WO2018131816A1 - 이중 초점 렌즈 및 그 제조 방법 - Google Patents

이중 초점 렌즈 및 그 제조 방법 Download PDF

Info

Publication number
WO2018131816A1
WO2018131816A1 PCT/KR2017/015087 KR2017015087W WO2018131816A1 WO 2018131816 A1 WO2018131816 A1 WO 2018131816A1 KR 2017015087 W KR2017015087 W KR 2017015087W WO 2018131816 A1 WO2018131816 A1 WO 2018131816A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
layer
refractive index
bifocal
polarization
Prior art date
Application number
PCT/KR2017/015087
Other languages
English (en)
French (fr)
Inventor
김학린
박민규
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170006176A external-priority patent/KR101886792B1/ko
Priority claimed from KR1020170006175A external-priority patent/KR101866193B1/ko
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Publication of WO2018131816A1 publication Critical patent/WO2018131816A1/ko

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to a bifocal lens and a method of manufacturing the same, and more particularly to a bifocal lens and a method of manufacturing the focal length configured to change in accordance with the polarization direction of the incident light.
  • FIG. 1 illustrates a gradient index (GRIN) lens using a conventional electric field distribution. It is sectional drawing and conceptual diagram which were shown to demonstrate. 1 (a) shows ⁇ ⁇ Ren, et al, Opt. Express, 14, 11292 (2006) is a conceptual diagram of a GRIN lens using the electric field distribution, (b) is Y. -C. Chang, et al, Opt. Express. , 22, 2714 (2014) is a conceptual diagram of a GRIN lens using the electric field distribution.
  • the GRIN lens technology using the electric field distribution is a technique in which the electric field applied to the liquid crystal in the upper and lower directions in the liquid crystal element LC cel l is spatially different so that the GRIN lens refractive index profile is exhibited for a specific polarization.
  • the GRIN lens refractive index profile refers to a low-high-low spatially refractive index distribution in the X-axis direction.
  • having a GRIN lens refractive index profile allows a focal plane to be formed like a convex lens even if the object is flat.
  • FIG. 1A illustrates a case in which the gap between the upper and lower IT0 electrodes is spatially changed in the X-axis direction, thereby adjusting the size of the electric field applied to the liquid crystal layer.
  • E a Va / d.
  • E a the magnitude of the electric field
  • V a the magnitude of the applied voltage
  • d the distance between the electrode and the electrode.
  • fr inge-f i eld is formed when a voltage is applied to the upper and lower parts.
  • fr inge-f ield the magnitude of the electric field applied in the z-axis direction varies according to the x-axis direction, resulting in a GRIN lens refractive index profile.
  • GRIN lens technology using the above-mentioned electric field distribution has the advantage of compatibility with the existing LCD process.
  • driving there are various disadvantages in terms of driving.
  • the cell gap (Cel l Gap) of the liquid crystal device must be large, and accordingly, a driving voltage increases and a quiescent speed decreases.
  • fr inge-f ield is not formed directly on the patterned electrode, dead-zone occurs, resulting in a reduction in the f l l-factor.
  • the GRIN lens using the electric field distribution may have a continuous variable focus characteristic according to the voltage applied to the liquid crystal device from the infinite focal length (2D mode) to a specific focal length.
  • the response speed is about 50 ms or more and the response speed is slow, it has a technical limitation that is difficult to apply to time division technology.
  • 2 is a configuration diagram showing a GRIN lens to which a conventional lens structure is applied; Choi, et al, Opt. Mater. , 21, 643 (2002) is a block diagram showing a GRIN lens to which the lens structure disclosed.
  • a GRIN lens technology using a lens structure has a structure in which liquid crystals of a liquid crystal device are aligned on the lens structure.
  • the lens having the above-described structure has an effective refractive index value variable for a specific polarization such as the X-axis polarization of FIG. 2, so that the isotropic lens structure and the liquid crystal
  • the difference in refractive index between the layers is variable, a technique that can implement a variable focus.
  • GRIN lens technology using the above-described lens structure has a continuous variable focus characteristic from the concave lens to the convex lens having a specific focal length according to the voltage applied to the liquid crystal device.
  • the driving voltage is increased and the response speed is increased. Has the disadvantage of slowing down. Therefore, it is difficult to apply to time division technology.
  • FIG. 3 is a structural diagram illustrating a polarization dependent GRIN lens technology using a conventional liquid crystal phase polymer.
  • J. Woodgate, et al, SID03 Digest, 394 (2003) is a structural diagram illustrating a polarization-dependent GRIN lens technology using a liquid crystal phase polymer.
  • a polarization-dependent GRIN lens technology using a liquid crystal phase polymer has a structure in which a liquid crystal phase polymer (React i ve Mesogen (RM)) is oriented in a lens structure, and actively operates according to polarization of incident light. to be.
  • the rod-shaped branches are referred to as the extraordinary refractive index (/ ⁇ ) and the minor refractive index (/ ? ⁇ ) as the long-axis refractive index of the RM, and have birefringence according to the polarization direction of the incident light.
  • the extraordinary refractive index / ⁇
  • the minor refractive index / ? ⁇
  • Sotropi c polymer acts as a lens inconsistent with the refractive index n p .
  • the polarization-dependent GRIN lens using the above-described liquid crystal phase polymer may have the same driving voltage and switching speed as the conventional liquid crystal device because the polarization switching unit and the polarization-dependent lens unit exist separately.
  • Conventional polarization-dependent GRIN lens technology using liquid crystal phase polymers matches the refractive index n P of the lens structure with isotropic phase of RM to a convex lens having a specific focal length for two variable polarization states. It is a structure to switch the infinite focal length state that does not operate or operate with a lens.
  • Still another object of the present invention is to provide a bifocal lens having two focal lengths different depending on the polarization of incident light using the photocurable liquid crystal phase polymer.
  • Still another object of the present invention is to provide a method of manufacturing a bifocal lens using a photocurable liquid crystalline polymer.
  • the bifocal lens according to the first aspect of the present invention for achieving the above technical problem is formed of a material having a birefringence, one surface is flat and the other surface facing the one surface is a lens consisting of a lens shape layer; And a lens structure formed of an isotropic material, one surface consisting of a reverse lens phase corresponding to the lens surface of the lens layer and the other surface facing the one surface; wherein the lens layer has a normal refractive index ( ⁇ ) and The lens structure has a refractive index (n e ) and the lens structure is made of a material having a refractive index (n p ) different from the normal light refractive index and the abnormal light refractive index of the lens layer, the lens structure and the lens layer according to the polarization of the incident light The difference in refractive index at the interface of is generated and has two focal lengths determined by the difference in refractive index at the interface.
  • a bifocal lens includes: a lens layer formed of a material having birefringence, and one surface of which is flat and the other surface opposite to the one surface comprises a lens surface having a lens shape; A lens structure formed of an isotropic material, one surface of which is formed of a reverse lens phase corresponding to the lens surface of the lens layer, and the other surface of the lens layer is flat; A reflective layer mounted on one flat surface of the lens structure, and the lens layer, the lens structure, and the reflective layer are sequentially disposed so that light incident on the lens layer travels through the lens structure, is reflected from the reflective layer, and is emitted back to the lens layer,
  • the lens layer has a normal light refractive index (n 0 ) and an abnormal light refractive index (n e ), and the lens structure is composed of a material having a refractive index (n P ) different from the normal light refractive index and the abnormal light refractive index of the lens layer , Difference in refractive index
  • the lens surface of the lens layer has a ball-specific lens shape, and faces the lens surface of the lens layer.
  • One surface of the lens structure is preferably formed in a concave lens shape.
  • the lens layer is preferably composed of one of a liquid crystal and a photocurable liquid crystal polymer.
  • the lens structure is preferably made of an isotropic polymer material.
  • an alignment film is further provided between the lens layer and the lens structure, and the material constituting the lens layer is oriented in a single direction by the alignment film. It is preferable.
  • the refractive index (n P ) of the lens structure, the normal light refractive index (n 0 ) and the abnormal light refractive index (n e ) of the lens layer are n p ⁇
  • the lens structure and the material of the lens layer are configured to have a relationship of n e to operate with two convex lenses having different focal lengths depending on the polarization of the incident light.
  • the refractive index n P of the lens structure and the normal light refractive index n and the abnormal light refractive index n e of the lens layer are n 0 ⁇ n p.
  • the material of the lens structure and the lens layer is configured to have a relationship of ⁇ n e so as to operate as a convex lens and a concave lens according to polarization of incident light.
  • the refractive index (n P ) of the lens structure, the normal refractive index (n 0 ) and the abnormal light refractive index (n e ) of the lens layer are n 0 ⁇
  • the lens structure and the material of the lens layer are configured to have a relationship of n e ⁇ n p to operate with two concave lenses having different focal lengths depending on the polarization of the incident light.
  • the difocal lens is any one of a 1D array lenticular lens, a 2D array lens and a single lens. It is desirable to be manufactured in one form.
  • a bifocal lens according to a third aspect of the present invention for achieving the above technical problem, a transparent substrate; An alignment film oriented in a single direction and formed on the transparent substrate; And a lens layer formed on the alignment layer, wherein the photocurable liquid crystal polymer material having birefringence is oriented in a single direction by the alignment layer, and a lens layer having a lens shape on one surface in contact with the air layer.
  • one surface of the lens layer in contact with the air layer is preferably formed in a convex lens shape or concave lens shape.
  • a bifocal lens includes a substrate having a flat surface; A reflective layer formed on the substrate; An alignment film oriented in a single direction and formed on the reflective layer; And a lens layer formed on the alignment layer, wherein the photocurable liquid crystal polymer material having birefringence is oriented in a single direction by the alignment layer, and a lens layer having a lens shape on one surface in contact with the air layer.
  • the normal light refractive index and the abnormal light refractive index of the lens layer is different from the refractive index of the air layer 01), the air layer and the lens layer according to the polarization of the incident light
  • the difference in refractive index at the interface of is generated and has two focal lengths determined by the difference in refractive index at the interface.
  • one surface of the lens layer in contact with the air layer has a convex lens shape or a concave lens shape.
  • the bifocal lens manufacturing method comprises (a) depositing an isotropic polymer on a first substrate and then applying a stamp having a lens structure.
  • Imprinting to produce a lens structure having a reversed-phase structure of the lens (b) forming a first alignment layer on the upper surface of the lens structure to complete the lower substrate; (c) forming a second alignment layer on the transparent substrate to complete the upper substrate; (d) bottom Applying a photocurable liquid crystal polymer material on the alignment layer of the substrate, covering the upper substrate, laminating, and photocuring to solidify the photocurable liquid crystal polymer layer; And ( e ) picking up the upper substrate combined with the solidified photocurable liquid crystal polymer layer from the lower substrate, wherein one surface of the photocurable liquid crystal polymer layer exposed to the air layer has a lens shape.
  • one surface of the photocurable liquid crystal phase polymer layer exposed to the air layer has a concave lens shape or a convex lens shape.
  • the step (b) is to hydrophilize the isotropic polymer layer constituting the lens structure by UV0 treatment before spin coating the first alignment layer on the upper surface of the lens structure. It is preferable to increase the surface energy of the first alignment layer.
  • the step (c) is carried out UV0 treatment to hydrophilize the substrate before spin coating the system 2 alignment film on the surface of the substrate, thereby increasing the surface energy of the second alignment film. It is preferable to make it.
  • the bifocal lens according to the first to sixth embodiments of the present invention is a polarization-dependent GRIN lens based technology using a birefringent material, and has a refractive index n 0 , n e of a lens layer made of a birefringent material and a lens structure made of an isotropic material. by the refractive index between the refractive index n p, it will have bifocal ol.
  • the refractive index ti p of the lens structure and the normal light refractive index n and the abnormal light refractive index n e of the lens layer are different from each other.
  • a bifocal lens according to another embodiment of the first to sixth embodiments of the present invention may include a refractive index n p of the lens structure, a normal light refractive index n 0 , and an abnormal light refractive index n e of the lens layer.
  • n p refractive index
  • n 0 normal light refractive index
  • n e abnormal light refractive index
  • the concave lens and the convex lens can be operated according to the polarization of the incident light.
  • a bifocal lens according to another embodiment of the first to sixth embodiments of the present invention may include a refractive index n p of the lens structure, a normal light refractive index n 0 , and an abnormal light refractive index n of the lens layer.
  • the bifocal lens according to the seventh to tenth embodiments of the present invention is a polarization-dependent GRIN lens-based technology using a photocurable liquid crystal polymer, which is a birefringent material, and has a refractive index II ⁇ , n e and a lens layer of a birefringent material.
  • a photocurable liquid crystal polymer which is a birefringent material
  • has a refractive index II ⁇ , n e and a lens layer of a birefringent material By the refractive index relationship of the refractive index of the air layer in contact with, it has a double focus.
  • Transmissive bifocal lens according to one of the seventh to tenth embodiments of the present invention, by configuring one surface of the lens layer exposed to the air layer in the shape of a convex lens, the refractive index of the air layer 3 ⁇ 4,) and the lens layer
  • the normal light refraction can be operated with convex lenses having two focal lengths (focal planes) different depending on the polarization of the incident light by the relationship of n air ⁇ n 0 ⁇ with respect to (/ 3 ⁇ 4) and the extraordinary refractive index. .
  • one surface of the lens layer exposed to the air layer is formed in a concave lens shape, whereby the refractive index of the air layer is?
  • convex lenses having two focal lengths different from each other according to the polarization of the incident light due to the relation of n air ⁇ n 0 ⁇ with respect to the normal light refractive index (/ 3 ⁇ 4) and the extraordinary light refractive index () of the lens layer. It can be operated.
  • Reflective bifocal lens according to another embodiment of the seventh to tenth embodiments of the present invention, by forming one surface of the lens layer exposed to the air layer in the shape of a convex lens and further comprising a reflective layer on the other surface of the lens layer
  • e it is possible to operate with reflective block lenses having two focal lengths (focal planes) different depending on the polarization of the incident light.
  • the bifocal lens has one surface of the lens layer exposed to the air layer in the shape of a concave lens, and further includes a reflective layer on the other surface of the lens layer, so that the refractive index of the air layer and the normal light refractive index (/? By the relationship of n air to the refractive index (), it is possible to operate with reflective concave lenses having two different focal lengths depending on the polarization of the incident light.
  • FIG. 1 is a cross-sectional view and a conceptual view illustrating a gradient index (GRIN) lens using a conventional electric field distribution.
  • GRIN gradient index
  • FIG. 2 is a configuration diagram showing a GRIN lens to which a conventional lens structure is applied.
  • 3 is a structural diagram illustrating a polarization dependent GRIN lens technology using a conventional liquid crystal phase polymer.
  • FIG. 4 is a conceptual diagram illustrating the configuration and operation of a transmissive bifocal lens according to a first embodiment of the present invention.
  • FIG. 5 is a conceptual diagram illustrating the configuration and operation of a transmissive bifocal lens according to a second exemplary embodiment of the present invention.
  • FIG. 6 is a conceptual diagram illustrating the configuration and operation of a transmissive bifocal lens according to a third exemplary embodiment of the present invention.
  • FIG. 7 is a conceptual diagram illustrating the configuration and operation of a reflective bifocal lens according to a fourth embodiment of the present invention.
  • FIG. 8 is a conceptual diagram illustrating the configuration and operation of a reflective bifocal lens according to a fifth embodiment of the present invention.
  • FIG. 9 is a conceptual diagram illustrating the configuration and operation of a reflective bifocal lens according to a sixth embodiment of the present invention.
  • FIG. 10 is a flowchart illustrating a manufacturing process of a bifocal lens according to the first to sixth embodiments of the present invention.
  • Figure 11 illustrates the micro lens array tempiate used in the manufacturing process of the bifocal lens according to the present invention.
  • FIG. 12 shows a bifocal lens according to the first to sixth embodiments of the present invention.
  • 15 is a conceptual diagram illustrating the configuration and operation of a bifocal lens according to a seventh embodiment of the present invention.
  • 16 is a conceptual diagram illustrating the configuration and operation of a bifocal lens according to an eighth embodiment of the present invention.
  • 17 is a conceptual diagram illustrating the configuration and operation of a bifocal lens according to a ninth embodiment of the present invention.
  • FIG. 18 is a conceptual diagram illustrating the configuration and operation of a bifocal lens according to a tenth embodiment of the present invention.
  • 19 is a flowchart illustrating a manufacturing process of a bifocal lens according to the seventh to tenth embodiments of the present invention.
  • the bifocal lens according to the present invention is a polarization-dependent GRIN lens based technology using a birefringent material, and has a double focus due to the refractive index relationship of the refractive index of the birefringent material /, n e and the lens structure composed of an isotropic material. It is done. Since the bifocal lens according to the present invention has a polarization switching unit and a polarization dependent lens unit separately, the bifocal lens can have a fast switching speed, and thus time division technology can be applied.
  • the transmissive bifocal lens 1 according to the first embodiment of the present invention includes a lens layer 100 and a lens structure 110, which are stacked on each other.
  • the transmissive bifocal lens 1 further includes a transparent substrate (not shown) on one surface of the lens structure 110, such that the lens layer, the lens structure, and the transparent substrate may be stacked.
  • the lens layer 100 is formed of a material having a birefringence oriented in a single direction, one surface is flat and the other surface facing the one surface is made of a lens surface having a lens shape.
  • the lens surface is stacked on one surface of the lens structure 110, the lens surface is preferably made of a convex lens shape, one surface of the lens structure opposite to the lens surface is preferably made of a concave lens shape.
  • an alignment film (not shown) oriented in a single direction between the lens structure 110 and the lens layer 100. desirable.
  • the birefringent material constituting the lens layer includes a photocurable liquid crystal polymer or a liquid crystal, and the birefringent material has a normal light refractive index () and an abnormal light refractive index (n e ).
  • the lens layer is a photo-curable liquid crystalline polymeric substance of the description will be described a case consisting of (React ive Mesogen hereinafter referred to as 'RM'.) By way of example.
  • 'RM' React ive Mesogen
  • the lens structure 110 is formed of an isotropic material, and one surface is formed of a reversed lens facing the lens surface of the lens layer and the other surface facing the one surface is flat.
  • the lens structure is made of a material having a refractive index (n P ) that is different from the normal light refractive index and the abnormal light refractive index of the lens layer.
  • the refractive index for the linearly polarized light becomes ⁇ , and the incident light and the polarization direction coincide with the RM or the long axis direction of the liquid crystal.
  • the refractive index of the linearly polarized light is At the interface where the lens structure and the lens layer contact, it is preferable that the lens layer has a ball-specific lens shape, and the lens structure has a concave lens shape.
  • the refractive index (n p ) of the lens structure and the relationship between the normal light refractive index (n 0 ) and the abnormal light refractive index (n e ) of the lens layer is n P ⁇ n 0 ⁇ n e
  • the bifocal lens according to the invention is an oriented planar-convex structure.
  • the lens layer 100 and the concave-planar structure of the isotropic polymer (isotropic polymer) of the lens structure 110 is formed of a stack of laminated.
  • the focal length () is formed by the difference in refractive index between and.
  • the focal length (/ is formed. Since n e -n P is larger than n 0 -n P , the relationship between and of the transmissive bifocal convex lens formed according to each incident polarization direction is fi ⁇ f 2 .
  • the incident light has a polarization of 45 ° or circularly polarized light
  • the incident light when the incident light is decomposed by the vector, the light is decomposed into 50% of the RM direction and 50% of the RM long axis, respectively.
  • the focal point can be simultaneously formed at the and positions, with 50% less light.
  • the bifocal lens 2 according to the present embodiment has the same structure as the bifocal lens 1 according to the first embodiment, except that the refractive index ⁇ ⁇ of the lens structure and the normal light refractive index of the lens layer no ) And the material of the lens structure and the lens layer such that the abnormal light refractive index (n e ) has a relationship of n 0 ⁇ n p ⁇ n e , so that the concave lens and the convex lens are operated according to the polarization of the incident light.
  • (c) shows the traveling path of light in the case where the incident polarization is 45 ° linearly or circularly polarized light.
  • the RM layer and the concave-pl anar structure of the pl anar-convex structure are used. At the interface of the isotropic layer, it is refracted by the difference in refractive index between 3 ⁇ 4 and ⁇ , forming a focal length.
  • the bifocal lens 3 according to the present embodiment has the same structure as the bifocal lens 1 according to the first embodiment, except that the refractive index ⁇ ⁇ of the lens structure and the normal light refractive index of the lens layer are ⁇ .
  • the lens structure and the material of the lens layer are formed such that 0 ) and the extraordinary refractive index () have a relationship of n 0 ⁇ n e ⁇ ⁇ ⁇ , so that two concave lenses having different focal lengths according to polarization of incident light may be operated. It is special.
  • the light propagation path in the case of 45 ° linearly or circularly polarized light is shown.
  • the focal length ⁇ The branch acts as a concave lens.
  • Two concave lenses having a focal length are formed at the same time.
  • FIG. 7 is a conceptual diagram illustrating the configuration and operation of a reflective bifocal lens according to a fourth embodiment of the present invention.
  • the reflective bifocal lens 4 includes a lens layer 200, a lens structure 210, and a reflector 220, which are stacked on each other. It features. Since the lens layer 200 and the lens structure 210 according to the present embodiment are the same as those of the first embodiment, overlapping description is omitted.
  • the reflective layer 220 is mounted on one flat surface of the lens structure 210 to reflect back the light traveling through the lens layer and the lens structure.
  • the bifocal lens according to the present embodiment is operated as a reflective bifocal lens by the reflective layer.
  • the reflective bifocal lens 4 further includes a transparent substrate (not shown) on one surface of the reflective layer 220, so that the lens layer, the lens structure, the reflective layer, and the transparent substrate may be stacked.
  • the refractive index ( ⁇ ⁇ ) of the lens structure, the normal light refractive index ( ⁇ 0 ) and the abnormal light refractive index (n e ) of the lens layer are n p ⁇ n 0. ⁇ so as to have a relationship of n e and the lens structure by forming a material of the lens layer, which is incident Depending on the polarization of the light it is also possible to operate with two reflective convex lenses (concave mirror type) with different focal lengths.
  • 45 0 shows the path of light propagation in the case of linearly or circularly polarized light.
  • the relation between the normal light refractive index (3 ⁇ 4) and the abnormal light refractive index ( ⁇ ) for the lens layer 200 and the refractive index of the lens structure 210 is ⁇ ⁇ ⁇ 0. It is set to < ⁇ , and it is characterized by operating with a reflective convex lens (concave mirror type) having a different focal length (focal plane) depending on the incident polarization.
  • the incident light has a polarization of 45 ° or circularly polarized light
  • the incident light when the incident light is decomposed by vector, the light is decomposed into 50% of the axial direction of RM and 50% of the long axis of RM, respectively.
  • the focal point can be simultaneously formed at the and positions, with 50% less light.
  • FIG. 8 is a conceptual diagram illustrating the configuration and operation of a reflective bifocal lens according to a fifth embodiment of the present invention.
  • the bifocal lens 5 according to the present embodiment has the same structure as the reflective bifocal lens 4 according to the fourth embodiment, except that the refraction of the lens structure (n P ) and the normal light refractive index of the lens layer (by constructing the material of the lens structure and the lens layer so that n 0 ) and the extraordinary refractive index () have an n 0 ⁇ n p ⁇ n e ⁇ relationship, a reflective convex lens (concave mirror form) or reflection depending on the polarization of the incident light It is characterized by operating as a concave lens (convex mirror form).
  • the light propagation path in the case of 45 ° linearly or circularly polarized light is shown.
  • n e and n It is refracted by the refractive index difference of p , reflected by the reflective layer, and then refracted at the interface between the RM layer of the planar-convex structure and the isotropic layer of the concave-planar structure to form a focal length (/).
  • FIG. 9 is a conceptual diagram illustrating the configuration and operation of a reflective bifocal lens according to a sixth embodiment of the present invention.
  • the reflective bifocal lens 6 according to the present embodiment has the same structure as the reflective bifocal lens 4 according to the fourth embodiment, except that the lens structure has a refractive index (n p ) and a top of the lens layer.
  • the optical refractive index (n 0 ) and the extraordinary refractive index (n e ) are composed of the material of the lens structure and the lens layer so that the relationship is n 0 ⁇ n e ⁇ n p ⁇ , so that the focal length varies depending on the polarization of the incident light. It is operated with a concave lens (convex mirror type).
  • FIG. 9A illustrates the incident light when the polarization direction of the incident light coincides with the long axis of the M alignment direction.
  • (c) shows the traveling path of the light when the incident polarization is 45 0 linearly polarized or circularly polarized.
  • a concave lens having a focal length (/ 7, / is formed at the same time.
  • a method of manufacturing a bifocal lens according to the first to sixth embodiments of the present invention will be described in detail with reference to FIG.
  • FIG. 10 is a flowchart illustrating a manufacturing process of a bifocal lens according to the first to sixth embodiments of the present invention.
  • an imprint process is applied using an isotropi c polymer, which is a photocurable resin, to apply a lens.
  • an imprint process is applied using an isotropi c polymer, which is a photocurable resin, to apply a lens.
  • Form a structure (a step).
  • the lens structure forms a reversed phase structure of the microlenses.
  • the isotropi c polymer which is a photocurable resin, is applied to a film or a glass substrate, and is imprinted using a microlens array template to invert the reverse phase lens of the microlenses. Form the structure.
  • the lens of the microlens array reversed-phase structure formed by the imprinting process The lower substrate is fabricated by forming an alignment film which is a rubbed PVA layer for bottom-up orientation on the structure (step b).
  • the solvent of PVA uses 2 3 ⁇ 4> DI water and hydrophilizes the surface of i-tropic polymer by UV0 treatment to improve the coating property. After coating, heat treatment at 100 ° C. for 30 minutes, and imparts anisotropy to the rubbing process.
  • the conventional polyimide (PI) alignment layer is difficult to apply in the manufacturing process according to the present invention, since the damage caused by a non-polar solvent during the coating process, requires a high temperature heat treatment process of 230 ° C after coating.
  • a rubbing PI layer for top-down orientation is formed on an arbitrary substrate to prepare an upper substrate (step c).
  • a PI alignment layer may be used by applying a glass substrate
  • the UV curing and the upper substrate are removed to complete the bifocal lens (d process).
  • the RMs are dropped onto the lower substrate (at 90 ° C> TNI) and laminated to the upper substrate. After the heat treatment for 30 minutes at a temperature of 50 ° C,
  • 1.690 and RM layers aligned in a single direction can be obtained by bottom-up and top-down orientation effects.
  • the upper substrate can be removed and may not be removed.
  • the above-described manufacturing process of a bifocal lens according to the present invention is a process of manufacturing a lens layer using an R material, and the lens layer may be manufactured using not only RM but also liquid crystal (Liquid Crystal; LC). In this case, all manufacturing processes and principles are the same, but since the liquid crystal does not need a separate curing process, only the curing process applied to the RM is omitted.
  • 12 shows a bifocal lens according to the first to sixth embodiments of the present invention.
  • the focal length () can be derived.
  • d is the distance between the bi-focal microlens array and the relay lens
  • fiens is the focal length of the relay lens
  • / is the distance between the realy lens and the CCD detector
  • / is the distance of the bi-focal microlens array.
  • FIG. 13 are CCD images measured in a focal length measurement set-up for the bifocal lens according to the first to sixth embodiments of the present invention.
  • the polarized light in the n e direction shown in FIG. 13A forms a focal plane, and in this case, it is formed by the polarized light in the direction of the bifocal lens.
  • the focal length is 0.95 mW.
  • the polarization in the direction shown in FIG. 13 (f) forms the focal plane, in which case it is formed by the polarization in the / 3 ⁇ 4 direction of the bifocal lens.
  • FIG. 14 is a view of a bifocal lens according to the first to sixth embodiments of the present invention.
  • the focal length simulation results according to the refractive index of the i sotropi c polymer layer constituting the lens structure is a graph.
  • SSP TM optical simulator Advanced System Analys is Program
  • the bifocal lens according to the seventh to tenth embodiments of the present invention is a polarization-dependent GRIN lens based technology using a photocurable liquid crystal polymer having birefringence, and the refractive indices of the birefringent photocurable liquid crystal polymer material i, n e and the refraction of the air layer in contact with the lens is characterized by having a double focus by the refractive index relationship of.
  • the bifocal lens according to the present invention has the same driving voltage and fast switching speed as the conventional liquid crystal device since the polarization switching unit and the polarization dependent lens unit exist separately in the same manner as the polarization dependent GRIN lens technology using the conventional liquid crystal phase polymer. As a result, time division techniques can be applied.
  • the birefringent photocurable liquid crystal polymer has a characteristic of being oriented in a single direction, and has an index of refraction of n e when the polarization direction of incident light coincides with the long axis direction of the RM molecule.
  • the polarization direction of the RM molecule coincides with the axial direction of the molecule, it has a refractive index of 3 ⁇ 4, and has a double focus according to the polarization direction of the incident light.
  • the bifocal lens according to the seventh to tenth embodiments of the present invention has a structure in which the oriented birefringent medium forms a curved interface with the ai r layer, and the refractive index relationship between the layers is n air ⁇ n 0 ⁇ . Accordingly, a shorter focal length can be formed than the conventional GRIN lens.
  • the bifocal lens according to the seventh to tenth embodiments of the present invention is a pl anar-convex It may be formed into a structure to operate as a double focus convex lens, or may be formed into a pl anar-concave structure to operate as a double focus concave lens. In addition, it is possible to operate as a reflective lens by introducing a reflective layer.
  • the bifocal lens 7 according to the seventh embodiment of the present invention includes a transparent substrate 700, an alignment layer 710, and a lens layer 720, which are stacked on each other. do.
  • the transparent substrate 700 is preferably made of a flat plate structure.
  • the alignment layer 710 is formed on the transparent substrate, characterized in that the alignment treatment in a single direction.
  • the alignment layer 710 may be formed by spin coating polyvinyl achol (PVA) on a transparent substrate and then performing an alignment treatment such as a rubbing process.
  • PVA polyvinyl achol
  • the lens layer 720 is formed of a photocurable liquid crystal polymer having birefringence and formed on the alignment layer in a single direction by the alignment layer.
  • One surface of the lens layer is configured to be exposed to the air layer, and one surface of the lens layer exposed to the air layer has a convex lens shape.
  • Photocurable liquid crystal polymer constituting the lens layer (React ive
  • RM Mesogen
  • the refractive index (n air ) of the air layer in contact with one surface of the lens layer, the normal light refractive index (n 0 ) and the abnormal light refractive index () for the photocurable liquid crystal polymer material has a relationship of n air ⁇ 3 ⁇ 4 ⁇ .
  • the bifocal lens according to the present invention can operate as a bifocal convex lens by forming a lens layer in a pl anar-convex structure.
  • a difference in refractive index occurs at the interface between the lens layer and the air layer according to the polarization of the light incident on the bifocal lens 7 according to the present invention.
  • the two focal lengths are determined by the refractive index difference.
  • FIG. 15 shows that when the polarization direction of incident light coincides with the long axis of the orientation direction of the RM constituting the lens layer 120, (b) the polarization direction of the incident light is shorter than the orientation direction of the RM. Match . In this case, (c) shows the path of light propagation when the incident light polarization is 45 0 linearly or circularly polarized light.
  • the focal length is formed by a n a, a refractive index difference. Since n e -n air is larger than n 0 -n air , according to Equation 2, the relationship between / and the transmissive bifocal convex lens formed according to each incident polarization direction is / ⁇ f 2 .
  • / is the focal length, is the radius of curvature of the lens, n is the refraction of the lens layer, and is the refraction of the air.
  • the bifocal lens 8 according to the present embodiment has the same structure as the bifocal lens according to the seventh embodiment, except that one surface of the lens layer has a concave lens shape.
  • the bifocal lens 8 according to the eighth embodiment of the present invention includes a transparent substrate 800, an alignment layer 810, and a lens layer 820, which are stacked on each other, and have an air layer.
  • One surface of the lens layer exposed to is characterized in that the concave lens shape.
  • the bifocal lens according to the present embodiment is a transmissive bifocal concave lens, and operates as a concave lens having a different focal length depending on the direction of incident polarization.
  • FIG. 16 shows that when the polarization direction of incident light coincides with the long axis of the orientation direction of the RM constituting the lens layer 220, (b) shows that the polarization direction of the incident light shortens the orientation direction of the RM If it matches with,
  • (c) shows the propagation path of the light when the incident light polarization is 45 ° linearly or circularly polarized light.
  • the focal length () is formed by the difference in refractive index between 2 ° and 3 ⁇ 4. Since n e -n a! r is larger than n 0 -n air , and according to Equation 2, and are the focal lengths of the focal lengths of the transmissive bifocal concave lens formed according to each incident polarization direction. The relationship of is ⁇ .
  • the incident light polarization is 45 ° or circularly polarized light
  • the incident light is decomposed by the vector
  • the light is decomposed into 50% of the axial direction of M and 503 ⁇ 4 of the long axis of RM, respectively.
  • the focal point can be formed simultaneously in the and / 2 positions.
  • 17 is a conceptual diagram illustrating the configuration and operation of a reflective bifocal lens according to a ninth embodiment of the present invention.
  • the reflective bifocal lens 9 includes a flat substrate 900, a reflective layer 905, an alignment layer 910, and a lens layer 920. They are stacked on each other, one surface of the lens layer exposed to the air layer is characterized in that the convex lens shape.
  • the flat substrate 900 preferably has a flat structure.
  • the reflective layer 905 is formed on the flat substrate 900, and may be formed of metal or the like capable of total reflection of incident light.
  • the alignment layer 910 is formed on the reflective layer 905 and is oriented in a single direction.
  • the alignment layer 310 may be formed by spin coating polyvinylachol (PVA) on a reflective layer and then performing an alignment treatment by a rubbing process or the like.
  • the lens layer 920 is made of a photocurable liquid crystal polymer having a birefringence property and is formed on the alignment layer in a single direction by the alignment layer.
  • One surface of the lens layer in contact with the air layer has a convex lens shape.
  • Photocurable liquid crystal polymer constituting the lens layer (React ive
  • RM Mesogen
  • the reflective bifocal lens according to the present invention may be formed as a planar-convex structure to operate as a bifocal convex lens.
  • a difference in refractive index occurs at the interface between the lens layer and the air layer according to the polarization of light incident on the bifocal lens 9 according to the present invention, and has two focal lengths determined by the difference in refractive index at the interface. do.
  • FIG. 17 shows the case where the polarization direction of incident light coincides with the long axis of the orientation direction of the RM constituting the lens layer 920 (b).
  • (C) shows the path of light propagation when the incident light is 45 ° linearly polarized or circularly polarized.
  • the lens when the polarization direction of incident light coincides with the major axis direction of the RM constituting the lens layer, the difference in refractive index between and at the air bubble interface with the RM layer of the planar-convex structure Since the phase retardation of the center portion of the lens is larger than the edge portion of the lens, the lens is operated by a reflective convex lens having a focal length.
  • the incident light has a polarization of 45 ° or circularly polarized light
  • the incident light when the incident light is decomposed by the vector, the light is decomposed in the axial direction 503 ⁇ 4 of M and the long axis direction 503 ⁇ 4 of RM, respectively.
  • the focal point can be formed simultaneously in the and positions.
  • the bifocal lens according to the present embodiment has the same structure as the bifocal lens according to the tenth embodiment, except that one surface of the lens layer is concave in the shape of a concave lens.
  • the reflective bifocal lens 10 includes a flat substrate 1000, a reflective layer 1005, an alignment layer 1010, and a lens layer 1020. They are stacked on each other, characterized in that one surface of the lens layer exposed to the air layer is made of a concave lens shape.
  • the reflective bifocal lens according to the present invention can be operated as a bifocal concave lens by forming a lens layer in a lens-concave structure.
  • the bifocal lens according to the present embodiment is a reflective bifocal concave lens, and operates as a concave lens having a different focal length depending on the direction of incident polarization.
  • FIG. 18 shows that when the polarization direction of incident light coincides with the long axis of the orientation direction of the RM constituting the lens layer 420, (b) shows that the polarization direction of the incident light shortens the orientation direction of the RM If it matches with,
  • (c) shows the propagation path of the light when the incident light polarization is 45 ° linearly or circularly polarized light.
  • the / 3 ⁇ 4 and / 3 ⁇ 4 at the interface between the RM layer and the air layer of the pl anar-concave structure. It acts as a reflective concave lens with a focal length ⁇ because it is refracted by the refractive index difference and the phase delay of the center portion of the lens is smaller than the edge portion of the lens.
  • the focal length of the incident light coincides with the uniaxial direction of RM constituting the lens layer, at the interface of the RM layer and the air layer of the pl anar-concave structure.
  • the focal length is formed by the difference in refractive index between / and. Since n e -n air is larger than n 0 -n air , the relationship with / j, which is the focal lengths of the reflective bifocal concave lens formed along each incident polarization direction, is ⁇ f 2 .
  • 19 is a flowchart illustrating a manufacturing process of a bifocal lens according to the seventh to tenth embodiments of the present invention.
  • the lens structure 50 is formed by applying an imprint process using an isotropic polymer (i sotropi c polymer), which is a photocurable resin ( a process).
  • the excitation three lens structures form a reversed-phase structure of the microlenses.
  • the isotropi c po lymer 510 which is a photocurable resin, is applied to the film or glass substrate 500, and the microlens array template 520 is used. Imprinting forms the lens structure 50 of the reversed phase structure of the micro lens.
  • an alignment layer 530 which is a rubbed PVA layer for bot tom-up orientation, is formed on the lens structure 50 of the microlens array reversed-phase structure formed by the imprinting process to fabricate the lower substrate 82 (step b).
  • the solvent of PVA uses 2% DI water and hydrophilizes the surface of i sotropic polymer by UV0 treatment before spin coating PVA to improve the coating property.
  • an alignment film 550 which is a rubbed PVA layer for top-down alignment is formed on an arbitrary substrate 540 to prepare an upper substrate 55 (step c).
  • the substrate 540 is preferably applied to a transparent substrate.
  • the surface of the isotropic polymer is hydrophilized by UV treatment before spin coating the PVA.
  • PVA surface energy through UV0 treatment so that the lens layer of the photocurable liquid crystal polymer material oriented in the peel-of f process may be pi ck-up by the upper substrate before the anisotropy is imparted by the rubbing process. It is desirable to improve.
  • the RM layer 560 for the lens layer between the lower substrate 52 and the upper substrate 55 by the lamination process heat treatment and photocuring (UV cur) ing) solidifies the photocurable liquid crystalline polymer.
  • the photocurable liquid crystal polymer material is aligned in a single direction by the lower and upper alignment effects.
  • the upper substrate 55 coupled with the RM layer 860, which is a lens layer is peeled off from the lower substrate 52 and separated from the lower substrate 52.
  • the surface of the upper substrate 55 is improved to the PVA surface of the upper substrate with improved surface energy by the UV0 treatment.
  • the chemical liquid crystal phase polymer layer 560 is picked up.
  • the bifocal lens 60 in a state where the RM layer 560 and the upper substrate 55 are combined is completed (d step).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

본 발명은 이중 초점 렌즈에 관한 것이다. 상기 이중 초점 렌즈는, 복굴절성을 갖는 물질로 형성되고, 일면은 평탄하고 상기 일면과 대향되는 타면은 렌즈 형상을 갖는 렌즈면으로 이루어진 렌즈층; 및 등방상 물질로 형성되고, 일면은 상기 렌즈층의 렌즈면에 대응되는 렌즈 역상으로 이루어지고 상기 일면과 대향되는 타면은 평탄한 렌즈 구조체; 를 구비하며, 상기 렌즈층은 정상광 굴절률 (no) 및 이상광 굴절률 (ne)를 가지며, 상기 렌즈 구조체는 상기 렌즈층의 정상광 굴절률 및 이상광 굴절률과 상이한 굴절률 (np)을 갖는 물질로 구성하여, 입사되는 광의 편광에 따라 렌즈 구조체와 렌즈층의 계면에서의 굴절률 차이가 발생하고, 상기 계면에서의 굴절률 차이에 의해 결정되는 2개의 초점거리를 갖는 것을 특징으로 한다.

Description

【명세서】
【발명의 명칭】
이중 초점 렌즈 및 그 제조 방법
【기술분야】
본 발명은 이중 초점 렌즈 및 그 제조 방법에 관한 것으로서, 더욱 구체적으로는 입사되는 광의 편광 방향에 따라초점거리가 변화되도록 구성된 이중 초점 렌즈 및 그 제조 방법에 관한 것이다.
【배경기술】
최근 3차원 디스플레이 장치 둥에 대한 기술이 다양하게 연구됨에 따라, 입사되는 편광에 따라 구동여부가 결정되는 렌즈 기술들이 다양하게 제안되었다 도 1은 종래의 전계 분포를 이용한 Gradi ent Index (GRIN) 렌즈를 설명하기 위하여 도시한 단면도 및 개념도이다. 도 1의 (a)는 Η · Ren , et al, Opt . Express , 14, 11292 (2006)에 게재된 전계 분포를 이용한 GRIN 렌즈의 개념도이며, (b)는 Y . -C . Chang , et al, Opt . Express . , 22 , 2714 (2014) 에 게재된 전계 분포를 이용한 GRIN 렌즈의 개념도이다.
도 1을 참조하면, 전계 분포를 이용한 GRIN Lens 기술은 액정 소자 (LC cel l )에 있어서, 상하부 방향으로 액정에 인가되는 전계가 공간적으로 달라져, 특정 편광에 대해 GRIN Lens 굴절률 프로파일을 나타나게 하는 기슬이다. GRIN Lens 굴절률 프로파일은 X축 방향으로 공간적으로 굴절률 분포가 저-고 -저로 형성되는 것을 말하며, 이와 같이 GRIN Lens 굴절률 프로파일을 가지면 물체가 평평하더라도볼록렌즈와 같이 초점면을 형성할수 있게 된다.
도 1의 (a)는 X축 방향으로 공간적으로 상하부 IT0 전극 간격이 달라지도록 구현함으로써, 액정 층에 인가되는 전계 크기를 조절한 경우이다. 액정층에 인가되는 전계의 크기를 간단한 수식으로 표현하면, Ea = Va/d 이다. 여기서, Ea는 전계의 크기, Va는 인가되는 전압의 크기, d는 전극과 전극사이의 거리이다. 상하부 전극에 인가되는 전압은 동일하더라도, 전극간의 간격이 달라짐에 따라, X축 방향에 따라 z축 방향으로 인가되는 전계의 크기는 달라지며, 그 결과 GRIN Lens 굴절률 프로파일을 도출할수 있다. 도 1의 (b)는 상부 전극을 패터닝함으로써, 상하부로 전압을 인가하였을 때, fr inge-f i eld 가 형성된다. 형성된 fr inge— f ield를 백터 분해하면, x축 방향에 따라 z축 방향으로 인가되는 전계의 크기는 달라지며, 그 결과 GRIN Lens 굴절률프로파일을 도출할수 있다.
전술한 전계 분포를 이용한 GRIN Lens 기술은 기존 LCD공정과의 호환성을 가지는 장점을 가지고 있다. 그러나, 구동 측면에서 여러 가지 단점을 가지고 있다. 첫 번째로, 짧은 초점거리를 가지기 위해 액정소자의 셀 갭 (Cel l Gap)이 커져야하며, 이에 따라구동전압이 증가하며 웅답속도가느려지는 단점을 가지고 있다. 두 번째로, 패턴된 전극 바로 위 부분에서는 fr inge-f ield가 형성되지 않음에 따라, dead-zone이 발생하게 되고 그 결과 f i l l-factor를 감소시키는 단점이 발생한다.
따라서, 전계 분포를 이용한 GRIN Lens는 무한대의 초점거리 (2D 모드)에서 특정한 초점거리까지 액정소자에 인가되는 전압에 따라 연속적인 가변 초점 특성을 가질 수 있다. 그러나 응답속도가 약 50 ms 이상으로서 웅답 속도가 느리기 때문에 시분할 기술에 적용하기 어려운 기술적 한계점을 갖고 있다. 도 2는 종래의 렌즈 구조체를 적용한 GRIN 렌즈를 도시한 구성도로서, Y . Choi , et al, Opt . Mater . , 21 , 643 (2002)에 게재된 렌즈 구조체를 적용한 GRIN 렌즈를 도시한 구성도이다.
도 2를 참조하면, 렌즈 구조체를 적용한 GRIN Lens 기술은 액정소자의 액정들이 렌즈 구조체 위에 배향된 구조를 갖는다. 전술한 구조의 렌즈는, 상하부 전극에 인가되는 전압 값에 따라 액정의 분포가 달라짐에 따라, 도 2의 X축 편광과 같은 특정 편광에 대해, 유효 굴절률 값이 가변되어, 등방상 렌즈 구조체와 액정층 간의 굴절률 차이가 가변되어, 가변 초점을 구현할 수 있는 기술이다.
전술한 렌즈 구조체를 적용한 GRIN Lens 기술은 액정소자에 인가되는 전압에 따라 오목렌즈에서부터 특정한 초점거리를 가지는 볼록렌즈까지 연속적인 가변 초점 특성을 가지게 된다. 하지만, 액정을 스위칭하기 위한상하부 전극 사이에 형성된 등방상 렌즈 구조체 때문에, 구동전압이 증가하며, 응답속도가 느려지는 단점을 가진다. 이에 따라, 시분할 기술에 적용하기는 어렵다.
도 3은 종래의 액정상 고분자를 이용한 편광 의존형 GRIN 렌즈 기술을 설명하기 위하여 도시한 구조도로서, G . J . Woodgate , et al, SID03 Digest , 394 (2003)에 게재된 액정상고분자를 이용한 편광 의존형 GRIN 렌즈 기술을 설명하는 구조도이다.
도 3을 참조하면, 액정상 고분자를 이용한 편광 의존형 GRIN 렌즈 기술은 렌즈 구조체에 액정상고분자 (React i ve Mesogen(RM) )가 배향된 형태로, 입사하는 빛의 편광에 따라능동적으로 동작하는 구조이다. 일반적으로 막대모양 가지는 RM의 장축방향 굴절률을 extraordinary굴절률 (/^), 단축방향 굴절률을 ordinary굴절률 (/?。) 이라고 하며, 입사되는 빛의 편광 방향에 따라 복굴절을 가진다. 도 3의 (a)에 도시된 바와 같이, 선편광으로 입사하는 빛의 편광방향이 RM의 단축방향과 일치하는 경우, 선편광된 빛에 대해 RM 의 굴절률은 ?。가 되며, 이는 i sotropi c polymer의 굴절률 nP와 일치하여 렌즈 기능이 사라진다. 도 3의 (b)에 도시된 바와 같이, 입사하는 빛의 편광방향이 RM의 장축방향과 일치하는 경우, 선 편광된 빛에 대해 RM의 굴절률은 /¾가 되며, 이는
i sotropi c polymer의 굴절률 np와 불일치하여 렌즈로써 동작한다.
또한, 전술한 액정상 고분자를 이용한 편광 의존형 GRIN 렌즈는 편광 스위칭부와 편광 의존형 렌즈부가 별도로 존재하기 때문에, 기존 액정소자와 같은 구동전압 및 스위칭 속도를 가질 수 있다. 기존의 액정상 고분자를 이용한 편광 의존형 GRIN 렌즈 기술은 RM의 。와 등방상을 가지는 렌즈 구조체의 굴절률 nP를 일치시켜, 가변적으로 입사되는 2개의 편광상태에 대해, 특정한 초점거리를 가지는 볼록렌즈로 동작하거나 렌즈로 동작을 하지 않는 무한대의 초점거리 상태를 스위칭하는 구조이다.
【발명의 상세한 설명】
【기술적 과제】
전술한문제점올 해결하기 위한 본 발명의 목적은 입사되는 광의 편광에 따라 서로 다른 2개의 초점거리를 갖는 이중 초점 렌즈를 제공하는 것이다. 본 발명의 다른 목적은 전술한 이중 초점 렌즈를 제작하는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 광경화성 액정상 고분자를 이용하여 입사되는 광의 편광에 따라서로 다른 2개의 초점거리를 갖는 이중 초점 렌즈를 제공하는 것이다.
본 발명의 또 다른 목적은 광경화성 액정상 고분자를 이용한 이중 초점 렌즈를 제조하는 방법을 제공하는 것이다.
【기술적 해결방법】
전술한 기술적 과제를 달성하기 위한 본 발명의 제 1 특징에 따른 이중 초점 렌즈는, 복굴절성을 갖는 물질로 형성되고, 일면은 평탄하고 상기 일면과 대향되는 타면은 렌즈 형상을 갖는 렌즈면으로 이루어진 렌즈층; 및 등방상 물질로 형성되고, 일면은 상기 렌즈층의 렌즈면에 대응되는 렌즈 역상으로 이루어지고 상기 일면과 대향되는 타면은 평탄한 렌즈 구조체;를 구비하며, 상기 렌즈층은 정상광굴절률 (ηο) 및 이상광 굴절률 (ne)를 가지며, 상기 렌즈 구조체는 상기 렌즈층의 정상광 굴절률 및 이상광 굴절률과상이한 굴절률 (np)을 갖는 물질로 구성하여, 입사되는 광의 편광에 따라 렌즈 구조체와 렌즈층의 계면에서의 굴절률 차이가 발생하고, 상기 계면에서의 굴절률 차이에 의해 결정되는 2개의 초점거리를 갖는다.
본 발명의 제 2 특징에 따른 이중 초점 렌즈는, 복굴절성을 갖는 물질로 형성되고, 일면은 평탄하고 상기 일면과 대향되는 타면은 렌즈 형상을 갖는 렌즈면으로 이루어진 렌즈층; 등방상 물질로 형성되고, 일면은 상기 렌즈층의 렌즈면에 대응되는 렌즈 역상으로 이루어지고 상기 일면과 대향되는 타면은 평탄한 렌즈 구조체; 상기 렌즈 구조체의 평탄한 일면에 장착된 반사층을 구비하고, 상기 렌즈층, 렌즈 구조체 및 반사층이 순차적으로 배치되어 렌즈층으로 입사된 광이 렌즈 구조체를 진행하고 반사층에서 반사되어 다시 렌즈층으로 출사되며, 상기 렌즈층은 정상광 굴절률 (n0) 및 이상광 굴절률 (ne)를 가지며, 상기 렌즈 구조체는 상기 렌즈층의 정상광 굴절률 및 이상광 굴절률과 상이한 굴절률 (nP)을 갖는 물질로 구성하여, 입사되는 광의 편광에 따라 렌즈 구조체와 렌즈층의 계면에서의 굴절률 차이가 발생하고, 상기 계면에서의 굴절률 차이에 의해 결정되는 2개의 초점거리를 갖는다.
전술한 제 1 특징 및 제 2 특징에 따른 이중 초점 렌즈에 있어서, 상기 렌즈 구조체와 렌즈층이 접하는 계면에서, 상기 렌즈층의 렌즈면은 볼특 렌즈 형상으로 이루어지고, 상기 렌즈층의 렌즈면과 대향되는 상기 렌즈 구조체의 일면은 오목 렌즈 형상으로 이루어지는 것이 바람직하다.
전술한 제 1 특징 및 계 2 특징에 따른 이중 초점 렌즈에 있어서, 상기 렌즈층은 액정 , 광경화성 액정상 고분자 중 하나로 구성된 것이 바람직하다. 전술한 제 1 특징 및 제 2 특징에 따른 이중 초점 렌즈에 있어서, 상기 렌즈 구조체는 등방상 고분자 물질로 구성된 것이 바람직하다.
전술한 제 1 특징 및 제 2 특징에 따른 이중 초점 렌즈에 있어서, 상기 렌즈층과 렌즈 구조체의 사이에 배향막을 더 구비하여, 상기 렌즈층을 구성하는 물질은 상기 배향막에 의해 단일 방향으로 배향처리하는 것이 바람직하다. 전술한 제 1 특징 및 계 2 특징에 따른 이중 초점 렌즈에 있어서, 상기 렌즈 구조체의 굴절률 (nP) 및 상기 렌즈층의 정상광 굴절률 (n0)과 이상광 굴절률 (ne)이 np < ne의 관계를 갖도록 렌즈 구조체 및 렌즈층의 물질을 구성하여 입사되는 광의 편광에 따라 서로 다른 초점거리를 갖는 2개의 볼록 렌즈로 동작되도톡 한다.
전술한 제 1 특징 및 제 2 특징에 따른 이증 초점 렌즈에 있어서, 상기 렌즈 구조체의 굴절률 (nP) 및 상기 렌즈층의 정상광 굴절률 (n 과 이상광 굴절률 (ne)이 n0 < np < ne의 관계를 갖도록 렌즈 구조체 및 렌즈층의 물질을 구성하여 입사되는 광의 편광에 따라 볼록 렌즈 및 오목 렌즈로 동작되도록 한다.
전술한 제 1 특징 및 제 2 특징에 따른 이중 초점 렌즈에 있어세 상기 렌즈 구조체의 굴절률 (nP) 및 상기 렌즈층의 정상광굴절률 (n0)과 이상광 굴절률 (ne)이 n0 < ne < np 의 관계를 갖도록 렌즈 구조체 및 렌즈층의 물질을 구성하여 입사되는 광의 편광에 따라서로 다른 허초점거리를 갖는 2개의 오목 렌즈로 동작되도록 한다.
전술한 제 1특징 및제 2 특징에 따른 이중 초점 렌즈에 있어서, 상기 이증 초점 렌즈는 1D 배열의 렌티클라 렌즈, 2D 배열 렌즈 및 단일 렌즈 중 어느 한 형태로 제작되는 것이 바람직하다.
전술한 기술적 과제를 달성하기 위한 본 발명의 제 3 특징에 따른 이중 초점 렌즈는, 투명 기판; 단일 방향으로 배향되어 상기 투명 기판위에 형성된 배향막; 및 상기 배향막위에 형성되고, 복굴절성을 갖는 광경화성 액정상 고분자 물질이 상기 배향막에 의해 단일 방향으로 배향되어 이루어지고, 공기층과 맞닿는 일면이 렌즈 형상을 갖는 렌즈층;을 구비하며, 상기 렌즈층은 정상광 굴절률 (n0) 및 이상광 굴절률 (ne)를 가지며, 상기 렌즈층와 정상광 굴절를 및 이상광 굴절률은 공기층의 굴절률 1 )과서로 상이하여, 입사되는 광의 편광에 따라공기층과 렌즈층의 계면에서의 굴절률 차이가 발생하고, 상기 계면에서의 굴절률 차이에 의해 결정되는 2개의 초점 거리를 갖는다.
전술한 제 3 특징에 따른 이중 초점 렌즈에 있어서, 상기 공기층과 맞닿는 렌즈층의 일면은 볼록 렌즈 형상또는오목 렌즈 형상으로 이루어진 것이 바람직하다.
본 발명의 제 4 특징에 따른 이중 초점 렌즈는, 평탄한 표면을 갖는 기판; 상기 기판위에 형성된 반사층; 단일 방향으로 배향되어 상기 반사층위에 형성된 배향막; 및 상기 배향막위에 형성되고, 복굴절성을 갖는 광경화성 액정상 고분자 물질이 상기 배향막에 의해 단일 방향으로 배향되어 이루어지고, 공기층과 맞닿는 일면이 렌즈 형상을 갖는 렌즈층;을 구비하며 , 상기 렌즈층은 정상광 굴절률 (n0) 및 이상광 굴절률 (ne)를 가지며, 상기 렌즈층의 정상광 굴절률 및 이상광 굴절률은 공기층의 굴절률 01 )과 서로 상이하여, 입사되는 광의 편광에 따라 공기층과 렌즈층의 계면에서의 굴절률 차이가 발생하고, 상기 계면에서의 굴절률 차이에 의해 결정되는 2개의 초점 거리를 갖는다.
전술한 계 4특징에 따른 이중 초점 렌즈에 있어서, 상기 공기층과 맞닿는 렌즈층의 일면은 볼록 렌즈 형상또는 오목 렌즈 형상으로 이루어진다.
본 발명의 제 5특징에 따른 이중 초점 렌즈 제작 방법은, (a) 제 1 기판위에 등방상고분자물질을 증착한 후 렌즈 구조를 갖는 스탬프를
임프린팅하여 렌즈의 역상 구조를 갖는 렌즈 구조체를 제작하는 단계; (b) 렌즈 구조체의 상부표면에 제 1 배향막을 형성하여 하부 기판을 완성하는 단계; (c) 투명 기판위에 제 2 배향막을 형성하여 상부 기판을 완성하는 단계; (d) 하부 기판의 배향막위에 광경화성 액정상 고분자 물질을 도포하고 상부 기판을 덮어 라미네이팅한후, 광경화시켜 광경화성 액정상 고분자층을 고형화시키는 단계; 및 (e) 고형화된 광경화성 액정상 고분자층과 결합된 상부 기판을 상기 하부 기판으로부터 픽업하는 단계;를 구비하여, 공기층에 노출된 광경화성 액정상 고분자층의 일면이 렌즈 형상을 갖는다.
전술한 제 5 특징에 따른 이중 초점 렌즈 제작 방법에 있어서, 공기층에 노출된 광경화성 액정상고분자층의 일면은 오목 렌즈 형상또는 볼록 렌즈 형상으로 이루어진 것이 바람직하다.
전술한 제 5 특징에 따른 이중 초점 렌즈 제작 방법에 있어서, 상기 (b) 단계는 렌즈 구조체의 상부 표면에 제 1 배향막을 스핀 코팅하기 전에 UV0 처리하여 렌즈 구조체를 구성하는 등방상 고분자층을 친수화시켜, 제 1 배향막의 표면 에너지를 증가시키는 것아 바람직하다.
전술한 제 5 특징에 따른 이중 초점 렌즈 제작 방법에 있어서, 상기 (c) 단계는 기판의 표면에 계 2 배향막을 스핀 코팅하기 전에 UV0 처리하여 기판을 친수화시켜, 제 2 배향막의 표면 에너지를 증가시키는 것이 바람직하다.
【발명의 효과】
본 발명의 제 1 내지 제 6 실시예에 따른 이중 초점 렌즈는 복굴절 물질을 이용한 편광 의존형 GRIN 렌즈 기반 기술로서, 복굴절 물질로 이루어지는 렌즈층의 굴절률 n0, ne 및 등방상 물질로 이루어지는 렌즈 구조체의 굴절률 np 의 굴절률 관계에 의해, 이중 초점올 갖게 된다.
본 발명의 제 1 내지 제 6 실시예들 중 일실시예에 따른 이중 초점 렌즈는, 상기 렌즈 구조체의 굴절률 (tip) 및 상기 렌즈층의 정상광 굴절률 (n 과 이상광 굴절률 (ne)이 ηΡ < ηΰ < 의 관계를 갖도톡 렌즈 구조체 및 렌즈층의 물질로 구성함으로써, 입사되는 광의 편광에 따라 서로 다른 초점거리 (초점면)을 가지는 볼록렌즈들로 동작시킬 수 있다.
본 발명의 제 1 내지 제 6 실시예들 중 다른 실시예에 따른 이중 초점 렌즈는, 상기 렌즈 구조체의 굴절률 (np) 및 상기 렌즈층의 정상광 굴절률 (n0)과 이상광 굴절률 (ne)이 n0 < np < /¾ 의 관계를 갖도록 렌즈 구조체 및 렌즈층의 물질로 구성함으로써, 입사되는 광의 편광에 따라 오목 렌즈와 볼록 렌즈로 동작시킬 수 있다.
본 발명의 제 1 내지 제 6 실시예들 중 또 다른 실시예에 따른 이중 초점 렌즈는, 상기 렌즈 구조체의 굴절률 (np) 및 상기 렌즈층의 정상광 굴절률 (n0)과 이상광 굴절률 (ne)이 n0 < ne < 의 관계를 갖도록 렌즈 구조체 및 렌즈층의 물질로 구성함으로써, 입사되는 광의 편광에 따라 허초점거리가 서로 다른 2개의 오목렌즈로 동작시킬 수 있다.
본 발명의 제 7 내지 제 10 실시예에 따른 이중 초점 렌즈는 복굴절 물질인 광경화성 액정상 고분자를 이용한 편광 의존형 GRIN 렌즈 기반 기술로서, 복굴절 물질로 이루어지는 렌즈층의 굴절률 II。 , ne 및 렌즈층과 접하는 공기층의 굴절률 의 굴절률 관계에 의해, 이중 초점을 갖게 된다.
본 발명의 제 7 내지 제 10 실시예들 중 일 실시예에 따른 투과형 이중 초점 렌즈는, 공기층에 노출된 렌즈층의 일면을 볼록 렌즈 형상으로 구성함으로써 , 공기층의 굴절률 ¾, ) 및 상기 렌즈층의 정상광 굴절를 (/¾)과 이상광 굴절률 에 대한 nair < n0 < 의 관계에 의하여, 입사되는 광의 편광에 따라서로 다른 2개의 초점거리 (초점면)을 가지는 볼록렌즈들로 동작시킬 수 있다.
본 발명의 제 7 내지 제 10 실시예들 중 다른 실시예에 따른 투과형 이중 초점 렌즈는, 공기층에 노출된 렌즈층의 일면을 오목 렌즈 형상으로 구성함으로써, 공기층의 굴절률 ? ) 및 상기 렌즈층의 정상광 굴절률 (/¾)과 이상광 굴절률 ( )에 대한 nair < n0 < 의 관계에 의하여 , 입사되는 광의 편광에 따라 서로 다른 2개의 허초점거리를 갖는 오목렌즈들로 동작시킬 수 있다. 본 발명의 제 7 내지 제 10 실시예들 중 또 다른 실시예에 따른 반사형 이중 초점 렌즈는, 공기층에 노출된 렌즈층의 일면을 볼록 렌즈 형상으로 구성하고 렌즈층의 타면에 반사층을 더 구비함으로써, 공기층의 굴절률 구) 및 상기 렌즈층의 정상광 굴절률 ( 72。)과 이상광 굴절률 ?e)에 대한 nair < /?。 < /?e의 관계에 의하여 , 입사되는 광의 편광에 따라서로 다른 2개의 초점거리 (초점면)을 가지는 반사형 블록렌즈들로 동작시킬 수 있다.
본 발명의 제 7 내지 제 10 실시예들 중 또 다른 실시예에 따른 빈시형 이중 초점 렌즈는, 공기층에 노출된 렌즈층의 일면을 오목 렌즈 형상으로 구성하고 렌즈층의 타면에 반사층을 더 구비함으로써, 공기층의 굴절률 및 상기 렌즈층의 정상광 굴절률 (/?。)과 이상광 굴절률 ( )에 대한 nair 의 관계에 의하여, 입사되는 광의 편광에 따라 서로 다른 2개의 허초점거리를 갖는 반사형 오목렌즈들로 동작시킬 수 있다.
【도면의 간단한 설명】
도 1은 종래의 전계 분포를 이용한 Gradient Index (GRIN) 렌즈를 설명하기 위하여 도시한 단면도 및 개념도이다.
도 2는 종래의 렌즈 구조체를 적용한 GRIN 렌즈를 도시한 구성도이다. 도 3은 종래의 액정상 고분자를 이용한 편광 의존형 GRIN 렌즈 기술을 설명하기 위하여 도시한 구조도이다.
도 4는 본 발명의 제 1 실시예에 따른 투과형 이중 초점 렌즈의 구성 및 동작을 설명하기 위하여 도시한 개념도이다.
도 5는 본 발명의 제 2 실시예에 따른 투과형 이중 초점 렌즈의 구성 및 동작을 설명하기 위하여 도시한 개념도이다.
도 6은 본 발명의 제 3 실시예에 따른 투과형 이중 초점 렌즈의 구성 및 동작을 설명하기 위하여 도시한 개념도이다.
도 7은 본 발명의 제 4실시예에 따른 반사형 이중 초점 렌즈의 구성 및 동작을 설명하기 위하여 도시한 개념도이다.
도 8은 본 발명의 제 5실시예에 따른 반사형 이중 초점 렌즈의 구성 및 동작을 설명하기 위하여 도시한 개념도이다.
도 9는 본 발명의 제 6 실시예에 따른 반사형 이중 초점 렌즈의 구성 및 동작을 설명하기 위하여 도시한 개념도이다.
도 10은 본 발명의 제 1 내지 제 6 실시예에 따른 이중 초점 렌즈의 제조 공정을 도시한 공정도이다.
도 11은 본 발명에 따른 이중 초점 렌즈의 제조 공정에 있어서, 사용된 마이크로 렌즈 어레이 tempi ate를 도시한 것이다.
도 12는 본 발명의 제 1 내지 제 6 실시예에 따른 이중 초점 렌즈의 초점거리를 측정하기 위한 초점거리 측정 set-up을 도시한 개념도이다.
도 13은 본 발명의 제 1 내지 제 6 실시예에 따른 이중 초점 렌즈에 대하여 초점거리 측정 set-up에서 측정된 CCD 이미지들이다.
도 14는 본 발명의 제 1 내지 제 6 실시예에 따른 이중 초점 렌즈에 있어서, 렌즈층을 구성하는 RM의 굴절률이 n0 = 1.524 , ne = 1.690 일 때, 렌즈 구조체를 구성하는 i sotropi c polymer 층의 굴절률에 따른 초점거리
시뮬레이션한 결과 그래프이다.
도 15는 본 발명의 제 7실시예에 따른 이중 초점 렌즈의 구성 및 동작을 설명하기 위하여 도시한 개념도이다.
도 16는 본 발명의 제 8 실시예에 따른 이중 초점 렌즈의 구성 및 동작을 설명하기 위하여 도시한 개념도이다.
도 17은 본 발명의 제 9 실시예에 따른 이중 초점 렌즈의 구성 및 동작을 설명하기 위하여 도시한 개념도이다.
도 18은 본 발명의 제 10실시예에 따른 이중 초점 렌즈의 구성 및 동작을 설명하기 위하여 도시한 개념도이다.
도 19는 본 발명의 제 7 내지 제 10 실시예에 따른 이중 초점 렌즈의 제조 공정을 도시한 공정도이다.
【발명의 실시를 위한 최선의 형태】
본 발명에 따른 이중 초점 렌즈는 복굴절 물질을 이용한 편광 의존형 GRIN 렌즈 기반 기술로서, 복굴절 물질의 굴절률 / , ne및 등방상 물질로 이루어진 렌즈 구조체의 굴절률 의 굴절률 관계에 의해, 이중초점을 갖는 것을 특징으로 한다. 본 발명에 따른 이중 초점 렌즈는 편광 스위칭부와 편광 의존형 렌즈부가별도로 존재하기 때문에, 빠른 스위칭 속도를 가질 수 있으므로 시분할 기술이 적용 가능하게 된다.
이하 첨부된 도면을 참조하여 본 발명의 바람직한실시예들에 따른 이중 초점 렌즈의 구조 및 동작에 대하여 구체적으로 설명한다.
< 제 1 실시예 > 도 4는 본 발명의 제 1 실시예에 따른 투과형 이중 초점 렌즈의 구성 및 동작을 설명하기 위하여 도시한 개념도이다. 도 4를 참조하면, 본 발명의 제 1 실시예에 따른 투과형 이중 초점 렌즈 (1)는 렌즈층 ( 100) 및 렌즈 구조체 ( 110)를 구비하며 , 이들이 서로 적층되어 이루어진 것을 특징으로 한다. 또한 상기 투과형 이중 초점 렌즈 ( 1)는 렌즈 구조체 (110)의 일면에 투명한 기판 (도시되지 않음)을 더 구비함으로써, 렌즈층, 렌즈 구조체 및 투명한 기판이 적층되어 이루어질 수도 있다.
상기 렌즈층 ( 100)은 단일 방향으로 배향 처리된 복굴절성을 갖는 물질로 형성되고, 일면은 평탄하고 상기 일면과 대향되는 타면은 렌즈 형상을 갖는 렌즈면으로 이루어진다. 상기 렌즈면은 렌즈 구조체 ( 110)의 일면에 적층되며, 상기 렌즈면은 볼록 렌즈 형상으로 이루어지고, 렌즈면에 대향되는 렌즈 구조체의 일면은 오목렌즈 형상으로 이루어지는 것이 바람직하다.
상기 렌즈층을 구성하는 M또는 액정을 일방향으로 배향시키기 위하여, 상기 렌즈 구조체 (110)와 렌즈층 (100)의 사이에 단일방향으로 배향처리된 배향막 (도면에 도시되지 않음)을 더 구비하는 것이 바람직하다.
상기 렌즈층을 구성하는 복굴절성을 갖는 물질은 광경화성 액정상 고분자 또는 액정 등이 포함되며, 복굴절성을 갖는 물질은 정상광 굴절률 ( ) 및 이상광 굴절률 (ne)를 가지게 된다. 본 실시예에 따른 이중 초점 렌즈에 있어서 설명의 편의상, 상기 렌즈층이 광경화성 액정상고분자 물질 (React ive Mesogen : 이하 'RM'이라 한다. )로 이루어진 경우를 예시적으로 설명한다. 하지만, 상기 렌즈층은 복굴절성을 갖는모든 물질들이 사용가능하다.
상기 렌즈 구조체 (110)는 등방상 물질로 형성되고, 일면은 상기 렌즈층의 렌즈면에 대웅되는 렌즈 역상으로 이루어지고 상기 일면과 대향되는 타면은 평탄하게 이루어진다. 상기 렌즈 구조체는 상기 렌즈층의 정상광 굴절률 및 이상광굴절률과 상이한 굴절률 (nP)을 갖는 물질로 구성된다.
일반적으로, 막대 모양을 갖는 RM 또는 액정의 장축 방향의 굴절률은 이상광 굴절률 ( index of refract ion for extraordinary l ight ; ne) , 단축방향의 굴절률을 정상광굴절률 ( index of refract ion for ordinary l ight ; no) 이라고 하며, 입사되는 빛의 편광 방향에 따라 복굴절을 가진다. 또한, 선편광으로 입사하는 빛의 편광방향이 RM또는 액정의 단축방향과 일치하는 경우, 선편광된 빛에 대한굴절률은 。가 되며, 입;아하는 빛와편광방향이 RM 또는 액정의 장축방향과 일치하는 경우, 선 편광된 빛의 굴절률은 가 된다. 상기 렌즈 구조체와 렌즈층이 접하는 계면에서, 상기 렌즈층은 볼특 렌즈 형상으로 이루어지고, 상기 렌즈 구조체는 오목 렌즈 형상으로 이루어지는 것이 바람직하다.
그 결과, 본 발명에 따른 이중 초점 렌즈 (1)로 입사되는 광의 편광에 따라 렌즈 구조체와 렌즈층의 계면에서의 굴절률 차이가 발생하고, 상기 계면에서의 굴절률 차이에 의해 결정되는 2개의 초점거리를 갖게 된다.
본 실시예에 따른 이중초점 렌즈는, 상기 렌즈 구조체의 굴절률 (np) 및 상기 렌즈층의 정상광굴절률 (n0)과 이상광 굴절률 (ne)이 nP< n0< ne의 관계를 갖도록 렌즈 구조체 및 렌즈층의 물질로 구성함으로써, 입사되는 광의 편광에 따라서로 다른 초점거리를 갖는 2개의 볼록 렌즈로 동작되도 한다.
도 4를 참조하여, 본 발명의 제 1 실시예에 따른 투과형 이중초점 렌즈의 동작원리 ηΡ < ησ < ne경우)를 설명한다. 도 4의 (a)는 입사하는 빛의 편광방향이 렌즈층 (100)올 구성하는 RM의 배향방향의 장축과 일치하는 경우, (b) 입사하는 빛의 편광방향이 RM의 배향방향의 단축과 일치하는 경우, (c) 입사하는 빛의 편광이 45° 선편굉 1또는 원편광인 경우에서의 빛의 진행 경로를 도시한 것이다.
본 발명에 따른 이중 초점 렌즈는 planar-convex 구조의 배향된
렌즈층 (100)과 concave-planar 구조의 등방상고분자물질 (isotropic polymer)의 렌즈 구조체 (110)의 적층으로 형성된다.
본 실시예에 따른 이중 초점 렌즈 (1)는, 렌즈층 (100)에 대한 정상광 굴절률 (¾)과 이상광 굴절률 (/7E), 및 렌즈 구조체 (110)의 굴절률 의 관계가 np < n0 < ne — 설정되어, 입사되는 편광에 따라 서로 다른 초점거리 (초점면)을 가지는 2개의 볼특렌즈로 동작하는 것을 특징으로 한다.
도 4의 (a)를 참조하면, 입사하는 빛의 편광방향이 렌즈층을 구성하는 RM의 장축방향과 일치하는 경우, planar-convex 구조의 배향된 M층과 concave- pl anar 구조의 isotropi c 층 계면에서, 와 의 굴절률 차에 의해 초점거리 ( )가 형성된다.
도 4의 (b)를 참조하면, 입사하는 빛의 편광방향이 렌즈층을 구성하는 RM의 단축방향과 일치하는 경우, pl anar-convex 구조의 배향된 RM 층과 concave- pl anar 구조의 i sotropic 층 계면에서, /?。와 /¾의 굴절를 차에 의해
초점거리 (/ 가 형성된다. n0 - nP대비 ne - nP가 더 크기 때문에, 각각의 입사되는 편광방향에 따라 형성되는 투과형 이중초점 볼록렌즈의 과 의 관계는 fi < f2이다.
도 4의 (c)를 참조하면, 입사하는 빛의 편광이 45°또는 원편광인 경우, 입사하는 빛을 백터 분해하면 RM의 단축방향 50%, RM의 장축방향 50%로 분해됨에 따라, 각각 광량이 50%줄어든 형태로 초점이 과 위치에 동시에 형성될 수 있다.
< 제 2 실시예 >
도 5는 본 발명의 제 2 실시예에 따른 투과형 이중 초점 렌즈의 구성 및 동작을 설명하기 위하여 도시한 개념도이다. 본 실시예에 따른 이중 초점 렌즈 (2)는 제 1 실시예에 따른 이중 초점 렌즈 ( 1)와 구조는 동일하며, 다만상기 렌즈 구조체의 굴절률 (ηρ) 및 상기 렌즈층의 정상광 굴절률 (no)과 이상광 굴절률 (ne)이 n0 < np < ne의 관계를 갖도록 렌즈 구조체 및 렌즈층의 물질을 구성함으로써, 입사되는 광의 편광에 따라오목 렌즈와 볼록 렌즈로 동작되도록 한다.
도 5를 참조하면, 본 발명의 제 2 실시예에 따른 투과형 이중초점 렌즈의 동작원리 < np < ne경우)를 설명한다. 도 5의 (a)는 입사하는 빛의 편광방향이 RM 배향방향의 장축과 일치하는 경우, (b) 입사하는 빛의 편광방향이
RM 배향방향의 단축과 일치하는 경우, (c) 입사하는 빛의 편광이 45° 선편광 또는 원편광인 경우에서의 빛의 진행 경로를 도시한 것이다.
도 5의 (a)를 참조하면, 입사하는 빛의 편광방향이 RM의 장축방향과 일치하는 경우, pl anar-convex 구조의 배향된 RM층과 concave-pl anar 구조의 isotropic 층 계면에서, ¾와 ^의 굴절률 차에 의해 굴절되어, 초점거리 가 형성된다.
도 5의 (b)를 참조하면, 입사하는 빛의 편광방향이 RM의 단축방향과 일치하는 경우, planar-convex 구조의 배향된 RM층과 concave-planar 구조의 isotropic 층 계면에서, 2。가 보다 굴절률이 더 작기 때문에 , 렌즈 구조 가장자리 부분에서 더 큰 위상지연이 발생하고, 렌즈 구조 가운데 부분에서 더 적은 위상지연이 발생하여, 허초점거리를 갖는 오목렌즈로써 동작하게 된다. 도 5의 (c)를 참조하면, 입사하는 빛의 편광이 45°또는 원편광인 경우, 입사하는 빛을 백터 분해하면 RM의 단축방향 50 RM의 장축방향 50%로 분해됨에 따라, 각각 광량이 50%줄어든 형태로 볼록렌즈 및 오목렌즈가동시에 형성된다.
< 제 3 실시예 >
도 6은 본 발명의 제 3 실시예에 따른 투과형 이중 초점 렌즈의 구성 및 동작을 설명하기 위하여 도시한 개념도이다. 본 실시예에 따른 이중 초점 렌즈 (3)는 계 1 실시예에 따른 이중 초점 렌즈 (1)와 구조는 동일하며 , 다만 상기 렌즈 구조체의 굴절률 (ηΡ) 및 상기 렌즈층의 정상광 굴절률 (η0)과 이상광 굴절률 ( )이 n0 < ne < ηρ ^ 관계를 갖도록 렌즈구조체 및 렌즈층의 물질을 구성함으로써, 입사되는 광의 편광에 따라 허초점거리가 서로 다른 2개의 오목렌즈로 동작되도특 한다.
도 6을 참조하면, 본 발명의 제 3 실시예에 따른 투과형 이중초점 렌즈의 동작원리 (/ < ne < πρ경우)를 설명한다. 도 6의 (a)는 입사하는 빛의 편광방향이 RM 배향방향의 장축과 일치하는 경우, (b)는 입사하는 빛의 편광방향이 RM 배향방향의 단축과 일치하는 경우, (c)는 입사하는 빛의 편광이
45° 선편광 또는 원편광인 경우에서의 빛의 진행 경로를 도시한 것이다.
도 6의 (a)를 참조하면, 입사하는 빛의 편광방향이 RM의 장축방향과 일치하는 경우, planar-convex 구조의 배향된 RM층과 concave-planar 구조의 isotropic 층 계면에서, ¾와 의 굴절률 차에 의해 굴절하여, 허초점거리 Λ을 가지는 오목렌즈로써 동작한다.
도 6의 (b)를 참조하면, 입사하는 빛의 편광방향이 RM의 단축방향과 일치하는 경우, planar-convex 구조의 배향된 RM층과 concave— pl anar 구조의 isotropic 층 계면에서 , /?。와 ; 의 굴절률 차에 의해 굴절하여 허초점거리 ^를 가지는 오목렌즈로써 동작한다. 도 6의 (a) 및 (b)를 참조하면, np - ne대비 np - 12。가 더 크기 때문에ᅳ 각각의 입사되는 편광방향에 따라 형성되는 투과형 이중초점 오목렌즈의 허초점거리 관계는 > f2이다.
도 6의 (c)를 참조하면 입사하는 빛의 편광이 450또는 원편광인 경우, 입사하는 빛을 백터 분해하면 RM의 단축방향 50%, RM의 장축방향 50%로 분해됨에 따라, 각각 광량이 50%줄어든 형태로 두 개의 서로 다른
허초점거리 를 가지는 2개의 오목렌즈가동시에 형성된다.
< 제 4실시예 >
도 7은 본 발명의 제 4실시예에 따른 반사형 이중 초점 렌즈의 구성 및 동작을 설명하기 위하여 도시한 개념도이다.
도 7을 참조하면 본 발명의 계 4 실시예에 따른 반사형 이중 초점 렌즈 (4)는 렌즈층 (200), 렌즈 구조체 (210) 및 반사충 (220)을 구비하며, 이들이 서로 적층되어 이루어진 것을 특징으로 한다. 본 실시예에 따른 렌즈층 (200) 및 렌즈 구조체 (210)는 제 1 실시예의 그것들과 동일하므로, 중복되는 설명은 생략한다. 상기 반사층 (220)은 렌즈 구조체 (210)의 평탄한 일면에 장착되어, 렌즈층 및 렌즈 구조체를 진행한 빛을 되반사시키게 된다. 본 실시예에 따른 이중 초점 렌즈는 반사층에 의해 반사형 이중 초점 렌즈로 동작하게 된다.
또한, 상기 반사형 이중 초점 렌즈 (4)는 반사층 (220)의 일면에 투명한 기판 (도시되지 않음)을 더 구비함으로써, 렌즈층, 렌즈 구조체 , 반사층 및 투명한 기판이 적층되어 이루어질 수도 있다.
본 실시예에 따른 반사형 이중초점 렌즈 (4)는, 상기 렌즈 구조체의 굴절률 (ηΡ) 및 상기 렌즈층의 정상광 굴절률 (η0)과 이상광 굴절률 (ne)이 np < n0 < ne의 관계를 갖도록 렌즈 구조체 및 렌즈층의 물질로 구성함으로써, 입사되는 광의 편광에 따라서로 다른 초점거리를 갖는 2개의 반사형 볼록렌즈 (오목거울 형태)로 동작되도특 한다.
도 7을 참조하면, 본 발명의 제 4실시예에 따른 반사형 이증초점 렌즈의 동작원리 np < n0 < ne경우)를 설명한다. 도 7의 (a)는 입사하는 빛의 편광방향이 RM 배향방향의 장축과 일치하는 경우, (b)는 입사하는 빛의 편광방향이 RM 배향방향의 단축과 일치하는 경우, (c)는 입사하는 빛의 편광이
450 선편광또는 원편광인 경우에서의 빛의 진행 경로를 도시한 것이다.
본실시예에 따른 이중 초점 렌즈 (2)는, 렌즈층 (200)에 대한 정상광 굴절률 ( ¾)과 이상광굴절률 (^), 및 렌즈 구조체 (210)의 굴절률 의 관계가 ηρ < η0 < ^로 설정되어, 입사되는 편광에 따라서로 다른 초 거리 (초점면)을 가지는 반사형 볼록렌즈 (오목거울 형태)로 동작하는 것을 특징으로 한다.
도 7의 (a)를 참조하면, 입사하는 빛의 편광방향이 RM의 장축방향 0¾)과 일치하는 경우, planar-convex 구조의 배향된 RM층과 concave-planar 구조의 isotropic 층 계면에서, ¾와 의 굴절를 차에 의해 굴절되고, 반사층에 의해 반사되어 다시 planar-convex 구조의 배향된 RM층과 concave-planar 구조의 isotropic 층 계면에서 굴절되어 초점거리 (//)가 형성된다.
도 7의 (b)를 참조하면, 입사하는 빛의 편광방향이 RM의 단축방향과 일치하는 경우, planar-convex 구조의 배향된 RM층과 concave-planar 구조의 isotropic 충 계면에서, /¾와 ¾의 굴절를 차에 의해 굴절되고, 반사층에 의해 반사되어 다시 planar -convex 구조의 배향된 RM충과 concave-planar 구조의 isotropic 층 계면에서 굴절되어 초점거리 ( )가 형성된다.
도 7의 (a) 및 (b)를 참조하면, n0 - np대비 neᅳ nP가 더 크기 때문에, 각각의 입사되는 편광방향에 따라 형성되는 반사형 이중초점 렌즈의 과 의 관계는 fi< 이다.
도 7의 (c)를 참조하면, 입사하는 빛의 편광이 45°또는 원편광인 경우, 입사하는 빛을 백터 분해하면 RM의 단축방향 50%, RM의 장축방향 50%로 분해됨에 따라, 각각 광량이 50%줄어든 형태로 초점이 과 위치에 동시에 형성될 수 있다. < 제 5실시예 >
도 8은 본 발명의 제 5실시예에 따른 반사형 이중 초점 렌즈의 구성 및 동작을 설명하기 위하여 도시한 개념도이다.
본 실시예에 따른 이중초점 렌즈 (5)는 계 4 실시예에 따른 반사형 이중 초점 렌즈 (4)와구조는 동일하몌 다만상기 렌즈 구조체의 굴절를 (nP) 및 상기 렌즈층의 정상광 굴절률 (n0)과 이상광 굴절률 ( )이 n0 < np < ne ^ 관계를 갖도록 렌즈 구조체 및 렌즈층의 물질을 구성함으로써, 입사되는 광의 편광에 따라 반사형 볼록렌즈 (오목거울 형태) 또는 반사형 오목렌즈 (볼록거울 형태)로 동작하는 것을 특징으로 한다.
도 8을 참조하면, 본 발명의 제 5 실시예에 따른 반사형 이중초점 렌즈 (5)의 동작원리 n0 < nP < ne경우)를 설명한다. 도 8의 (a)는 입사하는 빛의 편광방향이 RM 배향방향의 장축과 일치하는 경우, (b)는 입사하는 빛의 편광방향이 RM 배향방향의 단축과 일치하는 경우, (c)는 입사하는 빛의 편광이
45° 선편광 또는 원편광인 경우에서의 빛의 진행 경로를 도시한 것이다.
도 8의 (a)를 참조하면, 입사하는 빛의 편광방향이 RM의 장축방향과 일치하는 경우, planar-convex구조의 배향된 RM층과 concave-planar 구조의 isotropic 층 계면에서 , ne와 np의 굴절률 차에 의해 굴절되고, 반사층에 의해 반사되어 다시 planar-convex 구조의 배향된 RM층과 concave-planar 구조의 isotropic층 계면에서 굴절되어 초점거리 (/ 가 형성된다.
도 8의 (b)를 참조하면, 입사하는 빛의 편광방향이 RM의 단축방향과 일치하는 경우, p mar-convex 구조의 배향된 RM층과 concave-planar 구조의 isotropic층 계면에서, 。가 /?P보다 굴절률이 더 작기 때문에 렌즈 구조 가장자리 부분에서 더 큰 위상지연이 발생하며, 렌즈 구조 가운데 부분에서 더 적은 위상지연이 발생하여, 반사형 오목렌즈로 동작하게 된다.
도 8의 (c)를 참조하면, 입사하는 빛의 편광이 450또는 원편광인 경우, 입사하는 빛을 백터 분해하면 RM의 단축방향 50%, RM의、장축방향 50%로 분해됨에 따라, 각각 광량이 50¾>줄어든 형태로 반사형 볼록렌즈 및 반사형 오목렌즈가동시에 형성된다.
< 제 6 실시예 >
도 9는 본 발명의 제 6실시예에 따른 반사형 이중 초점 렌즈의 구성 및 동작을 설명하기 위하여 도시한 개념도이다.
본 실시예에 따른 반사형 이중 초점 렌즈 (6)는 제 4실시예에 따른 반사형 이중 초점 렌즈 (4)와 구조는 동일하며, 다만 상기 렌즈 구조체의 굴절를 (np) 및 상기 렌즈층의 정상광 굴절률 (n0)과 이상광굴절률 (ne)이 n0 < ne < np ^ 관계를 갖도록 렌즈 구조체 및 렌즈층의 물질로 구성함으로써, 입사되는 광의 편광에 따라 허초점거리가서로 다른 반사형 오목렌즈 (볼록거울 형태)로 동작되도록 한다.
도 9를 참조하면, 본 발명의 제 6 실시예에 따른 반사형 이중초점 렌즈의 동작원리 n0 < ne < nD경우)를 설명한다. 도 9의 (a)는 입사하는 빛의 편광방향이 M 배향방향의 장축과 일치하는 경우, (b)는 입사하는 빛의
편광방향이 RM 배향방향의 단축과 일치하는 경우, (c) 입사하는 빛의 편광이 450 선편광또는 원편광인 경우에서의 빛의 진행 경로를 도시한 것이다.
도 9의 (a)를 참조하면, 입사하는 빛의 편광방향이 RM의 장축방향과 일치하는 경우, pl anar-convex 구조의 배향된 RM층과 concave-pl anar 구조의 i sotropic 층 계면에서 , ¾가 보다 굴절률이 더 작기 때문에 렌즈 구조 가장자리 부분에서 더 큰 위상지연이 발생하며, 렌즈 구조 가운데 부분에서 더 적은 위상지연이 발생하여, 허초점거리 을 가지는 반사형 오목렌즈로써 동작한다.
도 9의 (b)를 참조하면, 입사하는 빛의 편광방향이 RM의 단축방향과 일치하는 경우, pl anar-convex 구조의 배향된 M층과 concave-pl anar 구조의 i sotropi c 층 계면에서 , ?。가 보다 굴절률이 더 작기 때문에 렌즈 구조 가장자리 부분에서 더 큰 위상지연이 발생하며, 렌즈 구조 가운데 부분에서 더 적은 위상지연이 발생하여, 허초점거리 을 가지는 반사형 오목렌즈로써 동작한다.
도 9의 (a) 및 (b)를 참조하면, np― ne대비 np - n0가 더 크기 때문에, 각각의 입사되는 편광방향에 따라 형성되는 반사형 이중초점 오목렌즈의 허초점거리 관계는 > f2이다.
도 9의 (c)를 참조하면, 입사하는 빛의 편광이 450또는 원편광인 경우, 입사하는 빛을 백터 분해하면 RM의 단축방향 50%, RM의 장축방향 50%로 분해됨에 따라, 각각 광량이 50%줄어든 형태로 두 개의 서로 다른
허초점거리 ( /7,/ 를 가지는 오목렌즈가동시에 형성된다. 이하, 도 10을 참조하여 본 발명의 제 1 내지 제 6 실시예에 따른 이중 초점 렌즈의 제조 방법에 대하여 구체적으로 설명한다.
도 10은 본 발명의 계 1 내지 제 6 실시예에 따른 이중 초점 렌즈의 제조 공정을 도시한공정도이다.
도 10을 참조하면, 본 발명의 제 1 내지 제 6 실시예에 따른 이중 초점 렌즈의 제조 공정은, 먼저 광경화성 수지인 둥방상 고분자 물질 ( i sotropi c polymer )를 이용하여 임프린트 공정을 적용하여 렌즈 구조체를 형성한다 (a 공정) .
여기서, 렌즈 구조체는 마이크로 렌즈의 역상 구조를 형성하게 되는데, 필름 또는 유리 기판에 광경화성 수지인 i sotropi c polymer를 도포하고, 마이크로 렌즈 어레이 templ ate를 이용하여 임프린팅하여 마이크로 렌즈의 역상 구조의 렌즈 구조체를 형성한다. 이때 사용된 등방상 고분자물질인 광경화성 수지는 N0A13685 (np = 1.3685 , Nor land사) 이다.
도 11은 본 발명에 따른 이중초점 렌즈의 제조 공정에 있어서, 사용된 마이크로 렌즈 어레이 tempi ate를 도시한 것이다. 도 11을 참조하면, 본 발명에 따른 제조 공정에 사용된 마이크로 렌즈 어레이 templ ate는 정육각형 렌즈 형태의 hexagonal 2D 배열 렌즈이며, Lx = 288 vra , Ly = 250 vm , radius of curvature (ROC) = 320 i 이다. 다음, 임프린팅 공정으로 형성된 마이크로렌즈어레이 역상 구조의 렌즈 구조체 위에 bottom-up 배향을 위한 러빙된 PVA층인 배향막을 형성하여 하부 기판을 제작한다 (b 공정) . PVA의 용매는 2 ¾>의 DI water를사용하며, 코팅성 향상을 위해, UV0 처리 공정으로 i sotropic polymer 표면을 친수화한다. 코팅 후, 100oC에서 30분간 열처리 후, 러빙공정으로 이방성을부여한다. 한편, 종래의 polyimide (PI ) 배향막은 코팅공정 시 무극성 용매에 의한 데미지, 코팅 후 230oC 가량되는 고온의 열처리 공정이 필요하여 본 발명에 따른 제조 과정에서는 적용하기 어렵다.
다음, 임의의 기판 위에 Top— down 배향을 위한 러빙된 PI층을 형성하여 상부 기판을 제작한다 (c 공정) . 이때, 유리 기판을 적용하여 PI 배향막을 사용해도무방하다)
다음, 추가적으로, top-down 배향 및 라미네이션 공정을 위해,
라미네이션 공정으로 하부 기판과상부 기판사이에 렌즈층을 위한 RM층을 형성 후, UV cur ing 및 상부 기판을 제거하여, 이중 초점 렌즈를 완성한다 (d공정) . 즉, pl anar-convex 구조의 배향된 RM증과 concave-planar 구조의 isotropic 층의 적층형태를 만들기 위해, RM을 하부기판위에 drop 한 뒤 (at 90°C > TNI ) , 상부기판으로 라미네이션한다. 그후 50 °C의 온도에서 30 분간 열처리한 뒤 ,
35°C에서 UV로 경화시킨다. 사용된 RM은 RMM727(Merck사, nQ = 1.524, ne
1.690) 이며, bottom-up 및 top-down 배향 효과에 의해 단일 방향으로 정렬된 RM 층을 얻을수 있다. 추후, 상부 기판은 제거할수 있으며, 제거하지 않더라도 무방하다.
전술한 제조 과정에 의해 제작된 이증 초점 렌즈에 있어서, 각 물질의 굴절률 관계를 정리하면, nP = 1.3685 < ¾ = 1.524 < ne = 1.690 이다. 전술한 본 발명에 따른 이중 초점 렌즈의 제조 공정은 렌즈층을 R 물질을 이용하여 제작하는 과정이며, 렌즈층은 RM뿐만 아니라, 액정 (Liquid Crystal ; LC)를 이용하여 제작할 수도 있다. 이 경우, 모든 제조 공정 및 원리는 동일하며 다만 액정은 별도의 경화 과정이 필요없으므로, RM에 적용된 경화공정만이 생략된다. 도 12는 본 발명의 제 1 내지 제 6 실시예에 따른 이중 초점 렌즈의 초점거리를 측정하기 위한초점거리 측정 set-up을 도시한 개념도이다. 본 발명에 따라 제작된 이중 초점 마이크로렌즈 어레이는 초점거리가 매우 짧기 때문에, 도 12에 따른 lens relay set-up을 이용하여 측정하였다. Polar izer 를 이용하여 편광 방향을 조절하며 초점거리를 측정하였다. Lens relay set-up에서 측정되는 /값을 이용하여 수학식 1로 이중 초점 마이크로렌즈어레이의
초점거리 ( )를 도출할수 있다.
【수학식 1】 """" faws .ϊί
J = — Έ, "~~m
Φ騰
여기서, d는 bi-focal 마이크로렌즈어레이와 relay lens 간의 거리, fiens는 relay lens 의 초점거리, /는 realy lens 와 CCD 디텍터 간의 거리, / 는 bi-focal 마이크로렌즈어레이의 거리이다.
도 13은 본 발명의 제 1 내지 제 6 실시예에 따른 이중 초점 렌즈에 대하여 초점거리 측정 set-up에서 측정된 CCD 이미지들이다. 도 13의 (a) , (b) , 및 (c) 는 /、 = 326.24 讓 에서 측정된 이미지이며 , 각각 입사편광이 ne방향인 0°방향,
450방향, 및 n0 방향인 90°방향이다. 도 13의 (d) , (e) , 및 (f ) 는 /、 = 356.75 mm 에서 측정된 이미지이며, 각각 입사편광이 ne방향인 0ο방향, 45° 방향, 및 η0 방향인 90ο방향이다.
Γ = 326.24mm 위치에서, 도 13의 (a)에 도시된 ne 방향의 편광이 초점면을 형성함을 알 수 있으며 , 이 경우 수학식 1로부터 , 이중 초점 렌즈의 방향의 편광에 의해 형성되는 초점거리는 0.95 誦 이다. Γ = 356.75 隱 위치에서, 도 13의 (f )에 도시된 방향의 편광이 초점면을 형성함을 알 수 있으며, 이 경우 수학식 1로부터, 이중 초점 렌즈의 /¾방향의 편광에 의해 형성되는 초점거리는
1.85 mm 이다. 도 13의 (b), (e)의 경우 45° 방향의 편광된 빛이 입사함에 따라,
50%의 초점이 맞는 빛과 50%의 blur 된 빛이 흔재함을 알수 있다.
도 14는 본 발명의 계 1 내지 제 6 실시예에 따른 이중 초점 렌즈에 있어서, 렌즈층을 구성하는 RM의 굴절률이 n0 = 1.524, ne = 1.690 일 때, 렌즈 구조체를 구성하는 i sotropi c polymer 층의 굴절률에 따른 초점거리 시뮬레이션한 결과 그래프이다. 도 14는 광 시뮬레이터 Advanced System Analys i s Program (ASAP™, Breaul t Research Organizat ion, Inc . )을 이용하여 RM의 굴절률이 n0 = 1.524, ne = 1.690 일 때, i sotropi c polymer 층의 굴절률에 따른 초점거리 시뮬레이션 결과이다. 도 14를 참조하면, RM의 굴절률과 i sotropi c polymer의 굴절률 차이가 커지면 커질수록, i sotropi c polymer의 굴절률이 작아지면 작아질수록 초점거리가 짧아짐을 알 수 있으며, 입사되는 편광 방향에 따라 서로 다른 초점거리를 가짐을 알 수 있다.
【발명의 실시를 위한 형태】
본 발명의 제 7 내지 제 10실시예에 따른 이중 초점 렌즈는 복굴절성을 갖는 광경화성 액정상 고분자를 이용한 편광 의존형 GRIN 렌즈 기반 기술로서, 복굴절성을 갖는 광경화성 액정상 고분자 물질의 굴절률 i , ne및 렌즈와 맞닿는 공기층의 굴절를 의 굴절률 관계에 의해, 이중초점을 갖는 것을 특징으로 한다. 본 발명에 따른 이중 초점 렌즈는 종래의 액정상 고분자를 이용한 편광 의존형 GRIN 렌즈 기술과 동일하게 편광스위칭부와편광 의존형 렌즈부가 별도로 존재하기 때문에, 종래의 액정소자와 같은 구동전압 및 빠른 스위칭 속도를 가질 수 있으므로 시분할 기술이 적용 가능하게 된다.
복굴절성을 갖는 광경화성 액정상 고분자물질 (RM)은 단일 방향으로 배향된 특징을 가져, 입사하는 빛의 편광 방향이 RM분자의 장축 방향과 일치하는 경우 ne의 굴절률을 가지게 되며, 입사하는 빛의 편광 방향이 RM 분자의 단축 방향과 일치하는 경우 ¾의 굴절률을 가지게 되어, 입사하는 빛의 편광 방향에 따라 이중초점을 가지는 렌즈 기술이다.
본 발명의 제 7 내지 제 10실시예에 따른 이중 초점 렌즈는 배향된 복굴절 매질이 ai r층과 곡면 계면을 형성하는 구조로서, 각층간의 굴절률 관계는 nair < n0 < 이다. 이에 따라, 기존의 GRIN렌즈 대비 보다 짧은 초점거리를 형성할수 있다.
본 발명의 제 7 내지 제 10실시예에 따른 이중 초점 렌즈는 pl anar-convex 구조로 형성하여 이중초점 볼록렌즈로 동작하거나, 또는 pl anar-concave 구조로 형성하여 이중초점 오목렌즈로 동작할 수 있다. 또한, 반사층을 도입함에 따라 반사형 렌즈로써 동작 가능하다.
이하, 첨부된 도면을 참조하여 본 발명의 제 7 내지 제 10실시예들에 따른 이중 초점 렌즈의 구조 및 동작에 대하여 구체적으로 설명한다.
< 제 7 실시예 〉
도 15는 본 발명의 제 7실시예에 따른 이중 초점 렌즈의 구성 및 동작을 설명하기 위하여 도시한 개념도이다. 도 15를 참조하면, 본 발명의 계 7실시예에 따른 이중 초점 렌즈 (7)는 투명 기판 (700), 배향막 (710) 및 렌즈층 (720)을 구비하며, 이들이 서로 적층되어 이루어진 것을 특징으로 한다.
상기 투명 기판 (700)은 평판 구조로 이루어진 것이 바람직하다.
상기 배향막 (710)은 상기 투명 기판위에 형성되며, 단일 방향으로 배향 처리된 것을 특징으로 한다. 상기 배향막 (710)은 polyvinyl achol (PVA) 을 투명 기판위에 스핀 코팅한후 러빙 (rubbing) 공정등과 같은 배향 처리하여 형성될 수 있다.
상기 렌즈층 (720)은 복굴절성을 갖는 광경화성 액정상 고분자 물질로 이루어지며 상기 배향막위에 형성되어 배향막에 의해 단일 방향으로
배향처리된다. 렌즈층의 일면은 공기층에 노출되도록 구성되며, 공기층에 노출되는 상기 렌즈층의 일면은 볼록 렌즈 형상으로 이루어진다.
상기 렌즈층을 구성하는 광경화성 액정상 고분자물질 (React ive
Mesogen : 이하 ' RM '이라 한다. )은 복굴절성을 갖는 물질로서 , 정상광
굴절률 ( ) 및 이상광 굴절률 (ne)를 가지게 된다. 한편, 렌즈층의 일면과 맞닿는 공기층의 굴절률 (nair)과 광경화성 액정상 고분자물질에 대한 정상광 굴절률 (n0) 및 이상광 굴절률 ( )은 nair < ¾ < 의 관계를 갖는다.
본 발명에 따른 이중 초점 렌즈는 렌즈층을 pl anar-convex구조로 형성하여 이중초점 볼록렌즈로 동작할 수 있다.
그 결과, 본 발명에 따른 이중초점 렌즈 (7)로 입사되는 광의 편광에 따라 렌즈층과 공기층의 계면에서의 굴절률 차이가 발생하고, 상기 계면에서의 굴절률 차이에 의해 결정되는 2개의 초점 거리를 갖게 된다.
도 15를 참조하여 본 발명의 제 7실시예에 따른 투과형 이중초점 렌즈의 동작원리 nair < n0 < ne 경우)를 설명한다. 도 15의 (a)는 입사하는 빛의 편광방향이 렌즈층 (120)을 구성하는 RM의 배향방향의 장축과 일치하는 경우, (b) 입사하는 빛의 편광방향이 RM의 배향방향의 단축과 일치.하는 경우, (c) 입사하는 빛의 편광이 450 선편광 또는 원편광인 경우에서의 빛의 진행 경로를 도시한 것이다.
도 15의 )를 참조하면, 입사하는 빛의 편광방향이 렌즈충을 구성하는 RM의 장축방향 (/?e)과 일치하는 경우, planar-convex 구조의 배향된 RM층과 공기층 계면에서 , /¾와 의 굴절률 차에 굴절되며, 렌즈의 중심 부분의 위상 지연이 렌즈의 가장자리 부분보다 더 크기 때문에, 초점거리가 인 볼록 렌즈로 동작한다.
도 15의 (b)를 참조하면, 입사하는 빛의 편광방향이 렌즈층을 구성하는 RM의 단축방 (/¾)향과 일치하는 경우, planar_convex 구조의 배향된 RM층과 공기층 계면에서 , ?。와 na,A 굴절률 차에 의해 초점거리 가 형성된다. n0 - nair대비 ne - nair가더 크기 때문에, 수학식 2에 따라, 각각의 입사되는 편광방향에 따라 형성되는 투과형 이중초점 볼록렌즈의 / 과 의 관계는 / < f2이다.
【수학식 2]
J ¾ J사(ur
Figure imgf000026_0001
여기서, /는 초점거리, 은 렌즈의 radius of curvature, n은 렌즈층의 굴절를, 는 공기의 굴절를이다.
도 15의 (c)를 참조하면, 입사하는 빛의 편광이 45°또는 원편광인 경우, 입사하는 빛을 백터 분해하면 RM의 단축방향 50%, RM의 장축방향 50%로 분해됨에 따라, 각각 광량이 50%줄어든 형태로 초점이 과 위치에 동시에 형성될 수 있다. < 제 8실시예 >
도 16는 본 발명의 계 8실시예에 따른 투과형 이중 초점 렌즈의 구성 및 동작을 설명하기 위하여 도시한 개념도이다. 본 실시예에 따른 이중 초점 렌즈 (8)는 제 7실시예에 따른 이중 초점 렌즈와구조는 동일하며, 다만상기 렌즈층의 일면이 오목 렌즈 형상으로 이루어진 것을 특징으로 한다. 도 16를 참조하면, 본 발명의 계 8 실시예에 따른 이중초점 렌즈 (8)는 투명 기판 (800) , 배향막 (810) 및 렌즈층 (820)을 구비하며, 이들이 서로 적층되어 이루어지고, 공기층에 노출된 상기 렌즈층의 일면이 오목 렌즈 형상으로 이루어진 것을 특징으로 한다.
본 실시예에 따른 이중초점 렌즈는 투과형 이중초점 오목렌즈로서, 입사되는 편광의 방향에 따라서로 다른 허 초점거리를 가지는 오목렌즈로 동작하게 된다.
도 16를 참조하여, 본 발명의 제 8 실시예에 따른 투과형 이중초점 렌즈의 동작원리 < n0 < ne 경우)를 설명한다. 도 16의 (a)는 입사하는 빛의 편광방향이 렌즈층 (220)을 구성하는 RM의 배향방향의 장축과 일치하는 경우, (b)는 입사하는 빛의 편광방향이 RM의 배향방향의 단축과 일치하는 경우,
(c)는 입사하는 빛의 편광이 45° 선편광 또는 원편광인 경우에서의 빛의 진행 경로를 도시한 것이다.
도 16의 (a)를 참조하면, 입사하는 빛의 편광방향이 렌즈층을 구성하는 RM의 장축방향 (/¾)과 일치하는 경우, pl anar-concave 구조의 배향된 RM층과 공기층 계면에서 , ¾와 의 굴절률 차에 굴절되며, 렌즈의 중심 부분의 위상 지연이 렌즈의 가장자리 부분보다 더 작기 때문에, 초점거리가 인 오목 렌즈로 동작한다.
도 16의 (b)를 참조하면, 입사하는 빛의 편광방향이 렌즈층을 구성하는 RM의 단축방 ( ¾)향과 일치하는 경우, pl anar-concave 구조의 배향된 RM층과 공기층 계면에서, 2。와 ¾ 의 굴절률 차에 의해 초점거리 ( )가 형성된다. n0 - nair대비 ne - na!r가더 크기 때문에, 수학식 2에 따라, 각각의 입사되는 편광방향에 따라 형성되는 투과형 이중초점 오목 렌즈의 허초점 거리들인 과 의 관계는 < 이다.
도 16의 (c)를 참조하면, 입사하는 빛의 편광이 45°또는 원편광인 경우, 입사하는 빛을 백터 분해하면 M의 단축방향 50%, RM의 장축방향 50¾로 분해됨에 따라, 각각 광량이 50%줄어든 형태로 허초점이 과 /2위치에 동시에 형성될 수 있다.
< 제 9 실시예 >
도 17은 본 발명의 제 9실시예에 따른 반사형 이중 초점 렌즈의 구성 및 동작을 설명하기 위하여 도시한 개념도이다.
도 17을 참조하면, 본 발명의 제 9 실시예에 따른 반사형 이중 초점 렌즈 (9)는 평판형 기판 (900) , 반사층 (905), 배향막 (910) 및 렌즈층 (920)를 구비하며, 이들이 서로 적층되어 이루어지고, 공기층에 노출된 상기 렌즈층의 일면이 볼록 렌즈 형상으로 이루어진 것을 특징으로 한다.
상기 평판형 기판 (900)은 평판 구조로 이루어진 것이 바람직하다.
상기 반사층 (905)은 상기 평판형 기판 (900)위에 형성되며, 입사광을 전반사시킬 수 있는 금속 (metal ) 등으로 형성될 수 있다.
상기 배향막 (910)은 상기 반사층 (905)위에 형성되며, 단일 방향으로 배향 처리된 것을 특징으로 한다. 상기 배향막 (310)은 polyvinylachol (PVA) 을 반사층위에 스핀 코팅한후 러빙 공정 등에 의해 배향 처리하여 형성될 수 있다. 상기 렌즈층 (920)은 복굴절성을 갖는 광경화성 액정상 고분자 물질로 이루어지며 상기 배향막위에 형성되어 배향막에 의해 단일 방향으로
배향처리된다. 공기층과 맞닿는 상기 렌즈층의 일면은 볼록 렌즈 형상으로 이루어진다.
상기 렌즈층을 구성하는 광경화성 액정상 고분자 물질 (React ive
Mesogen : 이하 ' RM'이라 한다. )은 복굴절성을 갖는 물질로서 , 정상광
굴절률 (n0) 및 이상광굴절률 ( )를 가지게 된다. 한편, 렌즈층의 일면과 맞닿는 공기층의 굴절률 (nair)과 광경화성 액정상 고분자 물질에 대한 정상광 굴절률 (n0) 및 이상광굴절률 (ne)은 nair < ?。 < /^의 관계를 갖는다. 본 발명에 따른 반사형 이중초점 렌즈는 planar-convex 구조로 형성하여 이중초점 볼록렌즈로 동작할 수 있다.
그 결과, 본 발명에 따른 이중 초점 렌즈 (9)로 입사되는 광의 편광에 따라 렌즈층과 공기층의 계면에서의 굴절률 차이가 발생하고, 상기 계면에서의 굴절률 차이에 의해 결정되는 2개의 초점 거리를 갖게 된다.
도 17을 참조하여, 본 발명의 제 9 실시예에 따른 반사형 이중초점 렌즈의 동작원리 Jr < n0 < ne 경우)를 설명한다. 도 17의 (a)는 입사하는 빛의 편광방향이 렌즈층 (920)을 구성하는 RM의 배향방향의 장축과 일치하는 경우ᅳ (b)는 입사하는 빛의 편광방향이 RM의 배향방향의 단축과 일치하는 경우, (c)는 입사하는 빛의 편광이 45° 선편광또는 원편광인 경우에서의 빛의 진행 경로를 도시한 것이다.
도 17의 (a)를 참조하면, 입사하는 빛의 편광방향이 렌즈층을 구성하는 RM의 장축방향 과 일치하는 경우, planar-convex 구조의 배향된 RM층과 공기충 계면에서, 와 의 굴절률 차에 굴절되며, 렌즈의 중심 부분의 위상 지연이 렌즈의 가장자리 부분보다더 크기 때문에, 초점거리가 인 반사형 볼록 렌즈로 동작한다.
도 17의 (b)를 참조하면, 입사하는 빛의 편광방향이 렌즈층올 구성하는 M의 단축방 (/¾)향과 일치하는 경우, pl anar-convex 구조의 배향된 RM층과 공기충 계면에서 , 와 7¾ 의 굴절률 차에 의해 초점거리 ( 가 형성된다. n0 - nair대비 ne - nair가 더 크기 때문에 , 각각의 입사되는 편광방향에 따라 형성되는 반사형 이중초점 볼록렌즈의 Λ과 의 관계는 fi < f2이다.
도 17의 (c)를 참조하면, 입사하는 빛의 편광이 45°또는 원편광인 경우, 입사하는 빛을 백터 분해하면 M의 단축방향 50¾, RM의 장축방향 50¾>로 분해됨에 따라, 각각 광량이 50%줄어든 형태로 초점이 과 위치에 동시에 형성될 수 있다.
< 제 10 실시예 >
도 18은 본 발명의 제 10실시예에 따른 반사형 이중 초점 렌즈의 구성 및 동작을 설명하기 위하여 도시한 개념도이다. 본 실시예에 따른 이중 초점 렌즈는 제 10실시예에 따른 이중초점 렌즈와구조는 동일하며, 다만 상기 렌즈층의 일면이 오목 렌즈 형상으로 이투어진 것을 특징으로 한다.
도 18을 참조하면 , 본 발명의 제 10실시예에 따른 반사형 이중 초점 렌즈 ( 10)는 평판형 기판 ( 1000), 반사층 ( 1005), 배향막 ( 1010) 및 렌즈층 ( 1020)를 구비하며, 이들이 서로 적층되어 이루어지고, 공기층에 노출된 상기 렌즈층의 일면이 오목 렌즈 형상으로 이루어진 것을 특징으로 한다ᅳ
본 발명에 따른 반사형 이중 초점 렌즈는 렌즈층을 pl anar-concave 구조로 형성하여 이중초점 오목렌즈로 동작할수 있다.
본 실시예에 따른 이중 초점 렌즈는 반사형 이중초점 오목렌즈로서, 입사되는 편광의 방향에 따라서로 다른 허 초점거리를 가지는 오목렌즈로 동작하게 된다.
도 18을 참조하여, 본 발명의 제 10 실시예에 따른 반사형 이중초점 렌즈의 동작원리 nair < n0 < ne 경우)를 설명한다. 도 18의 (a)는 입사하는 빛의 편광방향이 렌즈층 (420)을 구성하는 RM의 배향방향의 장축과 일치하는 경우, (b)는 입사하는 빛의 편광방향이 RM의 배향방향의 단축과 일치하는 경우,
(c)는 입사하는 빛의 편광이 45° 선편광 또는 원편광인 경우에서의 빛의 진행 경로를 도시한 것이다.
도 18의 (a)를 참조하면, 입사하는 빛의 편광방향이 렌즈충을 구성하는 RM의 장축방향 과 일치하는 경우, pl anar-concave 구조의 배향된 RM층과 공기층 계면에서, /¾와 의 굴절률 차에 굴절되며, 렌즈의 중심 부분의 위상 지연이 렌즈의 가장자리 부분보다 더 작기 때문에, 허 초점거리가 ^인 반사형 오목 렌즈로 동작한다.
도 18의 (b)를 참조하면, 입사하는 빛의 편광방향이 렌즈층을 구성하는 RM의 단축방 0?。)향과 일치하는 경우, pl anar-concave 구조의 배향된 RM층과 공기층 계면에서, /?。와 의 굴절률 차에 의해 허초점거리 가 형성된다. n0 - nair대비 ne - nair가더 크기 때문에, 각각의 입사되는 편광방향에 따라 형성되는 반사형 이중초점 오목 렌즈의 허 초점거리들인 /j과 의 관계는 < f2이다.
도 18의 (c)를 참조하면, 입사하는 빛의 편광이 45°또는 원편광인 경우, 입사하는 빛을 백터 분해하면 RM의 단축방향 50%, RM의 장축방향 50%로 분해됨에 따라, 각각 광량이 50%줄어든 형태로 허초점이 /7과 위치에 동시에 형성될 수 있다. 이하, 도 19를 참조하여 본 발명의 제 7 내지 제 10 실시예에 따른 이중 초점 렌즈의 제조 방법에 대하여 구체적으로 설명한다.
도 19는 본 발명의 제 7 내지 제 10 실시예에 따른 이중 초점 렌즈의 제조 공정을 도시한공정도이다.
도 19를 참조하면, 본 발명에 따른 이중 초점 렌즈의 제조 공정은, 먼저 광경화성 수지인 등방상고분자물질 ( i sotropi c polymer )를 이용하여 임프린트 공정을 적용하여 렌즈 구조체 (50)를 형성한다 (a 공정) .
여기세 렌즈 구조체는 마이크로 렌즈의 역상 구조를 형성하게 되는데, 필름 또는 유리 기판 (500)에 광경화성 수지인 i sotropi c po lymer (510)를 도포하고, 마이크로 렌즈 어레이 templ ate(520)를 이용하여 임프린팅하여 마이크로 렌즈의 역상구조의 렌즈 구조체 (50)를 형성한다. 이때 사용된 등방상 고분자물질인 광경화성 수지는 N0A13685 (np = 1.3685 , Nor l and사) 이다.
도 11을 참조하면, 본 발명에 따른 제조 공정에 사용된 마이크로 렌즈 어레이 templ ate는 정육각형 렌즈 형태의 hexagonal 2D 배열 렌즈이며, Lx = 288 vm, Ly = 250 vm , radius of curvature (ROC) = 320 vm 이다. 다음, 임프린팅 공정으로 형성된 마이크로렌즈어레이 역상구조의 렌즈 구조체 (50) 위에 bot tom-up 배향을 위한 러빙된 PVA층인 배향막 (530)을 형성하여 하부 기판 (82)을 제작한다 (b 공정) . PVA의 용매는 2 %의 DI water를 사용하며, 코팅성 향상을 위해, PVA를 스핀 코팅하기 전에 UV0 처리 공정으로 i sotropic polymer 표면을 친수화한다. 코팅 후, 100oC에서 30분간 열처리 후, 러빙공정으로 이방성을 부여한다. 한편, 종래의 po lyimide (PI ) 배향막은 코팅공정 시 무극성 용매에 의한 데미지, 코팅 후 230°C 가량되는 고은의 열처리 공정이 필요하여 본 발명에 따른 제조 과정에서는 적용하기 어렵다.
다음, 임의의 기판 (540) 위에 Top-down 배향올 위한 러빙된 PVA층인 배향막 (550)을 형성하여 상부 기판 (55)을 제작한다 (c공정) . 이때, 투과형 이중초점렌즈를 제작하는 경우, 상기 기판 (540)은 투명 기판을 적용하는 것이 바람직하다. PVA막의 코팅성 향상을 위해, PVA를 스핀 코팅하기 전에 UV0처리 공정으로 isotropic polymer 표면을 친수화한다. 이와 같이, 러빙공정으로 이방성을 부여하가 전에, 추후 peel-of f 공정에서 배향된 광경화성 액정상 고분자물질의 렌즈층이 상부 기판에 의해 pi ck-up될 수 있도록 UV0처리를 통해 PVA표면에너지를 향상시키는 것이 바람직하다.
다음, 추가적으로, top-down 배향 및 라미네이션 공정을 위해, 라미네이션 공정으로 하부 기판 (52)과 상부 기판 (55) 사이에 렌즈층을 위한 RM 층 (560)을 형성 후, 열처리 및 광경화 (UV cur ing) 공정으로 광경화성 액정상 고분자물질을 고형화한다. 이때, 광경화성 액정상 고분자 물질은 하부 및 상부 배향 효과에 의해 단일 방향으로 정렬된다. 다음, 렌즈층인 RM층 (860)과 결합된 상부 기판 (55)을 하부 기판 (52)으로부터 peel-of f하여 분리하는데, 전술한 UV0 처리 공정으로 표면에너지가 향상된 상부 기판의 PVA표면으로 광경화성 액정상 고분자층 (560)이 픽업 (pick-up)된다. 그 결과, RM층 (560)과 상부 기판 (55)이 결합된 상태의 이중 초점 렌즈 (60)를 완성한다 (d 공정) .
이상에서 본 발명에 대하여 그 바람직한실시예를 중심으로
설명하였으나, 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 발명의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과웅용이 가능함을 알수 있을 것이다. 그리고, 이러한 변형과응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims

【청구의 범위】
【청구항 1】
복굴절성을 갖는 물질로 형성되고, 일면은 평탄하고 상기 일면과 대향되는 타면은 렌즈 형상을 갖는 렌즈면으로 이루어진 렌즈층;
등방상물질로 형성되고, 일면은 상기 렌즈층의 렌즈면에 대응되는 렌즈 역상으로 이루어지고 상기 일면과 대향되는 타면은 평탄한 렌즈 구조체;
을 구비하며, 상기 렌즈층은 정상광 굴절를 (no) 및 이상광 굴절률 (ne)를 가지며, 상기 렌즈 구조체는 상기 렌즈층의 정상광 굴절률 및 이상광 굴절률과 상이한굴절률 (np)을 갖는 물질로 구성하여, 입사되는 광의 편광에 따라 렌즈 구조체와 렌즈층의 계면에서의 굴절률 차이가 발생하고, 상기 계면에서의 굴절률 차이에 의해 결정되는 2개의 초점거리를 갖는 것을 특징으로 하며,
입사되는 광의 편광 방향에 따라 초점 거리가 스위칭되는 투과형 렌즈로 동작되는 것을 특징으로 하는 이중 초점 렌즈.
【청구항 2】
복굴절성을 갖는 물질로 형성되고, 일면은 평탄하고 상기 일면과 대향되는 타면은 렌즈 형상을 갖는 렌즈면으로 이루어진 렌즈층;
둥방상 물질로 형성되고, 일면은 상기 렌즈층의 렌즈면에 대웅되는 렌즈 역상으로 이루어지고 상기 일면과 대향되는 타면은 평탄한 렌즈 구조체 ; 및
상기 렌즈 구조체의 평탄한 일면에 장착된 반사층;
을 구비하며, 상기 렌즈층은 정상광 굴절률 (n0) 및 이상광 굴절률 (ne)를 가지며, 상기 렌즈 구조체는 상기 렌즈층의 정상광 굴절률 및 이상광 굴절률과 상이한 굴절률 (¾)올 갖는 물질로 구성하여, 입사되는 광의 편광에 따라 렌즈 구조체와 렌즈층의 계면에서의 굴절률 차이가 발생하고, 상기 계면에서의 굴절률 차이에 의해 결정되는 2개의 초점거리를 갖는 것을 특징으로 하며,
상기 렌즈층, 렌즈 구조체 및 반사층이 순차적으로 배치되어 렌즈층으로 입사된 광이 렌즈 구조체를 진행하고 반사충에서 반사되어 다시 렌즈층으로 출사되는 것을 특징으로 하며,
입사되는 광의 편광 방향에 따라 초점 거리가 스위칭되는 반사형 렌즈로 동작되는 것을 특징으로 하는 이중 초점 렌즈.
【청구항 3】
제 1항 내지 제 2항 중 어느 한 항에 있어서, 상기 렌즈 구조체와 렌즈층이 접하는 계면에서, 상기 렌즈층의 렌즈면은 볼록 렌즈 형상으로 이루어지고, 렌즈 역상으로 이루어진 상기 렌즈 구조체의 일면은 오목 렌즈 형상으로 이루어진 것을 특징으로 하는 이중 초점 렌즈.
【청구항 4]
제 1항 내지 제 2항 중 어느 한 항에 있어서, 상기 렌즈층의 렌즈면과 상기 렌즈 구조체의 사이에 배향막을 더 구비하여, 상기 렌즈층을 구성하는 물질을 배향막에 의해 단일 방향으로 배향되는 것을 특징으로 하는 이중 초점 렌즈.
【청구항 5】
계 1항 내지 제 2항 중 어느 한 항에 있어서, 상기 렌즈층은 액정, 광경화성 액정상 고분자 중 하나로 구성된 것을 특징으로 하는 이중 초점 렌즈.
【청구항 6】
제 1항 내지 제 2항 중 어느 한 항에 있어서, 상기 렌즈 구조체는 등방상 고분자 ( Isotropic Polymer)물질로 구성된 것을 특징으로 하는 이중 초점 렌즈.
【청구항 7】
제 1항 내지 계 2항 중 어느 한 항에 있어서, 상기 렌즈 구조체의 굴절률 (nP) 및 상기 렌즈층의 정상광 굴절률 (n 과 이상광 굴절률 (ne)이 nP < n0 < ne의 관계를 갖도록, 렌즈 구조체 및 렌즈층의 물질을 구성하여 입사되는 광의 편광에 따라 서로 다른 초점거리를 갖는 2개의 볼록 렌즈로 동작되도록 하는 것을 특징으로 하는 이중 초점 렌즈.
【청구항 8】
제 1항 내지 제 2항 중 어느 한 항에 있어서, 상기 렌즈 구조체의 굴절률 (np) 및 상기 렌즈층의 정상광 굴절률 (n0)과 이상광 굴절률 (ne)이 n0 < np
< ne의 관계를 갖도록, 렌즈 구조체 및 렌즈층의 물질을 구성하여 입사되는 광의 편광에 따라 볼록 렌즈 및 오목 렌즈로 동작되도록 하는 것을 특징으로 하는 이중 초점 렌즈.
【청구항 9】
계 1항 내지 제 2항 중 어느 한 항에 있어서, 상기 렌즈 구조체의
굴절률 (nP) 및 상기 렌즈층의 정상광 굴절률 (n0)과 이상광 굴절률 (ne)이 n0 < ne
< nP 의 관계를 갖도록, 렌즈 구조체 및 렌즈층의 물질을 구성하여 입사되는 광의 편광에 따라서로 다른 허초점거리를 갖는 2개의 오목 렌즈로 동작되도록 하는 것을 특징으로 하는 이중 초점 렌즈.
【청구항 10]
(a) 계 1 기판위에 등방상 고분자 물질을 이용하여 일면이 렌즈의 역상 구조를 갖는 렌즈 구조체를 제작하는 단계;
(b) 렌즈 구조체의 상부표면에 제 1 배향막을 형성하여 하부 기판을 완성하는 단계 ;
(c) 제 2 기판위에 계 2 배향막을 형성하여 상부 기판을 완성하는 단계;
(d) 하부 기판의 배향막위에 복굴절성을 갖는 물질을 도포하고 상부 기판을 덮어 라미네이팅하는 단계;
를 구비하는 이중 초점 렌즈 제조 방법 .
【청구항 11】
제 10항에 있어서, 상기 이중 초점 렌즈 제초 방법은,
(e) 상기 라미네이팅된 하부 기판과 상부 기판 사이의 복굴절성올 갖는 물질에 대하여 광경화시킨 후, 상부 기판을 분리시키는 단계;
를 더 구비하는 이중 초점 렌즈 제조 방법 .
【청구항 12】 평탄한 표면을 갖는 투명 기판;
단일 방향으로 배향되어 상기 투명 기판위에 형성된 배향막; 및 상기 배향막위에 형성되고, 복굴절성을 갖는 광경화성 액정상 고분자 물질이 상기 배향막에 의해 단일 방향으로 배향되어 이루어지고, 공기층과 맞닿는 일면이 렌즈 형상을 갖는 렌즈층;
을 구비하며, 상기 렌즈층은 정상광 굴절률 (n0) 및 이상광 굴절률 (ne)를 가지며, 상기 렌즈층의 정상광 굴절률 및 이상광 굴절률은 공기층의 굴절률 (nair)과 서로 상이하여, 입사되는 광의 편광에 따라 공기층과 렌즈층의 계면에서의 굴절률 차이가 발생하고 상기 계면에서의 굴절률 차이에 의해 결정되는 2개의 초점 거리를 갖는 것을 특징으로 하며,
입사되는 광의 편광 방향에 따라 초점 거리가 스위칭되는 투과형 렌즈로 동작되는 것을 특징으로 하는 이중 초점 렌즈.
【청구항 13】
제 12항에 있어서, 상기 공기층과 맞닿는 렌즈층의 일면은 볼록 렌즈 형상 또는 오목 렌즈 형상으로 이루어진 것을 특징으로 하는 이중 초점 렌즈.
【청구항 14】
평탄한 표면을 갖는 기판;
상기 기판위에 형성된 반사층;
단일 방향으로 배향되어 상기 반사층위에 형성된 배향막; 및
상기 배향막위에 형성되고, 복굴절성을 갖는 광경화성 액정상 고분자 물질이 상기 배향막에 의해 단일 방향으로 배향되어 이루어지고, 공기층과 맞닿는 일면이 렌즈 형상을 갖는 렌즈층;
을 구비하며, 상기 렌즈층은 정상광 굴절률 (n0) 및 이상광 굴절률 (ne)를 가지며, 상기 렌즈층의 정상광 굴절률 및 이상광 굴절률은 공기층의 굴절률 ( ^)과 서로 상이하여, 입사되는 광의 편광에 따라 공기층과 렌즈층의 계면에서의 굴절률 차이가 발생하고, 상기 계면에서의 굴절률 차이에 의해 결정되는 2개의 초점 거리를 갖는 것을 특징으로 하며, 입사되는 광의 편광 방향에 따라 초점 거리가 스위칭되는 반사형 렌즈로 동작되는 것을 특징으로 하는 이중 초점 렌즈.
【청구항 15]
제 14항에 있어서, 상기 공기층과 맞닿는 렌즈층의 일면은 볼록 렌즈 형상 또는오목 렌즈 형상으로 이루어진 것을 특징으로 하는 이중초점 렌즈.
【청구항 16]
(a) 제 1 기판위에 등방상 고분자 물질을 증착한 후 렌즈 구조를 갖는 스템프를 임프린팅하여 렌즈의 역상 구조를 갖는 렌즈 구조체를 제작하는 단계 ;
(b) 렌즈 구조체의 상부표면에 제 1 배향막을 형성하여 하부 기판을 완성하는 단계 ;
(c) 투명 기판위에 계 2 배향막을 형성하여 상부 기판을 완성하는 단계;
(d) 하부 기판의 배향막위에 광경화성 액정상 고분자 물질을 도포하고 상부 기판을 덮어 라미네이팅한 후, 광경화시켜 광경화성 액정상 고분자층을 고형화시키는 단계; 및
(e) 고형화된 광경화성 액정상 고분자층과 결합된 상부 기판을 상기 하부 기판으로부터 픽업하는 단계 ;
를 구비하여, 공기층에 노출된 광경화성 액정상 고분자층의 일면이 렌즈 형상을 갖는 것을 특징으로 하는 광경화성 액정상 고분자를 이용한 이중 초점 렌즈 제조 방법 .
【청구항 17】
제 16항에 있어서, 공기층에 노출된 광경화성 액정상 고분자층의 일면은 오목 렌즈 형상 또는 볼록 렌즈 형상으로 이루어진 것을 특징으로 하는 광경화성 액정상 고분자를 이용한 이중 초점 렌즈 제조 방법.
【청구항 18]
제 16항에 있어서, 상기 (b) 단계는 렌즈 구조체의 상부 표면에 제 1 배향막을 스핀 코팅하기 전에 uvo 처리하여 렌즈 구조체를 구성하는 등방상 고분자층을 친수화시켜, 게 1 배향막의 표면 에너지를 증가시키는 것을 특징으로 하는 광경화성 액정상고분자를 이용한 이중 초점 렌즈 제조 방법 .
【청구항 19]
제 16항에 있어서, 상기 (c) 단계는 기판의 표면에 제 2 배향막을 스핀 코팅하기 전에 UV0 처리하여 기판을 친수화시켜, 제 2 배향막의 표면 에너지를 증가시키는 것을 특징으로 하는 광경화성 액정상 고분자를 이용한 이중 초점 렌즈 제조 방법 .
PCT/KR2017/015087 2017-01-13 2017-12-20 이중 초점 렌즈 및 그 제조 방법 WO2018131816A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0006176 2017-01-13
KR1020170006176A KR101886792B1 (ko) 2017-01-13 2017-01-13 액정상 고분자를 이용한 이중 초점 렌즈
KR1020170006175A KR101866193B1 (ko) 2017-01-13 2017-01-13 이중 초점 렌즈 및 그 제조 방법
KR10-2017-0006175 2017-01-13

Publications (1)

Publication Number Publication Date
WO2018131816A1 true WO2018131816A1 (ko) 2018-07-19

Family

ID=62839805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015087 WO2018131816A1 (ko) 2017-01-13 2017-12-20 이중 초점 렌즈 및 그 제조 방법

Country Status (1)

Country Link
WO (1) WO2018131816A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976543A (en) * 1987-12-19 1990-12-11 Baumer Electric Ag Method and apparatus for optical distance measurement
JPH0560907A (ja) * 1991-09-03 1993-03-12 Canon Inc 二重焦点レンズ
KR20120091646A (ko) * 2011-02-09 2012-08-20 주식회사 엘지화학 프레넬 렌즈 구조체 및 이를 이용한 2d/3d 전환 영상표시장치
KR20140140661A (ko) * 2013-05-29 2014-12-10 경북대학교 산학협력단 편광 의존형 렌즈 구조체 및 그 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976543A (en) * 1987-12-19 1990-12-11 Baumer Electric Ag Method and apparatus for optical distance measurement
JPH0560907A (ja) * 1991-09-03 1993-03-12 Canon Inc 二重焦点レンズ
KR20120091646A (ko) * 2011-02-09 2012-08-20 주식회사 엘지화학 프레넬 렌즈 구조체 및 이를 이용한 2d/3d 전환 영상표시장치
KR20140140661A (ko) * 2013-05-29 2014-12-10 경북대학교 산학협력단 편광 의존형 렌즈 구조체 및 그 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EDMUND OPTICS: "Polarization Directed Fiat Lenses Product Review", YOUTUBE, 8 September 2016 (2016-09-08), XP054978779, Retrieved from the Internet <URL:https://www.youtube.com/watch?time_continue=5&v=NrBpkatFQfg> [retrieved on 20170913] *

Similar Documents

Publication Publication Date Title
US10409056B2 (en) Display system
US10802302B2 (en) Waveplate lenses and methods for their fabrication
US10663772B2 (en) Active lens structure and method of manufacturing the same
JP7487242B2 (ja) 熱可塑性光学デバイス
KR101495758B1 (ko) 편광 의존형 렌즈 구조체 및 그 제조 방법
US10816870B2 (en) Active prism structure and fabrication method therefor
US20140218674A1 (en) Liquid crystalline polymer lens structure
CN105892119B (zh) 偏振控制膜及使用该偏振控制膜的立体显示装置
CN110799897B (zh) 可电控的光学元件、尤其具有光学有效的表面特征的薄层盒以及其制备方法
US8704987B2 (en) Graded index birefringent component and manufacturing method thereof
CN103885245B (zh) 光学膜以及使用此光学膜的裸视立体显示装置
WO2018131816A1 (ko) 이중 초점 렌즈 및 그 제조 방법
KR101866193B1 (ko) 이중 초점 렌즈 및 그 제조 방법
TWI770706B (zh) 柱鏡光學複合膜及其製備方法、3d顯示器
KR101588389B1 (ko) 낮은 셀 갭을 갖는 2d/3d 스위처블 액정렌즈 및 그의 제조 방법
KR101886792B1 (ko) 액정상 고분자를 이용한 이중 초점 렌즈
US20160306085A1 (en) Liquid crystalline polymer film with diffractive optical noise removed and method of manufacturing the same
CN109901250A (zh) 一种内部含有结构化纳米粒子的光学元件及其制造方法
WO2018088706A1 (ko) 가상 이동 렌즈 및 그 제조 방법
JPWO2020075702A1 (ja) 光学素子および画像表示装置
Yu et al. Light field imaging with a gradient index liquid crystal microlens array
KR102263949B1 (ko) 화각 및 가간섭성 능동제어 랜덤 굴절 소자 및 그 제조 방법
US20240027823A1 (en) Multi-focusing meta lens
Huang et al. 33.3: High Performance Liquid Crystal Micro‐Lens Array Applied to Light Field Display
US11105963B1 (en) Optical systems with adjustable lenses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891671

Country of ref document: EP

Kind code of ref document: A1