WO2018133687A1 - Preparation and application of amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy - Google Patents

Preparation and application of amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy Download PDF

Info

Publication number
WO2018133687A1
WO2018133687A1 PCT/CN2018/071741 CN2018071741W WO2018133687A1 WO 2018133687 A1 WO2018133687 A1 WO 2018133687A1 CN 2018071741 W CN2018071741 W CN 2018071741W WO 2018133687 A1 WO2018133687 A1 WO 2018133687A1
Authority
WO
WIPO (PCT)
Prior art keywords
drug
platinum
amphiphilic
nanoparticle
reversing
Prior art date
Application number
PCT/CN2018/071741
Other languages
French (fr)
Inventor
Shuting XU
Deyue Yan
Wei Huang
Xinyuan Zhu
Yongfeng ZHOU
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Publication of WO2018133687A1 publication Critical patent/WO2018133687A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • A61K31/167Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the nitrogen of a carboxamide group directly attached to the aromatic ring, e.g. lidocaine, paracetamol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/28Compounds containing heavy metals
    • A61K31/282Platinum compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/555Heterocyclic compounds containing heavy metals, e.g. hemin, hematin, melarsoprol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention belongs to the technical field of antitumor drugs, and in particular to the preparation and application of an amphiphilic drug-drug nanoparticle for reversing multi-drug resistance in tumor therapy towards platinum-based anticancer drug.
  • cancers Malignant tumors (cancers) have been the leading cause of rising mortality in all countries of the world. Therefore, how to effectively treat malignant tumors has become one of the most urgent problems around the world.
  • cancer treatments include the following approaches: surgical resection, chemotherapy, radiotherapy, ablation, immunotherapy and biotherapy.
  • chemotherapy is one of the most convenient and extensive applied treatments, in which platinum-based anticancer drugs are the most widely used.
  • platinum-based antitumor agents have the following problems, for example, poor solubility, no selectivity, large side effects on normal tissues, tendency of being removed from the blood, and high risk of causing multi-drug resistance after administration for a certain period of time, and even some tumors (such as colon cancer and non-small cell lung cancer) have intrinsic resistance to cisplatin.
  • problems for example, poor solubility, no selectivity, large side effects on normal tissues, tendency of being removed from the blood, and high risk of causing multi-drug resistance after administration for a certain period of time, and even some tumors (such as colon cancer and non-small cell lung cancer) have intrinsic resistance to cisplatin.
  • a large number of literatures have reported the use of nano-scale materials as the carrier of antitumor drugs.
  • the carriers can deliver drugs into cancer cells to achieve the purpose of killing cancer cells, and specifically include water-soluble polymers (Advanced Drug Delivery Reviews 2009, 61 (13) , 1214-1219) , liposomes (Anticancer Research 2006, 26 (2B) , 1489-1493) , vesicles (Journal of the American Chemical Society 2005, 127 (23) , 8236-8237) , polymer nanoparticles (Bioconjugate Chemistry 2010, 21 (2) , 328-337) , inorganic materials (ACS Nano 2008, 2 (10) , 2057-2064; Journal of the American Chemical Society 2008, 130 (34) , 11467-11476) , and so on.
  • water-soluble polymers Advanced Drug Delivery Reviews 2009, 61 (13) , 1214-1219
  • liposomes Anticancer Research 2006, 26 (2B) , 1489-1493
  • vesicles Journal of the American Chemical Society 2005, 127 (23) , 8236-8237
  • these nano-sized carriers after delivering the drug into cancer cells, fail to effectively overcome multi-drug resistance of cancer cells towards the platinum-based anticancer drug.
  • the carrier itself needs to be excreted through organs such as the kidneys, resulting in renal inflammations or other disorders.
  • the first object of the present invention is to provide an amphiphilic drug-drug nanoparticle for reversing multi-drug resistance in cancer therapy, so as to solve the problems in the prior technique, for example, platinum-based anticancer drug-resistance of tumors and high risk of renal inflammations or other disorders caused by nano-carrier excretion through organs such as the kidneys after drug delivery.
  • the second object of the present invention is to provide a method for preparing the amphiphilic drug-drug nanoparticle, so as to solve the problems in the prior technique, for example, platinum-based anticancer drug resistance of tumors and high risk of renal inflammations or other disorders caused by nano-carrier excretion through organs such as the kidneys after drug delivery.
  • the third object of the present invention is to provide applications of the amphiphilic drug-drug nanoparticle, so as to solve the problems in the prior technique, for example, platinum-based anticancer drug resistance of tumors and high risk of renal inflammations or other disorders caused by nano-carrier excretion through organs such as the kidneys after drug delivery.
  • An amphiphilic drug-drug nanoparticle which can reverse platinum-based anticancer drug resistance in cancer therapy, is formed by a coordination reaction of a histone deacetylase inhibitor with a platinum-based antitumor agent and self-assembly in water; and after entering tumor cells, the amphiphilic drug-drug nanoparticle is hydrolyzed to release the histone deacetylase inhibitor and the platinum-based antitumor active agent.
  • the amphiphilic drug-drug nanoparticle has a particle size less than 100 nm.
  • the histone deacetylase inhibitor is hydrophobic and may be one selected from vorinostat, trichostatin A, N-hydroxy-N'-3-pyridinyloctanediamide (pyroxamide) , 2-propenamide, 3, 4-dihydroxybenzohydroxamic acid (Dido) , 4-phenylbutyric acid, 2-propylpentanoic acid, N-butyric acid, sodium phenylbutyrate, sodium 2-propylpentanoate or sodium buntanoate.
  • the platinum-based antitumor agent may be one selected from cisplatin, transplatin, trans-dichlorodipridine platinum (trans- [PtCl 2 (py) 2 ] ) or picoplatin.
  • This invention also discloses a method of preparing the amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy, including the following steps:
  • the organic solvent is selected from N, N'-dimethylformamide, dimethyl sulfoxide and methanol.
  • step (1) is one selected from the following two processes:
  • process 1 dissolving the platinum-based antitumor agent together with silver nitrate in an organic solvent, allowing the reaction to take place, removing precipitation of silver chloride, and collecting the supernatant as solution 1; mixing and dispersing the histone deacetylase inhibitor and alkali in an organic solvent, allowing the reaction to take place, removing insoluble matter, and collecting the supernatant as solution 2; then, mixing the solution 1 and solution 2 for reaction, removing the organic solvents and extracting to obtain the amphiphilic drug-drug complex;
  • process 2 dissolving the platinum-based anticancer drug together with silver nitrate in water, allowing the reaction to take place, removing precipitation of silver chloride, and collecting the supernatant as solution 3; then, adding the histone deacetylase inhibitor into the solution 3 for reaction, removing water and settling in ether to obtain the amphiphilic drug-drug complex.
  • the molar ratio of platinum-based antitumor agent to histone deacetylase inhibitor to silver nitrate is 1: 0.25-0.5: 0.95-1.05.
  • the molar ratio of platinum-based antitumor agent to histone deacetylase inhibitor to silver nitrate is 1: 2-3: 0.95-1.05.
  • the organic solvent is one of N, N'-dimethylformamide, dimethylsulfoxide or methanol; and the alkali is one of sodium hydroxide or sodium carbonate.
  • This invention also disclosed the usage of the amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy for preparing anticancer drug or anti-tumor-resistant drug.
  • the present invention has benefits as follows:
  • the histone deacetylase inhibitor and the platinum-based antitumor agent are bonded via coordination bonds to provide the synergistic effect on antitumor treatment with simple preparation method, high yield and obvious effectiveness;
  • the amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy of the invention can self-assemble in water to form nanoparticles with a particle size less than 100 nm, which can achieve drug delivery without any carriers. Because of the enhanced penetration to tumor tissues and the retention effect, this drug-drug nanoparticle can accumulate in the tumor tissues, enter tumor cells more effectively, reduce the blocking effect of sulfur-containing ligands in the blood on cisplatin, and reduce the side effects on normal cells.
  • the complex can be hydrolyzed to release the histone deacetylase inhibitor (HDACi) and platinum-based antitumor agent under the weakly acid environment in tumor tissues, which in turn provide the synergistic effect of reversing platinum-based drug resistance in cancer therapy and achieve the purpose of anticancer treatment.
  • HDACi histone deacetylase inhibitor
  • platinum-based antitumor agent under the weakly acid environment in tumor tissues, which in turn provide the synergistic effect of reversing platinum-based drug resistance in cancer therapy and achieve the purpose of anticancer treatment.
  • Fig. 1 is the 1 H-NMR spectrum of the amphiphilic drug-drug complex of example 1;
  • Fig. 2 is the mass spectrum of the amphiphilic drug-drug complex of example 1;
  • Fig. 3 is the infrared spectrum of the amphiphilic drug-drug complex of example 1;
  • Fig. 4 is the dynamic light scattering and transmission electron microscopy photo of the amphiphilic drug-drug nanoparticle of example 1;
  • Fig. 5 is the growth inhibiting effect of the amphiphilic drug-drug nanoparticle (example 1) towards the tumor cell;
  • Fig. 6 schematically shows the mechanism of reversing drug resistance by the amphiphilic drug-drug nanoparticle (example 1) ;
  • Fig. 7 schematically shows the anticancer effect of the amphiphilic drug-drug complex (example 1) towards drug-resistant tumor.
  • Disclosed in this example is a method for preparing an amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy, specifically including the following steps:
  • Disclosed in this example is a method for preparing an amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy, specifically including the following steps:
  • the average size of the nanoparticles based on trichostatin A-picoplatin complex obtained in this example is about 80 nm.
  • Disclosed in this example is a method for preparing an amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy, specifically including the following steps:
  • Disclosed in this example is a method for preparing an amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy, specifically including the following steps:
  • the average particle size of the nanoparticles based on sodium 2-propylpentanoate-cisplatin complex obtained in this example is about 45 nm.
  • Disclosed in this example is a method for preparing an amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy, specifically including the following steps:
  • the average size of the nanoparticles based on Dido-picoplatin complex obtained in this example is about 60 nm.
  • amphiphilic drug-drug nanoparticle obtained in example 1 (cisplatin/vorinostat in the molar ratio of 2) and cisplatin were respectively mixed with culture medium to form solutions with cisplatin concentrations of 0, 2.5, 5, 10, 20, 40, 80 ⁇ mol/L and corresponding vorinostat concentrations of 0, 1.25, 2.5, 5, 10, 20, 40 ⁇ mol/L.
  • A549 cells non-small cell lung cancer
  • A549/CDDP cells cisplatin-resistant non-small cell lung cancer
  • amphiphilic drug-drug nanoparticles exhibited significant cytotoxicity towards the common cancer cells. Furthermore, free cisplatin was substantially ineffective towards cisplatin-resistant non-small cell lung cancer cells. While, the amphiphilic drug-drug nanoparticles exhibits a significant effect towards both cells. Therefore, the amphiphilic drug-drug nanoparticle of the present invention has potential applications in reversing platinum-based anticancer drug resistance in cancer therapy. Shown below are the experiments on mechanism of an amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy of the invention.
  • amphiphilic drug-drug nanoparticle obtained in example 1 (2 ⁇ M) and cisplatin (4 ⁇ M) were co-cultured with A549 and A549/CDDP cells for 24 h, the content of platinum and the content of DNA-Pt adduct in the cells were measured by ICP-MS.
  • CDDP-SAHA nano-drug can conspicuously improve the cellular uptake of cisplatin in both A549 and A549/DR cells (25-49 fold) , while little free cisplatin was internalized.
  • amphiphilic drug-drug nanoparticle obtained in Example 1 (0, 4, 8 ⁇ M) was co-cultured with A549/CDDP cells for 48 h, and the content of reduced glutathione in the cells was measured by using GSH and GSSG Assay Kit.
  • the amount of intracellular reduced GSH decreased.
  • the previous studies demonstrated that drug resistance mediated from over-expression of anti-apoptotic protein BCL-2 is associated with increased glutathione concentration.
  • CDDP-SAHA nano-drug includes two main aspects: enhanced uptake of CDDP and promoted CDDP-DNA adduct; decreased the reduced GSH concentration and down-expression of BCL-2 and MRP1 proteins.
  • enhanced uptake of CDDP and promoted CDDP-DNA adduct decreased the reduced GSH concentration and down-expression of BCL-2 and MRP1 proteins.
  • the tumor masses of tumor-bearing mice inoculated with A549/CDDP and A549 cells were stripped for detection the expression of Ctr1 protein, and it was found that the expression of Ctr1 protein in A549/CDDP tumor was significantly lower than that in A549 tumor, indicating the successful inoculation of cisplatin-resistant non-small cell lung cancer model.
  • the tumor-bearing mice were divided into seven groups: normal saline group, cisplatin (4 mg/kg) group, vorinostat (1.8 mg/kg) group, cisplatin-vorinostat mixture (4 mg/kg cisplatin + 1.8 mg/kg vorinostat) group, drug-drug nanoparticle obtained in example 1 (5 mg/kg, equivalent to 4 mg/kg cisplatin and 1.8 mg/kg vorinostat) group, drug-drug nanoparticle obtained in example 1 (7.5 mg/kg, equivalent to 6 mg/kg cisplatin and 2.7 mg/kg vorinostat) group, drug-drug nanoparticle obtained in example 1 (10 mg/kg, equivalent to 8 mg/kg cisplatin and 3.6 mg/kg vorinostat ) group.
  • mice were injected once every three days at the dosage of 200 ⁇ L, the mice were weighed and the tumor masses were measured.
  • free cisplatin had no inhibitory effect on cisplatin-resistant tumor, while the anticancer effect of nanoparticle group enhanced with increasing concentration, along with negligible effect on the weight of mice (Fig. 7b) .
  • the weight of tumor treated with 10 mg/kg amphiphilic drug-drug nanoparticle was the lowest.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Pain & Pain Management (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

An amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy, which is formed through coordination of a histone deacetylase inhibitor with a platinum-based antitumor agent and self-assembly in water. After entering tumor cells, the amphiphilic drug-drug nanoparticle can hydrolyze to release two drug agents. The amphiphilic complex can self-assemble into nanoparticles in water without any carriers, and the complex can realize drug delivery by itself. At the meantime, the amphiphilic drug-drug nanoparticle can effectively enter tumor cells, reduce the blocking effect of sulfur-containing ligands in blood on cisplatin, and decrease the toxic and side effects towards normal cells. It can also be hydrolyzed to release the histone deacetylase inhibitor and platinum-based antitumor active agents, thereby achieving the synergistic effect for reversing platinum-based drug resistance in cancer therapy and the purpose of cancer treatment.

Description

Preparation and Application of Amphiphilic Drug-Drug Nanoparticle for Reversing Platinum-Based Anticancer Drug Resistance in Cancer Therapy Technical Field
The present invention belongs to the technical field of antitumor drugs, and in particular to the preparation and application of an amphiphilic drug-drug nanoparticle for reversing multi-drug resistance in tumor therapy towards platinum-based anticancer drug.
Background
Malignant tumors (cancers) have been the leading cause of rising mortality in all countries of the world. Therefore, how to effectively treat malignant tumors has become one of the most urgent problems around the world. Currently, cancer treatments include the following approaches: surgical resection, chemotherapy, radiotherapy, ablation, immunotherapy and biotherapy. Among these, chemotherapy is one of the most convenient and extensive applied treatments, in which platinum-based anticancer drugs are the most widely used.
However, most of platinum-based antitumor agents have the following problems, for example, poor solubility, no selectivity, large side effects on normal tissues, tendency of being removed from the blood, and high risk of causing multi-drug resistance after administration for a certain period of time, and even some tumors (such as colon cancer and non-small cell lung cancer) have intrinsic resistance to cisplatin. In the existing technology, in order to solve the problems of poor solubility and short blood retention time, a large number of literatures have reported the use of nano-scale materials as the carrier of antitumor drugs. The carriers can deliver drugs into cancer cells to achieve the purpose of killing cancer cells, and specifically include water-soluble polymers (Advanced Drug Delivery Reviews 2009, 61 (13) , 1214-1219) , liposomes (Anticancer Research 2006, 26 (2B) , 1489-1493) , vesicles (Journal of the American Chemical Society 2005, 127 (23) , 8236-8237) , polymer nanoparticles (Bioconjugate Chemistry 2010, 21 (2) , 328-337) , inorganic materials (ACS Nano 2008, 2 (10) , 2057-2064; Journal of the American Chemical Society 2008, 130 (34) , 11467-11476) , and so on. However, these nano-sized carriers, after delivering the drug into cancer cells, fail to effectively overcome multi-drug resistance of cancer cells towards the platinum-based anticancer drug. At the meantime, the carrier itself needs to be excreted through organs such as the kidneys, resulting in renal inflammations or other disorders. 
Summary
The first object of the present invention is to provide an amphiphilic drug-drug nanoparticle for reversing multi-drug resistance in cancer therapy, so as to solve the problems in the prior technique, for example, platinum-based anticancer drug-resistance of tumors and high risk of renal inflammations or other disorders caused by nano-carrier excretion through organs such as the kidneys after drug delivery.
The second object of the present invention is to provide a method for preparing the amphiphilic drug-drug nanoparticle, so as to solve the problems in the prior technique, for example, platinum-based anticancer drug resistance of tumors and high risk of renal inflammations or other disorders caused by nano-carrier excretion through organs such as the kidneys after drug delivery. The third object of the present invention is to provide applications of the amphiphilic drug-drug nanoparticle, so as to solve the problems in the prior technique, for example, platinum-based anticancer drug resistance of tumors and high risk of renal inflammations or other disorders caused by nano-carrier excretion through organs such as the kidneys after drug delivery.
The technical solution provided by the present invention is as follows:
An amphiphilic drug-drug nanoparticle, which can reverse platinum-based anticancer drug resistance in cancer therapy, is formed by a coordination reaction of a histone deacetylase inhibitor with a platinum-based antitumor agent and self-assembly in water; and after entering tumor cells, the amphiphilic drug-drug nanoparticle is hydrolyzed to release the histone deacetylase inhibitor and the platinum-based antitumor active agent.
Further preferably, the amphiphilic drug-drug nanoparticle has a particle size less than 100 nm. Further preferably, the histone deacetylase inhibitor is hydrophobic and may be one selected from vorinostat, trichostatin A, N-hydroxy-N'-3-pyridinyloctanediamide (pyroxamide) , 2-propenamide, 3, 4-dihydroxybenzohydroxamic acid (Dido) , 4-phenylbutyric acid, 2-propylpentanoic acid, N-butyric acid, sodium phenylbutyrate, sodium 2-propylpentanoate or sodium buntanoate.
Further preferably, the platinum-based antitumor agent may be one selected from cisplatin, transplatin, trans-dichlorodipridine platinum (trans- [PtCl 2 (py)  2] ) or picoplatin.
This invention also discloses a method of preparing the amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy, including the following steps:
(1) coordinating the histone deacetylase inhibitor with the platinum-based antitumor agent to obtain an amphiphilic drug-drug complex;
(2) dissolving the amphiphilic drug-drug complex in an organic solvent, adding the resulting solution dropwise into water at room temperature, removing the organic solvent to obtain an aqueous solution of amphiphilic drug-drug nanoparticle, and performing post-treatment to obtain the amphiphilic drug-drug nanoparticle. The organic solvent is selected from  N, N'-dimethylformamide, dimethyl sulfoxide and methanol.
Further preferably, the coordination reaction in step (1) is one selected from the following two processes:
process 1: dissolving the platinum-based antitumor agent together with silver nitrate in an organic solvent, allowing the reaction to take place, removing precipitation of silver chloride, and collecting the supernatant as solution 1; mixing and dispersing the histone deacetylase inhibitor and alkali in an organic solvent, allowing the reaction to take place, removing insoluble matter, and collecting the supernatant as solution 2; then, mixing the solution 1 and solution 2 for reaction, removing the organic solvents and extracting to obtain the amphiphilic drug-drug complex;
process 2: dissolving the platinum-based anticancer drug together with silver nitrate in water, allowing the reaction to take place, removing precipitation of silver chloride, and collecting the supernatant as solution 3; then, adding the histone deacetylase inhibitor into the solution 3 for reaction, removing water and settling in ether to obtain the amphiphilic drug-drug complex.
Further preferably, in the process 1, the molar ratio of platinum-based antitumor agent to histone deacetylase inhibitor to silver nitrate is 1: 0.25-0.5: 0.95-1.05.
Further preferably, in the process 2, the molar ratio of platinum-based antitumor agent to histone deacetylase inhibitor to silver nitrate is 1: 2-3: 0.95-1.05.
Further preferably, the organic solvent is one of N, N'-dimethylformamide, dimethylsulfoxide or methanol; and the alkali is one of sodium hydroxide or sodium carbonate.
This invention also disclosed the usage of the amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy for preparing anticancer drug or anti-tumor-resistant drug.
As compared to the prior technique, the present invention has benefits as follows:
1. According to the amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy of the invention, the histone deacetylase inhibitor and the platinum-based antitumor agent are bonded via coordination bonds to provide the synergistic effect on antitumor treatment with simple preparation method, high yield and obvious effectiveness;
2. the amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy of the invention can self-assemble in water to form nanoparticles with a particle size less than 100 nm, which can achieve drug delivery without any carriers. Because of the enhanced penetration to tumor tissues and the retention effect, this drug-drug nanoparticle can accumulate in the tumor tissues, enter tumor cells more effectively, reduce the blocking effect of sulfur-containing ligands in the blood on cisplatin, and reduce the side effects on normal cells. After the nanoparticles enter tumor cells, the complex can be hydrolyzed to release the histone  deacetylase inhibitor (HDACi) and platinum-based antitumor agent under the weakly acid environment in tumor tissues, which in turn provide the synergistic effect of reversing platinum-based drug resistance in cancer therapy and achieve the purpose of anticancer treatment. It should be understood that any product of the present invention may be implemented without needing to achieve all the above advantages at the same time.
Brief Description of the Drawings
Fig. 1 is the  1H-NMR spectrum of the amphiphilic drug-drug complex of example 1;
Fig. 2 is the mass spectrum of the amphiphilic drug-drug complex of example 1;
Fig. 3 is the infrared spectrum of the amphiphilic drug-drug complex of example 1;
Fig. 4 is the dynamic light scattering and transmission electron microscopy photo of the amphiphilic drug-drug nanoparticle of example 1;
Fig. 5 is the growth inhibiting effect of the amphiphilic drug-drug nanoparticle (example 1) towards the tumor cell;
Fig. 6 schematically shows the mechanism of reversing drug resistance by the amphiphilic drug-drug nanoparticle (example 1) ;
Fig. 7 schematically shows the anticancer effect of the amphiphilic drug-drug complex (example 1) towards drug-resistant tumor.
Detailed Description of the Invention
The present invention will be described below with reference to specific embodiments. It should be understood that these embodiments are merely illustrative of the present invention, and not intended to limit the scope of the present invention. Modifications and changes made by those skilled in the technique according to the present invention in practical applications are still falling within the scope of the present invention.
Example 1
Disclosed in this example is a method for preparing an amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy, specifically including the following steps:
(1) firstly, dissolving 300 mg cisplatin (CDDP for short) and 169.87 mg silver nitrate in 10 mL N, N'-dimethylformamide, allowing the reaction to take place for 24h, removing precipitated silver chloride, and collecting the supernatant as solution 1; secondly, mixing and dispersing 88.1 mg vorinostat (SAHA for short) and 13.3 mg sodium hydroxide in 5 mL methanol, allowing the reaction to take place, removing insoluble matter, and collecting the supernatant as solution 2; and at last, mixing the solution 1 and solution 2, allowing the reaction to take place for 48 h, removing  the organic solvents, dissolving in methanol, removing excessive CDDP and recrystallizing to obtain an amphiphilic drug-drug complex; the structural formula I is shown as below:
Figure PCTCN2018071741-appb-000001
The  1H-NMR spectrum, mass spectrum and infrared spectrum of the structural formula I are shown in Fig. 1, Fig. 2 and Fig. 3, respectively.  1H NMR (400 MHz, DMSO-d6) δ (ppm) : 9.83 (1H, Ar-NH-C=O) , 7.55 (2H, -CH=C-NH) , 7.25 (2H, -CHCH=C-NH) , 6.98 (1H, -CH=CHCH=C-NH) , 3.94 (6H, Pt-NH 3) , 2.28 (2H, -NH-O=C-CH 2-CH 2) , 1.91 (2H, -CH 2-C=O-N) , 1.55 (4H, -CH 2-CH 2-CH 2-CH 2-) , 1.28 (4H, -CH 2-CH 2-CH 2-CH 2-) ; IRν max/cm -1 1660vs (amide C=O) , 1599 s (hydroxamate C=O) , 1543vs (hydroxamate C-N) ; MS: 755.13 m/z.
(2) dissolving the obtained amphiphilic drug-drug complex in dimethylsulfoxide, adding the resulting solution dropwise into water at room temperature, removing dimethylsulfoxide to obtain an aqueous solution of amphiphilic drug-drug nanoparticles. The dynamic light scattering and transmission electron microscopy photo of the nanoparticles based on vorinostat-cisplatin complex obtained in this example is shown in Fig. 4, with the average size about 50 nm.
Example 2
Disclosed in this example is a method for preparing an amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy, specifically including the following steps:
(1) firstly, dissolving 391 mg picoplatin and 169.87 mg silver nitrate in 10 mL N, N'-dimethylformamide, allowing the reaction to take place for 24 h, removing precipitated silver chloride and collecting the supernatant as solution 1; secondly, mixing and dispersing 100.7 mg trichostatin A and 35.3 mg sodium carbonate in 5 mL methanol, allowing the reaction to take place, removing insoluble matter, and collecting the supernatant as solution 2; and at last, mixing the solution 1 and solution 2, allowing the reaction to take place for 48 h, removing the organic solvents, removing excessive picoplatin by dissolving with methanol, and recrystallizing to obtain an amphiphilic drug-drug complex; the structural formula II is shown as below:
Figure PCTCN2018071741-appb-000002
(2) dissolving the obtained amphiphilic drug-drug complex in methanol, adding the resulting solution dropwise into water at room temperature, removing methanol to obtain an aqueous solution of amphiphilic drug-drug nanoparticles. The average size of the nanoparticles based on trichostatin A-picoplatin complex obtained in this example is about 80 nm.
Example 3
Disclosed in this example is a method for preparing an amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy, specifically including the following steps:
(1) firstly, dissolving 300 mg cisplatin and 169.87 mg silver nitrate in 10 mL N, N'-dimethylformamide, allowing the reaction to take place for 24 h, removing precipitated silver chloride, and collecting the supernatant as solution 1; secondly, mixing and dispersing 42.3 mg Dido and 35.3 mg sodium carbonate in 5 mL N, N'-dimethylformamide, allowing the reaction to take place, removing insoluble matter, and collecting the supernatant as solution 2; and at last mixing the solution 1 and solution 2, allowing the reaction to take place for 48 h, removing the organic solvents, dissolving in methanol, removing excessive cisplatin and recrystallizing to obtain an amphiphilic drug-drug complex; the structural formula III is shown as below:
Figure PCTCN2018071741-appb-000003
(2) dissolving the obtained amphiphilic drug-drug complex in dimethylsulfoxide, adding the resulting solution dropwise into water at room temperature, removing dimethylsulfoxide to obtain an aqueous solution of amphiphilic drug-drug nanoparticles. The average size of the nanoparticles based on Dido-cisplatin complex obtained in this example is about 40 nm.
Example 4
Disclosed in this example is a method for preparing an amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy, specifically including the  following steps:
(1) firstly, dissolving 300 mg cisplatin and 169.87 mg silver nitrate in 20 mL water, allowing the reaction to take place for 24 h, removing precipitated silver chloride, and collecting the supernatant as solution 3; secondly, adding 332 mg sodium 2-propylpentanoate into the solution 3, allowing the reaction to take place for 48 h, removing water, settling in ether to obtain an amphiphilic drug-drug complex; the structural formula IV is shown as below:
Figure PCTCN2018071741-appb-000004
(2) dissolving the obtained amphiphilic drug-drug complex in dimethylsulfoxide, adding the resulting solution dropwise into water at room temperature, removing dimethylsulfoxide to obtain an aqueous solution of amphiphilic drug-drug nanoparticle, and performing post-treatment to obtain an amphiphilic drug-drug nanoparticle. The average particle size of the nanoparticles based on sodium 2-propylpentanoate-cisplatin complex obtained in this example is about 45 nm.
Example 5
Disclosed in this example is a method for preparing an amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy, specifically including the following steps:
(1) firstly, dissolving 391 mg picoplatin and 169.87 mg silver nitrate in 10 mL N, N'-dimethylformamide, allowing the reaction to take place for 24 h, removing precipitated silver chloride, and collecting the supernatant as solution 1; secondly, mixing 42.3 mg Dido and 80 mg sodium hydroxide, allowing the reaction to take place, removing insoluble matter, and collecting the supernatant as solution 2; and at last, mixing the solutions 1 and 2, allowing the reaction to take place for 48 h, removing the organic solvents, removing excessive picoplatin by dissolving with methanol, and recrystallizing to obtain an amphiphilic drug-drug complex; the structural formula V is shown as below:
Figure PCTCN2018071741-appb-000005
(2) dissolving the obtained amphiphilic drug-drug complex in methanol, adding the resulting solution dropwise into water at room temperature, removing methanol to obtain an aqueous  solution of amphiphilic drug-drug nanoparticles. The average size of the nanoparticles based on Dido-picoplatin complex obtained in this example is about 60 nm.
Shown below are the in vitro anticancer experiments of an amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy of the invention towards cell of non-small cell lung cancer.
Example 6
The amphiphilic drug-drug nanoparticle (CDDP-SAHA for short) obtained in example 1 (cisplatin/vorinostat in the molar ratio of 2) and cisplatin were respectively mixed with culture medium to form solutions with cisplatin concentrations of 0, 2.5, 5, 10, 20, 40, 80 μmol/L and corresponding vorinostat concentrations of 0, 1.25, 2.5, 5, 10, 20, 40 μmol/L. Then, A549 cells (non-small cell lung cancer) and A549/CDDP cells (cisplatin-resistant non-small cell lung cancer) were cultured in the solutions for 72 h, the cell viability was detected by MTT method and the results were shown in Fig. 5. It was shown that, as compared to free drug, the amphiphilic drug-drug nanoparticles exhibited significant cytotoxicity towards the common cancer cells. Furthermore, free cisplatin was substantially ineffective towards cisplatin-resistant non-small cell lung cancer cells. While, the amphiphilic drug-drug nanoparticles exhibits a significant effect towards both cells. Therefore, the amphiphilic drug-drug nanoparticle of the present invention has potential applications in reversing platinum-based anticancer drug resistance in cancer therapy. Shown below are the experiments on mechanism of an amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy of the invention.
Example 7
The amphiphilic drug-drug nanoparticle obtained in example 1 (2 μM) and cisplatin (4 μM) were co-cultured with A549 and A549/CDDP cells for 24 h, the content of platinum and the content of DNA-Pt adduct in the cells were measured by ICP-MS. As Figure 6a shown, CDDP-SAHA nano-drug can conspicuously improve the cellular uptake of cisplatin in both A549 and A549/DR cells (25-49 fold) , while little free cisplatin was internalized. The results in Figure 6b revealed that the cells treated with CDDP-SAHA nano-drug exhibited higher cellular DNA-bound platinum concentration than that treated with free CDDP for both A549 and A549/DR cells (4-4.2 fold) . These results suggested that CDDP-SAHA nano-drug could enhance the accumulation and internalization of CDDP in both A549 and A549/DR cells. This is the first explanation of CDDP-SAHA nano-drug overcoming drug-resistance of NSCLC.
Also, the amphiphilic drug-drug nanoparticle obtained in Example 1 (0, 4, 8μM) was co-cultured with A549/CDDP cells for 48 h, and the content of reduced glutathione in the cells was measured by using GSH and GSSG Assay Kit. As shown in Figure 6c, when A549/DR cells incubated with higher concentration of CDDP-SAHA nano-drug, the amount of intracellular reduced GSH  decreased. The previous studies demonstrated that drug resistance mediated from over-expression of anti-apoptotic protein BCL-2 is associated with increased glutathione concentration. We incubated A549/DR cells with CDDP (8 μM) , SAHA (4 μM) , MIX (8 μM CDDP and 4 μM SAHA) and CDDP-SAHA nano-drug (4 μM) for 48 h. Then we used western blot technique to analyze the expression of BCL-2 and MRP1 proteins. As Figure 6d shown, the expression of BCL-2 and MRP1 proteins in nano-drug group was quite low compared to free CDDP. Attributing to the presence of SAHA, CDDP-SAHA nano-drug can prominently decrease intracellular GSH concentration and down-regulate anti-apoptotic protein BCL-2 and MRP1 proteins. This is the second molecular mechanism for reversing CDDP resistance by CDDP-SAHA nano-drug.
In brief, the possible mechanism of reversing CDDP resistance by CDDP-SAHA nano-drug includes two main aspects: enhanced uptake of CDDP and promoted CDDP-DNA adduct; decreased the reduced GSH concentration and down-expression of BCL-2 and MRP1 proteins. Which is shown below are experiments of growth inhibition effects of an amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy of the invention on A549/CDDP tumor.
Example 8
The tumor masses of tumor-bearing mice inoculated with A549/CDDP and A549 cells were stripped for detection the expression of Ctr1 protein, and it was found that the expression of Ctr1 protein in A549/CDDP tumor was significantly lower than that in A549 tumor, indicating the successful inoculation of cisplatin-resistant non-small cell lung cancer model. Since the molar ratio of cisplatin to vorinostat in the drug-drug nanoparticle is 2, the tumor-bearing mice were divided into seven groups: normal saline group, cisplatin (4 mg/kg) group, vorinostat (1.8 mg/kg) group, cisplatin-vorinostat mixture (4 mg/kg cisplatin + 1.8 mg/kg vorinostat) group, drug-drug nanoparticle obtained in example 1 (5 mg/kg, equivalent to 4 mg/kg cisplatin and 1.8 mg/kg vorinostat) group, drug-drug nanoparticle obtained in example 1 (7.5 mg/kg, equivalent to 6 mg/kg cisplatin and 2.7 mg/kg vorinostat) group, drug-drug nanoparticle obtained in example 1 (10 mg/kg, equivalent to 8 mg/kg cisplatin and 3.6 mg/kg vorinostat ) group. The mice were injected once every three days at the dosage of 200 μL, the mice were weighed and the tumor masses were measured. As shown in Fig. 7, free cisplatin had no inhibitory effect on cisplatin-resistant tumor, while the anticancer effect of nanoparticle group enhanced with increasing concentration, along with negligible effect on the weight of mice (Fig. 7b) . It is important that: in the case of injecting 10 mg/kg drug-drug nanoparticle, two of five mice were healed and the others showed minimized volume of tumor masses on Day 30. After treatments, the tumor masses were sampled and weighed (Fig. 7c) . The weight of tumor treated with 10 mg/kg amphiphilic drug-drug nanoparticle was the lowest. These results indicated that the amphiphilic  drug-drug nanoparticle has potential applications in reversing platinum-based anticancer drug resistance in cancer therapy.
The preferred embodiments of the present invention disclosed above are merely illustrative of the invention. The preferred embodiments are not described in all details, and the invention is not intended to be limited by the particular embodiments. Obviously, many modifications and variations are made in light of the teachings of the present invention. The embodiments are chosen and described in detail in this description to best explain the principles and practical applications of the invention, so that those skilled in the art could well understand and utilize the invention. The present invention is limited only by the claims and entirety and equivalents thereof.

Claims (10)

  1. An amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy, wherein the amphiphilic drug-drug nanoparticle is formed through coordination of a histone deacetylase inhibitor with a platinum-based antitumor agent and self-assembly in water; and after entering tumor cells, the amphiphilic drug-drug nanoparticle is hydrolyzed to release the histone deacetylase inhibitor and the platinum-based antitumor active agent.
  2. The amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy of claim 1, wherein the amphiphilic drug-drug nanoparticle has a particle size less than 100 nm.
  3. The amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy of claim 1, wherein the histone deacetylase inhibitor is one of vorinostat, trichostatin A, N-hydroxy-N’-3-pyridinyloctanediamide (pyroxamide) , 2-propenamide, 3, 4-dihydroxybenzohydroxamic acid (Dido) , 4-phenylbutyric acid, 2-propylpentanoic acid, N-butyric acid, sodium phenylbutyrate, sodium 2-propylpentanoate or sodium buntanoate.
  4. The amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy of claim 1, wherein the platinum-based antitumor agent is one of cisplatin, trans-platin, trans-dichlorodipridine platinum (trans- [PtCl 2 (py)  2] ) or picoplatin.
  5. A method for preparing the amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy of any one of claims 1-4, wherein the method includes the following steps:
    (1) coordinating the histone deacetylase inhibitor with the platinum-based antitumor agent to obtain an amphiphilic drug-drug complex;
    (2) dissolving the amphiphilic drug-drug complex in an organic solvent, adding the resulting solution dropwise into water at room temperature, removing the organic solvent to obtain an aqueous solution of amphiphilic drug-drug nanoparticle, and performing post-treatment to obtain the amphiphilic drug-drug nanoparticle.
  6. The method for preparing the amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy of claim 5, wherein the coordination reaction in step (1) is one selected from the following two processes:
    process 1: dissolving the platinum-based antitumor agent together with silver nitrate in an organic solvent, allowing the reaction to take place, removing precipitation of silver chloride, and collecting a supernatant as solution 1; mixing and dispersing the histone deacetylase inhibitor and alkali in an organic solvent, allowing the reaction to take place, removing insoluble matter, and  collecting a supernatant as solution 2; and mixing the solution 1 and solution 2 for reaction, removing the organic solvents, and extracting to obtain the amphiphilic drug-drug complex;
    process 2: dissolving the platinum-based antitumor agent together with silver nitrate in water, allowing the reaction to take place, removing precipitation of silver chloride, and collecting a supernatant as solution 3; and adding the histone deacetylase inhibitor into the solution 3 for reaction, removing water, and settling in ether, to obtain the amphiphilic drug-drug complex.
  7. The method for preparing the amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy of claim 6, wherein in the process 1, a molar ratio of the platinum-based antitumor agent to the histone deacetylase inhibitor to the silver nitrate is 1: 0.25-0.5: 0.95-1.05.
  8. The method for preparing the amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy of claim 6, wherein in the process 2, a molar ratio of the platinum-based antitumor agent to the histone deacetylase inhibitor to the silver nitrate is 1: 2-3: 0.95-1.05.
  9. The method for preparing the amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy of claim 6, wherein the organic solvent is one of N, N'-dimethylformamide, dimethylsulfoxide or methanol; and the alkali is one of sodium hydroxide or sodium carbonate.
  10. Use of the amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy of any one of claims 1-4 for preparing anticancer drug or anti-tumor-resistant drug.
PCT/CN2018/071741 2017-01-18 2018-01-08 Preparation and application of amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy WO2018133687A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710033035.9 2017-01-18
CN201710033035.9A CN106860872B (en) 2017-01-18 2017-01-18 For reversing tumor to amphipathic medicine-medicine nanoparticulate drug and the preparation method and application thereof of platinum class anticarcinogen multidrug resistance

Publications (1)

Publication Number Publication Date
WO2018133687A1 true WO2018133687A1 (en) 2018-07-26

Family

ID=59158547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071741 WO2018133687A1 (en) 2017-01-18 2018-01-08 Preparation and application of amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy

Country Status (2)

Country Link
CN (1) CN106860872B (en)
WO (1) WO2018133687A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115025118A (en) * 2022-06-20 2022-09-09 浙江大学医学院附属妇产科医院 Application of composition of gallium nano-drug and platinum compound with pH response release characteristic in preparation of drug resistant ovarian cancer treatment drug

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106860872B (en) * 2017-01-18 2019-03-22 上海交通大学 For reversing tumor to amphipathic medicine-medicine nanoparticulate drug and the preparation method and application thereof of platinum class anticarcinogen multidrug resistance
CN107296794A (en) * 2017-07-27 2017-10-27 中国药科大学 Amphipathic non-steroidal anti-inflammatory closes platinum nanoparticle and preparation method thereof
CN110075314B (en) * 2019-05-20 2020-12-29 上海交通大学 Amphiphilic drug conjugate and preparation method of nanoparticle preparation thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005079827A2 (en) * 2004-02-25 2005-09-01 Astellas Pharma Inc. Antitumor agent
CN105031666A (en) * 2015-08-27 2015-11-11 上海交通大学 Amphipathic conjugate nanoparticle for treating tumors as well as preparation method and application of amphipathic conjugate nanoparticle
CN106860872A (en) * 2017-01-18 2017-06-20 上海交通大学 For reversing tumor to amphipathic medicine medicine nanoparticulate drug of platinum class anticarcinogen multidrug resistance and preparation method and application

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005079827A2 (en) * 2004-02-25 2005-09-01 Astellas Pharma Inc. Antitumor agent
CN105031666A (en) * 2015-08-27 2015-11-11 上海交通大学 Amphipathic conjugate nanoparticle for treating tumors as well as preparation method and application of amphipathic conjugate nanoparticle
CN106860872A (en) * 2017-01-18 2017-06-20 上海交通大学 For reversing tumor to amphipathic medicine medicine nanoparticulate drug of platinum class anticarcinogen multidrug resistance and preparation method and application

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUANG PING ET AL.: "Combination of Small Molecule Prodrug and Nanodrug Delivery:Amphiphilic Drug-Drug Conjugate for Cancer Therapy", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 136, no. 33, 31 July 2014 (2014-07-31), pages 11748 - 11756, XP055215241 *
LI YONG ET AL.: "Mechanism of Regulating Multidrug Resistances by Histone Deacetylase Inhibitors in Tumor Cells", CHINESE JOURNAL OF NEW DRUGS, vol. 17, no. 15, 31 December 2008 (2008-12-31), pages 1295 - 1297 *
LIN CHINGTAI ET AL.: "Valproic Acid Resensitizes Cisplatin-Resistant Ovarian Cancer Cells", CANCER SCIENCE, vol. 99, no. 6, 21 April 2008 (2008-04-21), pages 1218 - 1226, XP055506218 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115025118A (en) * 2022-06-20 2022-09-09 浙江大学医学院附属妇产科医院 Application of composition of gallium nano-drug and platinum compound with pH response release characteristic in preparation of drug resistant ovarian cancer treatment drug

Also Published As

Publication number Publication date
CN106860872A (en) 2017-06-20
CN106860872B (en) 2019-03-22

Similar Documents

Publication Publication Date Title
WO2018133687A1 (en) Preparation and application of amphiphilic drug-drug nanoparticle for reversing platinum-based anticancer drug resistance in cancer therapy
US10632081B2 (en) Intralymphatic delivery of hyaluronan nanoparticle for cancer metastasis
CN109054000B (en) Nano drug-loading system based on polysalicylic acid and preparation method and application thereof
Lin et al. CD44-specific nanoparticles for redox-triggered reactive oxygen species production and doxorubicin release
Song et al. A cross-linked polymeric micellar delivery system for cisplatin (IV) complex
CN106083769A (en) A kind of reduce response prodrugs of paclitaxel and prepare nano-micelle carrier method
KR100943923B1 (en) Composition and methods regarding the design and development of non-toxic and global anticancer drug that is achieved through organometallic nanoparticles with biologically active matals and enhanced permeation and retention effect
Qiao et al. Combined nanosuspensions from two natural active ingredients for cancer therapy with reduced side effects
CN109846857B (en) Preparation method and application of active natural supramolecular photosensitizer
EP2978428A1 (en) Stable nanocomposition comprising epirubicin, process for the preparation thereof, its use and pharmaceutical compositions containing it
CN113648401B (en) Hybrid nano-assembly for proteasome inhibition sensitization photodynamic therapy and preparation and application thereof
CN114177305A (en) Prodrug nanoparticle for inducing multi-mechanism death of tumor cells and preparation method and application thereof
Jangid et al. Phenylboronic acid conjugated PAMAM G4 dendrimers augmented usnic acid delivery to gastric cancer cells
CN109876154B (en) Preparation of wolfberry polysaccharide modified nano-particles and anti-tumor activity research thereof
Wang et al. Functional metal–organic framework nanoparticles loaded with polyphyllin I for targeted tumor therapy
Wang et al. A chemo/chemodynamic nanoparticle based on hyaluronic acid induces ferroptosis and apoptosis for triple-negative breast cancer therapy
CN107158399B (en) Amphiphilic nano-drug and preparation method and application thereof
Mirhadi et al. Amino acid coordination complex mediates cisplatin entrapment within PEGylated liposome: An implication in colorectal cancer therapy
Chen et al. Diselenium-linked dimeric prodrug nanomedicine breaking the intracellular redox balance for triple-negative breast cancer targeted therapy
CN113461754B (en) Base-modified adriamycin prodrug and preparation method and application thereof
CN104758244A (en) Nanogel, preparation method of nanogel and anti-tumor nanogel drug loading system and preparation method of anti-tumor nanogel drug loading system
CN105037739A (en) Reduced sensitive type polymer with effect of arginine membrane penetration as well as preparation method and application of reduced sensitive type polymer
CN104857523A (en) Trastuzumab-mediated cis-platinum targeting conjugate and preparation method thereof
CN106924749A (en) A kind of preparation method of the targeting small molecule prodrugs of pH responses and Synergistic treatment
CN108371713B (en) Pullulan drug delivery system induced and crosslinked by visible light and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18741663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 12.12.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 18741663

Country of ref document: EP

Kind code of ref document: A1