WO2018133040A1 - 指纹装置和终端设备 - Google Patents

指纹装置和终端设备 Download PDF

Info

Publication number
WO2018133040A1
WO2018133040A1 PCT/CN2017/071972 CN2017071972W WO2018133040A1 WO 2018133040 A1 WO2018133040 A1 WO 2018133040A1 CN 2017071972 W CN2017071972 W CN 2017071972W WO 2018133040 A1 WO2018133040 A1 WO 2018133040A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
optical
light
optical signal
fingerprint device
Prior art date
Application number
PCT/CN2017/071972
Other languages
English (en)
French (fr)
Inventor
侯侣
龙卫
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2017/071972 priority Critical patent/WO2018133040A1/zh
Priority to EP17892149.0A priority patent/EP3422247B1/en
Priority to CN201780000025.3A priority patent/CN107077616B/zh
Publication of WO2018133040A1 publication Critical patent/WO2018133040A1/zh
Priority to US16/139,064 priority patent/US10755071B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1329Protecting the fingerprint sensor against damage caused by the finger
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1341Sensing with light passing through the finger

Definitions

  • the present application relates to the field of terminal devices and, more particularly, to a fingerprint device and a terminal device.
  • the fingerprint device on the market needs to touch the designated position of the device when using it. For example, for an iPhone, the finger needs to be placed in the home position of the mobile phone. For the Huawei mobile phone, the finger needs to be placed during use. At the fingerprint device behind the phone, it affects the user experience.
  • the embodiment of the present invention provides a fingerprint device and a terminal device, which can realize fingerprint information of the human finger in any position where the human finger touches the screen.
  • a fingerprint device including: a first cover, a sensing layer, a light transmission layer, a light emitter, a light receiver, a chip system, and an optical MEMS; the first cover is located in the fingerprint device The uppermost layer, the first cover plate comprises a plurality of touch units, the sensing layer is located between the first cover plate and the light transmission layer, the light emitter, the light receiver, the chip system and the optical MEMS Located in the lower layer of the light transmission layer; the sensing layer is configured to acquire touch information of the human body, and send the touch information to the chip system; the light transmission layer is configured to transmit the first light signal emitted by the light emitter, And transmitting the first optical signal to the second optical signal reflected by the human body; the light emitter is configured to provide a light source for the plurality of touch units; the light receiver is configured to receive the light signal reflected from the human finger; The chip system is configured to determine, according to the touch information, that a position of the human body touching the first cover
  • the first cover includes a plurality of touch units
  • the chip system can control the light emitter to provide a light source for the plurality of touch units, and is also used to control a propagation path of the optical signal emitted by the optical MEMS to the light emitter. Make adjustments to adjust the propagation path
  • the subsequent optical signal finally reaches the touch unit corresponding to the position where the human body touches the first cover, so that the fingerprint information of the human finger can be recognized at any position where the human finger touches the screen.
  • each touch unit is identified by location coordinates or by the unit number of each touch unit.
  • the touch information is pressure information that the human body touches the first cover.
  • the light transmission layer is a waveguide layer
  • the waveguide layer includes a plurality of waveguide channels, and the plurality of waveguide channels are in one-to-one correspondence with the plurality of touch units.
  • the waveguide layer is configured to transmit the first optical signal emitted by the light emitter, and transmit the second optical signal that is reflected back by the human body finger;
  • the optical MEMS system includes a plurality of optical switches, the plurality of optical switches are in one-to-one correspondence with the plurality of waveguides, and the optical MEMS system is configured to determine, according to the second instruction, the first touch unit corresponding to the first waveguide channel The optical switch of the first waveguide channel is turned on, so that the first optical signal exits the first waveguide channel and reaches the first touch unit.
  • each touch unit of the first cover corresponds to one waveguide channel, so that any position of the first cover can be ensured by the human finger, and corresponding waveguide channels are provided, and each waveguide channel can be regarded as A wave-extracting optical port, therefore, the fingerprint device of the embodiment of the present invention can realize the fingerprint information of the human finger at any position of the human finger touching the screen.
  • the waveguide layer further includes a reflective sub-layer for reflecting the first optical signal from the reflective sub-layer and reaching the first touch unit after being reflected.
  • the light of the first optical signal reflected from the reflective sub-layer is stronger than the light intensity threshold.
  • the light transmission layer is a lens system layer, the lens system layer is configured to transmit the first optical signal emitted by the light emitter, and transmit the first optical signal reflected by the human finger.
  • Second optical signal is configured to transmit the first optical signal emitted by the light emitter, and transmit the first optical signal reflected by the human finger.
  • the optical MEMS system is configured to adjust a propagation path of the first optical signal according to a second instruction sent by the chip system, so that the first optical signal emitted from the lens system layer is transmitted through the sensing layer
  • the first touch unit Based on the above technical solution, the chip system can control the optical MEMS to adjust the propagation path of the first optical signal emitted from the optical transmitter, so that the first optical signal after adjusting the propagation path can be coupled to the lens system layer, and from The first optical signal emitted by the lens system layer is transmitted through the sensing layer and reaches a position where the human finger touches the first cover
  • the touch unit is configured to enable the human finger to recognize the fingerprint information of the human finger at any position of the touch screen.
  • the angle ⁇ between the direction in which the first optical signal is emitted from the lens system layer and the plane in which the first cover is located satisfies 0 ⁇
  • the first optical signal is emitted from a certain angle that the lens system layer satisfies vertical exit or near vertical, and can ensure the intensity of the optical signal reaching the surface of the human finger.
  • the lens system layer is at least one convex lens, or at least one concave lens, or a combination of at least one concave lens and at least one concave lens.
  • the light emitter and the light receiver are integrated in the chip system.
  • the optical MEMS is integrated into the chip system.
  • the fingerprint device further includes a second cover plate located at a lowermost layer of the fingerprint device, the light emitter, the light receiver, the chip system, and the optical MEMS Embedded in the second cover.
  • a fingerprint device including: a first cover, a sensing layer, a carrier layer, a plurality of light emitters, a plurality of light receivers, and a chip system; the first cover is located at the fingerprint device The uppermost layer, the first cover plate includes a plurality of touch units, the sensing layer is located between the first cover plate and the carrier layer, the plurality of light emitters, the plurality of light receivers, and the chip system are located at the In the carrier layer, the sensing layer is configured to acquire touch information of a human finger and send the touch information to the chip system; the plurality of light emitters are configured to provide a light source for each of the plurality of touch units, and each light emitter Corresponding to at least one touch unit; the plurality of light receivers are configured to receive optical signals emitted by the plurality of light emitters and transmitted by the human body fingers, and the plurality of light receivers and the plurality of light emitters are in one-to-one correspondence; The chip system is configured to
  • the first cover plate includes a plurality of touch units, and the plurality of light emitters included in the fingerprint device can provide a light source for the plurality of touch units, so that no light is emitted regardless of which touch unit is touched by the human body finger.
  • the device emits an optical signal, so that the fingerprint information of the human finger can be recognized at any position where the human finger touches the screen.
  • each touch unit is identified by location coordinates, or with each touch Touch the unit number identifier of the unit.
  • the touch information is pressure information that the human finger touches the first cover.
  • an angle ⁇ between the direction in which the first optical signal is emitted from the carrier layer and the plane where the first cover is located satisfies 0 ⁇
  • the first optical signal needs to meet a vertical exit or a vertical angle from the exit direction of the carrier layer, and the intensity of the optical signal reaching the surface of the human finger can be ensured.
  • the plurality of light emitters and the plurality of light receivers are integrated in the chip system.
  • the fingerprint device further includes a second cover plate located on a lower layer of the carrier layer.
  • the third aspect provides a terminal device, including the fingerprint device, the end cover, the battery, and the chip in any one of the possible implementation manners of the first aspect, wherein the battery and the chip are disposed inside the fingerprint device, And the fingerprint device, the battery and the chip are located inside the end cover.
  • the fourth aspect provides a terminal device, including the fingerprint device, the end cover, the battery, and the chip in any one of the possible implementation manners of the second aspect, wherein the battery and the chip are disposed inside the fingerprint device, And the fingerprint device, the battery and the chip are located inside the end cover.
  • the first cover includes a plurality of touch units
  • the chip system can control the light emitter to provide a light source for the plurality of touch units, and is also used to control the optical MEMS transmission to the light emitter.
  • the propagation path of the optical signal is adjusted, so that the optical signal after the adjustment of the propagation path finally reaches the touch unit corresponding to the position where the human finger touches the first cover. Therefore, the fingerprint device of the embodiment of the present invention can realize the touch of the human body by the finger of the screen.
  • the fingerprint information of the human finger can be recognized at any position.
  • FIG. 1 is a cross-sectional view of a fingerprint device in accordance with an embodiment of the present application.
  • FIG. 2 is a light transmission route diagram of a fingerprint device according to an embodiment of the present application.
  • FIG. 3 is a light transmission route diagram of a fingerprint device according to another embodiment of the present application.
  • FIG. 4 is a light transmission path diagram of a waveguide layer according to another embodiment of the present application.
  • FIG. 5 is a light transmission route diagram of a fingerprint device according to still another embodiment of the present application.
  • FIG. 6 is a light transmission route diagram of a lens system layer according to still another embodiment of the present application.
  • FIG. 7 is a cross-sectional view of a fingerprint device in accordance with still another embodiment of the present application.
  • FIG. 8 is a light transmission route diagram of a fingerprint device according to still another embodiment of the present application.
  • FIG. 9 is a cross-sectional view of a terminal device in accordance with an embodiment of the present application.
  • FIG. 1 shows a cross-sectional view of a fingerprint device 100 in accordance with an embodiment of the present application.
  • the device 100 includes:
  • a first cover 110 a sensing layer 120, a light transmitting layer 130, a light emitter 140, a light receiver 150, a chip system 160 and an optical MEMS 170;
  • the first cover 110 is located at the uppermost layer of the fingerprint device, and the first cover 110 includes a plurality of touch units.
  • the second cover 180 is located at a lowermost layer of the fingerprint device, and the sensing layer 120 is located at the first cover.
  • the light emitter 140, the light receiver 150, the chip system 160, and the optical microelectromechanical system 170 are located in a lower layer of the optical transmission layer 130;
  • the sensing layer 120 is configured to acquire touch information of a human finger and send the touch information to the chip system 160;
  • the light transmission layer 130 is configured to transmit a first optical signal emitted by the light emitter 140, and transmit a second optical signal that is reflected back by the human body finger;
  • the light emitter 140 is configured to provide a light source for the plurality of touch units
  • the light receiver 150 is configured to receive an optical signal reflected from a human finger
  • the chip system 160 is configured to determine, according to the touch information, that a position where the human finger touches the first cover 110 corresponds to a first touch unit of the plurality of touch units, and send a first instruction to the light emitter 140, where the first instruction An instruction for controlling the light emitter 140 to emit a first optical signal and transmitting a second command to the optical MEMS 170 for controlling a propagation path of the first optical signal by the optical MEMS 170 Adjusting, so that the first optical signal after adjusting the propagation path finally reaches the first touch unit;
  • the optical MEMS 170 is configured to adjust a propagation path of the first optical signal according to the second instruction, so that the first optical signal after adjusting the propagation path is emitted from the ray transmission layer 130 to reach the first touch unit.
  • the fingerprint device 100 further includes a second cover 180, and the second cover 180 can be In the lowermost layer of the fingerprint device 100, the light emitter 140, the light receiver 150, the chip system 160, and the optical MEMS 170 can be embedded in the second cover 180.
  • the first cover plate 110 and the second cover plate 180 may be the same material or different materials, which is not limited in this embodiment.
  • the first cover plate 110 may be A material that meets the light transmission requirements for light transmission, for example, glass.
  • the first cover plate 110 can be used to protect other structural members located under the first cover plate 110, and can also be used to transmit optical signals.
  • the first cover 110 can be divided into a plurality of touch units, each touch unit can cover a plurality of fingerprint feature points, and the size of each touch unit can be determined according to the screen size of the first cover and the human body determined by big data collection.
  • the size of the fingerprint is determined to ensure that at least one touch unit responds when the human finger touches any area of the first cover 110. This embodiment of the present application does not limit this.
  • the second cover 180 can be used to protect other structural components located above the second cover 180, such as the chip system 160, and can also be used to limit the chips included in the chip system 160.
  • the chip system 160 can include a plurality of chips, and the plurality of chips can be used to determine a corresponding touch unit according to touch information sent by the sensing layer, and also to control the light emitter to emit an optical signal, or can also control the optical micro-electromechanical The system adjusts the propagation path of the optical signal emitted by the optical transmitter.
  • the chip of the chip system 160 can analyze the light reflected by the human finger to identify the fingerprint information of the human finger. This is not limited.
  • the plurality of chips included in the chip system 160 may be packaged together, or may be separately packaged and electrically connected together, which is not limited in this embodiment of the present application.
  • FIG. 2 is a schematic diagram of an optical signal transmission process after a human finger touches the first cover.
  • the sensing layer 120 can acquire touch information of a human finger, and The touch information is sent to the chip system 160.
  • the touch information may be pressure information of the first cover 110 of the human body, or the position information of the touch screen of the human body may be used, which is not limited in this embodiment of the present application.
  • the chip system 160 can determine, according to the touch information, that the touch unit corresponding to the position where the human finger touches the first cover is the first touch unit.
  • the first touch unit may be identified by a position coordinate of the first touch unit in the first cover, or may be numbered by the plurality of touch units included in the first cover, where each touch unit corresponds to a unit number, so that the first touch unit can be identified by the unit number of the touch unit, or the first touch unit can be identified by other identification information that can uniquely identify each touch unit. .
  • the chip system 160 After determining the first touch unit, the chip system 160 sends a first command to the light emitter 140, the first command is used to control the light emitter 140 to emit a first optical signal, the first optical signal having a specific wavelength
  • the light wave may have a wavelength ranging from 300 nm to 1300 nm.
  • the chip system 160 is further configured to send a second instruction to the optical MEMS system 170, the second instruction is configured to control the optical MEMS system 170 to adjust a propagation path of the first optical signal, thereby causing the adjusted The propagation path of the first optical signal finally reaches the first touch unit, thereby illuminating the human finger.
  • the first cover includes a plurality of touch units
  • the chip system can control the light emitter to provide a light source for the plurality of touch units, and is also used to control the optical MEMS transmission to the light emitter.
  • the propagation path of the optical signal is adjusted, so that the adjusted optical signal finally reaches the touch unit corresponding to the position where the human finger touches the first cover. Therefore, the fingerprint device of the embodiment of the present invention can realize any position where the human finger touches the screen. Both can identify the fingerprint information of the human finger.
  • the light transmission layer 130 is a waveguide layer
  • the waveguide layer includes a plurality of waveguide channels, and the plurality of waveguide channels are in one-to-one correspondence with the plurality of touch units, and the waveguide layer is used for transmitting light emission.
  • the optical MEMS 170 includes a plurality of optical switches, the plurality of optical switches are in one-to-one correspondence with the plurality of waveguides, and the optical MEMS 170 is configured to determine, according to the second instruction, that the first touch unit corresponds to the first
  • the waveguide channel opens the optical switch of the first waveguide channel such that the first optical signal exits the first waveguide channel and reaches the first touch unit.
  • the light transmission layer 130 may be a waveguide layer, and the waveguide layer may include a plurality of waveguide channels, each touch unit corresponding to one waveguide channel of the waveguide layer, and each waveguide channel may be regarded as an optical signal emitted by the light emitter.
  • the transmission channel in the waveguide layer can ensure that the human finger has a corresponding waveguide channel regardless of which touch unit is placed.
  • the optical micro-electromechanical system 170 can include a plurality of optical switches corresponding to a plurality of waveguides for opening corresponding waveguide channels.
  • FIG 3 is an optical signal after the human finger touches the first cover when the light transmission layer is a waveguide layer
  • the schematic diagram of the transmission process, after the human finger touches the first cover, the actions of the chip system and the light emitter are similar to those of the chip system and the light emitter described above, and are not described herein again.
  • the optical MEMS 170 can turn on the optical switch of the first waveguide channel according to the second instruction of the chip system 160, and the first waveguide channel is a waveguide channel corresponding to the first touch unit determined by the optical MEMS 170, thereby
  • the first optical signal emitted by the optical transmitter is adjusted by the optical micro-electromechanical system 170 to the propagation path of the first optical signal, coupled to the first waveguide channel of the waveguide layer, and then transmitted through the sensing layer 120 to finally arrive.
  • the first touch unit is adjusted by the optical micro-electromechanical system 170 to the propagation path of the first optical signal, coupled to the first waveguide channel of the waveguide layer, and then transmitted through the sensing layer 120 to finally arrive.
  • the second touch unit corresponds to the second waveguide
  • the optical MEMS can further open the second according to the second instruction of the chip system 160.
  • the optical switch of the waveguide channel such that the first optical signal can exit from the second waveguide channel of the waveguide layer 130 and ultimately reach the second touch unit.
  • the waveguide layer may include one or more layers of optical waveguides, and the waveguide layer may be a material such as silicon, silicon dioxide or silicon nitride that can be used for optical signal transmission, as shown in FIG. 3, the first The optical signal enters the waveguide layer from the optical micro-electromechanical system 170, and then propagates in the waveguide layer in a total reflection manner, and finally exits at the corresponding exit of the waveguide channel, and finally reaches the surface of the human finger, and the second optical signal reflected by the human finger Returning in the waveguide layer along the original path, and finally receiving by the optical receiver 150, optionally, the optical receiver 150 can convert the received second optical signal into an electrical signal.
  • the chip system 160 may include a signal processor, and the signal processor may further process the electrical signal. For example, the signal processor may identify, according to the electrical signal, a human body finger touching the first cover. Fingerprint information.
  • the waveguide layer may include a reflective sub-layer
  • FIG. 4 shows a side view of the waveguide layer.
  • the reflective sub-layer may be an inclined surface having an angle, and the inclined angle may be according to actual needs. It is determined that the laterally propagated light signal can be reflected by the slope and finally reach the surface of the human finger.
  • the light intensity of the first optical signal reflected from the reflective sub-layer needs to be greater than a light intensity threshold, and the light intensity threshold may be determined according to actual requirements.
  • the optical signal reflected by the reflective sub-layer is greater than
  • the light signal reflected by the reflective sub-layer that is, the reflectivity of the reflective sub-layer needs to be greater than the transmittance, thereby ensuring that the intensity of the optical signal reaching the human finger meets the actual demand.
  • an anti-reflection film may be plated on the reflective sub-layer to ensure that sufficient optical signals are reflected from the reflective sub-layer.
  • each waveguide channel of the waveguide layer needs to be capable of causing the optical signal to propagate in a total reflection manner in the waveguide channel, thereby ensuring that the loss of the optical signal in the waveguide layer is as small as possible.
  • the sensing layer 120 needs to have a certain transmittance to the optical signal emitted by the light emitter 140, thereby ensuring that the light intensity reaching the human finger meets the actual demand.
  • each touch unit of the first cover corresponds to one waveguide channel, so that any position of the first cover can be ensured by the human finger, and each has a corresponding waveguide channel, and each has a corresponding waveguide channel.
  • the waveguide channel can be regarded as a wave-extracting optical port. Therefore, the fingerprint device of the embodiment of the present invention can realize the fingerprint information of the human finger in any position where the human finger touches the screen.
  • the light transmission layer is a lens system layer
  • the lens system layer is configured to transmit the first optical signal emitted by the light emitter, and the first optical signal is transmitted back through the human body finger.
  • the optical MEMS system is configured to adjust a propagation path of the first optical signal according to a second instruction sent by the chip system, so that the first optical signal emitted from the lens system layer is transmitted through the sensing layer The first touch unit.
  • FIG. 5 is a schematic diagram of an optical signal transmission route after a human finger touches the first cover when the light transmission layer is a lens system layer, and the action of the human body finger touching the first cover after the chip system and the light emitter are as described above.
  • the operation of the described chip system and the light emitter is similar and will not be described here. As shown in FIG.
  • the optical micro-electro-mechanical system 170 fine-tunes the propagation path of the first optical signal, so that the light emitter 140
  • the emitted first optical signal after passing through the optical micro-electromechanical system 170, can be accurately coupled to the lens system layer and cooperate with the optical characteristics of the lens system layer such that the first optical signal emerging from the lens system layer is induced After layer 120 is transmitted, it finally reaches the first touch unit.
  • the geometric optical characteristics of the lens system layer need to satisfy the geometric propagation characteristics between the optical MEMS and the position of the human finger touching the first cover, that is, the optical MEMS can adjust the optical signal emitted by the light emitter from the lens. After the system layer transmits, it reaches the position where the human finger touches the first cover, that is, the sensing position. Moreover, when the optical signal is transmitted in the lens system layer, the loss of the optical signal needs to meet the actual requirement, so that the intensity of the optical signal reaching the first cover can be ensured.
  • the angle ⁇ between the direction in which the first optical signal is emitted from the lens system layer and the plane where the first cover is located satisfies 0 ⁇
  • the lens 170 enters the lens system layer, and after the refraction of the lens system layer, finally reaches the surface of the human finger, in order to protect
  • the intensity of the light signal reaching the surface of the human finger, the angle ⁇ of the light signal from the exit direction of the lens system layer and the plane of the first cover plate satisfies 0 ⁇
  • the lens system layer is at least one convex lens, or is at least one concave lens, or a combination of at least one concave lens and at least one concave lens.
  • the lens system layer may be a pure convex lens structure, and the number of convex lenses included may be one or more, or may be a pure concave lens structure, including one or more concave lenses, or may be convex lenses.
  • the combination of the concave lens and the concave lens may include one or more of the number of the convex lens and the concave lens, which is not limited in the embodiment of the present application.
  • the first cover includes a plurality of touch units
  • the light emitter included in the fingerprint device can provide a light source for the plurality of touch units, so that the chip system is touched regardless of which touch unit the human finger touches.
  • the emitted first optical signal is transmitted to the touch unit corresponding to the position where the human finger touches the first cover after being transmitted through the sensing layer, so that the fingerprint information of the human finger can be recognized at any position of the human finger touching the screen.
  • the light emitting surface of the light emitter 140 is as small as possible, and the ideal state may be a point light source, and the receiving area of the light receiver 150 is as large as possible, thereby ensuring that as many optical signals as possible can be received by the light receiver 150. .
  • the optical transmitter 140, the optical receiver 150, and the chip system 160 may be independent modules, or may be integrated into one.
  • optical micro-electromechanical system 170 and the chip system 160 may be an independent structure or may be integrated into one body, which is not limited in this embodiment of the present application.
  • FIG. 7 shows a cross-sectional view of a fingerprint device 700 in accordance with another embodiment of the present application.
  • the apparatus 700 includes:
  • a first cover 710 a sensing layer 720, a carrier layer 730, a plurality of light emitters 740, a plurality of light receivers 750 and a chip system 760;
  • the first cover 710 is located at an uppermost layer of the fingerprint device, and the first cover 710 includes a plurality of touch units.
  • the sensing layer 720 is located between the first cover 710 and the carrier layer 730.
  • the 740, the plurality of optical receivers 750, the chip system 760 are located in the carrier layer 730;
  • the sensing layer 720 is configured to acquire touch information of a human finger and send the touch information to the chip system 760;
  • the plurality of light emitters 740 are configured to provide light sources for the plurality of touch units, each light emitter 740 corresponding to at least one touch unit;
  • the plurality of light receivers 750 are configured to receive optical signals transmitted by the plurality of light emitters 740 through the human body fingers, and the plurality of light receivers 750 are in one-to-one correspondence with the plurality of light emitters 740;
  • the chip system 760 is configured to determine, according to the touch information, a position where the human finger touches the first cover 710 corresponds to a first touch unit of the plurality of touch units; and to the first light of the plurality of light emitters 740
  • the transmitter 740 sends a first command for controlling the first light emitter 740 to emit a first light signal, and the first light emitter 740 is a light emitter 740 corresponding to the first touch unit.
  • the fingerprint device 700 may further include a second cover 770, which may be located at a lowermost layer of the fingerprint device, that is, may be located under the carrier layer 730.
  • a second cover 770 which may be located at a lowermost layer of the fingerprint device, that is, may be located under the carrier layer 730.
  • first cover 710 and the first cover 110 are the same.
  • the second cover 770 and the second cover 180 have the same function.
  • the sensing layer 720 and the sensing layer 120 function. The same, for the sake of brevity, will not be repeated here.
  • the carrier layer 730 is used to provide a carrier for the plurality of light emitters, the plurality of light receivers, and the chip system, that is, the carrier layer 730 is used for the plurality of light emitters,
  • the line arrangement of the optical receiver and chip system provides support.
  • the plurality of light emitters 740 are configured to provide light sources for the plurality of touch units, and each of the light emitters can provide a light source for the at least one touch unit.
  • 8 is a schematic diagram of an optical signal transmission process after a human finger touches the first cover. As shown in FIG. 8, when the human body finger touches the first cover 710, the sensing layer 720 acquires touch information of a human finger, and then The touch information is sent to the chip system 760.
  • the touch information may be pressure information of the first cover 710 of the human body, or the position information of the touch screen of the human body may be used, which is not limited in this embodiment of the present application.
  • the chip system 760 determines, according to the touch information, that the touch unit corresponding to the position where the human finger touches the first cover 710 is the first touch unit, and the first light emitter is the light emitter that provides the light source to the first touch unit. . Therefore, the chip system 760 sends a first command to the first light emitter, where the first command is used to control the first light emitter to emit a first optical signal, where the first optical signal is a light wave having a specific wavelength, The first optical signal can range from 300 nanometers to 1300 nanometers Meter. Then, the first optical signal passes through the sensing layer 720, and finally reaches the first touch unit.
  • the optical signal reflected back by the human body is transmitted by the sensing layer, and then received by the first optical receiver corresponding to the first optical transmitter.
  • the first optical receiver can convert the received optical signal into The electrical signal, optionally, the plurality of chips included in the chip system may further process the electrical signal. For example, the electrical signal may be analyzed to determine fingerprint information of the human finger.
  • the first touch unit may be identified by a position coordinate of the first touch unit in the first cover, or may be numbered by the plurality of touch units included in the first cover, where each touch unit corresponds to A unit number is used, so that the first touch unit can be identified by the unit number of the touch unit, or the first touch unit can be identified by other means.
  • This embodiment of the present application does not limit this.
  • the first optical signal needs to be emitted from a certain angle that the exit direction of the carrier layer 730 needs to meet vertical exit or near vertical, and the intensity of the optical signal reaching the surface of the human finger can be ensured.
  • the plurality of light emitters and the plurality of light receivers are integrated in the chip system.
  • the first cover includes a plurality of touch units
  • the plurality of light emitters included in the fingerprint device can provide a light source for the plurality of touch units, so that no matter which touch unit is touched by the human finger, there is a corresponding
  • the light emitter emits an optical signal, thereby enabling fingerprint information to recognize a human finger.
  • FIG. 9 is a cross-sectional view of the terminal device according to an embodiment of the present application.
  • the terminal device may include a fingerprint device, an end cover, a display screen, A battery and a chip, the battery and the chip are disposed inside the cover glass assembly, and the fingerprint device, the battery and the chip are inside the end cover.
  • the terminal device may be a terminal device such as a mobile phone, a tablet computer, or an e-book.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

本申请实施例提供了一种指纹装置,能够实现人体手指触摸屏幕的任意位置都能够识别该人体手指的指纹信息,该指纹装置包括:第一盖板,第二盖板,感应层,光线传输层,光发射器,光接收器,芯片系统和光学微机电系统;该感应层,用于获取人体的触摸信息,并将该触摸信息发送给该芯片系统;该芯片系统,用于根据该触摸信息,确定人体触摸该第一盖板的位置对应该多个触摸单元中的第一触摸单元,向该光发射器发送该第一指令,该第一指令用于控制该光发射器发射该第一光信号,并向该光学微机电系统发送第二指令,该第二指令用于控制光学微机电系统对该第一光信号的传播路径进行调整,使得调整传播路径后的该第一光信号最终到达该第一触摸单元。

Description

指纹装置和终端设备 技术领域
本申请涉及终端设备领域,并且更具体地,涉及指纹装置和终端设备。
背景技术
目前市场上的指纹装置,使用时都需触摸装置的指定位置,例如,对于iPhone手机而言,使用时需将手指放置在手机的Home健位置,对于华为手机而言,使用时需要将手指放置在手机背后的指纹装置处,影响用户体验。
发明内容
本申请实施例提供一种指纹装置和终端设备,能够实现人体手指触摸屏幕的任意位置都能够识别该人体手指的指纹信息。
第一方面,提供了一种指纹装置,包括:第一盖板,感应层,光线传输层,光发射器,光接收器,芯片系统和光学微机电系统;该第一盖板位于该指纹装置的最上层,该第一盖板包括多个触摸单元该感应层位于该第一盖板和该光线传输层之间,该光发射器、该光接收器、该芯片系统和该光学微机电系统位于所述光线传输层的下层;该感应层,用于获取人体的触摸信息,并将该触摸信息发送给该芯片系统;该光线传输层,用于传输光发射器发射的第一光信号,以及传输该第一光信号经人体反射回来的第二光信号;该光发射器,用于为该多个触摸单元提供光源;该光接收器,用于接收从人体手指反射回来的光信号;该芯片系统,用于根据该触摸信息,确定人体触摸该第一盖板的位置对应该多个触摸单元中的第一触摸单元,向该光发射器发送第一指令,该第一指令用于控制该光发射器发射该第一光信号,并向该光学微机电系统发送第二指令,该第二指令用于控制光学微机电系统对该第一光信号的传播路径进行调整,使得调整传播路径后的该第一光信号最终到达该第一触摸单元;该光学微机电系统,用于根据该第二指令对该第一光信号的传播路径进行调整,使得调整传播路径后的该第一光信号从该光线传输层出射后到达该第一触摸单元。基于上述技术方案,第一盖板包括多个触摸单元,芯片系统可以控制光发射器为该多个触摸单元提供光源,还用于控制光学微机电系统对光发射器发射的光信号的传播路径进行调整,使得调整传播路径 后的光信号最终到达人体触摸该第一盖板的位置对应的触摸单元,从而可以实现人体手指触摸屏幕的任意位置都能够识别该人体手指的指纹信息。
在一些可能的实现方式中,每个触摸单元用位置坐标标识,或用每个触摸单元的单元号标识。
在一些可能的实现方式中,该触摸信息为人体触摸该第一盖板的压力信息。
在一些可能的实现方式中,该光线传输层为波导层,该波导层包括多个波导通道,该多个波导通道与该多个触摸单元一一对应,
该波导层用于传输光发射器发射的该第一光信号,以及传输该第一光信号经人体手指反射回来的该第二光信号;
该光学微机电系统,包括多个光开口,该多个光开关与该多个波导通道一一对应,该光学微机电系统用于根据该第二指令确定该第一触摸单元对应第一波导通道,开启该第一波导通道的光开关,使得该第一光信号从该第一波导通道出射后到达该第一触摸单元。基于上述技术方案,该第一盖板的每个触摸单元都对应一个波导通道,从而可以保证人体手指触摸该第一盖板的任意位置,都有对应的波导通道,每个波导通道可以认为是一个波导出光口,因此,本申请实施例的指纹装置,可以实现人体手指触摸屏幕的任意位置都能够识别该人体手指的指纹信息。
在一些可能的实现方式中,该波导层还包括反射子层,该反射子层用于该第一光信号从该反射子层反射,并在反射后到达该第一触摸单元。
在一些可能的实现方式中,从该反射子层反射的该第一光信号的光强大于光强阈值。
在一些可能的实现方式中,该光线传输层为透镜系统层,该透镜系统层,用于传输光发射器发射的该第一光信号,以及传输该第一光信号经人体手指反射回来的该第二光信号;
该光学微机电系统,用于根据该芯片系统发送的第二指令,对该第一光信号的传播路径进行调整,使得从该透镜系统层出射的该第一光信号经该感应层传输后到达该第一触摸单元。基于上述技术方案,芯片系统能够控制光学微机电系统对从光发射器发射的第一光信号的传播路径进行调整,使得调整传播路径后的第一光信号能够耦合到透镜系统层,并且从该透镜系统层出射的该第一光信号经该感应层传输后到达人体手指触摸第一盖板的位置对 应的触摸单元,从而能够实现人体手指触摸屏幕的任意位置都能够识别该人体手指的指纹信息。
在一些可能的实现方式中,该第一光信号从该透镜系统层的出射方向与该第一盖板所在的平面的夹角α满足0≤|90-α|≤β,该β为角度阈值。基于上述技术方案,该第一光信号从透镜系统层满足垂直出射或接近垂直的某一角度出射,能够保证到达人体手指表面的光信号的强度。
在一些可能的实现方式中,该透镜系统层为至少一个凸透镜,或至少一个凹透镜,或至少一个凹透镜和至少一个凹透镜的组合。
在一些可能的实现方式中,该光发射器和该光接收器集成在该芯片系统中。
在一些可能的实现方式中,该光学微机电系统集成在该芯片系统中。
在一些可能的实现方式中,该指纹装置还包括第二盖板,该第二盖板位于该指纹装置的最下层,该光发射器、该光接收器、该芯片系统和该光学微机电系统内嵌于该第二盖板。
第二方面,提供了一种指纹装置,包括:第一盖板,感应层,载板层,多个光发射器,多个光接收器和芯片系统;该第一盖板位于该指纹装置的最上层,该第一盖板包括多个触摸单元,该感应层位于该第一盖板和该载板层之间,该多个光发射器、该多个光接收器、该芯片系统位于该载板层中;该感应层,用于获取人体手指的触摸信息,并将该触摸信息发送给该芯片系统;该多个光发射器用于为该多个触摸单元提供光源,每个光发射器对应至少一个触摸单元;该多个光接收器用于接收该多个光发射器发射的光信号经人体手指发射回来的光信号,该多个光接收器和该多个光发射器一一对应;该芯片系统,用于根据该触摸信息,确定人体手指触摸该第一盖板的位置对应该多个触摸单元中的第一触摸单元;向该多个光发射器中的第一光发射器发送第一指令,该第一指令用于控制该第一光发射器发射第一光信号,该第一光发射器为该第一触摸单元对应的光发射器。基于上述技术方案,第一盖板包括多个触摸单元,该指纹装置包括的多个光发射器可以为该多个触摸单元提供光源,从而无论人体手指触摸哪个触摸单元,都有相应的光发射器发射光信号,从而能够实现人体手指触摸屏幕的任意位置都能够识别该人体手指的指纹信息。
在一些可能的实现方式中,每个触摸单元用位置坐标标识,或用每个触 摸单元的单元号标识。
在一些可能的实现方式中,该触摸信息为人体手指触摸该第一盖板的压力信息。
在一些可能的实现方式中,该第一光信号从该载板层的出射方向与该第一盖板所在的平面的夹角α满足0≤|90-α|≤β,该β为角度阈值。基于上述技术方案,第一光信号从该载板层的出射方向需要满足垂直出射或接近垂直的某一角度出射,能够保证到达人体手指表面的光信号的强度。
在一些可能的实现方式中,该多个光发射器和该多个光接收器集成于该芯片系统中。
在一些可能的实现方式中,该指纹装置还包括第二盖板,该第二盖板位于该载板层的下层。
第三方面,提供了一种终端设备,包括第一方面和第一方面的任一种可能的实现方式中的指纹装置、端盖、电池和芯片,该指纹装置内侧设置该电池和该芯片,且该指纹装置、该电池和该芯片位于该端盖的内侧。
第四方面,提供了一种终端设备,包括第二方面和第二方面的任一种可能的实现方式中的指纹装置、端盖、电池和芯片,该指纹装置内侧设置该电池和该芯片,且该指纹装置、该电池和该芯片位于该端盖的内侧。
因此,本申请实施例的指纹装置,第一盖板包括多个触摸单元,芯片系统可以控制光发射器为该多个触摸单元提供光源,还用于控制光学微机电系统对光发射器发射的光信号的传播路径进行调整,使得调整传播路径后的光信号最终到达人体手指触摸该第一盖板的位置对应的触摸单元,因此,本申请实施例的指纹装置,可以实现人体手指触摸屏幕的任意位置都能够识别该人体手指的指纹信息。
附图说明
图1是根据本申请一实施例的指纹装置的剖视图。
图2是根据本申请一实施例的指纹装置的光线传输路线图。
图3是根据本申请另一实施例的指纹装置的光线传输路线图。
图4是根据本申请另一实施例的波导层的光线传输路线图。
图5是根据本申请再一实施例的指纹装置的光线传输路线图。
图6是根据本申请再一实施例的透镜系统层的光线传输路线图。
图7是根据本申请再一实施例的指纹装置的剖视图。
图8是根据本申请再一实施例的指纹装置的光线传输路线图。
图9是根据本申请实施例的终端设备的剖视图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
图1示出了根据本申请一实施例的指纹装置100的剖视图。如图1所示,该装置100包括:
第一盖板110,感应层120,光线传输层130,光发射器140,光接收器150,芯片系统160和光学微机电系统170;
该第一盖板110位于该指纹装置的最上层,该第一盖板110包括多个触摸单元,该第二盖板180位于该指纹装置的最下层,该感应层120位于该第一盖板110和该光线传输层130之间,该光发射器140、该光接收器150、该芯片系统160和该光学微机电系统170位于该光学传输层130的下层;
该感应层120,用于获取人体手指的触摸信息,并将该触摸信息发送给该芯片系统160;
该光线传输层130,用于传输光发射器140发射的第一光信号,以及传输该第一光信号经人体手指反射回来的第二光信号;
该光发射器140,用于为该多个触摸单元提供光源;
该光接收器150,用于接收从人体手指反射回来的光信号;
该芯片系统160,用于根据该触摸信息,确定人体手指触摸该第一盖板110的位置对应该多个触摸单元中的第一触摸单元,向该光发射器140发送第一指令,该第一指令用于控制该光发射器140发射第一光信号,并向该光学微机电系统170发送第二指令,该第二指令用于控制光学微机电系统170对该第一光信号的传播路径进行调整,使得调整传播路径后的该第一光信号最终到达该第一触摸单元;
该光学微机电系统170,用于根据该第二指令对该第一光信号的传播路径进行调整,使得调整传播路径后的该第一光信号从该光线传输层130出射后到达该第一触摸单元。
可选地,该指纹装置100还可以包括第二盖板180,该第二盖板180可 以位于该指纹装置100的最下层,该光发射器140、该光接收器150、该芯片系统160和该光学微机电系统170可以内嵌于该第二盖板180中。
具体而言,该第一盖板110和该第二盖板180可以为相同的材质,也可以为不同的材质,本申请实施例对此不作限定,可选地,该第一盖板110可以为透光率满足光线传输需求的材质,例如,玻璃材质。该第一盖板110可以用于保护位于该第一盖板110下层的其他结构件,还可以用于传输光信号。该第一盖板110可划分为多个触摸单元,每个触摸单元可以覆盖多个指纹特征点,每个触摸单元的大小可以根据该第一盖板的屏幕大小以及通过大数据采集确定的人体指纹的大小确定,保证人体手指触摸第一盖板110的任意区域时,至少有一个触摸单元响应。本申请实施例对此不作限定。
该第二盖板180可以用于保护位于该第二盖板180之上的其他结构件,例如芯片系统160,还可以用于对该芯片系统160包括的芯片进行限位。
该芯片系统160可以包括多个芯片,该多个芯片可以用于根据感应层发送的触摸信息,确定对应的触摸单元,还用于控制该光发射器发射光信号,或者还可以控制光学微机电系统对光发射器发射的光信号的传播路径进行调整,可选地,该芯片系统160包括的芯片可以对人体手指反射回的光线进行分析,从而识别人体手指的指纹信息,本申请实施例对此不作限定。芯片系统160包括的多个芯片可以封装在一起,也可以单独封装后电连接在一起,本申请实施例对此不做限定。
图2为人体手指触摸第一盖板后的光信号传输过程的示意图,如图2所示,当人体手指触摸第一盖板110时,该感应层120可以获取人体手指的触摸信息,并将该触摸信息发送给芯片系统160。可选地,该触摸信息可以为人体手指触摸该第一盖板110的压力信息,或者也可以为人体手指触摸屏幕的位置信息等,本申请实施例对此不作限定。
该芯片系统160接收到该触摸信息后,可以根据该触摸信息,确定人体手指触摸该第一盖板的位置对应的触摸单元为第一触摸单元。可选地,该第一触摸单元可以用该第一触摸单元在该第一盖板中的位置坐标标识,或者可以对该第一盖板包括的多个触摸单元进行编号,每个触摸单元对应一个单元号,从而可以用触摸单元的单元号标识该第一触摸单元,或者也可以用其他能够唯一标识每个触摸单元的标识信息来标识该第一触摸单元,本申请实施例对此不作限定。
该芯片系统160确定该第一触摸单元后,向该光发射器140发送第一指令,该第一指令用于控制该光发射器140发射第一光信号,该第一光信号为具有特定波长的光波,该第一光信号的波长范围可以为300纳米到1300纳米。为了使得该第一光信号经过该光线传输层130和感应层120传输后,最终到达该第一盖板110的第一触摸单元,第一触摸单元为人体手指触摸第一盖板的位置对应的触摸单元,第一光信号到达第一触摸单元,即照射到人体手指。该芯片系统160还用于向该光学微机电系统170发送第二指令,该第二指令用于控制该光学微机电系统170对该第一光信号的传播路径进行调整,从而使得调整后的该第一光信号的传播路径最终到达该第一触摸单元,从而照射到人体手指。
因此,本申请实施例的指纹装置,第一盖板包括多个触摸单元,芯片系统可以控制光发射器为该多个触摸单元提供光源,还用于控制光学微机电系统对光发射器发射的光信号的传播路径进行调整,使得调整后的光信号最终到达人体手指触摸该第一盖板的位置对应的触摸单元,因此,本申请实施例的指纹装置,可以实现人体手指触摸屏幕的任意位置都能够识别该人体手指的指纹信息。
可选地,作为一个实施例,该光线传输层130为波导层,该波导层包括多个波导通道,该多个波导通道与该多个触摸单元一一对应,该波导层用于传输光发射器发射的该第一光信号,以及传输该第一光信号经人体手指反射回来的该第二光信号;
该光学微机电系统170,包括多个光开关,该多个光开关与该多个波导通道一一对应,该光学微机电系统170用于根据该第二指令确定该第一触摸单元对应第一波导通道,开启该第一波导通道的光开关,使得该第一光信号从该第一波导通道出射后到达该第一触摸单元。
具体而言,该光线传输层130可以为波导层,该波导层可以包括多个波导通道,每个触摸单元对应波导层的一个波导通道,每个波导通道可以认为是光发射器发射的光信号在波导层中的传输通道,从而能够保证人体手指无论放置到哪个触摸单元,都有对应的波导通道。此种情况下,该光学微机电系统170可以包括多个光开关,该多个光开关对应多个波导通道,该多个光开关用于开启对应的波导通道。
图3为当该光线传输层为波导层时,人体手指触摸第一盖板后的光信号 传输过程的示意图,人体手指触摸该第一盖板后,芯片系统以及光发射器的动作跟上文所述的芯片系统和光发射器的动作类似,这里不再赘述。该光学微机电系统170可以根据芯片系统160的第二指令,开启第一波导通道的光开关,该第一波导通道为光学微机电系统170确定的第一触摸单元对应的波导通道,从而使得从光发射器出射的第一光信号经过该光学微机电系统170对该第一光信号的传播路径的调整后,耦合到该波导层的第一波导通道,然后经过感应层120传输后,最终到达该第一触摸单元。
可选地,若人体手指触摸该第一盖板的第二触摸单元,该第二触摸单元对应第二波导通道,该光学微机电系统还可以根据芯片系统160的第二指令,开启该第二波导通道的光开关,从而该第一光信号可以从波导层130的第二波导通道出射最终到达第二触摸单元。
可选地,该波导层可以包括一层或多层光波导,该波导层可以为硅,二氧化硅或氮化硅等能够用于光信号传输的材质,如图3所示,该第一光信号从光学微机电系统170进入波导层,之后以全反射方式在该波导层中传播,最终在该波导通道的对应出口出射,最终到达人体手指表面,经人体手指反射回来的第二光信号在该波导层中沿原路返回,最后被光接收器150接收,可选地,该光接收器150可以将接收的该第二光信号转换为电信号。可选地,该芯片系统160中可以包括信号处理器,该信号处理器可以对该电信号作进一步的处理,例如,该信号处理器可以根据该电信号识别人体手指触摸该第一盖板的指纹信息。
可选地,该波导层可以包括反射子层,图4示出了该波导层的侧视图,从图4可以看出,该反射子层可以为具有一定角度的斜面,斜面角度可以根据实际需求确定,从而保证横向传播的光信号经斜面反射后最终可以到达人体手指表面。具体实现中,从该反射子层反射的该第一光信号的光强需要大于光强阈值,该光强阈值可以根据实际需求确定,具体的,需要经该反射子层反射的光信号大于经过该反射子层透视的光信号,即该反射子层的反射率需要大于透射率,从而保证到达人体手指的光信号的强度满足实际需求,。可选地,可以在该反射子层镀增反膜,从而保证足够多的光信号从该反射子层反射。
应理解,该波导层的每个波导通道需要满足能够使得光信号在波导通道中以全反射方式传播,从而能够保证该光信号在波导层中的损耗尽可能小。 感应层120需要对光发射器140发射的光信号具有一定的透过率,从而保证到达人体手指的光强满足实际需求。
因此,本申请实施例的指纹装置,该第一盖板的每个触摸单元都对应一个波导通道,从而可以保证人体手指触摸该第一盖板的任意位置,都有对应的波导通道,每个波导通道可以认为是一个波导出光口,因此,本申请实施例的指纹装置,可以实现人体手指触摸屏幕的任意位置都能够识别该人体手指的指纹信息。
可选地,作为另一个实施例,该光线传输层为透镜系统层,该透镜系统层,用于传输光发射器发射的该第一光信号,以及传输该第一光信号经人体手指反射回来的该第二光信号;
该光学微机电系统,用于根据该芯片系统发送的第二指令,对该第一光信号的传播路径进行调整,使得从该透镜系统层出射的该第一光信号经该感应层传输后到达该第一触摸单元。
图5为当该光线传输层为透镜系统层时人体手指触摸第一盖板后的光信号传输路线的示意图,人体手指触摸该第一盖板后芯片系统以及光发射器的动作跟上文所述的芯片系统和光发射器的动作类似,这里不再赘述。如图5所示,与光线传输层为波导层时该光学微机电系统170的动作不同的是,该光学微机电系统170对该第一光信号的传播路径进行微调,使该光发射器140发射的该第一光信号在经过该光学微机电系统170后,能够准确耦合到该透镜系统层,并且配合该透镜系统层的光学特性,使得从该透镜系统层出射的第一光信号经感应层120传输后,最终到达第一触摸单元。
应理解,该透镜系统层的几何光学特性需满足光学微机电系统和人体手指触摸第一盖板的位置之间的几何传播特性,即光学微机电系统能够调整光发射器发射的光信号从透镜系统层传输后,到达人体手指触摸第一盖板的位置,即感应位置。并且,光信号在透镜系统层中传输时,光信号的损耗需满足实际需求,从而能够保证达到第一盖板的光信号的强度。
可选地,该第一光信号从该透镜系统层的出射方向与该第一盖板所在的平面的夹角α满足0≤|90-α|≤β,该β为角度阈值,其中该β可以根据透镜系统层的结构,以及该第一光信号的强度等因素确定图6示出了光信号经过透镜系统层的传输路线的示意图,如图6所示,该光信号从光学微机电系统170进入透镜系统层,经过透镜系统层的折射后最终达到人体手指表面,为了保 证到达人体手指表面的光信号的强度,该光信号从该透镜系统层的出射方向与该第一盖板所在的平面的夹角α满足0≤|90-α|≤β,该β为角度阈值。即光信号满足垂直出射或接近垂直的某一角度出射,能够保证到达人体手指表面的光信号的强度。
可选地,该透镜系统层为至少一个凸透镜,或为至少一个凹透镜,或为至少一个凹透镜和至少一个凹透镜的组合。
也就是说,该透镜系统层可以为纯凸透镜结构,包括的凸透镜的个数为一个或多个,也可以为纯凹透镜结构,包括的凹透镜的个数为一个或多个,或者也可以为凸透镜和凹透镜的组合结构,包括的凸透镜和凹透镜的个数也可以为一个也可以多个,本申请实施例不作限定。
因此,本申请实施例的指纹装置,第一盖板包括多个触摸单元,该指纹装置包括的光发射器可以为该多个触摸单元提供光源,从而无论人体手指触摸哪个触摸单元,芯片系统都能够控制光发射器发射光信号,并控制光学微机电系统对从光发射器发射的第一光信号进行调整,使得调整后的第一光信号能够耦合到透镜系统层,并且从该透镜系统层出射的该第一光信号经该感应层传输后到达人体手指触摸第一盖板的位置对应的触摸单元,从而能够实现人体手指触摸屏幕的任意位置都能够识别该人体手指的指纹信息。
应理解,该光发射器140的发光面越小越好,理想状态可以为点光源,该光接收器150的接收面积尽可能大,从而保证尽可能多的光信号能够被光接收器150接收。
可选地,该光发射器140、该光接收器150和该芯片系统160可以为独立的模块,也可以集成为一体,本申请实施例对此不作限定。
可选地,该光学微机电系统170和该芯片系统160可以为独立的结构,也可以集成为一体,本申请实施例对此不作限定。
图7示出了根据本申请另一实施例的指纹装置700的剖视图。如图7所示,该装置700包括:
第一盖板710,感应层720,载板层730,多个光发射器740,多个光接收器750和芯片系统760;
该第一盖板710位于该指纹装置的最上层,该第一盖板710包括多个触摸单元该感应层720位于该第一盖板710和该载板层730之间,该多个光发射器740、该多个光接收器750、该芯片系统760位于该载板层730中;
该感应层720,用于获取人体手指的触摸信息,并将该触摸信息发送给该芯片系统760;
该多个光发射器740用于为该多个触摸单元提供光源,每个光发射器740对应至少一个触摸单元;
该多个光接收器750用于接收该多个光发射器740发射的光信号经人体手指发射回来的光信号,该多个光接收器750与该多个光发射器740一一对应;
该芯片系统760,用于根据该触摸信息,确定人体手指触摸该第一盖板710的位置对应该多个触摸单元中的第一触摸单元;向该多个光发射器740中的第一光发射器740发送第一指令,该第一指令用于控制该第一光发射器740发射第一光信号,该第一光发射器740为该第一触摸单元对应的光发射器740。
可选地,该指纹装置700还可以包括第二盖板770,该第二盖板770可以位于该指纹装置的最下层,即可以位于该载板层730的下层。
在该实施例中,该第一盖板710和该第一盖板110作用相同,该第二盖板770和该第二盖板180的作用相同,该感应层720与该感应层120的作用相同,为了简洁,这里不再赘述。
在该实施例中,该载板层730用于为该多个光发射器、多个光接收器和芯片系统提供载体,也就是该载板层730用于为该多个光发射器、多个光接收器和芯片系统的线路排布提供支撑。
该多个光发射器740用于为该多个触摸单元提供光源,每个光发射器可以为至少一个触摸单元提供光源。图8为人体手指触摸第一盖板后的光信号传输过程的示意图,如图8所示,当人体手指触摸该第一盖板710时,该感应层720获取人体手指的触摸信息,然后将该触摸信息发送给芯片系统760。可选地,该触摸信息可以为人体手指触摸该第一盖板710的压力信息,或者也可以为人体手指触摸屏幕的位置信息等,本申请实施例对此不作限定。
该芯片系统760根据该触摸信息,确定人体手指触摸该第一盖板710的位置对应的触摸单元为第一触摸单元,而第一光发射器为给该第一触摸单元提供光源的光发射器。因此,该芯片系统760向该第一光发射器发送第一指令,该第一指令用于控制该第一光发射器发射第一光信号,该第一光信号为具有特定波长的光波,该第一光信号的波长范围可以为300纳米到1300纳 米。然后该第一光信号经过该感应层720后,最终达到该第一触摸单元。
经人体手指反射回回来的光信号,经感应层传输后,被该第一光发射器对应的第一光接收器接收,可选地,该第一光接收器可以将接收的光信号转换为电信号,可选地,该芯片系统包括的多个芯片还可以对该电信号作进一步的处理,例如,可以对该电信号进行分析,从而确定人体手指的指纹信息。
可选地,该第一触摸单元可以用该第一触摸单元在该第一盖板中的位置坐标标识,或者可以对该第一盖板包括的多个触摸单元进行编号,每个触摸单元对应一个单元号,从而可以用触摸单元的单元号标识该第一触摸单元,或者也可以用其他可以方式来标识该第一触摸单元,本申请实施例对此不作限定。
应理解,该第一光信号从该载板层730的出射方向需要满足垂直出射或接近垂直的某一角度出射,能够保证到达人体手指表面的光信号的强度。
可选地,在该实施例中,该多个光发射器和该多个光接收器集成于该芯片系统中。
本申请实施例的指纹装置,第一盖板包括多个触摸单元,该指纹装置包括的多个光发射器可以为该多个触摸单元提供光源,从而无论人体手指触摸哪个触摸单元,都有相应的光发射器发射光信号,从而能够实现识别人体手指的指纹信息。
本申请实施例提供了一种终端设备,图9为本申请实施例的终端设备的剖视图,如图9所示,该终端设备可以包括根据上文所述的指纹装置、端盖、显示屏、电池和芯片,该盖板玻璃组件的内侧设置该电池和芯片,且该指纹装置、该电池和芯片在该端盖的内侧。
可选地,该终端设备可以为手机、平板电脑、电子书等终端设备。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各 示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限 于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种指纹装置,其特征在于,包括:
    第一盖板,感应层,光线传输层,光发射器,光接收器,芯片系统和光学微机电系统;
    所述第一盖板位于所述指纹装置的最上层,所述第一盖板包括多个触摸单元,所述感应层位于所述第一盖板和所述光线传输层之间,所述光发射器、所述光接收器、所述芯片系统和所述光学微机电系统位于所述光线传输层的下层;
    所述感应层,用于获取人体手指的触摸信息,并将所述触摸信息发送给所述芯片系统;
    所述光线传输层,用于传输光发射器发射的第一光信号,以及传输所述第一光信号经人体手指反射回来的第二光信号;
    所述光发射器,用于为所述多个触摸单元提供光源;
    所述光接收器,用于接收从人体手指反射回来的光信号;
    所述芯片系统,用于根据所述触摸信息,确定人体手指触摸所述第一盖板的位置对应所述多个触摸单元中的第一触摸单元,向所述光发射器发送第一指令,所述第一指令用于控制所述光发射器发射所述第一光信号,并向所述光学微机电系统发送第二指令,所述第二指令用于控制光学微机电系统对所述第一光信号的传播路径进行调整,使得调整后的所述第一光信号最终到达所述第一触摸单元;
    所述光学微机电系统,用于根据所述第二指令对所述第一光信号的传播路径进行调整,使得调整传播路径后的所述第一光信号从所述光线传输层出射后到达所述第一触摸单元。
  2. 根据权利要求1所述的指纹装置,其特征在于,每个触摸单元用位置坐标标识,或用每个触摸单元的单元号标识。
  3. 根据权利要求1或2所述的指纹装置,其特征在于,所述触摸信息为人体手指触摸所述第一盖板的压力信息。
  4. 根据权利要求1至3中任一项所述的指纹装置,其特征在于,所述光线传输层为波导层,所述波导层包括多个波导通道,所述多个波导通道与所述多个触摸单元一一对应,
    所述波导层用于传输光发射器发射的所述第一光信号,以及传输所述第 一光信号经人体手指反射回来的所述第二光信号;
    所述光学微机电系统,包括多个光开关,所述多个光开关与所述多个波导通道一一对应,所述光学微机电系统用于根据所述第二指令确定所述第一触摸单元对应第一波导通道,开启所述第一波导通道的光开关,使得所述第一光信号从所述第一波导通道出射后到达所述第一触摸单元。
  5. 根据权利要求4所述的指纹装置,其特征在于,所述波导层还包括反射子层,所述反射子层用于所述第一光信号从所述反射子层反射,并在反射后到达所述第一触摸单元。
  6. 根据权利要求5所述的指纹装置,其特征在于,从所述反射子层反射的所述第一光信号的光强大于光强阈值。
  7. 根据权利要求1至3中任一项所述的指纹装置,其特征在于,所述光线传输层为透镜系统层,所述透镜系统层,用于传输光发射器发射的所述第一光信号,以及传输所述第一光信号经人体手指反射回来的所述第二光信号;
    所述光学微机电系统,用于根据所述芯片系统发送的第二指令,对所述第一光信号的传播路径进行调整,使得从所述透镜系统层出射的所述第一光信号经所述感应层传输后到达所述第一触摸单元。
  8. 根据权利要求7所述的指纹装置,其特征在于,所述第一光信号从所述透镜系统层的出射方向与所述第一盖板所在的平面的夹角α满足0≤|90-α|≤β,所述β为角度阈值。
  9. 根据权利要求7或8所述的指纹装置,其特征在于,所述透镜系统层为至少一个凸透镜,或至少一个凹透镜,或至少一个凹透镜和至少一个凹透镜的组合。
  10. 根据权利要求1至9中任一项所述的指纹装置,其特征在于,所述光发射器和所述光接收器集成在所述芯片系统中。
  11. 根据权利要求1至10中任一项所述的指纹装置,其特征在于,所述光学微机电系统集成在所述芯片系统中。
  12. 根据权利要求1至10中任一项所述的指纹装置,其特征在于,所述指纹装置还包括第二盖板,所述第二盖板位于所述指纹装置的最下层,所述光发射器、所述光接收器、所述芯片系统和所述光学微机电系统内嵌于所述第二盖板。
  13. 一种指纹装置,其特征在于,包括:
    第一盖板,感应层,载板层,多个光发射器,多个光接收器和芯片系统;
    所述第一盖板位于所述指纹装置的最上层,所述第一盖板包括多个触摸单元,所述感应层位于所述第一盖板和所述载板层之间,所述多个光发射器、所述多个光接收器、所述芯片系统位于所述载板层中;
    所述感应层,用于获取人体手指的触摸信息,并将所述触摸信息发送给所述芯片系统;
    所述多个光发射器用于为所述多个触摸单元提供光源,每个光发射器对应至少一个触摸单元;
    所述多个光接收器用于接收所述多个光发射器发射的光信号经人体手指发射回来的光信号,所述多个光接收器和所述多个光发射器一一对应;
    所述芯片系统,用于根据所述触摸信息,确定人体手指触摸所述第一盖板的位置对应所述多个触摸单元中的第一触摸单元;向所述多个光发射器中的第一光发射器发送第一指令,所述第一指令用于控制所述第一光发射器发射第一光信号,所述第一光发射器为所述第一触摸单元对应的光发射器。
  14. 根据权利要求13所述的指纹装置,其特征在于,每个触摸单元用位置坐标标识,或用每个触摸单元的单元号标识。
  15. 根据权利要求13或14所述的指纹装置,其特征在于,所述触摸信息为人体手指触摸所述第一盖板的压力信息。
  16. 根据权利要求13至15中任一项所述的指纹装置,其特征在于,所述第一光信号从所述载板层的出射方向与所述第一盖板所在的平面的夹角α满足0≤|90-α|≤β,所述β为角度阈值。
  17. 根据权利要求13至16中任一项所述的指纹装置,其特征在于,所述多个光发射器和所述多个光接收器集成于所述芯片系统中。
  18. 根据权利要求13至17中任一项所述的指纹装置,其特征在于,所述指纹装置还包括第二盖板,所述第二盖板位于所述载板层的下层。
  19. 一种终端设备,其特征在于,包括:
    根据权利要求1至12中任一项所述的指纹装置、端盖、电池和芯片,所述指纹装置内侧设置所述电池和所述芯片,且所述指纹装置、所述电池和所述芯片位于所述端盖的内侧。
  20. 一种终端设备,其特征在于,包括:
    根据权利要求13至18中任一项所述的指纹装置、端盖、电池和芯片,所述指纹装置内侧设置所述电池和所述芯片,且所述指纹装置、所述电池和所述芯片位于所述端盖的内侧。
PCT/CN2017/071972 2017-01-20 2017-01-20 指纹装置和终端设备 WO2018133040A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2017/071972 WO2018133040A1 (zh) 2017-01-20 2017-01-20 指纹装置和终端设备
EP17892149.0A EP3422247B1 (en) 2017-01-20 2017-01-20 Fingerprint device, and terminal apparatus
CN201780000025.3A CN107077616B (zh) 2017-01-20 2017-01-20 指纹装置和终端设备
US16/139,064 US10755071B2 (en) 2017-01-20 2018-09-23 Fingerprint apparatus and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/071972 WO2018133040A1 (zh) 2017-01-20 2017-01-20 指纹装置和终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/139,064 Continuation US10755071B2 (en) 2017-01-20 2018-09-23 Fingerprint apparatus and terminal device

Publications (1)

Publication Number Publication Date
WO2018133040A1 true WO2018133040A1 (zh) 2018-07-26

Family

ID=59613503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071972 WO2018133040A1 (zh) 2017-01-20 2017-01-20 指纹装置和终端设备

Country Status (4)

Country Link
US (1) US10755071B2 (zh)
EP (1) EP3422247B1 (zh)
CN (1) CN107077616B (zh)
WO (1) WO2018133040A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180057835A (ko) * 2016-11-23 2018-05-31 삼성전자주식회사 지문 인식 센서가 실장된 웨어러블 타입 전자 장치
CN109460693A (zh) * 2017-09-06 2019-03-12 蓝思科技(长沙)有限公司 光学式指纹传感器及终端设备
CN108090444B (zh) * 2017-12-16 2022-01-28 贵州凯珑光电有限公司 一种采用mems的高清指纹成像组件
CN109375714A (zh) * 2018-12-14 2019-02-22 上海摩软通讯技术有限公司 全屏识别指纹的终端及终端全屏识别指纹的方法
CN110147665B (zh) * 2019-05-13 2021-04-13 Oppo广东移动通信有限公司 信息处理方法及相关设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104700081A (zh) * 2015-03-06 2015-06-10 南昌欧菲生物识别技术有限公司 指纹识别装置、设有该装置的触摸屏及终端设备
CN106203026A (zh) * 2016-06-23 2016-12-07 华勤通讯技术有限公司 指纹识别传感器、显示屏、电子设备及功能启动方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7728959B2 (en) * 2003-06-21 2010-06-01 Aprilis, Inc. Acquisition of high resolution biometric images
TWI370399B (en) * 2007-07-18 2012-08-11 Quanta Comp Inc Electronic apparatus equipped with touch panel capable of identifying fingerprint
CN102364495A (zh) * 2011-10-25 2012-02-29 东莞市中控电子技术有限公司 一种小型指纹采集器
US8922787B2 (en) * 2013-01-07 2014-12-30 Si-Ware Systems Spatial splitting-based optical MEMS interferometers
WO2016156776A1 (en) * 2015-03-31 2016-10-06 Milan Momcilo Popovich Method and apparatus for contact image sensing
CN105844233B (zh) * 2016-03-21 2022-07-05 京东方科技集团股份有限公司 一种指纹识别模组、指纹识别装置及显示装置
KR20180001055A (ko) * 2016-06-24 2018-01-04 삼성전자주식회사 지문 센서를 포함하는 전자 장치 및 이의 운용 방법
KR102570180B1 (ko) * 2016-11-28 2023-08-25 엘지디스플레이 주식회사 지문 센서 일체형 전계 발광 표시장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104700081A (zh) * 2015-03-06 2015-06-10 南昌欧菲生物识别技术有限公司 指纹识别装置、设有该装置的触摸屏及终端设备
CN106203026A (zh) * 2016-06-23 2016-12-07 华勤通讯技术有限公司 指纹识别传感器、显示屏、电子设备及功能启动方法

Also Published As

Publication number Publication date
US20190026524A1 (en) 2019-01-24
EP3422247B1 (en) 2021-03-17
US10755071B2 (en) 2020-08-25
EP3422247A4 (en) 2019-04-17
CN107077616B (zh) 2020-11-13
EP3422247A1 (en) 2019-01-02
CN107077616A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
WO2018133040A1 (zh) 指纹装置和终端设备
CN105324741B (zh) 光学接近传感器
US20240171478A1 (en) Electronic Device with Intuitive Control Interface
US20210326560A1 (en) Mobile terminal and recognition method
US10004985B2 (en) Handheld electronic device and associated distributed multi-display system
CN110488974B (zh) 用于提供虚拟输入界面的方法和可穿戴装置
US8384693B2 (en) Low profile touch panel systems
US20110242305A1 (en) Immersive Multimedia Terminal
US8730209B2 (en) Method for resolving blind spots associated with proximity sensors
WO2018201849A1 (zh) 光学指纹采集方法及相关产品
US20230205369A1 (en) Input device
KR102360176B1 (ko) 웨어러블 디바이스에서 가상의 입력 인터페이스를 제공하는 방법 및 이를 위한 웨어러블 디바이스
CN104657003B (zh) 一种红外3d触控系统及其终端
EP3714317B1 (en) Electronic device with infrared transparent one-way mirror
KR20130053363A (ko) 복합 휴먼 인터페이스 장치 및 방법
US11959997B2 (en) System and method for tracking a wearable device
CN114859367A (zh) 具有光学路径延伸器的光学干涉测量接近传感器
CN113835652A (zh) 用于利用电子装置提供状态指示器的方法和系统
KR102293931B1 (ko) 접촉과 비접촉 동시 사용 가능한 버튼 장치 및 그 인식 방법
US20140123048A1 (en) Apparatus for a virtual input device for a mobile computing device and the method therein
CN109064906B (zh) 一种透光盖板和移动终端
KR100973191B1 (ko) 전반사 특성을 이용하여 표시장치상에 터치되는 위치를 인식하기 위한 장치 및 방법
US11416074B1 (en) Electronic devices having flexible light guides
CN113906372A (zh) 一种空中成像交互系统
CN112098929A (zh) 智能设备间的相对角度确定方法、装置、系统和智能设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017892149

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017892149

Country of ref document: EP

Effective date: 20180927

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE