WO2018131408A1 - Stator for rotary electric machine, and rotary electric machine - Google Patents

Stator for rotary electric machine, and rotary electric machine Download PDF

Info

Publication number
WO2018131408A1
WO2018131408A1 PCT/JP2017/045674 JP2017045674W WO2018131408A1 WO 2018131408 A1 WO2018131408 A1 WO 2018131408A1 JP 2017045674 W JP2017045674 W JP 2017045674W WO 2018131408 A1 WO2018131408 A1 WO 2018131408A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
output line
stator
temperature
stator winding
Prior art date
Application number
PCT/JP2017/045674
Other languages
French (fr)
Japanese (ja)
Inventor
馬場 雄一郎
良司 小林
伊藤 琢
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2018561889A priority Critical patent/JPWO2018131408A1/en
Publication of WO2018131408A1 publication Critical patent/WO2018131408A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/25Devices for sensing temperature, or actuated thereby

Definitions

  • the present invention relates to a rotating electrical machine stator and a rotating electrical machine.
  • the rotating electrical machine includes a stator and a rotor, and the stator includes a stator core and a stator winding.
  • the stator includes a stator core and a stator winding.
  • the temperature at the high temperature portion including the portion with the highest temperature of the stator winding is measured by the stator. It is preferably measured as the temperature of the winding.
  • a rotating electrical machine described in Patent Document 1 As a technique for measuring the temperature of the stator winding with high accuracy, for example, a rotating electrical machine described in Patent Document 1 is known.
  • the rotating electrical machine described in Patent Literature 1 includes a coil conductor that forms a coil (stator winding), a neutral wire that connects the coil to a neutral point, and a temperature sensor that detects the temperature of the neutral wire. .
  • the portion of the neutral wire that is wound around the temperature sensor and the portion of the temperature sensor that is wound around the neutral wire are embedded in the mold material, and an embedded temperature detecting portion is formed.
  • the temperature of the stator winding is measured with high accuracy to protect the stator winding from the high temperature and the stator winding. It is important to prevent the influence of the temperature rise on the rotating electrical machine.
  • An object of the present invention is to provide a stator for a rotating electrical machine and a rotating electrical machine that can measure the temperature of the stator winding with high accuracy and that are excellent in workability in attaching a temperature detection unit.
  • a stator of a rotating electrical machine includes an annular stator core, a portion that is disposed on the stator core, and that forms a coil end protruding from the stator core, and a portion that extends away from the coil end
  • a stator winding having the output of the stator winding extending away from the coil end of the stator winding, an output line having an output terminal at the end, and a temperature detection unit installed in the output line, Is provided.
  • a stator and a rotating electrical machine for a rotating electrical machine that can measure the temperature of the stator winding with high accuracy and that are excellent in workability in attaching the temperature detection unit.
  • the schematic diagram which shows the whole structure of the rotary electric machine by Example 1 of this invention The perspective view which shows the structure of the stator of the rotary electric machine by Example 1 of this invention.
  • the rotating electrical machine due to the temperature rise of the stator winding It is possible to measure the temperature of the stator winding, which is effective in preventing the influence on the coil, with high accuracy.
  • the stator of the rotating electrical machine and the rotating electrical machine according to the present invention are provided with a temperature detection unit for measuring the temperature of the stator winding in an output line extending away from the coil end.
  • the coil end is cooled by the cooling source, but the temperature detector measures the temperature of the stator winding at the part away from the coil end, so it is fixed at the high temperature part without being affected by the cooled part.
  • the temperature of the child winding can be measured.
  • the temperature detection unit is installed at a location away from the coil end, it is easy to perform the mounting operation.
  • the stator and the rotating electrical machine of the rotating electrical machine according to the present invention can measure the temperature of the stator winding with high accuracy, and have an effect of being excellent in workability in attaching the temperature detecting unit.
  • FIG. 1 is a schematic diagram showing an overall configuration of a rotating electrical machine according to Embodiment 1 of the present invention.
  • a part is a cross-sectional view showing the inside of the rotating electrical machine 1.
  • the rotating electrical machine 1 includes a housing 10, a stator 2 having a stator core 20 fixed to the housing 10, and a rotor 3 provided rotatably on the inner peripheral side of the stator 2.
  • the casing of the rotating electrical machine 1 includes a front bracket 11, a housing 10, a rear bracket 12, and a terminal box 13.
  • the housing 10 and the water jacket 14 constitute a coolant flow path 15 of the rotating electrical machine.
  • the rotor 3 is fixed to a shaft 31 supported by a bearing 30A of the front bracket 11 and a bearing 30B of the rear bracket 12, and is arranged rotatably on the inner peripheral side of the stator core 20.
  • the stator 2 is indirectly cooled through the housing 10 by the coolant flowing through the flow path 15.
  • the stator core 20 is an annular member, and is fixed to the housing 10 by shrink fitting or the like, and has a slot.
  • An insulator formed in a sheet shape with an insulating resin material is disposed in a slot of the stator core 20, and the stator winding 4 is disposed through the insulator.
  • the extending direction (length direction) of the stator core 20 is referred to as “axial direction”. This axial direction is the same as the extending direction of the shaft 31.
  • the stator winding 4 is configured by arranging a substantially U-shaped copper rectangular conductor in the slot of the stator core 20 along the axial direction.
  • the substantially U-shaped flat conductor has a bent portion whose end on the opening side is bent, and the bent portions of the flat conductors are electrically connected to each other by welding or the like.
  • the stator winding 4 has a portion constituting a coil end 42 protruding from the stator core 20 and a portion extending away from the coil end 42.
  • the coil end 42 is composed of the stator windings 4 protruding from both axial ends of the stator core 20, and is a portion where the stator windings 4 straddling between the slots are densely packed.
  • a portion extending away from the coil end 42 of the stator winding 4 is referred to as an output line 43.
  • the length of the stator winding 4 constituting the coil end 42 and the length of the output line 43 may differ depending on the phase of the stator winding 4.
  • the stator winding 4 is a three-phase Y-connection winding, and the U-phase, V-phase, and W-phase stator windings are constituted by rectangular conductors.
  • One end of each phase of the stator winding is connected to each other at a neutral point and arranged at the coil end 42, and a part including the other end forms an output line 43.
  • a part of the stator winding of each phase connected to the neutral point is called a neutral wire.
  • the output line 43 is a line that is connected to the outside of the rotating electrical machine 1 to transmit and receive electrical energy, and includes an output terminal 45 at the end.
  • the output line 43 is drawn from the coil end 42 and extended, and the output terminal 45 is connected to the terminal block 21 in the terminal box 13.
  • the output line 43 is connected to an external wiring inserted in the terminal box 13, for example, a power cable connected to the inverter, via the output terminal 45 on the terminal block 21.
  • the output line 43 is a portion of the stator winding 4 extending from the coil end 42, but a part thereof is also located at the coil end 42.
  • the output line 43 is provided with a temperature detector 5 for measuring the temperature of the stator winding 4.
  • a temperature detector 5 for example, a thermistor or a thermocouple can be used.
  • the thermistor is a temperature sensor and has a temperature detection element made of a semiconductor whose electric resistance value changes greatly with respect to a change in temperature.
  • a control unit for example, an inverter
  • the rotating electrical machine 1 monitors a signal (for example, an electric resistance value of a thermistor or a thermoelectromotive force generated in a thermocouple) from the temperature detection unit 5, thereby The temperature can be detected.
  • the control unit restricts or stops the operation of the rotating electrical machine 1 to prevent the stator winding 4 from overheating. Therefore, it is desired that the temperature detection unit 5 is not easily influenced by cooling with the coolant and is installed in a portion of the stator winding 4 where the temperature is highest. Actually, since it is often difficult to specify the part with the highest temperature, the temperature detection part is included in the high-temperature part that contains the part with the highest temperature (or the part that is estimated to have the highest temperature). 5 is preferably installed.
  • stator winding 4 When the rotating electrical machine 1 operates and current flows through the stator winding 4, copper loss occurs in the stator winding 4 and heat is generated. Since the stator windings 4 are densely packed in the coil end 42, the heat generated by the copper loss is accumulated and the temperature becomes high.
  • the coil end 42 is indirectly cooled by the coolant flowing through the flow path 15 formed in the housing 10. That is, the coil end 42 is a heat which uses the housing 10, the stator core 20, the insulator disposed in the slot of the stator core 20, and the stator winding 4 disposed in the slot of the stator core 20 as a heat transfer path.
  • the liquid is cooled by the coolant flowing through the flow path 15. The longer the distance of the heat transfer path from the cooling source, the higher the temperature.
  • the distance of the heat transfer path from the coolant flow path 15 increases, that is, the housing 10, the stator core 20, the stator 2 ( The temperature increases in the order of the stator winding 4 in the slot of the stator core 20, the stator winding 4 of the coil end 42, and the stator winding 4 (output line 43) extending from the coil end 42.
  • the temperature detector 5 is installed on the output wire 43, that is, the stator winding 4 extending from the coil end 42.
  • the output line 43 is a high-temperature part that is hard to be affected by the temperature of the coil end 42 and includes a portion having the highest temperature (or a portion estimated to have the highest temperature) in the stator winding 4. Therefore, the temperature detection unit 5 installed on the output line 43 is not easily affected by the temperature of the coil end 42 and can measure the temperature of the high temperature part, so that the temperature of the stator winding 4 can be measured with high accuracy. is there.
  • FIG. 2 is a perspective view showing the configuration of the stator 2 of the rotating electrical machine 1 according to the first embodiment of the present invention. Details of the installation positions of the stator 2 and the temperature detector 5 will be described with reference to FIG.
  • the stator 2 includes a stator core 20 having a plurality of slots, a stator winding 4, and a temperature detection unit 5 that measures the temperature of the stator winding 4.
  • the stator core 20 is an annular member in which magnetic steel plates having a predetermined thickness are laminated in the axial direction, and a plurality of slots extending in the axial direction are provided on the inner peripheral side.
  • the plurality of slots are arranged side by side in the circumferential direction of the stator core 20.
  • the stator winding 4 is composed of a conductive core wire portion mainly made of copper and an insulating film covering the core wire portion.
  • the stator winding 4 is disposed in a slot of the stator core 20 via an insulator 41 formed in a sheet shape with an insulating resin material.
  • the coil end 42 is formed by the stator winding 4 that protrudes from both axial ends of the stator core 20, and the portion where the stator winding 4 is closely packed.
  • the stator winding 4 is a three-phase Y-connection winding as described above, and includes U-phase, V-phase, and W-phase stator windings.
  • One end of each phase stator winding is disposed at the coil end 42 as a neutral point 44 where the neutral wires of each phase are connected to each other.
  • a part including the other end of the U-phase stator winding constitutes a U-phase output line 43U.
  • a part including the other end of the V-phase stator winding constitutes a V-phase output line 43V.
  • a part including the other end of the W-phase stator winding constitutes a W-phase output line 43W.
  • the output wires 43U, 43V, 43W extend away from the coil end 42 so that the rotating electrical machine 1 can exchange electric energy with the outside.
  • U-phase, V-phase, and W-phase output terminals 45U, 45V, and 45W are provided, respectively.
  • a temperature detector 5 is installed on the output line 43U.
  • an output terminal 45 (45U, 45V, 45W) separate from the output line 43 is provided at the end of the output line 43 (43U, 43V, 43W).
  • the output line 43 may be part of the output terminal 45 instead of being separated from the output line 43.
  • the stator 2 is cooled from the outer peripheral surface of the stator core 20 that is in contact with the housing 10. Is done.
  • the stator 2 includes the stator core 20, the stator winding 4 in the stator 2 (the slot of the stator core 20), the stator winding 4 of the coil end 42, and the coil end 42.
  • the temperature increases in the order of the stator windings 4 (output lines 43U, 43V, and 43W) extended from.
  • the output lines 43U, 43V, and 43W are not affected by the temperature of the coil end 42, and are high-temperature portions including a portion having the highest temperature (or a portion estimated to have the highest temperature) in the stator winding 4. is there.
  • the temperature detector 5 Since the temperature detector 5 is installed on the output line 43U extended from the coil end 42, it is difficult to be affected by the temperature of the coil end 42 (the influence of cooling by the coolant), and the temperature of the high temperature part can be measured. The temperature of the stator winding 4 can be measured with high accuracy. Therefore, by installing the temperature detection unit 5 on the output line 43U, the stator winding 4 can be protected from high temperature, and the influence on the rotating electrical machine 1 due to the temperature rise of the stator winding 4 can be prevented.
  • the temperature detector 5 may be installed not on the output line 43U but on the output line 43V or the output line 43W.
  • a portion of the output line 43 (43U, 43V, 43W) connected to the stator winding 4 of the coil end 42 is referred to as a connecting portion 431, and a portion including the output terminal 45 (45U, 45V, 45W) is referred to as a terminal portion 432.
  • the temperature detection unit 5 is preferably installed at a position closer to the terminal unit 432 than the connection unit 431 in the output line 43. Furthermore, it is preferable to install the temperature detection unit 5 near the terminal part 432 of the output line 43, and it is more preferable to install the temperature detection part 5 at a position as close as possible to the tip part of the output line 43 (position of the output terminal 45). If the temperature detector 5 is installed at such a position, the temperature detector 5 can measure the temperature of the part where the heat transfer path from the cooling source is longer, that is, the part where the temperature of the stator winding 4 is higher. is there.
  • the temperature detection unit 5 outputs the phase of the stator winding 4 having the longest sum of the length of the portion constituting the coil end 42 and the length of the output wire 43 (43U, 43V, 43W). When installed on the line 43, the temperature at the highest temperature in the output line 43 of each phase can be measured.
  • FIG. 3A is a schematic diagram showing the temperature detection unit 5 in which the varnish 7 is adhered to the stator winding 4.
  • a signal line 51 for transmitting a measured temperature signal to the control unit of the rotating electrical machine 1 is connected to the temperature detector 5.
  • the stator winding 4 includes a conductive core part 61 at the center, an insulating coating 62 covering the core part 61 on the surface, and is installed on the stator core 20.
  • the stator winding 4 at the coil end 42 is coated with varnish 7 for the purpose of fixing and insulating the stator winding 4.
  • the temperature detection unit 5 measures the temperature of the stator winding 4 in direct contact with the surface of the stator winding 4. .
  • FIG. 3B is a schematic diagram showing the temperature detection unit 5 in which the varnish 7 is prevented from adhering to the stator winding 4 and the signal line 51 is masked.
  • the temperature detection unit 5 In order to prevent the varnish 7 from adhering between the stator winding 4 and the temperature detection unit 5, the temperature detection unit 5 is installed on the surface of the stator winding 4 and then the stator winding 4. Varnish 7 is applied to the surface. In this case, before applying the varnish 7, it is necessary to perform ancillary work such as masking work for attaching the masking tape 52 to the signal line 51 of the temperature detection unit 5. There are challenges.
  • FIG. 3C is a schematic diagram showing the temperature detection unit 5 installed on the output line 43 in the stator 2 of the rotating electrical machine 1 according to the present embodiment.
  • the temperature detection unit 5 is attached to the output line 43 which is the stator winding 4 extending from the coil end 42 so as to be in direct contact with the surface of the output line 43. . That is, the temperature detector 5 is installed on the insulating film 62 that covers the surface of the output line 43.
  • the temperature detector 5 can be installed on the insulating coating 62 of the output line 43 using a sealing material such as resin or a heat shrinkable tube.
  • the stator 2 of the rotating electrical machine 1 is excellent in workability in attaching the temperature detection unit 5.
  • the stator 2 of the rotating electrical machine 1 is excellent in workability in attaching the temperature detection unit 5, and the temperature detection unit 5 is connected to the surface of the output line 43 (stator winding 4). Therefore, the temperature of the stator winding 4 can be measured with high accuracy.
  • the temperature detection unit 5 can include not only one but also a plurality. Below, the stator 2 of the structure provided with the several temperature detection part 5 is demonstrated. In the indirect cooling method, one of the plurality of temperature detection units 5 is connected to the output line 43 of the phase of the stator winding 4 having the longest sum of the length of the portion constituting the coil end 42 and the length of the output line 43. When installed at, the temperature at the highest temperature in the output line 43 of each phase can be measured.
  • FIG. 4 is a perspective view showing another configuration of the stator 2 of the rotating electrical machine 1 according to the first embodiment of the present invention.
  • the stator 2 shown in FIG. 4 includes two temperature detection units 5, one temperature detection unit 5 is installed on the U-phase output line 43 ⁇ / b> U, and the other temperature detection unit 5 is installed on the V-phase output line 43 ⁇ / b> V. ing.
  • the two temperature detection parts 5 can be installed in any two output lines among the output lines 43U, 43V, and 43W.
  • a method of estimating the temperature of the stator winding 4 by installing the temperature detection unit 5 at the neutral point 44 can be considered.
  • the neutral point 44 has a small area and is located at the coil end 42 where the stator winding 4 is concentrated, there is not enough work space around the temperature detection unit 5 to be installed. It is not a suitable place to install 5.
  • the temperature of the stator winding 4 of each phase is obtained even when the rotating electrical machine 1 is locked. Can do.
  • the temperatures of the U-phase and V-phase stator windings 4 are obtained by measurement by two temperature detectors 5, and the temperatures of the W-phase stator windings 4 are determined by the U-phase and V-phase stator windings 4. It can be estimated from the temperature.
  • the temperature of the stator winding 4 of the other one phase is estimated from the temperature of the stator winding 4 of the two phases (U phase and V phase). How to do is explained briefly.
  • the stator windings 4 of the respective phases have the same amount of flowing current and the same temperature.
  • the amounts of current flowing through the stator windings 4 of the respective phases are different from each other.
  • the amount of current flowing through the U-phase and V-phase stator windings 4 is determined from the increase in temperature from before the U-phase and V-phase stator windings 4 are locked. Resistance and heat capacity).
  • the amount of current flowing through the W-phase stator winding 4 is determined from the amount of current flowing through the U-phase and V-phase stator windings 4. Then, the temperature of the W-phase stator winding 4 flows to the W-phase stator winding 4 by using the temperature before locking of the W-phase stator winding 4 and the physical property value of the stator winding 4. It is obtained from the amount of current.
  • the temperatures of the three-phase stator windings 4 can be obtained even when the rotating electrical machine 1 is locked. .
  • the temperature of the stator winding 4 of two phases U phase and V phase
  • the temperature of the stator winding 4 of the other one phase W phase
  • the temperature of the three-phase stator winding 4 can be determined with higher accuracy than when only one temperature detection unit 5 is installed on the output line 43U as described with reference to FIG.
  • the temperature of the stator winding 4 of the other two phases is estimated from the measured temperature of the temperature detection unit 5, so that the estimation accuracy is lowered).
  • the stator 2 may include three temperature detection units 5.
  • the stator 2 includes three temperature detection units 5, one temperature detection unit 5 is connected to the U-phase output line 43U, one temperature detection unit 5 is connected to the V-phase output line 43V, and the other temperature detection unit 5 is connected. Is installed on the W-phase output line 43W, it is not necessary to estimate the temperature of the stator winding 4, so that the temperature of the three-phase stator winding 4 can be obtained with higher accuracy. .
  • FIG. 5 is a schematic diagram showing the overall configuration of the rotating electrical machine according to the second embodiment of the present invention. 5 is a cross-sectional view of a part of the inside of the rotating electrical machine 1 as in FIG. Below, a different point from the rotary electric machine 1 by Example 1 is mainly demonstrated.
  • the rotating electrical machine 1 includes a housing 10, a stator 2 having a stator core 20, and a rotor 3.
  • the stator core 20 has a slot, and the stator winding 4 is disposed in this slot.
  • a cooling pipe 16 through which a coolant flows is installed in the motor chamber on the inner peripheral side of the housing 10. The cooling pipe 16 supplies the cooling liquid directly to the coil end 42 and the stator core 20 by applying the cooling liquid to the coil end 42 and the stator core 20.
  • the stator 2 is directly cooled by the coolant supplied from the cooling pipe 16 flowing through the coil end 42 and the side surfaces of the stator core 20.
  • the output line 43 is provided with a temperature detector 5 for measuring the temperature of the stator winding 4.
  • the control unit of the rotating electrical machine 1 can detect the temperature of the stator winding 4 by monitoring the signal from the temperature detection unit 5.
  • stator winding 4 When the rotating electrical machine 1 operates and current flows through the stator winding 4, copper loss occurs in the stator winding 4 and heat is generated. Since the stator windings 4 are densely packed in the coil end 42, the heat generated by the copper loss is accumulated and the temperature becomes high.
  • the stator core 20 and the coil end 42 are cooled by the cooling liquid supplied from the cooling pipe 16 flowing on the surface, contacting the cooling liquid, and transferring heat directly to the cooling liquid. Since the temperature increases as the distance of the heat transfer path from the cooling source increases, the temperature of the stator winding 4 (output line 43) extending from the coil end 42 is higher than that of the stator winding 4 of the coil end 42. Become.
  • the temperature detector 5 is installed on the output wire 43, that is, the stator winding 4 extending from the coil end 42.
  • the output line 43 is a high-temperature part that is hard to be affected by the temperature of the coil end 42 and includes a portion having the highest temperature (or a portion estimated to have the highest temperature) in the stator winding 4. Therefore, the temperature detection unit 5 installed on the output line 43 is not easily affected by the temperature of the coil end 42 and can measure the temperature of the high temperature part, so that the temperature of the stator winding 4 can be measured with high accuracy. is there.
  • the stator winding 4 of the coil end 42 is directly cooled by the coolant in contact with the coolant.
  • the temperature of the part where the temperature detection unit 5 of the output line 43 is installed increases. Therefore, in the direct cooling method, when the temperature detection unit 5 is installed on the output line 43 of the phase of the stator winding 4 having the shortest part constituting the coil end 42, the temperature detection unit 5 is included in the output line 43 of each phase. The temperature at the highest temperature part can be measured.
  • stator 2 includes a plurality of temperature detection units 5, in the direct cooling method, one of the plurality of temperature detection units 5 is replaced with a stator having the shortest part constituting the coil end 42.
  • the temperature at the highest temperature portion of the output line 43 of each phase can be measured.
  • this invention is not limited to said Example, A various deformation
  • the above-described embodiments are described in detail for easy understanding of the present invention, and the present invention is not necessarily limited to an aspect including all the configurations described.
  • a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

Provided are a stator for a rotary electric machine, and a rotary electric machine, with which the temperature of the stator winding can be measured precisely, and having excellent workability with regard to attaching a temperature detection unit. The stator is equipped with: an annular stator core 20; a stator winding 4 arranged on the stator core 20, and having a portion constituting coil ends 42 protruding from the stator core 20, and a portion extending away from the coil ends 42; an output line 43U that is the portion extending away from the coil ends 42 of the stator winding 4, and that is equipped with an output terminal 45U; and a temperature detection unit 5 installed on the output line 43U.

Description

回転電機の固定子、及び回転電機Rotating electric machine stator and rotating electric machine
 本発明は、回転電機の固定子と回転電機に関する。 The present invention relates to a rotating electrical machine stator and a rotating electrical machine.
 回転電機は、固定子と回転子を備えており、固定子は、固定子鉄心と固定子巻線を備える。回転電機の運転により固定子巻線の温度が高くなると、回転電機に故障が発生したり回転電機の寿命が短くなったりするおそれがある。このため、固定子巻線の温度を高精度に測定することが重要である。固定子巻線の温度上昇による回転電機への影響を防止するには、固定子巻線のうち最も温度が高い部位での温度を測定するのが有効である。そこで、固定子巻線の温度を高精度に測定するには、固定子巻線の最も温度が高い部位(又は最も温度が高いと推測される部位)を含む高温部での温度を、固定子巻線の温度として測定するのが好ましい。 The rotating electrical machine includes a stator and a rotor, and the stator includes a stator core and a stator winding. When the temperature of the stator winding increases due to the operation of the rotating electrical machine, there is a risk that the rotating electrical machine may fail or the life of the rotating electrical machine may be shortened. For this reason, it is important to measure the temperature of the stator winding with high accuracy. In order to prevent the influence of the stator winding temperature on the rotating electrical machine, it is effective to measure the temperature of the stator winding at the highest temperature. Therefore, in order to measure the temperature of the stator winding with high accuracy, the temperature at the high temperature portion including the portion with the highest temperature of the stator winding (or the portion estimated to have the highest temperature) is measured by the stator. It is preferably measured as the temperature of the winding.
 固定子巻線の温度を高精度に測定する技術として、例えば特許文献1に記載の回転電機が知られている。特許文献1に記載の回転電機は、コイル(固定子巻線)を形成するコイル導線と、コイルを中性点に接続する中性線と、中性線の温度を検出する温度センサとを有する。温度センサに巻き付いている中性線の部分と、中性線が巻き付いている温度センサの部分は、モールド材に埋め込まれており、埋込型の温度検出部が形成されている。 As a technique for measuring the temperature of the stator winding with high accuracy, for example, a rotating electrical machine described in Patent Document 1 is known. The rotating electrical machine described in Patent Literature 1 includes a coil conductor that forms a coil (stator winding), a neutral wire that connects the coil to a neutral point, and a temperature sensor that detects the temperature of the neutral wire. . The portion of the neutral wire that is wound around the temperature sensor and the portion of the temperature sensor that is wound around the neutral wire are embedded in the mold material, and an embedded temperature detecting portion is formed.
特開2013-219961号公報JP 2013-219961 A
 上述したように、回転電機の故障の発生や寿命の短縮を防止するためには、固定子巻線の温度を高精度に測定し、固定子巻線を高温から保護するとともに、固定子巻線の温度上昇による回転電機への影響を防止することが重要である。 As described above, in order to prevent the failure of the rotating electrical machine and the shortening of the service life, the temperature of the stator winding is measured with high accuracy to protect the stator winding from the high temperature and the stator winding. It is important to prevent the influence of the temperature rise on the rotating electrical machine.
 特許文献1に記載の回転電機では、コイルに冷却液を掛けて冷却を行う液冷式の場合でも、埋込型の温度検出部を用いることにより、温度センサ及びその周辺の中性線に直接冷却液が掛からなくなるので、これらの中性線の冷却液による温度低下が避けられる。このため、実際に知りたい温度であるスロット内のコイル導線(冷却液が掛からない又は掛かりにくく温度が高くなる部分)の温度を、精度良く測定することができる。 In the rotating electrical machine described in Patent Document 1, even in the case of a liquid cooling type in which cooling is performed by applying a cooling liquid to a coil, the temperature sensor and the surrounding neutral wire are directly used by using an embedded temperature detection unit. Since the cooling liquid is not applied, a temperature drop due to the cooling liquid of these neutral lines can be avoided. For this reason, it is possible to accurately measure the temperature of the coil conductor in the slot (the portion where the coolant is not applied or is difficult to be applied and the temperature is high), which is the temperature that is actually desired.
 しかし、特許文献1に記載の回転電機では、埋込型の温度検出部を用いても、モールド材で覆われていないコイルエンドは、冷却液による冷却が促進される。このため、樹脂で覆われていないコイル導線が冷却され、冷却されたコイル導線からの伝熱(熱引き)により埋込型の温度検出部の内部でコイル導線の温度が低下し、コイル導線の温度の検出精度が低下する懸念がある。 However, in the rotating electrical machine described in Patent Document 1, even if an embedded temperature detection unit is used, the coil end that is not covered with the molding material is accelerated by the cooling liquid. For this reason, the coil lead wire not covered with resin is cooled, and the temperature of the coil lead wire is lowered inside the embedded temperature detector due to heat transfer (heat pull) from the cooled coil lead wire, and the coil lead wire There is a concern that the temperature detection accuracy may decrease.
 また、特許文献1に記載の回転電機では、温度センサがコイルエンドに設置されているため、温度センサをコイルに取付ける際に必要なスペースが周囲に十分なく、温度センサの取付作業が行いにくい。また、温度センサを取付けた後に、コイルの固定や絶縁のためにコイルにワニスを塗布する際には、コイルエンド上でマスキング等の付帯作業をする必要がある。このため、特許文献1に記載のように温度センサをコイルエンドに設置する回転電機では、温度センサなどの温度検知部の取付けでの作業性に課題がある。 Further, in the rotating electrical machine described in Patent Document 1, since the temperature sensor is installed at the coil end, there is not enough space around the temperature sensor to attach the temperature sensor to the coil, and it is difficult to perform the temperature sensor installation work. In addition, when a varnish is applied to the coil for fixing or insulating the coil after the temperature sensor is attached, it is necessary to perform additional work such as masking on the coil end. For this reason, in the rotating electrical machine in which the temperature sensor is installed at the coil end as described in Patent Document 1, there is a problem in workability in attaching a temperature detection unit such as a temperature sensor.
 本発明の目的は、固定子巻線の温度を高精度で測定することができ、かつ温度検知部の取付けでの作業性に優れる回転電機の固定子と回転電機を提供することである。 An object of the present invention is to provide a stator for a rotating electrical machine and a rotating electrical machine that can measure the temperature of the stator winding with high accuracy and that are excellent in workability in attaching a temperature detection unit.
 本発明による回転電機の固定子は、環状の固定子鉄心と、前記固定子鉄心に配置されており、前記固定子鉄心から突出したコイルエンドを構成する部分と前記コイルエンドから離れて延伸した部分とを有する固定子巻線と、前記固定子巻線の前記コイルエンドから離れて延伸した前記部分であり、端部に出力端子を備える出力線と、前記出力線に設置された温度検知部とを備える。 A stator of a rotating electrical machine according to the present invention includes an annular stator core, a portion that is disposed on the stator core, and that forms a coil end protruding from the stator core, and a portion that extends away from the coil end A stator winding having the output of the stator winding extending away from the coil end of the stator winding, an output line having an output terminal at the end, and a temperature detection unit installed in the output line, Is provided.
 本発明によると、固定子巻線の温度を高精度で測定することができ、かつ温度検知部の取付けでの作業性に優れる回転電機の固定子と回転電機を提供することができる。 According to the present invention, it is possible to provide a stator and a rotating electrical machine for a rotating electrical machine that can measure the temperature of the stator winding with high accuracy and that are excellent in workability in attaching the temperature detection unit.
本発明の実施例1による回転電機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the rotary electric machine by Example 1 of this invention. 本発明の実施例1による回転電機の固定子の構成を示す斜視図。The perspective view which shows the structure of the stator of the rotary electric machine by Example 1 of this invention. 固定子巻線との間にワニスが付着した温度検知部を示す模式図。The schematic diagram which shows the temperature detection part which the varnish adhered between the stator windings. 固定子巻線との間にワニスが付着するのを避け、信号線にマスキングをした温度検知部を示す模式図。The schematic diagram which shows the temperature detection part which avoided that a varnish adheres between stator windings and masked the signal wire | line. 本発明の実施例1による回転電機の固定子における、出力線に設置された温度検知部を示す模式図。The schematic diagram which shows the temperature detection part installed in the output line in the stator of the rotary electric machine by Example 1 of this invention. 本発明の実施例1による回転電機の固定子の別の構成を示す斜視図。The perspective view which shows another structure of the stator of the rotary electric machine by Example 1 of this invention. 本発明の実施例2による回転電機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the rotary electric machine by Example 2 of this invention.
 固定子巻線の温度として、固定子巻線の最も温度が高い部位(又は最も温度が高いと推測される部位)を含む高温部の温度を測定すると、固定子巻線の温度上昇による回転電機への影響を防止するのに有効な固定子巻線の温度を高精度に測定できる。 When measuring the temperature of the high temperature part including the part with the highest temperature of the stator winding (or the part where the temperature is estimated to be highest) as the temperature of the stator winding, the rotating electrical machine due to the temperature rise of the stator winding It is possible to measure the temperature of the stator winding, which is effective in preventing the influence on the coil, with high accuracy.
 本発明による回転電機の固定子及び回転電機は、固定子巻線の温度を測定する温度検知部を、コイルエンドから離れて延伸した出力線に備える。コイルエンドは冷却源により冷却が促進されるが、温度検知部は、コイルエンドから離れた部分の固定子巻線の温度を測定するので、冷却された部分の影響を受けず高温部での固定子巻線の温度を測定できる。また、温度検知部は、コイルエンドから離れているところに設置するため、取付作業が行い易い。このように、本発明による回転電機の固定子及び回転電機は、固定子巻線の温度を高精度で測定することができるとともに、温度検知部の取付けでの作業性に優れるという効果を奏する。 The stator of the rotating electrical machine and the rotating electrical machine according to the present invention are provided with a temperature detection unit for measuring the temperature of the stator winding in an output line extending away from the coil end. The coil end is cooled by the cooling source, but the temperature detector measures the temperature of the stator winding at the part away from the coil end, so it is fixed at the high temperature part without being affected by the cooled part. The temperature of the child winding can be measured. Moreover, since the temperature detection unit is installed at a location away from the coil end, it is easy to perform the mounting operation. As described above, the stator and the rotating electrical machine of the rotating electrical machine according to the present invention can measure the temperature of the stator winding with high accuracy, and have an effect of being excellent in workability in attaching the temperature detecting unit.
 以下、図面を用いて、本発明の実施例による回転電機の固定子及び回転電機の構成及び作用を説明する。なお、本明細書で用いる図面において、同一の要素には同一の符号を付け、これらの要素については繰り返しの説明を省略する場合がある。 Hereinafter, the configuration and operation of the stator of the rotating electrical machine and the rotating electrical machine according to the embodiment of the present invention will be described with reference to the drawings. Note that in the drawings used in this specification, the same elements are denoted by the same reference numerals, and repeated description of these elements may be omitted.
 図1は、本発明の実施例1による回転電機の全体構成を示す模式図である。図1では、一部分が回転電機1の内部を示す断面図である。 FIG. 1 is a schematic diagram showing an overall configuration of a rotating electrical machine according to Embodiment 1 of the present invention. In FIG. 1, a part is a cross-sectional view showing the inside of the rotating electrical machine 1.
 回転電機1は、ハウジング10と、ハウジング10に固定された固定子鉄心20を有する固定子2と、固定子2の内周側に回転自在に設けられた回転子3とを備える。回転電機1の筐体は、フロントブラケット11、ハウジング10、リアブラケット12、及びターミナルボックス13により構成される。ハウジング10は、ウォータージャケット14とともに、回転電機の冷却液の流路15を構成している。 The rotating electrical machine 1 includes a housing 10, a stator 2 having a stator core 20 fixed to the housing 10, and a rotor 3 provided rotatably on the inner peripheral side of the stator 2. The casing of the rotating electrical machine 1 includes a front bracket 11, a housing 10, a rear bracket 12, and a terminal box 13. The housing 10 and the water jacket 14 constitute a coolant flow path 15 of the rotating electrical machine.
 回転子3は、フロントブラケット11の軸受30Aとリアブラケット12の軸受30Bにより支持されるシャフト31に固定されており、固定子鉄心20の内周側において回転可能に配置される。 The rotor 3 is fixed to a shaft 31 supported by a bearing 30A of the front bracket 11 and a bearing 30B of the rear bracket 12, and is arranged rotatably on the inner peripheral side of the stator core 20.
 固定子2は、流路15を流れる冷却液によりハウジング10を介して間接的に冷却される。固定子鉄心20は、環状の部材であり、焼嵌め等によりハウジング10に固定されており、スロットを有する。固定子鉄心20のスロットには、絶縁樹脂材でシート状に形成されたインシュレータが配置され、このインシュレータを介して固定子巻線4が配置されている。固定子鉄心20の延伸方向(長さ方向)を「軸方向」と呼ぶ。この軸方向は、シャフト31の延伸方向と同じである。 The stator 2 is indirectly cooled through the housing 10 by the coolant flowing through the flow path 15. The stator core 20 is an annular member, and is fixed to the housing 10 by shrink fitting or the like, and has a slot. An insulator formed in a sheet shape with an insulating resin material is disposed in a slot of the stator core 20, and the stator winding 4 is disposed through the insulator. The extending direction (length direction) of the stator core 20 is referred to as “axial direction”. This axial direction is the same as the extending direction of the shaft 31.
 固定子巻線4は、略U字状の銅製の平角導体が軸方向に沿って固定子鉄心20のスロットに配置されて構成されている。略U字状の平角導体は、開口側の端部が折り曲げられた折曲部を有し、平角導体同士の折曲部が溶接等により互いに電気的に接続されている。固定子巻線4は、固定子鉄心20から突出したコイルエンド42を構成する部分と、コイルエンド42から離れて延伸した部分とを有する。コイルエンド42は、固定子鉄心20の軸方向両端から突出した固定子巻線4から構成され、スロット間を跨る固定子巻線4が密集した部位である。固定子巻線4のコイルエンド42から離れて延伸した部分を出力線43と呼ぶ。コイルエンド42を構成する固定子巻線4の長さと出力線43の長さは、固定子巻線4の相によって異なることがある。 The stator winding 4 is configured by arranging a substantially U-shaped copper rectangular conductor in the slot of the stator core 20 along the axial direction. The substantially U-shaped flat conductor has a bent portion whose end on the opening side is bent, and the bent portions of the flat conductors are electrically connected to each other by welding or the like. The stator winding 4 has a portion constituting a coil end 42 protruding from the stator core 20 and a portion extending away from the coil end 42. The coil end 42 is composed of the stator windings 4 protruding from both axial ends of the stator core 20, and is a portion where the stator windings 4 straddling between the slots are densely packed. A portion extending away from the coil end 42 of the stator winding 4 is referred to as an output line 43. The length of the stator winding 4 constituting the coil end 42 and the length of the output line 43 may differ depending on the phase of the stator winding 4.
 固定子巻線4は、三相Y結線の巻線であり、U相、V相、及びW相の固定子巻線が平角導体によって構成される。各相の固定子巻線は、一端が中性点で互いに接続されてコイルエンド42に配置され、他端を含む一部が出力線43を構成する。中性点に接続する、各相の固定子巻線の一部を、中性線と呼ぶ。 The stator winding 4 is a three-phase Y-connection winding, and the U-phase, V-phase, and W-phase stator windings are constituted by rectangular conductors. One end of each phase of the stator winding is connected to each other at a neutral point and arranged at the coil end 42, and a part including the other end forms an output line 43. A part of the stator winding of each phase connected to the neutral point is called a neutral wire.
 出力線43は、電気エネルギーを授受するために回転電機1の外部と接続する線であり、端部に出力端子45を備える。出力線43は、コイルエンド42から引出されて延伸し、出力端子45がターミナルボックス13内の端子台21に接続される。出力線43は、端子台21上において出力端子45を介して、ターミナルボックス13に挿入された外部の配線、例えばインバータと繋がるパワーケーブルと接続する。なお、出力線43は、コイルエンド42から延伸した固定子巻線4の部分であるが、一部はコイルエンド42にも位置する。 The output line 43 is a line that is connected to the outside of the rotating electrical machine 1 to transmit and receive electrical energy, and includes an output terminal 45 at the end. The output line 43 is drawn from the coil end 42 and extended, and the output terminal 45 is connected to the terminal block 21 in the terminal box 13. The output line 43 is connected to an external wiring inserted in the terminal box 13, for example, a power cable connected to the inverter, via the output terminal 45 on the terminal block 21. The output line 43 is a portion of the stator winding 4 extending from the coil end 42, but a part thereof is also located at the coil end 42.
 出力線43には、固定子巻線4の温度測定のために、温度検知部5が設けられている。温度検知部5には、例えばサーミスタや熱電対を用いることができる。サーミスタは、温度センサであり、温度の変化に対して電気抵抗値が大きく変化する半導体から成る温度検出素子を有する。回転電機1のコントロールユニット(例えば、インバータ)は、温度検知部5からの信号(例えば、サーミスタの電気抵抗値や熱電対に発生する熱起電力)をモニタすることで、固定子巻線4の温度を検出することができる。 The output line 43 is provided with a temperature detector 5 for measuring the temperature of the stator winding 4. For the temperature detector 5, for example, a thermistor or a thermocouple can be used. The thermistor is a temperature sensor and has a temperature detection element made of a semiconductor whose electric resistance value changes greatly with respect to a change in temperature. A control unit (for example, an inverter) of the rotating electrical machine 1 monitors a signal (for example, an electric resistance value of a thermistor or a thermoelectromotive force generated in a thermocouple) from the temperature detection unit 5, thereby The temperature can be detected.
 温度検知部5が測定した固定子巻線4の温度が予め定めた規定値を超えた場合、固定子巻線4の絶縁被膜や固定子2に塗布されたワニスの寿命への影響、ひいては故障の発生や寿命の短縮といった回転電機への影響が懸念される。このため、コントロールユニットは、回転電機1の運転を制限したり停止したりして、固定子巻線4が異常過熱することを防止する。したがって、温度検知部5は、冷却液による冷却の影響を受けにくく、固定子巻線4の中で最も温度が高い部位に設置することが望まれる。実際には、最も温度が高い部位を特定するのが困難な場合が多いので、最も温度が高い部位(又は最も温度が高いと推測される部位)を含む部位である高温部に、温度検知部5を設置するのが好ましい。 When the temperature of the stator winding 4 measured by the temperature detector 5 exceeds a predetermined value, the influence on the life of the insulating coating of the stator winding 4 and the varnish applied to the stator 2, and failure There are concerns about the effects on rotating electrical machines such as the occurrence of defects and shortening of service life. For this reason, the control unit restricts or stops the operation of the rotating electrical machine 1 to prevent the stator winding 4 from overheating. Therefore, it is desired that the temperature detection unit 5 is not easily influenced by cooling with the coolant and is installed in a portion of the stator winding 4 where the temperature is highest. Actually, since it is often difficult to specify the part with the highest temperature, the temperature detection part is included in the high-temperature part that contains the part with the highest temperature (or the part that is estimated to have the highest temperature). 5 is preferably installed.
 回転電機1が動作して固定子巻線4に電流が流れているとき、固定子巻線4には銅損が生じて発熱する。コイルエンド42は、固定子巻線4が密集しているため、銅損によって発生した熱がこもり、温度が高くなる。 When the rotating electrical machine 1 operates and current flows through the stator winding 4, copper loss occurs in the stator winding 4 and heat is generated. Since the stator windings 4 are densely packed in the coil end 42, the heat generated by the copper loss is accumulated and the temperature becomes high.
 コイルエンド42は、ハウジング10に構成された流路15を流れる冷却液により、間接的に冷却される。すなわち、コイルエンド42は、ハウジング10、固定子鉄心20、固定子鉄心20のスロットに配置されたインシュレータ、及び固定子鉄心20のスロットに配置された固定子巻線4を伝熱経路とする熱伝達により、流路15を流れる冷却液によって冷却される。冷却源からの伝熱経路の距離が長い程温度が高くなるので、冷却液の流路15からの伝熱経路の距離が長くなる順、すなわち、ハウジング10、固定子鉄心20、固定子2(固定子鉄心20のスロット)内の固定子巻線4、コイルエンド42の固定子巻線4、コイルエンド42から延伸した固定子巻線4(出力線43)の順に温度が高くなる。 The coil end 42 is indirectly cooled by the coolant flowing through the flow path 15 formed in the housing 10. That is, the coil end 42 is a heat which uses the housing 10, the stator core 20, the insulator disposed in the slot of the stator core 20, and the stator winding 4 disposed in the slot of the stator core 20 as a heat transfer path. By the transmission, the liquid is cooled by the coolant flowing through the flow path 15. The longer the distance of the heat transfer path from the cooling source, the higher the temperature. Therefore, the distance of the heat transfer path from the coolant flow path 15 increases, that is, the housing 10, the stator core 20, the stator 2 ( The temperature increases in the order of the stator winding 4 in the slot of the stator core 20, the stator winding 4 of the coil end 42, and the stator winding 4 (output line 43) extending from the coil end 42.
 温度検知部5は、出力線43、すなわちコイルエンド42から延伸した固定子巻線4に設置されている。出力線43は、コイルエンド42の温度の影響を受けづらく、固定子巻線4の中で最も温度が高い部位(又は最も温度が高いと推測される部位)を含む高温部である。したがって、出力線43に設置された温度検知部5は、コイルエンド42の温度の影響を受けづらく、かつ高温部の温度を測定できるため、固定子巻線4の温度を高精度で測定可能である。 The temperature detector 5 is installed on the output wire 43, that is, the stator winding 4 extending from the coil end 42. The output line 43 is a high-temperature part that is hard to be affected by the temperature of the coil end 42 and includes a portion having the highest temperature (or a portion estimated to have the highest temperature) in the stator winding 4. Therefore, the temperature detection unit 5 installed on the output line 43 is not easily affected by the temperature of the coil end 42 and can measure the temperature of the high temperature part, so that the temperature of the stator winding 4 can be measured with high accuracy. is there.
 図2は、本発明の実施例1による回転電機1の固定子2の構成を示す斜視図である。図2を用いて、固定子2と温度検知部5の設置位置の詳細について説明する。 FIG. 2 is a perspective view showing the configuration of the stator 2 of the rotating electrical machine 1 according to the first embodiment of the present invention. Details of the installation positions of the stator 2 and the temperature detector 5 will be described with reference to FIG.
 固定子2は、複数のスロットを有する固定子鉄心20と、固定子巻線4と、固定子巻線4の温度を測定する温度検知部5を備える。 The stator 2 includes a stator core 20 having a plurality of slots, a stator winding 4, and a temperature detection unit 5 that measures the temperature of the stator winding 4.
 固定子鉄心20は、所定の厚さの磁性鋼板が軸方向に積層された環状の部材であり、軸方向に延伸する複数のスロットが内周側に設けられている。複数のスロットは、固定子鉄心20の周方向に並んで配置されている。 The stator core 20 is an annular member in which magnetic steel plates having a predetermined thickness are laminated in the axial direction, and a plurality of slots extending in the axial direction are provided on the inner peripheral side. The plurality of slots are arranged side by side in the circumferential direction of the stator core 20.
 固定子巻線4は、主として銅からなる導電性の芯線部と芯線部を覆う絶縁被膜とにより構成される。固定子巻線4は、絶縁樹脂材でシート状に形成されたインシュレータ41を介して、固定子鉄心20のスロットに配置されている。上述したように、固定子鉄心20の軸方向両端から突出した固定子巻線4から構成され、固定子巻線4が密集した部位がコイルエンド42である。 The stator winding 4 is composed of a conductive core wire portion mainly made of copper and an insulating film covering the core wire portion. The stator winding 4 is disposed in a slot of the stator core 20 via an insulator 41 formed in a sheet shape with an insulating resin material. As described above, the coil end 42 is formed by the stator winding 4 that protrudes from both axial ends of the stator core 20, and the portion where the stator winding 4 is closely packed.
 固定子巻線4は、上述したように、三相Y結線の巻線であり、U相、V相、及びW相の固定子巻線を備える。これら各相の固定子巻線の一端は、これら各相の中性線が互いに接続された中性点44としてコイルエンド42に配置される。U相の固定子巻線の他端を含む一部は、U相の出力線43Uを構成する。V相の固定子巻線の他端を含む一部は、V相の出力線43Vを構成する。W相の固定子巻線の他端を含む一部は、W相の出力線43Wを構成する。 The stator winding 4 is a three-phase Y-connection winding as described above, and includes U-phase, V-phase, and W-phase stator windings. One end of each phase stator winding is disposed at the coil end 42 as a neutral point 44 where the neutral wires of each phase are connected to each other. A part including the other end of the U-phase stator winding constitutes a U-phase output line 43U. A part including the other end of the V-phase stator winding constitutes a V-phase output line 43V. A part including the other end of the W-phase stator winding constitutes a W-phase output line 43W.
 回転電機1が外部との間で電気エネルギーを授受できるように、出力線43U、43V、43Wは、コイルエンド42から離れて延伸する。出力線43U、43V、43Wの端部には、U相、V相、W相の出力端子45U、45V、45Wがそれぞれ設けられている。出力線43Uには、温度検知部5が設置されている。なお、本実施例では、出力線43(43U、43V、43W)の端部に出力線43とは別体の出力端子45(45U、45V、45W)が設けられているが、出力端子45は、出力線43と別体ではなくて、出力線43の一部が出力端子45を構成していても構わない。 The output wires 43U, 43V, 43W extend away from the coil end 42 so that the rotating electrical machine 1 can exchange electric energy with the outside. At the ends of the output lines 43U, 43V, and 43W, U-phase, V-phase, and W- phase output terminals 45U, 45V, and 45W are provided, respectively. A temperature detector 5 is installed on the output line 43U. In this embodiment, an output terminal 45 (45U, 45V, 45W) separate from the output line 43 is provided at the end of the output line 43 (43U, 43V, 43W). The output line 43 may be part of the output terminal 45 instead of being separated from the output line 43.
 固定子2がハウジング10に構成された流路15を流れる冷却液により間接的に冷却される間接冷却方式の場合、固定子2は、ハウジング10と接している固定子鉄心20の外周面から冷却される。この場合、固定子2は、上述したように、固定子鉄心20、固定子2(固定子鉄心20のスロット)内の固定子巻線4、コイルエンド42の固定子巻線4、コイルエンド42から延伸した固定子巻線4(出力線43U、43V、43W)の順に温度が高くなる。出力線43U、43V、43Wは、コイルエンド42の温度の影響を受けづらく、固定子巻線4の中で最も温度が高い部位(又は最も温度が高いと推測される部位)を含む高温部である。 In the case of the indirect cooling method in which the stator 2 is indirectly cooled by the coolant flowing through the flow path 15 formed in the housing 10, the stator 2 is cooled from the outer peripheral surface of the stator core 20 that is in contact with the housing 10. Is done. In this case, as described above, the stator 2 includes the stator core 20, the stator winding 4 in the stator 2 (the slot of the stator core 20), the stator winding 4 of the coil end 42, and the coil end 42. The temperature increases in the order of the stator windings 4 ( output lines 43U, 43V, and 43W) extended from. The output lines 43U, 43V, and 43W are not affected by the temperature of the coil end 42, and are high-temperature portions including a portion having the highest temperature (or a portion estimated to have the highest temperature) in the stator winding 4. is there.
 温度検知部5は、コイルエンド42から延伸した出力線43Uに設置されているので、コイルエンド42の温度の影響(冷却液による冷却の影響)を受けづらく、高温部の温度を測定できるため、固定子巻線4の温度を高精度で測定可能である。したがって、温度検知部5を出力線43Uに設置することで、固定子巻線4を高温から保護するとともに、固定子巻線4の温度上昇による回転電機1への影響を防止することができる。なお、温度検知部5は、出力線43Uにではなく、出力線43V、又は出力線43Wに設置してもよい。 Since the temperature detector 5 is installed on the output line 43U extended from the coil end 42, it is difficult to be affected by the temperature of the coil end 42 (the influence of cooling by the coolant), and the temperature of the high temperature part can be measured. The temperature of the stator winding 4 can be measured with high accuracy. Therefore, by installing the temperature detection unit 5 on the output line 43U, the stator winding 4 can be protected from high temperature, and the influence on the rotating electrical machine 1 due to the temperature rise of the stator winding 4 can be prevented. The temperature detector 5 may be installed not on the output line 43U but on the output line 43V or the output line 43W.
 出力線43(43U、43V、43W)の、コイルエンド42の固定子巻線4に繋がる部分を繋ぎ部431とし、出力端子45(45U、45V、45W)を備える部分を端子部432とする。温度検知部5は、出力線43において、繋ぎ部431よりも端子部432に近い位置に設置するのが好ましい。さらに、温度検知部5は、出力線43の端子部432の近くに設置するのが好ましく、出力線43の先端部(出力端子45の設置位置)にできるだけ近い部位に設置するのがより好ましい。温度検知部5をこのような位置に設置すると、温度検知部5は、冷却源からの伝熱経路がより長い部位、すなわち固定子巻線4の温度がより高い部位の温度を測定できるからである。 A portion of the output line 43 (43U, 43V, 43W) connected to the stator winding 4 of the coil end 42 is referred to as a connecting portion 431, and a portion including the output terminal 45 (45U, 45V, 45W) is referred to as a terminal portion 432. The temperature detection unit 5 is preferably installed at a position closer to the terminal unit 432 than the connection unit 431 in the output line 43. Furthermore, it is preferable to install the temperature detection unit 5 near the terminal part 432 of the output line 43, and it is more preferable to install the temperature detection part 5 at a position as close as possible to the tip part of the output line 43 (position of the output terminal 45). If the temperature detector 5 is installed at such a position, the temperature detector 5 can measure the temperature of the part where the heat transfer path from the cooling source is longer, that is, the part where the temperature of the stator winding 4 is higher. is there.
 間接冷却方式では、冷却源から温度検知部5の設置位置までの伝熱距離が長い程、温度検知部5の設置位置での温度が高くなる。したがって、間接冷却方式では、温度検知部5を、コイルエンド42を構成する部分の長さと出力線43(43U、43V、43W)の長さとの和が最も長い固定子巻線4の相の出力線43に設置すると、各相の出力線43の中で最も温度の高い部位での温度を測定することができる。 In the indirect cooling method, the longer the heat transfer distance from the cooling source to the installation position of the temperature detection unit 5, the higher the temperature at the installation position of the temperature detection unit 5. Therefore, in the indirect cooling method, the temperature detection unit 5 outputs the phase of the stator winding 4 having the longest sum of the length of the portion constituting the coil end 42 and the length of the output wire 43 (43U, 43V, 43W). When installed on the line 43, the temperature at the highest temperature in the output line 43 of each phase can be measured.
 次に、温度検知部5の出力線43(固定子巻線4)への設置について説明する。 Next, installation of the temperature detector 5 on the output line 43 (stator winding 4) will be described.
 図3Aは、固定子巻線4との間にワニス7が付着した温度検知部5を示す模式図である。温度検知部5には、測定した温度の信号を回転電機1のコントロールユニットに伝達するための信号線51が接続されている。固定子巻線4は、中心部に導電性の芯線部61を備え、表面に芯線部61を覆う絶縁被膜62を備え、固定子鉄心20に設置される。コイルエンド42での固定子巻線4は、固定子巻線4の固定や絶縁を目的に、表面にワニス7が塗布される。 FIG. 3A is a schematic diagram showing the temperature detection unit 5 in which the varnish 7 is adhered to the stator winding 4. A signal line 51 for transmitting a measured temperature signal to the control unit of the rotating electrical machine 1 is connected to the temperature detector 5. The stator winding 4 includes a conductive core part 61 at the center, an insulating coating 62 covering the core part 61 on the surface, and is installed on the stator core 20. The stator winding 4 at the coil end 42 is coated with varnish 7 for the purpose of fixing and insulating the stator winding 4.
 図3Aに示すように、固定子巻線4の表面にワニス7が付着した状態で、固定子巻線4に温度検知部5を取付けると、固定子巻線4と温度検知部5との間にワニス7が付着し、固定子巻線4と温度検知部5との間の熱抵抗が増加する。すると、固定子巻線4と温度検知部5との間で温度差が発生し、固定子巻線4の温度変化に対する温度検知部5の応答性に影響が出てしまい、温度検知部5は、固定子巻線4の温度を正確に測定できなくなる。したがって、固定子巻線4の温度をより正確に測定するためには、温度検知部5は、固定子巻線4の表面に直に接して固定子巻線4の温度を測定することが望ましい。 As shown in FIG. 3A, when the temperature detector 5 is attached to the stator winding 4 with the varnish 7 attached to the surface of the stator winding 4, the gap between the stator winding 4 and the temperature detector 5 is The varnish 7 adheres to the heat resistance between the stator winding 4 and the temperature detector 5. Then, a temperature difference is generated between the stator winding 4 and the temperature detection unit 5, which affects the responsiveness of the temperature detection unit 5 to the temperature change of the stator winding 4. The temperature of the stator winding 4 cannot be measured accurately. Therefore, in order to measure the temperature of the stator winding 4 more accurately, it is desirable that the temperature detection unit 5 measures the temperature of the stator winding 4 in direct contact with the surface of the stator winding 4. .
 図3Bは、固定子巻線4との間にワニス7が付着するのを避け、信号線51にマスキングをした温度検知部5を示す模式図である。固定子巻線4と温度検知部5との間にワニス7が付着するのを避けるためには、温度検知部5を固定子巻線4の表面に設置した後で、固定子巻線4の表面にワニス7を塗布する。この場合には、ワニス7を塗布する前に、温度検知部5の信号線51にマスキングテープ52を貼るマスキング作業等の付帯作業を行う必要があり、温度検知部5の取付けでの作業性に課題がある。 FIG. 3B is a schematic diagram showing the temperature detection unit 5 in which the varnish 7 is prevented from adhering to the stator winding 4 and the signal line 51 is masked. In order to prevent the varnish 7 from adhering between the stator winding 4 and the temperature detection unit 5, the temperature detection unit 5 is installed on the surface of the stator winding 4 and then the stator winding 4. Varnish 7 is applied to the surface. In this case, before applying the varnish 7, it is necessary to perform ancillary work such as masking work for attaching the masking tape 52 to the signal line 51 of the temperature detection unit 5. There are challenges.
 図3Cは、本実施例による回転電機1の固定子2における、出力線43に設置された温度検知部5を示す模式図である。本実施例による回転電機の固定子2では、温度検知部5は、コイルエンド42から延伸した固定子巻線4である出力線43に、出力線43の表面に直に接して取付けられている。すなわち、温度検知部5は、出力線43の表面を覆う絶縁被膜62に設置されている。温度検知部5は、図3Cには示していないが、樹脂等の封止材や熱収縮チューブを用いて出力線43の絶縁被膜62に設置することができる。 FIG. 3C is a schematic diagram showing the temperature detection unit 5 installed on the output line 43 in the stator 2 of the rotating electrical machine 1 according to the present embodiment. In the stator 2 of the rotating electrical machine according to the present embodiment, the temperature detection unit 5 is attached to the output line 43 which is the stator winding 4 extending from the coil end 42 so as to be in direct contact with the surface of the output line 43. . That is, the temperature detector 5 is installed on the insulating film 62 that covers the surface of the output line 43. Although not shown in FIG. 3C, the temperature detector 5 can be installed on the insulating coating 62 of the output line 43 using a sealing material such as resin or a heat shrinkable tube.
 コイルエンド42から延伸した出力線43にはワニス7を塗布する必要がないので、温度検知部5の信号線51へのマスキング作業等の付帯作業をコイルエンド42上で行う必要がない。また、温度検知部5は、ワニス7の塗布部であるコイルエンド42から離れた位置に設置されるため、ワニス7の塗布作業後でも出力線43に設置できる。さらに、出力線43は、コイルエンド42から離れて延伸しているため、密集した固定子巻線4が周囲に存在せず、周囲に空間が十分にあるため、温度検知部5の取付作業が行い易い。このように、本実施例による回転電機1の固定子2は、温度検知部5の取付けでの作業性に優れる。 Since it is not necessary to apply the varnish 7 to the output wire 43 extended from the coil end 42, it is not necessary to perform an incidental operation such as a masking operation on the signal line 51 of the temperature detection unit 5 on the coil end 42. Moreover, since the temperature detection part 5 is installed in the position away from the coil end 42 which is an application part of the varnish 7, it can be installed in the output line 43 even after the varnish 7 application operation. Further, since the output wire 43 extends away from the coil end 42, the dense stator winding 4 does not exist in the periphery, and there is sufficient space around the output wire 43. Easy to do. Thus, the stator 2 of the rotating electrical machine 1 according to the present embodiment is excellent in workability in attaching the temperature detection unit 5.
 以上説明したように、本実施例による回転電機1の固定子2は、温度検知部5の取付けでの作業性に優れるとともに、温度検知部5を出力線43(固定子巻線4)の表面に直に接して設置することができるので、固定子巻線4の温度を高精度で測定することができる。 As described above, the stator 2 of the rotating electrical machine 1 according to the present embodiment is excellent in workability in attaching the temperature detection unit 5, and the temperature detection unit 5 is connected to the surface of the output line 43 (stator winding 4). Therefore, the temperature of the stator winding 4 can be measured with high accuracy.
 温度検知部5は、1つだけでなく、複数を備えることができる。以下では、複数の温度検知部5を備える構成の固定子2について説明する。なお、間接冷却方式では、複数の温度検知部5の1つを、コイルエンド42を構成する部分の長さと出力線43の長さとの和が最も長い固定子巻線4の相の出力線43に設置すると、各相の出力線43の中で最も温度の高い部位での温度を測定することができる。 The temperature detection unit 5 can include not only one but also a plurality. Below, the stator 2 of the structure provided with the several temperature detection part 5 is demonstrated. In the indirect cooling method, one of the plurality of temperature detection units 5 is connected to the output line 43 of the phase of the stator winding 4 having the longest sum of the length of the portion constituting the coil end 42 and the length of the output line 43. When installed at, the temperature at the highest temperature in the output line 43 of each phase can be measured.
 図4は、本発明の実施例1による回転電機1の固定子2の別の構成を示す斜視図である。図4に示す固定子2は、温度検知部5を2つ備え、1つの温度検知部5がU相の出力線43Uに、もう1つの温度検知部5がV相の出力線43Vに設置されている。なお、2つの温度検知部5は、出力線43U、43V、及び43Wのうち任意のいずれか2つの出力線に設置することができる。 FIG. 4 is a perspective view showing another configuration of the stator 2 of the rotating electrical machine 1 according to the first embodiment of the present invention. The stator 2 shown in FIG. 4 includes two temperature detection units 5, one temperature detection unit 5 is installed on the U-phase output line 43 </ b> U, and the other temperature detection unit 5 is installed on the V-phase output line 43 </ b> V. ing. In addition, the two temperature detection parts 5 can be installed in any two output lines among the output lines 43U, 43V, and 43W.
 回転電機1が通常の回転動作をしている場合、固定子巻線4には三相平衡電流が流れている。この場合、U相とV相とW相の固定子巻線4の銅損は互いにほぼ等しいので、各相の固定子巻線4の温度は互いにほぼ等しく、2つの温度検知部5が測定する温度は互いにほぼ等しい。2つの温度検知部5が測定した温度が互いに異なる場合には、温度検知部5に異常が発生したと判断することができる。 When the rotating electrical machine 1 is operating normally, a three-phase balanced current flows through the stator winding 4. In this case, since the copper losses of the U-phase, V-phase, and W-phase stator windings 4 are substantially equal to each other, the temperatures of the stator windings 4 of each phase are substantially equal to each other, and the two temperature detectors 5 measure. The temperatures are almost equal to each other. If the temperatures measured by the two temperature detectors 5 are different from each other, it can be determined that an abnormality has occurred in the temperature detector 5.
 一方、回転電機1がロックした状態の場合、固定子巻線4には三相不平衡電流が流れている。この場合、各相の固定子巻線4の通電量が互いに異なるため、各相の固定子巻線4の銅損も互いに異なり、中性点44又はその近傍を除いては、各相の固定子巻線4の温度が互いに異なる(中性点44では、電流の総和がゼロであり、各相の固定子巻線4の熱伝導により温度が平均化される)。 On the other hand, when the rotating electrical machine 1 is locked, a three-phase unbalanced current flows through the stator winding 4. In this case, since the energization amounts of the stator windings 4 of the respective phases are different from each other, the copper losses of the stator windings 4 of the respective phases are also different from each other, and each phase is fixed except for the neutral point 44 or the vicinity thereof. The temperatures of the child windings 4 are different from each other (at the neutral point 44, the sum of currents is zero, and the temperature is averaged by the heat conduction of the stator windings 4 of each phase).
 回転電機1がロックした状態のときに固定子巻線4の温度を測定するには、中性点44に温度検知部5を設置して固定子巻線4の温度を推定する方法が考えられる。しかし、中性点44は、面積が小さいうえに、固定子巻線4が集中しているコイルエンド42に位置するので、温度検知部5を取付ける作業スペースが周囲に十分になく、温度検知部5を設置するのに適当な場所ではない。 In order to measure the temperature of the stator winding 4 when the rotating electrical machine 1 is locked, a method of estimating the temperature of the stator winding 4 by installing the temperature detection unit 5 at the neutral point 44 can be considered. . However, since the neutral point 44 has a small area and is located at the coil end 42 where the stator winding 4 is concentrated, there is not enough work space around the temperature detection unit 5 to be installed. It is not a suitable place to install 5.
 本実施例では、2つの温度検知部5が、異なる2つの出力線43U、43Vに設置されているので、回転電機1がロックした状態でも、各相の固定子巻線4の温度を求めることができる。U相とV相の固定子巻線4の温度は、2つの温度検知部5が測定して求め、W相の固定子巻線4の温度は、U相とV相の固定子巻線4の温度から推定できる。 In the present embodiment, since the two temperature detectors 5 are installed on the two different output lines 43U and 43V, the temperature of the stator winding 4 of each phase is obtained even when the rotating electrical machine 1 is locked. Can do. The temperatures of the U-phase and V-phase stator windings 4 are obtained by measurement by two temperature detectors 5, and the temperatures of the W-phase stator windings 4 are determined by the U-phase and V-phase stator windings 4. It can be estimated from the temperature.
 以下、回転電機1がロックした状態で、2つの相(U相とV相)の固定子巻線4の温度から、他の1つの相(W相)の固定子巻線4の温度を推定する方法を簡単に説明する。回転電機1がロックする前は、各相の固定子巻線4は、流れる電流量が互いに等しく、温度も互いにほぼ等しい。回転電機1がロックすると、各相の固定子巻線4に流れる電流量が互いに異なる。U相とV相の固定子巻線4に流れる電流量は、U相とV相の固定子巻線4のロック前からの温度の上昇値から、固定子巻線4の物性値(例えば、抵抗や熱容量)を用いてそれぞれ求められる。W相の固定子巻線4に流れる電流量は、U相とV相の固定子巻線4に流れる電流量から求められる。すると、W相の固定子巻線4の温度は、W相の固定子巻線4のロック前の温度と固定子巻線4の物性値を用いて、W相の固定子巻線4に流れる電流量から求められる。 Hereinafter, with the rotating electrical machine 1 locked, the temperature of the stator winding 4 of the other one phase (W phase) is estimated from the temperature of the stator winding 4 of the two phases (U phase and V phase). How to do is explained briefly. Before the rotating electrical machine 1 is locked, the stator windings 4 of the respective phases have the same amount of flowing current and the same temperature. When the rotating electrical machine 1 is locked, the amounts of current flowing through the stator windings 4 of the respective phases are different from each other. The amount of current flowing through the U-phase and V-phase stator windings 4 is determined from the increase in temperature from before the U-phase and V-phase stator windings 4 are locked. Resistance and heat capacity). The amount of current flowing through the W-phase stator winding 4 is determined from the amount of current flowing through the U-phase and V-phase stator windings 4. Then, the temperature of the W-phase stator winding 4 flows to the W-phase stator winding 4 by using the temperature before locking of the W-phase stator winding 4 and the physical property value of the stator winding 4. It is obtained from the amount of current.
 以上説明したように、2つの温度検知部5を異なる2つの出力線43U、43Vに設置すると、回転電機1がロックした状態でも、3つの相の固定子巻線4の温度を求めることができる。以上に説明した方法では、2つの相(U相とV相)の固定子巻線4の温度を測定し、他の1つの相(W相)の固定子巻線4の温度を推定するので、図2を用いて説明したように温度検知部5を1つだけ出力線43Uに設置する場合よりも、3つの相の固定子巻線4の温度をより高精度に求めることができる(温度検知部5を1つだけ設置した場合は、この温度検知部5の測定温度から他の2つの相の固定子巻線4の温度を推定するので、推定精度が低くなる)。 As described above, when the two temperature detectors 5 are installed on the two different output lines 43U and 43V, the temperatures of the three-phase stator windings 4 can be obtained even when the rotating electrical machine 1 is locked. . In the method described above, the temperature of the stator winding 4 of two phases (U phase and V phase) is measured, and the temperature of the stator winding 4 of the other one phase (W phase) is estimated. 2, the temperature of the three-phase stator winding 4 can be determined with higher accuracy than when only one temperature detection unit 5 is installed on the output line 43U as described with reference to FIG. When only one detection unit 5 is installed, the temperature of the stator winding 4 of the other two phases is estimated from the measured temperature of the temperature detection unit 5, so that the estimation accuracy is lowered).
 また、固定子2は、3つの温度検知部5を備えてもよい。固定子2が温度検知部5を3つ備え、1つの温度検知部5がU相の出力線43Uに、1つの温度検知部5がV相の出力線43Vに、もう1つの温度検知部5がW相の出力線43Wに設置されていると、固定子巻線4の温度を推定しなくてもよいので、3つの相の固定子巻線4の温度をさらに高精度に求めることができる。 In addition, the stator 2 may include three temperature detection units 5. The stator 2 includes three temperature detection units 5, one temperature detection unit 5 is connected to the U-phase output line 43U, one temperature detection unit 5 is connected to the V-phase output line 43V, and the other temperature detection unit 5 is connected. Is installed on the W-phase output line 43W, it is not necessary to estimate the temperature of the stator winding 4, so that the temperature of the three-phase stator winding 4 can be obtained with higher accuracy. .
 図5は、本発明の実施例2による回転電機の全体構成を示す模式図である。図5では、図1と同様に、一部分が回転電機1の内部を示す断面図である。以下では、主に、実施例1による回転電機1と異なる点について説明する。 FIG. 5 is a schematic diagram showing the overall configuration of the rotating electrical machine according to the second embodiment of the present invention. 5 is a cross-sectional view of a part of the inside of the rotating electrical machine 1 as in FIG. Below, a different point from the rotary electric machine 1 by Example 1 is mainly demonstrated.
 回転電機1は、ハウジング10と、固定子鉄心20を有する固定子2と、回転子3とを備える。固定子鉄心20は、スロットを有し、このスロットに固定子巻線4が配置されている。ハウジング10の内周側にあるモータ室内には、冷却液が流れる冷却管16が設置されている。冷却管16は、冷却液をコイルエンド42と固定子鉄心20に掛けることで、冷却液を直接的にコイルエンド42と固定子鉄心20に供給する。 The rotating electrical machine 1 includes a housing 10, a stator 2 having a stator core 20, and a rotor 3. The stator core 20 has a slot, and the stator winding 4 is disposed in this slot. A cooling pipe 16 through which a coolant flows is installed in the motor chamber on the inner peripheral side of the housing 10. The cooling pipe 16 supplies the cooling liquid directly to the coil end 42 and the stator core 20 by applying the cooling liquid to the coil end 42 and the stator core 20.
 固定子2は、冷却管16から供給された冷却液がコイルエンド42と固定子鉄心20の側面を流れることにより、直接的に冷却される。 The stator 2 is directly cooled by the coolant supplied from the cooling pipe 16 flowing through the coil end 42 and the side surfaces of the stator core 20.
 出力線43には、固定子巻線4の温度測定のために、温度検知部5が設けられている。回転電機1のコントロールユニットは、温度検知部5からの信号をモニタすることで、固定子巻線4の温度を検出することができる。 The output line 43 is provided with a temperature detector 5 for measuring the temperature of the stator winding 4. The control unit of the rotating electrical machine 1 can detect the temperature of the stator winding 4 by monitoring the signal from the temperature detection unit 5.
 回転電機1が動作して固定子巻線4に電流が流れているとき、固定子巻線4には銅損が生じて発熱する。コイルエンド42は、固定子巻線4が密集しているため、銅損によって発生した熱がこもり、温度が高くなる。 When the rotating electrical machine 1 operates and current flows through the stator winding 4, copper loss occurs in the stator winding 4 and heat is generated. Since the stator windings 4 are densely packed in the coil end 42, the heat generated by the copper loss is accumulated and the temperature becomes high.
 固定子鉄心20とコイルエンド42は、冷却管16から供給された冷却液が表面を流れて冷却液と接触し、冷却液に直接伝熱することで冷却される。冷却源からの伝熱経路の距離が長い程温度が高くなるので、コイルエンド42の固定子巻線4よりも、コイルエンド42から延伸した固定子巻線4(出力線43)の温度が高くなる。 The stator core 20 and the coil end 42 are cooled by the cooling liquid supplied from the cooling pipe 16 flowing on the surface, contacting the cooling liquid, and transferring heat directly to the cooling liquid. Since the temperature increases as the distance of the heat transfer path from the cooling source increases, the temperature of the stator winding 4 (output line 43) extending from the coil end 42 is higher than that of the stator winding 4 of the coil end 42. Become.
 温度検知部5は、出力線43、すなわちコイルエンド42から延伸した固定子巻線4に設置されている。出力線43は、コイルエンド42の温度の影響を受けづらく、固定子巻線4の中で最も温度が高い部位(又は最も温度が高いと推測される部位)を含む高温部である。したがって、出力線43に設置された温度検知部5は、コイルエンド42の温度の影響を受けづらく、かつ高温部の温度を測定できるため、固定子巻線4の温度を高精度で測定可能である。 The temperature detector 5 is installed on the output wire 43, that is, the stator winding 4 extending from the coil end 42. The output line 43 is a high-temperature part that is hard to be affected by the temperature of the coil end 42 and includes a portion having the highest temperature (or a portion estimated to have the highest temperature) in the stator winding 4. Therefore, the temperature detection unit 5 installed on the output line 43 is not easily affected by the temperature of the coil end 42 and can measure the temperature of the high temperature part, so that the temperature of the stator winding 4 can be measured with high accuracy. is there.
 固定子2が冷却管16から供給された冷却液により直接的に冷却される直接冷却方式の場合、コイルエンド42の固定子巻線4は、冷却液に接して冷却液により直接的に冷却される。このため、コイルエンド42の固定子巻線4の長さが短い程、固定子巻線4から冷却液への熱伝達量が少なくなり(すなわち、冷却液で冷却される固定子巻線4の部分が少なくなり)、出力線43の温度検知部5が設置された部位の温度が高くなる。したがって、直接冷却方式では、温度検知部5は、コイルエンド42を構成する部分の長さが最も短い固定子巻線4の相の出力線43に設置すると、各相の出力線43の中で最も温度の高い部位での温度を測定することができる。 In the case of the direct cooling method in which the stator 2 is directly cooled by the coolant supplied from the cooling pipe 16, the stator winding 4 of the coil end 42 is directly cooled by the coolant in contact with the coolant. The For this reason, the shorter the length of the stator winding 4 of the coil end 42, the smaller the amount of heat transferred from the stator winding 4 to the coolant (that is, the stator winding 4 cooled by the coolant). The temperature of the part where the temperature detection unit 5 of the output line 43 is installed increases. Therefore, in the direct cooling method, when the temperature detection unit 5 is installed on the output line 43 of the phase of the stator winding 4 having the shortest part constituting the coil end 42, the temperature detection unit 5 is included in the output line 43 of each phase. The temperature at the highest temperature part can be measured.
 なお、固定子2が複数の温度検知部5を備える構成の場合は、直接冷却方式では、複数の温度検知部5の1つを、コイルエンド42を構成する部分の長さが最も短い固定子巻線4の相の出力線43に設置すると、各相の出力線43の中で最も温度の高い部位での温度を測定することができる。 In the case where the stator 2 includes a plurality of temperature detection units 5, in the direct cooling method, one of the plurality of temperature detection units 5 is replaced with a stator having the shortest part constituting the coil end 42. When installed on the output line 43 of the phase of the winding 4, the temperature at the highest temperature portion of the output line 43 of each phase can be measured.
 なお、本発明は、上記の実施例に限定されるものではなく、様々な変形が可能である。例えば、上記の実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、本発明は、必ずしも説明した全ての構成を備える態様に限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能である。また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、削除したり、他の構成を追加・置換したりすることが可能である。 In addition, this invention is not limited to said Example, A various deformation | transformation is possible. For example, the above-described embodiments are described in detail for easy understanding of the present invention, and the present invention is not necessarily limited to an aspect including all the configurations described. In addition, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment. It is also possible to add the configuration of another embodiment to the configuration of one embodiment. In addition, it is possible to delete a part of the configuration of each embodiment or to add or replace another configuration.
 1…回転電機、2…固定子、3…回転子、4…固定子巻線、5…温度検知部、7…ワニス、10…ハウジング、11…フロントブラケット、12…リアブラケット、13…ターミナルボックス、14…ウォータージャケット、15…流路、16…冷却管、20…固定子鉄心、21…端子台、30A、30B…軸受、31…シャフト、41…インシュレータ、42…コイルエンド、43…出力線、43U…U相の出力線、43V…V相の出力線、43W…W相の出力線、44…中性点、45…出力端子、45U…U相の出力端子、45V…V相の出力端子、45W…W相の出力端子、51…信号線、52…マスキングテープ、61…固定子巻線の芯線部、62…固定子巻線の絶縁被膜、431…出力線の繋ぎ部、432…出力線の端子部。 DESCRIPTION OF SYMBOLS 1 ... Rotary electric machine, 2 ... Stator, 3 ... Rotor, 4 ... Stator winding, 5 ... Temperature detection part, 7 ... Varnish, 10 ... Housing, 11 ... Front bracket, 12 ... Rear bracket, 13 ... Terminal box , 14 ... Water jacket, 15 ... Flow path, 16 ... Cooling pipe, 20 ... Stator core, 21 ... Terminal block, 30A, 30B ... Bearing, 31 ... Shaft, 41 ... Insulator, 42 ... Coil end, 43 ... Output line , 43U ... U phase output line, 43V ... V phase output line, 43W ... W phase output line, 44 ... neutral point, 45 ... output terminal, 45U ... U phase output terminal, 45V ... V phase output Terminals, 45W ... W-phase output terminals, 51 ... signal wires, 52 ... masking tape, 61 ... core wire portion of the stator winding, 62 ... insulating coating of the stator winding, 431 ... connecting portion of the output wire, 432 ... Output line terminal.

Claims (9)

  1.  環状の固定子鉄心と、
     前記固定子鉄心に配置されており、前記固定子鉄心から突出したコイルエンドを構成する部分と前記コイルエンドから離れて延伸した部分とを有する固定子巻線と、
     前記固定子巻線の前記コイルエンドから離れて延伸した前記部分であり、端部に出力端子を備える出力線と、
     前記出力線に設置された温度検知部と、
    を備えることを特徴とする、回転電機の固定子。
    An annular stator core,
    A stator winding that is disposed on the stator core and has a portion constituting a coil end protruding from the stator core and a portion extending away from the coil end;
    The portion extending away from the coil end of the stator winding, an output line comprising an output terminal at the end; and
    A temperature detector installed in the output line;
    A stator for a rotating electrical machine, comprising:
  2.  前記固定子巻線は、第1相、第2相、及び第3相からなる三相の巻線であり、前記第1相の前記出力線、前記第2相の前記出力線、及び前記第3相の前記出力線を有し、
     前記温度検知部は、複数が備えられ、前記第1相の前記出力線、前記第2相の前記出力線、及び前記第3相の前記出力線のうちいずれか2つ以上に設置される、
    請求項1に記載の回転電機の固定子。
    The stator winding is a three-phase winding composed of a first phase, a second phase, and a third phase, the output line of the first phase, the output line of the second phase, and the first phase Having three-phase output lines,
    A plurality of the temperature detection units are provided, and are installed on any two or more of the output lines of the first phase, the output lines of the second phase, and the output lines of the third phase.
    The stator of the rotary electric machine according to claim 1.
  3.  前記出力線は、前記コイルエンドの前記固定子巻線に繋がる部分である繋ぎ部を有し、
     前記温度検知部は、前記出力線において、前記繋ぎ部よりも前記出力端子が備えられた前記端部に近い位置に設置される、
    請求項1又は2に記載の回転電機の固定子。
    The output line has a connecting portion that is a portion connected to the stator winding of the coil end,
    The temperature detection unit is installed in the output line at a position closer to the end portion where the output terminal is provided than the connection portion.
    The stator of the rotary electric machine according to claim 1 or 2.
  4.  前記出力線は、表面が絶縁被膜で覆われており、
     前記温度検知部は、前記出力線の前記絶縁被膜に設置される、
    請求項1から3のいずれか1項に記載の回転電機の固定子。
    The output line has a surface covered with an insulating film,
    The temperature detection unit is installed on the insulating film of the output line.
    The stator of the rotary electric machine according to any one of claims 1 to 3.
  5.  前記固定子鉄心を固定するハウジングに構成された、冷却液が流れる流路を備え、
     前記コイルエンドは、前記ハウジングからの熱伝達によって前記冷却液により冷却され、
     前記固定子巻線は、第1相、第2相、及び第3相からなる三相の巻線であり、前記第1相の前記出力線、前記第2相の前記出力線、及び前記第3相の前記出力線を有し、
     前記温度検知部は、前記第1相の前記出力線、前記第2相の前記出力線、及び前記第3相の前記出力線のうち、前記コイルエンドを構成する前記部分の長さと前記出力線の長さとの和が最も長い前記固定子巻線の相の前記出力線に設置される、
    請求項1に記載の回転電機の固定子。
    The housing is configured to fix the stator core, and includes a flow path through which a coolant flows.
    The coil end is cooled by the coolant by heat transfer from the housing,
    The stator winding is a three-phase winding composed of a first phase, a second phase, and a third phase, the output line of the first phase, the output line of the second phase, and the first phase Having three-phase output lines,
    The temperature detection unit includes the length of the portion constituting the coil end and the output line of the output line of the first phase, the output line of the second phase, and the output line of the third phase. Installed on the output line of the stator winding phase with the longest sum of
    The stator of the rotary electric machine according to claim 1.
  6.  前記固定子鉄心を固定するハウジングに構成された、冷却液が流れる流路を備え、
     前記コイルエンドは、前記ハウジングからの熱伝達によって前記冷却液により冷却され、
     複数の前記温度検知部の1つは、前記第1相の前記出力線、前記第2相の前記出力線、及び前記第3相の前記出力線のうち、前記コイルエンドを構成する前記部分の長さと前記出力線の長さとの和が最も長い前記固定子巻線の相の前記出力線に設置される、
    請求項2に記載の回転電機の固定子。
    The housing is configured to fix the stator core, and includes a flow path through which a coolant flows.
    The coil end is cooled by the coolant by heat transfer from the housing,
    One of the plurality of temperature detectors includes the first phase output line, the second phase output line, and the third phase output line of the portion constituting the coil end. The sum of the length and the length of the output line is installed on the output line of the phase of the stator winding that is the longest,
    The stator of the rotary electric machine according to claim 2.
  7.  前記コイルエンドに冷却液を供給する冷却管を備え、
     前記コイルエンドは、前記冷却液との接触により冷却され、
     前記固定子巻線は、第1相、第2相、及び第3相からなる三相の巻線であり、前記第1相の前記出力線、前記第2相の前記出力線、及び前記第3相の前記出力線を有し、
     前記温度検知部は、前記第1相の前記出力線、前記第2相の前記出力線、及び前記第3相の前記出力線のうち、前記コイルエンドを構成する前記部分の長さが最も短い前記固定子巻線の相の前記出力線に設置される、
    請求項1に記載の回転電機の固定子。
    A cooling pipe for supplying a cooling liquid to the coil end;
    The coil end is cooled by contact with the coolant,
    The stator winding is a three-phase winding composed of a first phase, a second phase, and a third phase, the output line of the first phase, the output line of the second phase, and the first phase Having three-phase output lines,
    The temperature detection unit has the shortest length of the portion constituting the coil end among the first-phase output line, the second-phase output line, and the third-phase output line. Installed on the output line of the stator winding phase,
    The stator of the rotary electric machine according to claim 1.
  8.  前記コイルエンドに冷却液を供給する冷却管を備え、
     前記コイルエンドは、前記冷却液との接触により冷却され、
     複数の前記温度検知部の1つは、前記第1相の前記出力線、前記第2相の前記出力線、及び前記第3相の前記出力線のうち、前記コイルエンドを構成する前記部分の長さが最も短い前記固定子巻線の相の前記出力線に設置される、
    請求項2に記載の回転電機の固定子。
    A cooling pipe for supplying a cooling liquid to the coil end;
    The coil end is cooled by contact with the coolant,
    One of the plurality of temperature detectors includes the first phase output line, the second phase output line, and the third phase output line of the portion constituting the coil end. Installed in the output line of the phase of the stator winding with the shortest length,
    The stator of the rotary electric machine according to claim 2.
  9.  請求項1から8のいずれか1項に記載の前記固定子を備えることを特徴とする回転電機。 A rotary electric machine comprising the stator according to any one of claims 1 to 8.
PCT/JP2017/045674 2017-01-16 2017-12-20 Stator for rotary electric machine, and rotary electric machine WO2018131408A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018561889A JPWO2018131408A1 (en) 2017-01-16 2017-12-20 Rotating electric machine stator and rotating electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-004908 2017-01-16
JP2017004908 2017-01-16

Publications (1)

Publication Number Publication Date
WO2018131408A1 true WO2018131408A1 (en) 2018-07-19

Family

ID=62839862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045674 WO2018131408A1 (en) 2017-01-16 2017-12-20 Stator for rotary electric machine, and rotary electric machine

Country Status (2)

Country Link
JP (1) JPWO2018131408A1 (en)
WO (1) WO2018131408A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113457939A (en) * 2020-03-30 2021-10-01 本田技研工业株式会社 Powder coating apparatus and powder coating method
TWI747593B (en) * 2020-11-05 2021-11-21 台達電子工業股份有限公司 Motor and hairpin stator thereof
CN114448117A (en) * 2020-11-05 2022-05-06 台达电子工业股份有限公司 Motor and hairpin-shaped wire stator thereof
US11768114B2 (en) 2019-10-25 2023-09-26 Proterial, Ltd. Temperature sensor, power distribution component having the same, and motor having power distribution component

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5574266U (en) * 1978-11-16 1980-05-22
JPS59122772U (en) * 1983-02-03 1984-08-18 三菱電機株式会社 Electric motor overheat protection device
JP2004023816A (en) * 2002-06-12 2004-01-22 Sumitomo Heavy Ind Ltd Cooling device for drive unit
JP2011030288A (en) * 2009-07-22 2011-02-10 Toyota Motor Corp Rotating electric machine
JP2014075909A (en) * 2012-10-04 2014-04-24 Honda Motor Co Ltd Rotary electric machine
JP2016111833A (en) * 2014-12-08 2016-06-20 日産自動車株式会社 Stator of rotary electric machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5574266U (en) * 1978-11-16 1980-05-22
JPS59122772U (en) * 1983-02-03 1984-08-18 三菱電機株式会社 Electric motor overheat protection device
JP2004023816A (en) * 2002-06-12 2004-01-22 Sumitomo Heavy Ind Ltd Cooling device for drive unit
JP2011030288A (en) * 2009-07-22 2011-02-10 Toyota Motor Corp Rotating electric machine
JP2014075909A (en) * 2012-10-04 2014-04-24 Honda Motor Co Ltd Rotary electric machine
JP2016111833A (en) * 2014-12-08 2016-06-20 日産自動車株式会社 Stator of rotary electric machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11768114B2 (en) 2019-10-25 2023-09-26 Proterial, Ltd. Temperature sensor, power distribution component having the same, and motor having power distribution component
CN113457939A (en) * 2020-03-30 2021-10-01 本田技研工业株式会社 Powder coating apparatus and powder coating method
CN113457939B (en) * 2020-03-30 2022-08-09 本田技研工业株式会社 Powder coating apparatus and powder coating method
TWI747593B (en) * 2020-11-05 2021-11-21 台達電子工業股份有限公司 Motor and hairpin stator thereof
CN114448117A (en) * 2020-11-05 2022-05-06 台达电子工业股份有限公司 Motor and hairpin-shaped wire stator thereof
CN114448117B (en) * 2020-11-05 2023-10-24 台达电子工业股份有限公司 Motor and hairpin conductor stator thereof

Also Published As

Publication number Publication date
JPWO2018131408A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
WO2018131408A1 (en) Stator for rotary electric machine, and rotary electric machine
US8022584B2 (en) Stator of a dynamoelectric machine equipped with temperature detection
US11336154B2 (en) Stator for an electric motor or generator
JP4628460B2 (en) Rotating electric machine and manufacturing method thereof
JP5626477B2 (en) Rotating electric machine
WO2014069191A1 (en) Dynamo-electric machine
JP6634400B2 (en) Rotating electric machine and stator used for it
JP6658366B2 (en) Rotating electric machine
JP6481353B2 (en) Rotating electric machine stator
JP6412144B2 (en) Insulation diagnostic system or rotating machine
CN113728536A (en) Electric machine
JP2019047661A (en) Rotary electric machine
JPH11234964A (en) Temperature detection structure for motor
JP5181246B2 (en) Resolver stator structure and resolver
WO2011128732A2 (en) Method of arranging temperature-sensing element, and motor
KR100952226B1 (en) Hybrid Measurement Sensor of Flux, Surge, and Temperature for On-line Condition Monitoring in Generator and Motor
WO2021205718A1 (en) Rotating electric machine stator and rotating electric machine
JP2016032317A (en) Rotary machine
JP7329653B1 (en) Stator and rotary electric machine using the same
WO2022244083A1 (en) Rotating electrical machine and method for manufacturing rotating electrical machine
JP2022144595A (en) Rotary electric machine
US20180109215A1 (en) Thermal fuse protection of a form coil generator of a wind power plant
CN113728535A (en) Electric machine
JPH04197060A (en) Electric rotating machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891219

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018561889

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891219

Country of ref document: EP

Kind code of ref document: A1