WO2018131580A1 - Epoxy resin composition, epoxy resin cured product, prepreg, fiber-reinforced composite material, block copolymer and method for producing same - Google Patents

Epoxy resin composition, epoxy resin cured product, prepreg, fiber-reinforced composite material, block copolymer and method for producing same Download PDF

Info

Publication number
WO2018131580A1
WO2018131580A1 PCT/JP2018/000235 JP2018000235W WO2018131580A1 WO 2018131580 A1 WO2018131580 A1 WO 2018131580A1 JP 2018000235 W JP2018000235 W JP 2018000235W WO 2018131580 A1 WO2018131580 A1 WO 2018131580A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
block
resin composition
block copolymer
fiber
Prior art date
Application number
PCT/JP2018/000235
Other languages
French (fr)
Japanese (ja)
Inventor
永野麻紀
田中汐
富岡伸之
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2018503679A priority Critical patent/JPWO2018131580A1/en
Publication of WO2018131580A1 publication Critical patent/WO2018131580A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones

Definitions

  • the present invention relates to a fiber reinforced composite material suitable for aerospace use, a prepreg suitably used for obtaining the same, and an epoxy resin composition and a cured epoxy resin suitably used as a matrix resin thereof. Further, the present invention relates to a block copolymer suitable for the matrix resin reinforcing material, electronic material, paint, adhesive and the like.
  • fiber reinforced composite materials using reinforcing fibers such as carbon fibers and aramid fibers have utilized high specific strength and specific elastic modulus to make structural materials such as aircraft and automobiles, tennis rackets, golf shafts, fishing rods, etc. It has been used for sports and general industrial applications.
  • the fiber-reinforced composite material is produced by using a prepreg which is a sheet-like intermediate material in which reinforcing fibers are impregnated with an uncured matrix resin.
  • a resin transfer molding method or the like is used in which a liquid resin is poured into the arranged reinforcing fibers and the resin is heated and cured.
  • the method using a prepreg has an advantage that it is easy to obtain a high-performance fiber-reinforced composite material because the orientation of the reinforcing fibers can be strictly controlled and the design flexibility of the laminated structure is high.
  • the matrix resin used in this prepreg thermosetting resin is mainly used from the viewpoint of productivity such as heat resistance and processability.
  • Epoxy resins have been suitably used from the viewpoint of mechanical properties such as strength and rigidity of the composite material.
  • the epoxy resin has a higher elastic modulus than the thermoplastic resin, but is inferior in toughness, so that the interlaminar toughness and impact resistance of the fiber-reinforced composite material may be insufficient.
  • defects such as cracks and cracks are likely to occur not only when the fiber reinforced composite material is used but also in a processing process that is exposed to a high temperature environment such as painting or baking.
  • Patent Document 2 a method for improving the toughness of an epoxy resin by forming a submicron rubber phase in the course of curing the epoxy resin by adding a block copolymer made of an acrylic polymer.
  • Patent Document 3 a method for improving toughness while maintaining heat resistance has been disclosed by designing a block copolymer made of an aromatic polymer.
  • thermoplastic resin When the thermoplastic resin is phase-separated as in Patent Document 1, it leads to improvement in toughness and impact resistance, but causes a decrease in heat resistance, a decrease in adhesive strength with the base material, and a change in phase separation structure depending on molding conditions. There was a case.
  • the method of Patent Document 2 also has a large thickening effect on the epoxy resin, which may deteriorate the processability, and may cause a decrease in elastic modulus resulting from the blending of the rubber component. In some cases, a sufficient balance could not be obtained. Further, when the rubber component is blended in this way, it is not the rubber phase but the epoxy resin phase that is responsible for energy absorption. Therefore, if the plastic deformation ability of the epoxy resin phase is low, the effect of improving toughness tends to be insufficient.
  • an object of the present invention is to provide an epoxy resin composition that stably gives an epoxy resin cured product having small heat-resistance, elastic modulus, and toughness, and a prepreg and a fiber-reinforced composite, which have a small variation in phase separation structure depending on molding conditions. It is providing the fiber reinforced composite material excellent in adhesiveness by using a material and this epoxy resin composition.
  • block copolymers are not limited to the field of fiber reinforced composite materials, but is also progressing in a wide range of fields such as electronic materials, paints, and adhesives.
  • toughness and crack resistance Improvements are being considered.
  • a block copolymer having high heat resistance has been demanded, and as such a material, a material in which an aromatic polymer is introduced has been attracting attention.
  • incorporating a low-polarity elastomer block capable of microphase separation into an aromatic polymer has difficulty in synthesis, and cannot exhibit sufficient characteristics.
  • a second object of the present invention is to provide a novel block copolymer excellent in heat resistance and toughness and a method for producing the same.
  • the present invention has one of the following configurations to achieve the above object.
  • the epoxy resin composition of the present invention includes at least the following components [A] to [D], and includes an epoxy resin containing 16 to 50% by mass of the component [B] with respect to 100% by mass of the total amount of the epoxy resin composition. It is a composition.
  • the block [c1] is a structural unit represented by the above formula (1).
  • Block [c2] containing 80 mol% or more has a solubility parameter (SP value) of 10 (cal / cm 3 ) 1/2 or less.
  • SP value solubility parameter
  • Block [c1] and block [c2] are ether bonds.
  • Epoxy Resin Curing Agent Connected The prepreg of the present invention is a prepreg obtained by impregnating reinforcing fibers with the epoxy resin composition.
  • the cured epoxy resin of the present invention is a cured epoxy resin obtained by curing the epoxy resin composition.
  • the first aspect of the fiber reinforced composite material of the present invention is a fiber reinforced composite material obtained by curing the prepreg.
  • a second aspect of the fiber reinforced composite material of the present invention is a fiber reinforced composite material comprising the cured epoxy resin and reinforced fibers.
  • the block copolymer of the present invention is a block copolymer composed of a block [c1] and a block [c2] that satisfies all of the following conditions (i) to (iii).
  • the block [c1] contains 80 mol% or more of the structural unit represented by the formula (1)
  • the block [c2] has a solubility parameter (SP value) of 10 (cal / cm 3 ) 1/2 or less.
  • SP value solubility parameter
  • an epoxy resin composition that stably forms a fine phase separation structure with a wide range of molding conditions and gives a cured epoxy resin having excellent heat resistance, elastic modulus, and toughness, and a prepreg and fiber reinforcement A composite material is obtained. Furthermore, a fiber-reinforced composite material excellent in adhesiveness can be obtained by forming a fine phase separation structure with the cured epoxy resin.
  • block copolymers that give excellent heat resistance and toughness can be obtained with electronic materials, paints, adhesives, and the like.
  • the epoxy resin composition of the present invention includes an epoxy resin as a constituent element [A], a thermoplastic resin having a predetermined structure as a constituent element [B], a block copolymer that satisfies a predetermined condition as a constituent element [C], and a constituent It is essential to include an epoxy resin curing agent as the element [D].
  • the component [A] in the present invention is an epoxy resin.
  • Component [A] forms the basis of the mechanical properties and handleability of the cured epoxy resin.
  • the epoxy resin in the present invention means a compound having one or more epoxy molecules in one molecule.
  • the epoxy resin in the present invention include bisphenol type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, resorcinol type epoxy resin, dicyclopentadiene type epoxy resin, epoxy resin having biphenyl skeleton, urethane and isocyanate.
  • modified epoxy resins and amine type epoxy resins include modified epoxy resins and amine type epoxy resins. These epoxy resins may be added in combination of not only one type but also a plurality of types.
  • amine type epoxy resins can be suitably used because of their low viscosity and excellent impregnation into reinforcing fibers, and excellent mechanical properties such as heat resistance and elastic modulus when used as fiber reinforced composite materials.
  • Examples of the amine-type epoxy resin preferably used in the present invention include tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, triglycidylaminocresol, diglycidylaniline, diglycidyltoluidine, tetraglycidylxylylenediamine, and halogens and alkyls thereof. Substituted products, hydrogenated products and the like can be mentioned.
  • triglycidylaminophenol or triglycidylaminocresol Commercially available products of triglycidylaminophenol or triglycidylaminocresol include “Sumiepoxy (registered trademark)” ELM100, “Sumiepoxy (registered trademark)” ELM120 (manufactured by Sumitomo Chemical Co., Ltd.), “Araldide (registered trademark)” “MY0500”, “Araldide (registered trademark)” MY0510, “Araldide (registered trademark)” MY0600 (manufactured by Huntsman Advanced Materials), “jER (registered trademark)” 630 (manufactured by Mitsubishi Chemical Corporation), etc. Can be used.
  • Examples of commercially available diglycidyl aniline include GAN (manufactured by Nippon Kayaku Co., Ltd.). As a commercially available product of diglycidyl toluidine, GOT (manufactured by Nippon Kayaku Co., Ltd.) or the like can be used. “TETRAD (registered trademark)”-X, “TETRAD (registered trademark)”-C (above, manufactured by Mitsubishi Gas Chemical Co., Ltd.), etc. are used as commercial products of tetraglycidylxylylenediamine and hydrogenated products thereof. be able to.
  • the component [B] in the present invention is a thermoplastic resin that contains 80 mol% or more of the structural unit represented by the formula (1) (referred to as the main structural unit) with respect to all the structural units and can be dissolved in the epoxy resin. is there.
  • the constituent element [B] can be dissolved in the epoxy resin phase, and an epoxy resin cured product having excellent heat resistance and plastic deformation ability can be obtained.
  • the constituent element [B] may contain less than 20 mol% of constituent units different from the main constituent unit. Although the structure of such a structural unit is not particularly limited, it is desirable to have a skeleton having high compatibility with epoxy resins and high heat resistance.
  • structural units for example, structural units of polyether ether sulfone, polysulfone, polyether ketone, and polyether imide are preferably used. Furthermore, from the viewpoint of heat resistance, it is preferable that 90% by mole or more of the main structural unit is contained in the component [B], and 100% by mole, that is, the component [B] is polyethersulfone. More preferred.
  • the component [B] is a thermoplastic resin that can be dissolved in the epoxy resin, and is important for the component [B] to be uniformly dissolved in the epoxy resin phase during the curing process.
  • the thermoplastic resin that can be dissolved in the epoxy resin means that the epoxy resin of the component [A] is 5% by mass with respect to 100% by mass of the total mass of the component [A] and the thermoplastic resin.
  • the temperature is raised to 150 ° C., it is kneaded at 200 rpm for 1 hour, and when left at room temperature for 1 hour, it means that the two are uniformly compatible at the molecular level.
  • a phase contrast microscope is used to judge from the presence or absence of an insoluble thermoplastic resin or a phase separation structure having a size of 0.5 ⁇ m or more.
  • thermoplastic resin does not dissolve in the epoxy resin of the component [A], it exists as an insoluble matter without being compatible with the component [A] or has a phase of 0.5 ⁇ m or more with the component [A]. Since a continuous structure or a sea-island structure having a separation structure is formed, the measurement is performed as follows.
  • thermoplastic resin forms a continuous structure with the constituent element [A]
  • a straight line having a length of 3 mm (a length of 1 ⁇ m on the sample) is randomly drawn on a micrograph taken at a magnification of 200 times.
  • the number average value of the lengths of the portions passing through the phase mainly composed of the thermoplastic resin is defined as the structure period, that is, the size of the phase separation structure.
  • size of this phase-separation structure is less than 0.5 micrometer, let the thermoplastic resin be a thermoplastic resin which can be melt
  • thermoplastic resin when the thermoplastic resin is present as an insoluble matter or when forming the sea-island structure with the constituent element [A], an area of 20 mm square on the micrograph taken at a magnification of 200 times (100 ⁇ m square area on the sample) ) Select three locations, measure the long diameter of all insoluble matter or island phase existing in those areas, and calculate the number average value of the insoluble matter diameter or island phase diameter (ie, the size of the phase separation structure) Sa)). And when the diameter of this insoluble matter or the magnitude
  • the term “insoluble matter or island phase exists in the region” means that more than half of the area of the insoluble matter or island phase is inside the region.
  • the weight average molecular weight (Mw) of the component [B] is preferably in the range of 4,000 to 40,000 g / mol, more preferably 4,500 to 25,000 g / mol. If the Mw is lower than 4,000 g / mol, it may be insufficient to increase the plastic deformation capacity. On the other hand, when Mw is higher than 40,000 g / mol, when the thermoplastic resin is dissolved in the epoxy resin, the viscosity of the epoxy resin composition becomes high and kneading is difficult, and prepreg may be difficult.
  • Mw refers to the relative molecular weight determined by GPC (Gel Permeation Chromatography) using a polystyrene standard sample.
  • the terminal of this component [B] has a functional group which can react with an epoxy resin.
  • the functional group capable of reacting with an epoxy resin means a functional group capable of reacting with an oxirane group of an epoxy molecule or a functional group of an epoxy resin curing agent.
  • a functional group such as an amino group, a hydroxyl group or a carboxyl group can be mentioned, but the functional group is not limited thereto.
  • this functional group reacts with an epoxy resin or an epoxy resin curing agent, an epoxy resin cured product in which the component [B] is uniformly compatible with the epoxy resin phase is easily obtained, and stable characteristics can be expressed.
  • the component [B] having a hydroxyl group as a functional group is preferably used because it provides high toughness.
  • the production method of the component [B] in the present invention is not particularly limited. For example, it is produced by the method described in JP-B-42-7799, JP-B-45-21318, and JP-A-48-19700.
  • aprotic polarities such as N-methylpyrrolidone, DMF, DMSO, sulfolane, etc. in the presence of alkali metal compounds such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, etc.
  • a divalent phenol compound such as 4,4′-dihydroxydiphenylsulfone and a divalent dihalogenodiphenyl compound such as 4,4′-dichlorodiphenylsulfone in a solvent.
  • a high-molecular-weight polyether sulfone obtained by a generally known method that is, a high-molecular-weight polyether sulfone obtained by polycondensation of a dihydric phenol compound and a dihalogenodiphenyl compound
  • transducing a hydroxyphenyl group to the terminal by heating a dihydric phenol compound in an aprotic polar solvent is mentioned.
  • the epoxy resin composition of the present invention needs to contain 16 to 50% by mass of component [B], preferably 20 to 45% by mass, with respect to 100% by mass of the total amount of the epoxy resin composition. If it is less than 16% by mass, the epoxy resin phase becomes brittle. Even when the component [C] is introduced into such an epoxy resin phase, energy absorption by plastic deformation is small, and as a result, the effect of improving the toughness of the cured epoxy resin is small. On the other hand, when it exceeds 50 mass%, the viscosity of an epoxy resin composition will rise and the manufacturing process property and handleability of an epoxy resin composition and a prepreg will become inadequate. In addition, the constituent element [B] forms a coarse phase separation structure, or the constituent element [C] becomes secondary agglomerated during resin preparation or molding curing.
  • the component [C] in the present invention is a block copolymer composed of a block [c1] and a block [c2] that satisfies all of the following conditions (i) to (iii).
  • the block copolymer of the present invention comprises a block [c1] and a block [c2] that satisfy all of the following conditions (i) to (iii).
  • the block [c1] contains 80 mol% or more of the structural unit represented by the above formula (1).
  • the block [c2] has a solubility parameter (SP value) of 10 (cal / cm 3 ) 1/2 or less.
  • SP value solubility parameter
  • the block copolymer composed of the block [c1] and the block [c2] in the present invention satisfies the conditions (i) to (iii), so that the component [B] has a phase of 16 to 50% by mass in the epoxy resin. Even when melted, the constituent element [C] can be finely dispersed. As a result, the toughness is greatly improved while maintaining the heat resistance and elastic modulus of the cured epoxy resin. Moreover, it is possible to suppress the improvement of the adhesiveness at the interface and the fluctuation of the phase separation structure due to the molding conditions.
  • the structural unit (main structural unit) represented by the formula (1) in the block [c1] is 80 mol% or more with respect to all the structural units. It is. Thereby, compatibility with the component [B] which is compatible with the epoxy resin is increased, which leads to formation of a stable phase separation structure.
  • the block [c1] may contain less than 20 mol% of other structural units, and their configuration is not particularly limited, but the block [c1] as a whole preferably has a skeleton with high heat resistance.
  • structural units of polyether ether sulfone, polysulfone, polyether ketone, and polyether imide are preferably used.
  • the main constituent unit is preferably included in the block [c1] in an amount of 90 mol% or more, and more preferably 100 mol%.
  • the block [c1] preferably has the same composition of the constituent unit [B] and the constituent unit from the viewpoint of compatibility.
  • the SP value of the block [c2] needs to be 10 (cal / cm 3 ) 1/2 or less.
  • the block [c2] can form a fine phase in the cured epoxy resin phase and exhibit high toughness while maintaining heat resistance and elastic modulus.
  • the SP value is a generally known solubility parameter, and is an index of solubility and compatibility.
  • Polym. Eng. Sci. , 14 (2), 147-154 (1974) the SP value calculated from the molecular structure based on the Fedors method is used, and the unit is (cal / cm 3 ) 1/2 . I will do it.
  • the block [c2] having an SP value of 10 (cal / cm 3 ) 1/2 or less in the present invention is not particularly limited in chemical structure or molecular weight, but induces plastic deformation of the epoxy resin phase.
  • the elastomer is preferably capable of causing large energy absorption. Examples of such elastomers include polybutadiene, polyisoprene, poly (2,3-dimethyl-1,3-butadiene), poly (1,3-pentadiene), and poly (2-phenyl-1,3-butadiene).
  • Polyalkylene (meth) acrylate selected from polydiene, polyethyl acrylate, polybutyl acrylate, poly (2-ethylhexyl acrylate), polyhydroxyethyl acrylate and poly (2-ethylhexyl methacrylate) selected from Examples include siloxane and polytetrafluoroethylene. Among these, polysiloxane having a good balance of mechanical properties is preferably used.
  • the component [C] is such that the block [c1] is polyethersulfone from the viewpoint of good compatibility with the component [B] and heat resistance, and the block [c2] is tough. From this point of view, a block copolymer which is polysiloxane is preferable.
  • the block [c1] is preferably polyethersulfone from the viewpoint of heat resistance, and the block [c2] preferably contains a siloxane bond from the viewpoint of toughness.
  • the block [c1] and the block [c2] are connected by an ether bond. Furthermore, the block [c1] and the block [c2] are preferably connected by a structure represented by the formula (2) or the formula (3). Thereby, it becomes a chemically stable linear linked structure, and compatibility with the epoxy resin phase is enhanced, and an epoxy resin cured product having excellent solvent resistance and adhesiveness is easily obtained.
  • the weight average molecular weight (Mw) of the block copolymer in the present invention is preferably in the range of 5,000 to 70,000 g / mol, and more preferably 7,000 to 60,000 g / mol.
  • Mw weight average molecular weight
  • the weight average molecular weight (Mw) of the block copolymer in the present invention is preferably in the range of 5,000 to 70,000 g / mol, and more preferably 7,000 to 60,000 g / mol.
  • Mw weight average molecular weight
  • the block mass fraction of the block [c2] in the block copolymer in the present invention is preferably 0.05 to 0.60, and more preferably 0.15 to 0.50.
  • the block mass fraction is less than 0.05, the toughness of the cured epoxy resin may be lowered.
  • the block mass fraction exceeds 0.60, it may be difficult to lower the elastic modulus of the cured epoxy resin and to stabilize the phase separation.
  • thermoplastic resin that can be dissolved in an epoxy resin having a phenolic hydroxyl group at the terminal for a compound having an oxirane group of the epoxy molecule at the terminal and an SP value of 10 (cal / cm 3 ) 1/2 or less.
  • a block copolymer can be obtained by the nucleophilic substitution reaction.
  • a block copolymer can also be obtained.
  • the content of the block copolymer of the component [C] is 2 to 30 masses with respect to 100 parts by mass of the total amount of the epoxy resin of the component [A], from the viewpoint of mechanical properties and compatibility with the composite production process. Parts, preferably 3 to 20 parts by mass. If the content of the component [C] is less than 2 parts by mass, the toughness and plastic deformation ability of the cured epoxy resin may be reduced. When content of component [C] exceeds 30 mass parts, the elasticity modulus of epoxy hardened
  • the component [D] in the present invention is an epoxy resin curing agent.
  • the epoxy resin curing agent is not particularly limited as long as it is a compound having an active group capable of reacting with the oxirane group of the epoxy molecule.
  • dicyandiamide aromatic polyamine, aminobenzoic acid esters, various acid anhydrides, Phenol novolac resin, cresol novolac resin, polyphenol compound, imidazole derivative, aliphatic amine, tetramethylguanidine, thiourea addition amine, carboxylic acid anhydride such as methylhexahydrophthalic anhydride, carboxylic acid hydrazide, carboxylic acid amide, And Lewis acid complexes such as polymercaptan and boron trifluoride ethylamine complex.
  • an aromatic polyamine as an epoxy resin curing agent for the component [D]
  • a cured epoxy resin with good heat resistance can be obtained.
  • diaminodiphenyl sulfone or a derivative thereof, or various isomers thereof are the most suitable epoxy resin curing agents for obtaining a cured epoxy resin with good heat resistance.
  • the optimum value of the addition amount of the epoxy resin curing agent of the component [D] varies depending on the type of epoxy resin and epoxy resin curing agent.
  • the content is preferably 0.6 to 1.2 times the amount of active hydrogen in the epoxy resin from the viewpoint of heat resistance and mechanical properties. 0.7 to 1.1 times is more preferable.
  • the crosslinking density of the cured epoxy resin is not sufficient, the elastic modulus and heat resistance may be insufficient, or the static strength characteristics of the fiber reinforced composite material may be insufficient.
  • the crosslinking density and water absorption rate of the cured epoxy resin are too high, the deformation ability is insufficient, and the impact resistance of the fiber composite material may be inferior.
  • aromatic polyamine curing agents include Seika Cure S (manufactured by Wakayama Seika Kogyo Co., Ltd.), MDA-220, 3,3′-DAS (manufactured by Mitsui Chemicals, Inc.), “jER Cure (registered) Trademarks) “W (Mitsubishi Chemical Corporation)”, “Lonacure (registered trademark)” M-DEA, “Lonacure (registered trademark)” M-DIPA, “Lonacure (registered trademark)” M-MIPA (above, Lonza ( And Lonzacure (registered trademark) DETDA 80 (manufactured by Lonza).
  • the epoxy resin and epoxy resin curing agent, or a product obtained by pre-reacting a part of them can be contained in the composition. This method may be effective for viscosity adjustment and storage stability improvement.
  • the cured epoxy resin of the present invention is obtained by curing the epoxy resin composition of the present invention.
  • the glass transition temperature of the cured epoxy resin of the present invention is preferably 120 to 250 ° C., more preferably 140 to 210 ° C., from the viewpoint of sufficiently ensuring the heat resistance required for aircraft materials and compressive strength under wet heat. is there.
  • Such a relatively high heat resistance epoxy resin composition and a prepreg using the epoxy resin composition require a relatively high curing temperature.
  • the prepreg currently used for aircraft fuselage structural materials generally has a curing molding temperature in the range of 180 ⁇ 10 ° C. Further, in order to sufficiently develop the strength of the fiber reinforced composite material formed by curing, the prepreg laminate is generally cured and molded under a pressure condition of 1 atm or higher.
  • the size of the phase separation structure composed mainly of the component [C] is preferably in the range of 0.01 to 0.5 ⁇ m. That is, in the cured epoxy resin of the present invention, the constituent element [A], the constituent element [B], and the constituent element [D] have a homogeneous phase structure or the constituent element [B] as a main component. It is preferable to form a fine phase separation structure of less than 5 ⁇ m, and further to form a fine phase separation structure of 0.01 ⁇ m to 0.5 ⁇ m containing the constituent element [C] as a main component.
  • the constituent element [A], the constituent element [B], and the constituent element [D] form a uniform phase structure, and a fine phase of 0.01 ⁇ m to 0.5 ⁇ m mainly containing the constituent element [C]. It is more preferable to form a separation structure because stable characteristics can be obtained.
  • forming a homogeneous phase structure refers to a state in which the component [A], the component [B], and the component [D] are compatible at the molecular level in the cured epoxy resin.
  • the component [B] or the component [C] forms a phase of less than 0.01 ⁇ m, it is difficult to observe with a transmission electron microscope, so that it is regarded as a homogeneous phase structure.
  • the phase having the constituent element [C] as a main component is the density (content per unit area) of the constituent element [C] among phases forming a phase separation structure such as a continuous structure or a sea-island structure. Represents a larger phase than the other phases. Whether the density of the constituent element [C] is larger than the other phases is determined based on the composition contrast. If it is difficult to determine by composition contrast, it is determined by elemental analysis using an electron microscope.
  • the elastic modulus and heat resistance may be lowered, and the adhesiveness at the phase-separated interface may be deteriorated. is there. In addition, it may be difficult to stabilize the phase structure depending on the molding conditions.
  • the constituent element [C] forms a phase of less than 0.01 ⁇ m, or forms a homogeneous phase structure, the energy absorption due to plastic deformation is small, and the effect of improving the toughness of the cured epoxy resin is small. There is a case.
  • the phase separation structure means that a phase mainly composed of resins having different constituent elements has a size of a phase separation structure of 0.01 ⁇ m or more.
  • the state of being uniformly mixed at the molecular level is called a compatible state, and in the present invention, the phase composed mainly of resins having different constituent elements is less than 0.01 ⁇ m in size of the phase separation structure. If there is, it shall be regarded as a compatible state.
  • the size of the phase separation structure of a phase mainly composed of a certain resin is defined as follows.
  • the phase separation structure has a continuous structure and a sea-island structure, each is defined.
  • a straight line having a predetermined length is drawn on a photomicrograph, and the number average value of the lengths of portions of the straight line passing through a phase containing the resin as a main component is defined as a structural period.
  • the structure period is the size of the phase separation structure.
  • the predetermined length is set as follows based on a transmission electron micrograph. When the structural period is expected to be on the order of 0.01 ⁇ m (10 nm or more and less than 100 nm), take a photograph at a magnification of 20,000 times, and randomly place 3 pieces of 20 mm length (1 ⁇ m length on the sample) on the photograph. The selected one.
  • phase separation structure period is expected to be on the order of 0.1 ⁇ m (100 nm or more and less than 1 ⁇ m)
  • a photograph is taken at a magnification of 2,000 times, and a length of 20 mm on the photograph (10 ⁇ m on the sample) Length)
  • the phase separation structure period is expected to be on the order of 1 ⁇ m (1 ⁇ m or more and less than 10 ⁇ m)
  • a photograph was taken at a magnification of 200 times, and three pieces of 20 mm length (100 ⁇ m length on the sample) were randomly selected on the photograph. It shall mean something. If the measured phase separation structure period is out of the expected order, the corresponding length is measured again at the magnification corresponding to the corresponding order, and this is adopted.
  • the major axis of the island phase existing in a predetermined region is measured, and the number average value of these is taken as the island phase diameter.
  • the diameter of the island phase is the size of the phase separation structure.
  • the major axis is taken, and when it is indefinite, the diameter of the circumscribed circle is used.
  • the diameter of the outermost layer circle or the major axis of the ellipse is used.
  • the predetermined area is set as follows based on a transmission electron micrograph.
  • the diameter of the island phase is expected to be less than 0.01 ⁇ m or on the order of 0.01 ⁇ m (10 nm or more and less than 100 nm)
  • a photograph is taken at a magnification of 20,000 times, and a random 20 mm square area on the photograph (1 ⁇ m on the sample Four areas) are selected.
  • the diameter of the island phase is expected to be on the order of 0.1 ⁇ m (100 nm or more and less than 1 ⁇ m)
  • a photograph is taken at a magnification of 2,000 times, and an area of 20 mm square on the photograph (10 ⁇ m square on the sample) 3) Select 3 locations.
  • the island phase diameter is expected to be on the order of 1 ⁇ m (1 ⁇ m or more and less than 10 ⁇ m), take a photograph at a magnification of 200 times, and randomly select three 20 mm square areas (100 ⁇ m square area on the sample) on the photograph. . If the measured island phase diameter deviates from the expected order, the corresponding region is measured again at the magnification corresponding to the corresponding order, and this is adopted.
  • the size of the phase separation structure of the cured epoxy resin can be observed with a scanning electron microscope or a transmission electron microscope. You may dye
  • thermodynamic property analysis such as DMA or DSC.
  • tan ⁇ loss tangent
  • a sea-island structure phase-separated structure having a phase mainly composed of the epoxy resin of the component [A] and a phase mainly composed of the block copolymer of the component [C]
  • An epoxy resin cured product having
  • the epoxy resin composition of the present invention is a coupling agent, a thermosetting resin particle, or a thermoplastic resin other than the component [B], a thermoplastic resin particle, a component [ Inorganic fillers such as elastomers other than C], silica gel, carbon black, clay, carbon nanotube, metal powder, and the like can be contained.
  • components other than the component [D], which is an epoxy resin curing agent are first heated and kneaded uniformly at a temperature of about 150 to 170 ° C., and then cooled to a temperature of about 80 ° C. After that, it is preferable to add component [D] and knead, but the blending method of each component is not particularly limited to this method.
  • Examples of the reinforcing fiber used in the present invention include glass fiber, carbon fiber, graphite fiber, aramid fiber, boron fiber, alumina fiber, and silicon carbide fiber. Two or more kinds of these reinforcing fibers may be mixed and used, but in order to obtain a molded product that is lighter and more durable, it is preferable to use carbon fibers or graphite fibers. In particular, in applications where there is a high demand for weight reduction and high strength of materials, it is preferable that the reinforcing fibers are carbon fibers because of their excellent specific modulus and specific strength.
  • the carbon fiber preferably used in the present invention can be any type of carbon fiber depending on the application, but is preferably a carbon fiber having a tensile elastic modulus of 400 GPa or less from the viewpoint of impact resistance. From the viewpoint of strength, a carbon fiber having a tensile strength of preferably 4.4 to 6.5 GPa is preferably used because a composite material having high rigidity and mechanical strength can be obtained. Also, the tensile elongation is an important factor, and it is preferable that the carbon fiber is a high strength and high elongation carbon fiber of 1.7 to 2.3%. Accordingly, carbon fibers having the characteristics that the tensile modulus is at least 230 GPa, the tensile strength is at least 4.4 GPa, and the tensile elongation is at least 1.7% are most suitable.
  • Carbon fibers include “Torayca (registered trademark)” T800G-24K, “Torayca (registered trademark)” T800S-24K, “Torayca (registered trademark)” T700G-24K, and “Torayca (registered trademark)” T300- 3K, and “Torayca (registered trademark)” T700S-12K (manufactured by Toray Industries, Inc.).
  • the form and arrangement of the carbon fibers can be appropriately selected from long fibers and woven fabrics arranged in one direction. However, in order to obtain a carbon fiber reinforced composite material that is lighter and more durable, It is preferably in the form of continuous fibers such as long fibers (fiber bundles) or woven fabrics arranged in one direction.
  • the prepreg of the present invention is obtained by impregnating the above reinforcing fiber with the epoxy resin composition of the present invention.
  • the fiber mass fraction of the prepreg is preferably 40 to 90% by mass, more preferably 50 to 80% by mass.
  • the fiber mass fraction is too low, the mass of the resulting composite material becomes excessive, and the advantages of the fiber-reinforced composite material having excellent specific strength and specific elastic modulus may be impaired.
  • the fiber mass fraction is too high, poor impregnation of the resin composition occurs, and the resulting composite material tends to have a lot of voids, so that its mechanical properties may be greatly deteriorated.
  • the form of the reinforcing fibers is not particularly limited, and for example, long fibers, tows, woven fabrics, mats, knits, braids and the like that are aligned in one direction are used.
  • an array in which reinforcing fibers are aligned in a single direction is most suitable. Arrangements are also suitable for the present invention.
  • the prepreg of the present invention is prepared by dissolving the epoxy resin composition used as a matrix resin in a solvent such as methyl ethyl ketone or methanol to lower the viscosity and impregnating the reinforced fiber (wet method), or by heating the matrix resin by heating. It can be produced by a hot melt method (dry method) or the like in which the viscosity is increased and the reinforcing fibers are impregnated.
  • a solvent such as methyl ethyl ketone or methanol
  • the wet method is a method in which a reinforcing fiber is immersed in a solution of an epoxy resin composition that is a matrix resin, and then lifted and the solvent is evaporated using an oven or the like.
  • the hot melt method (dry method) is a method of impregnating reinforcing fibers directly with an epoxy resin composition whose viscosity has been reduced by heating, or a film in which an epoxy resin composition is once coated on release paper or the like, Next, the reinforcing fiber is impregnated with resin by overlapping the film from both sides or one side of the reinforcing fiber and heating and pressing. According to the hot melt method, the solvent remaining in the prepreg is substantially absent, and therefore, this is a preferred embodiment in the present invention.
  • the first aspect of the fiber-reinforced composite material of the present invention is obtained by curing the prepreg of the present invention.
  • a fiber reinforced composite material can be produced by, for example, a method of laminating the prepreg of the present invention and then heating and curing the matrix resin while applying pressure to the laminate.
  • a press molding method an autoclave molding method, a bagging molding method, a wrapping tape method, an internal pressure molding method, or the like is employed.
  • the second embodiment of the fiber-reinforced composite material of the present invention comprises the cured epoxy resin of the present invention and reinforcing fibers.
  • a fiber-reinforced composite material is obtained by impregnating an epoxy resin composition directly into a reinforcing fiber without using a prepreg, followed by heat-curing, for example, a hand lay-up method, a filament winding method, a pultrusion method, a resin It can be produced by a molding method such as an injection molding method or a resin transfer molding method. In these methods, it is preferable to prepare an epoxy resin composition by mixing two liquids of an epoxy resin main component and an epoxy resin curing agent immediately before use.
  • epoxy resin composition of the present invention will be described more specifically with reference to examples.
  • the production methods and evaluation methods of the resin raw materials used in the examples are shown below.
  • Epoxy resin> (Amine type epoxy resin) "JER (registered trademark)” 630 (triglycidylaminophenol, manufactured by Mitsubishi Chemical Corporation) "Araldite (registered trademark)” MY0600 (triglycidylaminophenol, manufactured by Huntsman Advanced Materials) "Sumiepoxy (registered trademark)” ELM434 (tetraglycidyldiaminodiphenylmethane, manufactured by Sumitomo Chemical Co., Ltd.).
  • the mixture was heated to 130 ° C. while passing nitrogen gas. As the temperature of the reaction system rose, the reflux of toluene was started. Water in the reaction system was removed by azeotropy with toluene, and azeotropic dehydration for returning toluene to the reaction system was performed at 130 ° C. for 4 hours. Thereafter, 28.7 g of 4,4′-dichlorodiphenylsulfone was added to the reaction system together with 20 g of toluene, and the reaction system was heated to 150 ° C. The reaction was carried out for 3 hours while distilling toluene to obtain a high-viscosity brown solution.
  • the temperature of the reaction solution was cooled to room temperature, the reaction solution was discharged into 500 g of methanol, and polymer powder was deposited.
  • the polymer powder was collected by filtration and transferred to a beaker. 500 g of water was added thereto, and 1N hydrochloric acid was further added. After collecting the polymer powder by filtration, the polymer powder was washed twice with 500 g of water. Further, it was washed with 500 g of methanol and dried under reduced pressure at 150 ° C. for 12 hours.
  • 1.5 g of 4,4′-dihydroxydiphenylsulfone and N-methyl were added to 5.0 g of the intermediate product obtained in the same manner as P1.
  • 200 ml of -2-pyrrolidone (NMP) and 2.0 g of anhydrous potassium carbonate were weighed. While stirring the NMP reaction solution, the reaction temperature was increased to 150 ° C., and the reaction was completed in a reaction time of 6 hours.
  • the reaction solution was dropped into 500 ml of methanol, and the precipitated solid was pulverized and washed twice with 500 ml of water. Vacuum drying was performed at 130 ° C. to obtain 6.4 g of a white powder.
  • Block copolymer X2 (block copolymer connected with the structure represented by formula (2))
  • Block [c1] -Block [c2] [PES]-[Si] ⁇ Poly (ethersulfone) -block-poly (siloxane),
  • reaction solution was dropped into 500 ml of methanol, the precipitated solid was pulverized, and 500 ml of water Washed twice at 130 ° C. And vacuum dried to give a white powder 2.5 g.
  • Block copolymer X3 (block copolymer connected with the structure represented by formula (3))
  • Block [c1] -Block [c2] [PES]-[Si] ⁇ Poly (ethersulfone) -block-poly (siloxane),
  • Block copolymer other than component [C] Block copolymer other than component [C]
  • the compound was synthesized as described in Example 1 of JP-A-7-278212.
  • Particle 1 thermoplastic resin particles made from “Grillamide (registered trademark)” TR55 as a raw material
  • Particle 1 thermoplastic resin particles made from “Grillamide (registered trademark)” TR55 as a raw material
  • Preparation of the epoxy resin composition In the kneader, a predetermined amount of components other than the epoxy resin curing agent and the curing accelerator is added, and while kneading, the temperature is increased to 160 ° C, and kneading is performed at 160 ° C for 1 hour. A clear viscous liquid was obtained. After the temperature was lowered to 80 ° C. while kneading, a predetermined amount of an epoxy resin curing agent and a curing accelerator were added and further kneaded to obtain an epoxy resin composition.
  • the initial precrack was introduced into the test piece by applying a razor blade cooled to liquid nitrogen temperature to the test piece and applying an impact to the razor with a hammer.
  • the toughness of the cured epoxy resin refers to the critical stress intensity factor of deformation mode I (opening type).
  • phase separation structure structure period or island phase diameter
  • the foamed epoxy resin composition prepared in (1) above was degassed in a vacuum and heated to 30 ° C to 180 ° C. After the temperature range was raised at a rate of 1.5 ° C./minute, a cured epoxy resin cured at a temperature of 180 ° C. for 2 hours was obtained. After the cured epoxy resin was dyed, it was cut into thin sections and a transmission electron image was obtained under the following conditions using a transmission electron microscope (TEM). As the staining agent, OsO 4 and RuO 4 were properly used according to the resin composition so that the morphology was sufficiently contrasted.
  • TEM transmission electron microscope
  • the size of the phase separation structure (structure period or island phase diameter) of the phase mainly composed of the epoxy resin of the component [A] and the phase mainly composed of the block copolymer of the component [C]. was observed.
  • the phase separation structure of the epoxy resin cured product forms a continuous structure, a sea-island structure, or both depending on the types and ratios of the component [A] and the component [C], and each was measured as follows.
  • the case where the size of the phase separation structure of the phase mainly composed of the component [C] is measured will be described as an example, but the same applies to the case where the phase mainly composed of other components is measured.
  • a straight line having a predetermined length is drawn on the photomicrograph, and the length of the portion of the straight line passing through the phase having the constituent element [C] as a main component is drawn.
  • the number average value was taken as the structure period.
  • the predetermined length was set as follows based on a micrograph. When the structural period is expected to be on the order of 0.01 ⁇ m (10 nm or more and less than 100 nm), take a photograph at a magnification of 20,000 times, and randomly place 3 pieces of 20 mm length (1 ⁇ m length on the sample) on the photograph. Elected.
  • the structural period is expected to be on the order of 0.1 ⁇ m (100 nm or more and less than 1 ⁇ m)
  • a photograph is taken at a magnification of 2,000 times, and the length is randomly 20 mm on the photograph (the length of 10 ⁇ m on the sample).
  • Three were selected.
  • the structural period is expected to be on the order of 1 ⁇ m (1 ⁇ m or more and less than 10 ⁇ m)
  • a photograph was taken at a magnification of 200 times, and three pieces of 20 mm length (100 ⁇ m length on the sample) were randomly selected on the photograph. If the measured structural period was out of the expected order, the corresponding length was measured again at the magnification corresponding to the corresponding order and adopted.
  • the major axis of the island phase whose main component is all the components [C] existing in a predetermined region is measured, and the number average value of these is calculated as the island phase.
  • the predetermined region is taken at a magnification of 20,000 times, Three areas of 20 mm square (1 ⁇ m square area on the sample) were randomly selected on the photograph.
  • the diameter of the island phase is expected to be on the order of 0.1 ⁇ m (100 nm or more and less than 1 ⁇ m)
  • a photograph is taken at a magnification of 2,000 times, and an area of 20 mm square on the photograph (10 ⁇ m square on the sample) 3 areas) were selected.
  • the diameter of the island phase is expected to be on the order of 1 ⁇ m (1 ⁇ m or more and less than 10 ⁇ m)
  • a photograph was taken at a magnification of 200 times, and three regions of 20 mm square (100 ⁇ m square region on the sample) were randomly selected on the photograph. . If the measured island phase diameter deviated from the expected order, the corresponding region was measured again at the magnification corresponding to the corresponding order and adopted.
  • Fluctuation width (%) ⁇ (5 ° C./min. Size of phase separation structure at temperature forming) / (1.5 ° C./min. Size of phase separation structure at temperature forming) ⁇ 1) ⁇ ⁇ 100.
  • a primary prepreg containing no thermoplastic resin particles was produced.
  • the epoxy resin composition which does not contain the thermoplastic resin particle insoluble in an epoxy resin among the raw material components described in Tables 1 and 2 was prepared by the procedure (1) above.
  • This epoxy resin composition for primary prepreg was applied onto release paper using a knife coater to prepare a resin film for primary prepreg of 30 g / m 2 having a normal basis weight of 60% by mass.
  • these two primary prepreg resin films are stacked on both sides of the carbon fiber on Toray Industries, Inc. carbon fiber “Treca (registered trademark)” T800G-24K-31E arranged in one direction in a sheet shape.
  • the resin was impregnated into carbon fiber while heating and pressurizing at a temperature of 100 ° C. and an atmospheric pressure of 1 atm to obtain a primary prepreg.
  • thermoplastic resin particles insoluble in the epoxy resin were made 2.5 times the stated amount using a kneader.
  • An epoxy resin composition was prepared by the procedure (1) above. This two-stage impregnation epoxy resin composition was applied onto release paper using a knife coater to prepare a 20-gram / m 2 two-stage impregnation resin film having a normal basis weight of 40% by mass. This was superposed on both sides of the primary prepreg and heated and pressed at a temperature of 80 ° C. and an atmospheric pressure of 1 atm using a heat roll to obtain a prepreg in which thermoplastic resin particles were highly localized on the surface layer.
  • the unidirectional laminate produced by the method (7) was cut out to have a thickness of 2 mm, a width of 15 mm, and a length of 60 mm.
  • Example 1 In a kneading apparatus, 60 parts by mass of “jER (registered trademark)” 630 (triglycidylaminophenol, manufactured by Mitsubishi Chemical Corporation), 40 parts by mass of “Epiclon (registered trademark)” 830 (bisphenol F type epoxy resin, DIC) Co., Ltd.), 55 parts by weight of “Virantage (registered trademark)” VW-10700RP (polyethersulfone, manufactured by Solvay Advanced Polymers Co., Ltd.), 10 parts by weight of block copolymer X1, An epoxy resin composition was prepared by kneading 55 parts by mass of 3,3′-DAS, which is the epoxy resin curing agent of [D].
  • Table 1 shows the composition and ratio (in Table 1, the numbers represent parts by mass). About the obtained epoxy resin composition, (2) bending elastic modulus of the cured epoxy resin, (3) toughness of the cured epoxy resin (K IC ), (4) glass transition temperature of the cured epoxy resin, ( 5) Size of phase-separated structure of cured epoxy resin, (6) Morphological variation of cured epoxy resin, and (8) 90 ° bending strength of fiber reinforced composite material. The results are shown in Table 1.
  • Example 2 An epoxy resin composition was prepared in the same manner as in Example 1 except that the epoxy resin, thermoplastic resin, block copolymer, other components, epoxy resin curing agent and blending amount were changed as shown in Table 1. did. About the obtained epoxy resin composition, (2) flexural modulus of cured epoxy resin, (3) toughness of cured epoxy resin (K IC ), (4) glass transition temperature of cured epoxy resin, (5) The size of the phase separation structure of the cured epoxy resin, (6) Morphological variation of the cured epoxy resin, and (8) 90 ° bending strength of the fiber reinforced composite material were measured. The results are shown in Table 1.
  • the constituent element [A], the constituent element [B], and the constituent element [D] form a uniform phase without phase separation
  • the constituent element [C ] Has a phase separation structure of 0.01 to 0.5 ⁇ m and good mechanical properties. Moreover, it was found that the material can exhibit stable mechanical properties with little variation in the phase separation structure due to molding conditions. Furthermore, it was revealed that excellent adhesiveness can be sufficiently secured without impairing the bending strength of the fiber reinforced composite material.
  • Example 1 An epoxy resin composition was produced in the same manner as in Example 4 except that the component [C] was not included. About the obtained epoxy resin composition, (2) bending elastic modulus of the cured epoxy resin, (3) toughness of the cured epoxy resin (K IC ), (4) glass transition temperature of the cured epoxy resin, ( 5) Size of phase-separated structure of cured epoxy resin, (6) Morphological variation of cured epoxy resin, and (8) 90 ° bending strength of fiber reinforced composite material. As shown in Table 2, all the components of the obtained cured epoxy resin were uniformly compatible with the epoxy resin phase, and the toughness was insufficient.
  • Comparative Example 2 An epoxy resin composition was produced in the same manner as in Example 4 except that the requirements for the component [B] were not satisfied. In Comparative Example 2, the toughness of the obtained cured epoxy resin was insufficient. When the content of the constituent element [B] is less than the range, the toughness of the epoxy resin phase remains brittle, and even if the constituent element [C] is contained, the effect of improving the toughness tends to be insufficient.
  • Comparative Example 4 has a resin composition equivalent to that of Example 7 of Patent Document 1 (Japanese Patent Laid-Open No. 61-228016).
  • Comparative Example 4 the use of polysulfone instead of component [B] resulted in the formation of micron-sized phase separation and high toughness, but morphological fluctuations due to molding conditions were observed. Furthermore, the heat resistance of the cured epoxy resin was lowered, and the adhesiveness of the fiber reinforced composite material was insufficient.
  • Comparative Example 5 has a resin composition equivalent to Example 3 of Patent Document 2 (International Publication No. 2006/075153). In the comparative example 5, it originated in the mixing
  • Comparative Example 6 has a resin composition equivalent to that of Example 1 of Patent Document 3 (Japanese Patent Laid-Open No. 7-278212).
  • Comparative Example 6 a phase separation structure in which a rubber phase was dispersed in a continuous phase derived from a micron-sized thermoplastic resin was obtained.
  • the structure is largely dependent on molding conditions, and the phase structure is stabilized. It was not obtained.
  • the adhesiveness at the phase-separated interface deteriorated, and the adhesiveness of the fiber reinforced composite material became insufficient.
  • Comparative Example 7 is “Journal of Applied Polymer Science”, 119, p. 2933 (2011) by Di Hu, Sixun Zheng, described in “Morphology and Thermochemical Properties of Epoxy Thermosets Modified with Polysulphone-Block-Polydipolys”.
  • the toughness of the obtained cured epoxy resin was insufficient. Further, the elastic modulus and heat resistance of the cured epoxy resin are insufficient, and the adhesiveness of the fiber reinforced composite material is insufficient.
  • a prepreg, and a fiber-reinforced composite material excellent in adhesiveness it is particularly suitably used for a structural material.
  • a structural material For example, for aerospace applications, primary aircraft structural materials such as main wings, tail wings and floor beams, secondary structural materials such as flaps, ailerons, cowls, fairings and interior materials, rocket motor cases and satellite structural materials Preferably used.
  • structural materials for moving objects such as automobiles, ships, and railway vehicles, drive shafts, leaf springs, windmill blades, various turbines, pressure vessels, flywheels, paper rollers, roofing materials, cables, reinforcing bars
  • civil engineering and building material applications such as repair and reinforcement materials.
  • it is suitably used for golf shafts, fishing rods, tennis, badminton and squash rackets, hockey sticks, and ski pole applications.
  • the block copolymer of the present invention is excellent in heat resistance and toughness, and is therefore suitably used in various applications.
  • it is suitably used for applications such as a reinforcing material for matrix resin for fiber-reinforced composite materials, electronic materials, paints, and adhesives.

Abstract

A purpose of the present invention is to provide an epoxy resin composition which stably forms a fine phase separation structure in accordance with a molding condition width, and which stably provides an epoxy resin cured product that has excellent heat resistance, elastic modulus and toughness. Another purpose of the present invention is to provide a fiber-reinforced composite material which has excellent adhesiveness. Another purpose of the present invention is to provide a novel block copolymer which has excellent heat resistance and toughness and a method for producing this block copolymer. In order to achieve the above-described purposes, the present invention has the configuration described below. Specifically, an epoxy resin composition which contains at least the constituent elements [A]-[D] described below, while containing 16-50% by mass of the constituent element [B] relative to the total 100% by mass of the epoxy resin composition. [A] an epoxy resin [B] a thermoplastic resin which contains 80% by mole or more of a specific constituent unit in the constituent element [B], and which is soluble in an epoxy resin [C] a block copolymer which is composed of a block [c1] and a block [c2], and which satisfies a specific condition [D] an epoxy resin curing agent

Description

エポキシ樹脂組成物、エポキシ樹脂硬化物、プリプレグ、繊維強化複合材料、ブロック共重合体およびその製造方法Epoxy resin composition, cured epoxy resin, prepreg, fiber reinforced composite material, block copolymer and method for producing the same
 本発明は、航空宇宙用途に適した繊維強化複合材料、これを得るために好適に用いられるプリプレグ、さらにはそのマトリックス樹脂として好適に用いられるエポキシ樹脂組成物およびエポキシ樹脂硬化物に関するものである。さらには、前記マトリックス樹脂の強化材、電子材料、塗料、接着剤等に適したブロック共重合体に関するものである。 The present invention relates to a fiber reinforced composite material suitable for aerospace use, a prepreg suitably used for obtaining the same, and an epoxy resin composition and a cured epoxy resin suitably used as a matrix resin thereof. Further, the present invention relates to a block copolymer suitable for the matrix resin reinforcing material, electronic material, paint, adhesive and the like.
 近年、炭素繊維やアラミド繊維等の強化繊維を用いた繊維強化複合材料は、その高い比強度と比弾性率を利用して、航空機や自動車等の構造材料、テニスラケット、ゴルフシャフト、および釣り竿等のスポーツ・一般産業用途等に利用されてきた。 In recent years, fiber reinforced composite materials using reinforcing fibers such as carbon fibers and aramid fibers have utilized high specific strength and specific elastic modulus to make structural materials such as aircraft and automobiles, tennis rackets, golf shafts, fishing rods, etc. It has been used for sports and general industrial applications.
 その繊維強化複合材料の製造方法には、強化繊維に未硬化のマトリックス樹脂が含浸されたシート状中間材料であるプリプレグを用い、それを複数枚積層した後、加熱硬化させる方法や、モールド中に配置した強化繊維に液状の樹脂を流し込み、それを加熱硬化させるレジン・トランスファー・モールディング法等が用いられている。これらの製造方法のうち、プリプレグを用いる方法は、強化繊維の配向を厳密に制御でき、また積層構成の設計自由度が高いことから、高性能な繊維強化複合材料を得やすい利点がある。このプリプレグに用いられるマトリックス樹脂としては、耐熱性やプロセス性等の生産性の面から、主に熱硬化性樹脂が用いられ、中でも樹脂と強化繊維との接着性や寸法安定性、および得られる複合材料の強度や剛性といった力学特性の観点からエポキシ樹脂が好適に用いられてきた。しかしながら、エポキシ樹脂は、熱可塑性樹脂に比べて弾性率が高いが、靭性に劣るため、繊維強化複合材料の層間靭性・耐衝撃性が不十分となる場合があった。また、繊維強化複合材料の使用時のみならず、塗装や焼き付けといった高温環境下に曝される加工工程において、割れやクラック等の欠陥が発生しやすいという問題もあった。 The fiber-reinforced composite material is produced by using a prepreg which is a sheet-like intermediate material in which reinforcing fibers are impregnated with an uncured matrix resin. A resin transfer molding method or the like is used in which a liquid resin is poured into the arranged reinforcing fibers and the resin is heated and cured. Among these production methods, the method using a prepreg has an advantage that it is easy to obtain a high-performance fiber-reinforced composite material because the orientation of the reinforcing fibers can be strictly controlled and the design flexibility of the laminated structure is high. As the matrix resin used in this prepreg, thermosetting resin is mainly used from the viewpoint of productivity such as heat resistance and processability. Among them, the adhesiveness and dimensional stability between the resin and the reinforcing fiber, and obtained are obtained. Epoxy resins have been suitably used from the viewpoint of mechanical properties such as strength and rigidity of the composite material. However, the epoxy resin has a higher elastic modulus than the thermoplastic resin, but is inferior in toughness, so that the interlaminar toughness and impact resistance of the fiber-reinforced composite material may be insufficient. In addition, there is a problem that defects such as cracks and cracks are likely to occur not only when the fiber reinforced composite material is used but also in a processing process that is exposed to a high temperature environment such as painting or baking.
 このような課題に対し、マトリックス樹脂の靱性を向上させることが重要かつ有効であるとされ、エポキシ樹脂の改質が試みられてきた。例えば、熱可塑性樹脂や靱性に優れるゴム成分などを配合し、それらをエポキシ樹脂と相分離させ、高靭性化を図る技術が提案されている。具体的には、エポキシ樹脂との相分離を誘発しやすい熱可塑性樹脂を多量に配合し、ミクロンサイズの連続相を形成させ、その相がエネルギー吸収を担うことでエポキシ樹脂の靭性を大きく向上させる方法が開示されている(特許文献1)。別の手法としては、アクリル系のポリマーからなるブロック共重合体を添加することにより、エポキシ樹脂の硬化過程でサブミクロンサイズのゴム相を形成させ、エポキシ樹脂の靭性を向上させる方法が開示されている(特許文献2)。その他には、熱可塑性樹脂とゴム成分とを同組成物中に配合し、ミクロンサイズの熱可塑性樹脂を由来とする連続相内にゴム相を分散させ、高靭性化を図る方法が開示されている(特許文献3)。さらに、近年では、芳香族系ポリマーからなるブロック共重合体の設計により、耐熱性を保持したまま靭性を向上させる方法が開示されている(特許文献4)。 For such problems, it is considered important and effective to improve the toughness of the matrix resin, and modification of the epoxy resin has been attempted. For example, a technique has been proposed in which a thermoplastic resin or a rubber component having excellent toughness is blended and phase-separated from the epoxy resin to increase the toughness. Specifically, a large amount of a thermoplastic resin that easily induces phase separation from the epoxy resin is blended to form a micron-sized continuous phase, and that phase is responsible for energy absorption, greatly improving the toughness of the epoxy resin. A method is disclosed (Patent Document 1). As another method, there is disclosed a method for improving the toughness of an epoxy resin by forming a submicron rubber phase in the course of curing the epoxy resin by adding a block copolymer made of an acrylic polymer. (Patent Document 2). In addition, a method is disclosed in which a thermoplastic resin and a rubber component are blended in the same composition, and the rubber phase is dispersed in a continuous phase derived from a micron-sized thermoplastic resin to achieve high toughness. (Patent Document 3). Furthermore, in recent years, a method for improving toughness while maintaining heat resistance has been disclosed by designing a block copolymer made of an aromatic polymer (Patent Document 4).
特開昭61-228016号公報Japanese Patent Laid-Open No. 61-228016 国際公開第2006/077153号International Publication No. 2006/075153 特開平7-278412号公報Japanese Patent Laid-Open No. 7-278212 国際公開第2013/017843号International Publication No. 2013/017843
 特許文献1のように熱可塑性樹脂を相分離させた場合、靭性や耐衝撃性の向上につながるものの、耐熱性の低下や基材と接着強度の低下、成形条件による相分離構造の変動を引き起こす場合があった。また、特許文献2の方法でも、エポキシ樹脂の増粘効果が大きく、プロセス性を悪化させることがある上、ゴム成分の配合に由来する弾性率の低下を招くことがあり、弾性率と靭性のバランスが十分には得られない場合があった。さらに、このようにゴム成分を配合した場合、エネルギー吸収を担うのはゴム相ではなくエポキシ樹脂相となるため、エポキシ樹脂相の塑性変形能力が低ければ、靭性向上の効果は不足する傾向があった。特許文献3の方法でも、耐熱性の低下や成形条件による相構造の安定化が困難となる場合や、複雑な相分離形態となり相分離界面の接着性が不十分となる傾向があった。特許文献4の方法でも、エポキシ樹脂のみからなるエポキシ樹脂相であるため一般的には脆く、靭性向上の効果は不足する傾向があった。 When the thermoplastic resin is phase-separated as in Patent Document 1, it leads to improvement in toughness and impact resistance, but causes a decrease in heat resistance, a decrease in adhesive strength with the base material, and a change in phase separation structure depending on molding conditions. There was a case. The method of Patent Document 2 also has a large thickening effect on the epoxy resin, which may deteriorate the processability, and may cause a decrease in elastic modulus resulting from the blending of the rubber component. In some cases, a sufficient balance could not be obtained. Further, when the rubber component is blended in this way, it is not the rubber phase but the epoxy resin phase that is responsible for energy absorption. Therefore, if the plastic deformation ability of the epoxy resin phase is low, the effect of improving toughness tends to be insufficient. It was. Even in the method of Patent Document 3, there is a tendency that it is difficult to stabilize the phase structure due to a decrease in heat resistance or molding conditions, or that the phase separation interface is complex and the adhesion at the phase separation interface tends to be insufficient. Even in the method of Patent Document 4, since it is an epoxy resin phase composed only of an epoxy resin, it is generally brittle and the effect of improving toughness tends to be insufficient.
 このように、十分な耐熱性、弾性率を兼ね備えつつ、高い靭性を安定して発現する樹脂組成物を得られておらず、繊維強化複合材料にした際も接着性が不足する等、各種特性も十分なものではなかった。さらに、航空機の主翼構造や風車ブレードのような大型構造部材に適用しようとした際に、炉内の温度ムラや材料の厚み方向の熱履歴の違いにより相分離構造の変動が生じ、これに起因する特性の変動が問題となる場合等があり、成形条件の依存性が低い安定した特性を発現する材料が強く求められていた。 As described above, a resin composition that has sufficient heat resistance and elastic modulus and stably expresses high toughness has not been obtained, and various properties such as insufficient adhesiveness when used as a fiber-reinforced composite material. Was not enough. In addition, when trying to apply to large structural members such as aircraft main wing structure and wind turbine blades, the phase separation structure fluctuates due to the temperature unevenness in the furnace and the difference of thermal history in the thickness direction of the material. Therefore, there has been a strong demand for materials that exhibit stable characteristics with low dependence on molding conditions.
 そこで、本発明の目的は、成形条件による相分離構造の変動が小さく、優れた耐熱性、弾性率、靭性を有するエポキシ樹脂硬化物を安定して与えるエポキシ樹脂組成物、およびプリプレグ、繊維強化複合材料、かつ、かかるエポキシ樹脂組成物を用いることで、接着性に優れた繊維強化複合材料を提供することである。 Accordingly, an object of the present invention is to provide an epoxy resin composition that stably gives an epoxy resin cured product having small heat-resistance, elastic modulus, and toughness, and a prepreg and a fiber-reinforced composite, which have a small variation in phase separation structure depending on molding conditions. It is providing the fiber reinforced composite material excellent in adhesiveness by using a material and this epoxy resin composition.
 なお、ブロック共重合体の適用は、繊維強化複合材料の分野に限らず、電子材料、塗料、接着剤等の幅広い分野でも進められており、様々なブロックを組み込むことにより、靭性や耐クラック性の改善が検討されている。さらに、近年では、高い耐熱性を併せ持つブロック共重合体が求められており、そのような材料として、芳香族系ポリマーを導入した材料が注目されている。ただし、ミクロ相分離が可能な低極性のエラストマーブロックを芳香族系ポリマーに組み込むことは、合成上の難しさがあり、十分な特性を発現できるものではなかった。 The application of block copolymers is not limited to the field of fiber reinforced composite materials, but is also progressing in a wide range of fields such as electronic materials, paints, and adhesives. By incorporating various blocks, toughness and crack resistance Improvements are being considered. Furthermore, in recent years, a block copolymer having high heat resistance has been demanded, and as such a material, a material in which an aromatic polymer is introduced has been attracting attention. However, incorporating a low-polarity elastomer block capable of microphase separation into an aromatic polymer has difficulty in synthesis, and cannot exhibit sufficient characteristics.
 そこで、本発明の第二の目的は、耐熱性と靭性に優れた新規なブロック共重合体およびその製造方法を提供することである。 Therefore, a second object of the present invention is to provide a novel block copolymer excellent in heat resistance and toughness and a method for producing the same.
 本発明は、上記目的を達成するために次のいずれかの構成を有するものである。 The present invention has one of the following configurations to achieve the above object.
 本発明のエポキシ樹脂組成物は、少なくとも次の構成要素[A]~[D]を含み、エポキシ樹脂組成物の総量100質量%に対して構成要素[B]を16~50質量%含むエポキシ樹脂組成物である。
[A]エポキシ樹脂
[B]式(1)で表す構成単位を80モル%以上含み、かつエポキシ樹脂に溶解し得る熱可塑性樹脂
The epoxy resin composition of the present invention includes at least the following components [A] to [D], and includes an epoxy resin containing 16 to 50% by mass of the component [B] with respect to 100% by mass of the total amount of the epoxy resin composition. It is a composition.
[A] Epoxy resin [B] Thermoplastic resin containing 80 mol% or more of the structural unit represented by formula (1) and capable of being dissolved in the epoxy resin
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
[C]次の条件(i)~(iii)をすべて満たす、ブロック[c1]とブロック[c2]からなるブロック共重合体
(i)ブロック[c1]は上記式(1)で表す構成単位を80モル%以上含む
(ii)ブロック[c2]は溶解性パラメータ(SP値)が10(cal/cm1/2以下である
(iii)ブロック[c1]とブロック[c2]がエーテル結合で連結されてなる
[D]エポキシ樹脂硬化剤
 また、本発明のプリプレグは、前記エポキシ樹脂組成物を強化繊維に含浸させてなるプリプレグである。
[C] A block copolymer consisting of block [c1] and block [c2] that satisfies all of the following conditions (i) to (iii) (i) The block [c1] is a structural unit represented by the above formula (1). (Ii) Block [c2] containing 80 mol% or more has a solubility parameter (SP value) of 10 (cal / cm 3 ) 1/2 or less. (Iii) Block [c1] and block [c2] are ether bonds. [D] Epoxy Resin Curing Agent Connected The prepreg of the present invention is a prepreg obtained by impregnating reinforcing fibers with the epoxy resin composition.
 本発明のエポキシ樹脂硬化物は、前記エポキシ樹脂組成物を硬化させてなるエポキシ樹脂硬化物である。 The cured epoxy resin of the present invention is a cured epoxy resin obtained by curing the epoxy resin composition.
 さらに、本発明の繊維強化複合材料の第一の態様は、前記プリプレグを硬化させてなる繊維強化複合材料である。 Furthermore, the first aspect of the fiber reinforced composite material of the present invention is a fiber reinforced composite material obtained by curing the prepreg.
 また、本発明の繊維強化複合材料の第二の態様は、前記エポキシ樹脂硬化物と強化繊維を含んでなる繊維強化複合材料である。 Further, a second aspect of the fiber reinforced composite material of the present invention is a fiber reinforced composite material comprising the cured epoxy resin and reinforced fibers.
 また、本発明のブロック共重合体は、次の条件(i)~(iii)をすべて満たす、ブロック[c1]とブロック[c2]からなるブロック共重合体である。
(i)ブロック[c1]は式(1)で表す構成単位を80モル%以上含む
The block copolymer of the present invention is a block copolymer composed of a block [c1] and a block [c2] that satisfies all of the following conditions (i) to (iii).
(I) The block [c1] contains 80 mol% or more of the structural unit represented by the formula (1)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(ii)ブロック[c2]は溶解性パラメータ(SP値)が10(cal/cm1/2以下である
(iii)ブロック[c1]とブロック[c2]がエーテル結合で連結されてなる
(Ii) The block [c2] has a solubility parameter (SP value) of 10 (cal / cm 3 ) 1/2 or less. (Iii) The block [c1] and the block [c2] are connected by an ether bond.
 本発明によれば、広い成形条件幅で微細な相分離構造を安定して形成し、優れた耐熱性、弾性率、靭性を有するエポキシ樹脂硬化物を与えるエポキシ樹脂組成物、およびプリプレグ、繊維強化複合材料が得られる。さらには、かかるエポキシ樹脂硬化物が微細な相分離構造を形成することで、接着性に優れた繊維強化複合材料が得られる。 According to the present invention, an epoxy resin composition that stably forms a fine phase separation structure with a wide range of molding conditions and gives a cured epoxy resin having excellent heat resistance, elastic modulus, and toughness, and a prepreg and fiber reinforcement A composite material is obtained. Furthermore, a fiber-reinforced composite material excellent in adhesiveness can be obtained by forming a fine phase separation structure with the cured epoxy resin.
 さらに、繊維強化複合材料用マトリックス樹脂の強化材の他、電子材料、塗料、接着剤等で優れた耐熱性と靭性を与えるブロック共重合体が得られる。 Furthermore, in addition to the matrix resin reinforcement for fiber reinforced composite materials, block copolymers that give excellent heat resistance and toughness can be obtained with electronic materials, paints, adhesives, and the like.
 以下、本発明のエポキシ樹脂組成物、エポキシ樹脂硬化物、プリプレグ、繊維強化複合材料、ブロック共重合体およびその製造方法について詳細に説明する。 Hereinafter, the epoxy resin composition, the cured epoxy resin, the prepreg, the fiber reinforced composite material, the block copolymer and the production method thereof according to the present invention will be described in detail.
 本発明のエポキシ樹脂組成物は、構成要素[A]としてエポキシ樹脂、構成要素[B]として所定の構造を含む熱可塑性樹脂、構成要素[C]として所定の条件を満たすブロック共重合体、構成要素[D]としてエポキシ樹脂硬化剤を含むことを必須とする。 The epoxy resin composition of the present invention includes an epoxy resin as a constituent element [A], a thermoplastic resin having a predetermined structure as a constituent element [B], a block copolymer that satisfies a predetermined condition as a constituent element [C], and a constituent It is essential to include an epoxy resin curing agent as the element [D].
 本発明における構成要素[A]はエポキシ樹脂である。構成要素[A]は、エポキシ樹脂硬化物の機械物性、取り扱い性の根幹をなす。本発明におけるエポキシ樹脂は、1分子内に1個以上のエポキシ分子を有する化合物を意味する。 The component [A] in the present invention is an epoxy resin. Component [A] forms the basis of the mechanical properties and handleability of the cured epoxy resin. The epoxy resin in the present invention means a compound having one or more epoxy molecules in one molecule.
 本発明におけるエポキシ樹脂の具体例としては、ビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、ウレタンおよびイソシアネート変性エポキシ樹脂、アミン型エポキシ樹脂などが挙げられる。これらのエポキシ樹脂は1種類だけでなく、複数種組み合わせて添加しても良い。中でも、低粘度で強化繊維への含浸性に優れ、また繊維強化複合材料とした際の耐熱性と弾性率等の力学物性に優れることから、アミン型エポキシ樹脂を好適に使用できる。さらに好ましい態様によれば、構成要素[A]がアミン型エポキシ樹脂を含み、その含有量が構成要素[A]の総量100質量部に対して50質量部を超えることが望ましい。 Specific examples of the epoxy resin in the present invention include bisphenol type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, resorcinol type epoxy resin, dicyclopentadiene type epoxy resin, epoxy resin having biphenyl skeleton, urethane and isocyanate. Examples thereof include modified epoxy resins and amine type epoxy resins. These epoxy resins may be added in combination of not only one type but also a plurality of types. Among them, amine type epoxy resins can be suitably used because of their low viscosity and excellent impregnation into reinforcing fibers, and excellent mechanical properties such as heat resistance and elastic modulus when used as fiber reinforced composite materials. According to a more preferable aspect, it is desirable that the component [A] contains an amine type epoxy resin and the content thereof exceeds 50 parts by mass with respect to 100 parts by mass of the total amount of the component [A].
 本発明で好ましく用いられるアミン型エポキシ樹脂としては、例えば、テトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノール、トリグリシジルアミノクレゾール、ジグリシジルアニリン、ジグリシジルトルイジン、テトラグリシジルキシリレンジアミンや、これらのハロゲン、アルキル置換体、水素添加品などが挙げられる。 Examples of the amine-type epoxy resin preferably used in the present invention include tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, triglycidylaminocresol, diglycidylaniline, diglycidyltoluidine, tetraglycidylxylylenediamine, and halogens and alkyls thereof. Substituted products, hydrogenated products and the like can be mentioned.
 テトラグリシジルジアミノジフェニルメタンの市販品としては、“スミエポキシ(登録商標)”ELM434(住友化学工業(株)製)、YH434L(新日鉄住金化学(株)製)、“jER(登録商標)”604(三菱化学(株)製)、“アラルダイド(登録商標)”MY720、“アラルダイド(登録商標)”MY721(以上、ハンツマン・アドバンズド・マテリアルズ社製)等を使用することができる。トリグリシジルアミノフェノール又はトリグリシジルアミノクレゾールの市販品としては、“スミエポキシ(登録商標)”ELM100、“スミエポキシ(登録商標)”ELM120(以上、住友化学工業(株)製)、“アラルダイド(登録商標)”MY0500、“アラルダイド(登録商標)”MY0510、“アラルダイド(登録商標)”MY0600(以上、ハンツマン・アドバンズド・マテリアルズ社製)、“jER(登録商標)”630(三菱化学(株)製)等を使用することができる。ジグリシジルアニリンの市販品としては、GAN(日本化薬(株)製)などが挙げられる。ジグリシジルトルイジンの市販品としては、GOT(日本化薬(株)製)等を使用することができる。テトラグリシジルキシリレンジアミンおよびその水素添加品の市販品としては、“TETRAD(登録商標)”-X、“TETRAD(登録商標)”-C(以上、三菱ガス化学(株)製)等を使用することができる。 Commercially available products of tetraglycidyldiaminodiphenylmethane include “Sumiepoxy (registered trademark)” ELM434 (manufactured by Sumitomo Chemical Co., Ltd.), YH434L (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), and “jER (registered trademark)” 604 (Mitsubishi Chemical). "Araldide (registered trademark)" MY720, "Araldide (registered trademark)" MY721 (manufactured by Huntsman Advanced Materials), and the like can be used. Commercially available products of triglycidylaminophenol or triglycidylaminocresol include “Sumiepoxy (registered trademark)” ELM100, “Sumiepoxy (registered trademark)” ELM120 (manufactured by Sumitomo Chemical Co., Ltd.), “Araldide (registered trademark)” “MY0500”, “Araldide (registered trademark)” MY0510, “Araldide (registered trademark)” MY0600 (manufactured by Huntsman Advanced Materials), “jER (registered trademark)” 630 (manufactured by Mitsubishi Chemical Corporation), etc. Can be used. Examples of commercially available diglycidyl aniline include GAN (manufactured by Nippon Kayaku Co., Ltd.). As a commercially available product of diglycidyl toluidine, GOT (manufactured by Nippon Kayaku Co., Ltd.) or the like can be used. “TETRAD (registered trademark)”-X, “TETRAD (registered trademark)”-C (above, manufactured by Mitsubishi Gas Chemical Co., Ltd.), etc. are used as commercial products of tetraglycidylxylylenediamine and hydrogenated products thereof. be able to.
 本発明における構成要素[B]は、式(1)で表す構成単位(主の構成単位という)を全ての構成単位に対して80モル%以上含み、かつエポキシ樹脂に溶解し得る熱可塑性樹脂である。かかる熱可塑性樹脂を構成要素[B]として用いることにより、構成要素[B]をエポキシ樹脂相に相溶させることができ、耐熱性と塑性変形能力に優れたエポキシ樹脂硬化物を得ることができる。なお、構成要素[B]は、主の構成単位とは別の構成単位を20モル%未満含んでいてもよい。かかる構成単位の構造は特に限定されないが、エポキシ樹脂への相溶性と耐熱性の高い骨格を有することが望ましい。かかる構成単位として、例えば、ポリエーテルエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルイミドの構成単位が好ましく用いられる。さらには、耐熱性の観点から、主の構成単位を構成要素[B]中に90モル%以上含むことが好ましく、100モル%含む、すなわち、構成要素[B]がポリエーテルスルホンであることがより好ましい。 The component [B] in the present invention is a thermoplastic resin that contains 80 mol% or more of the structural unit represented by the formula (1) (referred to as the main structural unit) with respect to all the structural units and can be dissolved in the epoxy resin. is there. By using such a thermoplastic resin as the constituent element [B], the constituent element [B] can be dissolved in the epoxy resin phase, and an epoxy resin cured product having excellent heat resistance and plastic deformation ability can be obtained. . The constituent element [B] may contain less than 20 mol% of constituent units different from the main constituent unit. Although the structure of such a structural unit is not particularly limited, it is desirable to have a skeleton having high compatibility with epoxy resins and high heat resistance. As such structural units, for example, structural units of polyether ether sulfone, polysulfone, polyether ketone, and polyether imide are preferably used. Furthermore, from the viewpoint of heat resistance, it is preferable that 90% by mole or more of the main structural unit is contained in the component [B], and 100% by mole, that is, the component [B] is polyethersulfone. More preferred.
 かかる構成要素[B]は、エポキシ樹脂に溶解し得る熱可塑性樹脂であり、構成要素[B]が硬化過程でエポキシ樹脂相に均一に相溶する上で重要となる。ここでエポキシ樹脂に溶解し得る熱可塑性樹脂とは、構成要素[A]のエポキシ樹脂に熱可塑性樹脂を、構成要素[A]と熱可塑性樹脂との合計質量100質量%に対して5質量%加え、150℃まで昇温後、200rpmで1時間混練し、室温で1時間放置したときに、両者が分子レベルで均一に相溶することを意味する。分子レベルで均一に相溶しているか否かを確認する手段としては、位相差顕微鏡を用い、熱可塑性樹脂の不溶物または0.5μm以上の大きさの相分離構造の有無から判断する。 The component [B] is a thermoplastic resin that can be dissolved in the epoxy resin, and is important for the component [B] to be uniformly dissolved in the epoxy resin phase during the curing process. Here, the thermoplastic resin that can be dissolved in the epoxy resin means that the epoxy resin of the component [A] is 5% by mass with respect to 100% by mass of the total mass of the component [A] and the thermoplastic resin. In addition, when the temperature is raised to 150 ° C., it is kneaded at 200 rpm for 1 hour, and when left at room temperature for 1 hour, it means that the two are uniformly compatible at the molecular level. As a means for confirming whether or not they are uniformly compatible at the molecular level, a phase contrast microscope is used to judge from the presence or absence of an insoluble thermoplastic resin or a phase separation structure having a size of 0.5 μm or more.
 上記のように、エポキシ樹脂組成物の溶解状態を確認する際には、所定の領域の位相差顕微鏡写真を撮影する。熱可塑性樹脂が構成要素[A]のエポキシ樹脂に溶解しない場合、構成要素[A]に相溶することなく不溶物として存在するか、構成要素[A]と0.5μm以上の大きさの相分離構造を有する連続構造や海島構造を形成するのでそれぞれについて以下のように測定する。 As described above, when confirming the dissolved state of the epoxy resin composition, a phase contrast micrograph of a predetermined region is taken. When the thermoplastic resin does not dissolve in the epoxy resin of the component [A], it exists as an insoluble matter without being compatible with the component [A] or has a phase of 0.5 μm or more with the component [A]. Since a continuous structure or a sea-island structure having a separation structure is formed, the measurement is performed as follows.
 熱可塑性樹脂が構成要素[A]と連続構造を形成する場合、倍率200倍で撮影した顕微鏡写真の上にランダムに3mmの長さ(サンプル上の1μmの長さ)の直線を引き、その直線のうち、熱可塑性樹脂を主成分とする相を通る部分の長さの数平均値を構造周期、すなわち相分離構造の大きさとする。そして、かかる相分離構造の大きさが0.5μm未満である場合、その熱可塑性樹脂は、エポキシ樹脂に溶解しうる熱可塑性樹脂とする。 When the thermoplastic resin forms a continuous structure with the constituent element [A], a straight line having a length of 3 mm (a length of 1 μm on the sample) is randomly drawn on a micrograph taken at a magnification of 200 times. Among these, the number average value of the lengths of the portions passing through the phase mainly composed of the thermoplastic resin is defined as the structure period, that is, the size of the phase separation structure. And when the magnitude | size of this phase-separation structure is less than 0.5 micrometer, let the thermoplastic resin be a thermoplastic resin which can be melt | dissolved in an epoxy resin.
 また、熱可塑性樹脂が不溶物として存在する場合や構成要素[A]と海島構造を形成する場合、倍率200倍で撮影した顕微鏡写真の上でランダムに20mm四方の領域(サンプル上100μm四方の領域)3箇所を選出し、それらの領域内に存在する全ての不溶物または島相の長径を測定し、これらの数平均値を不溶物の径または島相の径(すなわち、相分離構造の大きさ)とする。そして、かかる不溶物の径、または相分離構造の大きさが0.5μm未満である場合、その熱可塑性樹脂は、エポキシ樹脂に溶解しうる熱可塑性樹脂とする。なお、不溶物または島相が領域内に存在するとは、その不溶物または島相の面積の半分以上が領域の内側にある場合をいう。 In addition, when the thermoplastic resin is present as an insoluble matter or when forming the sea-island structure with the constituent element [A], an area of 20 mm square on the micrograph taken at a magnification of 200 times (100 μm square area on the sample) ) Select three locations, measure the long diameter of all insoluble matter or island phase existing in those areas, and calculate the number average value of the insoluble matter diameter or island phase diameter (ie, the size of the phase separation structure) Sa)). And when the diameter of this insoluble matter or the magnitude | size of a phase-separation structure is less than 0.5 micrometer, let the thermoplastic resin be a thermoplastic resin which can melt | dissolve in an epoxy resin. In addition, the term “insoluble matter or island phase exists in the region” means that more than half of the area of the insoluble matter or island phase is inside the region.
 また、かかる構成要素[B]の重量平均分子量(Mw)は、4,000~40,000g/モルの範囲にあることが好ましく、より好ましくは4,500~25,000g/モルである。かかるMwが4,000g/モルより低いと、塑性変形能力を高めるには不十分となる場合がある。一方、Mwが40,000g/モルより高いと、エポキシ樹脂に熱可塑性樹脂を溶解した際、エポキシ樹脂組成物の粘度が高くなり混練が難しく、プリプレグ化が困難となる場合がある。また、構成要素[B]が硬化過程でエポキシ樹脂相に均一に相溶することが困難となり、相分離構造を形成するため、成形条件の依存性が大きい材料となる場合がある。なお、ここで、Mwとは、ポリスチレン標準サンプルを用いて、GPC(Gel Permeation Chromatography)により求められる相対分子量を指す。 Further, the weight average molecular weight (Mw) of the component [B] is preferably in the range of 4,000 to 40,000 g / mol, more preferably 4,500 to 25,000 g / mol. If the Mw is lower than 4,000 g / mol, it may be insufficient to increase the plastic deformation capacity. On the other hand, when Mw is higher than 40,000 g / mol, when the thermoplastic resin is dissolved in the epoxy resin, the viscosity of the epoxy resin composition becomes high and kneading is difficult, and prepreg may be difficult. In addition, it becomes difficult for the component [B] to be uniformly compatible with the epoxy resin phase during the curing process, and a phase-separated structure is formed, which may result in a material having a large dependence on molding conditions. Here, Mw refers to the relative molecular weight determined by GPC (Gel Permeation Chromatography) using a polystyrene standard sample.
 さらに、かかる構成要素[B]の末端は、エポキシ樹脂と反応しうる官能基を有することが好ましい。エポキシ樹脂と反応しうる官能基とは、エポキシ分子のオキシラン基またはエポキシ樹脂硬化剤の官能基と反応可能な官能基を意味する。例えば、アミノ基、水酸基またはカルボキシル基等の官能基を挙げることができるが、これらに限定されるものではない。この官能基がエポキシ樹脂もしくは、エポキシ樹脂硬化剤と反応することにより、構成要素[B]がエポキシ樹脂相に均一に相溶したエポキシ樹脂硬化物が得られやすくなり、安定した特性を発現できる。中でも、水酸基を官能基とする構成要素[B]は、高い靱性を与えることから好ましく用いられる。 Furthermore, it is preferable that the terminal of this component [B] has a functional group which can react with an epoxy resin. The functional group capable of reacting with an epoxy resin means a functional group capable of reacting with an oxirane group of an epoxy molecule or a functional group of an epoxy resin curing agent. For example, a functional group such as an amino group, a hydroxyl group or a carboxyl group can be mentioned, but the functional group is not limited thereto. When this functional group reacts with an epoxy resin or an epoxy resin curing agent, an epoxy resin cured product in which the component [B] is uniformly compatible with the epoxy resin phase is easily obtained, and stable characteristics can be expressed. Among them, the component [B] having a hydroxyl group as a functional group is preferably used because it provides high toughness.
 本発明における構成要素[B]においては、製造方法に特に制限はなく、例えば特公昭42-7799号公報、特公昭45-21318号公報、特開昭48-19700号公報に記載の方法で製造することが可能であり、当該文献によれば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウムなどのアルカリ金属化合物存在下、N-メチルピロリドン、DMF、DMSO、スルホランなどの非プロトン性極性溶媒中で、4,4’-ジヒドロキシジフェニルスルホンなどの二価のフェノール化合物と4,4’-ジクロロジフェニルスルホンなどの二価のジハロゲノジフェニル化合物を重縮合することで得ることができる。また、別の手法として、まず通常公知の方法、すなわち二価フェノール化合物とジハロゲノジフェニル化合物の重縮合により得られる高分子量のポリエーテルスルホンを原料とし、引き続き得られた高分子量のポリエーテルスルホンと二価フェノール化合物を非プロトン性極性溶媒中で加熱することにより、末端にヒドロキシフェニル基を導入し製造する方法が挙げられる。 The production method of the component [B] in the present invention is not particularly limited. For example, it is produced by the method described in JP-B-42-7799, JP-B-45-21318, and JP-A-48-19700. According to the literature, aprotic polarities such as N-methylpyrrolidone, DMF, DMSO, sulfolane, etc. in the presence of alkali metal compounds such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, etc. It can be obtained by polycondensing a divalent phenol compound such as 4,4′-dihydroxydiphenylsulfone and a divalent dihalogenodiphenyl compound such as 4,4′-dichlorodiphenylsulfone in a solvent. As another method, first, a high-molecular-weight polyether sulfone obtained by a generally known method, that is, a high-molecular-weight polyether sulfone obtained by polycondensation of a dihydric phenol compound and a dihalogenodiphenyl compound, The method of manufacturing by introduce | transducing a hydroxyphenyl group to the terminal by heating a dihydric phenol compound in an aprotic polar solvent is mentioned.
 本発明における構成要素[B]の市販品としては、“スミカエクセル(登録商標)”PES3600P、“スミカエクセル(登録商標)”PES5003P、“スミカエクセル(登録商標)”PES5200P、“スミカエクセル(登録商標)”PES7600P(以上、住友化学工業(株)製)、“Ultrason(登録商標)”E2020P SR、“Ultrason(登録商標)”E2021SR(以上、BASF社製)、“GAFONE(登録商標)”3600RP、“GAFONE(登録商標)”3000RP、“Virantage(登録商標)”VW-10700RP(以上、Solvay Advanced Polymers社製)などが挙げられる。 Commercially available components [B] in the present invention include “Sumika Excel (registered trademark)” PES3600P, “Sumika Excel (registered trademark)” PES5003P, “Sumika Excel (registered trademark)” PES5200P, and “Sumika Excel (registered trademark)”. ) "PES7600P (above, manufactured by Sumitomo Chemical Co., Ltd.)", "Ultrason (registered trademark)" E2020P SR, "Ultrason (registered trademark)" E2021SR (above, manufactured by BASF), "GAFONE (registered trademark)" 3600RP, “GAFONE (registered trademark)” 3000RP, “Virantage (registered trademark)” VW-10700RP (manufactured by Solvay Advanced Polymers) and the like.
 本発明のエポキシ樹脂組成物は、エポキシ樹脂組成物の総量100質量%に対して構成要素[B]を16~50質量%含むことが必要であり、20~45質量%含むことが好ましい。16質量%に満たない場合、エポキシ樹脂相が脆くなる。かかるエポキシ樹脂相に構成要素[C]を導入しても、塑性変形によるエネルギー吸収は小さく、その結果、エポキシ樹脂硬化物の靭性の向上効果が小さくなる。一方、50質量%を上回る場合、エポキシ樹脂組成物の粘度が上昇し、エポキシ樹脂組成物およびプリプレグの製造プロセス性や取り扱い性が不十分となる。また、構成要素[B]が粗大な相分離構造を形成したり、構成要素[C]が樹脂調製や成形硬化の際に二次凝集となる。 The epoxy resin composition of the present invention needs to contain 16 to 50% by mass of component [B], preferably 20 to 45% by mass, with respect to 100% by mass of the total amount of the epoxy resin composition. If it is less than 16% by mass, the epoxy resin phase becomes brittle. Even when the component [C] is introduced into such an epoxy resin phase, energy absorption by plastic deformation is small, and as a result, the effect of improving the toughness of the cured epoxy resin is small. On the other hand, when it exceeds 50 mass%, the viscosity of an epoxy resin composition will rise and the manufacturing process property and handleability of an epoxy resin composition and a prepreg will become inadequate. In addition, the constituent element [B] forms a coarse phase separation structure, or the constituent element [C] becomes secondary agglomerated during resin preparation or molding curing.
 本発明における構成要素[C]は、次の条件(i)~(iii)をすべて満たす、ブロック[c1]とブロック[c2]からなるブロック共重合体である。また、本発明のブロック共重合体は、次の条件(i)~(iii)をすべて満たす、ブロック[c1]とブロック[c2]からなる。
(i)ブロック[c1]は上記式(1)で表す構成単位を80モル%以上含む
(ii)ブロック[c2]は溶解性パラメータ(SP値)が10(cal/cm1/2以下である
(iii)ブロック[c1]とブロック[c2]がエーテル結合で連結されてなる。
The component [C] in the present invention is a block copolymer composed of a block [c1] and a block [c2] that satisfies all of the following conditions (i) to (iii). The block copolymer of the present invention comprises a block [c1] and a block [c2] that satisfy all of the following conditions (i) to (iii).
(I) The block [c1] contains 80 mol% or more of the structural unit represented by the above formula (1). (Ii) The block [c2] has a solubility parameter (SP value) of 10 (cal / cm 3 ) 1/2 or less. (Iii) The block [c1] and the block [c2] are connected by an ether bond.
 本発明におけるブロック[c1]とブロック[c2]からなるブロック共重合体は、前記(i)~(iii)の条件を満たすことで、エポキシ樹脂に構成要素[B]が16~50質量%相溶している場合においても、構成要素[C]を微分散させることができる。その結果、エポキシ樹脂硬化物の耐熱性や弾性率を保持したまま、靭性を大きく向上させる。また、界面での接着性向上や成形条件による相分離構造の変動を抑制させることが可能である。 The block copolymer composed of the block [c1] and the block [c2] in the present invention satisfies the conditions (i) to (iii), so that the component [B] has a phase of 16 to 50% by mass in the epoxy resin. Even when melted, the constituent element [C] can be finely dispersed. As a result, the toughness is greatly improved while maintaining the heat resistance and elastic modulus of the cured epoxy resin. Moreover, it is possible to suppress the improvement of the adhesiveness at the interface and the fluctuation of the phase separation structure due to the molding conditions.
 本発明におけるブロック共重合体の条件(i)としては、ブロック[c1]が式(1)で表す構成単位(主の構成単位)を全ての構成単位に対して80モル%以上含むことが必要である。これにより、エポキシ樹脂に相溶している構成要素[B]との相溶性が高まり、安定した相分離構造を形成することに繋がる。なお、ブロック[c1]は、別の構成単位を20モル%未満含んでいてもよく、それらの構成は特に問わないが、ブロック[c1]全体として耐熱性の高い骨格を有することが望ましい。例えば、ポリエーテルエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルイミドの構成単位が好ましく用いられる。さらには、耐熱性の観点から、主の構成単位をブロック[c1]中に90モル%以上含むことが好ましく、100モル%含むことがより好ましい。ここでブロック[c1]は、構成要素[B]と構成単位の組成が同一であることが相溶性の観点から好ましい。 As the condition (i) of the block copolymer in the present invention, it is necessary that the structural unit (main structural unit) represented by the formula (1) in the block [c1] is 80 mol% or more with respect to all the structural units. It is. Thereby, compatibility with the component [B] which is compatible with the epoxy resin is increased, which leads to formation of a stable phase separation structure. Note that the block [c1] may contain less than 20 mol% of other structural units, and their configuration is not particularly limited, but the block [c1] as a whole preferably has a skeleton with high heat resistance. For example, structural units of polyether ether sulfone, polysulfone, polyether ketone, and polyether imide are preferably used. Furthermore, from the viewpoint of heat resistance, the main constituent unit is preferably included in the block [c1] in an amount of 90 mol% or more, and more preferably 100 mol%. Here, the block [c1] preferably has the same composition of the constituent unit [B] and the constituent unit from the viewpoint of compatibility.
 本発明におけるブロック共重合体の条件(ii)としては、ブロック[c2]のSP値が10(cal/cm1/2以下であることが必要である。これにより、ブロック[c2]は硬化後のエポキシ樹脂相内に微細な相を形成すると共に、耐熱性や弾性率を保持したまま、高靭性化を発現することができる。 As the condition (ii) of the block copolymer in the present invention, the SP value of the block [c2] needs to be 10 (cal / cm 3 ) 1/2 or less. As a result, the block [c2] can form a fine phase in the cured epoxy resin phase and exhibit high toughness while maintaining heat resistance and elastic modulus.
 ここで、SP値とは、一般に知られている溶解性パラメータのことであり、溶解性および相溶性の指標となる。蒸発熱等の物性からSP値を算出する方法と、分子構造からSP値を推算する方法がある。ここでは、Polym.Eng.Sci.,14(2),147-154(1974)に記載された、Fedorsの方法に基づき、分子構造から算出したSP値を用いるものとし、その単位は、(cal/cm1/2を用いることとする。 Here, the SP value is a generally known solubility parameter, and is an index of solubility and compatibility. There are a method for calculating the SP value from physical properties such as heat of evaporation and a method for estimating the SP value from the molecular structure. Here, Polym. Eng. Sci. , 14 (2), 147-154 (1974), the SP value calculated from the molecular structure based on the Fedors method is used, and the unit is (cal / cm 3 ) 1/2 . I will do it.
 本発明におけるSP値が10(cal/cm1/2以下であるブロック[c2]としては、特に化学構造や分子量等を限定されるものではないが、エポキシ樹脂相の塑性変形を誘発し、大きなエネルギー吸収を引き起こすことができるエラストマーであることが好ましい。かかるエラストマーの例としては、ポリブタジエン、ポリイソプレン、ポリ(2,3-ジメチル-1,3-ブタジエン)、ポリ(1,3-ペンタジエン)、および、ポリ(2-フェニル-1,3-ブタジエン)等から選択されるポリジエン、ポリアクリル酸エチル、ポリブチルアクリレート、ポリ(2-エチルヘキシルアクリレート)、ポリヒドロキシエチルアクリレートおよびポリ(2-エチルヘキシルメタアクリレート)等から選択されるポリアルキル(メタ)アクリレート、ポリシロキサン、ポリテトラフルオロエチレンなどが挙げられる。中でも、力学特性のバランスが良好なポリシロキサンが好ましく用いられる。 The block [c2] having an SP value of 10 (cal / cm 3 ) 1/2 or less in the present invention is not particularly limited in chemical structure or molecular weight, but induces plastic deformation of the epoxy resin phase. The elastomer is preferably capable of causing large energy absorption. Examples of such elastomers include polybutadiene, polyisoprene, poly (2,3-dimethyl-1,3-butadiene), poly (1,3-pentadiene), and poly (2-phenyl-1,3-butadiene). Polyalkylene (meth) acrylate selected from polydiene, polyethyl acrylate, polybutyl acrylate, poly (2-ethylhexyl acrylate), polyhydroxyethyl acrylate and poly (2-ethylhexyl methacrylate) selected from Examples include siloxane and polytetrafluoroethylene. Among these, polysiloxane having a good balance of mechanical properties is preferably used.
 本発明のエポキシ樹脂組成物において、構成要素[C]は、ブロック[c1]が構成要素[B]との良好な相溶性と耐熱性の観点からポリエーテルスルホンであり、ブロック[c2]が靭性の観点からポリシロキサンであるブロック共重合体であることが好ましい。 In the epoxy resin composition of the present invention, the component [C] is such that the block [c1] is polyethersulfone from the viewpoint of good compatibility with the component [B] and heat resistance, and the block [c2] is tough. From this point of view, a block copolymer which is polysiloxane is preferable.
 また、本発明のブロック共重合体において、ブロック[c1]が耐熱性の観点から、ポリエーテルスルホンであり、ブロック[c2]が靭性の観点からシロキサン結合を含むことが好ましい。 In the block copolymer of the present invention, the block [c1] is preferably polyethersulfone from the viewpoint of heat resistance, and the block [c2] preferably contains a siloxane bond from the viewpoint of toughness.
 本発明におけるブロック共重合体の条件(iii)としては、ブロック[c1]とブロック[c2]がエーテル結合で連結されてなることが必要である。さらに、ブロック[c1]とブロック[c2]が式(2)または式(3)で表される構造で連結されてなることが好ましい。これにより、化学的に安定な直鎖状の連結構造となり、エポキシ樹脂相との相溶性が高まると共に、耐溶剤性や接着性にも優れたエポキシ樹脂硬化物が得られやすくなる。 As the condition (iii) of the block copolymer in the present invention, it is necessary that the block [c1] and the block [c2] are connected by an ether bond. Furthermore, the block [c1] and the block [c2] are preferably connected by a structure represented by the formula (2) or the formula (3). Thereby, it becomes a chemically stable linear linked structure, and compatibility with the epoxy resin phase is enhanced, and an epoxy resin cured product having excellent solvent resistance and adhesiveness is easily obtained.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 本発明におけるブロック共重合体の重量平均分子量(Mw)は、5,000~70,000g/モルの範囲にあることが好ましく、より好ましくは7,000~60,000g/モルである。Mwが5,000g/モルより低いと、靭性向上の効果が不足する場合がある。一方、Mwが70,000g/モルより高いと、耐熱性や弾性率の低下を招く場合がある。また、エポキシ樹脂組成物にブロック共重合体を溶解した際、エポキシ樹脂の粘度が高くなり混練が難しく、プリプレグ化が困難となる場合がある。 The weight average molecular weight (Mw) of the block copolymer in the present invention is preferably in the range of 5,000 to 70,000 g / mol, and more preferably 7,000 to 60,000 g / mol. When Mw is lower than 5,000 g / mol, the effect of improving toughness may be insufficient. On the other hand, if Mw is higher than 70,000 g / mol, heat resistance and elastic modulus may be lowered. In addition, when the block copolymer is dissolved in the epoxy resin composition, the viscosity of the epoxy resin becomes high and kneading is difficult, and prepreg may be difficult.
 本発明におけるブロック共重合体に占めるブロック[c2]のブロック質量分率は、0.05~0.60であることが好ましく、より好ましくは0.15~0.50の範囲である。ブロック質量分率が0.05に満たない場合、エポキシ樹脂硬化物の靭性が低下する場合がある。ブロック質量分率が0.60を超える場合、エポキシ樹脂硬化物の弾性率低下や、相分離の安定化が困難となる場合がある。 The block mass fraction of the block [c2] in the block copolymer in the present invention is preferably 0.05 to 0.60, and more preferably 0.15 to 0.50. When the block mass fraction is less than 0.05, the toughness of the cured epoxy resin may be lowered. When the block mass fraction exceeds 0.60, it may be difficult to lower the elastic modulus of the cured epoxy resin and to stabilize the phase separation.
 本発明におけるブロック共重合体の製造方法に特に制限はないが、フェノール性水酸基の求核置換反応で得ることが高効率な簡易手法であることから好ましい。当該手法によれば、末端にエポキシ分子のオキシラン基を有するSP値が10(cal/cm1/2以下である化合物に対する、末端にフェノール性水酸基を有するエポキシ樹脂に溶解し得る熱可塑性樹脂の求核置換反応によりブロック共重合体を得ることができる。また、二価のSP値が10(cal/cm1/2以下であるエラストマーからなるフェノール化合物と、エポキシ樹脂に溶解し得る熱可塑性樹脂とを非プロトン性極性溶媒中で加熱することにより、ブロック共重合体を得ることもできる。 Although there is no restriction | limiting in particular in the manufacturing method of the block copolymer in this invention, Obtaining by the nucleophilic substitution reaction of a phenolic hydroxyl group is preferable from a highly efficient simple method. According to this technique, a thermoplastic resin that can be dissolved in an epoxy resin having a phenolic hydroxyl group at the terminal for a compound having an oxirane group of the epoxy molecule at the terminal and an SP value of 10 (cal / cm 3 ) 1/2 or less. A block copolymer can be obtained by the nucleophilic substitution reaction. In addition, by heating a phenol compound made of an elastomer having a divalent SP value of 10 (cal / cm 3 ) 1/2 or less and a thermoplastic resin that can be dissolved in an epoxy resin in an aprotic polar solvent, A block copolymer can also be obtained.
 かかる構成要素[C]のブロック共重合体の含有量は、力学特性やコンポジット作製プロセスへの適合性の観点から、構成要素[A]のエポキシ樹脂の総量100質量部に対して2~30質量部であることが好ましく、より好ましくは3~20質量部の範囲である。構成要素[C]の含有量が2質量部に満たない場合、エポキシ樹脂硬化物の靭性および塑性変形能力が低下する場合がある。構成要素[C]の含有量が30質量部を超える場合、エポキシ硬化物の弾性率が顕著に低下し、得られる繊維強化複合材料の接着性が悪化することがある。 The content of the block copolymer of the component [C] is 2 to 30 masses with respect to 100 parts by mass of the total amount of the epoxy resin of the component [A], from the viewpoint of mechanical properties and compatibility with the composite production process. Parts, preferably 3 to 20 parts by mass. If the content of the component [C] is less than 2 parts by mass, the toughness and plastic deformation ability of the cured epoxy resin may be reduced. When content of component [C] exceeds 30 mass parts, the elasticity modulus of epoxy hardened | cured material may fall remarkably and the adhesiveness of the fiber reinforced composite material obtained may deteriorate.
 本発明における構成要素[D]は、エポキシ樹脂硬化剤である。ここでエポキシ樹脂硬化剤としては、エポキシ分子のオキシラン基と反応し得る活性基を有する化合物であれば特に限定されないが、例えば、ジシアンジアミド、芳香族ポリアミン、アミノ安息香酸エステル類、各種酸無水物、フェノールノボラック樹脂、クレゾールノボラック樹脂、ポリフェノール化合物、イミダゾール誘導体、脂肪族アミン、テトラメチルグアニジン、チオ尿素付加アミン、メチルヘキサヒドロフタル酸無水物のようなカルボン酸無水物、カルボン酸ヒドラジド、カルボン酸アミド、ポリメルカプタンおよび三フッ化ホウ素エチルアミン錯体のようなルイス酸錯体などが挙げられる。 The component [D] in the present invention is an epoxy resin curing agent. Here, the epoxy resin curing agent is not particularly limited as long as it is a compound having an active group capable of reacting with the oxirane group of the epoxy molecule. For example, dicyandiamide, aromatic polyamine, aminobenzoic acid esters, various acid anhydrides, Phenol novolac resin, cresol novolac resin, polyphenol compound, imidazole derivative, aliphatic amine, tetramethylguanidine, thiourea addition amine, carboxylic acid anhydride such as methylhexahydrophthalic anhydride, carboxylic acid hydrazide, carboxylic acid amide, And Lewis acid complexes such as polymercaptan and boron trifluoride ethylamine complex.
 中でも、芳香族ポリアミンを構成要素[D]のエポキシ樹脂硬化剤として用いることにより、耐熱性の良好なエポキシ樹脂硬化物が得られる。特に、ジアミノジフェニルスルホンもしくはその誘導体、またはその各種異性体は、耐熱性の良好なエポキシ樹脂硬化物を得るため最も適しているエポキシ樹脂硬化剤である。 Above all, by using an aromatic polyamine as an epoxy resin curing agent for the component [D], a cured epoxy resin with good heat resistance can be obtained. In particular, diaminodiphenyl sulfone or a derivative thereof, or various isomers thereof are the most suitable epoxy resin curing agents for obtaining a cured epoxy resin with good heat resistance.
 また、ジシアンジアミドと尿素化合物、例えば、3,4-ジクロロフェニル-1,1-ジメチルウレアとの組合せ、あるいはイミダゾール類をエポキシ樹脂硬化剤として用いることにより、比較的低温で硬化しながら高い耐熱耐水性が得られる。酸無水物を用いてエポキシ樹脂を硬化することは、アミン化合物硬化に比べ吸水率の低いエポキシ樹脂硬化物を与える。その他、これらの硬化剤を潜在化したもの、例えば、マイクロカプセル化したものを用いることにより、プリプレグの保存安定性、特にタック性やドレープ性が室温放置しても変化しにくい。 Further, by using a combination of dicyandiamide and a urea compound such as 3,4-dichlorophenyl-1,1-dimethylurea or imidazoles as an epoxy resin curing agent, high heat and water resistance can be achieved while curing at a relatively low temperature. can get. Curing the epoxy resin with an acid anhydride gives a cured epoxy resin having a lower water absorption than the amine compound curing. In addition, by using a latent product of these curing agents, for example, a microencapsulated product, the storage stability of the prepreg, in particular, tackiness and draping properties hardly change even when left at room temperature.
 構成要素[D]のエポキシ樹脂硬化剤の添加量の最適値は、エポキシ樹脂とエポキシ樹脂硬化剤の種類により異なる。例えば、芳香族アミン硬化剤を用いる場合、その含有量は、耐熱性や力学特性の観点から、活性水素量を、エポキシ樹脂中のエポキシ分子量の0.6~1.2倍とすることが好ましく、0.7~1.1倍とすればより好ましい。0.6倍に満たない場合、エポキシ樹脂硬化物の架橋密度が十分でないため、弾性率、耐熱性が不足したり、繊維強化複合材料の静的強度特性が不足したりする場合がある。1.2倍を超える場合、エポキシ樹脂硬化物の架橋密度や吸水率が高くなりすぎ、変形能力が不足し、繊維複合材料の耐衝撃性に劣る場合がある。 The optimum value of the addition amount of the epoxy resin curing agent of the component [D] varies depending on the type of epoxy resin and epoxy resin curing agent. For example, when an aromatic amine curing agent is used, the content is preferably 0.6 to 1.2 times the amount of active hydrogen in the epoxy resin from the viewpoint of heat resistance and mechanical properties. 0.7 to 1.1 times is more preferable. When less than 0.6 times, since the crosslinking density of the cured epoxy resin is not sufficient, the elastic modulus and heat resistance may be insufficient, or the static strength characteristics of the fiber reinforced composite material may be insufficient. When exceeding 1.2 times, the crosslinking density and water absorption rate of the cured epoxy resin are too high, the deformation ability is insufficient, and the impact resistance of the fiber composite material may be inferior.
 芳香族ポリアミン硬化剤の市販品としては、セイカキュアS(和歌山精化工業(株)製)、MDA-220、3,3’-DAS(以上、三井化学(株)製)、“jERキュア(登録商標)”W(三菱化学(株)製)、“Lonzacure(登録商標)”M-DEA、“Lonzacure(登録商標)”M-DIPA、“Lonzacure(登録商標)”M-MIPA(以上、Lonza(株)製)および“Lonzacure(登録商標)”DETDA 80(Lonza(株)製)などが挙げられる。 Commercially available aromatic polyamine curing agents include Seika Cure S (manufactured by Wakayama Seika Kogyo Co., Ltd.), MDA-220, 3,3′-DAS (manufactured by Mitsui Chemicals, Inc.), “jER Cure (registered) Trademarks) “W (Mitsubishi Chemical Corporation)”, “Lonacure (registered trademark)” M-DEA, “Lonacure (registered trademark)” M-DIPA, “Lonacure (registered trademark)” M-MIPA (above, Lonza ( And Lonzacure (registered trademark) DETDA 80 (manufactured by Lonza).
 また、これらエポキシ樹脂とエポキシ樹脂硬化剤、あるいはそれらの一部を予備反応させた物を組成物中に含有させることもできる。この方法は、粘度調節や保存安定性向上に有効な場合がある。 Also, the epoxy resin and epoxy resin curing agent, or a product obtained by pre-reacting a part of them can be contained in the composition. This method may be effective for viscosity adjustment and storage stability improvement.
 本発明のエポキシ樹脂硬化物は、本発明のエポキシ樹脂組成物を硬化させてなる。 The cured epoxy resin of the present invention is obtained by curing the epoxy resin composition of the present invention.
 本発明のエポキシ樹脂硬化物のガラス転移温度は、航空機材料に必要とされる耐熱性および湿熱下圧縮強度を十分に確保する観点から、好ましくは120~250℃、より好ましくは140~210℃である。このような比較的高い耐熱性を有するエポキシ樹脂組成物およびそれを用いたプリプレグの硬化成形には、比較的高い硬化温度が必要となる。現在航空機の機体構造材料に用いられているプリプレグは、硬化成形温度が180±10℃の範囲であることが一般的である。また、硬化成形させてなる繊維強化複合材料の強度を十分に発現させるため、プリプレグ積層体の硬化成形は1気圧以上の加圧条件下で行うことが一般的である。 The glass transition temperature of the cured epoxy resin of the present invention is preferably 120 to 250 ° C., more preferably 140 to 210 ° C., from the viewpoint of sufficiently ensuring the heat resistance required for aircraft materials and compressive strength under wet heat. is there. Such a relatively high heat resistance epoxy resin composition and a prepreg using the epoxy resin composition require a relatively high curing temperature. The prepreg currently used for aircraft fuselage structural materials generally has a curing molding temperature in the range of 180 ± 10 ° C. Further, in order to sufficiently develop the strength of the fiber reinforced composite material formed by curing, the prepreg laminate is generally cured and molded under a pressure condition of 1 atm or higher.
 本発明のエポキシ樹脂硬化物は、構成要素[C]を主成分とする相分離構造の大きさが0.01~0.5μmの範囲にあることが好ましい。すなわち、本発明のエポキシ樹脂硬化物は、その中で、構成要素[A]、構成要素[B]、構成要素[D]が均一相構造、もしくは構成要素[B]を主成分とする0.5μm未満の微細な相分離構造を形成し、さらには、そこに構成要素[C]を主成分とする0.01μm~0.5μmの微細な相分離構造を形成することが好ましい。中でも、構成要素[A]、構成要素[B]、構成要素[D]が均一相構造を形成し、そこに構成要素[C]を主成分とする0.01μm~0.5μmの微細な相分離構造を形成することが、安定した特性を得られることからより好ましい。ここで、均一相構造を形成するとは、かかるエポキシ樹脂硬化物において、構成要素[A]、構成要素[B]、構成要素[D]が分子レベルで相溶している状態を指す。構成要素[B]や構成要素[C]が0.01μm未満の相を形成している場合は、透過型電子顕微鏡による観察が困難となるため均一相構造とみなす。また、かかる構成要素[C]を主成分とする相とは、連続構造や海島構造などの相分離構造を形成する相のうち、構成要素[C]の密度(単位面積当たりの含有量)が他の相よりも大きい相を表す。かかる構成要素[C]の密度が他の相より大きいか否かの判断は、組成コントラストで行う。組成コントラストによる判断が難しい場合には、電子顕微鏡による元素分析により判断する。 In the cured epoxy resin of the present invention, the size of the phase separation structure composed mainly of the component [C] is preferably in the range of 0.01 to 0.5 μm. That is, in the cured epoxy resin of the present invention, the constituent element [A], the constituent element [B], and the constituent element [D] have a homogeneous phase structure or the constituent element [B] as a main component. It is preferable to form a fine phase separation structure of less than 5 μm, and further to form a fine phase separation structure of 0.01 μm to 0.5 μm containing the constituent element [C] as a main component. Among them, the constituent element [A], the constituent element [B], and the constituent element [D] form a uniform phase structure, and a fine phase of 0.01 μm to 0.5 μm mainly containing the constituent element [C]. It is more preferable to form a separation structure because stable characteristics can be obtained. Here, forming a homogeneous phase structure refers to a state in which the component [A], the component [B], and the component [D] are compatible at the molecular level in the cured epoxy resin. When the component [B] or the component [C] forms a phase of less than 0.01 μm, it is difficult to observe with a transmission electron microscope, so that it is regarded as a homogeneous phase structure. In addition, the phase having the constituent element [C] as a main component is the density (content per unit area) of the constituent element [C] among phases forming a phase separation structure such as a continuous structure or a sea-island structure. Represents a larger phase than the other phases. Whether the density of the constituent element [C] is larger than the other phases is determined based on the composition contrast. If it is difficult to determine by composition contrast, it is determined by elemental analysis using an electron microscope.
 かかる構成要素[B]、構成要素[C]が、0.5μmを超えて相分離している場合、弾性率や耐熱性を低下させるとともに、相分離した界面での接着性が悪化する場合がある。また、成形条件による相構造の安定化が困難となる恐れがある。 When the component [B] and the component [C] are phase-separated exceeding 0.5 μm, the elastic modulus and heat resistance may be lowered, and the adhesiveness at the phase-separated interface may be deteriorated. is there. In addition, it may be difficult to stabilize the phase structure depending on the molding conditions.
 かかる構成要素[C]が0.01μm未満の相を形成している場合、もしくは均一相構造を形成している場合、塑性変形によるエネルギー吸収は小さく、エポキシ樹脂硬化物の靭性の向上効果が小さくなる場合がある。 When the constituent element [C] forms a phase of less than 0.01 μm, or forms a homogeneous phase structure, the energy absorption due to plastic deformation is small, and the effect of improving the toughness of the cured epoxy resin is small. There is a case.
 本発明において相分離構造とは、異なる構成要素の樹脂を主成分とする相が、0.01μm以上の相分離構造の大きさを有することをいう。これに対し、分子レベルで均一に混合している状態を、相溶状態といい、本発明においては異なる構成要素の樹脂を主成分とする相が0.01μm未満の相分離構造の大きさである場合は、相溶状態とみなすものとする。 In the present invention, the phase separation structure means that a phase mainly composed of resins having different constituent elements has a size of a phase separation structure of 0.01 μm or more. On the other hand, the state of being uniformly mixed at the molecular level is called a compatible state, and in the present invention, the phase composed mainly of resins having different constituent elements is less than 0.01 μm in size of the phase separation structure. If there is, it shall be regarded as a compatible state.
 本発明のエポキシ樹脂硬化物において、ある樹脂を主成分とする相の相分離構造の大きさは、次のように定義するものとする。なお、相分離構造には、連続構造と海島構造が有るのでそれぞれについて定義する。 In the cured epoxy resin of the present invention, the size of the phase separation structure of a phase mainly composed of a certain resin is defined as follows. In addition, since the phase separation structure has a continuous structure and a sea-island structure, each is defined.
 連続構造の場合、顕微鏡写真の上に所定の長さの直線を引き、その直線のうち、当該樹脂を主成分とする相を通る部分の長さの数平均値を構造周期とする。連続構造においては、構造周期を相分離構造の大きさとする。かかる所定の長さとは、透過型電子顕微鏡写真を基に以下のようにして設定するものとする。構造周期が0.01μmオーダー(10nm以上100nm未満)と予想される場合、倍率を20,000倍で写真撮影し、写真上でランダムに20mmの長さ(サンプル上1μmの長さ)3本を選出したものをいう。同様にして、相分離構造周期が0.1μmオーダー(100nm以上1μm未満)と予想される場合、倍率を2,000倍で写真撮影し、写真上でランダムに20mmの長さ(サンプル上10μmの長さ)3本を選出したものをいう。相分離構造周期が1μmオーダー(1μm以上10μm未満)と予想される場合、倍率を200倍で写真撮影し、写真上でランダムに20mmの長さ(サンプル上100μmの長さ)3本を選出したものをいうものとする。もし、測定した相分離構造周期が予想したオーダーより外れていた場合、該当するオーダーに対応する倍率にて対応する長さを再度測定し、これを採用する。 In the case of a continuous structure, a straight line having a predetermined length is drawn on a photomicrograph, and the number average value of the lengths of portions of the straight line passing through a phase containing the resin as a main component is defined as a structural period. In the continuous structure, the structure period is the size of the phase separation structure. The predetermined length is set as follows based on a transmission electron micrograph. When the structural period is expected to be on the order of 0.01 μm (10 nm or more and less than 100 nm), take a photograph at a magnification of 20,000 times, and randomly place 3 pieces of 20 mm length (1 μm length on the sample) on the photograph. The selected one. Similarly, when the phase separation structure period is expected to be on the order of 0.1 μm (100 nm or more and less than 1 μm), a photograph is taken at a magnification of 2,000 times, and a length of 20 mm on the photograph (10 μm on the sample) Length) A selection of 3 bottles. When the phase separation structure period is expected to be on the order of 1 μm (1 μm or more and less than 10 μm), a photograph was taken at a magnification of 200 times, and three pieces of 20 mm length (100 μm length on the sample) were randomly selected on the photograph. It shall mean something. If the measured phase separation structure period is out of the expected order, the corresponding length is measured again at the magnification corresponding to the corresponding order, and this is adopted.
 海島構造の場合、所定の領域内に存在する島相の長径を測定し、これらの数平均値を島相の径とする。海島構造においては、島相の径を相分離構造の大きさとする。ここで、島相が楕円形のときは、長径をとり、不定形の場合は外接する円の直径を用いる。また、二層以上の円または楕円になっている場合には、最外層の円の直径または楕円の長径を用いるものとする。また、所定の領域とは、透過型電子顕微鏡写真を基に以下のようにして設定するものとする。島相の径が0.01μm未満または0.01μmオーダー(10nm以上100nm未満)と予想される場合、倍率を20,000倍で写真撮影し、写真上でランダムに20mm四方の領域(サンプル上1μm四方の領域)3箇所を選出する。同様にして、島相の径が0.1μmオーダー(100nm以上1μm未満)と予想される場合、倍率を2,000倍で写真撮影し、写真上でランダムに20mm四方の領域(サンプル上10μm四方の領域)3箇所を選出する。島相の径が1μmオーダー(1μm以上10μm未満)と予想される場合、倍率を200倍で写真撮影し、写真上でランダムに20mm四方の領域(サンプル上100μm四方の領域)3箇所を選出する。もし、測定した島相の径が予想したオーダーより外れていた場合、該当するオーダーに対応する倍率にて対応する領域を再度測定し、これを採用する。 In the case of a sea-island structure, the major axis of the island phase existing in a predetermined region is measured, and the number average value of these is taken as the island phase diameter. In the sea-island structure, the diameter of the island phase is the size of the phase separation structure. Here, when the island phase is elliptical, the major axis is taken, and when it is indefinite, the diameter of the circumscribed circle is used. In the case of a circle or ellipse having two or more layers, the diameter of the outermost layer circle or the major axis of the ellipse is used. The predetermined area is set as follows based on a transmission electron micrograph. When the diameter of the island phase is expected to be less than 0.01 μm or on the order of 0.01 μm (10 nm or more and less than 100 nm), a photograph is taken at a magnification of 20,000 times, and a random 20 mm square area on the photograph (1 μm on the sample Four areas) are selected. Similarly, when the diameter of the island phase is expected to be on the order of 0.1 μm (100 nm or more and less than 1 μm), a photograph is taken at a magnification of 2,000 times, and an area of 20 mm square on the photograph (10 μm square on the sample) 3) Select 3 locations. If the island phase diameter is expected to be on the order of 1 μm (1 μm or more and less than 10 μm), take a photograph at a magnification of 200 times, and randomly select three 20 mm square areas (100 μm square area on the sample) on the photograph. . If the measured island phase diameter deviates from the expected order, the corresponding region is measured again at the magnification corresponding to the corresponding order, and this is adopted.
 このエポキシ樹脂硬化物の相分離構造の大きさは、エポキシ樹脂硬化物の断面を走査型電子顕微鏡もしくは透過型電子顕微鏡により観察することができる。必要に応じて、オスミウムなどで染色しても良い。染色は、通常の方法で行うことができる。 The size of the phase separation structure of the cured epoxy resin can be observed with a scanning electron microscope or a transmission electron microscope. You may dye | stain with osmium etc. as needed. Dyeing can be performed by a usual method.
 また、他の手法で、かかるエポキシ樹脂硬化物の相構造を確認するには、DMAやDSC等の熱力学特性分析の手法で検出されるTgが単一か否かで判断することも可能である。例えば、かかるエポキシ樹脂硬化物のDMA昇温測定により得られる損失正接(tanδ)と温度の散布図において、構成要素[A]等からなる架橋構造に由来するtanδピークに加えて、構成要素[C]に由来するtanδピークも現れた場合、相分離していると判断できる。 In addition, in order to confirm the phase structure of such a cured epoxy resin by other methods, it is also possible to determine whether there is a single Tg detected by a method of thermodynamic property analysis such as DMA or DSC. is there. For example, in the scatter diagram of loss tangent (tan δ) and temperature obtained by DMA temperature rise measurement of such a cured epoxy resin, in addition to the tan δ peak derived from the cross-linked structure composed of the component [A], the component [C When a tan δ peak derived from] appears, it can be determined that the phases are separated.
 本発明のエポキシ樹脂硬化物の一例として、構成要素[A]のエポキシ樹脂を主成分とする相と構成要素[C]のブロック共重合体を主成分とする相を有する海島構造の相分離構造を有するエポキシ樹脂硬化物が挙げられる。 As an example of the cured epoxy resin of the present invention, a sea-island structure phase-separated structure having a phase mainly composed of the epoxy resin of the component [A] and a phase mainly composed of the block copolymer of the component [C] An epoxy resin cured product having
 本発明のエポキシ樹脂組成物は、本発明の効果を妨げない範囲で、カップリング剤や、熱硬化性樹脂粒子、あるいは構成要素[B]以外の熱可塑性樹脂、熱可塑性樹脂粒子、構成要素[C]以外のエラストマー、シリカゲル、カーボンブラック、クレー、カーボンナノチューブ、金属粉体といった無機フィラー等を含有させることができる。 The epoxy resin composition of the present invention is a coupling agent, a thermosetting resin particle, or a thermoplastic resin other than the component [B], a thermoplastic resin particle, a component [ Inorganic fillers such as elastomers other than C], silica gel, carbon black, clay, carbon nanotube, metal powder, and the like can be contained.
 本発明のエポキシ樹脂組成物においては、エポキシ樹脂硬化剤である構成要素[D]以外の構成要素を、まず150~170℃程度の温度で均一に加熱混練し、次いで80℃程度の温度まで冷却した後に、構成要素[D]を加えて混練することが好ましいが、各構成要素の配合方法は特にこの方法に限定されるものではない。 In the epoxy resin composition of the present invention, components other than the component [D], which is an epoxy resin curing agent, are first heated and kneaded uniformly at a temperature of about 150 to 170 ° C., and then cooled to a temperature of about 80 ° C. After that, it is preferable to add component [D] and knead, but the blending method of each component is not particularly limited to this method.
 本発明で用いられる強化繊維としては、ガラス繊維、炭素繊維、黒鉛繊維、アラミド繊維、ボロン繊維、アルミナ繊維および炭化ケイ素繊維等が挙げられる。これらの強化繊維を2種以上混合して用いても構わないが、より軽量で、より耐久性の高い成形品を得るために、炭素繊維や黒鉛繊維を用いることが好ましい。特に、材料の軽量化や高強度化の要求が高い用途においては、その優れた比弾性率と比強度のため、強化繊維が炭素繊維であることが好ましい。 Examples of the reinforcing fiber used in the present invention include glass fiber, carbon fiber, graphite fiber, aramid fiber, boron fiber, alumina fiber, and silicon carbide fiber. Two or more kinds of these reinforcing fibers may be mixed and used, but in order to obtain a molded product that is lighter and more durable, it is preferable to use carbon fibers or graphite fibers. In particular, in applications where there is a high demand for weight reduction and high strength of materials, it is preferable that the reinforcing fibers are carbon fibers because of their excellent specific modulus and specific strength.
 本発明で好ましく用いられる炭素繊維は、用途に応じてあらゆる種類の炭素繊維を用いることが可能であるが、耐衝撃性の点から400GPa以下の引張弾性率を有する炭素繊維であることが好ましい。また、強度の観点からは、高い剛性および機械強度を有する複合材料が得られることから、引張強度が好ましくは4.4~6.5GPaの炭素繊維が用いられる。また、引張伸度も重要な要素であり、1.7~2.3%の高強度高伸度炭素繊維であることが好ましい。従って、引張弾性率が少なくとも230GPaであり、引張強度が少なくとも4.4GPaであり、引張伸度が少なくとも1.7%であるという特性を兼ね備えた炭素繊維が最も適している。 The carbon fiber preferably used in the present invention can be any type of carbon fiber depending on the application, but is preferably a carbon fiber having a tensile elastic modulus of 400 GPa or less from the viewpoint of impact resistance. From the viewpoint of strength, a carbon fiber having a tensile strength of preferably 4.4 to 6.5 GPa is preferably used because a composite material having high rigidity and mechanical strength can be obtained. Also, the tensile elongation is an important factor, and it is preferable that the carbon fiber is a high strength and high elongation carbon fiber of 1.7 to 2.3%. Accordingly, carbon fibers having the characteristics that the tensile modulus is at least 230 GPa, the tensile strength is at least 4.4 GPa, and the tensile elongation is at least 1.7% are most suitable.
 炭素繊維の市販品としては、“トレカ(登録商標)”T800G-24K、“トレカ(登録商標)”T800S-24K、“トレカ(登録商標)”T700G-24K、“トレカ(登録商標)”T300-3K、および“トレカ(登録商標)”T700S-12K(以上東レ(株)製)などが挙げられる。 Commercially available carbon fibers include “Torayca (registered trademark)” T800G-24K, “Torayca (registered trademark)” T800S-24K, “Torayca (registered trademark)” T700G-24K, and “Torayca (registered trademark)” T300- 3K, and “Torayca (registered trademark)” T700S-12K (manufactured by Toray Industries, Inc.).
 炭素繊維の形態や配列については、一方向に引き揃えた長繊維や織物等から適宜選択できるが、軽量で耐久性がより高い水準にある炭素繊維強化複合材料を得るためには、炭素繊維が、一方向に引き揃えた長繊維(繊維束)や織物等連続繊維の形態であることが好ましい。 The form and arrangement of the carbon fibers can be appropriately selected from long fibers and woven fabrics arranged in one direction. However, in order to obtain a carbon fiber reinforced composite material that is lighter and more durable, It is preferably in the form of continuous fibers such as long fibers (fiber bundles) or woven fabrics arranged in one direction.
 本発明のプリプレグは、本発明のエポキシ樹脂組成物を上記強化繊維に含浸させてなる。そのプリプレグの繊維質量分率は好ましくは40~90質量%であり、より好ましくは50~80質量%である。繊維質量分率が低すぎると、得られる複合材料の質量が過大となり、比強度および比弾性率に優れる繊維強化複合材料の利点が損なわれることがある。また、繊維質量分率が高すぎると、樹脂組成物の含浸不良が生じ、得られる複合材料がボイドの多いものとなり易く、その力学特性が大きく低下することがある。 The prepreg of the present invention is obtained by impregnating the above reinforcing fiber with the epoxy resin composition of the present invention. The fiber mass fraction of the prepreg is preferably 40 to 90% by mass, more preferably 50 to 80% by mass. When the fiber mass fraction is too low, the mass of the resulting composite material becomes excessive, and the advantages of the fiber-reinforced composite material having excellent specific strength and specific elastic modulus may be impaired. On the other hand, if the fiber mass fraction is too high, poor impregnation of the resin composition occurs, and the resulting composite material tends to have a lot of voids, so that its mechanical properties may be greatly deteriorated.
 強化繊維の形態は特に限定されるものではなく、例えば、一方向に引き揃えた長繊維、トウ、織物、マット、ニット、組み紐などが用いられる。また、特に、比強度と比弾性率が高いことを要求される用途には、強化繊維が単一方向に引き揃えられた配列が最も適しているが、取り扱いの容易なクロス(織物)状の配列も本発明には適している。 The form of the reinforcing fibers is not particularly limited, and for example, long fibers, tows, woven fabrics, mats, knits, braids and the like that are aligned in one direction are used. In particular, for applications that require high specific strength and high specific modulus, an array in which reinforcing fibers are aligned in a single direction is most suitable. Arrangements are also suitable for the present invention.
 本発明のプリプレグは、マトリックス樹脂として用いられる前記エポキシ樹脂組成物を、メチルエチルケトンやメタノール等の溶媒に溶解して低粘度化し、強化繊維に含浸させる方法(ウェット法)や、マトリックス樹脂を加熱により低粘度化し、強化繊維に含浸させるホットメルト法(ドライ法)等により作製することができる。 The prepreg of the present invention is prepared by dissolving the epoxy resin composition used as a matrix resin in a solvent such as methyl ethyl ketone or methanol to lower the viscosity and impregnating the reinforced fiber (wet method), or by heating the matrix resin by heating. It can be produced by a hot melt method (dry method) or the like in which the viscosity is increased and the reinforcing fibers are impregnated.
 ウェット法は、強化繊維をマトリックス樹脂であるエポキシ樹脂組成物の溶液に浸漬した後、引き上げ、オーブン等を用いて溶媒を蒸発させる方法である。ホットメルト法(ドライ法)は、加熱により低粘度化したエポキシ樹脂組成物を直接強化繊維に含浸させる方法、または一旦エポキシ樹脂組成物を離型紙等の上にコーティングしたフィルムを作製しておき、次いで強化繊維の両側または片側から前記フィルムを重ね、加熱加圧することにより強化繊維に樹脂を含浸させる方法である。ホットメルト法によれば、プリプレグ中に残留する溶媒が実質上皆無となるため、本発明においては好ましい態様である。 The wet method is a method in which a reinforcing fiber is immersed in a solution of an epoxy resin composition that is a matrix resin, and then lifted and the solvent is evaporated using an oven or the like. The hot melt method (dry method) is a method of impregnating reinforcing fibers directly with an epoxy resin composition whose viscosity has been reduced by heating, or a film in which an epoxy resin composition is once coated on release paper or the like, Next, the reinforcing fiber is impregnated with resin by overlapping the film from both sides or one side of the reinforcing fiber and heating and pressing. According to the hot melt method, the solvent remaining in the prepreg is substantially absent, and therefore, this is a preferred embodiment in the present invention.
 本発明の繊維強化複合材料の第一の態様は、本発明のプリプレグを硬化させてなる。かかる繊維強化複合材料は、例えば、本発明のプリプレグを積層後、積層物に圧力を付与しながらマトリックス樹脂を加熱硬化させる方法等により作製することができる。 The first aspect of the fiber-reinforced composite material of the present invention is obtained by curing the prepreg of the present invention. Such a fiber reinforced composite material can be produced by, for example, a method of laminating the prepreg of the present invention and then heating and curing the matrix resin while applying pressure to the laminate.
 ここで熱および圧力を付与する方法には、プレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法、内圧成形法等が採用される。 Here, as a method of applying heat and pressure, a press molding method, an autoclave molding method, a bagging molding method, a wrapping tape method, an internal pressure molding method, or the like is employed.
 本発明の繊維強化複合材料の第二の態様は、本発明のエポキシ樹脂硬化物と強化繊維を含んでなる。かかる繊維強化複合材料は、プリプレグを介さず、エポキシ樹脂組成物を直接強化繊維に含浸させた後、加熱硬化せしめる方法、例えば、ハンド・レイアップ法、フィラメント・ワインディング法、プルトルージョン法、レジン・インジェクション・モールディング法、レジン・トランスファー・モールディング法等の成形法によって作製することができる。これら方法では、エポキシ樹脂からなる主剤とエポキシ樹脂硬化剤との2液を使用直前に混合してエポキシ樹脂組成物を調製することが好ましい。 The second embodiment of the fiber-reinforced composite material of the present invention comprises the cured epoxy resin of the present invention and reinforcing fibers. Such a fiber-reinforced composite material is obtained by impregnating an epoxy resin composition directly into a reinforcing fiber without using a prepreg, followed by heat-curing, for example, a hand lay-up method, a filament winding method, a pultrusion method, a resin It can be produced by a molding method such as an injection molding method or a resin transfer molding method. In these methods, it is preferable to prepare an epoxy resin composition by mixing two liquids of an epoxy resin main component and an epoxy resin curing agent immediately before use.
 以下、実施例によって、本発明のエポキシ樹脂組成物について、より具体的に説明する。実施例で用いた樹脂原料の作製方法および評価法を次に示す。 Hereinafter, the epoxy resin composition of the present invention will be described more specifically with reference to examples. The production methods and evaluation methods of the resin raw materials used in the examples are shown below.
 <構成要素[A]:エポキシ樹脂>
 (アミン型エポキシ樹脂)
 ・“jER(登録商標)”630(トリグリシジルアミノフェノール、三菱化学(株)製)
 ・“アラルダイト(登録商標)”MY0600(トリグリシジルアミノフェノール、ハンツマン・アドバンズド・マテリアルズ社製)
 ・“スミエポキシ(登録商標)”ELM434(テトラグリシジルジアミノジフェニルメタン、住友化学(株)製)。
<Component [A]: Epoxy resin>
(Amine type epoxy resin)
"JER (registered trademark)" 630 (triglycidylaminophenol, manufactured by Mitsubishi Chemical Corporation)
"Araldite (registered trademark)" MY0600 (triglycidylaminophenol, manufactured by Huntsman Advanced Materials)
"Sumiepoxy (registered trademark)" ELM434 (tetraglycidyldiaminodiphenylmethane, manufactured by Sumitomo Chemical Co., Ltd.).
 (他のエポキシ樹脂)
 ・“jER(登録商標)”828(ビスフェノールA型エポキシ樹脂、三菱化学(株)製))
 ・“エピクロン(登録商標)”830(ビスフェノールF型エポキシ樹脂、DIC(株)製)
 ・“jER(登録商標)”152(フェノールノボラック型エポキシ樹脂、三菱化学(株)製))。
(Other epoxy resins)
・ "JER (registered trademark)" 828 (bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation))
"Epiclon (registered trademark)" 830 (bisphenol F type epoxy resin, manufactured by DIC Corporation)
"JER (registered trademark)" 152 (phenol novolac type epoxy resin, manufactured by Mitsubishi Chemical Corporation)).
  <熱可塑性樹脂>
 (構成要素[B]:式(1)で表す構成単位を80モル%以上含み、かつエポキシ樹脂に溶解し得る熱可塑性樹脂)
 ・“Virantage(登録商標)”VW-10700RP(ポリエーテルスルホン、Solvay Advanced Polymers(株)製、構成要素[B]は式(1)で表す構成単位を100モル%以上含む、Mw=21,000g/モル)
 ・ポリエーテルスルホン P1(構成要素[B]は式(1)で表す構成単位を100モル%含む、Mw=5,000g/モル)
 攪拌機、窒素導入管、温度計、冷却管を取り付けた三口フラスコに、4,4’-ジヒドロキシジフェニルスルホン25.03g(0.1モル)、トルエン50ml、1,3-ジメチル-2-イミダゾリジノン125.4g、そして40%水酸化カリウム水溶液28.0gをとり、攪拌しながら窒素ガスを通じ、反応系をすべて窒素で置換した。窒素ガスを通じながら130℃まで加熱した。反応系の温度が上昇すると共にトルエンの還流が開始された。反応系内の水をトルエンとの共沸で除去し、トルエンを反応系に戻す共沸脱水を130℃で4時間行った。この後、4,4’-ジクロロジフェニルスルホン28.7gをトルエン20gと共に反応系に加え、反応系を150℃に加熱した。トルエンを留出させながら3時間反応させ、高粘度の茶褐色の溶液を得た。反応液の温度を室温まで冷却し、反応溶液をメタノール500gに排出し、ポリマー粉を析出させた。濾別によりポリマー粉を回収し、ビーカーに移した。これに水500gを加え、更に1N塩酸を加えた。濾別によりポリマー粉を回収した後、ポリマー粉を水500gで2回洗浄した。更にメタノール500gに洗浄し、150℃で12時間減圧乾燥を行った。得られた中間生成物5.0gに対し、4,4’-ジヒドロキシジフェニルスルホン2.5g、N-メチル-2-ピロリドン(NMP)200ml、無水炭酸カリウム3.0gを秤量した。NMP反応溶液を攪拌しながら反応温度を150℃にまで上昇させ、反応時間10時間で反応を終了した。反応溶液を500mlのメタノールに投下し、析出固体を粉砕、500mlの水で2回洗浄した。130℃で真空乾燥を行い、白色粉末状5.8gを得た。
<Thermoplastic resin>
(Constituent element [B]: Thermoplastic resin containing 80 mol% or more of the structural unit represented by formula (1) and soluble in epoxy resin)
"Virantage (registered trademark)" VW-10700RP (polyethersulfone, manufactured by Solvay Advanced Polymers Co., Ltd., component [B] contains 100 mol% or more of the structural unit represented by formula (1), Mw = 21,000 g / Mol)
Polyethersulfone P1 (component [B] contains 100 mol% of the structural unit represented by formula (1), Mw = 5,000 g / mol)
In a three-necked flask equipped with a stirrer, nitrogen introduction tube, thermometer, and cooling tube, 25.03 g (0.1 mol) of 4,4′-dihydroxydiphenylsulfone, 50 ml of toluene, 1,3-dimethyl-2-imidazolidinone 125.4 g and 28.0 g of 40% potassium hydroxide aqueous solution were taken, and nitrogen gas was passed through with stirring, and the reaction system was completely replaced with nitrogen. The mixture was heated to 130 ° C. while passing nitrogen gas. As the temperature of the reaction system rose, the reflux of toluene was started. Water in the reaction system was removed by azeotropy with toluene, and azeotropic dehydration for returning toluene to the reaction system was performed at 130 ° C. for 4 hours. Thereafter, 28.7 g of 4,4′-dichlorodiphenylsulfone was added to the reaction system together with 20 g of toluene, and the reaction system was heated to 150 ° C. The reaction was carried out for 3 hours while distilling toluene to obtain a high-viscosity brown solution. The temperature of the reaction solution was cooled to room temperature, the reaction solution was discharged into 500 g of methanol, and polymer powder was deposited. The polymer powder was collected by filtration and transferred to a beaker. 500 g of water was added thereto, and 1N hydrochloric acid was further added. After collecting the polymer powder by filtration, the polymer powder was washed twice with 500 g of water. Further, it was washed with 500 g of methanol and dried under reduced pressure at 150 ° C. for 12 hours. To 5.0 g of the obtained intermediate product, 2.5 g of 4,4′-dihydroxydiphenylsulfone, 200 ml of N-methyl-2-pyrrolidone (NMP), and 3.0 g of anhydrous potassium carbonate were weighed. While stirring the NMP reaction solution, the reaction temperature was raised to 150 ° C., and the reaction was completed in a reaction time of 10 hours. The reaction solution was dropped into 500 ml of methanol, and the precipitated solid was pulverized and washed twice with 500 ml of water. Vacuum drying was performed at 130 ° C. to obtain 5.8 g of a white powder.
 ・ポリエーテルスルホン P2(構成要素[B]は式(1)で表す構成単位を100モル%含む、Mw=8,000g/モル)
 攪拌機、窒素導入管、温度計、冷却管を取り付けた三口フラスコに、P1と同様の方法で得た中間生成物5.0gに対し、4,4’-ジヒドロキシジフェニルスルホン1.5g、N-メチル-2-ピロリドン(NMP)200ml、無水炭酸カリウム2.0gを秤量した。NMP反応溶液を攪拌しながら反応温度を150℃にまで上昇させ、反応時間6時間で反応を終了した。反応溶液を500mlのメタノールに投下し、析出固体を粉砕、500mlの水で2回洗浄した。130℃で真空乾燥を行い、白色粉末状6.4gを得た。
Polyethersulfone P2 (component [B] contains 100 mol% of the structural unit represented by formula (1), Mw = 8,000 g / mol)
Into a three-necked flask equipped with a stirrer, nitrogen introducing tube, thermometer, and cooling tube, 1.5 g of 4,4′-dihydroxydiphenylsulfone and N-methyl were added to 5.0 g of the intermediate product obtained in the same manner as P1. 200 ml of -2-pyrrolidone (NMP) and 2.0 g of anhydrous potassium carbonate were weighed. While stirring the NMP reaction solution, the reaction temperature was increased to 150 ° C., and the reaction was completed in a reaction time of 6 hours. The reaction solution was dropped into 500 ml of methanol, and the precipitated solid was pulverized and washed twice with 500 ml of water. Vacuum drying was performed at 130 ° C. to obtain 6.4 g of a white powder.
 (構成要素[B]以外の熱可塑性樹脂)
 ・“Virantage(登録商標)”VW-30500RP(ポリスルホン、Solvay Advanced Polymers(株)製)。
(Thermoplastic resin other than component [B])
“Virantage®” VW-30500RP (Polysulfone, manufactured by Solvay Advanced Polymers).
 ・“ULTEM(登録商標)”1010(ポリエーテルイミド、Sabic(株)製)。 · "ULTEM (registered trademark)" 1010 (polyetherimide, manufactured by Sabic).
 <ブロック共重合体>
 (構成要素[C]:条件(i)~(iii)を満たす、ブロック[c1]とブロック[c2]からなるブロック共重合体)
 ・ブロック共重合体 X1(式(2)で表される構造で連結されてなる、ブロック共重合体)
 ブロック[c1]- ブロック[c2]=[PES]-[Si] {ポリ(エーテルスルホン)-block-ポリ(シロキサン)、(ブロック[c1]は式(1)で表す構成単位を100モル%含む、[Si]/[PES]-[Si]ブロック重量分率=0.35、Mw=7,500g/モル、[PES]と[Si]はエーテル結合で連結されてなるブロック共重合体、ブロック[c2]のSP=7.4)}。
<Block copolymer>
(Constituent element [C]: block copolymer consisting of block [c1] and block [c2] satisfying conditions (i) to (iii))
Block copolymer X1 (block copolymer connected with the structure represented by formula (2))
Block [c1] -Block [c2] = [PES]-[Si] {Poly (ethersulfone) -block-poly (siloxane), (Block [c1] contains 100 mol% of the structural unit represented by formula (1) , [Si] / [PES]-[Si] block weight fraction = 0.35, Mw = 7,500 g / mol, [PES] and [Si] are block copolymers and blocks connected by an ether bond [C2] SP = 7.4)}.
 攪拌機、窒素導入管、温度計、冷却管を取り付けた300mLの三口フラスコに、“Virantage(登録商標)”VW-10700RP(ポリエーテルスルホン、Solvay Advanced Polymers(株)製)“5.0gに対し、KF-2201(フェノール変性シリコーン、信越化学工業(株)製)10.0g、脱水ジメチルスルホキシド(脱水DMSO)120ml、脱水トルエン30ml、無水炭酸カリウム2.3gを秤量した。脱水DMSO/脱水トルエン反応溶液を攪拌しながら反応温度を150℃にまで上昇させ、反応時間3時間でフェノール性水酸基の求核置換反応を終了した。反応溶液を500mlのメタノールに投下し、析出固体を粉砕、500mlの水で2回洗浄した。130℃で真空乾燥を行い、白色粉末状2.7gを得た。 In a 300 mL three-necked flask equipped with a stirrer, a nitrogen introduction tube, a thermometer, and a cooling tube, "Virantage (registered trademark)" VW-10700RP (polyethersulfone, Solvay Advanced Polymers Co., Ltd.) "5.0 g, KF-2201 (phenol-modified silicone, manufactured by Shin-Etsu Chemical Co., Ltd.) 10.0 g, dehydrated dimethyl sulfoxide (dehydrated DMSO) 120 ml, dehydrated toluene 30 ml, and anhydrous potassium carbonate 2.3 g were weighed in a dehydrated DMSO / dehydrated toluene reaction solution. The reaction temperature was raised to 150 ° C. with stirring, and the nucleophilic substitution reaction of the phenolic hydroxyl group was completed in 3 hours of reaction time.The reaction solution was dropped into 500 ml of methanol, the precipitated solid was pulverized, and 500 ml of water was used. Washed twice, vacuum dried at 130 ° C. There was obtained a white powder 2.7 g.
 ・ブロック共重合体 X2(式(2)で表される構造で連結されてなる、ブロック共重合体)
 ブロック[c1]- ブロック[c2]=[PES]-[Si] {ポリ(エーテルスルホン)-block-ポリ(シロキサン)、(ブロック[c1]は式(1)で表す構成単位を100モル%含む、[Si]/[PES]-[Si]ブロック重量分率=0.3、Mw=9,000g/モル、[PES]と[Si]はエーテル結合で連結されてなるブロック共重合体、ブロック[c2]のSP=7.4)}。
Block copolymer X2 (block copolymer connected with the structure represented by formula (2))
Block [c1] -Block [c2] = [PES]-[Si] {Poly (ethersulfone) -block-poly (siloxane), (Block [c1] contains 100 mol% of the structural unit represented by formula (1) , [Si] / [PES]-[Si] block weight fraction = 0.3, Mw = 9,000 g / mol, [PES] and [Si] are block copolymers and blocks connected by an ether bond [C2] SP = 7.4)}.
 攪拌機、窒素導入管、温度計、冷却管を取り付けた300mLの三口フラスコに、“Virantage(登録商標)”VW-10700RP(ポリエーテルスルホン、Solvay Advanced Polymers(株)製)“5.0gに対し、BY16-752A (フェノール変性シリコーン、東レ・ダウコーニング(株)製)8.2g、脱水ジメチルスルホキシド(脱水DMSO)120ml、脱水トルエン30ml、無水炭酸カリウム2.5gを秤量した。脱水DMSO/脱水トルエン反応溶液を攪拌しながら反応温度を150℃にまで上昇させ、反応時間4時間でフェノール性水酸基の求核置換反応を終了した。反応溶液を500mlのメタノールに投下し、析出固体を粉砕、500mlの水で2回洗浄した。130℃で真空乾燥を行い、白色粉末状2.5gを得た。 In a 300 mL three-necked flask equipped with a stirrer, a nitrogen introduction tube, a thermometer, and a cooling tube, "Virantage (registered trademark)" VW-10700RP (polyethersulfone, Solvay Advanced Polymers Co., Ltd.) "5.0 g, BY16-752A (phenol-modified silicone, manufactured by Toray Dow Corning Co., Ltd.) 8.2 g, 120 ml of dehydrated dimethyl sulfoxide (dehydrated DMSO), 30 ml of dehydrated toluene, and 2.5 g of anhydrous potassium carbonate were weighed. The reaction temperature was raised to 150 ° C. while stirring the solution, and the nucleophilic substitution reaction of the phenolic hydroxyl group was completed within 4 hours of reaction time.The reaction solution was dropped into 500 ml of methanol, the precipitated solid was pulverized, and 500 ml of water Washed twice at 130 ° C. And vacuum dried to give a white powder 2.5 g.
 ・ブロック共重合体 X3(式(3)で表される構造で連結されてなる、ブロック共重合体)
 ブロック[c1]- ブロック[c2]=[PES]-[Si] {ポリ(エーテルスルホン)-block-ポリ(シロキサン)、(ブロック[c1]は式(1)で表す構成単位を100モル%含む、[Si]/[PES]-[Si]ブロック重量分率=0.2、Mw=10,000g/モル、[PES]と[Si]はエーテル結合で連結されてなるブロック共重合体、ブロック[c2]のSP=7.4)}。
Block copolymer X3 (block copolymer connected with the structure represented by formula (3))
Block [c1] -Block [c2] = [PES]-[Si] {Poly (ethersulfone) -block-poly (siloxane), (Block [c1] contains 100 mol% of the structural unit represented by formula (1) , [Si] / [PES]-[Si] block weight fraction = 0.2, Mw = 10,000 g / mol, [PES] and [Si] are block copolymers and blocks connected by an ether bond [C2] SP = 7.4)}.
 30mLのオートクレーブの中に、P2(ポリエーテルスルホン)0.3gと、X-22-163B(エポキシ変性シリコーン、信越化学工業(株)製)1.4g、N-メチル-2-ピロリドン(NMP)15mlを加えた。99体積%以上の窒素置換を行った後、攪拌しながら反応温度を150℃にまで上昇させ、反応時間12時間でフェノール性水酸基の求核置換反応を終了した。反応溶液を100mlのメタノールに投下し、析出固体を粉砕、100mlの水で2回洗浄した。130℃で真空乾燥を行い、白色粉末状0.26gを得た。 In a 30 mL autoclave, 0.3 g of P2 (polyethersulfone), 1.4 g of X-22-163B (epoxy-modified silicone, manufactured by Shin-Etsu Chemical Co., Ltd.), N-methyl-2-pyrrolidone (NMP) 15 ml was added. After carrying out nitrogen substitution of 99 volume% or more, the reaction temperature was raised to 150 ° C. with stirring, and the nucleophilic substitution reaction of the phenolic hydroxyl group was completed in a reaction time of 12 hours. The reaction solution was dropped into 100 ml of methanol, and the precipitated solid was pulverized and washed twice with 100 ml of water. Vacuum drying was performed at 130 ° C. to obtain 0.26 g of a white powder.
 (構成要素[C]以外のブロック共重合体)
 ・ブロック共重合体 Y1
 [MMA]-[BA]{ポリ(メタクリル酸メチル)-block-ポリ(ブチルアクリレート)、([MMA]はメタクリル酸メチルと極性アクリル系モノマーのランダム共重合鎖からなり、[MMA]と[BA]はC-C結合で連結されてなるブロック共重合体、[BA]のSP=10)}。
国際公開第2006/077153号によるMBuAM-2の記載に従って合成した。
・ブロック共重合体 Y2
 [PEI]-[Si] {ポリ(エーテルイミド)-block-ポリ(シロキサン)、[PEI]と[Si]はイミド結合で連結されてなるブロック共重合体、[Si]のSP=7.4)}
特開平7-278412号公報による実施例1の記載に従って合成した。
(Block copolymer other than component [C])
・ Block copolymer Y1
[MMA]-[BA] {poly (methyl methacrylate) -block-poly (butyl acrylate), ([MMA] is a random copolymer chain of methyl methacrylate and a polar acrylic monomer, and [MMA] and [BA ] Is a block copolymer linked by a C—C bond, [BA] SP = 10)}.
Synthesized according to the description of MBuAM-2 by WO 2006/075153.
・ Block copolymer Y2
[PEI]-[Si] {poly (ether imide) -block-poly (siloxane), [PEI] and [Si] are block copolymers connected by imide bonds, [Si] SP = 7.4 )}
The compound was synthesized as described in Example 1 of JP-A-7-278212.
 ・ブロック共重合体 Y3
 [PSU]-[Si] {ポリ(スルホン)-block-ポリ(シロキサン)、([[PSU]と[Si]はC-N結合で連結されてなるブロック共重合体、[Si]のSP=7.4)}
 “Journal of Applied Polymer Science ”、119巻、p.2933(2011年)の、Di Hu,Sixun Zhengによる“Morphology and Thermomechanical Properties of Epoxy Thermosets Modified with Polysulfone―Block-Polydimethylsiloxane Multiblock Copolymer” の記載に従って合成した。
・ Block copolymer Y3
[PSU]-[Si] {poly (sulfone) -block-poly (siloxane), ([[PSU] and [Si] are block copolymers connected by CN bonds, [Si] SP = 7.4)}
“Journal of Applied Polymer Science”, 119, p. 2933 (2011) by Di Hu, Sixun Zheng, described in “Morphology and Thermochemical Properties of Epoxy Thermosets Modified with Polysulfide-Blocky-Polymolecule-Block-Polydipolys.
 <その他の成分>
 ・粒子1(“グリルアミド(登録商標)”TR55を原料として作製した熱可塑性樹脂粒子)
 (粒子1の製造方法:国際公開第2009/142231号を参考とした。)
 100mlの4口フラスコの中に、ポリマーAとして非晶ポリアミド(Mw=18,000g/モル、エムザベルケ社製“グリルアミド(登録商標)”TR55)2.5g、有機溶媒としてN-メチル-2-ピロリドン 42.5g、ポリマーBとしてポリビニルアルコール 5g(日本合成化学工業株式会社“ゴーセノール(登録商標)”GL-05)を加え、80℃に加熱し、ポリマーが溶解するまで攪拌を行った。系の温度を室温に戻した後に、450rpmで攪拌しながら、貧溶媒として50gのイオン交換水を、送液ポンプを経由し、0.41g/分のスピードで滴下を行った。12gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後に、30分間攪拌し、得られた懸濁液を、ろ過し、イオン交換水100gで洗浄し、80℃ 10時間真空乾燥を行い、白色固体2.2gを得た。得られた粉体を走査型電子顕微鏡にて観察したところ、平均粒子径16.1μmのポリアミド微粒子であった。
<Other ingredients>
Particle 1 (thermoplastic resin particles made from “Grillamide (registered trademark)” TR55 as a raw material)
(Production method of particle 1: International Publication No. 2009/142231 was referred to.)
In a 100 ml four-necked flask, 2.5 g of amorphous polyamide (Mw = 18,000 g / mol, “Glilamide (registered trademark)” TR55, manufactured by Mzavelke) as polymer A, and N-methyl-2-pyrrolidone as the organic solvent 42.5 g and 5 g of polyvinyl alcohol (“GOHSENOL (registered trademark)” GL-05) as polymer B were added, heated to 80 ° C., and stirred until the polymer was dissolved. After returning the temperature of the system to room temperature, 50 g of ion-exchanged water as a poor solvent was dropped at a speed of 0.41 g / min via a liquid feed pump while stirring at 450 rpm. When 12 g of ion exchange water was added, the system turned white. After all the amount of water had been added, the mixture was stirred for 30 minutes, and the resulting suspension was filtered, washed with 100 g of ion-exchanged water, and vacuum-dried at 80 ° C. for 10 hours to obtain 2.2 g of a white solid. . When the obtained powder was observed with a scanning electron microscope, it was polyamide fine particles having an average particle diameter of 16.1 μm.
 <構成要素[D]:エポキシ樹脂硬化剤>
 ・3,3’-DAS(3,3’-ジアミノジフェニルスルホン、三井化学ファイン(株)製)
 ・セイカキュア-S(4,4’-ジアミノジフェニルスルホン、和歌山精化(株)製)
 (1)エポキシ樹脂組成物の調製
 ニーダー中に、エポキシ樹脂硬化剤および硬化促進剤以外の成分を所定量加え、混練しつつ、160℃まで昇温し、160℃、1時間混練することで、透明な粘調液を得た。混練しつつ80℃まで降温させた後、エポキシ樹脂硬化剤および硬化促進剤を所定量添加え、さらに混練し、エポキシ樹脂組成物を得た。
<Component [D]: Epoxy resin curing agent>
・ 3,3′-DAS (3,3′-diaminodiphenylsulfone, manufactured by Mitsui Chemicals Fine Co., Ltd.)
・ Seika Cure-S (4,4'-diaminodiphenyl sulfone, manufactured by Wakayama Seika Co., Ltd.)
(1) Preparation of the epoxy resin composition In the kneader, a predetermined amount of components other than the epoxy resin curing agent and the curing accelerator is added, and while kneading, the temperature is increased to 160 ° C, and kneading is performed at 160 ° C for 1 hour. A clear viscous liquid was obtained. After the temperature was lowered to 80 ° C. while kneading, a predetermined amount of an epoxy resin curing agent and a curing accelerator were added and further kneaded to obtain an epoxy resin composition.
 (2)エポキシ樹脂硬化物の曲げ弾性率測定
 上記(1)で調製したエポキシ樹脂組成物を真空中で脱泡した後、2mm厚の“テフロン(登録商標)”製スペーサーにより厚み2mmになるように設定したモールド中に注入した。180℃の温度で2時間硬化させ、厚さ2mmのエポキシ樹脂硬化物を得た。次に、得られたエポキシ樹脂硬化物の板から、幅10mm、長さ60mmの試験片を切り出し、スパン間32mmの3点曲げを測定し、JIS K7171-1994に従い、曲げ弾性率を求めた。
(2) Measurement of flexural modulus of cured epoxy resin After defoaming the epoxy resin composition prepared in (1) above in a vacuum, the thickness is 2 mm using a 2 mm thick “Teflon (registered trademark)” spacer. Was poured into the mold set to Curing was performed at a temperature of 180 ° C. for 2 hours to obtain a cured epoxy resin having a thickness of 2 mm. Next, a test piece having a width of 10 mm and a length of 60 mm was cut out from the obtained cured epoxy resin plate, measured at a three-point bend of 32 mm between spans, and the flexural modulus was obtained according to JIS K7171-1994.
 (3)エポキシ樹脂硬化物の靱性(KIC)測定
 上記(1)で調製したエポキシ樹脂組成物を真空中で脱泡した後、6mm厚の“テフロン(登録商標)”製スペーサーにより厚み6mmになるように設定したモールド中で、180℃の温度で2時間硬化させ、厚さ6mmのエポキシ樹脂硬化物を得た。このエポキシ樹脂硬化物を12.7×150mmのサイズにカットし、試験片を得た。インストロン万能試験機(インストロン社製)を用い、ASTM D5045(1999)に従って試験片の加工および実験をおこなった。試験片への初期の予亀裂の導入は、液体窒素温度まで冷やした剃刀の刃を試験片にあてハンマーで剃刀に衝撃を加えることで行った。ここでいう、エポキシ樹脂硬化物の靱性とは、変形モードI(開口型)の臨界応力拡大係数のことを指している。
(3) Measurement of toughness (K IC ) of cured epoxy resin After defoaming the epoxy resin composition prepared in (1) above in a vacuum, the thickness was reduced to 6 mm using a 6 mm thick “Teflon (registered trademark)” spacer. In the mold set so that it may become, it hardened | cured at the temperature of 180 degreeC for 2 hours, and obtained the epoxy resin hardened | cured material of thickness 6mm. This cured epoxy resin was cut into a size of 12.7 × 150 mm to obtain a test piece. Using an Instron universal testing machine (manufactured by Instron), the specimens were processed and tested according to ASTM D5045 (1999). The initial precrack was introduced into the test piece by applying a razor blade cooled to liquid nitrogen temperature to the test piece and applying an impact to the razor with a hammer. Here, the toughness of the cured epoxy resin refers to the critical stress intensity factor of deformation mode I (opening type).
 (4)エポキシ樹脂硬化物のガラス転移温度測定
 上記(2)で作製したエポキシ樹脂硬化物の板から、エポキシ樹脂硬化物を7mg取り出し、TAインスツルメンツ社製DSC2910(型番)を用いて、30℃~350℃の温度範囲を昇温速度10℃/分にて、測定を行い、JIS K7121-1987に基づいて求めた中間点温度をガラス転移温度Tgとし、耐熱性を評価した。
(4) Measurement of glass transition temperature of cured epoxy resin From the cured epoxy resin plate prepared in (2) above, 7 mg of the cured epoxy resin is taken out and 30 ° C. or higher using DSC2910 (model number) manufactured by TA Instruments. The measurement was performed in a temperature range of 350 ° C. at a rate of temperature increase of 10 ° C./min, and the midpoint temperature determined based on JIS K7121-1987 was used as the glass transition temperature Tg to evaluate the heat resistance.
 (5)エポキシ樹脂硬化物の相分離構造の大きさ(構造周期または島相の径)の測定
 上記(1)で調製したエポキシ樹脂組成物を真空中で脱泡し、30℃~180℃までの温度領域を1.5℃/分の速度で昇温させた後、180℃の温度で2時間硬化させたエポキシ樹脂硬化物を得た。エポキシ樹脂硬化物を染色後、薄切片化し、透過型電子顕微鏡(TEM)を用いて下記の条件で透過電子像を取得した。染色剤は、モルホロジーに十分なコントラストが付くよう、OsOとRuOを樹脂組成に応じて使い分けた。
・装置:H-7100透過型電子顕微鏡(日立(株)製)
・加速電圧:100kV
・倍率:10,000倍。
(5) Measurement of size of phase separation structure (structure period or island phase diameter) of cured epoxy resin The foamed epoxy resin composition prepared in (1) above was degassed in a vacuum and heated to 30 ° C to 180 ° C. After the temperature range was raised at a rate of 1.5 ° C./minute, a cured epoxy resin cured at a temperature of 180 ° C. for 2 hours was obtained. After the cured epoxy resin was dyed, it was cut into thin sections and a transmission electron image was obtained under the following conditions using a transmission electron microscope (TEM). As the staining agent, OsO 4 and RuO 4 were properly used according to the resin composition so that the morphology was sufficiently contrasted.
・ Device: H-7100 transmission electron microscope (manufactured by Hitachi, Ltd.)
・ Acceleration voltage: 100 kV
-Magnification: 10,000 times.
 これにより、構成要素[A]のエポキシ樹脂を主成分とする相と構成要素[C]のブロック共重合体を主成分とする相の相分離構造の大きさ(構造周期または島相の径)を観察した。構成要素[A]と構成要素[C]の種類や比率により、エポキシ樹脂硬化物の相分離構造は、連続構造や海島構造、あるいはその両方を形成するのでそれぞれについて以下のように測定した。以下、構成要素[C]を主成分とする相の相分離構造の大きさを測定する場合を例に説明するが、他の構成要素を主成分とする相について測定する場合も同様である。 Accordingly, the size of the phase separation structure (structure period or island phase diameter) of the phase mainly composed of the epoxy resin of the component [A] and the phase mainly composed of the block copolymer of the component [C]. Was observed. The phase separation structure of the epoxy resin cured product forms a continuous structure, a sea-island structure, or both depending on the types and ratios of the component [A] and the component [C], and each was measured as follows. Hereinafter, the case where the size of the phase separation structure of the phase mainly composed of the component [C] is measured will be described as an example, but the same applies to the case where the phase mainly composed of other components is measured.
 構成要素[C]が連続構造を形成する場合、顕微鏡写真の上に所定の長さの直線を引き、その直線のうち、構成要素[C]を主成分とする相を通る部分の長さの数平均値を構造周期とした。所定の長さとは、顕微鏡写真を基に以下のようにして設定した。構造周期が0.01μmオーダー(10nm以上100nm未満)と予想される場合、倍率を20,000倍で写真撮影し、写真上でランダムに20mmの長さ(サンプル上1μmの長さ)3本を選出した。同様にして、構造周期が0.1μmオーダー(100nm以上1μm未満)と予想される場合、倍率を2,000倍で写真撮影し、写真上でランダムに20mmの長さ(サンプル上10μmの長さ)3本を選出した。構造周期が1μmオーダー(1μm以上10μm未満)と予想される場合、倍率を200倍で写真撮影し、写真上でランダムに20mmの長さ(サンプル上100μmの長さ)3本を選出した。もし、測定した構造周期が予想したオーダーより外れていた場合、該当するオーダーに対応する倍率にて対応する長さを再度測定し、これを採用した。 When the constituent element [C] forms a continuous structure, a straight line having a predetermined length is drawn on the photomicrograph, and the length of the portion of the straight line passing through the phase having the constituent element [C] as a main component is drawn. The number average value was taken as the structure period. The predetermined length was set as follows based on a micrograph. When the structural period is expected to be on the order of 0.01 μm (10 nm or more and less than 100 nm), take a photograph at a magnification of 20,000 times, and randomly place 3 pieces of 20 mm length (1 μm length on the sample) on the photograph. Elected. Similarly, when the structural period is expected to be on the order of 0.1 μm (100 nm or more and less than 1 μm), a photograph is taken at a magnification of 2,000 times, and the length is randomly 20 mm on the photograph (the length of 10 μm on the sample). ) Three were selected. When the structural period is expected to be on the order of 1 μm (1 μm or more and less than 10 μm), a photograph was taken at a magnification of 200 times, and three pieces of 20 mm length (100 μm length on the sample) were randomly selected on the photograph. If the measured structural period was out of the expected order, the corresponding length was measured again at the magnification corresponding to the corresponding order and adopted.
 また、構成要素[C]が海島構造を形成する場合、所定の領域内に存在する全ての構成要素[C]を主成分とする島相の長径を測定し、これらの数平均値を島相の径とした。ここで所定の領域とは、得られた像から島相の径が0.01μm未満または0.01μmオーダー(10nm以上100nm未満)と予想される場合、倍率を20,000倍で写真撮影し、写真上でランダムに20mm四方の領域(サンプル上1μm四方の領域)3箇所を選出した。同様にして、島相の径が0.1μmオーダー(100nm以上1μm未満)と予想される場合、倍率を2,000倍で写真撮影し、写真上でランダムに20mm四方の領域(サンプル上10μm四方の領域)3箇所を選出した。島相の径が1μmオーダー(1μm以上10μm未満)と予想される場合、倍率を200倍で写真撮影し、写真上でランダムに20mm四方の領域(サンプル上100μm四方の領域)3箇所を選出した。もし、測定した島相の径が予想したオーダーより外れていた場合、該当するオーダーに対応する倍率にて対応する領域を再度測定し、これを採用した。 In addition, when the component [C] forms a sea-island structure, the major axis of the island phase whose main component is all the components [C] existing in a predetermined region is measured, and the number average value of these is calculated as the island phase. Of the diameter. Here, when the island region diameter is predicted to be less than 0.01 μm or 0.01 μm order (10 nm or more and less than 100 nm) from the obtained image, the predetermined region is taken at a magnification of 20,000 times, Three areas of 20 mm square (1 μm square area on the sample) were randomly selected on the photograph. Similarly, when the diameter of the island phase is expected to be on the order of 0.1 μm (100 nm or more and less than 1 μm), a photograph is taken at a magnification of 2,000 times, and an area of 20 mm square on the photograph (10 μm square on the sample) 3 areas) were selected. When the diameter of the island phase is expected to be on the order of 1 μm (1 μm or more and less than 10 μm), a photograph was taken at a magnification of 200 times, and three regions of 20 mm square (100 μm square region on the sample) were randomly selected on the photograph. . If the measured island phase diameter deviated from the expected order, the corresponding region was measured again at the magnification corresponding to the corresponding order and adopted.
 (6)エポキシ樹脂硬化物のモルホロジー変動
 上記(1)で調製したエポキシ樹脂組成物を真空中で脱泡し、30℃~180℃までの温度領域を1.5℃/分、5℃/分の速度で各々昇温させた後、180℃の温度で2時間硬化させ、成形条件の異なるエポキシ樹脂硬化物を得た。上記(5)の方法で透過型電子像を取得し、相分離構造の大きさを求め、次式にて相分離構造の大きさの変動幅を算出した。なお、多成分が相分離した場合、相分離構造の大きさが大きい相を測定し、これを採用した。
(6) Morphological variation of cured epoxy resin The epoxy resin composition prepared in (1) above was degassed in vacuum, and the temperature range from 30 ° C to 180 ° C was 1.5 ° C / min, 5 ° C / min. Then, the temperature was raised at a speed of 1 ° C., followed by curing at 180 ° C. for 2 hours to obtain cured epoxy resins having different molding conditions. A transmission electron image was obtained by the above method (5), the size of the phase separation structure was obtained, and the fluctuation range of the size of the phase separation structure was calculated by the following equation. When multiple components were phase-separated, the phase having a large phase separation structure was measured and adopted.
 変動幅(%)={(5℃/min.昇温成形時の相分離構造の大きさ)/(1.5℃/min.昇温成形時の相分離構造の大きさ)-1)}×100。 Fluctuation width (%) = {(5 ° C./min. Size of phase separation structure at temperature forming) / (1.5 ° C./min. Size of phase separation structure at temperature forming) −1)} × 100.
 (7)プリプレグの作製
 エポキシ樹脂組成物を、ナイフコーターを用いて離型紙上に塗布して樹脂フィルムを作製した。次に、シート状に一方向に配列させた東レ(株)製、炭素繊維“トレカ(登録商標)”T800G-24K-31Eに、樹脂フィルム2枚を炭素繊維の両面から重ね、加熱加圧により樹脂を炭素繊維に含浸させ、炭素繊維の目付が190g/m、マトリックス樹脂の質量分率が35.5%の一方向プリプレグを得た。その際、熱可塑性樹脂粒子を配合したエポキシ樹脂組成物を使用する場合は以下の2段含浸法を適用し、熱可塑性樹脂粒子が表層に高度に局在化したプリプレグを作製した。
(7) Preparation of prepreg The epoxy resin composition was applied onto release paper using a knife coater to prepare a resin film. Next, two resin films are stacked on both sides of the carbon fiber on Toray Co., Ltd. carbon fiber “Treca (registered trademark)” T800G-24K-31E arranged in one direction in a sheet shape, and heated and pressurized. The resin was impregnated with carbon fiber to obtain a unidirectional prepreg having a carbon fiber basis weight of 190 g / m 2 and a matrix resin mass fraction of 35.5%. In that case, when using the epoxy resin composition which mix | blended the thermoplastic resin particle, the following two-stage impregnation methods were applied, and the prepreg which the thermoplastic resin particle highly localized in the surface layer was produced.
 まず、熱可塑性樹脂粒子を含まない1次プリプレグを作製した。表1、2に記載の原料成分の内、エポキシ樹脂に不溶な熱可塑性樹脂粒子を含まないエポキシ樹脂組成物を上記(1)の手順で調製した。この1次プリプレグ用エポキシ樹脂組成物を、ナイフコーターを用いて離型紙上に塗布して、通常の60質量%の目付となる30g/mの1次プリプレグ用樹脂フィルムを作製した。次に、シート状に一方向に配列させた東レ(株)製、炭素繊維“トレカ(登録商標)”T800G-24K-31Eに、この1次プリプレグ用樹脂フィルム2枚を炭素繊維の両面から重ね合せてヒートロールを用い、温度100℃、気圧1気圧で加熱加圧しながら、樹脂を炭素繊維に含浸させ、1次プリプレグを得た。 First, a primary prepreg containing no thermoplastic resin particles was produced. The epoxy resin composition which does not contain the thermoplastic resin particle insoluble in an epoxy resin among the raw material components described in Tables 1 and 2 was prepared by the procedure (1) above. This epoxy resin composition for primary prepreg was applied onto release paper using a knife coater to prepare a resin film for primary prepreg of 30 g / m 2 having a normal basis weight of 60% by mass. Next, these two primary prepreg resin films are stacked on both sides of the carbon fiber on Toray Industries, Inc. carbon fiber “Treca (registered trademark)” T800G-24K-31E arranged in one direction in a sheet shape. In addition, using a heat roll, the resin was impregnated into carbon fiber while heating and pressurizing at a temperature of 100 ° C. and an atmospheric pressure of 1 atm to obtain a primary prepreg.
 さらに、2段含浸用樹脂フィルムを作製するために、ニーダーを用いて、表1、2に記載の原料成分の内、エポキシ樹脂に不溶な熱可塑性樹脂粒子を記載量の2.5倍としたエポキシ樹脂組成物を上記(1)の手順で調製した。この2段含浸用エポキシ樹脂組成物を、ナイフコーターを用いて離型紙上に塗布して、通常の40質量%の目付となる20g/mの2段含浸用樹脂フィルムを作製した。これを1次プリプレグの両面から重ね合せてヒートロールを用い、温度80℃、気圧1気圧で加熱加圧することで、熱可塑性樹脂粒子が表層に高度に局在化したプリプレグを得た。 Furthermore, in order to produce a resin film for two-stage impregnation, among the raw material components listed in Tables 1 and 2, the thermoplastic resin particles insoluble in the epoxy resin were made 2.5 times the stated amount using a kneader. An epoxy resin composition was prepared by the procedure (1) above. This two-stage impregnation epoxy resin composition was applied onto release paper using a knife coater to prepare a 20-gram / m 2 two-stage impregnation resin film having a normal basis weight of 40% by mass. This was superposed on both sides of the primary prepreg and heated and pressed at a temperature of 80 ° C. and an atmospheric pressure of 1 atm using a heat roll to obtain a prepreg in which thermoplastic resin particles were highly localized on the surface layer.
 (8)繊維強化複合材料の90°曲げ強度の評価方法
 上記(7)の方法で作製した一方向積層板を、厚み2mm、幅15mm、長さ60mmとなるように切り出した。インストロン万能試験機(インストロン社製)を用いJIS K7074(1988)に従って3点曲げを実施した。スパンを40mm、クロスヘッドスピードを1.0mm/分、厚子径10mm、支点径4.0mmで測定を行い、90°曲げ強度を測定した。サンプル数n=6で測定した値の平均値を90°曲げ強度の値とした。
(8) Evaluation Method of 90 ° Bending Strength of Fiber Reinforced Composite Material The unidirectional laminate produced by the method (7) was cut out to have a thickness of 2 mm, a width of 15 mm, and a length of 60 mm. Three-point bending was performed according to JIS K7074 (1988) using an Instron universal testing machine (Instron). Measurement was performed at a span of 40 mm, a crosshead speed of 1.0 mm / min, a thickness of 10 mm, a fulcrum diameter of 4.0 mm, and a 90 ° bending strength was measured. The average value of the values measured with the number of samples n = 6 was taken as the value of 90 ° bending strength.
 (実施例1)
 混練装置で、60質量部の“jER(登録商標)”630(トリグリシジルアミノフェノール、三菱化学(株)製)、40質量部の“エピクロン(登録商標)”830(ビスフェノールF型エポキシ樹脂、DIC(株)製)、55質量部の“Virantage(登録商標)”VW-10700RP(ポリエーテルスルホン、Solvay Advanced Polymers(株)製)、10質量部のブロック共重合体X1を混練した後、構成要素[D]のエポキシ樹脂硬化剤である3,3’-DASを55質量部混練して、エポキシ樹脂組成物を作製した。表1に、組成と割合を示す(表1中、数字は質量部を表す)。得られたエポキシ樹脂組成物について、上記の(2)エポキシ樹脂硬化物の曲げ弾性率、(3)エポキシ樹脂硬化物の靱性(KIC)、(4)エポキシ樹脂硬化物のガラス転移温度、(5)エポキシ樹脂硬化物の相分離構造の大きさ、(6)エポキシ樹脂硬化物のモルホロジー変動、(8)繊維強化複合材料の90°曲げ強度を測定した。結果を表1に示す。
Example 1
In a kneading apparatus, 60 parts by mass of “jER (registered trademark)” 630 (triglycidylaminophenol, manufactured by Mitsubishi Chemical Corporation), 40 parts by mass of “Epiclon (registered trademark)” 830 (bisphenol F type epoxy resin, DIC) Co., Ltd.), 55 parts by weight of “Virantage (registered trademark)” VW-10700RP (polyethersulfone, manufactured by Solvay Advanced Polymers Co., Ltd.), 10 parts by weight of block copolymer X1, An epoxy resin composition was prepared by kneading 55 parts by mass of 3,3′-DAS, which is the epoxy resin curing agent of [D]. Table 1 shows the composition and ratio (in Table 1, the numbers represent parts by mass). About the obtained epoxy resin composition, (2) bending elastic modulus of the cured epoxy resin, (3) toughness of the cured epoxy resin (K IC ), (4) glass transition temperature of the cured epoxy resin, ( 5) Size of phase-separated structure of cured epoxy resin, (6) Morphological variation of cured epoxy resin, and (8) 90 ° bending strength of fiber reinforced composite material. The results are shown in Table 1.
 (実施例2~10)
 エポキシ樹脂、熱可塑性樹脂、ブロック共重合体、その他の成分、エポキシ樹脂硬化剤および配合量を、表1に示すように変更したこと以外は、実施例1と同様にしてエポキシ樹脂組成物を作製した。得られたエポキシ樹脂組成物について、(2)エポキシ樹脂硬化物の曲げ弾性率、(3)エポキシ樹脂硬化物の靱性(KIC)、(4)エポキシ樹脂硬化物のガラス転移温度、(5)エポキシ樹脂硬化物の相分離構造の大きさ、(6)エポキシ樹脂硬化物のモルホロジー変動、(8)繊維強化複合材料の90°曲げ強度を測定した。結果を表1に示す。
(Examples 2 to 10)
An epoxy resin composition was prepared in the same manner as in Example 1 except that the epoxy resin, thermoplastic resin, block copolymer, other components, epoxy resin curing agent and blending amount were changed as shown in Table 1. did. About the obtained epoxy resin composition, (2) flexural modulus of cured epoxy resin, (3) toughness of cured epoxy resin (K IC ), (4) glass transition temperature of cured epoxy resin, (5) The size of the phase separation structure of the cured epoxy resin, (6) Morphological variation of the cured epoxy resin, and (8) 90 ° bending strength of the fiber reinforced composite material were measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 実施例1~10で得られたエポキシ樹脂硬化物は、構成要素[A]、構成要素[B]、構成要素[D]が相分離することなく均一相を形成し、そこに構成要素[C]を主成分とする相が0.01~0.5μmの相分離構造を有するものであり、力学特性は良好であった。また、成形条件による相分離構造の変動は小さく、安定した力学特性を発現できる材料であることがわかった。さらに、繊維強化複合材料の曲げ強度を損なうことなく、優れた接着性が十分に確保できることが明らかとなった。 In the cured epoxy resins obtained in Examples 1 to 10, the constituent element [A], the constituent element [B], and the constituent element [D] form a uniform phase without phase separation, and the constituent element [C ] Has a phase separation structure of 0.01 to 0.5 μm and good mechanical properties. Moreover, it was found that the material can exhibit stable mechanical properties with little variation in the phase separation structure due to molding conditions. Furthermore, it was revealed that excellent adhesiveness can be sufficiently secured without impairing the bending strength of the fiber reinforced composite material.
 (比較例1)
 構成要素[C]の要件を含まないこと以外は、実施例4と同様にしてエポキシ樹脂組成物を作製した。得られたエポキシ樹脂組成物について、上記の(2)エポキシ樹脂硬化物の曲げ弾性率、(3)エポキシ樹脂硬化物の靱性(KIC)、(4)エポキシ樹脂硬化物のガラス転移温度、(5)エポキシ樹脂硬化物の相分離構造の大きさ、(6)エポキシ樹脂硬化物のモルホロジー変動、(8)繊維強化複合材料の90°曲げ強度を測定した。表2に結果を示すとおり、得られたエポキシ樹脂硬化物はすべての成分がエポキシ樹脂相に均一に相溶しており、靭性は不十分なものとなった。
(Comparative Example 1)
An epoxy resin composition was produced in the same manner as in Example 4 except that the component [C] was not included. About the obtained epoxy resin composition, (2) bending elastic modulus of the cured epoxy resin, (3) toughness of the cured epoxy resin (K IC ), (4) glass transition temperature of the cured epoxy resin, ( 5) Size of phase-separated structure of cured epoxy resin, (6) Morphological variation of cured epoxy resin, and (8) 90 ° bending strength of fiber reinforced composite material. As shown in Table 2, all the components of the obtained cured epoxy resin were uniformly compatible with the epoxy resin phase, and the toughness was insufficient.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 (比較例2)
 構成要素[B]の要件を満たさないこと以外は、実施例4と同様にしてエポキシ樹脂組成物を作製した。比較例2では得られたエポキシ樹脂硬化物の靭性は不十分なものとなった。構成要素[B]含有量の範囲に満たない場合、エポキシ樹脂相の靭性が脆いままであり、構成要素[C]を含有させても靭性向上の効果は不足する傾向を示している。
(Comparative Example 2)
An epoxy resin composition was produced in the same manner as in Example 4 except that the requirements for the component [B] were not satisfied. In Comparative Example 2, the toughness of the obtained cured epoxy resin was insufficient. When the content of the constituent element [B] is less than the range, the toughness of the epoxy resin phase remains brittle, and even if the constituent element [C] is contained, the effect of improving the toughness tends to be insufficient.
 (比較例3)
 構成要素[B]の要件を満たさないこと以外は、実施例4と同様にしてエポキシ樹脂組成物を作製したが、増粘によりプロセス性が悪化し、エポキシ樹脂硬化物を得ることができなかった。
(Comparative Example 3)
An epoxy resin composition was produced in the same manner as in Example 4 except that the requirements for the component [B] were not satisfied. However, the processability deteriorated due to thickening, and an epoxy resin cured product could not be obtained. .
 (比較例4)
 比較例4は特許文献1(特開昭61-228016号公報)の実施例7と同等の樹脂組成である。比較例4では、構成要素[B]の代わりにポリスルホンを用いたことで、ミクロンサイズの相分離が形成し高い靭性が発現したが、成形条件によるモルホロジー変動が見られた。さらに、エポキシ樹脂硬化物の耐熱性が低下し、繊維強化複合材料の接着性が不十分なものとなった。
(Comparative Example 4)
Comparative Example 4 has a resin composition equivalent to that of Example 7 of Patent Document 1 (Japanese Patent Laid-Open No. 61-228016). In Comparative Example 4, the use of polysulfone instead of component [B] resulted in the formation of micron-sized phase separation and high toughness, but morphological fluctuations due to molding conditions were observed. Furthermore, the heat resistance of the cured epoxy resin was lowered, and the adhesiveness of the fiber reinforced composite material was insufficient.
 (比較例5)
 比較例5は特許文献2(国際公開第2006/077153号)の実施例3と同等の樹脂組成である。比較例5では、ゴム成分の配合に由来し、エポキシ樹脂硬化物の弾性率が低下した。
(Comparative Example 5)
Comparative Example 5 has a resin composition equivalent to Example 3 of Patent Document 2 (International Publication No. 2006/075153). In the comparative example 5, it originated in the mixing | blending of a rubber component, and the elasticity modulus of the epoxy resin hardened | cured material fell.
 (比較例6)
 比較例6は特許文献3(特開平7-278412号公報)の実施例1と同等の樹脂組成である。比較例6では、ミクロンサイズの熱可塑性樹脂を由来とする連続相内にゴム相が分散した相分離構造が得られたが、該構造は成形条件の依存性が大きく、相構造の安定化は得られなかった。さらに、相分離した界面での接着性が悪化し、繊維強化複合材料の接着性が不十分なものとなった。
(Comparative Example 6)
Comparative Example 6 has a resin composition equivalent to that of Example 1 of Patent Document 3 (Japanese Patent Laid-Open No. 7-278212). In Comparative Example 6, a phase separation structure in which a rubber phase was dispersed in a continuous phase derived from a micron-sized thermoplastic resin was obtained. However, the structure is largely dependent on molding conditions, and the phase structure is stabilized. It was not obtained. Furthermore, the adhesiveness at the phase-separated interface deteriorated, and the adhesiveness of the fiber reinforced composite material became insufficient.
 (比較例7)
 比較例7は “Journal of Applied Polymer Science ”、119巻、p.2933(2011年)の、Di Hu,Sixun Zhengによる“Morphology and Thermomechanical Properties of Epoxy Thermosets Modified with Polysulfone―Block-Polydimethylsiloxane Multiblock Copolymer”に記載のある樹脂組成と同等のものである。比較例7では、得られたエポキシ樹脂硬化物の靭性は不十分なものとなった。また、エポキシ樹脂硬化物の弾性率や耐熱性は不足しており、繊維強化複合材料の接着性も不十分なものとなった。
(Comparative Example 7)
Comparative Example 7 is “Journal of Applied Polymer Science”, 119, p. 2933 (2011) by Di Hu, Sixun Zheng, described in “Morphology and Thermochemical Properties of Epoxy Thermosets Modified with Polysulphone-Block-Polydipolys”. In Comparative Example 7, the toughness of the obtained cured epoxy resin was insufficient. Further, the elastic modulus and heat resistance of the cured epoxy resin are insufficient, and the adhesiveness of the fiber reinforced composite material is insufficient.
 本発明によれば、広い成形条件幅で微細な相分離構造を安定して形成し、優れた耐熱性、弾性率、靭性を有するエポキシ樹脂硬化物を安定して与えるエポキシ樹脂組成物、エポキシ樹脂硬化物、およびプリプレグ、接着性に優れる繊維強化複合材料を得られるために、特に構造材料に好適に用いられる。例えば、航空宇宙用途では主翼、尾翼およびフロアビーム等の航空機一次構造材用途、フラップ、エルロン、カウル、フェアリングおよび内装材等の二次構造材用途、ロケットモーターケースおよび人工衛星構造材用途等に好適に用いられる。また一般産業用途では、自動車、船舶および鉄道車両等の移動体の構造材、ドライブシャフト、板バネ、風車ブレード、各種タービン、圧力容器、フライホイール、製紙用ローラ、屋根材、ケーブル、補強筋、および補修補強材料等の土木・建築材料用途等に好適に用いられる。さらにスポーツ用途では、ゴルフシャフト、釣り竿、テニス、バトミントンおよびスカッシュ等のラケット用途、ホッケー等のスティック用途、およびスキーポール用途等に好適に用いられる。 According to the present invention, an epoxy resin composition and an epoxy resin that stably form a fine phase separation structure with a wide range of molding conditions and stably give a cured epoxy resin having excellent heat resistance, elastic modulus, and toughness In order to obtain a cured product, a prepreg, and a fiber-reinforced composite material excellent in adhesiveness, it is particularly suitably used for a structural material. For example, for aerospace applications, primary aircraft structural materials such as main wings, tail wings and floor beams, secondary structural materials such as flaps, ailerons, cowls, fairings and interior materials, rocket motor cases and satellite structural materials Preferably used. In general industrial applications, structural materials for moving objects such as automobiles, ships, and railway vehicles, drive shafts, leaf springs, windmill blades, various turbines, pressure vessels, flywheels, paper rollers, roofing materials, cables, reinforcing bars, It is also suitable for civil engineering and building material applications such as repair and reinforcement materials. Furthermore, in sports applications, it is suitably used for golf shafts, fishing rods, tennis, badminton and squash rackets, hockey sticks, and ski pole applications.
 また、本発明のブロック共重合体は、耐熱性と靭性に優れることから、各種用途で好適に用いられる。例えば、繊維強化複合材料用マトリックス樹脂の強化材、電子材料、塗料、接着剤等の用途に好適に用いられる。 The block copolymer of the present invention is excellent in heat resistance and toughness, and is therefore suitably used in various applications. For example, it is suitably used for applications such as a reinforcing material for matrix resin for fiber-reinforced composite materials, electronic materials, paints, and adhesives.

Claims (14)

  1. 少なくとも次の構成要素[A]~[D]を含み、エポキシ樹脂組成物の総量100質量%に対して構成要素[B]を16~50質量%含むエポキシ樹脂組成物。
    [A]エポキシ樹脂
    [B]式(1)で表す構成単位を80モル%以上含み、かつエポキシ樹脂に溶解し得る熱可塑性樹脂
    Figure JPOXMLDOC01-appb-C000001
    [C]次の条件(i)~(iii)をすべて満たす、ブロック[c1]とブロック[c2]からなるブロック共重合体
    (i)ブロック[c1]は上記式(1)で表す構成単位を80モル%以上含む
    (ii)ブロック[c2]は溶解性パラメータ(SP値)が10(cal/cm1/2以下である
    (iii)ブロック[c1]とブロック[c2]がエーテル結合で連結されてなる
    [D]エポキシ樹脂硬化剤
    An epoxy resin composition comprising at least the following constituent elements [A] to [D] and comprising 16 to 50 mass% of the constituent element [B] with respect to 100 mass% of the total amount of the epoxy resin composition.
    [A] Epoxy resin [B] Thermoplastic resin containing 80 mol% or more of the structural unit represented by formula (1) and capable of being dissolved in the epoxy resin
    Figure JPOXMLDOC01-appb-C000001
    [C] A block copolymer consisting of block [c1] and block [c2] that satisfies all of the following conditions (i) to (iii) (i) The block [c1] is a structural unit represented by the above formula (1). (Ii) Block [c2] containing 80 mol% or more has a solubility parameter (SP value) of 10 (cal / cm 3 ) 1/2 or less. (Iii) Block [c1] and block [c2] are ether bonds. Connected [D] epoxy resin curing agent
  2. 構成要素[B]がポリエーテルスルホンである、請求項1に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the component [B] is polyethersulfone.
  3. 構成要素[C]は、ブロック[c1]がポリエーテルスルホンであり、ブロック[c2]がポリシロキサンであるブロック共重合体である、請求項1または2に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1 or 2, wherein the component [C] is a block copolymer in which the block [c1] is polyethersulfone and the block [c2] is polysiloxane.
  4. 構成要素[A]がアミン型エポキシ樹脂を含み、その含有量が構成要素[A]の総量100質量部に対して50質量部を超える、請求項1~3のいずれかに記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 3, wherein the constituent element [A] contains an amine type epoxy resin, and the content thereof exceeds 50 parts by mass with respect to 100 parts by mass of the total amount of the constituent element [A]. object.
  5. 請求項1~4のいずれかに記載のエポキシ樹脂組成物を強化繊維に含浸させてなる、プリプレグ。 A prepreg obtained by impregnating a reinforcing fiber with the epoxy resin composition according to any one of claims 1 to 4.
  6. 強化繊維が炭素繊維である、請求項5に記載のプリプレグ。 The prepreg according to claim 5, wherein the reinforcing fiber is a carbon fiber.
  7. 請求項1~4のいずれかに記載のエポキシ樹脂組成物を硬化させてなる、エポキシ樹脂硬化物。 An epoxy resin cured product obtained by curing the epoxy resin composition according to any one of claims 1 to 4.
  8. 構成要素[C]を主成分とする相分離構造の大きさが0.01~0.5μmの範囲にある、請求項7に記載のエポキシ樹脂硬化物。 The cured epoxy resin product according to claim 7, wherein the size of the phase separation structure mainly composed of component [C] is in the range of 0.01 to 0.5 µm.
  9. 請求項5または6に記載のプリプレグを硬化させてなる、繊維強化複合材料。 A fiber-reinforced composite material obtained by curing the prepreg according to claim 5 or 6.
  10. 請求項7または8に記載のエポキシ樹脂硬化物と強化繊維を含んでなる、繊維強化複合材料。 A fiber-reinforced composite material comprising the cured epoxy resin according to claim 7 or 8 and reinforcing fibers.
  11. 次の条件(i)~(iii)をすべて満たす、ブロック[c1]とブロック[c2]からなるブロック共重合体。
    (i)ブロック[c1]は式(1)で表す構成単位を80モル%以上含む
    Figure JPOXMLDOC01-appb-C000002
    (ii)ブロック[c2]は溶解性パラメータ(SP値)が10(cal/cm1/2以下である
    (iii)ブロック[c1]とブロック[c2]がエーテル結合で連結されてなる
    A block copolymer consisting of block [c1] and block [c2] that satisfies all of the following conditions (i) to (iii).
    (I) The block [c1] contains 80 mol% or more of the structural unit represented by the formula (1)
    Figure JPOXMLDOC01-appb-C000002
    (Ii) The block [c2] has a solubility parameter (SP value) of 10 (cal / cm 3 ) 1/2 or less. (Iii) The block [c1] and the block [c2] are connected by an ether bond.
  12. ブロック[c1]がポリエーテルスルホンであり、ブロック[c2]がシロキサン結合を含む、請求項11に記載のブロック共重合体 。 The block copolymer cage of claim 11, wherein the block [c1] is a polyethersulfone and the block [c2] contains a siloxane bond.
  13. ブロック[c1]とブロック[c2]が、式(2)または式(3)で表される構造で連結されてなる、請求項11または12に記載のブロック共重合体 。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    The block copolymer according to claim 11 or 12, wherein the block [c1] and the block [c2] are connected by a structure represented by the formula (2) or the formula (3).
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
  14. 請求項11~13のいずれかに記載のブロック共重合体を製造する方法であって、フェノール性水酸基の求核置換反応でブロック共重合体を得る、ブロック共重合体の製造方法。 A method for producing a block copolymer according to any one of claims 11 to 13, wherein the block copolymer is obtained by a nucleophilic substitution reaction of a phenolic hydroxyl group.
PCT/JP2018/000235 2017-01-13 2018-01-10 Epoxy resin composition, epoxy resin cured product, prepreg, fiber-reinforced composite material, block copolymer and method for producing same WO2018131580A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018503679A JPWO2018131580A1 (en) 2017-01-13 2018-01-10 Epoxy resin composition, cured epoxy resin, prepreg, fiber reinforced composite material, block copolymer and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017003974 2017-01-13
JP2017-003974 2017-01-13

Publications (1)

Publication Number Publication Date
WO2018131580A1 true WO2018131580A1 (en) 2018-07-19

Family

ID=62840354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000235 WO2018131580A1 (en) 2017-01-13 2018-01-10 Epoxy resin composition, epoxy resin cured product, prepreg, fiber-reinforced composite material, block copolymer and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2018131580A1 (en)
WO (1) WO2018131580A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0496962A (en) * 1990-08-10 1992-03-30 Sumitomo Chem Co Ltd Epoxy resin composition and prepreg consisting thereof
JP2005139432A (en) * 2003-10-17 2005-06-02 Sumitomo Chemical Co Ltd Block copolymer and use thereof
JP2012025847A (en) * 2010-07-23 2012-02-09 Toray Ind Inc Underfill agent and semiconductor device using the same
JP2014521800A (en) * 2011-08-01 2014-08-28 サイテク・テクノロジー・コーポレーシヨン Thermosetting resin composition with increased toughness
WO2015151921A1 (en) * 2014-03-31 2015-10-08 東レ株式会社 Polyphenylene sulphide block copolymer and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0496962A (en) * 1990-08-10 1992-03-30 Sumitomo Chem Co Ltd Epoxy resin composition and prepreg consisting thereof
JP2005139432A (en) * 2003-10-17 2005-06-02 Sumitomo Chemical Co Ltd Block copolymer and use thereof
JP2012025847A (en) * 2010-07-23 2012-02-09 Toray Ind Inc Underfill agent and semiconductor device using the same
JP2014521800A (en) * 2011-08-01 2014-08-28 サイテク・テクノロジー・コーポレーシヨン Thermosetting resin composition with increased toughness
WO2015151921A1 (en) * 2014-03-31 2015-10-08 東レ株式会社 Polyphenylene sulphide block copolymer and manufacturing method therefor

Also Published As

Publication number Publication date
JPWO2018131580A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
JP4811532B2 (en) Epoxy resin composition for fiber reinforced composite material, prepreg and fiber reinforced composite material
JP5800031B2 (en) Epoxy resin composition, prepreg and carbon fiber reinforced composite material
JP6052426B2 (en) Epoxy resin composition, cured resin, prepreg and fiber reinforced composite material
JP5780367B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
TWI435887B (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
KR101794386B1 (en) Epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
JP6812794B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
KR20100019428A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
CA2811881A1 (en) Epoxy resin composition, prepreg and fiber-reinforced composite materials
EP2834308A2 (en) Benzoxazine resin composition, prepreg, and fiber-reinforced composite material
WO2011118106A1 (en) Epoxy resin composition for use in a carbon-fiber-reinforced composite material, prepreg, and carbon-fiber-reinforced composite material
KR20140048340A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP6497027B2 (en) Epoxy resin composition, cured resin, prepreg and fiber reinforced composite material
WO2018131300A1 (en) Prepreg and fiber reinforced composite material
JP2016132709A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
WO2016136052A1 (en) Epoxy resin composition, cured epoxy resin product, prepreg, and fiber-reinforced composite material
JP2012067190A (en) Epoxy resin composition for fiber reinforced composite material, prepreg, and fiber reinforced composite material
WO2017056653A1 (en) Epoxy resin composition, epoxy resin cured product, prepreg and fiber-reinforced composite material
JP2016132708A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP6555006B2 (en) Epoxy resin composition, cured resin, prepreg and fiber reinforced composite material
JP2019077763A (en) Epoxy resin composition, epoxy resin cured product, prepreg, and fiber-reinforced composite material
WO2018131580A1 (en) Epoxy resin composition, epoxy resin cured product, prepreg, fiber-reinforced composite material, block copolymer and method for producing same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018503679

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18739377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18739377

Country of ref document: EP

Kind code of ref document: A1