WO2018128149A1 - Core, and reactor, current limiter, electromagnetic actuator and motor using said core - Google Patents
Core, and reactor, current limiter, electromagnetic actuator and motor using said core Download PDFInfo
- Publication number
- WO2018128149A1 WO2018128149A1 PCT/JP2017/046982 JP2017046982W WO2018128149A1 WO 2018128149 A1 WO2018128149 A1 WO 2018128149A1 JP 2017046982 W JP2017046982 W JP 2017046982W WO 2018128149 A1 WO2018128149 A1 WO 2018128149A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic
- magnetic field
- magnetic core
- current
- value
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F37/00—Fixed inductances not covered by group H01F17/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/02—Adaptations of transformers or inductances for specific applications or functions for non-linear operation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/16—Rectilinearly-movable armatures
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/02—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/02—Details of the magnetic circuit characterised by the magnetic material
Definitions
- the present invention relates to a magnetic core and a reactor, a current limiter, an electromagnetic actuator, and a motor using the magnetic core.
- Reactors in which a coil is wound around a magnetic core are used for various purposes such as current limiters.
- Magnetic cores are also widely used for electromagnetic actuators and motors.
- the current limiter will be described.
- a current limiter is known as a device for suppressing such a large current when a short circuit accident occurs.
- the demand for current limiters is expected to increase in the future with the increase in power capacity and the spread of distributed power sources in recent years.
- the specific configuration of the current limiting device is described in Patent Documents 1 to 4, for example.
- the current limiting device described in Patent Documents 1 and 2 has a configuration in which a reactor is connected to a bridge circuit composed of a thyristor and a diode.
- the current limiter described in Patent Document 3 has a configuration in which a series resonant circuit and a parallel resonant circuit are combined.
- the current limiting device described in Patent Document 4 has a configuration in which a magnetic bias is applied to a saturable DC reactor using a DC power supply.
- JP 49-50448 A Japanese Patent Laid-Open No. 9-285012 JP 2010-17016 A JP 2002-291150 A Japanese Patent No. 6109453 Japanese Patent Laid-Open No. 2015-220797
- the current limiters described in Patent Documents 1 to 4 have a large number of elements and a complicated apparatus configuration.
- the current limiting device described in Patent Document 3 requires a separate filter circuit for suppressing noise, which further complicates the circuit configuration.
- the current limiter described in Patent Document 4 always requires a DC power source for applying a magnetic bias, and there is a problem that it does not function as a current limiter when the DC power source is lost.
- the conventional current limiter since the conventional current limiter has a complicated device configuration, there is a problem that not only it is difficult to ensure reliability but also a heavy maintenance burden. Moreover, it is difficult to obtain a sufficient response speed due to the complexity of the device configuration.
- Patent Document 5 discloses an electromagnetic actuator that interrupts a current path when a large current is generated.
- the electromagnetic actuator described in Patent Document 5 includes a movable iron core and a stationary iron core, and a tripping conductor (coil) through which a main circuit current flows. By fixing the end of the movable iron core with a return spring, a large current is generated. It is configured to perform only the shut-off operation.
- the electromagnetic actuator described in Patent Document 5 has a problem in reliability due to not only a slow response speed but also aged deterioration of the spring because the response current for performing the breaking operation is determined by the spring characteristics.
- Patent Document 6 discloses an actuator using a metamagnetic material.
- the actuator described in Patent Document 6 uses a magnetic phase transition due to temperature, it requires rapid heating and cooling, and has a problem that the application range is very limited.
- a general motor using a soft magnetic material for the rotor or stator has a problem that cogging torque is generated.
- one object of the present invention is to provide a magnetic core that can be widely applied to reactors, current limiters, electromagnetic actuators, motors, and the like.
- Another object of the present invention is to provide a highly reliable reactance type current limiter having a simple device configuration.
- Still another object of the present invention is to provide an electromagnetic actuator having a high response speed and high reliability.
- Still another object of the present invention is to provide a motor with reduced cogging torque.
- the magnetic core according to the present invention has a magnetic property in which magnetic flux is applied to a magnetic field in a first magnetic field region below a first magnetic field strength in a first quadrant of a graph in which a first axis is a magnetic field and a second axis is a magnetic flux density or magnetization.
- a second magnetic field region in which a differential value of density or magnetization is a first value and the magnetic field intensity is higher than the first magnetic field strength, a second magnetic flux density or magnetization differential value with respect to the magnetic field is larger than the first value. It is the value of.
- the first magnetic field region with a low magnetic field strength behaves as a non-magnetic material without magnetization
- the second magnetic field region with a high magnetic field strength behaves as a ferromagnetic material with magnetization. For this reason, when the magnetic field intensity changes from the first magnetic field region to the second magnetic field region, the magnetization rapidly increases. Therefore, various devices such as a reactor, a current limiter, an electromagnetic actuator, and a motor using this phenomenon. It becomes possible to apply to.
- a reactor is configured by winding a coil around a magnetic core according to the present invention and this is applied to a current limiter, the current operates in the first magnetic field region when the current flowing through the coil is a predetermined value or less. For this reason, while the reactance is small, when the current flowing through the coil exceeds a predetermined value, the reactance increases because it operates in the second magnetic field region. As a result, when the current is less than or equal to the predetermined value, the current limiting operation can be performed when the current exceeds the predetermined value without substantially becoming a load on the power system or the electric circuit. And since it is the simple apparatus structure which wound the coil around the magnetic core, it becomes possible to provide a low-cost and highly reliable current limiter.
- the magnetic core according to the present invention can also be applied to an electromagnetic actuator.
- a fixed magnetic core, a movable magnetic core, and a coil wound around at least one of the fixed magnetic core and the movable magnetic core are provided, and the magnetic core according to the present invention is used for at least one of the fixed magnetic core and the movable magnetic core. good. According to this, it is possible to provide an electromagnetic actuator having a high response speed and high reliability.
- the magnetic core according to the present invention can be applied to a motor.
- a rotor and a stator are provided, and the magnetic core according to the present invention may be used for at least one of the rotor and the stator. According to this, it becomes possible to provide a motor with reduced cogging torque.
- the magnetic characteristic of the magnetic core is a third value in which the magnetic flux density with respect to the magnetic field or the differential value of the magnetization is smaller than the second value in the third magnetic field region that is stronger than the second magnetic field strength. It does not matter. Even when a magnetic core having such a magnetic characteristic is used for, for example, a current limiter, a large reactance is generated when the current flowing through the coil exceeds a predetermined value, so that the current limiter functions correctly. Examples of materials exhibiting such magnetic characteristics include metamagnetic materials, perminbar characteristic materials, and synthetic antiferromagnetic materials.
- an antiferromagnetic ferromagnetic transition material that transitions from antiferromagnetism to ferromagnetism depending on the magnetic field strength. According to this, it becomes possible to use in a wide temperature range including normal temperature.
- the characteristic curve indicating the magnetic characteristic of the magnetic core substantially passes through the origin of the graph. If a material having no hysteresis or having a very small hysteresis is used, for example, a current limiter or an electromagnetic actuator can be stably operated over a plurality of times.
- a highly reliable reactance type current limiter having a simple device configuration, a fast response speed and high reliability electromagnetic actuator, and a motor with reduced cogging torque are provided. It becomes possible to do.
- FIG. 1 is a circuit diagram of an electric circuit using a current limiter 10 according to the first embodiment of the present invention.
- FIG. 2 is another circuit diagram of an electric circuit using the current limiting device 10.
- FIG. 3 is still another circuit diagram of an electric circuit using the current limiting device 10.
- FIG. 4 is a diagram illustrating an example of a specific configuration of the current limiter 10.
- FIG. 5 is a graph showing the magnetic characteristics of the magnetic material used for the magnetic core 11.
- FIG. 6 is a graph showing the magnetic properties of the magnetic material used for the magnetic core 11 and shows only the first quadrant (I).
- FIG. 7 is a graph showing the relationship between the current I flowing through the coil 12 of the current limiter 10 and the inductance L.
- FIG. 5 is a graph showing the magnetic characteristics of the magnetic material used for the magnetic core 11.
- FIG. 6 is a graph showing the magnetic properties of the magnetic material used for the magnetic core 11 and shows only the first quadrant (I).
- FIG. 7 is a graph showing the relationship between the
- FIG. 8 is a graph showing the relationship between the voltage V applied to the coil 12 and the current I flowing through the coil 12.
- FIG. 9 is another graph showing the magnetic characteristics of the magnetic material used for the magnetic core 11.
- FIG. 10 is a graph showing the differential values of the characteristics shown in FIG.
- FIG. 11 is a graph showing the twice differential value of the characteristic shown in FIG.
- FIG. 12 is a graph showing the relationship between the current I flowing through the coil 12 and the value of B / H.
- FIG. 13 is a schematic diagram for explaining the configuration of the electromagnetic actuator 60 according to the second embodiment of the present invention.
- FIG. 14 is a schematic diagram for explaining a configuration of a motor 70 according to the third embodiment of the present invention.
- FIG. 1 is a circuit diagram of an electric circuit using a current limiter 10 according to the first embodiment of the present invention.
- the 1 includes a current limiter 10 and a load 30 connected in series to an AC power source 20.
- the AC power source 20 is, for example, a commercial power source
- the load 30 is various electric devices that operate with power supplied from the AC power source 20.
- the current limiter 10 according to the present embodiment is connected in series between the AC power supply 20 and the load 30 and plays a role of suppressing a large current that flows when the load 30 causes a short circuit accident.
- the circuit breaker 40 may be connected in series with the load 30. If the circuit breaker 40 is used, when the load 30 causes a short circuit accident, the circuit breaker 40 can perform a circuit breaking operation in a state where a large current is suppressed by the current limiter 10.
- the current limiter 10 is a simple reactor. Although details will be described later, the reactance of the current limiter 10 is sufficiently small during normal operation when the current I is equal to or less than a predetermined value, and thus the impedance given to the electric circuit is very small. On the other hand, when the current I exceeds a predetermined value, the reactance of the current limiter 10 is significantly increased. Thereby, since it acts as a large impedance for the AC power supply 20, an increase in the current I is suppressed. Such a change in reactance is due to a change in the magnetic field applied to the magnetic core of the reactor (the principle of electromagnetic induction) and occurs spontaneously in response to a change in the current I. Therefore, an element for detecting the current value Etc. are not necessary.
- a capacitor 50 that resonates with the current limiter 10 may be connected in series as shown in FIG. If the resonance frequency of the resonance circuit including the current limiter 10 and the capacitor 50 is matched with the frequency of the AC power supply 20, the impedance of the current limiter 10 during normal operation can be greatly reduced.
- the current limiter 10 according to the present embodiment is a reactor type, application to an AC circuit is suitable. However, since reactance has an action of delaying an increase in current, assuming that the circuit breaker 40 that cuts off a large current is used, the current limiter 10 according to the present embodiment is used in a DC circuit. However, it is possible to reduce the risk of exceeding the breaking capacity of the breaker 40 (maximum power value that can be cut off). Therefore, the current limiter 10 according to the present embodiment can also be used for a DC circuit.
- FIG. 4 is a diagram illustrating an example of a specific configuration of the current limiter 10 according to the present embodiment.
- the 4 includes a toroidal magnetic core 11 and a coil 12 wound around the magnetic core 11.
- the coil 12 is preferably made of a coated conductor using copper (Cu) having a low resistance value as a core material.
- the toroidal magnetic core 11 forms a closed magnetic circuit.
- a current I flows through the coil 12 wound around the magnetic core 11
- a magnetic flux that circulates around the toroidal magnetic core 11 is generated.
- the magnetic permeability of the magnetic core 11 is sufficiently low, and therefore the reactance generated is small.
- the current I exceeds the predetermined value, the magnetic permeability of the magnetic core 11 increases abruptly, and the reactance also increases abruptly.
- the magnetic material described in detail below is used as the material of the magnetic core 11.
- FIG. 5 is a graph showing the magnetic characteristics of the magnetic material used for the magnetic core 11, wherein the horizontal axis (X axis) as the first axis represents the magnetic field H, and the vertical axis (Y axis) as the second axis represents the magnetization. M is shown.
- symbol A indicates the magnetic property of the magnetic core 11
- symbol SM indicates the magnetic property of a general soft magnetic material
- symbol HM indicates the magnetic property of a general hard magnetic material.
- a general soft magnetic material has a high magnetic permeability in a low magnetic field region and is easily magnetized.
- magnetic saturation occurs. It shows the property of being hardly magnetized.
- the differential value of the magnetization M with respect to the magnetic field H is large in the magnetic field region where the magnetic saturation is not performed, and the differential value of the magnetization M with respect to the magnetic field H is small in the magnetic field region where the magnetic saturation occurs.
- the characteristic curve indicated by symbol SM passes through the graph origin or the vicinity thereof. Therefore, the characteristic curve indicated by symbol SM appears in the first quadrant (I) and the third quadrant (III) of the graph, and does not substantially appear in the second quadrant (II) and the fourth quadrant (IV).
- a general hard magnetic material has a large hysteresis, and a magnetized state is maintained even if the magnetic field is zero. For this reason, the characteristic curve indicated by symbol HM appears in all of the first quadrant (I) to the fourth quadrant (IV) of the graph.
- the magnetic material used for the magnetic core 11 in the present embodiment is in the low magnetic field region as indicated by symbol A in the first quadrant (I) and the third quadrant (III) of the graph. Is hardly magnetized because of its low magnetic permeability, and is easily magnetized with a high magnetic permeability in the intermediate magnetic field region, and further exhibits magnetic saturation when it enters the strong magnetic field region, and hardly magnetizes beyond that.
- the characteristic curve indicated by the symbol A is substantially a graph. Pass through the origin.
- the characteristic curve indicated by the symbol A does not strictly pass through the origin of the graph, it passes through the vicinity of the origin on the horizontal axis or the vertical axis. This means that the same magnetic characteristics can be obtained regardless of whether the magnetic material is in the initial state or after being repeatedly applied with a magnetic field. For this reason, the current limiter 10 using the magnetic material can be used repeatedly, and is automatically restored after the current limiting operation is completed.
- FIG. 6 is a graph showing the magnetic characteristics of the magnetic material used for the magnetic core 11 and shows only the first quadrant (I).
- the magnetic characteristics of the magnetic core 11 will be described with reference to FIG. 6.
- first magnetic field region MF1 region up to the first magnetic field strength H1
- the permeability is low, so that the increase in magnetization M is slight.
- the slope of the graph that is, the differential value of the magnetization M with respect to the magnetic field H is linked to the magnetic permeability.
- the magnetic permeability in the first magnetic field region MF1 is substantially the same as the magnetic permeability of the nonmagnetic material. Therefore, the first magnetic field region MF1 substantially behaves as a nonmagnetic material.
- the magnetic permeability in the region from the first magnetic field strength H1 to the second magnetic field strength H2 (second magnetic field region MF2), the magnetic permeability increases rapidly, and the value of the magnetization M increases significantly. That is, as the magnetic field is increased, the magnetic permeability rapidly increases with the first magnetic field strength H1 as a boundary.
- the magnetic permeability in the second magnetic field region MF2 is close to the magnetic permeability of the soft magnetic material, and therefore behaves softly in the second magnetic field region MF2.
- the magnetic material constituting the magnetic core 11 is not particularly limited as long as it is a magnetic material having the above-described magnetic characteristics, and examples thereof include metamagnetic materials, perminbar characteristic materials, and synthetic antiferromagnetic materials.
- the magnetic material constituting the magnetic core 11 may be a single substance of a metamagnetic material, a permember characteristic material, or a synthetic antiferromagnetic material, or a combination thereof, and a part of the magnetic core 11 is made of a ferromagnetic material. It does not matter.
- the inductance can be changed greatly depending on the magnitude of the current I flowing through the coil 12 of the current limiter 10.
- FIG. 7 is a graph showing the relationship between the current I flowing through the coil 12 of the current limiter 10 and the inductance L.
- the current value I1 shown in FIG. 7 is a current value at which the magnetic field H applied to the magnetic core 11 becomes the first magnetic field strength H1.
- the current value I2 shown in FIG. 7 is a current value at which the magnetic field H applied to the magnetic core 11 becomes the second magnetic field strength H2.
- the value of the inductance of the current limiter 10 is L1, which is sufficiently low. This is because when the current I flowing through the coil 12 is equal to or less than the first current value I1, the magnetic core 11 is in the first magnetic field region MF1 and the magnetic permeability is sufficiently low. As a result, the current limiter 10 hardly becomes a load on the electric circuit.
- the value of the inductance of the current limiter 10 rapidly increases to L2 (> L1). This is because when the current I flowing through the coil 12 exceeds the first current value I1, the magnetic core 11 becomes the second magnetic field region MF2, and thus the magnetic permeability rapidly increases.
- the first current value I1 is an operation start point of the current limiter 10, and when the current I flowing through the coil 12 exceeds the first current value I1, the inductance of the current limiter 10 rapidly increases. As a result, when a current exceeding the first current value I1 flows in the electric circuit, the current limiter 10 spontaneously starts a current limiting operation.
- FIG. 8 is a graph showing the relationship between the voltage V applied to the coil 12 and the current I flowing through the coil 12.
- the impedance Z1 indicated by the slope of the graph is low, and the current I flowing through the coil 12 has the first current value I1. Exceeding this indicates that the impedance Z2 increases.
- the current I flowing through the coil 12 is not more than the first current value I1. In some cases, the load is hardly loaded. On the other hand, when the current I flowing through the coil 12 exceeds the first current value I1, a current limiting operation can be performed due to a rapid increase in inductance.
- the vertical axis is the magnetization M, but the same relationship can be established even if the vertical axis is replaced with the magnetic flux density B.
- FIG. 9 is another graph showing the magnetic characteristics of the magnetic material used for the magnetic core 11.
- the horizontal axis as the first axis shows the magnetic field H, and the vertical axis as the second axis shows the magnetic flux density B. .
- the magnetic characteristic of the magnetic core 11 draws a similar characteristic curve in the first quadrant (I) of the graph. That is, the inclination is small in the first magnetic field region MF1 that is a low magnetic field, the inclination is rapidly increased in the second magnetic field region MF2 that is a medium magnetic field, and the inclination is large in the third magnetic field region MF3 that is a strong magnetic field. Becomes smaller again. Also in the graph shown in FIG. 9, the characteristic curve indicating the magnetic characteristics of the magnetic core 11 substantially passes through the origin, and even if it does not pass through the origin of the graph strictly, the horizontal axis or the vicinity of the origin on the vertical axis Pass through.
- FIG. 10 is a graph showing the differential value of the characteristic shown in FIG. 9, and FIG. 11 is a graph showing the double differential value of the characteristic shown in FIG.
- the characteristics shown in FIG. 10 correspond to the differential permeability of the magnetic material constituting the magnetic core 11.
- the differential value becomes maximum in the second magnetic field region MF2.
- the differential value remains small.
- the twice differentiated value is inverted from a positive value to a negative value in the second magnetic field region MF2.
- the twice differential value is almost zero.
- the magnetic material used for the magnetic core 11 has a characteristic that when the magnetic flux density B is differentiated twice with respect to the magnetic field H, the twice-differentiated value is inverted from a positive value to a negative value.
- FIG. 12 is a graph showing the relationship between the current I flowing through the coil 12 and the value of B / H.
- the value of B / H corresponds to the average magnetic permeability.
- examples of the magnetic material constituting the magnetic core 11 include a metamagnetic material, a Permin bar characteristic material, and a synthetic antiferromagnetic material. Which magnetic material is used may be appropriately selected according to various characteristics (mainly the value of the first magnetic field strength H1) required for the current limiter 10.
- the metamagnetic material refers to a material that undergoes a primary phase transition from a paramagnetic (PM) or anti-ferromagnetic (AFM) to ferromagnetic (FM) by a magnetic field.
- First-order phase transition by a magnetic field refers to having a point at which the change in magnetization related to the magnetic field becomes discontinuous.
- the magnetic field in which the first-order phase transition occurs in the metamagnetic material is normally a relatively large magnetic field of 1 to 10 T. Therefore, the current limiter 10 using this as the material of the magnetic core 11 includes a power system, a large-capacity capacitor circuit, and a power Applications for large currents such as transformer circuits are suitable.
- the magnetic flux density B increases rapidly if the magnetic field H is significantly increased.
- the magnetic field strength that is, the first magnetic field strength H1 that causes such a change is obtained. It is extremely strong as 10 to 100 T, and it is practically impossible to generate such a magnetic field by the coil 12 of the current limiter 10. For this reason, even if an antiferromagnetic material is used as the material of the magnetic core 11, it is practically difficult to function as a current limiting device.
- Metamagnetic materials are paramagnetic ferromagnetic transition type (PM-FM transition type) that transitions from paramagnetism to ferromagnetism by a magnetic field, and antiferromagnetic ferromagnetic transition type (AFM-FM) that transitions from antiferromagnetism to ferromagnetism. Classification).
- PM-FM transition type paramagnetic ferromagnetic transition type
- AFM-FM antiferromagnetic ferromagnetic transition type
- the primary phase transition occurs only in the vicinity of the Curie temperature, so the operating temperature of the current limiter 10 is also limited to the vicinity of the Curie temperature.
- the AFM-FM transition type the primary phase transition occurs when the temperature is equal to or lower than the Neel temperature at which the antiferromagnetic state disappears. Therefore, the current limiter 10 can be operated at a wider temperature.
- metamagnetic material examples include La (FeSi) 13 system, La (FeSi) 13 H system, MnAs system, Mn (AsSb) system, MnAl system, FeRh system, NiMnIn system, Mn 3 GaC system, Mn 3 SnC. And Mn 3 SnB-based materials.
- La (FeSi) 13 H-based, MnAs-based, Mn (AsSb) -based, and MnAl-based materials that cause a first-order phase transition near room temperature are preferable, and most preferable is an MFM-based material that is an AFM-FM transition type metamagnetic material.
- a heater or a cooling device may be used to maintain the temperature range in which the primary phase transition occurs.
- the permin bar characteristic material is a material that exhibits special BH characteristics, which is confirmed by Ni45 wt% Co 25 wt% Fe residue called a permin bar.
- permin bar, Mo permin bar, super permin bar, iso palm, sen palm and the like can be mentioned.
- NiZn ferrite and CoB-based amorphous materials can also be mentioned as permin bar characteristic materials.
- the permin bar characteristic material has no hysteresis at a relatively low magnetic field and shows a linear BH characteristic with a small inclination, and shows a BH characteristic with a large inclination when exceeding a certain magnetic field (first magnetic field strength H1).
- first magnetic field strength H1 is 1/100 to 1/1000 that of the metamagnetic material. Therefore, if this material is used as the material of the magnetic core 11, a current limiter for low power is formed. It becomes possible to do.
- the permbar characteristic material if the temperature of the permbar characteristic material is below the Curie temperature at which ferromagnetism is maintained, the permeability changes in accordance with the magnetic field strength, so that it can operate in a wide range of temperatures including room temperature. Furthermore, since the permbar characteristic material has a small magnetostriction due to application of a magnetic field, it is possible to obtain high durability when used as the magnetic core 11. In addition, since the composition constituting the perminbar characteristic material is mostly a transition metal, there is also an advantage that the material cost is low compared to a metamagnetic material containing a platinum group element or a rare earth element.
- the permember characteristic material has a perminver characteristic as the material of the magnetic core 11.
- the current limiting device 10 using a material can be used as a reactor during normal operation.
- a synthetic antiferromagnetic material refers to a material that exhibits antiferromagnetic properties by antiferromagnetic coupling between a ferromagnetic phase and a ferromagnetic phase. Unlike an antiferromagnetic material, a synthetic antiferromagnetic material has a low antiferromagnetic coupling strength. Therefore, when a certain magnetic field (first magnetic field strength H1) is exceeded, a ferromagnetic magnetization arrangement is obtained.
- a specific material includes a FeCo / Ru / FeCo thin film.
- the synthetic antiferromagnetic material is used, the first magnetic field strength H1 is 1/10 to 1/100 that of the metamagnetic material. Therefore, if this is used as the material of the magnetic core 11, the current limiter for medium power is used. Can be configured.
- the current limiter 10 is obtained by winding the coil 12 around the magnetic core 11 made of the magnetic material having the above-described characteristics, and has a very simple configuration.
- the current limiting operation can be performed spontaneously and at high speed without using an active element such as a diode and a thyristor, or a direct current power source, so that it is possible to realize cost reduction and improved reliability.
- an active element such as a diode and a thyristor, or a direct current power source
- FIG. 13 is a schematic diagram for explaining the configuration of the electromagnetic actuator 60 according to the second embodiment of the present invention.
- the 13 includes a movable magnetic core 61, a fixed magnetic core 62, and a coil 63 wound around the movable magnetic core 61.
- the fixed magnetic core 62 is made of a ferromagnetic material such as iron
- the movable magnetic core 61 is made of a magnetic material having the characteristics shown in FIGS. Accordingly, as described with reference to FIG. 7, when the current I flowing through the coil 63 is equal to or less than the first current value I1, the movable magnetic core 61 behaves substantially as a nonmagnetic material. The state where 61 and the fixed magnetic core 62 are separated is maintained. When the current I flowing through the coil 63 exceeds the first current value I1, an attractive force is generated between the movable magnetic core 61 and the fixed magnetic core 62 due to a rapid increase in magnetization, and the two are brought into close contact with each other.
- the electromagnetic actuator 60 uses the magnetic material having the characteristics shown in FIGS. 5 and 6 as the material of the movable magnetic core 61. Therefore, the circuit that interrupts the current path when a large current is generated. It is preferable to apply to a circuit breaker. In this case, since the response current for performing the interruption operation is determined by the material characteristics of the movable magnetic core 61, a high response speed can be realized, and reliability is not deteriorated due to aging of the spring.
- the magnetic material having the characteristics shown in FIGS. 5 and 6 is used for the movable magnetic core 61.
- the magnetic material having the characteristics shown in FIGS. A material may be used for the fixed magnetic core 62.
- a ferromagnetic material such as iron may be used as the material of the movable magnetic core 61.
- a magnetic material having the characteristics shown in FIGS. 5 and 6 may be used for both the movable magnetic core 61 and the fixed magnetic core 62, and the coil 63 may be wound around both.
- FIG. 14 is a schematic diagram for explaining the configuration of a motor 70 according to the third embodiment of the present invention.
- stator 14 is provided with a stator 71 and a rotor 74.
- a plurality of stator magnetic poles 72 that are part of the stator 71 are periodically arranged on the inner peripheral wall of the stator 71, and a coil 73 is wound around each stator magnetic pole 72. Further, the same number of permanent magnets 75 as the stator magnetic poles 72 are arranged on the outer peripheral wall of the rotor 74 so as to face the stator magnetic poles 72.
- a magnetic material having the characteristics shown in FIGS. 5 and 6 is used as the material of the stator magnetic pole 72.
- the stator magnetic pole 72 behaves substantially as a nonmagnetic material. Hardly occurs.
- the stator magnetic pole 72 behaves softly, so that the rotor 74 can be rotated.
- the motor 70 according to the embodiment has a reduced cogging torque, the torque with respect to the current is increased, and high rotational efficiency can be obtained.
- the magnetic material having the characteristics shown in FIGS. 5 and 6 is used for the stator 71 side (stator magnetic pole 72).
- the magnetic material may be used for the rotor 74 side. I do not care.
- a rotary motor is illustrated in FIG. 14, it can also be applied to a linear motor.
- the current limiter 10 has a configuration in which the coil 12 is wound around the toroidal magnetic core 11, but the current limiter according to the present invention is not limited thereto. Therefore, the shape of the magnetic core may be an E shape, U shape, or I shape other than the toroidal shape.
- the magnetic core 11 may be provided with a magnetic gap.
- the coil 12 is not limited to the coated conductor using copper (Cu) as a core material, and a superconductor may be used.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Nonlinear Science (AREA)
- Emergency Protection Circuit Devices (AREA)
- Coils Or Transformers For Communication (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
[Problem] To provide a core that can be widely applied, e.g., in a reactor, current limiter, electromagnetic actuator, motor, etc.
[Solution] The magnetic characteristics of this core 11 are such that, in a first quadrant of a graph with the magnetic field as the first axis and magnetic flux density or magnetization as the second axis, in a first magnetic field region MF1 with an intensity less than or equal to a first magnetic field intensity H1, the differential value of the magnetic flux density or magnetization with respect to the magnetic field is a first value, and in a second magnetic field region MF2 with an intensity greater than the first magnetic field intensity H1, the differential value of the magnetic flux density or magnetization with respect to the magnetic field is a second value greater than the first value. According to the present invention, a smaller magnetization is obtained in the first magnetic field region with the lower magnetic field intensity, and a greater magnetization is obtained in the second magnetic field region with the high magnetic field intensity. For this reason, if the magnetic field intensity changes from the first magnetic field region to the second magnetic field region, since magnetization increases rapidly, the core can be applied to various devices that utilize this phenomenon, such as a reactor, a current limiter, an electromagnetic actuator or a motor.
Description
本発明は、磁心並びにこれを用いたリアクトル、限流器、電磁アクチュエータ及びモータに関する。
The present invention relates to a magnetic core and a reactor, a current limiter, an electromagnetic actuator, and a motor using the magnetic core.
磁心にコイルが巻回されてなるリアクトルは、限流器など様々な用途に使用されている。また、磁心は、電磁アクチュエータやモータなどにも広く利用されている。以下、限流器について説明する。
Reactors in which a coil is wound around a magnetic core are used for various purposes such as current limiters. Magnetic cores are also widely used for electromagnetic actuators and motors. Hereinafter, the current limiter will be described.
電力系統や電気回路において短絡事故が発生すると、短絡箇所において瞬時に大電流が流れ、この電流によって系統機器や回路素子が損傷したり、場合よっては火災が発生したりすることもある。短絡事故発生時におけるこのような大電流を抑制するための機器として、従来から限流器が知られている。限流器は、近年における電力容量の増加や分散型電源の普及に伴って、今後ますます需要が高まるものと予想される。
When a short circuit accident occurs in a power system or an electric circuit, a large current flows instantaneously at the short circuit point, and this current may damage system devices and circuit elements, or may cause a fire. Conventionally, a current limiter is known as a device for suppressing such a large current when a short circuit accident occurs. The demand for current limiters is expected to increase in the future with the increase in power capacity and the spread of distributed power sources in recent years.
限流器の具体的な構成は、例えば特許文献1~4に記載されている。特許文献1及び2に記載された限流器は、サイリスタとダイオードとからなるブリッジ回路にリアクトルを接続した構成を有している。また、特許文献3に記載された限流器は、直列共振回路と並列共振回路を組み合わせた構成を有している。さらに、特許文献4に記載された限流器は、直流電源を用いて可飽和直流リアクトルに磁気バイアスをかける構成を有している。
The specific configuration of the current limiting device is described in Patent Documents 1 to 4, for example. The current limiting device described in Patent Documents 1 and 2 has a configuration in which a reactor is connected to a bridge circuit composed of a thyristor and a diode. The current limiter described in Patent Document 3 has a configuration in which a series resonant circuit and a parallel resonant circuit are combined. Furthermore, the current limiting device described in Patent Document 4 has a configuration in which a magnetic bias is applied to a saturable DC reactor using a DC power supply.
しかしながら、特許文献1~4に記載された限流器は素子数が多く、装置構成が複雑である。特に、特許文献3に記載された限流器は、ノイズを抑えるためのフィルタ回路を別途設ける必要があることから、さらに回路構成が複雑となる。また、特許文献4に記載された限流器は、磁気バイアスをかけるための直流電源が常に必要であり、直流電源が失われると限流器として機能しないという問題があった。
However, the current limiters described in Patent Documents 1 to 4 have a large number of elements and a complicated apparatus configuration. In particular, the current limiting device described in Patent Document 3 requires a separate filter circuit for suppressing noise, which further complicates the circuit configuration. In addition, the current limiter described in Patent Document 4 always requires a DC power source for applying a magnetic bias, and there is a problem that it does not function as a current limiter when the DC power source is lost.
このように、従来の限流器は装置構成が複雑であることから、信頼性の確保が難しいばかりでなく、保守負担も大きいという問題があった。しかも、装置構成の複雑さに起因して、十分な応答速度を得ることも困難であった。
As described above, since the conventional current limiter has a complicated device configuration, there is a problem that not only it is difficult to ensure reliability but also a heavy maintenance burden. Moreover, it is difficult to obtain a sufficient response speed due to the complexity of the device configuration.
また、特許文献5には、大電流が発生した場合に電流経路を遮断する電磁アクチュエータが開示されている。特許文献5に記載された電磁アクチュエータは、可動鉄心及び固定鉄心と、主回路電流が流れる引外し導体(コイル)とを備え、可動鉄心の末端を復帰ばねで固定することにより、大電流発生時にのみ遮断動作を行うよう構成されている。しかしながら、特許文献5に記載された電磁アクチュエータは、遮断動作を行う応答電流がばね特性によって決定されることから、応答速度が遅いだけでなく、ばねの経年劣化による信頼性に問題があった。
Further, Patent Document 5 discloses an electromagnetic actuator that interrupts a current path when a large current is generated. The electromagnetic actuator described in Patent Document 5 includes a movable iron core and a stationary iron core, and a tripping conductor (coil) through which a main circuit current flows. By fixing the end of the movable iron core with a return spring, a large current is generated. It is configured to perform only the shut-off operation. However, the electromagnetic actuator described in Patent Document 5 has a problem in reliability due to not only a slow response speed but also aged deterioration of the spring because the response current for performing the breaking operation is determined by the spring characteristics.
さらに、コイルを用いた電磁アクチュエータではないが、特許文献6にはメタ磁性材料を用いたアクチュエータが開示されている。しかしながら、特許文献6に記載されたアクチュエータは、温度による磁気相転移を利用しているため、急速な加熱や冷却が必要であり、応用範囲が非常に限られるという問題があった。
Furthermore, although not an electromagnetic actuator using a coil, Patent Document 6 discloses an actuator using a metamagnetic material. However, since the actuator described in Patent Document 6 uses a magnetic phase transition due to temperature, it requires rapid heating and cooling, and has a problem that the application range is very limited.
また、ロータ又はステータに軟磁性材料を用いた一般的なモータには、コギングトルクが生じるという問題があった。
Also, a general motor using a soft magnetic material for the rotor or stator has a problem that cogging torque is generated.
したがって、本発明の一つの目的は、リアクトル、限流器、電磁アクチュエータ及びモータなどに幅広く応用可能な磁心を提供することである。
Therefore, one object of the present invention is to provide a magnetic core that can be widely applied to reactors, current limiters, electromagnetic actuators, motors, and the like.
また、本発明の他の目的は、単純な装置構成を有する信頼性の高いリアクタンス型の限流器を提供することである。
Another object of the present invention is to provide a highly reliable reactance type current limiter having a simple device configuration.
本発明のさらに他の目的は、応答速度が速く、且つ、信頼性の高い電磁アクチュエータを提供することである。
Still another object of the present invention is to provide an electromagnetic actuator having a high response speed and high reliability.
本発明のさらに他の目的は、コギングトルクが低減されたモータを提供することである。
Still another object of the present invention is to provide a motor with reduced cogging torque.
本発明による磁心は、磁気特性が、第1軸を磁場とし第2軸を磁束密度又は磁化としたグラフの第1象限において、第1の磁場強度以下の第1の磁場領域では、磁場に対する磁束密度又は磁化の微分値が第1の値であり、前記第1の磁場強度よりも強い第2の磁場領域では、磁場に対する磁束密度又は磁化の微分値が前記第1の値よりも大きい第2の値であることを特徴とする。
The magnetic core according to the present invention has a magnetic property in which magnetic flux is applied to a magnetic field in a first magnetic field region below a first magnetic field strength in a first quadrant of a graph in which a first axis is a magnetic field and a second axis is a magnetic flux density or magnetization. In a second magnetic field region in which a differential value of density or magnetization is a first value and the magnetic field intensity is higher than the first magnetic field strength, a second magnetic flux density or magnetization differential value with respect to the magnetic field is larger than the first value. It is the value of.
本発明によれば、磁場強度の低い第1の磁場領域では磁化を持たない非磁性体として振る舞い、磁場強度の高い第2の磁場領域では磁化を持つ強磁性体として振る舞う。このため、磁場強度が第1の磁場領域から第2の磁場領域に変化した場合、磁化が急激に増大することから、この現象を利用したリアクトル、限流器、電磁アクチュエータ及びモータなど種々のデバイスに応用することが可能となる。
According to the present invention, the first magnetic field region with a low magnetic field strength behaves as a non-magnetic material without magnetization, and the second magnetic field region with a high magnetic field strength behaves as a ferromagnetic material with magnetization. For this reason, when the magnetic field intensity changes from the first magnetic field region to the second magnetic field region, the magnetization rapidly increases. Therefore, various devices such as a reactor, a current limiter, an electromagnetic actuator, and a motor using this phenomenon. It becomes possible to apply to.
例えば、本発明による磁心にコイルを巻回することによってリアクトルを構成し、これを限流器に応用すれば、コイルを流れる電流が所定値以下である場合には第1の磁場領域で動作することからリアクタンスが小さい一方、コイルを流れる電流が所定値を超えると第2の磁場領域で動作することからリアクタンスが増大する。これにより、電流が所定値以下である場合には、電力系統や電気回路に対して実質的に負荷となることなく、電流が所定値を超えた場合に限流動作を行うことができる。しかも、磁心にコイルを巻回したシンプルな装置構成であることから、低コストで信頼性の高い限流器を提供することが可能となる。
For example, if a reactor is configured by winding a coil around a magnetic core according to the present invention and this is applied to a current limiter, the current operates in the first magnetic field region when the current flowing through the coil is a predetermined value or less. For this reason, while the reactance is small, when the current flowing through the coil exceeds a predetermined value, the reactance increases because it operates in the second magnetic field region. As a result, when the current is less than or equal to the predetermined value, the current limiting operation can be performed when the current exceeds the predetermined value without substantially becoming a load on the power system or the electric circuit. And since it is the simple apparatus structure which wound the coil around the magnetic core, it becomes possible to provide a low-cost and highly reliable current limiter.
また、本発明による磁心は、電磁アクチュエータに応用することも可能である。この場合、固定磁心と、可動磁心と、前記固定磁心及び前記可動磁心の少なくとも一方に巻回されたコイルとを備え、前記固定磁心及び前記可動磁心の前記少なくとも一方に本発明による磁心を用いれば良い。これによれば、応答速度が速く、且つ、信頼性の高い電磁アクチュエータを提供することが可能となる。
The magnetic core according to the present invention can also be applied to an electromagnetic actuator. In this case, a fixed magnetic core, a movable magnetic core, and a coil wound around at least one of the fixed magnetic core and the movable magnetic core are provided, and the magnetic core according to the present invention is used for at least one of the fixed magnetic core and the movable magnetic core. good. According to this, it is possible to provide an electromagnetic actuator having a high response speed and high reliability.
さらに、本発明による磁心は、モータに応用することも可能である。この場合、ロータとステータとを備え、前記ロータ及び前記ステータの少なくとも一方に本発明による磁心を用いれば良い。これによれば、コギングトルクが低減されたモータを提供することが可能となる。
Furthermore, the magnetic core according to the present invention can be applied to a motor. In this case, a rotor and a stator are provided, and the magnetic core according to the present invention may be used for at least one of the rotor and the stator. According to this, it becomes possible to provide a motor with reduced cogging torque.
本発明において、前記磁心の磁気特性は、前記第2の磁場強度よりも強い第3の磁場領域では、磁場に対する磁束密度また磁化の微分値が前記第2の値よりも小さい第3の値であっても構わない。このような磁気特性を有する磁心を例えば限流器に用いる場合であっても、コイルを流れる電流が所定値を超えると大きなリアクタンスが発生することから、限流器として正しく機能する。このような磁気特性を示す材料としては、メタ磁性材料、パーミンバー特性材料及び合成反強磁性材料が挙げられる。特に、メタ磁性材料を用いる場合、磁場強度によって反強磁性から強磁性に転移する反強磁性強磁性転移型材料を用いることが好ましい。これによれば、常温を含む広い温度領域で使用することが可能となる。
In the present invention, the magnetic characteristic of the magnetic core is a third value in which the magnetic flux density with respect to the magnetic field or the differential value of the magnetization is smaller than the second value in the third magnetic field region that is stronger than the second magnetic field strength. It does not matter. Even when a magnetic core having such a magnetic characteristic is used for, for example, a current limiter, a large reactance is generated when the current flowing through the coil exceeds a predetermined value, so that the current limiter functions correctly. Examples of materials exhibiting such magnetic characteristics include metamagnetic materials, perminbar characteristic materials, and synthetic antiferromagnetic materials. In particular, when a metamagnetic material is used, it is preferable to use an antiferromagnetic ferromagnetic transition material that transitions from antiferromagnetism to ferromagnetism depending on the magnetic field strength. According to this, it becomes possible to use in a wide temperature range including normal temperature.
本発明において、前記磁心の磁気特性を示す特性曲線は、実質的に前記グラフの原点を通ることが好ましい。このようなヒステリシスの無い、或いは、ヒステリシスの非常に小さい材料を用いれば、例えば限流器や電磁アクチュエータなどを複数回に亘って安定して動作させることが可能となる。
In the present invention, it is preferable that the characteristic curve indicating the magnetic characteristic of the magnetic core substantially passes through the origin of the graph. If a material having no hysteresis or having a very small hysteresis is used, for example, a current limiter or an electromagnetic actuator can be stably operated over a plurality of times.
このように、本発明によれば、リアクトル、限流器、電磁アクチュエータ及びモータなどに幅広く応用可能な磁心を提供することが可能となる。
Thus, according to the present invention, it is possible to provide a magnetic core that can be widely applied to reactors, current limiters, electromagnetic actuators, motors, and the like.
また、本発明によれば、単純な装置構成を有する信頼性の高いリアクタンス型の限流器や、応答速度が速く、且つ、信頼性の高い電磁アクチュエータや、コギングトルクが低減されたモータを提供することが可能となる。
In addition, according to the present invention, a highly reliable reactance type current limiter having a simple device configuration, a fast response speed and high reliability electromagnetic actuator, and a motor with reduced cogging torque are provided. It becomes possible to do.
以下、添付図面を参照しながら、本発明の好ましい実施形態について詳細に説明する。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
図1は、本発明の第1の実施形態による限流器10を用いた電気回路の回路図である。
FIG. 1 is a circuit diagram of an electric circuit using a current limiter 10 according to the first embodiment of the present invention.
図1に示す電気回路は、交流電源20に直列に接続された限流器10及び負荷30からなる。交流電源20は例えば商用電源であり、負荷30は交流電源20から供給される電力によって動作する各種電気機器である。本実施形態による限流器10は、交流電源20と負荷30との間に直列に接続され、負荷30が短絡事故を起こした場合に流れる大電流を抑制する役割を果たす。図2に示すように、負荷30に対して遮断器40を直列に接続しても構わない。遮断器40を用いれば、負荷30が短絡事故を起こした場合、限流器10によって大電流が抑制された状態で遮断器40による遮断動作を行うことができる。
1 includes a current limiter 10 and a load 30 connected in series to an AC power source 20. The AC power source 20 is, for example, a commercial power source, and the load 30 is various electric devices that operate with power supplied from the AC power source 20. The current limiter 10 according to the present embodiment is connected in series between the AC power supply 20 and the load 30 and plays a role of suppressing a large current that flows when the load 30 causes a short circuit accident. As shown in FIG. 2, the circuit breaker 40 may be connected in series with the load 30. If the circuit breaker 40 is used, when the load 30 causes a short circuit accident, the circuit breaker 40 can perform a circuit breaking operation in a state where a large current is suppressed by the current limiter 10.
図1及び図2に示すように、本実施形態による限流器10は単純なリアクトルである。詳細については後述するが、限流器10のリアクタンスは、電流Iが所定値以下である通常動作時においては十分に小さく、これにより電気回路に与えるインピーダンスは非常に小さい。これに対し、電流Iが所定値を超えた異常時においては、限流器10のリアクタンスが大幅に上昇する。これにより、交流電源20に対して大きなインピーダンスとして働くことから、電流Iの増加が抑制される。このようなリアクタンスの変化はリアクトルの磁心に印加される磁場の変化(電磁誘導の原理)によるものであり、電流Iの変化に対して自発的に生じることから、電流値を検出するための素子などは不要である。
As shown in FIGS. 1 and 2, the current limiter 10 according to the present embodiment is a simple reactor. Although details will be described later, the reactance of the current limiter 10 is sufficiently small during normal operation when the current I is equal to or less than a predetermined value, and thus the impedance given to the electric circuit is very small. On the other hand, when the current I exceeds a predetermined value, the reactance of the current limiter 10 is significantly increased. Thereby, since it acts as a large impedance for the AC power supply 20, an increase in the current I is suppressed. Such a change in reactance is due to a change in the magnetic field applied to the magnetic core of the reactor (the principle of electromagnetic induction) and occurs spontaneously in response to a change in the current I. Therefore, an element for detecting the current value Etc. are not necessary.
尚、通常動作時のリアクタンス成分に起因した電圧降下をより低減させるためには、図3に示すように、限流器10と共振するコンデンサ50を直列に接続すればよい。そして、限流器10とコンデンサ50からなる共振回路の共振周波数を交流電源20の周波数と一致させれば、通常動作時における限流器10のインピーダンスを大幅に低減することが可能となる。
In order to further reduce the voltage drop caused by the reactance component during normal operation, a capacitor 50 that resonates with the current limiter 10 may be connected in series as shown in FIG. If the resonance frequency of the resonance circuit including the current limiter 10 and the capacitor 50 is matched with the frequency of the AC power supply 20, the impedance of the current limiter 10 during normal operation can be greatly reduced.
尚、本実施形態による限流器10はリアクトル型であることから、交流回路への応用が好適である。しかしながら、リアクタンスには電流増加を遅延させる作用があるため、大電流を遮断する遮断器40を用いることを前提とすれば、本実施形態による限流器10を直流回路に使用した場合であっても、遮断器40の遮断容量(遮断可能な最大電力値)を超えるリスクを軽減することが可能となる。したがって、本実施形態による限流器10は、直流回路に使用することも可能である。
In addition, since the current limiter 10 according to the present embodiment is a reactor type, application to an AC circuit is suitable. However, since reactance has an action of delaying an increase in current, assuming that the circuit breaker 40 that cuts off a large current is used, the current limiter 10 according to the present embodiment is used in a DC circuit. However, it is possible to reduce the risk of exceeding the breaking capacity of the breaker 40 (maximum power value that can be cut off). Therefore, the current limiter 10 according to the present embodiment can also be used for a DC circuit.
図4は、本実施形態による限流器10の具体的構成の一例を示す図である。
FIG. 4 is a diagram illustrating an example of a specific configuration of the current limiter 10 according to the present embodiment.
図4に示す限流器10は、トロイダル型の磁心11と、磁心11に巻回されたコイル12によって構成されている。コイル12は、抵抗値の低い銅(Cu)を芯材に用いた被覆導線などを用いることが好ましい。トロイダル型の磁心11は閉磁路を構成しており、磁心11に巻回されたコイル12に電流Iが流れると、トロイダル型の磁心11を周回する磁束が発生する。しかしながら、電流Iが所定値以下である通常動作時においては磁心11の透磁率が十分に低く、このため発生するリアクタンスも小さい。そして、電流Iが所定値を超えた異常時になると磁心11の透磁率が急激に増加し、これによりリアクタンスも急激に増加する。
4 includes a toroidal magnetic core 11 and a coil 12 wound around the magnetic core 11. The current limiting device 10 shown in FIG. The coil 12 is preferably made of a coated conductor using copper (Cu) having a low resistance value as a core material. The toroidal magnetic core 11 forms a closed magnetic circuit. When a current I flows through the coil 12 wound around the magnetic core 11, a magnetic flux that circulates around the toroidal magnetic core 11 is generated. However, during normal operation where the current I is less than or equal to a predetermined value, the magnetic permeability of the magnetic core 11 is sufficiently low, and therefore the reactance generated is small. When the current I exceeds the predetermined value, the magnetic permeability of the magnetic core 11 increases abruptly, and the reactance also increases abruptly.
このような現象を発現させるべく、本実施形態においては、磁心11の材料として以下に詳述する磁性材料を用いている。
In order to express such a phenomenon, in this embodiment, the magnetic material described in detail below is used as the material of the magnetic core 11.
図5は、磁心11に用いられる磁性材料の磁気特性を示すグラフであり、第1軸である横軸(X軸)は磁場Hを示し、第2軸である縦軸(Y軸)は磁化Mを示している。図5において、符号Aは磁心11の磁気特性を示し、符号SMは一般的な軟磁性材料の磁気特性を示し、符号HMは一般的な硬磁性材料の磁気特性を示している。
FIG. 5 is a graph showing the magnetic characteristics of the magnetic material used for the magnetic core 11, wherein the horizontal axis (X axis) as the first axis represents the magnetic field H, and the vertical axis (Y axis) as the second axis represents the magnetization. M is shown. In FIG. 5, symbol A indicates the magnetic property of the magnetic core 11, symbol SM indicates the magnetic property of a general soft magnetic material, and symbol HM indicates the magnetic property of a general hard magnetic material.
図5において符号SMで示すように、一般的な軟磁性材料は、低磁場領域においては透磁率が高く容易に磁化される一方、磁場強度が所定値を超えると磁気飽和を起こし、それ以上はほとんど磁化されないという特性を示す。言い換えれば、磁気飽和しない磁場領域では、磁場Hに対する磁化Mの微分値が大きく、磁気飽和する磁場領域では、磁場Hに対する磁化Mの微分値が小さくなる。また、一般的な軟磁性材料は、ヒステリシスが無い、或いは、ヒステリシスが非常に小さいことから、符号SMで示す特性曲線は、グラフの原点又はその近傍を通る。したがって、符号SMで示す特性曲線は、グラフの第1象限(I)及び第3象限(III)に現れ、第2象限(II)及び第4象限(IV)には実質的に現れない。
As shown by the symbol SM in FIG. 5, a general soft magnetic material has a high magnetic permeability in a low magnetic field region and is easily magnetized. On the other hand, when the magnetic field strength exceeds a predetermined value, magnetic saturation occurs. It shows the property of being hardly magnetized. In other words, the differential value of the magnetization M with respect to the magnetic field H is large in the magnetic field region where the magnetic saturation is not performed, and the differential value of the magnetization M with respect to the magnetic field H is small in the magnetic field region where the magnetic saturation occurs. In addition, since a general soft magnetic material has no hysteresis or very small hysteresis, the characteristic curve indicated by symbol SM passes through the graph origin or the vicinity thereof. Therefore, the characteristic curve indicated by symbol SM appears in the first quadrant (I) and the third quadrant (III) of the graph, and does not substantially appear in the second quadrant (II) and the fourth quadrant (IV).
図5において符号HMで示すように、一般的な硬磁性材料は大きなヒステリシスを有しており、磁場がゼロであっても磁化された状態が維持される。このため、符号HMで示す特性曲線は、グラフの第1象限(I)~第4象限(IV)の全てに現れる。
As shown by symbol HM in FIG. 5, a general hard magnetic material has a large hysteresis, and a magnetized state is maintained even if the magnetic field is zero. For this reason, the characteristic curve indicated by symbol HM appears in all of the first quadrant (I) to the fourth quadrant (IV) of the graph.
これらの一般的な強磁性材料に対し、本実施形態において磁心11に用いる磁性材料は、グラフの第1象限(I)及び第3象限(III)において符号Aで示すように、低磁場領域においては透磁率が低いためほとんど磁化されず、中磁場領域においては透磁率が高くなって容易に磁化され、さらに、強磁場領域になると磁気飽和を起こし、それ以上はほとんど磁化されないという特性を示す。選択する材料によっては、第1象限(I)及び第3象限(III)内において僅かにヒステリシスが存在するが、残留磁化はゼロ又は非常に小さいため、符号Aで示す特性曲線は実質的にグラフの原点を通る。符号Aで示す特性曲線が厳密にグラフの原点を通らない場合であっても、横軸又は縦軸の原点近傍を通ることになる。このことは、当該磁性材料が初期状態であるか、或いは、繰り返し磁場を印加した後の状態であるかにかかわらず、同じ磁気特性が得られることを意味する。このため、当該磁性材料を用いた限流器10は繰り返し使用することができ、且つ、限流動作が完了した後、自動復旧する。
In contrast to these general ferromagnetic materials, the magnetic material used for the magnetic core 11 in the present embodiment is in the low magnetic field region as indicated by symbol A in the first quadrant (I) and the third quadrant (III) of the graph. Is hardly magnetized because of its low magnetic permeability, and is easily magnetized with a high magnetic permeability in the intermediate magnetic field region, and further exhibits magnetic saturation when it enters the strong magnetic field region, and hardly magnetizes beyond that. Depending on the material selected, there is a slight hysteresis in the first quadrant (I) and the third quadrant (III), but since the residual magnetization is zero or very small, the characteristic curve indicated by the symbol A is substantially a graph. Pass through the origin. Even when the characteristic curve indicated by the symbol A does not strictly pass through the origin of the graph, it passes through the vicinity of the origin on the horizontal axis or the vertical axis. This means that the same magnetic characteristics can be obtained regardless of whether the magnetic material is in the initial state or after being repeatedly applied with a magnetic field. For this reason, the current limiter 10 using the magnetic material can be used repeatedly, and is automatically restored after the current limiting operation is completed.
図6は、磁心11に用いられる磁性材料の磁気特性を示すグラフであり、第1象限(I)のみを示している。
FIG. 6 is a graph showing the magnetic characteristics of the magnetic material used for the magnetic core 11 and shows only the first quadrant (I).
図6を用いて磁心11の磁気特性についてより具体的に説明すると、磁場Hが無い状態から磁場を高めていくと、第1の磁場強度H1までの領域(第1の磁場領域MF1)においては透磁率が低く、このため磁化Mの増加は僅かである。グラフの傾き、つまり、磁場Hに対する磁化Mの微分値は透磁率に連動する。第1の磁場領域MF1における透磁率は非磁性材料の透磁率と同程度であり、したがって、第1の磁場領域MF1においては実質的に非磁性材料として振る舞う。
More specifically, the magnetic characteristics of the magnetic core 11 will be described with reference to FIG. 6. When the magnetic field is increased from the state without the magnetic field H, the region up to the first magnetic field strength H1 (first magnetic field region MF1) is obtained. The permeability is low, so that the increase in magnetization M is slight. The slope of the graph, that is, the differential value of the magnetization M with respect to the magnetic field H is linked to the magnetic permeability. The magnetic permeability in the first magnetic field region MF1 is substantially the same as the magnetic permeability of the nonmagnetic material. Therefore, the first magnetic field region MF1 substantially behaves as a nonmagnetic material.
一方、第1の磁場強度H1から第2の磁場強度H2までの領域(第2の磁場領域MF2)においては透磁率が急激に高くなり、磁化Mの値は大幅に増加する。つまり、磁場を高めていくと、第1の磁場強度H1を境として透磁率が急激に増加する。第2の磁場領域MF2における透磁率は軟磁性材料の透磁率に近く、したがって、第2の磁場領域MF2においては軟磁性的に振る舞う。
On the other hand, in the region from the first magnetic field strength H1 to the second magnetic field strength H2 (second magnetic field region MF2), the magnetic permeability increases rapidly, and the value of the magnetization M increases significantly. That is, as the magnetic field is increased, the magnetic permeability rapidly increases with the first magnetic field strength H1 as a boundary. The magnetic permeability in the second magnetic field region MF2 is close to the magnetic permeability of the soft magnetic material, and therefore behaves softly in the second magnetic field region MF2.
さらに磁場を高めることによって第2の磁場強度H2を超えると(第3の磁場領域MF3)、磁気飽和を起こし、グラフの傾き、つまり透磁率は再び低下する。
When the second magnetic field strength H2 is exceeded by further increasing the magnetic field (third magnetic field region MF3), magnetic saturation occurs, and the slope of the graph, that is, the magnetic permeability, decreases again.
逆に、第3の磁場領域MF3から磁場を弱めていき、第3の磁場強度H3を下回ると、第4の磁場強度H4までの領域で再び透磁率が高くなる。そして、第4の磁場強度H4を下回ると透磁率が低下し、再び非磁性材料として振る舞う。このように、第1象限(I)内においてはヒステリシスを有しているものの、残留磁化はほとんど存在しないため、磁場Hを一旦ゼロ近辺に戻せば、再び上述した特性と同じ特性が得られる。
Conversely, when the magnetic field is weakened from the third magnetic field region MF3 and falls below the third magnetic field strength H3, the magnetic permeability increases again in the region up to the fourth magnetic field strength H4. And if it falls below 4th magnetic field intensity | strength H4, magnetic permeability will fall and it will behave as a nonmagnetic material again. Thus, although there is hysteresis in the first quadrant (I), there is almost no residual magnetization. Therefore, once the magnetic field H is returned to near zero, the same characteristics as described above can be obtained again.
磁心11を構成する磁性材料としては、上述した磁気特性を有する磁性材料であれば特に限定されないが、一例として、メタ磁性材料、パーミンバー特性材料及び合成反強磁性材料を挙げることができる。磁心11を構成する磁性材料は、メタ磁性材料、パーミンバー特性材料又は合成反強磁性材料の単体であっても構わないし、これらの組み合わせても構わないし、磁心11の一部が強磁性材料によって構成されていても構わない。
The magnetic material constituting the magnetic core 11 is not particularly limited as long as it is a magnetic material having the above-described magnetic characteristics, and examples thereof include metamagnetic materials, perminbar characteristic materials, and synthetic antiferromagnetic materials. The magnetic material constituting the magnetic core 11 may be a single substance of a metamagnetic material, a permember characteristic material, or a synthetic antiferromagnetic material, or a combination thereof, and a part of the magnetic core 11 is made of a ferromagnetic material. It does not matter.
磁心11をこのような磁性材料によって構成すれば、限流器10のコイル12に流れる電流Iの大きさによってインダクタンスを大きく変化させることが可能となる。ここで、磁心11に与えられる磁場Hは、コイル12の構造及びコイル12に流れる電流Iによって決まり、磁路長をML、コイル12の巻数をNとした場合、
H=N×I/ML
で定義される。 If themagnetic core 11 is made of such a magnetic material, the inductance can be changed greatly depending on the magnitude of the current I flowing through the coil 12 of the current limiter 10. Here, the magnetic field H applied to the magnetic core 11 is determined by the structure of the coil 12 and the current I flowing through the coil 12, and when the magnetic path length is ML and the number of turns of the coil 12 is N,
H = N × I / ML
Defined by
H=N×I/ML
で定義される。 If the
H = N × I / ML
Defined by
図7は、限流器10のコイル12に流れる電流IとインダクタンスLとの関係を示すグラフである。ここで、図7に示す電流値I1は、磁心11に与えられる磁場Hが第1の磁場強度H1となる電流値である。また、図7に示す電流値I2は、磁心11に与えられる磁場Hが第2の磁場強度H2となる電流値である。
FIG. 7 is a graph showing the relationship between the current I flowing through the coil 12 of the current limiter 10 and the inductance L. Here, the current value I1 shown in FIG. 7 is a current value at which the magnetic field H applied to the magnetic core 11 becomes the first magnetic field strength H1. Further, the current value I2 shown in FIG. 7 is a current value at which the magnetic field H applied to the magnetic core 11 becomes the second magnetic field strength H2.
図7に示すように、コイル12に流れる電流Iが第1の電流値I1以下であれば、限流器10のインダクタンスの値はL1であり、十分に低い。これは、コイル12に流れる電流Iが第1の電流値I1以下である場合、磁心11が第1の磁場領域MF1にあり、透磁率が十分に低いからである。これにより、限流器10は電気回路に対してほとんど負荷とならない。ここで、第1の磁場領域MF1における磁心11の透磁率をμ1、磁心11の断面積をSとした場合、第1の磁場領域MF1におけるインダクタンスL1は、
L1=μ1×N2×S/ML
で定義される。 As shown in FIG. 7, if the current I flowing through thecoil 12 is equal to or less than the first current value I1, the value of the inductance of the current limiter 10 is L1, which is sufficiently low. This is because when the current I flowing through the coil 12 is equal to or less than the first current value I1, the magnetic core 11 is in the first magnetic field region MF1 and the magnetic permeability is sufficiently low. As a result, the current limiter 10 hardly becomes a load on the electric circuit. Here, when the magnetic permeability of the magnetic core 11 in the first magnetic field region MF1 is μ1, and the cross-sectional area of the magnetic core 11 is S, the inductance L1 in the first magnetic field region MF1 is
L1 = μ1 × N 2 × S / ML
Defined by
L1=μ1×N2×S/ML
で定義される。 As shown in FIG. 7, if the current I flowing through the
L1 = μ1 × N 2 × S / ML
Defined by
これに対し、コイル12に流れる電流Iが第1の電流値I1を超えると、限流器10のインダクタンスの値はL2(>L1)へ急激に増加する。これは、コイル12に流れる電流Iが第1の電流値I1を超えると、磁心11が第2の磁場領域MF2となるため、透磁率が急激に増加するからである。第1の電流値I1は限流器10の動作開始点であり、コイル12に流れる電流Iが第1の電流値I1を超えると、限流器10のインダクタンスが急激に増加する。これにより、電気回路に第1の電流値I1を超える電流が流れると、限流器10は自発的に限流動作を開始することになる。ここで、第2の磁場領域MF2における磁心11の透磁率をμ2とした場合、第2の磁場領域MF2におけるインダクタンスL2は、
L2=μ2×N2×S/ML
で定義される。 On the other hand, when the current I flowing through thecoil 12 exceeds the first current value I1, the value of the inductance of the current limiter 10 rapidly increases to L2 (> L1). This is because when the current I flowing through the coil 12 exceeds the first current value I1, the magnetic core 11 becomes the second magnetic field region MF2, and thus the magnetic permeability rapidly increases. The first current value I1 is an operation start point of the current limiter 10, and when the current I flowing through the coil 12 exceeds the first current value I1, the inductance of the current limiter 10 rapidly increases. As a result, when a current exceeding the first current value I1 flows in the electric circuit, the current limiter 10 spontaneously starts a current limiting operation. Here, when the magnetic permeability of the magnetic core 11 in the second magnetic field region MF2 is μ2, the inductance L2 in the second magnetic field region MF2 is:
L2 = μ2 × N 2 × S / ML
Defined by
L2=μ2×N2×S/ML
で定義される。 On the other hand, when the current I flowing through the
L2 = μ2 × N 2 × S / ML
Defined by
そして、コイル12に流れる電流Iが第2の電流値I2を超えると、限流器10のインダクタンスの値はL3(<L2)へ急激に減少する。これは、コイル12に流れる電流Iが第2の電流値I2を超えると、磁心11が第3の磁場領域MF3となるからである。
Then, when the current I flowing through the coil 12 exceeds the second current value I2, the value of the inductance of the current limiter 10 rapidly decreases to L3 (<L2). This is because the magnetic core 11 becomes the third magnetic field region MF3 when the current I flowing through the coil 12 exceeds the second current value I2.
図8は、コイル12にかかる電圧Vとコイル12に流れる電流Iとの関係を示すグラフである。図8に示すグラフは、コイル12に流れる電流Iが第1の電流値I1以下である場合にはグラフの傾きが示すインピーダンスZ1が低く、コイル12に流れる電流Iが第1の電流値I1を超えると、インピーダンスZ2が増加することを示している。
FIG. 8 is a graph showing the relationship between the voltage V applied to the coil 12 and the current I flowing through the coil 12. In the graph shown in FIG. 8, when the current I flowing through the coil 12 is less than or equal to the first current value I1, the impedance Z1 indicated by the slope of the graph is low, and the current I flowing through the coil 12 has the first current value I1. Exceeding this indicates that the impedance Z2 increases.
このように、本実施形態による限流器10は、磁心11が図5及び図6に示す磁気特性を有していることから、コイル12に流れる電流Iが第1の電流値I1以下である場合にはほとんど負荷とならない一方、コイル12に流れる電流Iが第1の電流値I1を超えると、インダクタンスの急激な増加によって限流動作を行うことが可能となる。尚、図5及び図6に示したグラフは縦軸が磁化Mであるが、縦軸を磁束密度Bに置き換えても、同様の関係が成り立つ。
Thus, in the current limiter 10 according to the present embodiment, since the magnetic core 11 has the magnetic characteristics shown in FIGS. 5 and 6, the current I flowing through the coil 12 is not more than the first current value I1. In some cases, the load is hardly loaded. On the other hand, when the current I flowing through the coil 12 exceeds the first current value I1, a current limiting operation can be performed due to a rapid increase in inductance. In the graphs shown in FIGS. 5 and 6, the vertical axis is the magnetization M, but the same relationship can be established even if the vertical axis is replaced with the magnetic flux density B.
図9は、磁心11に用いられる磁性材料の磁気特性を示す別のグラフであり、第1軸である横軸は磁場Hを示し、第2軸である縦軸は磁束密度Bを示している。
FIG. 9 is another graph showing the magnetic characteristics of the magnetic material used for the magnetic core 11. The horizontal axis as the first axis shows the magnetic field H, and the vertical axis as the second axis shows the magnetic flux density B. .
図9に示すように、縦軸を磁束密度Bに置き換えた場合であっても、磁心11の磁気特性は、グラフの第1象限(I)において同様の特性曲線を描く。つまり、低磁場である第1の磁場領域MF1においては傾きが小さく、中磁場である第2の磁場領域MF2においては傾きが急激に大きくなり、強磁場である第3の磁場領域MF3においては傾きが再び小さくなる。また、図9に示すグラフにおいても、磁心11の磁気特性を示す特性曲線は実質的に原点を通り、厳密にグラフの原点を通らない場合であっても、横軸又は縦軸の原点近傍を通る。
As shown in FIG. 9, even when the vertical axis is replaced with the magnetic flux density B, the magnetic characteristic of the magnetic core 11 draws a similar characteristic curve in the first quadrant (I) of the graph. That is, the inclination is small in the first magnetic field region MF1 that is a low magnetic field, the inclination is rapidly increased in the second magnetic field region MF2 that is a medium magnetic field, and the inclination is large in the third magnetic field region MF3 that is a strong magnetic field. Becomes smaller again. Also in the graph shown in FIG. 9, the characteristic curve indicating the magnetic characteristics of the magnetic core 11 substantially passes through the origin, and even if it does not pass through the origin of the graph strictly, the horizontal axis or the vicinity of the origin on the vertical axis Pass through.
図10は図9に示す特性の微分値を示すグラフであり、図11は図9に示す特性の二回微分値を示すグラフである。図10に示す特性は、磁心11を構成する磁性材料の微分透磁率に相当する。
FIG. 10 is a graph showing the differential value of the characteristic shown in FIG. 9, and FIG. 11 is a graph showing the double differential value of the characteristic shown in FIG. The characteristics shown in FIG. 10 correspond to the differential permeability of the magnetic material constituting the magnetic core 11.
図10に示すように、図9に示す特性を一回微分すると、第2の磁場領域MF2において微分値が極大となる。第1の磁場領域MF1及び第3の磁場領域MF3では、微分値は小さい値のままである。そして、図11に示すように、図9に示す特性を二回微分すると、第2の磁場領域MF2において二回微分値が正の値から負の値に反転する。第1の磁場領域MF1及び第3の磁場領域MF3では、二回微分値はほぼゼロである。このように、磁心11に用いられる磁性材料は、磁場Hに対して磁束密度Bを二回微分すると、二回微分値が正の値から負の値に反転するという特徴を有している。
As shown in FIG. 10, when the characteristic shown in FIG. 9 is differentiated once, the differential value becomes maximum in the second magnetic field region MF2. In the first magnetic field region MF1 and the third magnetic field region MF3, the differential value remains small. Then, as shown in FIG. 11, when the characteristic shown in FIG. 9 is differentiated twice, the twice differentiated value is inverted from a positive value to a negative value in the second magnetic field region MF2. In the first magnetic field region MF1 and the third magnetic field region MF3, the twice differential value is almost zero. Thus, the magnetic material used for the magnetic core 11 has a characteristic that when the magnetic flux density B is differentiated twice with respect to the magnetic field H, the twice-differentiated value is inverted from a positive value to a negative value.
図12は、コイル12に流れる電流IとB/Hの値との関係を示すグラフである。B/Hの値は平均透磁率に相当する。
FIG. 12 is a graph showing the relationship between the current I flowing through the coil 12 and the value of B / H. The value of B / H corresponds to the average magnetic permeability.
図12に示すように、コイル12に流れる電流Iが第1の電流値I1以下である場合には、B/Hの値(平均透磁率)は低く、その変化もほとんど無いことから、電気回路に与える影響は僅かである。これに対し、コイル12に流れる電流Iが第1の電流値I1を超えると、B/Hの値(平均透磁率)が急激に増加する。その後、コイル12に流れる電流Iが第2の電流値I2を超えると、B/Hの値(平均透磁率)が徐々に減少する。これは、第3の磁場領域MF3においては磁心11が磁気飽和するからである。
As shown in FIG. 12, when the current I flowing through the coil 12 is less than or equal to the first current value I1, the value of B / H (average magnetic permeability) is low and there is almost no change in the electric circuit. Has little effect on. On the other hand, when the current I flowing through the coil 12 exceeds the first current value I1, the value of B / H (average magnetic permeability) increases rapidly. Thereafter, when the current I flowing through the coil 12 exceeds the second current value I2, the value of B / H (average magnetic permeability) gradually decreases. This is because the magnetic core 11 is magnetically saturated in the third magnetic field region MF3.
既に説明した通り、磁心11を構成する磁性材料としては、メタ磁性材料、パーミンバー特性材料及び合成反強磁性材料を挙げることができる。どの磁性材料を使用するかは、限流器10に求められる諸特性(主に、第1の磁場強度H1の値)に応じて適宜選択すればよい。
As already described, examples of the magnetic material constituting the magnetic core 11 include a metamagnetic material, a Permin bar characteristic material, and a synthetic antiferromagnetic material. Which magnetic material is used may be appropriately selected according to various characteristics (mainly the value of the first magnetic field strength H1) required for the current limiter 10.
メタ磁性材料とは、磁場により常磁性(PM:Paramagnetic)もしくは反強磁性(AFM:Anti-Ferromagnetic)から強磁性(FM:Ferromagnetic)に一次相転移する材料を指す。磁場による一次相転移とは、磁場に関する磁化の変化が不連続になる点をもつことを指す。メタ磁性材料において一次相転移が生じる磁場は、通常1~10Tと比較的大きな磁場であるため、これを磁心11の材料として用いる限流器10としては、電力系統、大容量コンデンサ回路、電力用トランス回路といった大電流用の用途が好適である。尚、一部の反強磁性材料も、磁場Hを著しく高めれば磁束密度Bが急激に増加する特性が得られるが、そのような変化をもたらす磁場強度(つまり、第1の磁場強度H1)は10~100Tと極めて強く、限流器10のコイル12によってそのような磁場を作ることは現実的に不可能である。このため、磁心11の材料として反強磁性材料を用いても、事実上、限流器として機能させることは困難である。
The metamagnetic material refers to a material that undergoes a primary phase transition from a paramagnetic (PM) or anti-ferromagnetic (AFM) to ferromagnetic (FM) by a magnetic field. First-order phase transition by a magnetic field refers to having a point at which the change in magnetization related to the magnetic field becomes discontinuous. The magnetic field in which the first-order phase transition occurs in the metamagnetic material is normally a relatively large magnetic field of 1 to 10 T. Therefore, the current limiter 10 using this as the material of the magnetic core 11 includes a power system, a large-capacity capacitor circuit, and a power Applications for large currents such as transformer circuits are suitable. Note that some antiferromagnetic materials also have the characteristic that the magnetic flux density B increases rapidly if the magnetic field H is significantly increased. However, the magnetic field strength (that is, the first magnetic field strength H1) that causes such a change is obtained. It is extremely strong as 10 to 100 T, and it is practically impossible to generate such a magnetic field by the coil 12 of the current limiter 10. For this reason, even if an antiferromagnetic material is used as the material of the magnetic core 11, it is practically difficult to function as a current limiting device.
メタ磁性材料は、磁場により常磁性から強磁性に転移する常磁性強磁性転移型(PM-FM転移型)と、反強磁性から強磁性に転移する反強磁性強磁性転移型(AFM-FM転移型)に分類される。PM-FM転移型は、キュリー温度の近傍でのみ一次相転移が生じることから、限流器10の動作温度もキュリー温度付近に限られる。これに対し、AFM-FM転移型は、反強磁性状態が消失するネール温度以下であれば一次相転移が生じるため、より幅広い温度で限流器10を動作させることが可能となる。
Metamagnetic materials are paramagnetic ferromagnetic transition type (PM-FM transition type) that transitions from paramagnetism to ferromagnetism by a magnetic field, and antiferromagnetic ferromagnetic transition type (AFM-FM) that transitions from antiferromagnetism to ferromagnetism. Classification). In the PM-FM transition type, the primary phase transition occurs only in the vicinity of the Curie temperature, so the operating temperature of the current limiter 10 is also limited to the vicinity of the Curie temperature. On the other hand, in the AFM-FM transition type, the primary phase transition occurs when the temperature is equal to or lower than the Neel temperature at which the antiferromagnetic state disappears. Therefore, the current limiter 10 can be operated at a wider temperature.
メタ磁性材料の具体例としては、La(FeSi)13系、La(FeSi)13H系、MnAs系、Mn(AsSb)系、MnAl系、FeRh系、NiMnIn系、Mn3GaC系、Mn3SnC系、Mn3SnB系材料が挙げられる。特に、室温近傍において一次相転移が生じるLa(FeSi)13H系、MnAs系、Mn(AsSb)系、MnAl系材料が好ましく、最も好ましいのは、AFM-FM転移型メタ磁性材料であるMnAl系材料である。室温近傍において一次相転移が生じない材料を使用する場合は、ヒーターもしくは冷却装置を用いて、一次相転移が生じる温度帯に維持すればよい。
Specific examples of the metamagnetic material include La (FeSi) 13 system, La (FeSi) 13 H system, MnAs system, Mn (AsSb) system, MnAl system, FeRh system, NiMnIn system, Mn 3 GaC system, Mn 3 SnC. And Mn 3 SnB-based materials. In particular, La (FeSi) 13 H-based, MnAs-based, Mn (AsSb) -based, and MnAl-based materials that cause a first-order phase transition near room temperature are preferable, and most preferable is an MFM-based material that is an AFM-FM transition type metamagnetic material. Material. When using a material that does not cause a primary phase transition in the vicinity of room temperature, a heater or a cooling device may be used to maintain the temperature range in which the primary phase transition occurs.
次に、パーミンバー特性材料とは、パーミンバーと呼ばれるNi45wt%Co25wt%Fe残で確認された特殊なBH特性を示す材料である。具体的には、パーミンバー、Moパーミンバー、超パーミンバー、イソパーム、センパームなどが挙げられる。また、NiZnフェライトやCoB系アモルファス材料もパーミンバー特性材料として挙げられる。
Next, the permin bar characteristic material is a material that exhibits special BH characteristics, which is confirmed by Ni45 wt% Co 25 wt% Fe residue called a permin bar. Specifically, permin bar, Mo permin bar, super permin bar, iso palm, sen palm and the like can be mentioned. In addition, NiZn ferrite and CoB-based amorphous materials can also be mentioned as permin bar characteristic materials.
パーミンバー特性材料は、比較的低い磁場ではヒステリシスがなく、且つ、傾きの小さい直線的なBH特性を示し、ある磁場(第1の磁場強度H1)を超えると、傾きの大きなBH特性を示す。パーミンバー特性材料を用いた場合、第1の磁場強度H1は、メタ磁性材料の1/100~1/1000であるため、これを磁心11の材料として用いれば、小電力用の限流器を構成することが可能となる。
The permin bar characteristic material has no hysteresis at a relatively low magnetic field and shows a linear BH characteristic with a small inclination, and shows a BH characteristic with a large inclination when exceeding a certain magnetic field (first magnetic field strength H1). When the permin bar characteristic material is used, the first magnetic field strength H1 is 1/100 to 1/1000 that of the metamagnetic material. Therefore, if this material is used as the material of the magnetic core 11, a current limiter for low power is formed. It becomes possible to do.
また、パーミンバー特性材料は、強磁性が保たれるキュリー温度以下であれば、磁場強度に応じた透磁率の変化が生じるため、室温を含めた幅広い温度での動作が可能である。さらに、パーミンバー特性材料は、磁場印加による磁歪が小さいため、磁心11として用いた場合に高い耐久性を得ることも可能となる。しかも、パーミンバー特性材料を構成する組成は、多くが遷移金属であるため、白金族元素や希土類元素を含んだメタ磁性材料と比較して、材料コストが安いという利点もある。
In addition, if the temperature of the permbar characteristic material is below the Curie temperature at which ferromagnetism is maintained, the permeability changes in accordance with the magnetic field strength, so that it can operate in a wide range of temperatures including room temperature. Furthermore, since the permbar characteristic material has a small magnetostriction due to application of a magnetic field, it is possible to obtain high durability when used as the magnetic core 11. In addition, since the composition constituting the perminbar characteristic material is mostly a transition metal, there is also an advantage that the material cost is low compared to a metamagnetic material containing a platinum group element or a rare earth element.
尚、パーミンバー特性材料は、通常動作時(つまり、第1の磁場領域MF1)における透磁率がメタ磁性材料と比較して10~100倍以上の値を持つことから、磁心11の材料としてパーミンバー特性材料を用いた限流器10は、通常動作時にはリアクトルとして利用することも可能である。
In addition, since the magnetic permeability in the normal operation (that is, the first magnetic field region MF1) is 10 to 100 times greater than that of the metamagnetic material, the permember characteristic material has a perminver characteristic as the material of the magnetic core 11. The current limiting device 10 using a material can be used as a reactor during normal operation.
次に、合成反強磁性材料とは、強磁性相と強磁性相が反強磁性的に結合することで、反強磁性的な特性を示す材料を指す。合成反強磁性材料は、反強磁性材料とは異なり、反強磁性結合強度が小さいため、ある磁場(第1の磁場強度H1)を超えると、強磁性的な磁化配列となる。具体的な材料としては、FeCo/Ru/FeCo薄膜が挙げられる。合成反強磁性材料を用いた場合、第1の磁場強度H1は、メタ磁性材料の1/10~1/100であるため、これを磁心11の材料として用いれば、中電力用の限流器を構成することが可能となる。
Next, a synthetic antiferromagnetic material refers to a material that exhibits antiferromagnetic properties by antiferromagnetic coupling between a ferromagnetic phase and a ferromagnetic phase. Unlike an antiferromagnetic material, a synthetic antiferromagnetic material has a low antiferromagnetic coupling strength. Therefore, when a certain magnetic field (first magnetic field strength H1) is exceeded, a ferromagnetic magnetization arrangement is obtained. A specific material includes a FeCo / Ru / FeCo thin film. When the synthetic antiferromagnetic material is used, the first magnetic field strength H1 is 1/10 to 1/100 that of the metamagnetic material. Therefore, if this is used as the material of the magnetic core 11, the current limiter for medium power is used. Can be configured.
以上説明したように、本実施形態による限流器10は、上述した特性を有する磁性材料からなる磁心11にコイル12を巻回したものであり、非常にシンプルな構成を有している。これにより、ダイオード及びサイリスタなどの能動素子や、直流電源などを用いることなく、自発的かつ高速に限流動作を行うことができることから、低コスト化及び信頼性の向上を実現することが可能となる。
As described above, the current limiter 10 according to the present embodiment is obtained by winding the coil 12 around the magnetic core 11 made of the magnetic material having the above-described characteristics, and has a very simple configuration. As a result, the current limiting operation can be performed spontaneously and at high speed without using an active element such as a diode and a thyristor, or a direct current power source, so that it is possible to realize cost reduction and improved reliability. Become.
図13は、本発明の第2の実施形態による電磁アクチュエータ60の構成を説明するための模式図である。
FIG. 13 is a schematic diagram for explaining the configuration of the electromagnetic actuator 60 according to the second embodiment of the present invention.
図13に示す電磁アクチュエータ60は、可動磁心61と、固定磁心62と、可動磁心61に巻回されたコイル63とを備えている。固定磁心62は鉄などの強磁性材料からなり、可動磁心61は図5及び図6に示した特性を有する磁性材料からなる。これにより、図7を用いて説明したように、コイル63に流れる電流Iが第1の電流値I1以下である場合には、可動磁心61が実質的に非磁性材料として振る舞うことから、可動磁心61と固定磁心62が分離した状態が保たれる。そして、コイル63に流れる電流Iが第1の電流値I1を超えると、磁化の急激な増加によって、可動磁心61と固定磁心62の間に吸引力が生じ、両者が密着する。
13 includes a movable magnetic core 61, a fixed magnetic core 62, and a coil 63 wound around the movable magnetic core 61. The electromagnetic actuator 60 shown in FIG. The fixed magnetic core 62 is made of a ferromagnetic material such as iron, and the movable magnetic core 61 is made of a magnetic material having the characteristics shown in FIGS. Accordingly, as described with reference to FIG. 7, when the current I flowing through the coil 63 is equal to or less than the first current value I1, the movable magnetic core 61 behaves substantially as a nonmagnetic material. The state where 61 and the fixed magnetic core 62 are separated is maintained. When the current I flowing through the coil 63 exceeds the first current value I1, an attractive force is generated between the movable magnetic core 61 and the fixed magnetic core 62 due to a rapid increase in magnetization, and the two are brought into close contact with each other.
このように、本実施形態による電磁アクチュエータ60は、可動磁心61の材料として図5及び図6に示した特性を有する磁性材料を用いていることから、大電流の発生時に電流経路を遮断する回路遮断器に応用することが好適である。この場合、遮断動作を行う応答電流が可動磁心61の材料特性によって決まるため、高い応答速度を実現することができるとともに、ばねの経年劣化などによる信頼性の低下が生じない。
As described above, the electromagnetic actuator 60 according to the present embodiment uses the magnetic material having the characteristics shown in FIGS. 5 and 6 as the material of the movable magnetic core 61. Therefore, the circuit that interrupts the current path when a large current is generated. It is preferable to apply to a circuit breaker. In this case, since the response current for performing the interruption operation is determined by the material characteristics of the movable magnetic core 61, a high response speed can be realized, and reliability is not deteriorated due to aging of the spring.
尚、図13に示した例では、図5及び図6に示した特性を有する磁性材料を可動磁心61に用いているが、これに変えて、図5及び図6に示した特性を有する磁性材料を固定磁心62に用いても構わない。この場合、可動磁心61の材料として鉄などの強磁性材料を用いれば良い。さらに、可動磁心61及び固定磁心62の両方に図5及び図6に示した特性を有する磁性材料を用い、両者にコイル63を巻回しても構わない。
In the example shown in FIG. 13, the magnetic material having the characteristics shown in FIGS. 5 and 6 is used for the movable magnetic core 61. Instead, the magnetic material having the characteristics shown in FIGS. A material may be used for the fixed magnetic core 62. In this case, a ferromagnetic material such as iron may be used as the material of the movable magnetic core 61. Furthermore, a magnetic material having the characteristics shown in FIGS. 5 and 6 may be used for both the movable magnetic core 61 and the fixed magnetic core 62, and the coil 63 may be wound around both.
図14は、本発明の第3の実施形態によるモータ70の構成を説明するための模式図である。
FIG. 14 is a schematic diagram for explaining the configuration of a motor 70 according to the third embodiment of the present invention.
図14に示すモータ70は、ステータ71とロータ74を備える。ステータ71の内周壁には、ステータ71の一部である複数のステータ磁極72が周期的に配置されており、各ステータ磁極72にはコイル73が巻回されている。また、ロータ74の外周壁には、ステータ磁極72と対向するよう、ステータ磁極72と同数の永久磁石75が配置されている。
14 is provided with a stator 71 and a rotor 74. A plurality of stator magnetic poles 72 that are part of the stator 71 are periodically arranged on the inner peripheral wall of the stator 71, and a coil 73 is wound around each stator magnetic pole 72. Further, the same number of permanent magnets 75 as the stator magnetic poles 72 are arranged on the outer peripheral wall of the rotor 74 so as to face the stator magnetic poles 72.
そして、本実施形態においては、ステータ磁極72の材料として、図5及び図6に示した特性を有する磁性材料が用いられている。ステータ磁極72だけでなく、ステータ71の全体を当該磁性材料によって構成しても構わない。これにより、図7を用いて説明したように、コイル73に流れる電流Iが第1の電流値I1以下である場合には、ステータ磁極72が実質的に非磁性材料として振る舞うことから、コギングトルクはほとんど発生しない。そして、コイル73に流れる電流Iが第1の電流値I1を超えると、ステータ磁極72が軟磁性的に振る舞うことから、ロータ74を回転させることが可能となる。このように、実施形態によるモータ70はコギングトルクが低減されていることから、電流に対するトルクが大きくなり、高い回転効率を得ることが可能となる。
In this embodiment, a magnetic material having the characteristics shown in FIGS. 5 and 6 is used as the material of the stator magnetic pole 72. Not only the stator magnetic pole 72 but the entire stator 71 may be made of the magnetic material. Accordingly, as described with reference to FIG. 7, when the current I flowing through the coil 73 is equal to or less than the first current value I1, the stator magnetic pole 72 behaves substantially as a nonmagnetic material. Hardly occurs. When the current I flowing through the coil 73 exceeds the first current value I1, the stator magnetic pole 72 behaves softly, so that the rotor 74 can be rotated. Thus, since the motor 70 according to the embodiment has a reduced cogging torque, the torque with respect to the current is increased, and high rotational efficiency can be obtained.
尚、図14に示した例では、図5及び図6に示した特性を有する磁性材料をステータ71側(ステータ磁極72)に用いているが、これに変えて、ロータ74側に用いても構わない。さらに、図14には回転型のモータを例示したが、リニアモータに適用することも可能である。
In the example shown in FIG. 14, the magnetic material having the characteristics shown in FIGS. 5 and 6 is used for the stator 71 side (stator magnetic pole 72). Alternatively, the magnetic material may be used for the rotor 74 side. I do not care. Furthermore, although a rotary motor is illustrated in FIG. 14, it can also be applied to a linear motor.
以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. Needless to say, it is included in the range.
例えば、第1の実施形態による限流器10は、トロイダル型の磁心11にコイル12を巻回した構成を有しているが、本発明による限流器がこれに限定されるものではない。したがって、磁心の形状としてはトロイダル型以外のE型、U型、I型形状であっても構わない。また、磁心11には磁気ギャップが設けられていても構わない。コイル12についても、銅(Cu)を芯材に用いた被覆導線に限定されず、超伝導体を用いても構わない。
For example, the current limiter 10 according to the first embodiment has a configuration in which the coil 12 is wound around the toroidal magnetic core 11, but the current limiter according to the present invention is not limited thereto. Therefore, the shape of the magnetic core may be an E shape, U shape, or I shape other than the toroidal shape. The magnetic core 11 may be provided with a magnetic gap. The coil 12 is not limited to the coated conductor using copper (Cu) as a core material, and a superconductor may be used.
10 限流器
11 磁心
12 コイル
20 交流電源
30 負荷
40 遮断器
50 コンデンサ
60 電磁アクチュエータ
61 可動磁心
62 固定磁心
63 コイル
70 モータ
71 ステータ
72 ステータ磁極
73 コイル
74 ロータ
75 永久磁石 10current limiter 11 magnetic core 12 coil 20 AC power supply 30 load 40 breaker 50 capacitor 60 electromagnetic actuator 61 movable magnetic core 62 fixed magnetic core 63 coil 70 motor 71 stator 72 stator magnetic pole 73 coil 74 rotor 75 permanent magnet
11 磁心
12 コイル
20 交流電源
30 負荷
40 遮断器
50 コンデンサ
60 電磁アクチュエータ
61 可動磁心
62 固定磁心
63 コイル
70 モータ
71 ステータ
72 ステータ磁極
73 コイル
74 ロータ
75 永久磁石 10
Claims (11)
- 磁気特性が、第1軸を磁場とし第2軸を磁束密度又は磁化としたグラフの第1象限において、第1の磁場強度以下の第1の磁場領域では、磁場に対する磁束密度又は磁化の微分値が第1の値であり、前記第1の磁場強度よりも強い第2の磁場領域では、磁場に対する磁束密度又は磁化の微分値が前記第1の値よりも大きい第2の値であることを特徴とする磁心。 In the first quadrant of the graph in which the magnetic characteristics are the first axis as the magnetic field and the second axis as the magnetic flux density or magnetization, the differential value of the magnetic flux density or magnetization with respect to the magnetic field in the first magnetic field region below the first magnetic field strength. Is the first value, and in the second magnetic field region that is stronger than the first magnetic field strength, the magnetic flux density with respect to the magnetic field or the differential value of the magnetization is a second value that is larger than the first value. Characteristic magnetic core.
- 前記磁気特性が、前記第2の磁場強度よりも強い第3の磁場領域では、磁場に対する磁束密度又は磁化の微分値が前記第2の値よりも小さい第3の値であることを特徴とする請求項1に記載の磁心。 In the third magnetic field region where the magnetic characteristic is stronger than the second magnetic field strength, the magnetic flux density or the differential value of the magnetization with respect to the magnetic field is a third value smaller than the second value. The magnetic core according to claim 1.
- 前記磁気特性を示す特性曲線は、実質的に前記グラフの原点を通ることを特徴とする請求項1又は2に記載の磁心。 3. The magnetic core according to claim 1, wherein the characteristic curve indicating the magnetic characteristic substantially passes through an origin of the graph.
- メタ磁性材料を含むことを特徴とする請求項1乃至3のいずれか一項に記載の磁心。 The magnetic core according to claim 1, comprising a metamagnetic material.
- 前記メタ磁性材料は、磁場強度によって反強磁性から強磁性に転移する反強磁性強磁性転移型材料であることを特徴とする請求項4に記載の磁心。 5. The magnetic core according to claim 4, wherein the metamagnetic material is an antiferromagnetic ferromagnetic transition material that transitions from antiferromagnetic to ferromagnetic by magnetic field strength.
- パーミンバー特性材料を含むことを特徴とする請求項1乃至3のいずれか一項に記載の磁心。 The magnetic core according to any one of claims 1 to 3, wherein the magnetic core contains a permember characteristic material.
- 合成反強磁性材料を含むことを特徴とする請求項1乃至3のいずれか一項に記載の磁心。 The magnetic core according to claim 1, comprising a synthetic antiferromagnetic material.
- 請求項1乃至7のいずれか一項に記載の磁心と、前記磁心に巻回されたコイルとを備えることを特徴とするリアクトル。 A reactor comprising the magnetic core according to any one of claims 1 to 7 and a coil wound around the magnetic core.
- 請求項8に記載のリアクトルを備える限流器。 A current limiting device comprising the reactor according to claim 8.
- 固定磁心と、可動磁心と、前記固定磁心及び前記可動磁心の少なくとも一方に巻回されたコイルとを備え、前記固定磁心及び前記可動磁心の前記少なくとも一方は、請求項1乃至7のいずれか一項に記載の磁心を含むことを特徴とする電磁アクチュエータ。 A fixed magnetic core, a movable magnetic core, and a coil wound around at least one of the fixed magnetic core and the movable magnetic core, wherein the at least one of the fixed magnetic core and the movable magnetic core is any one of claims 1 to 7. An electromagnetic actuator comprising the magnetic core according to the item.
- ロータとステータとを備え、前記ロータ及び前記ステータの少なくとも一方は、請求項1乃至7のいずれか一項に記載の磁心を含むことを特徴とするモータ。 A motor comprising a rotor and a stator, wherein at least one of the rotor and the stator includes a magnetic core according to any one of claims 1 to 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018560387A JP7127545B2 (en) | 2017-01-05 | 2017-12-27 | electromagnetic actuator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-000361 | 2017-01-05 | ||
JP2017000361 | 2017-01-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018128149A1 true WO2018128149A1 (en) | 2018-07-12 |
Family
ID=62791262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/046982 WO2018128149A1 (en) | 2017-01-05 | 2017-12-27 | Core, and reactor, current limiter, electromagnetic actuator and motor using said core |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7127545B2 (en) |
WO (1) | WO2018128149A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS48443B1 (en) * | 1969-06-05 | 1973-01-09 | ||
JPS62170446A (en) * | 1986-01-08 | 1987-07-27 | アライド・コ−ポレ−シヨン | Vitreous alloy having perminvar characteristics |
WO1997028545A1 (en) * | 1996-01-17 | 1997-08-07 | Joshi Chandrashekhar H | Passive non-linear inductor |
JP2001505277A (en) * | 1997-09-09 | 2001-04-17 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Solenoid operated valve |
US20100194510A1 (en) * | 2009-02-02 | 2010-08-05 | Klemens Pruegl | Inductive Electrical Device |
JP2015115088A (en) * | 2013-12-13 | 2015-06-22 | シーゲイト テクノロジー エルエルシー | Magnetoresistive sensor shield |
-
2017
- 2017-12-27 WO PCT/JP2017/046982 patent/WO2018128149A1/en active Application Filing
- 2017-12-27 JP JP2018560387A patent/JP7127545B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS48443B1 (en) * | 1969-06-05 | 1973-01-09 | ||
JPS62170446A (en) * | 1986-01-08 | 1987-07-27 | アライド・コ−ポレ−シヨン | Vitreous alloy having perminvar characteristics |
WO1997028545A1 (en) * | 1996-01-17 | 1997-08-07 | Joshi Chandrashekhar H | Passive non-linear inductor |
JP2001505277A (en) * | 1997-09-09 | 2001-04-17 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Solenoid operated valve |
US20100194510A1 (en) * | 2009-02-02 | 2010-08-05 | Klemens Pruegl | Inductive Electrical Device |
JP2015115088A (en) * | 2013-12-13 | 2015-06-22 | シーゲイト テクノロジー エルエルシー | Magnetoresistive sensor shield |
Also Published As
Publication number | Publication date |
---|---|
JP7127545B2 (en) | 2022-08-30 |
JPWO2018128149A1 (en) | 2019-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5926083A (en) | Static magnet dynamo for generating electromotive force based on changing flux density of an open magnetic path | |
KR20070074059A (en) | Magnetic core and inductor, transformer comprising the same | |
CN107464649B (en) | Magnetic core with linear hysteresis loop | |
US4031457A (en) | Saturable reactor current limiter | |
Liu et al. | Abnormal temperature dependence of intrinsic coercivity in sintered Sm–Co-based permanent magnets | |
JPH0614453A (en) | Superconduction-applied current limiting device | |
Hoshino et al. | Design of 6.6 kV, 100 A saturated DC reactor type superconducting fault current limiter | |
Fukunaga et al. | Computer Simulations of the Magnetic Properties of ${\rm Sm}-{\rm Co}/\alpha-{\rm Fe} $ Nanocomposite Magnets With a Core-Shell Structure | |
WO2018128149A1 (en) | Core, and reactor, current limiter, electromagnetic actuator and motor using said core | |
EP2595169B1 (en) | Thermo-magnetic release mechanism for circuit breakers | |
JP6760085B2 (en) | Current limiter and resonance type current limit circuit equipped with it | |
WO2018128151A1 (en) | Resonance-type current limiting circuit | |
US20220068527A1 (en) | Current controlling element based on saturation of a magnetic circuit | |
de Campos et al. | Replacement of NdFeB by Ferrite Magnets | |
JP2019047690A (en) | DC circuit breaker | |
RU2738254C2 (en) | Ferrite core, mutual inductance coil and leakage protection circuit breaker | |
JP2001238349A (en) | Current limiter | |
KR101540954B1 (en) | Superconducting Field Magnet Coil for Electrical Generator | |
WO2012112991A1 (en) | Technique for limiting fault current transmission | |
JPH0154841B2 (en) | ||
JP2005303019A (en) | Magnetic core having magnet for dc magnetic biasing and inductance component using the core | |
JP2664113B2 (en) | Method of manufacturing magnetic element for high frequency power supply | |
Young et al. | A three‐material passive dI/dt limiter | |
Slavkova | Specific Applications of Nanocrystalline and Amorphous Soft Magnetic Materials with Different Hysteresis Loops | |
JP2016225589A (en) | Inductor for current-limiting circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17890120 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018560387 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17890120 Country of ref document: EP Kind code of ref document: A1 |