diamètre, et évite ainsi les inconvénients liés à ceux-ci. It will be noted that this first embodiment advantageously makes it possible to optimize the mixture by configuring the bores in a particular configuration suitable for facilitating mixing. Thus, the holes 54 may be oriented through the thickness of the walls 28, 30, 34 in specific directions depending on the zones 18a or 18b of the combustion chamber 18 in which they are located. For example, in the area 18b, the holes 54 may be oriented to print a helical path to the air entering the combustion chamber 18 through these holes 54 to dilute the combustion gases in a homogeneous and effective manner. This configuration makes it possible to dispense with specific dilution holes of large diameter, and thus avoids the drawbacks associated therewith.
Les orifices 54 ne sont pas limités à des perçages. En effet, selon un autre mode de réalisation de l'invention, les parois 28, 30, 34 peuvent être réalisées en un matériau poreux.  The orifices 54 are not limited to bores. Indeed, according to another embodiment of the invention, the walls 28, 30, 34 may be made of a porous material.
Ce matériau poreux peut prendre toutes les formes connues de l'état de la technique aptes à proposer une paroi 28, 30, 34 poreuse. Par exemple une telle paroi poreuse peut être obtenue à partir d'un feuilleté de treillis métalliques ou de grilles superposées les unes sur les autres, ou encore d'une combinaison de feuilletés et de grilles.  This porous material can take all known forms of the state of the art capable of providing a porous wall 28, 30, 34. For example such a porous wall can be obtained from a laminated metal mesh or grids superimposed on each other, or a combination of laminates and grids.
Selon un second mode de réalisation préféré de l'invention, les parois 28, 30, 34 sont réalisées en une mousse métallique dont les orifices sont constitués de pores de section inférieure à 0.8 mm2, cette mousse répondant aux mêmes critères de débit et aux mêmes exigences de coincement de flamme que les parois 28, 30, 34 multipercées précédemment décrites. According to a second preferred embodiment of the invention, the walls 28, 30, 34 are made of a metal foam whose orifices consist of pores with a cross-section less than 0.8 mm 2 , this foam meeting the same flow criteria and same flame-clamping requirements as the multi-pierced walls 28, 30, 34 previously described.
De même que pour les parois 28, 30, 34 multipercées précédemment décrites, la section des pores de ladite mousse peut ne pas dépasser 0.2 mm2, de manière que, comme précédemment, une proportion de 40 à 100% du débit d'air passe de préférence par les parois 28, 30, 34, tout en améliorant le refroidissement de la chambre du fait de la présence d'un plus grand nombre de perçages 54. As for the walls 28, 30, 34 multi-pierced previously described, the pore section of said foam may not exceed 0.2 mm 2 , so that, as previously, a proportion of 40 to 100% of the air flow passes preferably by the walls 28, 30, 34, while improving the cooling of the chamber due to the presence of a greater number of holes 54.
Il sera compris que les parois 28, 30, 34 peuvent être réalisées à partir d'une combinaison des types d'orifices 54 qui ont été précédemment décrits, par exemple en réalisant des parois de type sandwich à partir de tôles multipercées empilées avec des mousses métalliques, ou tout autre type de combinaison. L'invention permet donc de proposer une chambre de combustion 18 à haute perméabilité garantissant une combustion stable et efficace, tout en permettant une réduction de la consommation spécifique d'une turbomachine associée à une telle chambre 18. It will be understood that the walls 28, 30, 34 can be made from a combination of the types of orifices 54 which have been previously described, for example by producing sandwich-type walls from multi-pierced sheets stacked with foams. metal, or any other type of combination. The invention therefore makes it possible to propose a combustion chamber 18 with high permeability guaranteeing stable and efficient combustion, while allowing a reduction in the specific consumption of a turbomachine associated with such a chamber 18.

Claims

REVENDICATIONS
1 . Chambre (18) de combustion de turbomachine (10), configurée pour être logée dans un carter (1 6) de chambre de ladite turbomachine alimenté en air, ladite chambre de combustion (18) étant délimitée par au moins une première paroi (28, 30) d'orientation sensiblement axiale et une deuxième paroi (34) transversale de fond, qui est jointive avec ladite au moins une première paroi (28, 30) et au travers de laquelle est agencé un système d'injection (36), caractérisée en ce que toutes les parois (28, 30, 34) de ladite chambre (18) sont perméables et comportent uniquement des orifices (54) d'un même type, ayant une section ne dépassant pas 0.8 mm2.  1. A turbomachine combustion chamber (18), configured to be housed in a chamber housing (1 6) of said air-fed turbomachine, said combustion chamber (18) being delimited by at least a first wall (28, 30) of substantially axial orientation and a second transverse bottom wall (34), which is contiguous with said at least one first wall (28, 30) and through which is arranged an injection system (36), characterized in that all the walls (28, 30, 34) of said chamber (18) are permeable and comprise only orifices (54) of the same type, having a section not exceeding 0.8 mm 2.
2. Chambre de combustion selon la revendication précédente, caractérisée en ce que lesdits orifices (54) sont répartis sur les parois (28, 30, 34) de ladite chambre (18) selon une densité de répartition configurée pour permettre le passage au travers desdits orifices (54) d'entre 40% et 100% du débit d'un flux d'air traversant ladite chambre (18).  2. Combustion chamber according to the preceding claim, characterized in that said orifices (54) are distributed on the walls (28, 30, 34) of said chamber (18) in a distribution density configured to allow passage through said orifices (54) between 40% and 100% of the flow rate of an air flow passing through said chamber (18).
3. Chambre (18) de combustion selon l'une des revendications précédentes, caractérisée en ce que les parois (28, 30, 34) sont des parois percées dont les orifices (54) sont constitués d'une multitude de perçages dont le diamètre ne dépasse pas 1 mm.  3. combustion chamber (18) according to one of the preceding claims, characterized in that the walls (28, 30, 34) are pierced walls whose orifices (54) consist of a multitude of holes whose diameter does not exceed 1 mm.
4. Chambre (18) de combustion selon la revendication précédente, caractérisée en ce que le diamètre de chaque perçage (54) ne dépasse pas 0.5 mm.  4. Chamber (18) of combustion according to the preceding claim, characterized in that the diameter of each bore (54) does not exceed 0.5 mm.
5. Chambre (18) de combustion selon l'une des revendications 1 à 4, caractérisée en ce que les parois (28, 30, 34) sont réalisées en un matériau poreux.  5. combustion chamber (18) according to one of claims 1 to 4, characterized in that the walls (28, 30, 34) are made of a porous material.
6. Chambre (18) de combustion selon la revendication précédente, caractérisée en ce que les parois (28, 30, 34) sont réalisées en une mousse métallique dont les orifices sont constitués de pores de section inférieure à 0.8 mm2. 6. Chamber (18) of combustion according to the preceding claim, characterized in that the walls (28, 30, 34) are made of a metal foam whose orifices consist of pores with a section less than 0.8 mm 2 .
7. Chambre (18) de combustion selon la revendication précédente, caractérisée en ce que la section des pores de ladite mousse ne dépasse pas 0.2 mm2. 7. Chamber (18) of combustion according to the preceding claim, characterized in that the pore section of said foam does not exceed 0.2 mm 2 .
8. Chambre (18) de combustion selon l'une des revendications précédentes, caractérisée en ce qu'elle comporte des première parois annulaires intérieure (28) et extérieure (30) jointives avec une paroi de fond annulaire (34) dont le système d'injection comporte une roue d'injection centrifuge (38).  8. Chamber (18) of combustion according to one of the preceding claims, characterized in that it comprises first inner annular walls (28) and outer (30) contiguous with an annular bottom wall (34) whose system of injection comprises a centrifugal injection wheel (38).
9. Chambre (18) de combustion selon l'une des revendications 1 à 7, caractérisée en ce que le système d'injection est un système d'injection aérodynamique comportant des injecteurs aérodynamiques configurés pour produire des écoulements tourbillonnaires coaxiaux auxdits injecteurs ayant une intensité élevée.  9. combustion chamber (18) according to one of claims 1 to 7, characterized in that the injection system is an aerodynamic injection system comprising aerodynamic injectors configured to produce coaxial vortex flows to said injectors having an intensity high.
10. Chambre (18) de combustion selon l'une des revendications 1 à 7, caractérisée en ce que le système d'injection est un système d'injection mécanique.  10. combustion chamber (18) according to one of claims 1 to 7, characterized in that the injection system is a mechanical injection system.
1 1 . Turbomachine (10) comportant une chambre de combustion (18) selon l'une des revendications 1 à 10.  1 1. Turbomachine (10) comprising a combustion chamber (18) according to one of claims 1 to 10.
PCT/FR2018/050082 2017-01-19 2018-01-12 High-permeability turbomachine combustion chamber WO2018134501A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1750434A FR3061948B1 (en) 2017-01-19 2017-01-19 HIGH PERMEABILITY TURBOMACHINE COMBUSTION CHAMBER
FR1750434 2017-01-19

Publications (1)

Publication Number Publication Date
WO2018134501A2 true WO2018134501A2 (en) 2018-07-26

Family

ID=58547668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/050082 WO2018134501A2 (en) 2017-01-19 2018-01-12 High-permeability turbomachine combustion chamber

Country Status (2)

Country Link
FR (1) FR3061948B1 (en)
WO (1) WO2018134501A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115597087B (en) * 2022-08-12 2024-02-23 中国航发沈阳发动机研究所 Hydrogen fuel combustion chamber head structure of expansion jet hole

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2889732A1 (en) 2005-08-12 2007-02-16 Snecma Combustion chamber for turbomachine, has annular inner and outer walls including perforations emerging relative to tabs and constituted of holes whose axis forms, with longitudinal axis, angle comprised between preset values

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6495207B1 (en) * 2001-12-21 2002-12-17 Pratt & Whitney Canada Corp. Method of manufacturing a composite wall
US20090199563A1 (en) * 2008-02-07 2009-08-13 Hamilton Sundstrand Corporation Scalable pyrospin combustor
FR2979416B1 (en) * 2011-08-26 2013-09-20 Turbomeca WALL OF COMBUSTION CHAMBER
US9366187B2 (en) * 2013-03-12 2016-06-14 Pratt & Whitney Canada Corp. Slinger combustor
FR3021097B1 (en) * 2014-05-15 2020-05-08 Safran Power Units REVERSE FLOW COMBUSTION CHAMBER COMPRISING AN OPTIMIZED ELBOW WALL

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2889732A1 (en) 2005-08-12 2007-02-16 Snecma Combustion chamber for turbomachine, has annular inner and outer walls including perforations emerging relative to tabs and constituted of holes whose axis forms, with longitudinal axis, angle comprised between preset values

Also Published As

Publication number Publication date
FR3061948A1 (en) 2018-07-20
FR3061948B1 (en) 2021-01-22

Similar Documents

Publication Publication Date Title
EP3267111B1 (en) Annular wall of a combustion chamber with improved cooling at the primary and/or dilution holes
EP1818613B1 (en) Combustion chamber of a turbomachine
CA2782661C (en) Turbine engine combustion chamber
CA2593199C (en) Device for the injection of an air-fuel mixture, combustion chamber and turbine engine equipped with such a device
WO2003040524A1 (en) Gas turbine stator
CA2987526C (en) Annular wall of a combustion chamber with optimised cooling
FR2933766A1 (en) PREMIXING DEVICE FOR TURBINE ENGINE.
FR2648184A1 (en) DUAL FUEL INJECTOR, IN PARTICULAR FOR A TURBOMOTEUR
FR2922629A1 (en) COMBUSTION CHAMBER WITH OPTIMIZED DILUTION AND TURBOMACHINE WHILE MUNIED
EP3530908B1 (en) Combustion chamber comprising two types of injectors in which the sealing members have a different opening threshold
CA2642059C (en) Wall of combustion chamber with optimal dilution and cooling, combustion chamber and turbine engine so equipped
EP1577530A1 (en) Device and method for providing ignition to a post-combustor for bypass gas turbine
CA2794243C (en) Turbomachine combustion chamber having a centrifugal compressor with no deflector
EP3156635A1 (en) Rocket engine with versatile lighter
EP0964206B1 (en) Variable geometry gas turbine combustor chamber
WO2013060985A1 (en) Aircraft turbomachine combustion chamber module and method for designing same
EP2748532B1 (en) Annular turbomachine combustion chamber wall
FR3021351B1 (en) TURBOMACHINE WALL HAVING AT LEAST ONE PORTION OF COOLING ORIFICES OBSTRUCTIONS
WO2018134501A2 (en) High-permeability turbomachine combustion chamber
FR3035481A1 (en) TURBOMACHINE COMBUSTION CHAMBER COMPRISING A SPECIFICALLY SHAPED AIR FLOW GUIDING DEVICE
EP0718560B1 (en) Staged combustor where full load injectors also containing idling injectors
FR2758384A1 (en) CONTROL OF COOLING RATES FOR HIGH-TEMPERATURE COMBUSTION CHAMBERS
FR3033030A1 (en) AIR-FUEL MIX INJECTION SYSTEM IN AN AIRCRAFT TURBOMACHINE COMBUSTION CHAMBER, COMPRISING A PERFORATED AIR INJECTION HOLES VENTURI
EP4179256B1 (en) Annular combustion chamber for an aircraft turbomachine
WO2022223914A1 (en) Diffusion cone for the rear part of a jet engine, incorporating a flame-holder ring at the trailing edge

Legal Events

Date Code Title Description
WA Withdrawal of international application
NENP Non-entry into the national phase

Ref country code: DE