WO2018133539A1 - 超宽带陷波差分天线 - Google Patents

超宽带陷波差分天线 Download PDF

Info

Publication number
WO2018133539A1
WO2018133539A1 PCT/CN2017/112991 CN2017112991W WO2018133539A1 WO 2018133539 A1 WO2018133539 A1 WO 2018133539A1 CN 2017112991 W CN2017112991 W CN 2017112991W WO 2018133539 A1 WO2018133539 A1 WO 2018133539A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultra
shaped metal
differential antenna
ground plate
wideband
Prior art date
Application number
PCT/CN2017/112991
Other languages
English (en)
French (fr)
Inventor
曲美君
邓力
李书芳
张贯京
葛新科
高伟明
张红治
Original Assignee
深圳市景程信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市景程信息科技有限公司 filed Critical 深圳市景程信息科技有限公司
Publication of WO2018133539A1 publication Critical patent/WO2018133539A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/40Element having extended radiating surface

Definitions

  • the present invention relates to the field of microwave communication technologies, and in particular, to an ultra-wideband notch differential antenna.
  • Ultra-wideband (UWB) communication systems with high data transmission rates, low cost, low power consumption, and strong anti-interference ability have been rapidly developed.
  • Ultra-wideband antennas have become a research hotspot of international scholars in recent years. However, within the coverage of ultra-wideband, some bands have been occupied, such as WiMAX (3.4 ⁇ 3.6GHz), and WLAN (5.15 ⁇ 5.35GHz) and (5.725 ⁇ 5.825GHz). Therefore, interference between the UWB antenna operation and the existing communication network occurs.
  • An object of the present invention is to provide an ultra-wideband notch differential antenna, which aims to solve the technical problem of interference between the working of the UWB antenna and the existing communication network in the prior art.
  • the present invention provides an ultra-wideband notch differential antenna, comprising a dielectric substrate, a ground plate on a lower surface of the dielectric substrate, and a feed layer on an upper surface of the dielectric substrate;
  • the layer comprises two radiating elements arranged symmetrically in a left-right direction;
  • the radiating unit comprises a microstrip feed line and a radiation patch;
  • the microstrip feed line is connected to the radiation patch;
  • the shape of the ground plate is cut at four corners of the rectangle
  • An angled octagonal shape the ground plate includes a circular slit in the middle of the ground plate and two C-shaped metal strips symmetrically disposed in the circular slit; the C-shaped metal strip and the edge of the circular slit Parallel, and there is a gap between the c-shaped metal strip and the edge of the circular slit;
  • the symmetrical center line of the microstrip feed line is parallel to the symmetrical center line of the C-shaped metal strip.
  • one end of the microstrip feed line and the radiation patch is a gradual structure;
  • the width of the microstrip feed line is continuously increased as the distance between the microstrip feed line and the radiation patch is shortened.
  • the shape of the chamfer is an isosceles right triangle, and the shape of the radiation patch is a circle.
  • the grounding plate has a length of 34 mm and a width of 30 mm.
  • the C-shaped metal strip has a width of between 1 and 1.4 mm.
  • the ultra-wideband notch differential antenna of the present invention uses a microstrip feed line for differential feeding, and passes through four symmetrically set chamfers of the grounding plate and two C-shaped metal strips symmetrically disposed in a circular slit.
  • the two C-shaped metal strips symmetrically arranged in the circular slit also optimize and improve the radiation characteristics of the antenna in the high frequency band, and improve the gain of the antenna in the high frequency band.
  • FIG. 1 is a schematic structural view of an ultra-wideband notch differential antenna in a first embodiment of the present invention.
  • an ultra-wideband notch differential antenna includes a dielectric substrate 1 , a ground plate 2 on a lower surface of the dielectric substrate 1 , and an upper surface of the dielectric substrate 1 .
  • the feed layer 3 includes two radiating elements symmetrically disposed on the left and right sides; the radiating element includes a microstrip feed line 31 and a circular radiation patch 32; the microstrip feed line 31 and the circular radiation patch 32 is connected; one end of the microstrip feed line 31 connected to the circular radiation patch 32 is a gradation structure 33; in the gradation structure 33, the width of the microstrip feed line 31 follows the microstrip feed line 31 and the circle The distance between the shaped radiation patches 32 is continuously increased.
  • the shape of the grounding plate 2 is an octagon shape after the chamfering process is performed at four corners of the rectangle, and the grounding plate 2 includes a circular slit 21 located in the middle of the grounding plate 2 and symmetrically disposed in the circular slit 21
  • Two C-shaped metal strips 22; the C-shaped metal strips 22 are parallel to the edges of the circular slits 21, and there is a gap 23 between the C-shaped metal strips 22 and the edges of the circular slits 21;
  • the shape is an isosceles right triangle; the symmetrical center line of the microstrip feed line 31 is parallel to the symmetrical center line of the C-shaped metal strip 22.
  • the ultra-wideband notch differential antenna of the present invention uses the microstrip feeder 31 for differential feeding, wherein the four symmetrically set corners of the grounding plate 2 enable the antenna to be designed to be smaller and miniaturized. Conducive to the integration of the RF front end; the two C-shaped metal strips 22 disposed symmetrically in the circular slit 21 improve the impedance matching of the entire UWB notch differential antenna, achieve a good notch function, and make the antenna in the high frequency band The radiation characteristics are optimized and improved to increase the gain of the antenna at high frequencies.
  • the ultra-wideband notch differential antenna is based on a rectangular metal plate with a lower surface of copper (copper plate), and is etched at the center of the lower surface of the rectangular metal plate.
  • a circular slit and a chamfering process is performed on the four corners of the lower surface, wherein the circular slit has two C-shaped metal strips (TSCSCS structure) symmetrically arranged left and right.
  • TSCSCS structure C-shaped metal strips
  • Two radiation units arranged symmetrically on the upper surface of the rectangular metal plate are etched.
  • the dielectric substrate 1 is a Rogers RT/duroid having a relative dielectric constant of 6.15.
  • the grounding plate 2 is a copper sheet; the circular radiating patch 32 and the C-shaped metal strip 22 are also copper sheets.
  • the C-shaped metal strip 22 has a width t between 1 and 1.4 mm, and the chamfer angle is an isosceles right triangle having a waist length D of 7 mm, and the microstrip feed line 31 has a length 1 of 7.5 mm, and the microstrip feed line 31
  • the width wl of the port is 0.35mm
  • the gradation structure 33 has a maximum width of 0.7 mm, the circular radiation patch 32 has a diameter w2 of 5.7 mm, the circular slit 21 has a radius cr of 12 mm, and the circular slit 21 has a center to C.
  • the outer edge of the metal strip has a radius cr1 of 11.9 mm, that is, the gap is 0.1 mm, and the distance 11 between the chords of the two C-shaped metal strips 22 is 9 mm.
  • FIG. 2 shows simulated reflection coefficient results for an ultra-wideband notch differential antenna of different C-shaped metal strip widths t in the present embodiment.
  • the ultra-wideband notch difference antenna of the present invention has a reflection coefficient (dB) less than or equal to -10 (indicating that the antenna has good transmission performance in the working band) More, the working frequency band is wider, so the matching is better; and as the width t of the C-shaped metal strip is reduced, the matching is better.
  • dB reflection coefficient
  • the C-shaped metal strip width t is preferably 1 mm. Therefore, the simulated reflection coefficient result of the ultra-wideband notch antenna is shown in FIG. 3, and the gain curve of the ultra-wideband notch differential antenna is as shown in FIG. 4 .
  • the ultra-wideband notch differential antenna has a working bandwidth of 3.1 to 12 GHz, and completely covers the working bandwidth of the ultra-wideband (3.1 to 10.6 GHz); the ultra-wideband notch differential antenna
  • the stop band is 6.1 ⁇ 7.25 GHz, and the two sides of the stop band are steep and the bandwidth is wide, which can achieve better notch function.
  • the simulation gain of the ultra-wideband notch differential antenna is in the range of 3.1 to 11 GHz, and the simulation gain is 3.24 ⁇ 6.36 dBi.
  • the corresponding UWB differential antenna has no two C-shaped metal strips (TSCSCS structure), and the simulated UWB antenna has a gain range of 0.18 ⁇ 4.34.
  • the gain of the ultra-wideband notch differential antenna is increased by about 3 dBi in the range of 8.5 to l l GHz.
  • the chamfering angle may also be set to a shape of a rectangle, a circle, or the like as needed; the length of the C-shaped metal strip decreases as the 11 increases, and the same resistance band The center frequency increases.
  • the ultra-wideband notch differential antenna of the present invention uses a microstrip feed line for differential feeding, and passes through four symmetrically set chamfers of the grounding plate and two C-shaped metal strips symmetrically disposed in a circular slit. Improve the whole The impedance matching of the ultra-wideband notch differential antenna achieves a good notch function, and the size of the entire ultra-wideband notch differential antenna can be designed to be smaller, and the miniaturization is realized, which is beneficial to the integration of the RF front end.
  • the two C-shaped metal strips symmetrically arranged in the circular slit also optimize and improve the radiation characteristics of the antenna in the high frequency band, and improve the gain of the antenna in the high frequency band.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

本实用新型提供了一种超宽带陷波差分天线,包括介质基板、位于介质基板下表面的接地板、以及位于介质基板上表面的馈电层;所述馈电层包括左右对称设置的两个辐射单元;所述辐射单元包括微带馈线和辐射贴片;所述微带馈线与辐射贴片连接;所述接地板包括位于接地板边缘且辐射对称的四个切角、位于接地板中间的圆形缝隙、以及位于圆形缝隙中左右对称设置的两个C形金属带;所述C形金属带与圆形缝隙的边缘平行,且所述C形金属带与圆形缝隙边缘之间有间隙。本实用新型的超宽带陷波差分天线实现了小型化,实现了良好的陷波功能,且天线在高频段的辐射特性得到了优化和改善,天线在高频段的增益也得到了提高。

Description

超宽带陷波差分天线
技术领域
[0001] 本实用新型涉及微波通信技术领域, 尤其涉及一种超宽带陷波差分天线。
背景技术
[0002] 自从 2002年联邦通讯委员会公布 3.1~10.6 GHz频段应用于商业领域以来, 具有 高数据传输率、 低成本、 低功耗、 抗干扰能力强的超宽带 (UWB) 通信系统得 到迅速发展, 超宽带天线成为近年来国际学者的研究热点。 然而, 超宽带的覆 盖范围内, 一些频段已经被占用, 例如 WiMAX (3.4~3.6GHz) , 以及 WLAN ( 5.15~5.35GHz) 和 (5.725~5.825GHz) 。 因此, 超宽带天线工作吋与现有的通信 网络之间产生干扰。
[0003] 因此, 需要一种能够避免超宽带天线与已存在的通信网络之间产生不必要干扰 的超宽带陷波差分天线。
技术问题
[0004] 本实用新型的目的在于提供一种超宽带陷波差分天线, 旨在解决现有技术中超 宽带天线工作吋与现有的通信网络之间产生干扰的技术问题。
问题的解决方案
技术解决方案
[0005] 为实现上述目的, 本实用新型提供了一种超宽带陷波差分天线, 包括介质基板 、 位于介质基板下表面的接地板、 以及位于介质基板上表面的馈电层; 所述馈 电层包括左右对称设置的两个辐射单元; 所述辐射单元包括微带馈线和辐射贴 片; 所述微带馈线与辐射贴片连接; 所述接地板的形状是在矩形的四个角进行 切角处理后的八边形, 所述接地板包括位于接地板中间的圆形缝隙和位于圆形 缝隙中左右对称设置的两个 C形金属带; 所述 C形金属带与圆形缝隙的边缘平行 , 且所述 c形金属带与圆形缝隙边缘之间有间隙; 所述微带馈线的对称中心线与 C形金属带的对称中心线平行。
[0006] 其中, 所述微带馈线与辐射贴片连接的一端是渐变式结构; 在所述渐变式结构 中, 所述微带馈线的宽度随着微带馈线与辐射贴片之间的距离的缩短而不断增 大。
[0007] 其中, 所述切角的形状为等腰直角三角形, 所述辐射贴片的形状为圆形。
[0008] 其中, 所述接地板的长为 34mm, 宽为 30mm。
[0009] 其中, 所述两个 C形金属带的弦之间的距离为 9mm; 所述圆形缝隙的半径为 12
[0010] 其中, 所述 C形金属带宽度在 1~ 1.4mm之间。
[0011] 其中, 所述间隙为 0.1mm。
发明的有益效果
有益效果
[0012] 本实用新型的超宽带陷波差分天线采用微带馈线进行差分馈电, 并通过接地板 的四个对称设置的切角和位于圆形缝隙中左右对称设置的两个 C形金属带改善整 个超宽带陷波差分天线的阻抗匹配, 实现了良好的陷波功能, 并使得整个超宽 带陷波差分天线的尺寸可以设计的更小, 实现了小型化, 有利于射频前端的集 成。 此外, 圆形缝隙中左右对称设置的两个 C形金属带还使得天线在高频段的辐 射特性得到了优化和改善, 提高了天线在高频段的增益。
对附图的简要说明
附图说明
[0013] 图 1是本实用新型第一实施例中的超宽带陷波差分天线的结构示意图。
[0014] 图 2是本实用新型第一实施例中的超宽带陷波差分天线的在不同 t值下的超宽带 陷波天线的仿真反射系数结果。
[0015] 图 3是本实用新型一具体实施例中 t=lmm吋的超宽带陷波差分天线的仿真反射 系数结果。
[0016] 图 4是本实用新型一具体实施例中 t=lmm吋的超宽带陷波差分天线的增益曲线 实施该发明的最佳实施例
本发明的最佳实施方式 [0017] 下面结合具体实施例对本实用新型做进一步的详细说明, 以下实施例是对本实 用新型的解释, 本实用新型并不局限于以下实施例。
[0018] 本实用新型提出第一实施例, 如图 1所示, 一种超宽带陷波差分天线, 包括介 质基板 1、 位于介质基板 1下表面的接地板 2、 以及位于介质基板 1上表面的馈电 层 3 ; 所述馈电层包括左右对称设置的两个辐射单元; 所述辐射单元包括微带馈 线 31和圆形辐射贴片 32; 所述微带馈线 31与圆形辐射贴片 32连接; 所述微带馈 线 31与圆形辐射贴片 32连接的一端是渐变式结构 33 ; 在所述渐变式结构 33中, 所述微带馈线 31的宽度随着微带馈线 31与圆形辐射贴片 32之间的距离的缩短而 不断增大。 所述接地板 2的形状是在矩形的四个角进行切角处理后的八边形, 所 述接地板 2包括位于接地板 2中间的圆形缝隙 21和位于圆形缝隙 21中左右对称设 置的两个 C形金属带 22; 所述 C形金属带 22与圆形缝隙 21的边缘平行, 且所述 C 形金属带 22与圆形缝隙 21边缘之间有间隙 23 ; 所述切角的形状为等腰直角三角 形; 所述微带馈线 31的对称中心线与 C形金属带 22的对称中心线平行。
[0019] 本实用新型的超宽带陷波差分天线采用微带馈线 31进行差分馈电, 其中接地板 2的四个对称设置的切角使得天线的尺寸可以设计的更小, 实现了小型化, 有利 于射频前端的集成; 位于圆形缝隙 21中左右对称设置的两个 C形金属带 22改善整 个超宽带陷波差分天线的阻抗匹配, 实现了良好的陷波功能, 并使得天线在高 频段的辐射特性得到了优化和改善, 提高了天线在高频段的增益
[0020] 在本实施例的一个具体实施例中, 所述超宽带陷波差分天线是以上下表面均为 铜的矩形金属板为基础 (覆铜板) , 在矩形金属板的下表面中央刻蚀一个圆形 缝隙且在下表面的四个角上做切角处理, 其中, 圆形缝隙中还有左右对称设置 的两个 C形金属带 (TSCSCS结构) 。 在矩形金属板的上表面刻蚀两个左右对称 设置的辐射单元。 如图 1所示, 所述介质基板 1采用相对介电常数为 6.15的 Rogers RT/duroid
6006(tm)介质基板; 所述介质基板 1的尺寸为 34mm (Lsub) x30mm (Wsub) χθ. 635mm (d) 。 所述接地板 2为铜片; 所述圆形辐射贴片 32和 C形金属带 22也为铜 片。 所述 C形金属带 22宽度 t在 l~1.4mm之间, 所述切角为腰长 D为 7mm的等腰直 角三角形, 所述微带馈线 31的长 1为 7.5mm, 微带馈线 31的端口的宽 wl为 0.35mm , 所述渐变结构 33最宽处为 0.7mm, 所述圆形辐射贴片 32的直径 w2为 5.7mm, 所 述圆形缝隙 21的半径 cr为 12mm, 所述圆形缝隙 21的圆心到 C形金属带外边缘的 半径 crl为 11.9mm, 即所述间隙为 0.1mm, 所述两个 C形金属带 22的弦之间的距 离 11为 9mm。
[0021] 图 2示出了本具体实施例中不同 C形金属带宽度 t的超宽带陷波差分天线的仿真 的反射系数结果。
[0022] 如图 2所示, 基于所述渐变结构, 本实用新型的超宽带陷波差分天线在反射系 数 (dB) 小于等于 -10以下的部分 (表明天线在该工作频带传输性能良好) 均较 多, 工作频段更宽, 因此匹配更好; 且随着 C形金属带宽度 t的减小, 匹配更佳。
[0023] 所述 C形金属带宽度 t优选为 lmm, 此吋, 超宽带陷波天线的仿真反射系数结果 如图 3所示, 超宽带陷波差分天线的增益曲线如图 4所示。
[0024] 如图 3所示, 该超宽带陷波差分天线的工作频宽为 3.1~12 GHz, 完全覆盖了超 宽带的工作频宽 (3.1~10.6 GHz) ; 该超宽带陷波差分天线的阻带为 6.1~7.25 GHz, 且阻带两边陡峭, 带宽也较宽, 能够实现较好的陷波功能。
[0025] 如图 4所示, 该超宽带陷波差分天线的仿真增益在 3.1~11 GHz范围内, 仿真增 益为 3.24~6.36 dBi。 相应的超宽带差分天线在没有两个 C形金属带 (TSCSCS结 构) 吋, 仿真的超宽带天线增益范围为 0.18~4.34
dBi (图未示出) 。 与没有两个 C形金属带 (TSCSCS结构) 的超宽带差分天线相 比, 在 8.5~l l GHz范围内, 该超宽带陷波差分天线增益提高了约 3 dBi。
[0026] 在上述实施例的替代实施例中, 所述切角还可根据需要设置成矩形、 圆形等形 状; 所述 C形金属带的长度随 11的增加而减小, 同吋阻带的中心频率增加。
[0027] 以上仅为本实用新型的优选实施例, 并非因此限制本实用新型的专利范围, 凡 是利用本实用新型说明书及附图内容所作的等效结构或等效流程变换, 或直接 或间接运用在其他相关的技术领域, 均同理包括在本实用新型的专利保护范围 内。
工业实用性
[0028] 本实用新型的超宽带陷波差分天线采用微带馈线进行差分馈电, 并通过接地板 的四个对称设置的切角和位于圆形缝隙中左右对称设置的两个 C形金属带改善整 个超宽带陷波差分天线的阻抗匹配, 实现了良好的陷波功能, 并使得整个超宽 带陷波差分天线的尺寸可以设计的更小, 实现了小型化, 有利于射频前端的集 成。 此外, 圆形缝隙中左右对称设置的两个 C形金属带还使得天线在高频段的辐 射特性得到了优化和改善, 提高了天线在高频段的增益。

Claims

权利要求书
[权利要求 1] 一种超宽带陷波差分天线, 包括介质基板、 位于介质基板下表面的接 地板、 以及位于介质基板上表面的馈电层, 其特征在于, 所述馈电层 包括左右对称设置的两个辐射单元; 所述辐射单元包括微带馈线和辐 射贴片; 所述微带馈线与辐射贴片连接; 所述接地板的形状是在矩形 的四个角进行切角处理后的八边形, 所述接地板包括位于接地板中间 的圆形缝隙和位于圆形缝隙中左右对称设置的两个 c形金属带; 所述
C形金属带与圆形缝隙的边缘平行, 且所述 C形金属带与圆形缝隙边 缘之间有间隙; 所述微带馈线的对称中心线与 C形金属带的对称中心 线平行。
[权利要求 2] 根据权利要求 1所述的超宽带陷波差分天线, 其特征在于, 所述微带 馈线与辐射贴片连接的一端是渐变式结构; 在所述渐变式结构中, 所 述微带馈线的宽度随着微带馈线与辐射贴片之间的距离的缩短而不断 增大。
[权利要求 3] 根据权利要求 1所述的超宽带陷波差分天线, 其特征在于, 所述切角 的形状为等腰直角三角形, 所述辐射贴片的形状为圆形。
[权利要求 4] 根据权利要求 1所述的超宽带陷波差分天线, 其特征在于, 所述接地 板的长为 34mm, 宽为 30mm。
[权利要求 5] 根据权利要求 4所述的超宽带陷波差分天线, 其特征在于, 所述两个
C形金属带的弦之间的距离为 9mm; 所述圆形缝隙的半径为 12mm。
[权利要求 6] 根据权利要求 1所述的超宽带陷波差分天线, 其特征在于, 所述 C形 金属带宽度在 1~ 1.4mm之间。
[权利要求 7] 根据权利要求 1所述的超宽带陷波差分天线, 其特征在于, 所述间隙 为 0.1mm°
PCT/CN2017/112991 2017-01-20 2017-11-25 超宽带陷波差分天线 WO2018133539A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201720075644.6 2017-01-20
CN201720075644.6U CN206422230U (zh) 2017-01-20 2017-01-20 超宽带陷波差分天线

Publications (1)

Publication Number Publication Date
WO2018133539A1 true WO2018133539A1 (zh) 2018-07-26

Family

ID=59572447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112991 WO2018133539A1 (zh) 2017-01-20 2017-11-25 超宽带陷波差分天线

Country Status (2)

Country Link
CN (1) CN206422230U (zh)
WO (1) WO2018133539A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112582789A (zh) * 2019-09-29 2021-03-30 比亚迪股份有限公司 双向宽带天线及具有其的无线通信设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106898870B (zh) * 2017-01-20 2018-08-24 深圳市景程信息科技有限公司 具有陷波特性的超宽带差分天线
CN206422230U (zh) * 2017-01-20 2017-08-18 深圳市景程信息科技有限公司 超宽带陷波差分天线
CN111555024A (zh) * 2020-05-07 2020-08-18 宁波极位智能科技有限公司 一种阻带可重构超宽带mimo天线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201877573U (zh) * 2010-10-29 2011-06-22 华南理工大学 一种阻带带宽可控的超宽带陷波天线
CN102522630A (zh) * 2012-01-17 2012-06-27 哈尔滨工程大学 一种超宽带开关重构天线及实现不同频率的陷波方法
CN103633425A (zh) * 2013-11-28 2014-03-12 华南理工大学 具有高阻带特性的差分共面波导uwb宽缝隙陷波天线
CN106898870A (zh) * 2017-01-20 2017-06-27 深圳市景程信息科技有限公司 具有陷波特性的超宽带差分天线
CN206422230U (zh) * 2017-01-20 2017-08-18 深圳市景程信息科技有限公司 超宽带陷波差分天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201877573U (zh) * 2010-10-29 2011-06-22 华南理工大学 一种阻带带宽可控的超宽带陷波天线
CN102522630A (zh) * 2012-01-17 2012-06-27 哈尔滨工程大学 一种超宽带开关重构天线及实现不同频率的陷波方法
CN103633425A (zh) * 2013-11-28 2014-03-12 华南理工大学 具有高阻带特性的差分共面波导uwb宽缝隙陷波天线
CN106898870A (zh) * 2017-01-20 2017-06-27 深圳市景程信息科技有限公司 具有陷波特性的超宽带差分天线
CN206422230U (zh) * 2017-01-20 2017-08-18 深圳市景程信息科技有限公司 超宽带陷波差分天线

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112582789A (zh) * 2019-09-29 2021-03-30 比亚迪股份有限公司 双向宽带天线及具有其的无线通信设备
CN112582789B (zh) * 2019-09-29 2022-09-06 比亚迪股份有限公司 双向宽带天线及具有其的无线通信设备

Also Published As

Publication number Publication date
CN206422230U (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
WO2021120771A1 (zh) 毫米波端射圆极化天线及无线通信设备
Islam et al. Triple band-notched planar UWB antenna using parasitic strips
WO2018133540A1 (zh) 具有陷波特性的超宽带差分天线
WO2018133539A1 (zh) 超宽带陷波差分天线
CN111082225B (zh) 一种小型化可重构三陷波超宽带天线
CN207572523U (zh) 一种具有阶梯开路结构地板的杯形超宽带平面单极子天线
CN206349513U (zh) 一种单陷波超宽带单极子天线
CN113381192B (zh) 一种低剖面具有宽带外抑制的滤波天线
Chen et al. Broadband CPW-fed circularly polarized antenna with equiangular tapered-shaped feedline for ultra-wideband applications
CN106299665B (zh) 具有陷波特性的平面三叉戟形超宽带天线
Che et al. Simulation of a small sized antipodal Vivaldi antenna for UWB applications
CN108429010A (zh) 一种基于调制超表面的超宽带双端射天线
Yalavarthi et al. Four element square patch MIMO antenna for DSRC, WLAN, and X-band applications
CN104733842B (zh) 一种双陷波超宽带天线
Zhan et al. A miniature planar antenna for Bluetooth and UWB applications
CN104681956A (zh) 阻带陡峭的超宽带带阻天线
CN103151610A (zh) 一种小型化不对称平面超宽带天线
CN211829196U (zh) 基于共面波导馈电的柔性双阻带uwb-mimo天线
CN104681966A (zh) 新型阻带陡峭的uwb带阻天线
CN109861003B (zh) 一种超材料宽带高隔离mimo天线
Yoon et al. Implementation of UWB antenna with bandpass filter using microstrip-to-CPW transition matching
Zhang et al. A compact differential-fed UWB antenna with band-notched characteristics
CN110336125A (zh) 一种基于srr的双极化微带滤波天线
Ruchandani et al. A novel CPW fed octagonal aperture antenna with back patch for UWB applications
Sharma et al. MIMO antenna with superwideband bandwidth including dual notched band characteristics for UWB/X/Ku band wireless applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892710

Country of ref document: EP

Kind code of ref document: A1