WO2018128484A1 - Separator for battery to which functional binder is applied, and electrochemical device applying same - Google Patents

Separator for battery to which functional binder is applied, and electrochemical device applying same Download PDF

Info

Publication number
WO2018128484A1
WO2018128484A1 PCT/KR2018/000309 KR2018000309W WO2018128484A1 WO 2018128484 A1 WO2018128484 A1 WO 2018128484A1 KR 2018000309 W KR2018000309 W KR 2018000309W WO 2018128484 A1 WO2018128484 A1 WO 2018128484A1
Authority
WO
WIPO (PCT)
Prior art keywords
binder
separator
battery
inorganic particles
substrate
Prior art date
Application number
PCT/KR2018/000309
Other languages
French (fr)
Korean (ko)
Inventor
남관우
윤수진
권혜진
김찬종
이제안
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/463,441 priority Critical patent/US11258135B2/en
Priority to CN201880003626.4A priority patent/CN109792020B/en
Priority to JP2019519709A priority patent/JP6824558B2/en
Priority to EP18736258.7A priority patent/EP3503256A4/en
Priority claimed from KR1020180001926A external-priority patent/KR102137533B1/en
Publication of WO2018128484A1 publication Critical patent/WO2018128484A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator to which a functional binder is applied, and more particularly, to a separator including an inorganic particle coated on one surface of a polyolefin substrate and a functional binder having improved properties, and an electrochemical device including the same.
  • 'SRS' Safety Reinforced Separator
  • 'SRS' is a surface coated with inorganic particles and a binder on a polyolefin-based substrate.
  • the pore structure of the inorganic particles and the binder increases the space for the liquid electrolyte to increase the lithium ion conductivity and the electrolyte impregnation rate, thereby improving the performance and stability of the electrochemical device using the separator.
  • Patent Document 1 describes an organic / inorganic composite porous separator and an electrochemical device using the same.
  • the adhesion properties of the binder-inorganic and substrate-binder to prevent the inorganic material from falling off the surface of the polyolefin substrate is very important.
  • binders are PVDF-based, and since the adhesive property of the binder is low, it is necessary to develop a new binder to improve stability.
  • PVDF-based binders have excellent adhesion with the positive electrode, but have a disadvantage of poor adhesion with the negative electrode using SBR (Styrene-Butadiene Rubber) binder.
  • SBR Styrene-Butadiene Rubber
  • the PVDF-based binder is hydrophobic, the wettability of the separator with respect to the electrolyte is not good, and thus the output of the battery is reduced.
  • the SRS has a problem that it cannot cope with the dissolution of the cathode material transition metal in the high temperature / high voltage state that can occur frequently in the driving of an electric vehicle.
  • Conventional binders do not adsorb the eluted transition metal, which causes a problem of deterioration of battery life characteristics.
  • Non-Patent Document 1 is to improve the commercial PP (Polypropylene) membrane wettability characteristics of a lithium ion battery, and has developed a surface coating method of dipping a PP substrate into tannic acid, a natural vegetable polyphenyl.
  • tannic acid containing a large number of hydroxyl groups may not be evenly distributed on the surface of PP, and coating may not have sufficient durability in manufacturing and charging and discharging electrochemical devices using the same.
  • Non-Patent Document 2 is for improving the wetting properties of a PP substrate used as a separator of a lithium ion battery, and describes a method of coating using pyrogallic acid.
  • Non-Patent Literature 2 Also, as in Non-Patent Literature 1, since pyrogallic acid has a poor physical and chemical affinity with hydrophobic PP, a uniform coating can be obtained in a short time, but in the manufacture and charging / discharging of an electrochemical device using the coating, It does not have sufficient durability and uniformity.
  • Non-Patent Documents 3 to 6 a binder having a self-healing function, such as a capsule-shaped binder for improving the characteristics of a negative electrode containing silicon, is introduced.
  • a binder having a self-healing function such as a capsule-shaped binder for improving the characteristics of a negative electrode containing silicon.
  • Patent Document 2 describes a technique for adding a binder film to the SRS outermost layer in order to improve the wettability of the separator.
  • the hydrophilicity is improved due to the film of the outermost layer, but there is a problem in that the access of the pores formed by the inorganic particles and the binder is limited and thus the performance and stability of the electrochemical device cannot be found.
  • Patent document 3 relates to a battery separator and a nonaqueous electrolyte battery using the same, wherein the battery separator includes a resin porous membrane having a thermoplastic resin as a main component and a multilayer porous membrane having a heat resistant porous layer containing heat resistant fine particles as a main component, wherein The thickness of a heat resistant porous layer is 1-15 micrometers, and the peeling strength in 180 degrees of the said resin porous film and the said heat resistant porous layer is 0.6 N / cm or more, It is related with the battery separator.
  • the binder of the present invention has an object that is never recognized in Patent Document 3, such as adhesion improvement, adsorption of a cathode material transition metal, and self-healing, and thus there is a large difference in the molecular structure of the binder.
  • the present invention is a binder containing a large number of -O and hydroxy (OH) functional groups in the molecule, while Patent Document 3 uses a polymer or water-soluble cellulose derivative of N-vinylacetamide and a crosslinked acrylic resin as a binder. There is a difference.
  • Patent Document 3 uses xanthan gum used as a binder in the present invention as a thickener.
  • the binder and the thickener are basically different in the amount used.
  • the composition ratio of a binder is 1.1 mass parts or more with respect to 100 mass parts of heat resistant fine particles
  • the composition ratio of a thickener uses 0.1 mass part or more with respect to 100 mass parts of heat resistant fine particles. Since the composition ratio is about 10 times the difference, it can be seen that the binder and the thickener are not mutually compatible.
  • this invention and patent document 3 have some similarities in using xanthan gum, since specific uses differ, it can be seen that patent document 3 does not grasp the technical characteristic of the binder used by this invention at all.
  • Non-Patent Document 7 is a review paper on natural materials used in an electrochemical energy storage device and describes that natural materials amylopectin, xanthan gum, and the like are used as binders. However, all of the binders of Non-Patent Document 7 differ in their use and function from those of the separator used in the present invention as binders of positive or negative electrodes. In particular, since the binder for the separator of the present invention has a completely different property from the material used in the anode or the cathode in that the separator contains an inorganic material, the technical field of the separator may be different.
  • the present invention is a separator comprising a porous polyolefin substrate, an organic-inorganic composite porous coating layer comprising a binder compound and inorganic particles formed on at least one surface of the substrate, while increasing the adhesive strength of the binder-inorganic, substrate-binder,
  • a self-healing function prevents internal short-circuit in advance and improves adhesion between the separator and the positive electrode and the negative electrode, and a functional binder capable of coping with dissolution of the positive electrode material transition metal and a battery separator including the same. It aims to provide.
  • the first aspect of the present invention for solving the above problems is (a) a polyolefin-based substrate; And (b) an active layer wherein at least one region selected from the group consisting of a surface of the substrate and a portion of the pores present in the substrate is coated with a mixture of inorganic particles and a binder, wherein the active layer is an inorganic material by a binder.
  • the separator for the battery is connected and fixed between the particles, the pore structure is formed due to the interstitial volume between the inorganic particles,
  • the binder provides a separator for a battery in which the proportion of hydroxy groups in each molecule is 10% by weight or more.
  • binder may be at least one or more of tannic acid, pyrogallic acid, amylose, amylopectin, xanthan gum, or 1) at least one or more of tannic acid, pyrogallic acid, amylose, amylopectin and xanthan gum.
  • the inorganic particles may be at least one selected from the group consisting of inorganic particles having a dielectric constant of 5 or more, inorganic particles having piezoelectricity, and inorganic particles having lithium ion transfer ability.
  • the inorganic particles having a dielectric constant of 5 or more are SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , TiO 2 or SiC;
  • the inorganic particles having piezoelectricity are BaTiO 3 , Pb (Zr, Ti) O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT), PB (Mg 3 Nb 2 / 3 ) O 3 -PbTiO 3 (PMN-PT) or hafnia (HfO 2 );
  • the inorganic particles having the lithium ion transfer ability are lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), lithium aluminum titanium phosphate (Li x Al
  • the inorganic particles may include at least one of Al 2 O 3 , AlOOH, and Mg (OH) 2 .
  • the polyolefin-based substrate may be at least one selected from the group consisting of high density polyethylene, low density polyethylene, linear low density polyethylene, ultra high molecular weight polyethylene, and polypropylene.
  • a second aspect according to the present invention comprises the steps of 1) dissolving a binder in a solvent to prepare a binder solution; 2) adding and mixing the inorganic particles to the binder solution of step 1); 3) A method of manufacturing a battery separator comprising coating and drying at least one region selected from the group consisting of a surface of a polyolefin-based substrate and a part of pores in the substrate with the solution of step 2).
  • a method for manufacturing a battery separator according to the present invention wherein the proportion of hydroxyl groups in the molecule is 10% by weight or more.
  • the solvent has a mixed weight ratio of water and acetone of 100: 0 to 0: 100, preferably 95: 5 to 0: 100, more preferably 75:25 to 0: 100, even more preferably 60:40 to 0: 100. Even more preferably 50:50 to 0: 100.
  • the most preferred range is 40:60 to 0: 100.
  • the optimal ratio according to an embodiment of the present invention is 75:25.
  • an electrochemical device including the battery separator of the present invention.
  • the electrochemical device may be a lithium secondary battery.
  • FIG. 1 illustrates a unit structure of Amylose, which is an embodiment of the binder of the present invention.
  • Figure 2 shows the unit structure of Amylopectin (Amylopectin) which is one embodiment of the binder of the present invention.
  • FIG 3 shows a unit structure of Xanthan Gum, which is one embodiment of the binder of the present invention.
  • FIG. 4 illustrates hydrogen bonding between an electrode and a separator when tannic acid is used as a binder according to an embodiment of the present invention.
  • Figure 5 is an illustration for the improvement of the wettability according to the use of tannic acid according to an embodiment of the present invention.
  • FIG. 6 is an illustration of the adsorption mechanism for the cathode material transition metal by hydrogen bonding.
  • Figure 9 conceptually shows the self-healing function according to the application of the binder of the present invention.
  • 11 is a measure of the physical properties of the separator according to the concentration of acetone according to an embodiment of the present invention.
  • the present invention not only exhibits excellent thermal safety, electrochemical stability, excellent lithium ion conductivity, electrolyte impregnation rate, self-healing function, etc., compared with the polyolefin-based separators used as conventional battery separators, but also contains a large amount of hydrophilic functional groups.
  • the present invention provides a battery separator and a method of manufacturing the same, in which a binding force of the battery-separation membrane is improved and a functional binder capable of adsorbing a transition metal eluted from the positive electrode is applied.
  • the present invention (a) a polyolefin-based substrate; And (b) an active layer wherein at least one region selected from the group consisting of a surface of the substrate and a portion of the pores present in the substrate is coated with a mixture of inorganic particles and a binder, wherein the active layer is an inorganic material by a binder.
  • the separator for the battery is connected and fixed between the particles, the pore structure is formed due to the interstitial volume between the inorganic particles,
  • the binder provides a separator for a battery in which the proportion of hydroxy groups in each molecule is 10% by weight or more.
  • the proportion of hydroxy groups in each molecule is preferably 12 wt% or more and 50 wt% or less, more preferably 15 wt% or more and 45 wt% or less, even more preferably 18 wt% or more and 40 wt% or less, even more preferably Preferably it is 18 weight% or more and 38 weight% or less.
  • the weight ratio of the hydroxy group is less than 10% by weight, the hydrogen bonding functional group of the binder is not sufficient, and thus the desired function in the present invention is not sufficiently realized.
  • the weight ratio of the hydroxy group is more than 50% by weight, there may be a problem that the movement of the electrolyte is limited due to the strong hydrogen bond.
  • binder may be at least one or more of tannic acid, pyrogallic acid, amylose, amylopectin, xanthan gum, or 1) at least one or more of tannic acid, pyrogallic acid, amylose, amylopectin and xanthan gum.
  • polyvinylidene fluoride-co-hexafluoropropylene polyvinylidene fluoride-co-trichloroethylene
  • polymethylmethacryl Polymethylmethacrylate polyacrylonitrile
  • polyvinylpyrrolidone polyvinylacetate
  • ethylene vinyl acetate copolymer polyethylene oxide
  • Cellulose acetate, cellulose acetate butyrate Cellulose acetate propionate
  • cyanoethylpullulan cyanoethylpolyvinylalcohol
  • cyanoethylcellulose cyanoethylsucrose
  • pullulan It may be a mixture with a mixture comprising at least one of pullulan, carboxyl methyl cellulose, acrylonitrilestyrene-butadiene copolymer, polyimide.
  • amylose see FIG. 1
  • amylopectin see FIG. 2
  • xanthan gum see FIG. 3
  • tannic acid see FIG. 4
  • OH occupies 18%, 25%, and 32% in each of amylose, amylopectin and xanthan gum. It can be seen that the specific gravity of all the hydroxy (OH) groups is 10% by weight or more and can generate strong hydrogen bonds.
  • an OH group is excluded and carboxyl (COOH) is excluded.
  • the binder according to the present invention has an advantage of excellent bonding strength for both the positive electrode and the negative electrode by the hydrophilic functional group.
  • the binding relationship in the molecular unit about this is shown typically in FIG.
  • the conventional PE substrate has a poor affinity for water as a hydrophobic material, but it can be seen that the result of applying the tannin acid as the binder according to the present invention changes to hydrophilicity (see FIG. 5).
  • Figure 6 shows an example of the adsorption mechanism for the positive electrode material transition metal by the binder containing a hydrophilic group according to the present invention.
  • FIG. 8 The conceptual diagram of the separator according to the present invention is shown in FIG.
  • Conventional binders do not have a large attractive force between the binder ends or the middle, but the binder according to the present invention maintains strong hydrogen bonds due to -O / -OH groups.
  • Triangle in FIG. 8 means a hydroxy group or a hydrophilic group.
  • Circle means inorganic particles.
  • Example 1 Preparation of a separator for a lithium ion battery to which a functional binder is applied.
  • PVdF-CTFE Polyvinylidene fluoride-chlorotrifluoroethylene copolymer
  • BaTiO 3 particle diameter of the slurry thus prepared may be controlled according to the size (particle size) of the beads used in the ball mill method and the application time of the ball mill method, but in Example 1, the slurry was pulverized to about 400 nm.
  • the slurry thus prepared was coated on a polyethylene separator (porosity 45%) having a thickness of about 18 ⁇ m by using a dip coating method, and the coating thickness was adjusted to about 3 ⁇ m.
  • the pore size and porosity in the active layer coated on the polyethylene separator were 0.5 ⁇ m and 58%, respectively, as measured by a porosimeter.
  • Example 2 was prepared by changing the weight ratio of the binder and the inorganic material to 15:85 in the coating composition.
  • Comparative Example 1 was prepared under the same conditions as in Example 2, but did not use tannic acid in the binder. Comparative Examples 1 and 2 were coated with a thickness of 5 ⁇ m and 3 ⁇ m, respectively.
  • Example 2 according to the present invention showed excellent physical properties compared to the conventional separation membrane (Comparative Example 1) does not contain tannic acid.
  • Comparative Example 1 exhibited poor heat shrinkage properties compared to Example 2, although the thickness of the coating was thicker.
  • MD is a machine direction and TD is a transverse direction, respectively, and shows the length of a horizontal direction and a vertical direction, respectively.
  • Numerical values at the top of each table indicate the MD / TD shrinkage percentage (%) before and after heat shrink.
  • Examples 3, 4 and 5 were prepared in the same manner as in Example 1.
  • the inorganic particles alumina and boehmite were used in a 85:15 weight ratio, and a mixing ratio of the inorganic material and the binder was 75:25 weight ratio.
  • a binder a binder containing PVdF-HFP: PVdF-CTFE: hydroxy group was prepared in a 22: 1: 2 weight ratio, and the solvent was 100% acetone.
  • Xanthan gum, tannic acid, and amylose were used as the hydroxyl group-containing binder, respectively.
  • PP was used for the polyolefin substrate.
  • the fabric means a polyolefin substrate.
  • the weight ratio of the hydroxyl group in the binder was increased, the adhesion between the substrate and the inorganic coating layer was increased, and the ionic conductivity was also increased.
  • the electrical resistance of the separator did not appear to change significantly.
  • the separator / fabric interface adhesion strength is a measure of the separation strength of the inorganic coating layer and the substrate when the substrate is separated after adhering the inorganic coating layer of the SRS to the remaining surface of the double-sided tape after attaching the double-sided tape on the glass surface
  • Separator / electrode interface adhesion is a measure of the separation strength of the electrode and the SRS when the substrate is separated after adhering the electrode to the other side of the double-sided tape after attaching the double-sided tape on the glass surface.
  • ER and ionic conductivity were measured by the conventional method, and the membrane Gurely was measured for air permeability, and the air permeability was measured using Toyoseiki's Gurley type Densometer (No. 158) according to Japanese Industrial Standard Gurley measurement method. Measured.
  • air permeability refers to the time (in seconds) that 100 cc of air passes through a 1 inch square membrane under constant air pressure of 4.8 inches.
  • Examples 6, 7, 8, 9, and 10 prepared a separator by the same method as in Example 3. At this time, tannic acid was used as the binder having a hydroxyl group. In the preparation of the solvent, the weight ratio of water and acetone was 100: 0, 95: 5, 50:50, 25:75, and 0: 100, respectively. The change in physical properties according to the weight ratio of water and acetone, respectively, is shown in FIG. 11.
  • the ratio of water and acetone was 25:75.
  • the ratio of water and acetone was in the range of 50:50 or more and 0: 100.
  • the optimum point may be changed by the proportion of hydroxy groups in the binder, and considering the ratio of hydroxy groups according to the present invention, from 60:40 to It can be extended to 0: 100.
  • the present invention is a separator comprising a porous polyolefin substrate, an organic-inorganic composite porous coating layer comprising a binder compound and inorganic particles formed on at least one surface of the substrate, while increasing the adhesive strength of the binder-inorganic, substrate-binder, Self-healing function prevents internal short circuits in advance for some damage to the separator, improves the adhesion between the separator and the anode and the cathode, and can cope with the elution of the transition material of the cathode material.

Abstract

The present invention relates to: a functional binder in a separator that comprises a porous polyolefin substrate and an organic-inorganic composite porous coating layer which includes a mixture of a binder compound with inorganic particles formed on at least one surface of the substrate; and a separator comprising the same, wherein the functional binder can increase adhesion between a binder and an inorganic material and between a substrate and a binder while pre-empting an internal short-circuit through a self-healing function for partial damage of the separator, improve adhesion of the separator to a cathode and an anode, and respond to elution of a cathode material transition metal. In the binder according to the present invention, the proportion of the hydroxyl group in each molecule is 10% by weight or more.

Description

기능성 바인더가 적용된 전지용 분리막 및 이를 적용한 전기화학 소자Separator for battery with functional binder and electrochemical device
본원 발명은 기능성 바인더가 적용된 분리막에 관한 것으로서, 구체적으로 폴리올레핀 기재의 일면에 코팅된 무기물 입자와 특성을 개선한 기능성 바인더를 포함하는 분리막 및 이를 포함하는 전기화학 소자에 관한 것이다.The present invention relates to a separator to which a functional binder is applied, and more particularly, to a separator including an inorganic particle coated on one surface of a polyolefin substrate and a functional binder having improved properties, and an electrochemical device including the same.
전지용 분리막, 특히 리튬이온 이차전지용 분리막의 안정성을 높이기 위한 연구가 많이 진행되고 있다. 현재 양산중인 안전 강화 분리막(Safety Reinforced Separator, 이하 'SRS')은 폴리올레핀 계열 기재에 무기물 입자와 바인더가 표면에 코팅된 것이다. 무기물 입자와 바인더에 의한 기공 구조로 인해 액체 전해액이 들어갈 공간이 증가하여 리튬이온 전도도 및 전해액 함침율이 높아지며 이를 통해 상기 분리막을 사용하는 전기화학 소자의 성능 및 안정성을 동시에 향상시킬 수 있는 장점이 있다. 특허문헌 1에는 이와 관련된 유/무기 복합 다공성 분리막 및 이를 이용한 전기화학 소자가 기재되어 있다.A lot of research has been conducted to increase the stability of the separator for batteries, in particular the separator for lithium ion secondary batteries. Currently in production, Safety Reinforced Separator (hereinafter referred to as 'SRS') is a surface coated with inorganic particles and a binder on a polyolefin-based substrate. The pore structure of the inorganic particles and the binder increases the space for the liquid electrolyte to increase the lithium ion conductivity and the electrolyte impregnation rate, thereby improving the performance and stability of the electrochemical device using the separator. . Patent Document 1 describes an organic / inorganic composite porous separator and an electrochemical device using the same.
SRS의 안정성을 유지하기 위해서는 무기물이 폴리올레핀 기재 표면에서 떨어지지 않게 하기 위한 바인더-무기물, 기재-바인더의 접착력 특성이 매우 중요하다. 현재 사용하고 있는 바인더는 PVDF 계열로서 바인더의 접착력 특성이 낮기 때문에 안정성 향상을 위한 새로운 바인더의 개발이 필요하다.In order to maintain the stability of the SRS, the adhesion properties of the binder-inorganic and substrate-binder to prevent the inorganic material from falling off the surface of the polyolefin substrate is very important. Currently used binders are PVDF-based, and since the adhesive property of the binder is low, it is necessary to develop a new binder to improve stability.
PVDF 계열의 바인더는 양극과의 접착력은 우수하나, SBR(Styrene-Butadiene Rubber) 계열 바인더를 사용하고 있는 음극과는 접착력이 떨어지는 단점이 있다. 또한, PVDF 계열의 바인더는 소수성이므로 전해액에 대한 분리막의 젖음 특성이 좋지 않아 전지의 출력을 저하하는 문제점이 있다.PVDF-based binders have excellent adhesion with the positive electrode, but have a disadvantage of poor adhesion with the negative electrode using SBR (Styrene-Butadiene Rubber) binder. In addition, since the PVDF-based binder is hydrophobic, the wettability of the separator with respect to the electrolyte is not good, and thus the output of the battery is reduced.
현재 SRS는 전기 자동차의 운전 등에서 자주 발생할 수 있는 고온/고전압 상태의 양극재 전이금속 용출에도 대응하지 못한다는 문제점이 있다. 종래의 바인더는 용출되는 전이금속을 흡착시키지 못해 전지의 수명특성이 저하되는 문제점이 있다.At present, the SRS has a problem that it cannot cope with the dissolution of the cathode material transition metal in the high temperature / high voltage state that can occur frequently in the driving of an electric vehicle. Conventional binders do not adsorb the eluted transition metal, which causes a problem of deterioration of battery life characteristics.
또한 열과 압력 등에 의한 분리막 손상이 비가역적이므로 한번 손상된 분리막에 의한 전지의 출력 저하 및 안전성 문제는 회복이 불가능하다는 문제점도 있다.In addition, since the damage of the separator due to heat and pressure is irreversible, there is a problem in that the output reduction and the safety problem of the battery due to the damaged membrane once cannot be recovered.
분리막의 특성을 개선하기 위해서 친수성기를 포함하는 화합물을 도입하기 위한 다양한 시도가 이루어지고 있다. 비특허문헌 1은 리튬이온 전지의 상용PP(Polypropylene) 분리막 젖음 특성을 개선하기 위한 것으로서, PP 기재를 천연 식물성 폴리페닐인 탄닌산에 담그는 표면 코팅법을 개발하였다. 그러나 PP의 표면은 소수성이므로 히드록시기를 많이 포함하고 있는 탄닌산이 PP 표면에 골고루 분포하지 못할 뿐만 아니라 이를 이용한 전기화학 소자의 제조 및 충방전에서 코팅이 충분한 내구성을 갖지 못하는 단점이 있다.Various attempts have been made to introduce compounds containing hydrophilic groups in order to improve the properties of the separator. Non-Patent Document 1 is to improve the commercial PP (Polypropylene) membrane wettability characteristics of a lithium ion battery, and has developed a surface coating method of dipping a PP substrate into tannic acid, a natural vegetable polyphenyl. However, since the surface of PP is hydrophobic, tannic acid containing a large number of hydroxyl groups may not be evenly distributed on the surface of PP, and coating may not have sufficient durability in manufacturing and charging and discharging electrochemical devices using the same.
비특허문헌 2는 리튬이온 전지의 분리막으로 사용되는 PP 기재의 젖음 특성을 개선하기 위한 것으로서, 파이로갈릭산(Pyrogallic acid)을 사용하여 코팅하는 방법이 기재되어 있다. 비특허문헌 2 또한 비특허문헌 1과 같이 파이로갈릭산이 소수성인 PP와의 물리화학적 친화성이 떨어지기 때문에 단기간에는 균일한 코팅을 얻을 수 있으나, 이를 이용한 전기화학 소자의 제조 및 충방전에 있어서는 코팅이 충분한 내구성 및 균일성을 갖지 못한다.Non-Patent Document 2 is for improving the wetting properties of a PP substrate used as a separator of a lithium ion battery, and describes a method of coating using pyrogallic acid. Non-Patent Literature 2 Also, as in Non-Patent Literature 1, since pyrogallic acid has a poor physical and chemical affinity with hydrophobic PP, a uniform coating can be obtained in a short time, but in the manufacture and charging / discharging of an electrochemical device using the coating, It does not have sufficient durability and uniformity.
비특허문헌 3 내지 6에 실리콘을 포함하는 음극의 특성을 개선하기 위한 캡슐형태의 바인더 등 자기치유기능을 가진 바인더가 소개되어 있다. 용량이 높은 실리콘 음극을 사용하는 경우, 종래의 PVDF 등이 실리콘과의 결합이 약하기 때문에 이를 개선하기 위해서 새로운 바인더를 개발한 것으로서 현재의 SRS 바인더에는 바로 적용하기 어려운 문제점이 있다.In Non-Patent Documents 3 to 6, a binder having a self-healing function, such as a capsule-shaped binder for improving the characteristics of a negative electrode containing silicon, is introduced. In the case of using a high-capacity silicon cathode, since a conventional PVDF is weakly bonded to silicon, a new binder has been developed to improve this problem, which is difficult to apply to a current SRS binder.
분리막의 젖음 특성을 개선하기 위해서 SRS 최외각층에 바인더 필름을 부가하는 기술이 특허문헌 2에 기재되어 있다. 최외각층의 필름으로 인해서 친수성은 개선되었으나, 무기물 입자 및 바인더에 의해 형성된 기공의 접근에 제한이 생겨 전기화학 소자의 성능 및 안정성의 개선을 찾아볼 수 없는 문제점이 있다.Patent Document 2 describes a technique for adding a binder film to the SRS outermost layer in order to improve the wettability of the separator. The hydrophilicity is improved due to the film of the outermost layer, but there is a problem in that the access of the pores formed by the inorganic particles and the binder is limited and thus the performance and stability of the electrochemical device cannot be found.
특허문헌 3은 전지용 분리막 및 그것을 이용한 비수 전해액 전지에 관한 것으로서, 열가소성 수지를 주성분으로 하는 수지 다공질막과, 내열성 미립자를 주성분으로서 포함하는 내열 다공질층을 가지는 다층 다공질막으로 이루어지는 전지용 분리막에 있어서, 상기 내열 다공질층의 두께가, 1∼15㎛이고, 상기 수지 다공질막과 상기 내열 다공질층의 180°에서의 박리 강도가, 0.6N/㎝ 이상인 것을 특징으로 하는 전지용 분리막에 관한 것이다. Patent document 3 relates to a battery separator and a nonaqueous electrolyte battery using the same, wherein the battery separator includes a resin porous membrane having a thermoplastic resin as a main component and a multilayer porous membrane having a heat resistant porous layer containing heat resistant fine particles as a main component, wherein The thickness of a heat resistant porous layer is 1-15 micrometers, and the peeling strength in 180 degrees of the said resin porous film and the said heat resistant porous layer is 0.6 N / cm or more, It is related with the battery separator.
본원 발명과 특허문헌 3은 모두 열적 안전성을 향상시킨 리튬 이차전지의 분리막에 관한 점에 공통점이 있다. 그러나 본원 발명의 바인더는 열적 안정성 이외에도 접착력 향상, 양극재 전이금속의 흡착, 자가 치유 등 특허문헌 3에서는 결코 인식하지 못하는 목적이 있으며, 이로 인해서 바인더의 분자구조에 큰 차이가 있다. 본원 발명은 분자 내에 -O 및 히드록시(OH) 작용기를 다수 포함하고 있는 바인더인 반면, 특허문헌 3은 바인더로서 N-비닐아세트아미드의 중합체 또는 수용성 셀룰로스 유도체, 및 가교 아크릴수지를 사용하고 있는 점에서 차이가 있다.Both this invention and patent document 3 have a common point regarding the separator of the lithium secondary battery which improved thermal safety. However, in addition to thermal stability, the binder of the present invention has an object that is never recognized in Patent Document 3, such as adhesion improvement, adsorption of a cathode material transition metal, and self-healing, and thus there is a large difference in the molecular structure of the binder. The present invention is a binder containing a large number of -O and hydroxy (OH) functional groups in the molecule, while Patent Document 3 uses a polymer or water-soluble cellulose derivative of N-vinylacetamide and a crosslinked acrylic resin as a binder. There is a difference.
한편, 특허문헌 3은 본원 발명에서 바인더로 사용하고 있는 잔탄검을 증점제로 사용하고 있다. 바인더와 증점제는 기본적으로 사용하고 있는 양에서 차이가 크다. 특허문헌 3에서 바인더의 조성비는 내열성 미립자 100질량부에 대하여 1.1질량부 이상인 반면 증점제의 조성비는 내열성 미립자 100질량부에 대하여 0.1질량부 이상을 사용하고 있다. 조성비가 10배 가량이 차이가 있는바, 바인더와 증점제가 서로 상호 호환 가능한 것이 아님을 알 수 있다. 본원 발명과 특허문헌 3은 잔탄검을 사용하는 점에서 일부 유사성이 있지만 구체적인 용도가 다르므로 특허문헌 3에서는 본원 발명에서 사용하고 있는 바인더의 기술적 특징을 전혀 파악하지 못하고 있다고 볼 수 있다.On the other hand, Patent Document 3 uses xanthan gum used as a binder in the present invention as a thickener. The binder and the thickener are basically different in the amount used. In patent document 3, the composition ratio of a binder is 1.1 mass parts or more with respect to 100 mass parts of heat resistant fine particles, and the composition ratio of a thickener uses 0.1 mass part or more with respect to 100 mass parts of heat resistant fine particles. Since the composition ratio is about 10 times the difference, it can be seen that the binder and the thickener are not mutually compatible. Although this invention and patent document 3 have some similarities in using xanthan gum, since specific uses differ, it can be seen that patent document 3 does not grasp the technical characteristic of the binder used by this invention at all.
비특허문헌 7은 전기화학 에너지 저장 장치에서 사용되는 천연 물질에 대한 리뷰 논문으로서 천연물질인 아밀로펙틴, 잔탄검 등이 바인더로는 사용되고 있다는 점이 기재되어 있다. 그러나 비특허문헌 7의 바인더는 모두 양극 또는 음극의 바인더로서 본원 발명에서 사용하고 있는 분리막의 바인더와는 그 용도 및 기능이 다르다. 특히 본원 발명의 분리막용 바인더는 분리막이 무기물을 포함하고 있는 점에서 양극 또는 음극에서 사용하는 물질과는 전혀 다른 성질을 가지고 있으므로 세부기술분야가 상이하다고 볼 수 있다.Non-Patent Document 7 is a review paper on natural materials used in an electrochemical energy storage device and describes that natural materials amylopectin, xanthan gum, and the like are used as binders. However, all of the binders of Non-Patent Document 7 differ in their use and function from those of the separator used in the present invention as binders of positive or negative electrodes. In particular, since the binder for the separator of the present invention has a completely different property from the material used in the anode or the cathode in that the separator contains an inorganic material, the technical field of the separator may be different.
이상과 같이 무기물 입자를 포함하고 있는 SRS 분리막의 열적 안정성을 유지하기 위해서 바인더-무기물, 기재-바인더의 접착력을 높이면서, 동시에 분리막의 일부 손상에 대해서 자기치유기능을 통해서 내부 단락을 미연에 방지하고, 분리막과 양극 및 음극과의 접착력을 향상시키며, 양극재 전이금속의 용출에 대응할 수 있는 기술에 대해서 현재까지 뚜렷한 해결책이 제시된 바가 없다.As mentioned above, in order to maintain thermal stability of the SRS separator containing inorganic particles, the adhesive force of the binder-inorganic material and the substrate-binder is increased, and at the same time, the internal short circuit is prevented through self-healing function against some damage of the separator. In order to improve the adhesion between the separator and the anode and the cathode, and to cope with the elution of the transition material of the cathode material, no clear solution has been proposed.
대한민국 등록특허공보 제10-0775310호.Republic of Korea Patent Publication No. 10-0775310.
대한민국 등록특허공보 제10-1535198호.Republic of Korea Patent Publication No. 10-1535198.
대한민국 공개특허공보 제2011-0031998호Republic of Korea Patent Publication No. 2011-0031998
Lei Pan et al., "Tannic-Acid-Coated Polypropylene Membrane as a Separator for Lithium-Ion Batteries", ACS Appl. Mater. Interfaces, 7(29), 16003-16010(2015).Lei Pan et al., "Tannic-Acid-Coated Polypropylene Membrane as a Separator for Lithium-Ion Batteries", ACS Appl. Mater. Interfaces, 7 (29), 16003-16010 (2015).
Haibin Wang et al., "Pyrogallic acid coated polypropylene membranes as separators for lithium-ion batteries", J. Mater. Chem. A, 3, 20535-20540 (2015).Haibin Wang et al., "Pyrogallic acid coated polypropylene membranes as separators for lithium-ion batteries", J. Mater. Chem. A, 3, 20535-20540 (2015).
S.R. White et al., "Autonomic healing of polymer composites", Nature, 409, 794-797 (2001).S.R. White et al., "Autonomic healing of polymer composites", Nature, 409, 794-797 (2001).
Benjamin C-K Tee et al., "Pressure and flexionsensitive electronic skin with repeatable ambient self-healing capability", Nature nanotechnology, 7, 825 (2012).Benjamin C-K Tee et al., "Pressure and flexionsensitive electronic skin with repeatable ambient self-healing capability", Nature nanotechnology, 7, 825 (2012).
Chao Want et al., "Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries", Nature Chemistry, 5, 1042-1048 (2013).Chao Want et al., "Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries", Nature Chemistry, 5, 1042-1048 (2013).
You Kyeong Jeong et al., "Millipede-inspired Structural Design Principles for High Performance Polysaccharide Binders in Silicon Anodes", Energy & Environmental Science, 8 1224 (2015).You Kyeong Jeong et al., "Millipede-inspired Structural Design Principles for High Performance Polysaccharide Binders in Silicon Anodes", Energy & Environmental Science, 8 1224 (2015).
Hua Wang et al., "Nature-Inspired Electrochemical Energy-Storage Materials and Devices", Adv. Energy Materials 1601709 (2016).Hua Wang et al., “Nature-Inspired Electrochemical Energy-Storage Materials and Devices”, Adv. Energy Materials 1601709 (2016).
본원 발명은 다공성 폴리올레핀 기재, 상기 기재의 적어도 일면에 형성된 무기물 입자들과 바인더 화합물을 포함하는 유기-무기 복합 다공성 코팅층을 포함하는 분리막에 있어서, 바인더-무기물, 기재-바인더의 접착력을 높이면서, 동시에 분리막의 일부 손상에 대해서 자기치유기능을 통해서 내부 단락을 미연에 방지하고, 분리막과 양극 및 음극과의 접착력을 향상시키며, 양극재 전이금속의 용출에 대응할 수 있는 기능성 바인더 및 이를 포함하는 전지용 분리막을 제공하는 것을 목적으로 한다.The present invention is a separator comprising a porous polyolefin substrate, an organic-inorganic composite porous coating layer comprising a binder compound and inorganic particles formed on at least one surface of the substrate, while increasing the adhesive strength of the binder-inorganic, substrate-binder, A self-healing function prevents internal short-circuit in advance and improves adhesion between the separator and the positive electrode and the negative electrode, and a functional binder capable of coping with dissolution of the positive electrode material transition metal and a battery separator including the same. It aims to provide.
상기와 같은 문제점을 해결하기 위한 본원 발명의 제1양태는 (a) 폴리올레핀 계열 기재; 및 (b) 상기 기재의 표면 및 상기 기재에 존재하는 기공부 일부로 구성된 군으로부터 선택된 1종 이상의 영역이 무기물 입자 및 바인더의 혼합물로 코팅된 활성층을 포함하는 전지용 분리막으로서, 상기 활성층은 바인더에 의해 무기물 입자 사이가 연결 및 고정되고, 무기물 입자들간의 빈 공간(interstitial volume)으로 인해 기공 구조가 형성된 전지용 분리막에 있어서,The first aspect of the present invention for solving the above problems is (a) a polyolefin-based substrate; And (b) an active layer wherein at least one region selected from the group consisting of a surface of the substrate and a portion of the pores present in the substrate is coated with a mixture of inorganic particles and a binder, wherein the active layer is an inorganic material by a binder. In the separator for the battery is connected and fixed between the particles, the pore structure is formed due to the interstitial volume between the inorganic particles,
상기 바인더는 각 분자에서 히드록시기가 차지하는 비율이 10중량% 이상인 전지용 분리막을 제공한다.The binder provides a separator for a battery in which the proportion of hydroxy groups in each molecule is 10% by weight or more.
상기 바인더의 구체적인 예로는 탄닌산, 파이로갈릭산, 아밀로즈, 아밀로펙틴, 잔탄검 중 적어도 하나 이상일 수 있거나, 1) 탄닌산, 파이로갈릭산, 아밀로즈, 아밀로펙틴, 잔탄검 중 적어도 하나 이상을 포함하는 혼합물과 2) 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose), 아크리로니트릴스티렌부타디엔 공중합체 (acrylonitrilestyrene-butadiene copolymer), 폴리이미드(polyimide) 중 적어도 하나 이상을 포함하는 혼합물과의 혼합물일 수 있다.Specific examples of the binder may be at least one or more of tannic acid, pyrogallic acid, amylose, amylopectin, xanthan gum, or 1) at least one or more of tannic acid, pyrogallic acid, amylose, amylopectin and xanthan gum. 2) polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-co-trichloroethylene, polymethyl methacrylate (polyvinylidene fluoride-co-hexafluoropropylene) polymethylmethacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, ethylene vinyl acetate copolymer, polyethylene oxide, cellulose acetate cellulose acetate, cellulose acetate butyrate, cellulite Cellulose acetate propionate, cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan ), A mixture with carboxyl methyl cellulose, a mixture containing at least one of acrylonitrilestyrene-butadiene copolymer and polyimide.
상기 무기물 입자는 유전율 상수가 5 이상인 무기물 입자, 압전성(piezoelectricity)을 갖는 무기물 입자, 및 리튬이온 전달 능력을 갖는 무기물 입자로 구성된 군으로부터 선택된 1종 이상일 수 있다.The inorganic particles may be at least one selected from the group consisting of inorganic particles having a dielectric constant of 5 or more, inorganic particles having piezoelectricity, and inorganic particles having lithium ion transfer ability.
상기 유전율 상수가 5 이상인 무기물 입자는 SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, TiO2 또는 SiC이며; 상기 압전성(piezoelectricity)을 갖는 무기물 입자는 BaTiO3, Pb(Zr,Ti)O3 (PZT), Pb1-xLaxZr1-yTiyO3(PLZT), PB(Mg3Nb2/3)O3-PbTiO3(PMN-PT) 또는 hafnia(HfO2)이고; 상기 리튬이온 전달 능력을 갖는 무기물 입자는 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0<x <2, 0<y<3), 리튬알루미늄티타늄포스페이트(LixAlyTiz(PO4)3, 0<x<2, 0<y<1, 0<z<3), (LiAlTiP)xOy 계열 글라스(glass)(0<x<4, 0<y<13), 리튬란탄티타네이트(LixLayTiO3, 0<x<2, 0<y<3), 리튬게르마니움티오포스페이트(LixGeyPzSw, 0<x<4, 0<y<1, 0<z<1, 0<w<5), 리튬나이트라이드(LixNy, 0<x<4, 0<y<2), SiS2(LixSiySz, 0<x<3, 0<y<2, 0<z<4) 계열 글라스(glass) 또는 P2S5(LixPySz, 0<x<3, 0<y<3, 0<z<7) 계열 글라스(glass)이다.The inorganic particles having a dielectric constant of 5 or more are SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , TiO 2 or SiC; The inorganic particles having piezoelectricity are BaTiO 3 , Pb (Zr, Ti) O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT), PB (Mg 3 Nb 2 / 3 ) O 3 -PbTiO 3 (PMN-PT) or hafnia (HfO 2 ); The inorganic particles having the lithium ion transfer ability are lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 <x <2, 0 <y <3), lithium aluminum titanium phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 <x <2, 0 <y <1, 0 <z <3), (LiAlTiP) x O y series glass (0 <x <4, 0 <y <13), lithium lanthanum titanate (Li x La y TiO 3 , 0 <x <2, 0 <y <3), lithium germanium thiophosphate (Li x Ge y P z S w , 0 < x <4, 0 <y <1, 0 <z <1, 0 <w <5), Lithium Nitride (Li x N y , 0 <x <4, 0 <y <2), SiS 2 (Li x Si y S z , 0 <x <3, 0 <y <2, 0 <z <4) series glass or P 2 S 5 (Li x P y S z , 0 <x <3, 0 <y <3, 0 <z <7) series glass.
구체적으로 상기 무기물 입자는 Al2O3, AlOOH, 및 Mg(OH)2 중 적어도 하나를 포함할 수 있다.Specifically, the inorganic particles may include at least one of Al 2 O 3 , AlOOH, and Mg (OH) 2 .
상기 폴리올레핀 계열 기재는 고밀도 폴리에틸렌, 저밀도 폴리에틸렌, 선형저밀도 폴리에틸렌, 초고분자량 폴리에틸렌 및 폴리프로필렌으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.The polyolefin-based substrate may be at least one selected from the group consisting of high density polyethylene, low density polyethylene, linear low density polyethylene, ultra high molecular weight polyethylene, and polypropylene.
본원 발명에 따른 제2양태는 1) 바인더를 용매에 용해시켜 바인더 용액을 제조하는 단계; 2) 무기물 입자를 상기 1) 단계의 바인더 용액에 첨가 및 혼합하는 단계; 3) 폴리올레핀 계열 기재의 표면 및 상기 기재 중 기공부 일부로 구성된 군으로부터 선택된 1종 이상의 영역을 상기 2) 단계의 용액으로 코팅 및 건조하는 단계를 포하는 전지용 분리막의 제조방법에 있어서, 상기 바인더는 각 분자에서 히드록시기가 차지하는 비율이 10중량% 이상인 본원 발명에 따른 전지용 분리막의 제조방법을 제공한다.A second aspect according to the present invention comprises the steps of 1) dissolving a binder in a solvent to prepare a binder solution; 2) adding and mixing the inorganic particles to the binder solution of step 1); 3) A method of manufacturing a battery separator comprising coating and drying at least one region selected from the group consisting of a surface of a polyolefin-based substrate and a part of pores in the substrate with the solution of step 2). Provided is a method for manufacturing a battery separator according to the present invention, wherein the proportion of hydroxyl groups in the molecule is 10% by weight or more.
상기 용매는 물과 아세톤의 혼합 중량비는 100:0 내지 0:100, 바람직하게는 95:5 내지 0:100, 더욱 바람직하게는 75:25 내지 0:100, 더 더욱 바람직하게는 60:40 내지 0:100이다. 더 더욱 더 바람직하게는 50:50 내지 0:100이다. 가장 바람직한 범위로는 40:60 내지 0:100이다. 본원 발명의 실시예에 따른 최적의 비율은 75:25이다.The solvent has a mixed weight ratio of water and acetone of 100: 0 to 0: 100, preferably 95: 5 to 0: 100, more preferably 75:25 to 0: 100, even more preferably 60:40 to 0: 100. Even more preferably 50:50 to 0: 100. The most preferred range is 40:60 to 0: 100. The optimal ratio according to an embodiment of the present invention is 75:25.
본원 발명에 따른 제3양태는 본원 발명의 전지용 분리막을 포함하는 전기화학 소자를 제공한다. 이때 상기 전기화학 소자는 리튬 이차전지일 수 있다.According to a third aspect of the present invention, there is provided an electrochemical device including the battery separator of the present invention. In this case, the electrochemical device may be a lithium secondary battery.
도 1은 본원 발명 바인더의 일실시예인 아밀로즈(Amylose)의 단위 구조를 나타낸다.1 illustrates a unit structure of Amylose, which is an embodiment of the binder of the present invention.
도 2는 본원 발명 바인더의 일실시예인 아밀로펙틴(Amylopectin)의 단위 구조를 나타낸다.Figure 2 shows the unit structure of Amylopectin (Amylopectin) which is one embodiment of the binder of the present invention.
도 3은 본원 발명 바인더의 일실시예인 잔탄검(Xanthan Gum)의 단위 구조를 나타낸다.3 shows a unit structure of Xanthan Gum, which is one embodiment of the binder of the present invention.
도 4는 본원 발명의 일실시예에 따른 탄닌산을 바인더로 사용할 경우 전극과 분리막 간의 수소 결합 예시다.4 illustrates hydrogen bonding between an electrode and a separator when tannic acid is used as a binder according to an embodiment of the present invention.
도 5는 본원 발명의 일실시예에 따른 탄닌산 사용에 따른 젖음 특성의 향상에 대한 예시다.Figure 5 is an illustration for the improvement of the wettability according to the use of tannic acid according to an embodiment of the present invention.
도 6은 수소 결합에 의한 양극재 전이 금속에 대한 흡착 기작의 예시이다.6 is an illustration of the adsorption mechanism for the cathode material transition metal by hydrogen bonding.
도 7은 본원 발명의 일실시예에 따른 탄닌산을 바인더로 사용할 경우 열에 대한 수축 정도를 비교한 결과이다.7 is a result of comparing the shrinkage with respect to heat when using tannic acid as a binder according to an embodiment of the present invention.
도 8는 본원 발명에 따른 바인더를 적용한 SRS의 구조를 개념적으로 표시한 것이다.8 conceptually shows the structure of an SRS to which a binder according to the present invention is applied.
도 9는 본원 발명의 바인더의 적용에 따른 자기치유기능을 개념적으로 표시한 것이다.Figure 9 conceptually shows the self-healing function according to the application of the binder of the present invention.
도 10은 본원 발명의 일실시예에 따른 분리막의 물적 성질을 측정한 것이다.10 is a measure of the physical properties of the separator according to an embodiment of the present invention.
도 11은 본원 발명의 일실시예에 따른 아세톤의 농도에 따른 분리막의 물적 성질을 측정한 것이다.11 is a measure of the physical properties of the separator according to the concentration of acetone according to an embodiment of the present invention.
본원 발명은 종래 전지용 분리막으로 사용되는 폴리올레핀 계열 분리막에 비해 탁월한 열적 안전성, 전기화학적 안전성, 우수한 리튬 이온 전도도, 전해액 함침율, 자가치유기능 등을 동시에 나타낼 수 있을 뿐만 아니라 친수성 기능기를 다량 함유한 기능성 바인더로 인해 전지-분리막의 결합력이 향상 되고 양극에서 용출되는 전이 금속을 흡착할 수 있는 기능성 바인더가 적용된 전지용 분리막 및 이의 제조방법을 제공한다.The present invention not only exhibits excellent thermal safety, electrochemical stability, excellent lithium ion conductivity, electrolyte impregnation rate, self-healing function, etc., compared with the polyolefin-based separators used as conventional battery separators, but also contains a large amount of hydrophilic functional groups. The present invention provides a battery separator and a method of manufacturing the same, in which a binding force of the battery-separation membrane is improved and a functional binder capable of adsorbing a transition metal eluted from the positive electrode is applied.
본원 발명은 (a) 폴리올레핀 계열 기재; 및 (b) 상기 기재의 표면 및 상기 기재에 존재하는 기공부 일부로 구성된 군으로부터 선택된 1종 이상의 영역이 무기물 입자 및 바인더의 혼합물로 코팅된 활성층을 포함하는 전지용 분리막으로서, 상기 활성층은 바인더에 의해 무기물 입자 사이가 연결 및 고정되고, 무기물 입자들간의 빈 공간(interstitial volume)으로 인해 기공 구조가 형성된 전지용 분리막에 있어서,The present invention (a) a polyolefin-based substrate; And (b) an active layer wherein at least one region selected from the group consisting of a surface of the substrate and a portion of the pores present in the substrate is coated with a mixture of inorganic particles and a binder, wherein the active layer is an inorganic material by a binder. In the separator for the battery is connected and fixed between the particles, the pore structure is formed due to the interstitial volume between the inorganic particles,
상기 바인더는 각 분자에서 히드록시기가 차지하는 비율이 10중량% 이상인 전지용 분리막을 제공한다. 각 분자에서 히드록시기가 차지하는 비율은 바람직하게는 12중량% 이상 50중량% 이하, 더욱 바람직하게는 15중량% 이상 45중량% 이하, 더욱 더 바람직하게는 18중량% 이상 40중량% 이하, 더욱 더 바람직하게는 18중량% 이상 38중량% 이하이다. 히드록시기가 차지하는 중량비가 10중량% 미만인 경우에는 바인더의 수소 결합 작용기가 충분하지 않아 본원 발명에서 원하는 기능이 충분히 구현되지 않는다. 히드록시기가 차지하는 중량비가 50중량%를 초과하는 경우에는 강한 수소결합으로 인해서 오히려 전해질의 이동에 제한이 걸리는 문제점이 발생할 수 있다.The binder provides a separator for a battery in which the proportion of hydroxy groups in each molecule is 10% by weight or more. The proportion of hydroxy groups in each molecule is preferably 12 wt% or more and 50 wt% or less, more preferably 15 wt% or more and 45 wt% or less, even more preferably 18 wt% or more and 40 wt% or less, even more preferably Preferably it is 18 weight% or more and 38 weight% or less. When the weight ratio of the hydroxy group is less than 10% by weight, the hydrogen bonding functional group of the binder is not sufficient, and thus the desired function in the present invention is not sufficiently realized. When the weight ratio of the hydroxy group is more than 50% by weight, there may be a problem that the movement of the electrolyte is limited due to the strong hydrogen bond.
상기 바인더의 구체적인 실시예로는 탄닌산, 파이로갈릭산, 아밀로즈, 아밀로펙틴, 잔탄검 중 적어도 하나 이상일 수 있거나, 1) 탄닌산, 파이로갈릭산, 아밀로즈, 아밀로펙틴, 잔탄검 중 적어도 하나 이상을 포함하는 혼합물과 2) 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose), 아크리로니트릴스티렌부타디엔 공중합체 (acrylonitrilestyrene-butadiene copolymer), 폴리이미드(polyimide) 중 적어도 하나 이상을 포함하는 혼합물과의 혼합물일 수 있다.Specific examples of the binder may be at least one or more of tannic acid, pyrogallic acid, amylose, amylopectin, xanthan gum, or 1) at least one or more of tannic acid, pyrogallic acid, amylose, amylopectin and xanthan gum. 2) polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-co-trichloroethylene, polymethylmethacryl Polymethylmethacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, ethylene vinyl acetate copolymer, polyethylene oxide, Cellulose acetate, cellulose acetate butyrate, Cellulose acetate propionate, cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan ( It may be a mixture with a mixture comprising at least one of pullulan, carboxyl methyl cellulose, acrylonitrilestyrene-butadiene copolymer, polyimide.
각 바인더 분자에서 히드록시기가 차지하는 비율이 10중량% 이상인 바인더의 예시로서 아밀로즈(도 1 참조), 아밀로펙틴(도 2 참조), 잔탄검(도 3 참조), 탄닌산(도 4 참조)을 나타내었다. 아밀로즈, 아밀로펙틴, 잔탄검 각 분자 내에서 OH가 차지하는 중량비는 각각 18%, 25%, 32%이다. 모두 하이드록시(OH)기가 차지하는 비중은 10중량% 이상으로서 강한 수소 결합을 생성할 수 있음을 알 수 있다. 여기서 각 분자의 하이드록시기로 고려된 것은 OH기를 의미하며 카르복실(COOH)는 제외하였다.As an example of a binder having a hydroxy group occupying 10% by weight or more in each binder molecule, amylose (see FIG. 1), amylopectin (see FIG. 2), xanthan gum (see FIG. 3), and tannic acid (see FIG. 4) are illustrated. OH occupies 18%, 25%, and 32% in each of amylose, amylopectin and xanthan gum. It can be seen that the specific gravity of all the hydroxy (OH) groups is 10% by weight or more and can generate strong hydrogen bonds. Herein, considered as a hydroxyl group of each molecule, an OH group is excluded and carboxyl (COOH) is excluded.
본원 발명에 따른 바인더는 친수성 작용기에 의해서 양극과 음극 모두 결합력이 우수한 장점이 있다. 이에 대한 분자 단위에서의 결합 관계를 도 4에 모식적으로 나타내었다.The binder according to the present invention has an advantage of excellent bonding strength for both the positive electrode and the negative electrode by the hydrophilic functional group. The binding relationship in the molecular unit about this is shown typically in FIG.
친수성 바인더를 사용하는 경우 종래의 PE 기재가 소수성 재질로서 물에 대한 친화력이 떨어졌으나, 본원 발명에 따른 바인더 일실시예인 탄닌산을 적용한 결과 친수성으로 변화한다는 것을 알 수 있다(도 5 참조).In the case of using a hydrophilic binder, the conventional PE substrate has a poor affinity for water as a hydrophobic material, but it can be seen that the result of applying the tannin acid as the binder according to the present invention changes to hydrophilicity (see FIG. 5).
한편, 본원 발명에 따른 친수성기를 포함하는 바인더에 의한 양극재 전이 금속에 대한 흡착 기작의 예시를 도 6에 나타내었다.On the other hand, Figure 6 shows an example of the adsorption mechanism for the positive electrode material transition metal by the binder containing a hydrophilic group according to the present invention.
본원 발명에 따른 분리막의 개념도를 도 8에 표시하였다. 통상적인 바인더는 바인더 말단 또는 중간 사이에 큰 인력이 작용하지 않으나, 본원 발명에 따른 바인더는 -O/-OH기로 인해 강한 수소 결합을 유지하고 있다. 도 8에서 삼각형은 히드록시기 또는 친수성기를 의미한다. 원은 무기물 입자를 의미한다.The conceptual diagram of the separator according to the present invention is shown in FIG. Conventional binders do not have a large attractive force between the binder ends or the middle, but the binder according to the present invention maintains strong hydrogen bonds due to -O / -OH groups. Triangle in FIG. 8 means a hydroxy group or a hydrophilic group. Circle means inorganic particles.
한편 도 9의 왼쪽과 같이 분리막의 일부가 파손되어 내부 단락이 발생할 경우 바인더의 내부 수소 결합에 의해서 파손된 부위가 자기 치유가 가능한다. 이를 통해서 내부 단락을 미연에 방지할 수 있다.Meanwhile, as shown in the left side of FIG. 9, when a part of the separator is broken and an internal short circuit occurs, a portion damaged by the internal hydrogen bond of the binder may self-heal. This prevents internal short circuits.
이하, 본 발명에 대하여 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 특허청구범위에 사용된 용어 또는 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예에 제시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, the present invention will be described in detail. Prior to this, the terms or words used in this specification and claims should not be construed as being limited to the ordinary or dictionary meanings, and the inventors should properly introduce the concept of terms in order to best explain their own inventions. It should be interpreted as meanings and concepts in accordance with the technical spirit of the present invention based on the principle that it can be defined. Therefore, the configurations presented in the embodiments described herein are only one of the most preferred embodiments of the present invention and do not represent all of the technical ideas of the present invention, and various equivalents may be substituted for them at the time of the present application. It should be understood that there may be variations.
<실시 예 1> 기능성 바인더가 적용된 리튬이온 전지용 분리막의 제조.<Example 1> Preparation of a separator for a lithium ion battery to which a functional binder is applied.
폴리비닐리덴플로라이드-클로로트리플로로에틸렌 공중합체 (PVdF-CTFE) 고분자 및 탄닌산을(중량비로 50:50) 아세톤에 약 5중량% 첨가한 후, 50℃의 온도에서 약 12시간 이상 용해시켜 고분자 용액을 제조하였다. 이 고분자 용액에 BaTiO3 분말을 BaTiO3/(PVdF-CTFE 및 탄닌산) = 90/10 (중량%비)가 되도록 첨가하여 12시간 이상 볼밀(ball mill)법을 이용하여 BaTiO3 분말을 파쇄 및 분쇄하여 슬러리를 제조하였다. 이렇게 제조된 슬러리의 BaTiO3 입경은 볼밀법에 사용되는 비드의 사이즈(입도) 및 볼밀법의 적용 시간에 따라 제어될 수 있으나 본 실시예 1에서는 약 400㎚로 분쇄하여 슬러리를 제조하였다. 이와 같이 제조된 슬러리를 딥(dip) 코팅법을 이용하여 두께 18㎛ 정도의 폴리에틸렌 분리막(기공도 45%)에 코팅하였으며, 코팅 두께는 약 3㎛ 정도로 조절하였다. 기공율 측정 장치(porosimeter)로 측정한 결과, 폴리에틸렌 분리막에 코팅된 활성층 내의 기공 크기 및 기공도는 각각 0.5㎛ 및 58% 였다.Polyvinylidene fluoride-chlorotrifluoroethylene copolymer (PVdF-CTFE) The polymer and tannic acid (50:50 by weight) are added to acetone by about 5% by weight, and then dissolved at a temperature of 50 ° C for about 12 hours or more. A polymer solution was prepared. BaTiO 3 powder was added to the polymer solution such that BaTiO 3 / (PVdF-CTFE and tannic acid) = 90/10 (% by weight), and the BaTiO 3 powder was crushed and pulverized using a ball mill method for at least 12 hours. To prepare a slurry. BaTiO 3 particle diameter of the slurry thus prepared may be controlled according to the size (particle size) of the beads used in the ball mill method and the application time of the ball mill method, but in Example 1, the slurry was pulverized to about 400 nm. The slurry thus prepared was coated on a polyethylene separator (porosity 45%) having a thickness of about 18 μm by using a dip coating method, and the coating thickness was adjusted to about 3 μm. The pore size and porosity in the active layer coated on the polyethylene separator were 0.5 μm and 58%, respectively, as measured by a porosimeter.
<실시예 2와 비교예 1의 비교> 기능성 바인더가 적용된 리튬이온 전지용 분리막의 열수축 특성 비교(도 7 참조). <Comparison of Example 2 and Comparative Example 1> Comparison of heat shrinkage characteristics of the separator for a lithium ion battery to which the functional binder is applied (see FIG. 7).
실시예 1과 동일한 방법으로 전지용 분리막을 제조하되, 코팅 조성물에서 바인더와 무기물의 중량비를 15:85로 변경하여 실시예 2를 제조하였다. 비교예 1은 실시예 2와 동일한 조건으로 제조하되 바인더에 탄닌산을 사용하지 않았다. 비교예 1과 실시예 2는 각각 5㎛, 3㎛ 두께로 코팅을 하였다. 실시예 2와 비교예 1을 동일한 150℃에서의 열수축을 비교한 결과, 본원 발명에 따른 실시예 2가 탄닌산을 포함하지 않은 종래의 분리막(비교예 1)에 비해서 뛰어난 물성을 보였다. 특히 비교예 1은 코팅의 두께가 더 두꺼웠음에도 불구하고 실시예 2에 비해 열악한 열수축 물성을 나타냈었다. 도 7의 MD는 machine direction, TD는 transverse direction으로서 각각 가로 방향과 세로 방향의 길이를 나타낸다. 각 표의 상단에 기재된 수치는 열수축전과 열수축 후의 MD/TD 수축율(%)를 나타낸다.A battery separator was manufactured in the same manner as in Example 1, but Example 2 was prepared by changing the weight ratio of the binder and the inorganic material to 15:85 in the coating composition. Comparative Example 1 was prepared under the same conditions as in Example 2, but did not use tannic acid in the binder. Comparative Examples 1 and 2 were coated with a thickness of 5 μm and 3 μm, respectively. As a result of comparing the heat shrinkage of Example 2 and Comparative Example 1 at the same 150 ℃, Example 2 according to the present invention showed excellent physical properties compared to the conventional separation membrane (Comparative Example 1) does not contain tannic acid. In particular, Comparative Example 1 exhibited poor heat shrinkage properties compared to Example 2, although the thickness of the coating was thicker. In FIG. 7, MD is a machine direction and TD is a transverse direction, respectively, and shows the length of a horizontal direction and a vertical direction, respectively. Numerical values at the top of each table indicate the MD / TD shrinkage percentage (%) before and after heat shrink.
<실시 예 3, 4, 5> 바인더 분자내 히드록시기에 따른 분리막의 특성 비교<Examples 3, 4, 5> Comparison of Characteristics of Separation Membranes According to Hydroxy Group in Binder Molecules
실시예 3, 4, 5는 실시예 1과 동일한 방법으로 분리막을 제조하였다. 다만 무기물 입자로는 알루미나와 보헤마이트를 85:15중량비로 사용하였고, 무기물과 바인더의 혼합비율은 75:25중량비였다. 바인더로는 PVdF-HFP : PVdF-CTFE : 히드록시기 함유 바인더를 22:1:2중량비로 제조하였으며, 이때 용매는 아세톤 100%를 사용하였다. 히드록시기 함유 바인더로는 각각 잔탄검, 탄닌산, 아밀로즈를 사용하였다. 이때 폴리올레핀 기재는 PP를 사용하였다.Examples 3, 4 and 5 were prepared in the same manner as in Example 1. However, as the inorganic particles, alumina and boehmite were used in a 85:15 weight ratio, and a mixing ratio of the inorganic material and the binder was 75:25 weight ratio. As a binder, a binder containing PVdF-HFP: PVdF-CTFE: hydroxy group was prepared in a 22: 1: 2 weight ratio, and the solvent was 100% acetone. Xanthan gum, tannic acid, and amylose were used as the hydroxyl group-containing binder, respectively. PP was used for the polyolefin substrate.
도 10은 실시예 3, 4, 5에 따른 분리막의 물성을 비교한 결과이다. 본원 발명의 명세서에서 원단은 폴리올레핀 기재를 의미한다. 바인더 내에서 히드록시기의 중량비가 높이짐에 따라 기재와 무기물 코팅층 계면에서의 접착력이 증가하였고, 이온 전도도도 증가하는 것으로 나타났다. 분리막의 전기 저항은 큰 변화가 없는 것으로 나타났다. 도 10, 11에서 분리막/원단 계면 접착력은 유리면에 양면 테이프를 부착 후 상기 양면테이프의 나머지 면에 SRS의 무기물 코팅층을 접착 시킨 후 기재를 분리할 경우 무기물 코팅층과 기재의 분리 강도를 측정한 것이며, 분리막/전극 계면 접착력은 유리면에 양면 테이프를 부착 후 상기 양면테이프의 나머지 면에 전극을 접착 시킨 후 기재를 분리할 경우 전극과 SRS의 분리 강도를 측정한 것이다. ER과 이온전도도는 통상적인 방법으로 측정을 하였으며, 분리막 Gurely는 통기도를 측정한 것으로서, 통기도는 일본 산업 표준의 걸리(JIS Gurley) 측정방법에 따라 Toyoseiki사 Gurley type Densometer(No. 158)를 사용하여 측정하였다. 즉 통기도는 100cc의 공기가 4.8인치의 일정한 공기 압력 하에서 1평방인치의 분리막을 통과하는데 걸리는 시간(초)을 의미한다.10 is a result of comparing the physical properties of the separator according to Examples 3, 4, 5. In the specification of the present invention, the fabric means a polyolefin substrate. As the weight ratio of the hydroxyl group in the binder was increased, the adhesion between the substrate and the inorganic coating layer was increased, and the ionic conductivity was also increased. The electrical resistance of the separator did not appear to change significantly. 10 and 11, the separator / fabric interface adhesion strength is a measure of the separation strength of the inorganic coating layer and the substrate when the substrate is separated after adhering the inorganic coating layer of the SRS to the remaining surface of the double-sided tape after attaching the double-sided tape on the glass surface, Separator / electrode interface adhesion is a measure of the separation strength of the electrode and the SRS when the substrate is separated after adhering the electrode to the other side of the double-sided tape after attaching the double-sided tape on the glass surface. ER and ionic conductivity were measured by the conventional method, and the membrane Gurely was measured for air permeability, and the air permeability was measured using Toyoseiki's Gurley type Densometer (No. 158) according to Japanese Industrial Standard Gurley measurement method. Measured. In other words, air permeability refers to the time (in seconds) that 100 cc of air passes through a 1 inch square membrane under constant air pressure of 4.8 inches.
실시예 3, 4, 5에 따른 분리막의 물성을 아래 표 1에 기재하였다.The physical properties of the separators according to Examples 3, 4, and 5 are shown in Table 1 below.
Figure PCTKR2018000309-appb-T000001
Figure PCTKR2018000309-appb-T000001
<실시 예 6, 7, 8, 9, 10> 용매의 아세톤 비율에 따른 물성 특성 비교<Example 6, 7, 8, 9, 10> Comparison of physical properties according to the acetone ratio of the solvent
실시예 6, 7, 8, 9, 10은 실시예 3과 동일한 방법에 의해서 분리막을 제조하였다. 이때 히드록시기를 갖는 바인더는 탄닌산을 사용하였다. 다만 용매의 제조에 있어서, 물과 아세톤의 중량비를 각각 100:0, 95:5, 50:50, 25:75, 0:100 사용하였다. 각각 물과 아세톤의 중량비에 따른 물성 변화를 도 11에 기재하였다.Examples 6, 7, 8, 9, and 10 prepared a separator by the same method as in Example 3. At this time, tannic acid was used as the binder having a hydroxyl group. In the preparation of the solvent, the weight ratio of water and acetone was 100: 0, 95: 5, 50:50, 25:75, and 0: 100, respectively. The change in physical properties according to the weight ratio of water and acetone, respectively, is shown in FIG. 11.
물과 아세톤의 비율이 25:75일때가 전반적으로 가장 우수한 효과를 나타내었다. 투과도, 전기저항, 이온전도도, 계면 접착력 등을 고려해 볼 때 물과 아세톤의 비율이 50:50 이상 0:100에서 유사한 값의 범위를 나타냈다. 한편 물과 아세톤의 비율은 코팅층의 건조에 따른 구조에 영향을 미칠 것이므로 바인더에서 히드록시기가 차지하는 비율에 의해서 최적점은 변할 수 있을 것이며, 본원 발명에 따른 히드록시기의 비율을 고려해 볼 때, 60:40 내지 0:100까지 확장될 수 있다.The best effect was obtained when the ratio of water and acetone was 25:75. Considering the permeability, electrical resistance, ionic conductivity, and interfacial adhesion, the ratio of water and acetone was in the range of 50:50 or more and 0: 100. On the other hand, since the ratio of water and acetone will affect the structure according to drying of the coating layer, the optimum point may be changed by the proportion of hydroxy groups in the binder, and considering the ratio of hydroxy groups according to the present invention, from 60:40 to It can be extended to 0: 100.
실시예 6, 7, 8, 9, 10에 따른 분리막의 물성을 아래 표 2에 기재하였다.The physical properties of the separators according to Examples 6, 7, 8, 9, and 10 are described in Table 2 below.
Figure PCTKR2018000309-appb-T000002
Figure PCTKR2018000309-appb-T000002
본원 발명은 다공성 폴리올레핀 기재, 상기 기재의 적어도 일면에 형성된 무기물 입자들과 바인더 화합물을 포함하는 유기-무기 복합 다공성 코팅층을 포함하는 분리막에 있어서, 바인더-무기물, 기재-바인더의 접착력을 높이면서, 동시에 분리막의 일부 손상에 대해서 자기치유기능을 통해서 내부 단락을 미연에 방지하고, 분리막과 양극 및 음극과의 접착력을 향상시키며, 양극재 전이금속의 용출에 대응할 수 있는 장점이 있다.The present invention is a separator comprising a porous polyolefin substrate, an organic-inorganic composite porous coating layer comprising a binder compound and inorganic particles formed on at least one surface of the substrate, while increasing the adhesive strength of the binder-inorganic, substrate-binder, Self-healing function prevents internal short circuits in advance for some damage to the separator, improves the adhesion between the separator and the anode and the cathode, and can cope with the elution of the transition material of the cathode material.

Claims (12)

  1. (a) 폴리올레핀 계열 기재; 및(a) a polyolefin-based substrate; And
    (b) 상기 기재의 표면 및 상기 기재에 존재하는 기공부 일부로 구성된 군으로부터 선택된 1종 이상의 영역이 무기물 입자 및 바인더의 혼합물로 코팅된 활성층을 포함하는 전지용 분리막으로서, 상기 활성층은 바인더에 의해 무기물 입자 사이가 연결 및 고정되고, 무기물 입자들간의 빈 공간(interstitial volume)으로 인해 기공 구조가 형성된 전지용 분리막에 있어서,(b) at least one region selected from the group consisting of the surface of the substrate and a portion of the pores present in the substrate comprises an active layer coated with a mixture of inorganic particles and a binder, wherein the active layer is an inorganic particle by a binder In the separator of the battery is connected and fixed between, the pore structure is formed due to the interstitial volume between the inorganic particles,
    상기 바인더는 각 분자에서 히드록시기가 차지하는 비율이 10중량% 이상인 전지용 분리막.The binder is a battery separator, wherein the proportion of hydroxyl groups in each molecule is 10% by weight or more.
  2. 제1항에 있어서,The method of claim 1,
    상기 바인더는 탄닌산, 파이로갈릭산, 아밀로즈, 아밀로펙틴, 잔탄검 중 적어도 하나 이상을 포함하는 전지용 분리막.The binder is a battery separator comprising at least one of tannic acid, pyrogallic acid, amylose, amylopectin, xanthan gum.
  3. 제1항에 있어서,The method of claim 1,
    상기 바인더는 1) 탄닌산, 파이로갈릭산, 아밀로즈, 아밀로펙틴, 잔탄검 중 적어도 하나 이상을 포함하는 혼합물과 2) 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose), 아크리로니트릴스티렌부타디엔 공중합체 (acrylonitrilestyrene-butadiene copolymer), 폴리이미드(polyimide) 중 적어도 하나 이상을 포함하는 혼합물과의 혼합물인 전지용 분리막.The binder comprises 1) a mixture comprising at least one of tannic acid, pyrogallic acid, amylose, amylopectin, xanthan gum and 2) polyvinylidene fluoride-co-hexafluoropropylene. , Polyvinylidene fluoride-co-trichloroethylene, polymethylmethacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate ( polyvinylacetate, polyethylene-co-vinyl acetate, polyethylene oxide, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate ), Cyanoethylpullulan, cyanoethyl Cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan, carboxyl methyl cellulose, acrylonitrilestyrene-butadiene Battery separator which is a mixture with a mixture containing at least one or more of a copolymer, polyimide (polyimide).
  4. 제1항에 있어서,The method of claim 1,
    상기 무기물 입자는 유전율 상수가 5 이상인 무기물 입자, 압전성(piezoelectricity)을 갖는 무기물 입자, 및 리튬이온 전달 능력을 갖는 무기물 입자로 구성된 군으로부터 선택된 1종 이상인 전지용 분리막.The inorganic particles are at least one selected from the group consisting of inorganic particles having a dielectric constant of 5 or more, inorganic particles having piezoelectricity, and inorganic particles having lithium ion transfer ability.
  5. 제4항에 있어서, 상기 유전율 상수가 5 이상인 무기물 입자는 SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, TiO2 또는 SiC이며;The inorganic particle having a dielectric constant of 5 or more is SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , TiO 2 or SiC. ;
    상기 압전성(piezoelectricity)을 갖는 무기물 입자는 BaTiO3, Pb(Zr,Ti)O3 (PZT), Pb1-xLaxZr1-yTiyO3 (PLZT), PB(Mg3Nb2/3)O3-PbTiO3 (PMN-PT) 또는 hafnia (HfO2)이고;The inorganic particles having piezoelectricity are BaTiO 3 , Pb (Zr, Ti) O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT), PB (Mg 3 Nb 2 / 3 ) O 3 -PbTiO 3 (PMN-PT) or hafnia (HfO 2 );
    상기 리튬이온 전달 능력을 갖는 무기물 입자는 리튬포스페이트 (Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0<x <2, 0<y<3), 리튬알루미늄티타늄포스페이트 (LixAlyTiz(PO4)3, 0<x<2, 0<y<1, 0<z<3), (LiAlTiP)xOy 계열 glass(0<x<4, 0<y<13), 리튬란탄티타네이트 (LixLayTiO3, 0<x<2, 0<y<3), 리튬게르마니움티오포스페이트 (LixGeyPzSw, 0<x<4, 0<y<1, 0<z<1, 0<w<5), 리튬나이트라이드 (LixNy, 0<x<4, 0<y<2), SiS2 (LixSiySz, 0<x<3, 0<y<2, 0<z<4) 계열 glass 또는 P2S5 (LixPySz, 0<x<3, 0<y<3, 0<z<7) 계열 글라스(glass)인 전지용 분리막.The inorganic particles having a lithium ion transfer capacity include lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 <x <2, 0 <y <3), and lithium aluminum titanium phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 <x <2, 0 <y <1, 0 <z <3), (LiAlTiP) x O y series glass (0 <x <4, 0 <y <13), lithium lanthanum titanate (Li x La y TiO 3 , 0 <x <2, 0 <y <3), lithium germanium thiophosphate (Li x Ge y P z S w , 0 <x <4 , 0 <y <1, 0 <z <1, 0 <w <5), lithium nitride (Li x N y , 0 <x <4, 0 <y <2), SiS 2 (Li x Si y S z , 0 <x <3, 0 <y <2, 0 <z <4) series glass or P 2 S 5 (Li x P y S z , 0 <x <3, 0 <y <3, 0 <z <7) A separator for a battery which is a series glass.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 무기물 입자는 Al2O3, AlOOH, 및 Mg(OH)2 중 적어도 하나를 포함하는 전지용 분리막.The inorganic particles are at least one of Al 2 O 3 , AlOOH, and Mg (OH) 2 separator for a battery.
  7. 제1항에 있어서,The method of claim 1,
    상기 폴리올레핀 계열 기재는 고밀도 폴리에틸렌, 저밀도 폴리에틸렌, 선형저밀도 폴리에틸렌, 초고분자량 폴리에틸렌 및 폴리프로필렌으로 이루어진 군으로부터 선택된 1종 이상인 전지용 분리막.The polyolefin-based substrate is a battery separator for at least one selected from the group consisting of high density polyethylene, low density polyethylene, linear low density polyethylene, ultra high molecular weight polyethylene and polypropylene.
  8. 1) 바인더를 용매에 용해시켜 바인더 용액을 제조하는 단계;1) dissolving the binder in a solvent to prepare a binder solution;
    2) 무기물 입자를 상기 1) 단계의 바인더 용액에 첨가 및 혼합하는 단계;2) adding and mixing the inorganic particles to the binder solution of step 1);
    3) 폴리올레핀 계열 기재의 표면 및 상기 기재 중 기공부 일부로 구성된 군으로부터 선택된 1종 이상의 영역을 상기 2) 단계의 용액으로 코팅 및 건조하는 단계를 포하는 전지용 분리막의 제조방법에 있어서,3) A method of manufacturing a separator for a battery comprising coating and drying at least one region selected from the group consisting of a surface of a polyolefin-based substrate and a portion of pores in the substrate with the solution of step 2),
    상기 바인더는 각 분자에서 히드록시기가 차지하는 비율이 10중량% 이상인 제1항 내지 제7항 중 어느 한 항에 따른 전지용 분리막의 제조방법.The binder is a manufacturing method of a battery separator according to any one of claims 1 to 7, wherein the hydroxy group occupies 10% by weight or more in each molecule.
  9. 제8항에 있어서,The method of claim 8,
    상기 용매는 물과 아세톤의 혼합 중량비가 50:50 내지 0:100인 전지용 분리막의 제조방법.The solvent is a method of manufacturing a separator for a battery in which the mixing weight ratio of water and acetone is 50:50 to 0: 100.
  10. 제8항의 제조방법에 의해 제조된 전지용 분리막.A separator for a battery produced by the manufacturing method of claim 8.
  11. 제1항 내지 제7항 중 어느 한 항에 따른 전지용 분리막을 포함하는 전기화학 소자.An electrochemical device comprising the separator for batteries according to any one of claims 1 to 7.
  12. 제11항에 있어서,The method of claim 11,
    상기 전기화학 소자는 리튬 이차전지인 전기화학 소자.The electrochemical device is a lithium secondary battery electrochemical device.
PCT/KR2018/000309 2017-01-06 2018-01-05 Separator for battery to which functional binder is applied, and electrochemical device applying same WO2018128484A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/463,441 US11258135B2 (en) 2017-01-06 2018-01-05 Battery separator including functional binder and electrochemical device comprising the same
CN201880003626.4A CN109792020B (en) 2017-01-06 2018-01-05 Battery separator including functional binder and electrochemical device including the same
JP2019519709A JP6824558B2 (en) 2017-01-06 2018-01-05 Separation membrane for batteries to which a functional binder is applied and electrochemical elements to which this is applied
EP18736258.7A EP3503256A4 (en) 2017-01-06 2018-01-05 Separator for battery to which functional binder is applied, and electrochemical device applying same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2017-0002219 2017-01-06
KR20170002219 2017-01-06
KR10-2017-0030566 2017-03-10
KR20170030566 2017-03-10
KR10-2018-0001926 2018-01-05
KR1020180001926A KR102137533B1 (en) 2017-01-06 2018-01-05 Separator for battery with functional binder and electrochemical device prepared thereby

Publications (1)

Publication Number Publication Date
WO2018128484A1 true WO2018128484A1 (en) 2018-07-12

Family

ID=62789482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000309 WO2018128484A1 (en) 2017-01-06 2018-01-05 Separator for battery to which functional binder is applied, and electrochemical device applying same

Country Status (1)

Country Link
WO (1) WO2018128484A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112292783A (en) * 2019-05-09 2021-01-29 株式会社Lg化学 Separator for secondary battery including dispersant and method for manufacturing the same
CN114512769A (en) * 2020-10-23 2022-05-17 中国石油化工股份有限公司 Lithium-sulfur battery diaphragm, preparation method thereof and lithium-sulfur battery
CN114744363A (en) * 2022-03-29 2022-07-12 中材锂膜(宁乡)有限公司 Lithium ion battery diaphragm slurry, preparation method thereof and diaphragm

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100727248B1 (en) * 2007-02-05 2007-06-11 주식회사 엘지화학 Organic/inorganic composite separator having porous active coating layer and electrochemical device containing the same
KR101330675B1 (en) * 2011-11-29 2013-11-18 더블유스코프코리아 주식회사 Coating separator film for secondary battery and its preparing method
KR20140144192A (en) * 2012-03-27 2014-12-18 도레이 카부시키가이샤 Laminated porous film and separator for electrical energy storage device
KR20150069781A (en) * 2013-12-16 2015-06-24 주식회사 엘지화학 A method for manufacturing a high performance separator using environmental-friendly water based binder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100727248B1 (en) * 2007-02-05 2007-06-11 주식회사 엘지화학 Organic/inorganic composite separator having porous active coating layer and electrochemical device containing the same
KR101330675B1 (en) * 2011-11-29 2013-11-18 더블유스코프코리아 주식회사 Coating separator film for secondary battery and its preparing method
KR20140144192A (en) * 2012-03-27 2014-12-18 도레이 카부시키가이샤 Laminated porous film and separator for electrical energy storage device
KR20150069781A (en) * 2013-12-16 2015-06-24 주식회사 엘지화학 A method for manufacturing a high performance separator using environmental-friendly water based binder

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3503256A4 *
WANG, HAIBIN ET AL.: "Pyrogallic Acid Coated Polypropylene Membranes as Separators for Lithium-ion Batteries", J. MATER. CHEM. A., vol. 3, no. 41, 2015, pages 20535 - 20540, XP055511772, DOI: doi:10.1039/C5TA06381G *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112292783A (en) * 2019-05-09 2021-01-29 株式会社Lg化学 Separator for secondary battery including dispersant and method for manufacturing the same
EP3790079A4 (en) * 2019-05-09 2021-08-25 Lg Chem, Ltd. Secondary battery separator comprising dispersant, and manufacturing method therefor
CN114512769A (en) * 2020-10-23 2022-05-17 中国石油化工股份有限公司 Lithium-sulfur battery diaphragm, preparation method thereof and lithium-sulfur battery
CN114744363A (en) * 2022-03-29 2022-07-12 中材锂膜(宁乡)有限公司 Lithium ion battery diaphragm slurry, preparation method thereof and diaphragm

Similar Documents

Publication Publication Date Title
KR102137533B1 (en) Separator for battery with functional binder and electrochemical device prepared thereby
KR101358764B1 (en) Separator and electrochemical device having the same
EP2899776B1 (en) Method of manufacturing a separator for a lithium secondary battery
WO2018038584A1 (en) Separator for electrochemical device and electrochemical device comprising said separator
WO2011040704A2 (en) Method for producing a separator, separator produced by same, and method for producing an electrochemical device comprising the separator
WO2011105866A2 (en) Manufacturing method for separator, separator made therefrom, and manufacturing method for electrochemical device containing same
WO2011065765A2 (en) Method for manufacturing a separator, separator made by same, and electrochemical device comprising the separator
WO2012128440A1 (en) Electrode assembly and method for manufacturing same
WO2012046966A2 (en) Electrochemical device with improved cycle characteristics
KR102228625B1 (en) Porous separator for electric device and preparation method thereof
WO2013157902A1 (en) Method for manufacturing separator, separator formed thereby, and electrochemical device comprising said separator
WO2010027203A2 (en) Separator with a porous coating layer and electrochemical device having the same
KR102311624B1 (en) Separator with adhesive layer for lithium secondary battery
WO2018147714A1 (en) Separation film for lithium secondary battery having adhesive layer
KR102308942B1 (en) Separator and electrochemical device containing the same
CN110574190B (en) Separator including binders having different glass transition temperatures and method of manufacturing the same
WO2018128484A1 (en) Separator for battery to which functional binder is applied, and electrochemical device applying same
KR101751443B1 (en) Separator having porous coating layer and electrochemical device having the same
US20210226300A1 (en) Separator for lithium secondary battery and manufacturing method therefor
KR20160136089A (en) A Separator Having an Electrode Bonding Layer and A Secondary battery Comprising the Same
KR20160130715A (en) A Separator Having an Electrode Bonding Layer and A Cell Assembly Comprising the Same
US10637028B2 (en) Separator and electrochemical device comprising same
WO2020256313A1 (en) Coating separator for secondary battery, and method for manufacturing same
KR20180088280A (en) Method for Preparing Separator, Separator Prepared by the Method and Electrochemical Device Including the Same
WO2019135532A1 (en) Separator for secondary battery, and electrochemical device to which same is applied

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18736258

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018736258

Country of ref document: EP

Effective date: 20190319

ENP Entry into the national phase

Ref document number: 2019519709

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE