WO2018133760A1 - 自动行走机器人 - Google Patents

自动行走机器人 Download PDF

Info

Publication number
WO2018133760A1
WO2018133760A1 PCT/CN2018/072625 CN2018072625W WO2018133760A1 WO 2018133760 A1 WO2018133760 A1 WO 2018133760A1 CN 2018072625 W CN2018072625 W CN 2018072625W WO 2018133760 A1 WO2018133760 A1 WO 2018133760A1
Authority
WO
WIPO (PCT)
Prior art keywords
axle
traveling
bracket
wheel
traveling wheel
Prior art date
Application number
PCT/CN2018/072625
Other languages
English (en)
French (fr)
Inventor
孔钊
郭宁
Original Assignee
苏州科瓴精密机械科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710037565.0A external-priority patent/CN108323306A/zh
Priority claimed from CN201710037553.8A external-priority patent/CN108323305A/zh
Application filed by 苏州科瓴精密机械科技有限公司 filed Critical 苏州科瓴精密机械科技有限公司
Publication of WO2018133760A1 publication Critical patent/WO2018133760A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus

Definitions

  • the present invention relates to an automatic walking robot, and more particularly to an automatic walking robot capable of moving outdoors and performing a work task autonomously.
  • the automatic walking device can automatically perform preset tasks related to preset tasks without manual operation and intervention, it is used in industrial applications and homes.
  • the application on the product is very extensive.
  • Industrial applications such as robots that perform various functions, applications on household products such as lawn mowers, vacuum cleaners, etc., which greatly save people's time, bring great industrial production and home life. convenient.
  • the autonomous walking robot has an automatic walking function, which can prevent collisions, prevent out-of-line, automatic return charging, safety detection and battery level detection, and has a certain climbing ability, especially for a family courtyard. Lawn trimming and maintenance in places such as public green space.
  • the automatic walking robot can independently perform the work of trimming the lawn without manual control and operation, and has low power, low noise, no pollution, and vibrant appearance, which greatly reduces manual operation.
  • the prior art automatic walking robots are unbalanced in the frictional traction of the walking wheels of the mowing robot and the ground during the uneven grassland passing through the ground, which easily causes the walking wheels to slip in place. Phenomenon; and because the frictional traction of the various walking wheels of the mowing robot and the ground is not balanced, when the mowing robot turns, the steering is difficult to control, and the steering is prone to deviation.
  • the chassis is bumped with the undulation of the ground, and it is easy to cause vibration of the device disposed on the chassis, affecting the performance of the device, thereby reducing the working stability of the mowing robot.
  • An object of the present invention is to provide an automatic walking robot with better working stability.
  • the present invention provides an automatic walking robot for automatically walking and working on the ground, comprising: a body, a walking module mounted on the body, and a control module connected to the walking module, the walking module
  • Each of the traveling wheels has an axle fixed relative to the traveling wheel, and the front and rear wheels on the same side are arranged to rotate synchronously, and the height of contact between the two traveling wheels is different, at least one of the traveling wheels and the axle thereof
  • the position relative to the body changes to maintain the body in an equilibrium state that is close to the horizontal position.
  • the axle of the at least one traveling wheel is pivotable relative to the body about an axis parallel to the direction of travel of the robot.
  • an articulated structure is connected between an axle of the at least one traveling wheel and the body, and the axle pivots relative to the body through the hinge structure.
  • the hinge structures are provided in two, disposed on both sides of the axle of the at least one traveling wheel along the traveling direction of the autonomous walking robot.
  • the left axle and the right axle of the at least one traveling wheel along the traveling direction of the automatic traveling robot are relatively independently disposed, and the hinge structure is provided with two, respectively corresponding to the left Side wheel axle and right axle set.
  • the left axle and the right axle of the at least one traveling wheel along the traveling direction of the automatic traveling robot are relatively independently disposed, and the left axle and the right axle pass through The hinge structure pivots relative to the body.
  • the left axle is rotatably supported on a left bracket
  • the right axle is rotatably supported on a right bracket
  • the hinge structure includes a rotating shaft mounted on the body.
  • the left bracket and the right bracket are both coupled to the rotating shaft and are rotatable about axes of the rotating shaft, respectively.
  • the rotating shaft is fixed to one of the left bracket and the right bracket, and the other of the left bracket and the right bracket is pivotally connected to the rotating shaft, the rotation The shaft is rotated and mounted to the body.
  • the at least one traveling wheel is along an automatic traveling machine
  • the left axle of the direction of travel of the person is disposed in association with the right axle, and the left axle and the right axle are configured as a whole and pivot together relative to the body through the hinge structure.
  • the left axle and the right axle are both rotatably supported on a bracket
  • the hinge structure includes a hinge shaft pivotally mounted on the bracket and a sliding connection with the hinge shaft a column, one end of the sliding column is connected to the hinge shaft, and the other end of the sliding column passes through a positioning hole disposed in a vertical direction on the body, and the bracket receives a force toward a ground on which the automatic walking robot walks.
  • the hinge structure includes two positions respectively disposed on the bracket near the traveling wheels on both sides.
  • a mounting hole is disposed on the bracket, and a distance of the mounting hole along the axial direction of the left axle is greater than an outer diameter of the hinge shaft, and the hinge shaft can be Move and rotate inside the mounting hole.
  • an elastic device is disposed between the bracket and the body, and the elastic device applies a force to the bracket toward the ground, and the elastic device includes two, respectively pressed against Position on the bracket near the wheels on both sides.
  • the axle of the at least one traveling wheel is movably disposed in a vertical direction with respect to the body.
  • a floating structure is connected between the axle of the at least one traveling wheel and the body, and the axle moves in a vertical direction relative to the body through the floating structure.
  • the left axle and the right axle of the at least one traveling wheel along the traveling direction of the automatic walking robot are relatively independently disposed, and the floating structure is provided with two, respectively corresponding to the left The side wheel axle and the right axle are disposed, and the left axle and the right axle move respectively in a vertical direction relative to the body through respective corresponding floating structures.
  • the axle of the at least one traveling wheel is rotatably supported on the bracket, and the floating structure comprises a sliding rod fixed on the body and disposed on the bracket for the sliding rod to pass through Positioning the hole, the bracket moves along the sliding rod through the positioning hole.
  • the axle of the at least one traveling wheel is rotatably supported on the bracket, and the floating structure comprises a sliding rod fixed on the bracket and disposed on the body for the sliding rod to pass through Positioning the hole, the bracket moves along the positioning hole through the slide bar.
  • the sliding bar and the positioning hole are respectively disposed at two and correspond to each other, and the two sliding bars are disposed on the at least one traveling wheel along the traveling direction of the automatic walking robot. Both sides of the axle.
  • the floating structure includes two parallel equal length links, one end of the two links is hinged to the at least one traveling wheel, and the other two links One end is hinged to the body, and the at least one traveling wheel moves in a vertical direction relative to the body through the two links
  • a ball drive shaft is coupled between the travel motor and the axle of the at least one traveling wheel, and the travel motor transmits the rotary power to the drive shaft through the ball drive shaft.
  • the axle of at least one traveling wheel is located on both sides of the ball drive shaft in a vertical direction.
  • a limiting structure is disposed between the axle of the at least one traveling wheel and the body, and the limiting structure can limit the axle of the at least one traveling wheel to be preset Activities within the scope.
  • an elastic device is disposed between the axle of the at least one traveling wheel and the body, and the elastic device is configured to provide the at least one running wheel with a force facing the ground.
  • the automatic walking robot of the present invention can adjust the position of the traveling wheel according to the height of the ground, and avoid the friction traction of each walking wheel and the ground caused by the suspension of the traveling wheel. Balance, and keep the chassis at a substantially horizontal position, without side slanting and violent bumps, avoiding the vibration of the automatic walking robot during the passage and affecting the performance of the device, thereby improving the working stability of the mowing robot.
  • the present invention provides an automatic walking robot for automatically walking and working on the ground, comprising: a body, a walking module mounted on the body, and a control module connected to the walking module, the walking module
  • Each of the traveling wheels has an axle fixed relative to the traveling wheel, and the front and rear wheels on the same side are arranged to rotate synchronously, and the axles of each of the traveling wheels are disposed between the axle and the body.
  • the sensor when at least two walking wheels are away from the ground, at least two detecting sensors are triggered to feed back a detection signal to the control module, and the control module performs corresponding control according to the received detection signal.
  • the beneficial effects of the present invention are as follows:
  • the traveling wheel can be controlled correspondingly to prevent the robot from being suspended on one side and overturning.
  • the walking wheel can be adjusted according to the height of the ground, avoiding the unbalanced frictional traction between the walking wheels and the ground, and keeping the chassis at a substantially horizontal position, without causing side slanting, violent bumps, and avoiding automatic walking.
  • the vibration of the robot during the process affects the performance of the device, thereby improving the working stability of the mowing robot.
  • FIG. 1 is a perspective view of a mowing robot in a preferred first embodiment of the present invention
  • FIG. 2 is a partially exploded perspective view of the mowing robot of FIG. 1;
  • FIG. 3 is a schematic view showing the assembled structure of the mowing robot walking wheel and the chassis of FIG. 1;
  • FIG. 4 is an enlarged schematic view of a portion of FIG. 3;
  • Figure 5 is a plan view of the mowing robot of Figure 1;
  • Figure 6 is a cross-sectional view taken along line A-A of Figure 5;
  • Figure 7 is a cross-sectional view taken along line B-B of Figure 5;
  • FIG. 8 is a partially exploded perspective view of a mowing robot in a preferred second embodiment of the present invention.
  • FIG. 9 is a schematic view showing the assembly structure of the axle and the chassis of the mowing robot traveling wheel of FIG. 8;
  • FIG. 10 is a cross-sectional view of a mowing robot in a preferred second embodiment of the present invention.
  • FIG. 11 is a partially exploded perspective view of a mowing robot in a preferred third embodiment of the present invention.
  • FIG. 12 is a schematic view showing the assembled structure of the axle and the chassis of the mowing robot traveling wheel of FIG. 11;
  • FIG. 13 is a cross-sectional view of a mowing robot in a preferred third embodiment of the present invention.
  • FIG. 14 is a partially exploded perspective view of a mowing robot in a preferred fourth embodiment of the present invention.
  • FIG. 15 is a bottom plan view of a mowing robot in a preferred fourth embodiment of the present invention.
  • the autonomous walking robot is preferably a mowing robot for automatically walking and working on the ground, and providing walking and working energy through the battery.
  • the mowing robot comprises a body 10, a working module 20 for trimming the lawn mounted on the body 10, and a walking module 30, the walking module is used for walking and steering, and the working module comprises a cutting motor, a transmission shaft connected to the cutting motor, and a transmission shaft A mating cutting device (not shown), which may be a cutting blade, a cutting line, or the like, capable of trimming the lawn.
  • the mowing robot also includes a control module for coordinating the work module and the walking module.
  • the control module enables the mowing robot to automatically walk and mowing on the lawn without being watched.
  • the directional terms such as front, back, left, right, up, and down, are referenced to the direction in which the mowing robot shown in FIG. .
  • the walking module 30 of the mowing robot includes a traveling wheel set and a traveling motor 33 that drives the traveling wheel set.
  • the body 10 includes a chassis 13, and the traveling wheel set is mounted on the chassis 13.
  • the traveling wheel set includes four traveling wheels 31a, 31b, 32a. 32b, which are respectively front traveling wheels 31a, 31b disposed on both sides of the front part of the body and rear running wheels 32a disposed on both sides of the rear part of the body 32b, each of the walking wheels has independent axles, and the walking wheels on both sides of the body are symmetric about the axis of symmetry X of the body.
  • the left front traveling wheel 31a has a left front wheel axle 34a, one end of the left front wheel axle 34a is connected to the traveling motor 33, and the other end is fixedly connected to the left front traveling wheel 31a in a circumferential direction.
  • the rotational power transmitted from the traveling motor 33 can be transmitted to the left front traveling wheel 31a via the left front wheel axle 34a, so that the left front traveling wheel 31a is driven to rotate.
  • a drive pulley 42 is also fixedly mounted on the left front axle 34a, and the drive pulley 42 is located between the travel motor 33 and the left front travel wheel 31a.
  • the left rear traveling wheel 32a has a left rear axle 35a, and the left rear axle 35a is relatively fixedly mounted with a driven pulley 43, and the driving pulley 44 is mounted on the driving pulley 42 and the driven pulley 43, so that the traveling motor 33 can pass Active pulley 42, drive belt 44 and driven belt
  • the wheel 43 drives the left rear axle 35a to rotate, and the left front traveling wheel 31a and the left rear traveling wheel 32a are driven by the belt, thereby realizing the synchronous rotation of the left front traveling wheel 31a and the left rear traveling wheel 32a.
  • the right traveling wheel can perform synchronous rotation of the right front traveling wheel 31b and the right rear traveling wheel 32b by another traveling motor and belt transmission mechanism.
  • the right traveling motor can be set to directly drive the right rear traveling wheel.
  • the 32b rotates, and the right front traveling wheel 31b is rotated by the belt drive.
  • the specific structure is similar to the left side walking wheel, and details are not described herein.
  • the steering of the mowing robot can be achieved by controlling the travel motors on both sides to output different speeds.
  • the left front axle 34a and the right front axle 34b are hinged to the chassis 13 by a hinge structure, that is, the left front axle 34a and the right front axle 34b can be independently rotated relative to the chassis 13 through the hinge structure, thereby realizing the left front traveling wheel 31a and the right front traveling wheel. 32a floats up and down.
  • a hinge structure that is, the left front wheel shaft 34a is connected to one hinge structure, and the right front wheel shaft 34b is also connected to one hinge structure, and the two hinge structures can be arranged side by side or front and rear.
  • the left front axle 34a and the right front axle 34b share a hinge structure.
  • the hinge structure includes a rotating shaft 51 supported on the chassis 13, the traveling motor 33 is mounted on the left bracket 36a, one end of the rotating shaft 51 is fixed to the left bracket 36a, and the other end of the rotating shaft 51 is supported by the chassis 52 via the bearing 52.
  • the bearing 52 is mounted to the chassis 13 via the bearing platen 53 such that the left bracket 36a can drive the travel motor 33, the left front axle 34a to rotate about the axis of the rotating shaft 51, and the left front traveling wheel 3 la and the left front axle 34a are circumferentially fixed. Therefore, the left front traveling wheel 31a can rotate along the axis of the left front wheel shaft 34a around the rotating shaft 51.
  • the right front traveling wheel 31b has a right front axle 34b, and one end of the right front axle 34b is rotatably supported on the right bracket 36b, and the other end is fixedly connected circumferentially to the right front traveling wheel 31b.
  • the right bracket 36b has a pivot arm 361b extending axially along the right front axle 34b.
  • the pivot arm 361b is pivotally coupled to the rotating shaft 51. Therefore, the right bracket 36b can drive the right front axle 34b and the right front traveling wheel 31b to surround the rotating shaft.
  • the axis of 51 rotates.
  • the bracket corresponding to each walking wheel constitutes the bracket mechanism of the mowing robot.
  • the left front traveling wheel and the right front traveling wheel are respectively pivoted by the same hinge structure.
  • the left front traveling wheel and the right front traveling wheel may be respectively pivoted by respective hinge structures, that is, the left front traveling wheel is connected.
  • One hinge structure, the right front walking wheel is connected to another hinge structure, and the two hinge structures are independently arranged at intervals.
  • the left front walking wheel or the right front walking wheel pivots through the hinge structure, the left front traveling wheel or the right front traveling wheel not only generates displacement in the vertical direction, but also the left front walking wheel or the right front walking wheel and the vertical direction.
  • the angle of the direction will also change, because the position adjustment of the left front and right front wheels is relatively independent. According to the ground angle of the left front wheel and the right front wheel, the left front wheel or the right front wheel and the vertical direction The angle will vary.
  • the hinge structure may be provided two, along the traveling direction of the mowing robot, with respect to the left front wheel axle 34a or the right front axle shaft 34b.
  • the axes are symmetrically disposed on either side of the left bracket 36a or the right bracket 36b.
  • the hinge structure provided between the left rear walking wheel 32a and the right rear traveling wheel 32b is similar to the hinge structure between the left front traveling wheel 31a and the right front traveling wheel 32b, and will not be described herein.
  • the mowing robot is further provided with a limiting device for limiting the range of movement of the traveling wheel about the axis of the rotating shaft 51, that is to say the walking wheel is
  • the limit device can only be operated within the preset range.
  • the limiting device comprises a limiting platen 61.
  • the limiting platen 61 is configured as a semi-annular ring, and the ring is disposed on the left bracket 36a, and both ends of the limiting pressing plate 61 pass The screw is fixed on the chassis 13, and a predetermined gap is formed between the limiting platen 61 and the left bracket 36a.
  • the left bracket 36a can move within a preset gap. Therefore, the left front traveling wheel 31a can only be limited with the left bracket 36a.
  • the preset gap between the position plate 61 and the left bracket 36a is movable.
  • the mowing robot is able to adapt to the change of the ground level and the undulating change of the ground, and the pivot wheel can pivot in the vertical direction around the axis of the rotation axis 51 of the hinge structure so as to be vertical
  • the vertical direction moves up and down, avoiding the friction of the walking wheels and the ground caused by the suspension of the walking wheels.
  • the grip of the left traveling wheel is increased due to the centripetal force, and the grip of the right traveling wheel is reduced.
  • the mowing robot also sets the bomb A sexual device for providing the walking wheel with a force directed toward the ground.
  • the elastic device includes a torsion spring 80.
  • the torsion spring 80 is mounted on the left bracket 36a, one end of which abuts against the bracket 36a, and the other end abuts against the chassis 13. And the torsion spring is in the energy storage state, so that the torsion spring 80 can hold the left front traveling wheel 31a to directly bear the force toward the ground by pressing the left bracket 36a regardless of the position of the left front traveling wheel 31a, thereby maintaining contact with the ground.
  • a torsion spring is also disposed on the right bracket 36b.
  • the torsion spring can maintain the right front traveling wheel 32b to directly bear the force toward the ground by pressing the right bracket 36b, thereby maintaining contact with the ground.
  • a compression spring can be provided by providing a compression spring.
  • the torsion spring is not only simple in structure, but also convenient in production and assembly, and can further strengthen the adhesion between the walking wheel and the ground, so that the walking wheel can reliably grasp the ground and keep the body stable; in addition, the adhesion is affected by the rotation angle (ie, The influence of the movement of the walking wheel on the axis of the rotation axis of the hinge structure in the vertical direction is small, so that the difference of the adhesion between the four walking wheels and the ground is small, and the body is not disturbed due to the difference in adhesion. The body is not stable.
  • the mowing robot is further provided with an off-site detecting sensor 70 that detects whether the traveling wheel is off the ground.
  • the ground detecting sensor 70 can be disposed on the axle and close to the position of the chassis 13. When the traveling wheel is away from the ground, the ground detecting sensor 70 abuts the chassis 13, thereby triggering the detection signal.
  • an unexpected situation may occur in which the traveling wheel is off the ground, and an off-ground detecting sensor 70 that detects whether the traveling wheel is away from the ground is provided, and the unexpected situation can be fed back to the control module of the mowing robot, thereby making The accident was dealt with and dealt with.
  • the main components of the mowing robot are the same as those of the first embodiment, and details are not described herein again.
  • the former walking wheel is still taken as an example for description.
  • the left front axle 234a is driven by the traveling motor 233, and the right front axle 234b is supported by the front bracket 262 together with the traveling motor, so that the front bracket 236 configures the left front axle 234a, the traveling motor 233, and the right front axle 234b as a single unit.
  • the upper portion of the front bracket 236 is provided with a limiting platen 261, and the limiting platen 261 is screwed to the chassis 213 for restricting the front bracket 236 from moving only within a preset range.
  • the hinge structure includes a hinge shaft 251 connected to the front bracket 236.
  • the axis of the hinge shaft 251 is arranged along the traveling direction of the mowing robot, and the hinge shaft 251 is disposed at two positions on the front bracket 236 near the traveling wheels on both sides.
  • a sliding column 263 is pivotally connected to each of the hinge shafts 251, and the sliding column 263 passes through the positioning hole 262 of the limiting platen 261 and The same position of the front bracket 236 can be moved up and down in a plane perpendicular to the traveling direction of the mowing robot, that is, the left front axle 234a and the same side of the front bracket 236 can slide up and down along the positioning hole 262.
  • the right front axle 234b drives the left front traveling wheel 231a and the right front traveling wheel 231b to move up and down or in a plane perpendicular to the traveling direction of the mowing robot.
  • the front bracket 236 is provided with a mounting hole 252.
  • the distance of the mounting hole 252 in the axial direction of the left axle is larger than the outer diameter of the hinge shaft 251, and the hinge shaft 251 can move and rotate in the mounting hole 252.
  • the left front traveling wheel 31a and the right front traveling wheel 31b can share the same axle, and the axle can move up or down in a plane perpendicular to the traveling direction of the mowing robot, such as setting outside the axle.
  • the bracket is provided with a pivoting structure or the like in the middle of the bracket.
  • an elastic device is provided between the limiting platen 261 and the front bracket 236 for providing the walking wheel with a force toward the ground.
  • the elastic device includes a compression spring 280 disposed at a position close to the spool 263, and the compression spring 280 is configured to provide an elastic force toward the ground for both ends of the front bracket 236, thereby being capable of providing the walking wheel with a force toward the ground to increase The adhesion of the mowing robot walking wheel to the ground.
  • the compression springs 280 are disposed in two positions on the front bracket 236 adjacent to the side wheels.
  • the mowing robot is also provided with a ground detecting sensor 270 for detecting whether the traveling wheel is away from the ground.
  • the ground detecting sensor 270 can be disposed on the front bracket 236 near the chassis 213, when the traveling wheel Off the ground ⁇ , the ground detecting sensor 270 abuts the chassis 213, thereby triggering the detection signal.
  • the number of ground detecting sensors 270 is the same as the number of traveling wheels, and each ground detecting sensor is used to detect the grounding condition of its corresponding running wheel or the grounding condition of the corresponding running wheel on the other side.
  • the main components of the mowing robot are the same as those of the first embodiment, and details are not described herein again.
  • the former traveling wheel is still taken as an example.
  • the floating structure is connected between the left front wheel axle and the body, and the left front wheel axle 334a is moved in the vertical direction relative to the body through the floating structure.
  • the left front wheel axle 334a is driven by the travel motor 333, and the left front traveling wheel 331a and the right front traveling wheel 331b use separate axles.
  • the floating structure includes at least one positioning hole 372 on the left front bracket 336a supporting the left front axle 334a and at least one sliding rod 374 passing through the positioning hole 372.
  • the left front wheel axle 334a can be moved up and down along the slide bar 374 in a plane perpendicular to the direction in which the mowing robot travels, driven by the left front bracket 336a.
  • each side of the walking wheel is preferably provided with two matching positioning holes 3 72 and the slider 374, so that the up and down movement of the axle is more stable.
  • a compression spring 380 is also disposed between the limiting platen 361 and the left front bracket 336a.
  • the compression spring 380 is disposed adjacent to the positioning hole 372 for providing the left front traveling wheel 331a with elasticity toward the ground through the left front bracket 336a. Force, thereby increasing the adhesion of the mowing robot walking wheel to the ground.
  • a ground detecting sensor 370 is disposed between the left front bracket 3 36a and the chassis 313. The ground detecting sensor 370 is configured as a compression spring. When the traveling wheel is away from the ground, the compression spring abuts against the chassis 313, thereby triggering the detection signal.
  • the left front bracket supporting the left front axle may be provided with a sliding rod fixedly connected thereto, and the positioning hole is fixed on the limiting pressure plate or the chassis fixed on the chassis, that is, the floating structure
  • the utility model comprises a positioning hole fixed on the left front bracket and disposed on the chassis for the sliding rod to pass through, the sliding rod passes through the positioning hole and can slide up and down along the positioning hole, and the left front wheel axle can also be driven by the left front bracket.
  • the mowing robot moves up and down in a plane perpendicular to the direction of travel.
  • the driving of the right traveling wheel is driven, and the right rear traveling wheel 432b is driven by the first traveling motor 433a, right rearward.
  • the traveling wheel 432b drives the right front traveling wheel 43 lb
  • the first traveling motor 433a is disposed between the left rear traveling wheel 43 lb and the right rear traveling wheel 432b, and is adjacent to the left rear traveling wheel 431b.
  • the left traveling wheel 431a drives the left rear traveling wheel 432a by the second traveling motor 433b
  • the second traveling motor 433b is disposed between the left front traveling wheel 43la and the right front traveling wheel 432a, and is adjacent to the right front traveling wheel 432a.
  • the left traveling wheel In the left traveling wheel, the left front side traveling wheel 431a is active, and the left rear side traveling wheel 432a is driven; in the right side traveling wheel, the right rear side traveling wheel 432b is active, and the right front side traveling wheel 431b is driven.
  • the right rear traveling wheel 432b has a right rear axle 434b, and the first traveling motor 433a transmits rotational power to the right rear axle 434b by a pulley transmission.
  • the first travel motor 433a is configured as a motor, and the first pulley 91 is fixedly disposed on the output shaft 4331 of the motor, and the right rear axle 43 4b transmits the rotational power connection to the first pulley shaft 921 through the ball drive shaft 438.
  • a second pulley 92 is fixedly disposed on the first pulley shaft 921.
  • a first transmission belt 911 is connected between the first pulley 91 and the second pulley 92.
  • the rotary power output by the motor passes through the first pulley 91 and the first transmission belt 911.
  • the second pulley 92 is transmitted to the first pulley shaft 921, and the first pulley shaft 921 transmits the rotational power to the right rear axle 434b through the ball end drive shaft 438.
  • the motor drives the right rear traveling wheel 432b to travel.
  • a third pulley 93 is fixedly disposed on the first pulley shaft 921.
  • the third pulley 93 and the second pulley 92 are arranged side by side on the first pulley shaft 921, and the rotating support on the chassis 413
  • There is a second pulley axle 922 The second pulley shaft 922 is disposed parallel to the first pulley shaft 921 and adjacent to the right rear traveling wheel 432b, and the fourth pulley 94 and the fifth pulley 95 are fixedly disposed at two ends of the second pulley shaft 922, respectively, wherein A second belt 912 is coupled between the pulley 93 and the fourth pulley 94, and the rotational power transmitted to the first pulley shaft 921 is transmitted to the second pulley shaft through the third pulley 93, the second belt 912, and the fourth pulley 94.
  • a third pulley shaft 923 is disposed in parallel with the second pulley shaft 922.
  • the third pulley shaft 923 is disposed adjacent to the right front traveling wheel 431b, and the sixth pulley 96 and the seventh belt are fixedly disposed at both ends of the third pulley shaft 923, respectively.
  • a third belt 913 is disposed between the wheel 97, the fifth pulley 95 and the sixth pulley 96, and the rotational power output by the second pulley shaft 922 can be transmitted through the fifth pulley 95, the third belt 913 and the sixth pulley 96.
  • the third pulley shaft 923 is given.
  • the right front traveling wheel 4 31b has a right front axle, and the right front axle is rotatably connected to the fourth pulley shaft 924 through a ball end transmission shaft 924, and the fourth pulley 924 is fixedly provided with an eighth pulley 98, a seventh pulley 97 and A fourth transmission belt 914 is connected between the eighth pulleys 98, and the rotational power output by the third pulley shaft 923 can be transmitted to the fourth pulley shaft 924 through the seventh pulley 97, the fourth transmission belt 914 and the eighth pulley 98,
  • the four-belt axle 924 drives the right front axle to rotate through the ball-end drive shaft.
  • the above-mentioned transmission from the right rear axle to the right front axle can be summarized as follows: the driving wheel drives the driven wheel through the timing belt, and the driving wheel and the driven wheel rotate/stop synchronously, and the rotation speed and the steering are the same.
  • the drive on the left is similar to the one on the right and will not be described here.
  • the above embodiment controls the walking of the left and right traveling wheels by two traveling motors, respectively, and can control the steering of the mowing robot by controlling the difference in the rotational speeds of the two traveling motors.
  • the axle of the traveling wheel is connected to the pulley shaft of the input rotary power through the ball-end transmission shaft, so that the traveling wheel does not affect the rotation of the traveling wheel during the movement of the traveling wheel relative to the chassis, that is, the ball-head transmission axis That is, the floating structure connecting the axle of the traveling wheel and the body is formed.
  • the floating structure further comprises a cantilever structure connected between the axle of the traveling wheel and the pulley shaft of the input rotary power, and taking the right rear traveling wheel 432b as an example, the cantilever structure comprises a cantilever mounted on the right rear axle 434b
  • the cantilever is provided with two upper cantilever 491 on the upper side of the ball drive shaft 438 and a lower cantilever 492 on the lower side of the ball drive shaft.
  • the upper cantilever and the lower cantilever are respectively provided with shaft holes, which are close to the right rear.
  • One end of the traveling wheel 432b is pivotally connected to the cantilever outer bracket 437 through the shaft hole 494 through the shaft hole, and the other end is pivotally connected to the cantilever inner bracket 436 through the shaft hole through the pin shaft 493.
  • the chassis 413 is provided with a cantilever receiving portion corresponding to the position of the upper cantilever and the lower cantilever, and a motor housing portion is provided corresponding to the position of the traveling motor, so that the positioning of each module is facilitated.
  • the upper cantilever 491 is provided with a mounting hole 49, and the mounting hole 498 is used for mounting and positioning of the compression spring 380.
  • the compression spring 380 is abutted on the body, and the other end abuts on the upper cantilever 491 for passing the upper cantilever
  • the 491 provides the right rear walking wheel 432b with an elastic force toward the ground, thereby increasing the adhesion of the mowing robot walking wheel to the ground.
  • the ground detecting sensor 470 is disposed on the body, and the ground detecting sensor 470 is configured as a compression spring. When the traveling wheel is away from the ground, the pressing spring and the cantilever outer bracket 437 abut each other, thereby triggering the detection signal.
  • the ground detecting sensor 470 can also be disposed on the cantilever outer bracket 437, the upper cantilever or the lower cantilever, and the ground detecting sensor can also be configured in other structures as long as the detection can be realized. The state of the walking wheel away from the ground can be.
  • an off-site detecting sensor is disposed between the axle of each traveling wheel and the body, and when at least two traveling wheels are separated from the ground, at least two ground detecting sensors are opposite to the body to trigger detection.
  • the signal is fed back to the control module, and the control module performs corresponding control according to the received detection signal, such as performing a shutdown action, the purpose of which is to prevent the mowing robot from being suspended on one side and overturning.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Harvester Elements (AREA)

Abstract

一种自动行走机器人,用于在地面上自动行走和工作,包括:机体,安装于机体的行走模块以及与行走模块连接的控制模块,行走模块包括安装在机体上的行走轮组和驱动行走轮组的行走马达,沿着自动行走机器人的行进方向,行走轮组包括设置在前的两个前轮以及相对的两个后轮,每个行走轮具有与该行走轮相对固定的轮轴,位于同一侧的前轮和后轮设置为同步转动,在两个行走轮之间接触地面的高度不同时,至少一个行走轮和其轮轴相对于机体的位置发生改变,以使机体保持在趋近于水平位置的平衡状态。该自动行走机器人,其行走轮可以根据地面高低起伏进行位置调整,并且保持底盘始终处于大致水平位置,从而改善自动行走机器人的工作稳定性。

Description

说明书 发明名称: 自动行走机器人
技术领域
[0001] 本发明涉及一种自动行走机器人, 尤其是一种能够在户外移动并自主执行工作 任务的自动行走机器人。
背景技术
[0002] 随着科学技术的发展, 智能的自动行走设备为人们所熟知, 由于自动行走设备 可以自动预先设置的程序执行预先设置的相关任务, 无须人为的操作与干预, 因此在工业应用及家居产品上的应用非常广泛。 工业上的应用如执行各种功能 的机器人, 家居产品上的应用如割草机、 吸尘器等, 这些智能设备极大地节省 了人们的吋间, 给工业生产及家居生活都带来了极大的便利。 与传统产品相比 , 自动行走机器人具备自动行走功能, 可以防止碰撞, 范围之内防止出线, 自 动返回充电, 具备安全检测和电池电量检测, 具备一定爬坡能力, 尤其是一种 适合家庭庭院、 公共绿地等场所进行草坪修剪维护。 自动行走机器人能够自主 的完成修剪草坪的工作,无须人为直接控制和操作, 且功率低、 噪音小、 无污染 、 外形精巧美观, 大幅度降低人工操作。
[0003] 现有技术的自动行走机器人, 尤其是自动行走割草机器人, 在行经地面不平整 的草地吋, 割草机器人的各个行走轮与地面的摩擦牵引力不均衡, 容易导致行 走轮原地打滑现象; 并且由于割草机器人的各个行走轮与地面的摩擦牵引力不 均衡, 在割草机器人转弯吋, 其转向难以控制, 转向容易发生偏差。 此外, 在 行经地面不平整的草地吋, 底盘随着地面的高低起伏相应地颠簸, 还容易导致 设置在底盘上的装置发生震动, 影响装置的性能, 从而降低割草机器人的工作 稳定性。
技术问题
问题的解决方案
技术解决方案 [0004] 本发明的目的在于提供一种工作稳定性较好的自动行走机器人。
[0005] 为实现上述发明目的, 本发明提供一种自动行走机器人用于在地面上自动行走 和工作, 包括: 机体, 安装于机体的行走模块以及与行走模块连接的控制模块 , 所述行走模块包括安装在机体上的行走轮组和驱动所述行走轮组的行走马达 , 沿着自动行走机器人的行进方向, 所述行走轮组包括设置在前的两个前轮以 及相对的两个后轮, 每个行走轮具有与该行走轮相对固定的轮轴, 位于同一侧 的前轮和后轮设置为同步转动, 在两个行走轮之间接触地面的高度不同吋, 至 少一个行走轮和其轮轴相对于机体的位置发生改变, 以使所述机体保持在趋近 于水平位置的平衡状态。
[0006] 作为本发明一实施方式的进一步改进, 所述至少一个行走轮的轮轴相对机体能 够围绕与自动行走机器人行进方向平行的轴线枢转。
[0007] 作为本发明一实施方式的进一步改进, 所述至少一个行走轮的轮轴与所述机体 之间连接铰接结构, 所述轮轴通过铰接结构相对机体枢转。
[0008] 作为本发明一实施方式的进一步改进, 所述铰接结构设置两个, 沿着自动行走 机器人的行进方向设置在所述至少一个行走轮的轮轴的两侧。
[0009] 作为本发明一实施方式的进一步改进, 所述至少一个行走轮中沿着自动行走机 器人行进方向的左侧轮轴与右侧轮轴相对独立设置, 所述铰接结构设置两个, 分别对应左侧轮轴和右侧轮轴设置。
[0010] 作为本发明一实施方式的进一步改进, 所述至少一个行走轮中沿着自动行走机 器人行进方向的左侧轮轴与右侧轮轴相对独立设置, 所述左侧轮轴和右侧轮轴 均通过所述铰接结构相对机体枢转。
[0011] 作为本发明一实施方式的进一步改进, 所述左侧轮轴旋转支撑在左支架上, 所 述右侧轮轴旋转支撑在右支架上, 所述铰接结构包括安装在机体上的转动轴, 所述左支架和右支架均连接于转动轴并能够分别围绕转动轴的轴线旋转。
[0012] 作为本发明一实施方式的进一步改进, 所述转动轴固定于左支架和右支架中的 一个上, 所述左支架和右支架中的另一个枢转连接于转动轴, 所述转动轴旋转 的安装于机体。
[0013] 作为本发明一实施方式的进一步改进, 所述至少一个行走轮中沿着自动行走机 器人行进方向的左侧轮轴与右侧轮轴相对关联设置, 所述左侧轮轴和右侧轮轴 构造为整体并一起通过所述铰接结构相对机体枢转。
[0014] 作为本发明一实施方式的进一步改进, 所述左侧轮轴和右侧轮轴均旋转支撑在 支架上, 所述铰接结构包括枢转安装在支架上的铰链轴以及与铰链轴连接的滑 柱, 所述滑柱的一端与所述铰链轴连接, 所述滑柱的另一端穿过机体上沿竖直 方向设置的定位孔, 所述支架承受朝向自动行走机器人所行走的地面的力。
[0015] 作为本发明一实施方式的进一步改进, 所述铰接结构包括两个, 分别设置在支 架上靠近两侧行走轮的位置。
[0016] 作为本发明一实施方式的进一步改进, 所述支架上设置安装孔, 所述安装孔沿 所述左侧轮轴轴向的距离大于所述铰链轴的外径, 所述铰链轴能够在安装孔内 移动并旋转。
[0017] 作为本发明一实施方式的进一步改进, 所述支架和机体之间设置弹性装置, 所 述弹性装置施加给所述支架朝向地面的力, 所述弹性装置包括两个, 分别抵压 在支架上靠近两侧行走轮的位置。
[0018] 作为本发明一实施方式的进一步改进, 所述至少一个行走轮的轮轴相对机体沿 着竖直方向活动设置。
[0019] 作为本发明一实施方式的进一步改进, 所述至少一个行走轮的轮轴与所述机体 之间连接浮动结构, 所述轮轴通过浮动结构相对机体沿着竖直方向运动。
[0020] 作为本发明一实施方式的进一步改进, 所述至少一个行走轮中沿着自动行走机 器人行进方向的左侧轮轴与右侧轮轴相对独立设置, 所述浮动结构设置两个, 分别对应左侧轮轴和右侧轮轴设置, 所述左侧轮轴和右侧轮轴通过各自对应的 浮动结构分别相对机体沿着竖直方向运动。
[0021] 作为本发明一实施方式的进一步改进, 所述至少一个行走轮的轮轴旋转支撑在 支架上, 所述浮动结构包括固定于机体上的滑杆以及设置在支架上供滑杆穿过 的定位孔, 所述支架通过定位孔沿着滑杆移动。
[0022] 作为本发明一实施方式的进一步改进, 所述至少一个行走轮的轮轴旋转支撑在 支架上, 所述浮动结构包括固定于支架上的滑杆以及设置在机体上供滑杆穿过 的定位孔, 所述支架通过滑杆沿着定位孔移动。 [0023] 作为本发明一实施方式的进一步改进, 所述滑杆和定位孔都分别设置两个并相 互对应, 两个滑杆沿着自动行走机器人的行进方向设置在所述至少一个行走轮 的轮轴的两侧。
[0024] 作为本发明一实施方式的进一步改进, 所述浮动结构包括两根平行等长的连杆 , 所述两根连杆的一端与所述至少一个行走轮铰接, 两根连杆的另一端与所述 机体铰接, 所述至少一个行走轮通过所述两根连杆相对机体沿着竖直方向运动
[0025] 作为本发明一实施方式的进一步改进, 所述行走马达与所述至少一个行走轮的 轮轴之间连接有球头传动轴, 所述行走马达通过球头传动轴将旋转动力传动给 所述至少一个行走轮的轮轴, 所述两根连杆沿竖直方向位于所述球头传动轴的 两侧。
[0026] 作为本发明一实施方式的进一步改进, 所述至少一个行走轮的轮轴与所述机体 之间设置限位结构, 所述限位结构能够限制所述至少一个行走轮的轮轴在预设 范围内活动。
[0027] 作为本发明一实施方式的进一步改进, 所述至少一个行走轮的轮轴与所述机体 之间设置弹性装置, 所述弹性装置用于给所述至少一个行走轮提供朝向地面的 力。
[0028] 与现有技术相比, 本发明的有益效果在于: 本发明的自动行走机器人, 其行走 轮可以根据地面高低起伏进行位置调整, 避免行走轮悬空造成各个行走轮与地 面的摩擦牵引力不均衡, 并且使保持底盘始终处于大致水平位置, 不产生侧斜 、 剧烈颠簸, 避免自动行走机器人行经过程中发生震动而影响装置性能, 从而 改善割草机器人的工作稳定性能。
[0029] 为实现上述发明目的, 本发明提供一种自动行走机器人用于在地面上自动行走 和工作, 包括: 机体, 安装于机体的行走模块以及与行走模块连接的控制模块 , 所述行走模块包括安装在机体上的行走轮组和驱动所述行走轮组的行走马达 , 沿着自动行走机器人的行进方向, 所述行走轮组包括设置在前的两个前轮以 及相对的两个后轮, 每个行走轮具有与该行走轮相对固定的轮轴, 位于同一侧 的前轮和后轮设置为同步转动, 每个行走轮的轮轴与所述机体之间均设置检测 传感器, 当至少两个行走轮离幵地面吋, 至少两个检测传感器被触发从而将检 测信号反馈给所述控制模块, 所述控制模块根据接收到的检测信号进行相应的 控制。
[0030] 与现有技术相比, 本发明的有益效果在于: 本发明的自动行走机器人, 行走轮 离地吋能够进行相应的控制, 防止机器人单侧悬空而翻车。 而且其行走轮可以 根据地面高低起伏进行位置调整, 避免行走轮悬空造成各个行走轮与地面的摩 擦牵引力不均衡, 并且使保持底盘始终处于大致水平位置, 不产生侧斜、 剧烈 颠簸, 避免自动行走机器人行经过程中发生震动而影响装置性能, 从而改善割 草机器人的工作稳定性能。
发明的有益效果
对附图的简要说明
附图说明
[0031] 图 1是本发明优选的第一实施方式中割草机器人的立体图;
[0032] 图 2是图 1中的割草机器人的部分分解示意图;
[0033] 图 3是图 1中的割草机器人行走轮与底盘的组装结构示意图;
[0034] 图 4是图 3中 a部分的放大示意图;
[0035] 图 5是图 1中的割草机器人的俯视图;
[0036] 图 6是图 5中沿 A-A线的剖视图;
[0037] 图 7是图 5中沿 B-B线的剖视图;
[0038] 图 8是本发明优选的第二实施方式中割草机器人的部分分解示意图;
[0039] 图 9是图 8中的割草机器人行走轮的轮轴与底盘的组装结构示意图;
[0040] 图 10是本发明优选的第二实施方式中割草机器人的剖视示意图;
[0041] 图 11是本发明优选的第三实施方式中割草机器人的部分分解示意图;
[0042] 图 12是图 11中的割草机器人行走轮的轮轴与底盘的组装结构示意图;
[0043] 图 13是本发明优选的第三实施方式中割草机器人的剖视示意图;
[0044] 图 14是本发明优选的第四实施方式中割草机器人的部分分解示意图;
[0045] 图 15是本发明优选的第四实施方式中割草机器人的仰视示意图;
[0046] 图 16是图 15中沿 C-C线的剖视图。 本发明的实施方式
[0047] 以下将结合附图所示的具体实施方式对本发明进行详细描述。 但这些实施方式 并不限制本发明, 本领域的普通技术人员根据这些实施方式所做出的结构、 方 法、 或功能上的变换均包含在本发明的保护范围内。
[0048] 参照图 1到图 7所示, 本发明优选的第一实施例中, 自动行走机器人优选为割草 机器人, 其用于在地面上自动行走和工作, 通过电池提供行走以及工作能量。 割草机器人包括机体 10、 安装于机体 10的用于修剪草坪的工作模块 20以及行走 模块 30, 行走模块用于行走和转向, 工作模块包括切割马达、 与切割马达连接 的传动轴以及与传动轴配接的切割装置 (图未示) , 切割装置可以是切割刀片 、 切割线等能够实现对草坪进行修剪的切割元件。 另外, 割草机器人还包括控 制模块, 用于协调工作模块和行走模块, 控制模块能够使割草机器人在无人看 守的情况下自动在草坪上行走并割草。 在本发明的描述中, 除非另外指出, 涉 及的方向术语, 如前、 后、 左、 右、 上和下等, 都是以如图 1所示的割草机器人 正常前进行驶吋的方向为参照。
[0049] 其中,
割草机器人的行走模块 30, 包括行走轮组以及驱动行走轮组的行走马达 33。 其 中, 机体 10包括底盘 13, 行走轮组安装于底盘 13上。 本实施例中, 行走轮组包 括四个行走轮 31a、 31b、 32a. 32b , 分别为设置在机体前部两侧的前行走轮 31a 、 31b和设置在机体后部两侧的后行走轮 32a、 32b , 每个行走轮具有相互独立的 轮轴, 机体两侧的行走轮关于机体的对称轴 X对称。
[0050] 接下来以前行走轮 31a、 31b为例进行具体说明, 左前行走轮 31a具有左前轮轴 3 4a, 左前轮轴 34a的一端连接行走马达 33, 另一端与左前行走轮 31a周向固定连接 , 从行走马达 33传递的旋转动力能够经过左前轮轴 34a传递给左前行走轮 31a, 从 而左前行走轮 31a被驱动旋转。 左前轮轴 34a上还相对固定的安装有主动带轮 42, 主动带轮 42位于行走马达 33和左前行走轮 31a之间。 左后行走轮 32a具有左后轮轴 35a, 左后轮轴 35a上相对固定的安装有从动带轮 43, 主动带轮 42和从动带轮 43上 安装有传动带 44, 因此, 行走马达 33能够通过主动带轮 42、 传动带 44和从动带 轮 43带动左后轮轴 35a旋转, 左前行走轮 31a和左后行走轮 32a之间通过带传动, 从而实现左前行走轮 31a和左后行走轮 32a的同步转动。 右侧行走轮可以通过另一 个行走马达和带传动机构实行右前行走轮 31b和右后行走轮 32b的同步转动, 为 了使行走模块更加紧凑, 右侧的行走马达可以设置为直接带动右后行走轮 32b旋 转, 通过带传动带动右前行走轮 31b旋转, 具体的结构与左侧行走轮类似, 这里 不再赘述。 割草机器人的转向可以通过控制两侧的行走马达输出不同的转速来 实现。
[0051] 进一步的, 左前轮轴 34a和右前轮轴 34b通过铰接结构与底盘 13铰接, 即左前轮 轴 34a和右前轮轴 34b能够独立地通过铰接结构相对底盘 13转动, 从而实现左前行 走轮 31a和右前行走轮 32a的上下浮动。 当然, 铰接结构可以设置两个, 即左前轮 轴 34a连接一个铰接结构, 右前轮轴 34b也连接一个铰接结构, 两个铰接结构可以 并排布置或者前后布置。 本实施例中, 左前轮轴 34a和右前轮轴 34b共用一个铰接 结构。 具体的, 铰接结构包括支撑在底盘 13上的转动轴 51, 行走马达 33安装在 左支架 36a上, 转动轴 51的一端与左支架 36a相对固定, 转动轴 51的另一端通过轴 承 52支撑在底盘 13上, 轴承 52通过轴承压板 53安装于底盘 13, 如此, 左支架 36a 可以带动行走马达 33、 左前轮轴 34a—起围绕转动轴 51的轴线旋转, 左前行走轮 3 la与左前轮轴 34a周向固定, 因此, 左前行走轮 31a可以随着左前轮轴 34a—起围 绕转动轴 51的轴线旋转。
[0052] 另外, 右前行走轮 31b具有右前轮轴 34b, 右前轮轴 34b的一端旋转的支撑在右 支架 36b上, 另一端与右前行走轮 31b周向固定连接。 右支架 36b具有沿右前轮轴 34b轴向延伸的枢转臂 361b, 枢转臂 361b枢转连接在转动轴上 51, 因此, 右支架 36b可以带动右前轮轴 34b、 右前行走轮 31b—起围绕转动轴 51的轴线旋转。 每个 行走轮对应的支架构成了割草机器人的支架机构。
[0053] 上述的为左前行走轮和右前行走轮通过同一个铰接结构分别枢转的方案, 当然 , 也可以是左前行走轮和右前行走轮通过各自的铰接结构分别枢转, 即左前行 走轮连接一个铰接结构, 右前行走轮连接另一个铰接结构, 两个铰接结构间隔 独立设置。 在左前行走轮或右前行走轮通过铰接结构枢转的吋候, 左前行走轮 或右前行走轮沿竖直方向不仅产生位移, 而且左前行走轮或右前行走轮与竖直 方向的夹角也会产生变化, 因为左前行走轮和右前行走轮的位置调整是相对独 立的, 根据左前行走轮和右前行走轮接触的地面角度不同, 左前行走轮或右前 行走轮与竖直方向的夹角也会不同。
[0054] 为了使左前行走轮 31a和右前行走轮 31b围绕转动轴 51轴线的旋转更加平稳可靠 , 铰接结构可以设置两个, 沿着割草机器人的行进方向, 相对于左前轮轴 34a或 者右前轮轴 34b的轴线, 对称设置在左支架 36a或者右支架 36b的两侧。 左后行走 轮 32a和右后行走轮 32b之间设置的铰接结构与左前行走轮 31a和右前行走轮 32b之 间的铰接结构类似, 这里不再赘述。 另外, 为了限制行走轮相对于底盘 13的活 动范围, 割草机器人还设置限位装置, 该限位装置用于限制行走轮围绕转动轴 5 1的轴线旋转的活动范围, 也就是说行走轮在限位装置的作用下只能在预设范围 内活动。 以左前行走轮 31a为例, 本实施例中优选的, 限位装置装置包括限位压 板 61, 限位压板 61构造为半环形, 环设在左支架 36a上, 限位压板 61的两端通过 螺钉固定在底盘 13上, 限位压板 61与左支架 36a之间具有预设间隙, 左支架 36a可 以在预设间隙范围内活动, 因此, 左前行走轮 31a随着左支架 36a也只能在限位压 板 61与左支架 36a之间的预设间隙范围内活动。
[0055] 通过设置铰接结构, 割草机器人在行经地面不平整的草地吋, 其行走轮能够适 应地面高低起伏的变化, 在竖直方向上围绕铰接结构的转动轴 51轴线枢转从而 可以在竖直方向上下活动, 避免行走轮悬空造成各个行走轮与地面的摩擦牵弓 I 力不均衡。 特别是在割草机器人转弯吋, 例如向左转弯, 由于向心力的作用, 左侧行走轮的抓地力增大, 同吋右侧行走轮的抓地力减小。 当转弯吋遇到不平 地面吋, 两侧行走轮抓地力发生非常规变化, 割草机器人控制模块的中央处理 器将难以准确计算转向角度, 导致转向控制不准确。 通过设置上述铰接结构, 实现行走轮根据地势的浮动调整, 能够降低两侧行走轮抓地力非常规变化造成 的影响, 并且使保持底盘始终大致处于趋近于水平位置的平衡状态, 不产生侧 斜、 剧烈颠簸, 避免割草机器人行经过程中发生震动而影响装置性能, 从而改 善割草机器人的工作稳定性能。 相对于行走轮相对底盘位置不变的情形来说, 底盘与水平面的相对角度更趋近于零。
[0056] 进一步地, 为了增加割草机器人行走轮与地面的附着力, 割草机器人还设置弹 性装置, 该弹性装置用于给行走轮提供朝向地面的力。 本实施例中优选的, 弹 性装置包括扭簧 80, 以左前行走轮 31a为例, 扭簧 80安装在左支架 36a上, 其一端 抵接在支架 36a上, 另一端抵接在底盘 13上, 且使扭簧处于储能状态, 这样, 无 论左前行走轮 31a处于任何位置, 扭簧 80均可以通过压迫左支架 36a使得左前行走 轮 31a—直承受朝向地面的力, 从而保持与地面的接触。 同样的, 右支架 36b上也 设置扭簧, 扭簧可以通过压迫右支架 36b使得右前行走轮 32b—直承受朝向地面 的力, 从而保持与地面的接触。 当然, 本领域技术人员可以很容易的想到, 通 过设置压簧也可以实现同样的功能。
[0057] 本实施例中设置扭簧不仅结构简单, 生产组装方便, 而且能够进一步加强行走 轮与地面的附着力, 使行走轮可靠抓地, 保持车身稳定; 另外, 附着力受转动 角度 (即行走轮在竖直方向上围绕铰接结构的转动轴轴线上下活动的幅度) 影 响较小, 从而保证四个行走轮与地面的附着力差异较小, 避免由于附着力差异 较大使车身产生抖动, 导致车身运行不稳。
[0058] 进一步地, 该割草机器人还设置有检测行走轮是否离幵地面的离地检测传感器 70。 该离地检测传感器 70可设置在轮轴上并且接近底盘 13的位置, 当行走轮离 幵地面吋, 离地检测传感器 70与底盘 13相抵, 进而触发检测信号。 当割草机器 人行经复杂地面吋, 可能发生行走轮脱离地面的意外情况, 设置检测行走轮是 否离幵地面的离地检测传感器 70, 能够将该意外情况反馈给割草机器人的控制 模块, 从而使得该意外情况得到及吋处理。
[0059] 参照图 8到图 10所示, 本发明优选的第二实施例中, 割草机器人的主要构成部 分与第一实施例相同, 这里不再赘述。 本实施例中仍以前行走轮为例进行说明 。 左前轮轴 234a由行走马达 233驱动, 右前轮轴 234b与行走马达共同通过前支架 2 36支撑, 从而前支架 236将左前轮轴 234a、 行走马达 233以及右前轮轴 234b构造为 一个整体。 前支架 236的上部设置有限位压板 261, 限位压板 261通过螺钉连接在 底盘 213上, 用于限制前支架 236只能在预设的范围内活动。 其中, 铰接结构包 括连接在前支架 236上的铰链轴 251, 铰链轴 251轴线沿着割草机器人的行进方向 布置, 铰链轴 251设置两个, 位于前支架 236上靠近两侧行走轮的位置, 每个铰 链轴 251上枢转连接有一个滑柱 263, 滑柱 263穿过限位压板 261上的定位孔 262并 能够沿着定位孔 262上下滑动, 滑柱 263上下滑动的同吋, 前支架 236的两端也能 够在与割草机器人行进方向垂直的平面内上下移动或转动, 也就是说, 左前轮 轴 234a和右前轮轴 234b分别带动左前行走轮 231a和右前行走轮 231b—起在与割草 机器人行进方向垂直的平面内上下移动或转动。 另外, 前支架 236上设置安装孔 252, 安装孔 252沿左侧轮轴轴向的距离大于铰链轴 251的外径, 铰链轴 251能够 在安装孔 252内移动并旋转。 当然, 本领域技术人员能够很容易的想到, 左前行 走轮 31a和右前行走轮 31b可以共用同一个轮轴, 轮轴可在与割草机器人行进方向 垂直的平面内上下移动或转动, 如在轮轴外设置支架, 在支架的中部设置枢转 结构等等。
[0060] 上述实施例中, 限位压板 261和前支架 236之间设置弹性装置, 用于给行走轮提 供朝向地面的力。 弹性装置包括压缩弹簧 280, 压缩弹 280设置在靠近滑柱 263的 位置, 压缩弹簧 280用于给前支架 236的两端提供朝向地面的弹性力, 从而能够 给行走轮提供朝向地面的力以增加割草机器人行走轮与地面的附着力。 压缩弹 簧 280设置两个, 位于前支架 236上临近两侧行走轮的位置。 另外, 本实施例中 , 该割草机器人同样设置有检测行走轮是否离幵地面的离地检测传感器 270, 该 离地检测传感器 270可设置在前支架 236上接近底盘 213的位置, 当行走轮离幵地 面吋, 离地检测传感器 270与底盘 213相抵, 进而触发检测信号。 离地检测传感 器 270的数量与行走轮的数量相同, 每个离地检测传感器用于检测其对应的行走 轮的离地情况或者另一侧对应的行走轮的离地情况。
[0061] 参照图 11到图 13所示, 本发明优选的第三实施例中, 割草机器人的主要构成部 分与第一实施例相同, 这里不再赘述。 本实施例中仍以前行走轮为例进行说明 , 左前轮轴与机体之间连接浮动结构, 左前轮轴 334a通过浮动结构相对机体沿着 竖直方向运动。 左前轮轴 334a由行走马达 333驱动, 左前行走轮 331a和右前行走 轮 331b使用各自独立的轮轴。 浮动结构包括支撑左前轮轴 334a的左前支架 336a上 的设有至少一个定位孔 372以及穿过定位孔 372的至少一个滑杆 374, 滑杆 374的 一端固定在底盘 313上, 另一端固定在安装在底盘 313上的限位压板 361上, 左前 轮轴 334a可以在左前支架 336a的带动下沿滑杆 374在与割草机器人行进方向垂直 的平面内上下移动。 优选的, 每一侧的行走轮最好配置两个相互配合的定位孔 3 72和滑杆 374, 从而使得轮轴的上下移动更加平稳。
[0062] 本实施例中, 同样在限位压板 361和左前支架 336a之间设置压缩弹簧 380, 压缩 弹簧 380临近定位孔 372设置, 用于通过左前支架 336a给左前行走轮 331a提供朝向 地面的弹性力, 从而增加割草机器人行走轮与地面的附着力。 另外, 左前支架 3 36a与底盘 313之间设置离地检测传感器 370, 离地检测传感器 370构造为压簧, 当 行走轮离幵地面吋, 压簧与底盘 313相抵, 进而触发检测信号。
[0063] 在上述实施例可变形的方案中, 可以在支撑左前轮轴的左前支架上设置与之固 定连接的滑杆, 固定在底盘上的限位压板上或者底盘上设置定位孔, 即浮动结 构包括固定在左前支架上的以及设置在底盘上供滑杆穿过的定位孔, 滑杆穿过 定位孔并能够沿着定位孔上下滑动, 同样也可以实现左前轮轴在左前支架的带 动下在与割草机器人行进方向垂直的平面内上下移动。
[0064] 参照图 14到图 16所示, 本发明优选的第四实施例中, 本实施例中, 右侧行走轮 的驱动行走, 通过第一行走马达 433a驱动右后行走轮 432b, 右后行走轮 432b带动 右前行走轮 43 lb, 第一行走马达 433a设置在左后行走轮 43 lb和右后行走轮 432b之 间, 靠近左后行走轮 431b。 左侧行走轮的驱动行走, 左前行走轮 431a通过第二行 走马达 433b驱动左后行走轮 432a, 第二行走马达 433b设置在左前行走轮 43 la和右 前行走轮 432a之间, 靠近右前行走轮 432a。 左侧行走轮中, 左前侧行走轮 431a为 主动, 左后侧行走轮 432a为从动; 右侧行走轮中, 右后侧行走轮 432b为主动, 右 前侧行走轮 431b为从动。 以右侧为例, 右后行走轮 432b具有右后轮轴 434b, 第 一行走马达 433a通过带轮传动将旋转动力传递给右后轮轴 434b。 具体的, 第一行 走马达 433a构造为电机, 电机的输出轴 4331上固定设置第一带轮 91, 右后轮轴 43 4b通过球头传动轴 438与第一带轮轴 921可传递旋转动力的连接, 第一带轮轴 921 上固定设置第二带轮 92, 第一带轮 91和第二带轮 92之间连接有第一传动带 911, 电机输出的旋转动力通过第一带轮 91、 第一传动带 911、 第二带轮 92传递给第一 带轮轴 921, 第一带轮轴 921通过球头传动轴 438将旋转动力传递给右后轮轴 434b , 如此, 便实现了电机驱动右后行走轮 432b行走。
[0065] 进一步的, 第一带轮轴 921上还固定设置有第三带轮 93, 第三带轮 93与第二带 轮 92并排布置于第一带轮轴 921上, 底盘 413上可旋转的支撑有第二带轮轴 922, 第二带轮轴 922与第一带轮轴 921平行且靠近右后行走轮 432b设置, 第二带轮轴 9 22的两端分别固定设置了第四带轮 94和第五带轮 95, 其中, 第三带轮 93和第四 带轮 94之间连接第二传动带 912, 传递到第一带轮轴 921的旋转动力通过第三带 轮 93、 第二传动带 912和第四带轮 94传递给第二带轮轴 922。 与第二带轮轴 922间 隔平行的设置有第三带轮轴 923, 第三带轮轴 923靠近右前行走轮 431b设置, 并 且第三带轮轴 923的两端分别固定设置第六带轮 96和第七带轮 97, 第五带轮 95和 第六带轮 96之间设置第三传动带 913, 第二带轮轴 922输出的旋转动力能够通过 第五带轮 95、 第三传动带 913和第六带轮 96传递给第三带轮轴 923。 右前行走轮 4 31b具有右前轮轴, 右前轮轴通过球头传动轴与第四带轮轴 924可传递旋转动力 地连接, 第四带轮轴 924上固定设置有第八带轮 98, 第七带轮 97和第八带轮 98之 间连接有第四传动带 914, 第三带轮轴 923输出的旋转动力能够通过第七带轮 97 、 第四传动带 914和第八带轮 98传递给第四带轮轴 924, 第四带轮轴 924通过球头 传动轴带动右前轮轴旋转。 上述从右后轮轴到右前轮轴的传动可以概括为, 主 动轮通过同步带带动从动轮, 主动轮与从动轮同步转动 /停止, 且转速、 转向相 同。 左侧的传动与右侧类似, 这里不再赘述。 上述实施例通过两个行走马达分 别控制左侧和右侧行走轮的行走, 并且可以通过控制两个行走马达的转速不同 来控制割草机器人的转向。
本实施例中, 行走轮的轮轴通过球头传动轴与输入旋转动力的带轮轴连接, 使 得行走轮在相对于底盘上下移动的过程中, 不会影响行走轮的旋转, 即球头传 功轴即构成了连接行走轮的轮轴与机体的浮动结构。 进一步的, 浮动结构还包 括悬臂结构, 悬臂结构连接在行走轮的轮轴与输入旋转动力的带轮轴之间, 以 右后行走轮 432b为例, 悬臂结构包括安装在右后轮轴上 434b的悬臂外支架 437, 安装在第一带轮轴 921上的悬臂内支架 436, 连接在悬臂外支架 437和悬臂内支架 436之间的悬臂, 悬臂的一端与悬臂外支架 437枢转连接, 悬臂的另一端与悬臂 内支架 436枢转连接。 优选的, 悬臂设置两个, 位于球头传动轴 438上侧的上悬 臂 491以及位于球头传动轴下侧的下悬臂 492, 上悬臂和下悬臂的两端分别设有 轴孔, 靠近右后行走轮 432b的一端通过销轴 494穿过轴孔与悬臂外支架 437枢转 连接, 另一端通过销轴 493穿过轴孔与悬臂内支架 436枢转连接。 通过设置上悬 臂和下悬臂, 使得行走轮的上下移动更加平稳。
[0067] 底盘 413上对应上悬臂和下悬臂的位置设置悬臂收容部, 对应行走马达的位置 设有电机收容部, 方便组装吋各模块的定位。 另外, 上悬臂 491上设置安装孔 49 8, 安装孔 498用于压缩弹簧 380的安装定位, 压缩弹簧 380—端抵接在机体上, 另一端抵接在上悬臂 491上, 用于通过上悬臂 491给右后行走轮 432b提供朝向地 面的弹性力, 从而增加割草机器人行走轮与地面的附着力。 另外, 本实施例中 , 离地检测传感器 470设置在机体上, 离地检测传感器 470构造为压簧, 当行走 轮离幵地面吋, 压簧与悬臂外支架 437相抵, 进而触发检测信号。 当然, 本领域 技术人员也很容易能够相对, 离地检测传感器 470也可以设置在悬臂外支架 437 、 上悬臂或者下悬臂上, 而且离地检测传感器也可以构造为其他结构形式, 只 要能够实现检测行走轮离幵地面的状态即可。
[0068] 本发明优选的, 每个行走轮的轮轴与机体之间均设置离地检测传感器, 并且当 至少两个行走轮离幵地面吋, 至少两个离地检测传感器与机体相抵从而触发检 测信号并反馈给控制模块, 控制模块根据接收到的检测信号进行相应的控制, 如执行停机动作, 目的是防止割草机器人单侧悬空而翻车。
[0069] 应当理解, 虽然本说明书按照实施方式加以描述, 但并非每个实施方式仅包含 一个独立的技术方案, 说明书的这种叙述方式仅仅是为清楚起见, 本领域技术 人员应当将说明书作为一个整体, 各实施方式中的技术方案也可以经适当组合 , 形成本领域技术人员可以理解的其他实施方式。
[0070] 上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说 明, 它们并非用以限制本发明的保护范围, 凡未脱离本发明技艺精神所作的等 效实施方式或变更均应包含在本发明的保护范围之内。

Claims

权利要求书
一种自动行走机器人, 用于在地面上自动行走和工作, 包括: 机体, 安装于机体的行走模块以及与行走模块连接的控制模块, 所述行走模 块包括安装在机体上的行走轮组和驱动所述行走轮组的行走马达, 沿 着自动行走机器人的行进方向, 所述行走轮组包括设置在前的两个前 轮以及相对的两个后轮, 位于同一侧的前轮和后轮设置为同步转动, 其特征在于: 每个行走轮具有与该行走轮相对固定的轮轴, 在两个行 走轮之间接触地面的高度不同吋, 至少一个行走轮和其轮轴相对于机 体的位置发生改变, 以使所述机体保持在趋近于水平位置的平衡状态 根据权利要求 1所述的自动行走机器人, 其特征在于, 所述至少一个 行走轮的轮轴相对机体能够围绕与自动行走机器人行进方向平行的轴 线枢转。
根据权利要求 2所述的自动行走机器人, 其特征在于, 所述至少一个 行走轮的轮轴与所述机体之间连接铰接结构, 所述轮轴通过铰接结构 相对机体枢转。
根据权利要求 3所述的自动行走机器人, 其特征在于, 所述铰接结构 设置两个, 沿着自动行走机器人的行进方向设置在所述至少一个行走 轮的轮轴的两侧。
根据权利要求 3所述的自动行走机器人, 其特征在于, 所述至少一个 行走轮中沿着自动行走机器人行进方向的左侧轮轴与右侧轮轴相对独 立设置, 所述铰接结构设置两个, 分别对应左侧轮轴和右侧轮轴设置 根据权利要求 3所述的自动行走机器人, 其特征在于, 所述至少一个 行走轮中沿着自动行走机器人行进方向的左侧轮轴与右侧轮轴相对独 立设置, 所述左侧轮轴和右侧轮轴均通过所述铰接结构相对机体枢转
[权利要求 7] 根据权利要求 6所述的自动行走机器人, 其特征在于, 所述左侧轮轴 旋转支撑在左支架上, 所述右侧轮轴旋转支撑在右支架上, 所述铰接 结构包括安装在机体上的转动轴, 所述左支架和右支架均连接于转动 轴并能够分别围绕转动轴的轴线旋转。
根据权利要求 7所述的自动行走机器人, 其特征在于, 所述转动轴固 定于左支架和右支架中的一个上, 所述左支架和右支架中的另一个枢 转连接于转动轴, 所述转动轴旋转的安装于机体。
根据权利要求 3所述的自动行走机器人, 其特征在于, 所述至少一个 行走轮中沿着自动行走机器人行进方向的左侧轮轴与右侧轮轴相对关 联设置, 所述左侧轮轴和右侧轮轴构造为整体并一起通过所述铰接结 构相对机体枢转。
根据权利要求 9所述的自动行走机器人, 其特征在于, 所述左侧轮轴 和右侧轮轴均旋转支撑在支架上, 所述铰接结构包括枢转安装在支架 上的铰链轴以及与铰链轴连接的滑柱, 所述滑柱的一端与所述铰链轴 连接, 所述滑柱的另一端穿过机体上沿竖直方向设置的定位孔, 所述 支架承受朝向自动行走机器人所行走的地面的力。
根据权利要求 10所述的自动行走机器人, 其特征在于, 所述铰接结构 包括两个, 分别设置在支架上靠近两侧行走轮的位置。
根据权利要求 10所述的自动行走机器人, 其特征在于, 所述支架上设 置安装孔, 所述安装孔沿所述左侧轮轴轴向的距离大于所述铰链轴的 外径, 所述铰链轴能够在安装孔内移动并旋转。
根据权利要求 10所述的自动行走机器人, 其特征在于, 所述支架和机 体之间设置弹性装置, 所述弹性装置施加给所述支架朝向地面的力, 所述弹性装置包括两个, 分别抵压在支架上靠近两侧行走轮的位置。 根据权利要求 1所述的自动行走机器人, 其特征在于, 所述至少一个 行走轮的轮轴相对机体沿着竖直方向活动设置。
根据权利要求 14所述的自动行走机器人, 其特征在于, 所述至少一个 行走轮的轮轴与所述机体之间连接浮动结构, 所述轮轴通过浮动结构 相对机体沿着竖直方向运动。 根据权利要求 15所述的自动行走机器人, 其特征在于, 所述至少一个 行走轮中沿着自动行走机器人行进方向的左侧轮轴与右侧轮轴相对独 立设置, 所述浮动结构设置两个, 分别对应左侧轮轴和右侧轮轴设置 , 所述左侧轮轴和右侧轮轴通过各自对应的浮动结构分别相对机体沿 着竖直方向运动。
根据权利要求 15所述的自动行走机器人, 其特征在于, 所述至少一个 行走轮的轮轴旋转支撑在支架上, 所述浮动结构包括固定于机体上的 滑杆以及设置在支架上供滑杆穿过的定位孔, 所述支架通过定位孔沿 着滑杆移动。
根据权利要求 15所述的自动行走机器人, 其特征在于, 所述至少一个 行走轮的轮轴旋转支撑在支架上, 所述浮动结构包括固定于支架上的 滑杆以及设置在机体上供滑杆穿过的定位孔, 所述支架通过滑杆沿着 定位孔移动。
根据权利要求 17或 18所述的自动行走机器人, 其特征在于, 所述滑杆 和定位孔都分别设置两个并相互对应, 两个滑杆沿着自动行走机器人 的行进方向设置在所述至少一个行走轮的轮轴的两侧。
根据权利要求 15所述的自动行走机器人, 其特征在于, 所述浮动结构 包括两根平行等长的连杆, 所述两根连杆的一端与所述至少一个行走 轮铰接, 两根连杆的另一端与所述机体铰接, 所述至少一个行走轮通 过所述两根连杆相对机体沿着竖直方向运动。
根据权利要求 20所述的自动行走机器人, 其特征在于, 所述行走马达 与所述至少一个行走轮的轮轴之间连接有球头传动轴, 所述行走马达 通过球头传动轴将旋转动力传动给所述至少一个行走轮的轮轴, 所述 两根连杆沿竖直方向位于所述球头传动轴的两侧。
根据权利要求 1所述的自动行走机器人, 其特征在于, 所述至少一个 行走轮的轮轴与所述机体之间设置限位结构, 所述限位结构能够限制 所述至少一个行走轮的轮轴在预设范围内活动。
根据权利要求 1所述的自动行走机器人, 其特征在于, 所述至少一个 行走轮的轮轴与所述机体之间设置弹性装置, 所述弹性装置用于给所 述至少一个行走轮提供朝向地面的力。
[权利要求 24] 根据权利要求 1所述的自动行走机器人, 其特征在于, 每个行走轮的 轮轴与所述机体之间均设置检测传感器, 当至少两个行走轮离幵地面 吋, 至少两个检测传感器被触发从而将检测信号反馈给所述控制模块 , 所述控制模块根据接收到的检测信号进行相应的控制。
PCT/CN2018/072625 2017-01-19 2018-01-15 自动行走机器人 WO2018133760A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710037565.0A CN108323306A (zh) 2017-01-19 2017-01-19 自动行走机器人
CN201710037553.8 2017-01-19
CN201710037553.8A CN108323305A (zh) 2017-01-19 2017-01-19 自动行走机器人
CN201710037565.0 2017-01-19

Publications (1)

Publication Number Publication Date
WO2018133760A1 true WO2018133760A1 (zh) 2018-07-26

Family

ID=62907786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072625 WO2018133760A1 (zh) 2017-01-19 2018-01-15 自动行走机器人

Country Status (1)

Country Link
WO (1) WO2018133760A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111230893A (zh) * 2020-01-13 2020-06-05 北京理工大学 摆臂式行走机器人

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201084918Y (zh) * 2007-04-20 2008-07-16 邢国英 侧牵引灌木平茬机
CN101438652A (zh) * 2007-11-23 2009-05-27 林正道 一种割草机重心布置方法
US20120222909A1 (en) * 2011-03-03 2012-09-06 Jose Antonio Llopiz-Capote Riding Rotary Pressure Washer
CN104097502A (zh) * 2013-04-11 2014-10-15 苏州科瓴精密机械科技有限公司 机器人行走机构
CN206413408U (zh) * 2017-01-19 2017-08-18 苏州科瓴精密机械科技有限公司 自动行走机器人
CN206413409U (zh) * 2017-01-19 2017-08-18 苏州科瓴精密机械科技有限公司 自动行走机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201084918Y (zh) * 2007-04-20 2008-07-16 邢国英 侧牵引灌木平茬机
CN101438652A (zh) * 2007-11-23 2009-05-27 林正道 一种割草机重心布置方法
US20120222909A1 (en) * 2011-03-03 2012-09-06 Jose Antonio Llopiz-Capote Riding Rotary Pressure Washer
CN104097502A (zh) * 2013-04-11 2014-10-15 苏州科瓴精密机械科技有限公司 机器人行走机构
CN206413408U (zh) * 2017-01-19 2017-08-18 苏州科瓴精密机械科技有限公司 自动行走机器人
CN206413409U (zh) * 2017-01-19 2017-08-18 苏州科瓴精密机械科技有限公司 自动行走机器人

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111230893A (zh) * 2020-01-13 2020-06-05 北京理工大学 摆臂式行走机器人

Similar Documents

Publication Publication Date Title
CN206413409U (zh) 自动行走机器人
CN206413408U (zh) 自动行走机器人
US20100252338A1 (en) Golf bag vehicle
EP3689129B1 (en) Automatic walking robot and belt drive system
US11305817B2 (en) Soft ground crawling robot
CN209241198U (zh) 一种机器人用平台式全向轮驱动组件
CN106171253A (zh) 割草机
CN109969282A (zh) 一种具备曲面吸附功能的四轮爬壁机器人及其使用方法
WO2018133760A1 (zh) 自动行走机器人
CN113120110B (zh) 一种轮足机器人
CN108323305A (zh) 自动行走机器人
JP2005047312A (ja) 全方向移動車
CN106627743A (zh) 全向轮式平台及其行走控制方法
CN206217993U (zh) 全向轮式平台
CN113905608B (zh) 自主式机器人草坪割草机
CN208212479U (zh) 电驱动履带式滑板车
CN209795097U (zh) 一种四轮驱动四轴独立转向的减震悬架移动底盘及机器人
CN108323306A (zh) 自动行走机器人
SE541243C2 (en) Autonomous self-propelled robotic lawnmower comprising cambered wheels
CN111516747B (zh) 零转角电动割草机的方向控制机构
US20030082992A1 (en) Trim adjustment feature for toy vehicles
CN111532122A (zh) 一种通用移动机器人全向底盘
CN212211961U (zh) 一种割草机的方向盘可翻转机构
CN112519943A (zh) 一种自平衡自主行驶两轮车及平衡控制方法
CN108392820A (zh) 电驱动履带式滑板车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18741861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18741861

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: "NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - EPO FORM 1205A (03.09.2019)"

122 Ep: pct application non-entry in european phase

Ref document number: 18741861

Country of ref document: EP

Kind code of ref document: A1