WO2018127997A1 - Method for trapping droplets, measurement cell, and droplet-trapping device - Google Patents
Method for trapping droplets, measurement cell, and droplet-trapping device Download PDFInfo
- Publication number
- WO2018127997A1 WO2018127997A1 PCT/JP2017/034256 JP2017034256W WO2018127997A1 WO 2018127997 A1 WO2018127997 A1 WO 2018127997A1 JP 2017034256 W JP2017034256 W JP 2017034256W WO 2018127997 A1 WO2018127997 A1 WO 2018127997A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- measurement cell
- droplet
- droplets
- trap
- wells
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
- C12M1/34—Measuring or testing with condition measuring or sensing means, e.g. colony counters
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
Definitions
- the present invention relates to a biomolecule measurement method, particularly a droplet trap method, a measurement cell, and a droplet trap apparatus related to a gene mutation measurement method.
- ddPCR droplet digital PCR
- Non-Patent Document 1 a droplet is caused to flow through a microchannel having a droplet guide portion having a plurality of wells on the inner wall, and fluorescence of the droplet group captured by the droplet guide portion is observed from above.
- a technique for determining the presence or absence of a fluorescent dye in a droplet is disclosed.
- the inventors are examining a ddPCR method for detecting fluorescence from a group of droplets arranged in a plane.
- Droplet capture rate ratio of trapped droplets to input droplets
- the amount of specimen that can be used for biomolecule measurement is small, and it is desirable that the quantity of specimen to be used for testing is small.
- the present invention provides a droplet trapping method, a measurement cell, and a droplet trapping device having a high droplet capture rate.
- the droplet trapping method according to the present invention is provided with a droplet guide portion having a plurality of wells on one inner wall surface of an internal space, and a droplet floating on the other inner wall surface facing one inner wall surface.
- a fluid containing a plurality of liquid droplets and oil is allowed to flow in the measurement cell provided with a trap part having a hollow part for capturing the liquid, with the trap part on top and the liquid drop guide part on the bottom.
- the measurement cell includes, as an example, a sample inlet and outlet that are opened on the outer surface of the casing, a channel provided inside the casing that connects the sample inlet and outlet, An internal space provided in the middle and extending in a direction parallel to the outer surface of the housing, a droplet guide portion having a plurality of wells provided on one inner wall surface of the inner space, and the other inner wall surface of the inner space And a trap portion having a dent portion for capturing a floating droplet provided in the.
- the droplet trapping device is, for example, a device for capturing a droplet in a measurement cell, and a droplet guide unit having a plurality of wells on an inner wall surface of an internal space and a droplet that floats. Holding the measurement cell provided facing the trap part having a hollow part to be captured and holding it, a reversing part having a mechanism for reversing, an installation part for placing the measurement cell reversed by the reversing part, and measurement by the reversing part And a control unit for controlling the inversion timing of the cell.
- FIG. 5 is a schematic cross-sectional view showing a state where a droplet is captured by a droplet guide unit.
- the figure which shows a droplet trap apparatus typically. Explanatory drawing which showed typically operation
- FIG. 7B is a schematic cross-sectional view taken along the line BB in FIG. 7A.
- the optical microscope image of the droplet guide part immediately after inverting the measurement cell.
- the optical microscope image of the droplet guide part after applying a vibration for 60 minutes. Schematic of the measurement system which observed the fluorescence image of the arrangement
- FIG. 1A is a schematic cross-sectional view showing an example of a measurement cell 1.
- FIG. 1B is a schematic cross-sectional view showing an enlargement of the vicinity of the center of the measurement cell.
- a sample injection port 4 and a discharge port 6 are opened on one outer surface of a casing 8 whose outer shape is plate-shaped, and the sample injection port 4 and the discharge port 6 are formed inside the casing 8. Is formed.
- an internal space 15 that extends mainly in a direction parallel to the outer surface of the housing 8, and the droplet guide portion 3 and the trap portion 2 are provided in the internal space 15. Yes.
- the droplet guide portion 3 and the trap portion 2 are provided on the upper surface side and the lower surface side of the flow path 5 so as to face each other. That is, the droplet guide portion 3 is provided on one inner wall surface of the internal space 15 provided in the middle of the flow path 5, and the trap portion 2 is provided on the other inner wall surface facing the inner wall surface.
- the trap part 2 has a hollow part that collects and traps floating droplets that are injected from the sample inlet 4 and flown through the flow path 5. It is preferable that the trap part 2 has a 1 area
- the shape of the trap part 2 is not particularly limited as long as the liquid droplets flowing through the flow path can be sufficiently trapped.
- Examples of the shape of the trap unit 2 include a shape in which a part of the region facing the droplet guide unit 3 is uniformly depressed, and a structure in which a plurality of depressions are further provided on the bottom surface of the uniformly depressed region.
- the material constituting the trap portion 2 is not particularly limited as long as the trapped droplet floats away from the trap portion when the measurement cell 1 is inverted. Examples of the material constituting the trap portion 2 include glass, resin, metal, and the like.
- the droplet guide unit 3 has a well 31 for arranging droplets floating from the trap unit 2 after the measurement cell 1 is inverted.
- the shape of the droplet guide part 3 is not particularly limited as long as the droplets floating from the trap part 2 can be arranged.
- FIG. 2A is a schematic view showing a structural example of the droplet guide portion 3 having a shape in which the wells 31 are periodically arranged two-dimensionally
- FIG. 2B is a sectional view taken along the line BB.
- the well can take various shapes. Examples of the shape of the well 31 include a columnar shape, an elliptical columnar shape, a polygonal columnar shape (triangular columnar shape, quadrangular columnar shape, pentagonal columnar shape, hexagonal columnar shape, etc.), tetrahedral shape, and the like. Further, as an example of the periodic arrangement of the wells 31, a square arrangement or a triangular arrangement can be considered, and the density of the wells 31 can be adjusted according to the application.
- the droplet guide portion 3 exhibits a good effect in the arrangement of droplets.
- the shape of the cylindrical well preferably satisfies all the following relationships (1) to (3).
- the droplet diameter is 50 ⁇ m or less, and the maximum well diameter is 0.5 to 1.2 times the droplet diameter. It is desirable to minimize droplet position drift as a doubled range.
- the average depth of the well is larger than 0.01 times the maximum diameter of the well and smaller than 1 time. If the average depth of the well is smaller than 0.01 times the average diameter of the well, it becomes difficult to capture the droplet, which is not preferable. In addition, if the average depth of the well is larger than the average diameter of the well, the processing of the droplet guide part 3 becomes difficult, which is not preferable.
- D w [ ⁇ m] average maximum diameter of wells
- d [ ⁇ m] average well depth.
- the sample inlet 4 is not particularly limited as long as it can inject a fluid containing droplets and oil into the measurement cell 1.
- the channel 5 is not particularly limited as long as it has a structure that guides a fluid containing droplets and oil to the trap portion 2 and guides excess oil to the discharge port 6.
- the discharge port 6 is not particularly limited as long as it has a structure capable of discharging oil to the outside of the measurement cell 1.
- the sample injection port 4 and the discharge port 6 have a structure in which a lid member can be installed to close the opening.
- the housing 8 desirably maintains the structure of the measurement cell 1 and has heat resistance up to the boiling point (about 100 ° C.) of the solution constituting the droplet.
- the light transmittance at a wavelength of 450 to 750 nm of the casing portion 9 sandwiched between the droplet guide portion 3 and the outer periphery of the measurement cell 1 is 70% or more. Is desirable. If the transmittance is less than 70%, it is difficult to measure the fluorescence of the droplet from the outside of the measurement cell 1, which is not preferable.
- the housing portion 10 sandwiched between the trap unit 2 and the outer periphery of the measurement cell 1 has a wavelength of 450 to 750 nm. It is desirable that the light transmittance is 70% or more. If the transmittance is less than 70%, it is difficult to measure the fluorescence of the droplet from the outside of the measurement cell 1, which is not preferable.
- 3A to 3C are diagrams schematically showing a droplet trapping method using the measurement cell of the embodiment.
- 3A is a schematic cross-sectional view showing a state after flowing a fluid containing droplets 11 and oil 12 in the measurement cell 1
- FIG. 3B is a schematic cross-sectional view showing a state in which the measurement cell 1 is inverted
- FIG. FIG. 4 is a schematic cross-sectional view showing a state where a droplet 11 is captured by a droplet guide unit 3.
- a fluid containing droplets 11 and oil 12 is caused to flow from the sample inlet 4 into the measurement cell 1.
- fluid flow include a method of injecting using a micropipette and a method of injecting using a pump or the like by connecting a tube or the like to the sample injection port 4.
- the droplets 11 have a lower density than the oil 12 and float on the surface of the oil 12.
- the droplet 11 may contain an observation target in the droplet and molecules necessary for forming the observation target in the droplet. Examples of molecules that the droplet 11 may contain include biologically relevant molecules, drugs necessary for PCR reactions, fluorescent dyes, salts, and the like.
- the droplet 11 is preferably stabilized with a surfactant.
- the surfactant include EA surfactant (made by RainDance), Pico-Surf TM 1 (made by dolomite), and the like.
- the oil 12 may be any liquid that floats the droplet 11. Examples of the oil 12 include florinate (manufactured by 3M), Novec (manufactured by 3M), and the like.
- the droplet 11 When a fluid containing the droplet 11 and the oil 12 is flowed to the measurement cell 1, the droplet 11 receives buoyancy and is captured by the trap portion 2 as shown in FIG. 3A. For this reason, the liquid droplet 11 hardly escapes from the discharge port 6. Therefore, the droplet trapping rate can be greatly improved by the droplet trapping method of this embodiment.
- the lid member 7 After flowing the fluid containing the droplet 11 and the oil 12 to the measurement cell 1, the lid member 7 is installed at the sample inlet 4 and the outlet 6 to prevent the oil 12 from evaporating and the droplet 11 from flowing out. Also good.
- the lid member 7 is not particularly limited as long as it has a structure and material that can prevent the evaporation of the oil 12 and the outflow of the droplets 11. In this case, it is desirable that the sample inlet 4 and the outlet 6 have a structure in which the lid member 7 can be installed. Further, an adhesive tape or the like can be used as the lid member 7.
- the measurement cell 1 is inverted so that the droplet guide unit 3 comes on the trap unit 2. At this time, buoyancy acts on the droplet 11, and the droplet 11 trapped in the trap portion 2 is guided to the droplet guide portion 3 as shown in FIG. 3B.
- the droplets 11 are arranged according to the wells of the droplet guide unit 3 as shown in FIG. 3C.
- the droplet 11 moves along the droplet guide portion 3 and acts between buoyancy or charge on the surface of the droplet and static electricity concentrated on the corner of the recess of the droplet guide portion 3. It is trapped in the depression by the action.
- vibration it is possible to apply vibration to the measurement cell 1 to shorten the arrangement time of the droplets 11 in the well.
- the method for applying vibration is not particularly limited as long as the arrangement time of the droplets 11 can be shortened.
- the droplet 11 can be captured in the measurement cell 1 with a high capture rate and can be arranged in the well of the droplet guide unit 3.
- the droplet is determined at a speed of about 10 4 / min.
- the diameter of the droplet 11 is desirably 50 ⁇ m or less.
- FIG. 4 is a diagram schematically showing the droplet trapping apparatus of the present embodiment.
- the droplet trap apparatus 100 includes an installation unit 101, a reversing unit 102, and a control unit 103.
- the installation portion 101 is provided with a trap portion having a depression on one inner wall surface of an internal space that extends in a direction parallel to the outer surface of the housing, and a droplet guide portion having a plurality of wells on the other inner wall surface It is a site
- the reversing unit 102 has a mechanism for reversing the measurement cell arranged in the installation unit 101.
- the control unit 103 controls the timing at which the inversion unit 102 inverts the measurement cell.
- 5A to 5C are explanatory views schematically showing the operation of the droplet trapping apparatus 100 of the present embodiment.
- the state of the measurement cell 1 inside the droplet trap apparatus 100 is shown in an enlarged manner above each figure.
- a fluid containing the droplet 11 and the oil 12 is caused to flow through the flow channel of the measurement cell 1, and the droplet suspended in the oil is captured by the trap portion 2 as shown in FIG. Is closed with a lid member 7.
- the step of capturing droplets in the trap unit 2 of the measurement cell 1 may be performed in a state where the measurement cell 1 is fixed to the reversing unit 102 of the droplet trap apparatus 100 or may be performed in another place.
- the measurement cell 1 is maintained as shown in FIG. 5A while maintaining the posture in which the trap unit 2 is positioned above the droplet guide unit 3. Is fixed to the inverting unit 102.
- the reversing unit 102 holding the measurement cell 1 so that the trap unit is on the upper surface is reversed by the command of the control unit 103, and the measurement cell 1 is installed in the installation unit 101 as shown in FIG. 5B.
- the droplet guide portion 3 is on the upper surface, and the droplet guide portion 3 is positioned above the trap portion 2.
- the inversion method is not particularly limited as long as the upper surface and the lower surface of the measurement cell can be inverted. Examples of the inversion method include a method of rotating an axis parallel to the cell plane so as to draw an arc as shown by an arrow in FIG. 5A and a method of rotating around an axis parallel to the cell plane.
- the reversing unit 102 may release the holding of the measurement cell 1. Further, after the reversing unit 102 releases the holding of the measurement cell 1, as shown in FIG. 5C, the reversing unit 102 moves to a position before reversing the measurement cell 1 in preparation for the next operation. Good.
- the droplets captured by the trap unit float up and are guided to the upper droplet guide unit, and are arranged according to the wells of the droplet guide unit.
- a vibration unit integrated with the installation unit 101 may be installed to apply vibration to the measurement cell 1.
- the type and amplitude of the vibration to be applied are not particularly limited as long as the vibration can reduce the arrangement time of the droplets.
- Examples of the type of vibration include vibration parallel to the normal direction of the measurement cell 1 and vibration parallel to the plane direction of the measurement cell 1.
- the frequency of vibration can be selected from the range of 1 to 100 Hz, more preferably from the range of 10 to 50 Hz, depending on the droplet diameter and the physical properties of the oil.
- the installation unit 101 may have a mechanism for heating the measurement cell 1 when applying vibration.
- FIG. 6A to 6C are schematic views showing the structures of measurement cells used in the following examples and comparative examples.
- FIG. 6A is a top view of the measurement cell of the example and the measurement cell of the comparative example.
- 6B is a schematic cross-sectional view of the measurement cell used in Examples 1 to 3
- FIG. 6C is a schematic cross-sectional view of the measurement cell used in the comparative example.
- the main difference between the measurement cells of Examples 1 to 3 and the measurement cell of the comparative example is the presence or absence of the trap unit 2.
- the measurement cell of the example has a trap part, but the measurement cell of the comparative example has no trap part.
- the droplet guide part 3 was produced using the optical nanoimprint method.
- a material constituting the droplet guide part 3 a mixture (1: 2) of photocrosslinkable polyurethane (EB8405 manufactured by Daicel Cytec Co., Ltd.) and a photocrosslinker (A-NPG manufactured by Shin-Nakamura Chemical Co., Ltd.) was used.
- FIG. 7A and 7B are schematic views showing the structures of the droplet guide portions of the measurement cell of the example and the measurement cell of the comparative example.
- FIG. 7A is a schematic plan view of the droplet guide portion
- FIG. 7B is a schematic cross-sectional view taken along the line BB.
- the wells 31 were arranged in a square, and the shortest pitch between the wells was 40 ⁇ m. Each well 31 had a diameter of 20 ⁇ m and a depth of 1 ⁇ m. The total number of wells is about 5 ⁇ 10 4 .
- droplets (particle diameter 20 ⁇ m) prepared using the RainDrop® System made by RainDance were used, and carrier oil made by RainDance was used as the oil.
- droplets (0.1 ⁇ l) suspended on the oil were added to the oil (100 ⁇ l) to prepare a mixed solution. Even in the liquid mixture, the droplets floated on the oil.
- Example 1 The entire amount of the prepared mixed liquid was injected from the sample injection port 4 of the measurement cell installed so that the droplet guide part 3 was on the lower surface, and oil that could not enter the measurement cell was discharged from the discharge port 6. Thereafter, the sample injection port 4 and the discharge port 6 were closed with an adhesive tape (Nitoflon adhesive tape 903 manufactured by Nitto Denko Corporation) to prevent oil evaporation and droplet outflow. Thereafter, the measurement cell was inverted so that the droplet guide portion 3 was on the upper surface. When the droplet was observed with an optical microscope after being left for 1 hour, the droplet was hardly trapped in the well.
- an adhesive tape Nitto Denko Corporation
- Comparative Example 1 the same operation as in Example 1 was performed, and the sample inlet 4 and the outlet 6 were closed with an adhesive tape to prevent oil evaporation and droplet outflow. Thereafter, the measurement cell was held so that the droplet guide portion 3 was on the upper surface, and left overnight. When the droplets were observed using an optical microscope, the droplets were regularly arranged according to the wells. Further, as a result of obtaining the number of droplets present in the droplet guide portion from the optical microscope image, it was found that 1 ⁇ 10 4 droplets were captured.
- Example 2 The same operation as in Example 1 was performed, and the sample inlet 4 and the outlet 6 were closed with an adhesive tape to prevent oil evaporation and droplet outflow. Thereafter, the measurement cell was inverted so that the droplet guide portion was on the upper surface, and vibration was applied to the measurement cell using a block bath shaker (block bath shaker MyBL-100CS manufactured by ASONE). The vibration frequency was 25 Hz, and the vibration width was 2 mm.
- FIG. 8A is an optical microscope image of the droplet guide portion immediately after the measurement cell is inverted
- FIG. 8B is an optical microscope image of the droplet guide portion after vibration is applied for 60 minutes. From this figure, it was found that droplets were rapidly arranged according to the wells by applying vibration.
- Example 3 A droplet containing an EGFR gene (0.4 ⁇ M) and a DNA intercalator (EvaGreen, 0.8 ⁇ M) was prepared using a RainDrop Raindrop System. Thereafter, according to the same procedure as in Example 2, the droplets were arranged in the measurement cell.
- FIG. 9 is a schematic diagram of a measurement system in which a fluorescent image of the array droplets in the measurement cell is observed.
- the measurement cell 1 is installed in the measurement cell installation unit 208.
- the measurement cell installation unit 208 may be the installation unit 101 of the droplet trap apparatus shown in FIG. That is, the measurement system constituting the ddPCR detection device may be integrated with the droplet trap device.
- the light emitted from the light source 201 was reflected by the dichroic mirror 202, and the measurement cell 1 was irradiated through the objective lens 203.
- the fluorescence emitted from the droplets arranged in the well of the droplet guide portion by the light irradiation passes through the objective lens 203, the dichroic mirror 202, the imaging lens 204, the long pass filter 205, and the band pass filter 206.
- An image was formed on the surface of the light receiving element.
- the dichroic mirror 202 and the objective lens 203 constitute an irradiation optical system that emits light emitted from the light source 201 to the measurement cell 1 disposed in the measurement cell installation unit 208.
- FIG. 10 is a diagram showing a result of measuring the fluorescence image of the array droplets in the measurement cell 1 using the measurement system shown in FIG. From FIG. 10, it was found that the fluorescence image of the arranged droplets can be observed using the optical system of FIG.
- Example 1 From the comparison between Example 1 and Comparative Example 1, it was found that the number of droplets present in the droplet guide part of the measurement cell of Example 1 was about four times as large as that of Comparative Example 1. From the above, it was found that when a measurement cell having a trap part is used, the droplet capture rate can be greatly improved compared to a measurement cell having no trap part. Further, from comparison between Example 1 and Example 2, it was found that the arrangement time of the droplets can be shortened by applying vibration to the measurement cell. Further, from Example 3, it was found that the fluorescence image of the droplets arranged in the measurement cell of this example can be observed.
- this invention is not limited to the above-mentioned Example, Various modifications are included.
- the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
- a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Sustainable Development (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medicinal Chemistry (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Plant Pathology (AREA)
- Optical Measuring Cells (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
A measurement cell 1 includes: a droplet guide section 3 provided to one inner wall surface of an interior space 15 and having a plurality of wells; and a trap section 2 provided to another inner wall surface and having a recessed section for capturing floating droplets. The present invention comprises: a step for pouring a fluid containing a plurality of droplets and an oil into the measurement cell 1, in a state where the trap section is positioned up and the droplet guide section is down, thereby trapping the plurality of droplets in the trap section; and a step for inverting the measurement cell and causing the plurality of droplets trapped in the trap section to be captured by the plurality of wells of the droplet guide section. The present invention makes it possible to trap droplets floating in oil at a high capture rate.
Description
本発明は、生体分子計測方法、特に遺伝子変異の計測方法に関わる液滴のトラップ方法、測定セル、及び液滴トラップ装置に関する。
The present invention relates to a biomolecule measurement method, particularly a droplet trap method, a measurement cell, and a droplet trap apparatus related to a gene mutation measurement method.
現在、遺伝子変異を高感度で検知できるデジタルPCR法が注目されている。デジタルPCR法の一種である、液滴を用いたデジタルPCR法(ddPCR:droplet digital PCR)では、まず、検体中に含まれるDNAを液滴中に単離し、単離したDNAの種類を蛍光標識などの方法で可視化する。その後、流路を流れる液滴に含まれるDNAの種類をフローサイトメーターで判別し、それぞれの個数を積算して、検体中のターゲットDNAの数を定量する。
At present, digital PCR methods that can detect gene mutations with high sensitivity are attracting attention. In a digital PCR method using droplets (ddPCR: droplet digital PCR), which is a kind of digital PCR method, first, DNA contained in a specimen is isolated in a droplet, and the type of the isolated DNA is fluorescently labeled. Visualize by the method. Thereafter, the type of DNA contained in the droplet flowing in the flow path is discriminated with a flow cytometer, and the number of each is integrated to quantify the number of target DNAs in the sample.
一方、非特許文献1は、複数のウエルを有する液滴ガイド部を内壁に有するマイクロ流路中に液滴を流し、液滴ガイド部に捕捉された液滴群の蛍光を上面から観察することで、液滴中の蛍光色素の有無を判別する技術を開示している。
On the other hand, in Non-Patent Document 1, a droplet is caused to flow through a microchannel having a droplet guide portion having a plurality of wells on the inner wall, and fluorescence of the droplet group captured by the droplet guide portion is observed from above. Thus, a technique for determining the presence or absence of a fluorescent dye in a droplet is disclosed.
発明者らは、平面状に配列した液滴群からの蛍光を検出するddPCR法を検討している。マイクロ流路中の内壁に設置された、複数のウエルを有する液滴ガイド部に液滴を捕捉する方法を検討したところ、液滴の捕捉率(投入液滴数に対する捕捉液滴数の割合)が20%程度と悪く、十分量の液滴を液滴ガイド部に捕捉させるために、多量の液滴を流す必要があった。一般に生体分子計測に使用できる検体量は少なく、検査に供する検体量は少ないことが望ましい。
The inventors are examining a ddPCR method for detecting fluorescence from a group of droplets arranged in a plane. We examined a method of trapping droplets in a droplet guide section with multiple wells installed on the inner wall of the microchannel. Droplet capture rate (ratio of trapped droplets to input droplets) However, in order to capture a sufficient amount of droplets in the droplet guide portion, it was necessary to flow a large amount of droplets. In general, the amount of specimen that can be used for biomolecule measurement is small, and it is desirable that the quantity of specimen to be used for testing is small.
本発明は、液滴の捕捉率の高い液滴のトラップ方法、測定セル、液滴トラップ装置を提供するものである。
The present invention provides a droplet trapping method, a measurement cell, and a droplet trapping device having a high droplet capture rate.
本発明による液滴のトラップ方法は、一例として、内部空間の一方の内壁面に複数のウエルを有する液滴ガイド部が設けられ、一方の内壁面に対向する他方の内壁面に浮遊する液滴を捕捉する窪み部を有するトラップ部が設けられた測定セル内に、トラップ部を上に液滴ガイド部を下にした状態で複数の液滴とオイルとを含む流体を流し、トラップ部に複数の液滴をトラップする工程と、測定セルを反転させ、トラップ部にトラップされた複数の液滴を液滴ガイド部の複数のウエルに捕捉させる工程と、を有する。
As an example, the droplet trapping method according to the present invention is provided with a droplet guide portion having a plurality of wells on one inner wall surface of an internal space, and a droplet floating on the other inner wall surface facing one inner wall surface. A fluid containing a plurality of liquid droplets and oil is allowed to flow in the measurement cell provided with a trap part having a hollow part for capturing the liquid, with the trap part on top and the liquid drop guide part on the bottom. And a step of inverting the measurement cell and capturing a plurality of droplets trapped in the trap portion in a plurality of wells of the droplet guide portion.
本発明による測定セルは、一例として、筐体の外表面に開口した試料注入口及び排出口と、試料注入口と排出口とを結ぶ筐体の内部に設けられた流路と、流路の途中に設けられ筐体の外表面に平行な方向に広がりを持つ内部空間と、内部空間の一方の内壁面に設けられた複数のウエルを有する液滴ガイド部と、内部空間の他方の内壁面に設けられた浮遊する液滴を捕捉する窪み部を有するトラップ部と、を有する。
The measurement cell according to the present invention includes, as an example, a sample inlet and outlet that are opened on the outer surface of the casing, a channel provided inside the casing that connects the sample inlet and outlet, An internal space provided in the middle and extending in a direction parallel to the outer surface of the housing, a droplet guide portion having a plurality of wells provided on one inner wall surface of the inner space, and the other inner wall surface of the inner space And a trap portion having a dent portion for capturing a floating droplet provided in the.
また、本発明による液滴トラップ装置は、一例として、測定セルに液滴を捕捉させるための装置であって、内部空間の内壁面に複数のウエルを有する液滴ガイド部と浮遊する液滴を捕捉する窪み部を有するトラップ部とが対面して設けられた測定セルを保持し、反転させる機構を有する反転部と、反転部によって反転された測定セルを配置する設置部と、反転部による測定セルの反転タイミングを制御する制御部と、を有する。
The droplet trapping device according to the present invention is, for example, a device for capturing a droplet in a measurement cell, and a droplet guide unit having a plurality of wells on an inner wall surface of an internal space and a droplet that floats. Holding the measurement cell provided facing the trap part having a hollow part to be captured and holding it, a reversing part having a mechanism for reversing, an installation part for placing the measurement cell reversed by the reversing part, and measurement by the reversing part And a control unit for controlling the inversion timing of the cell.
本発明によれば、測定セルにおける液滴の捕捉率を高めることができる。
According to the present invention, it is possible to increase the droplet capture rate in the measurement cell.
上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
はじめに、本発明の一実施形態に係る測定セルについて説明する。なお、以下の各図において共通する構成については、同一の符号を付し、重複した説明を省略する。
First, a measurement cell according to an embodiment of the present invention will be described. In addition, about the structure which is common in the following each figure, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.
図1Aは、測定セル1の一例を示す断面模式図である。また、図1Bは測定セルの中央付近を拡大して示した断面模式図である。
FIG. 1A is a schematic cross-sectional view showing an example of a measurement cell 1. FIG. 1B is a schematic cross-sectional view showing an enlargement of the vicinity of the center of the measurement cell.
本実施例の測定セル1は、外形が板状をした筐体8の一方の外表面に試料注入口4と排出口6が開口し、筐体8の内部に試料注入口4と排出口6を結ぶ流路5が形成されている。流路5の途中には、主に筐体8の外表面に平行な方向に広がりを持った内部空間15が設けられ、その内部空間15に液滴ガイド部3とトラップ部2が設けられている。液滴ガイド部3とトラップ部2とは、流路5の上面側と下面側に互いに対向するように設けられている。すなわち、流路5の途中に設けられた内部空間15の一方の内壁面に液滴ガイド部3が設けられ、その内壁面に対面する他方の内壁面にトラップ部2が設けられている。
In the measurement cell 1 of this embodiment, a sample injection port 4 and a discharge port 6 are opened on one outer surface of a casing 8 whose outer shape is plate-shaped, and the sample injection port 4 and the discharge port 6 are formed inside the casing 8. Is formed. In the middle of the flow path 5, there is provided an internal space 15 that extends mainly in a direction parallel to the outer surface of the housing 8, and the droplet guide portion 3 and the trap portion 2 are provided in the internal space 15. Yes. The droplet guide portion 3 and the trap portion 2 are provided on the upper surface side and the lower surface side of the flow path 5 so as to face each other. That is, the droplet guide portion 3 is provided on one inner wall surface of the internal space 15 provided in the middle of the flow path 5, and the trap portion 2 is provided on the other inner wall surface facing the inner wall surface.
トラップ部2は、試料注入口4から注入され流路5を通して流入した浮遊する液滴をまとめて捕捉する窪み部を有する。トラップ部2は、流路面から5μm以上窪んだ単数又は複数の領域を有することが好ましい。トラップ部2の窪みの深さが5μmより浅いと、流路を通して流入した液滴が十分にトラップできず、液滴の捕捉率が低下するため好ましくない。また、トラップ部2の形状は、流路を通して流入した液滴が十分にトラップできれば、特に制限はない。トラップ部2の形状の例として、液滴ガイド部3に対面した領域の一部が一様に窪んだ形状や、一様に窪んだ領域の底面にさらに複数の窪みがある構造などが挙げられる。また、トラップ部2を構成する材料は、測定セル1を反転した際に、トラップした液滴がトラップ部から離れて浮遊すれば特に制限はない。トラップ部2を構成する材料の例として、ガラス、樹脂、金属などが挙げられる。
The trap part 2 has a hollow part that collects and traps floating droplets that are injected from the sample inlet 4 and flown through the flow path 5. It is preferable that the trap part 2 has a 1 area | region or several area | region recessed 5 micrometers or more from the flow-path surface. If the depth of the depression in the trap portion 2 is shallower than 5 μm, it is not preferable because the droplets flowing in through the channel cannot be sufficiently trapped and the trapping rate of the droplets is lowered. The shape of the trap part 2 is not particularly limited as long as the liquid droplets flowing through the flow path can be sufficiently trapped. Examples of the shape of the trap unit 2 include a shape in which a part of the region facing the droplet guide unit 3 is uniformly depressed, and a structure in which a plurality of depressions are further provided on the bottom surface of the uniformly depressed region. . The material constituting the trap portion 2 is not particularly limited as long as the trapped droplet floats away from the trap portion when the measurement cell 1 is inverted. Examples of the material constituting the trap portion 2 include glass, resin, metal, and the like.
液滴ガイド部3は、測定セル1の反転後、トラップ部2から浮遊した液滴を配列させるためのウエル31を有する。液滴ガイド部3の形状は、トラップ部2から浮遊した液滴を配列できる形状であれば、特に制限はない。液滴ガイド部3の形状の例として、ウエル31が周期的に配列した形状が挙げられる。
The droplet guide unit 3 has a well 31 for arranging droplets floating from the trap unit 2 after the measurement cell 1 is inverted. The shape of the droplet guide part 3 is not particularly limited as long as the droplets floating from the trap part 2 can be arranged. As an example of the shape of the droplet guide portion 3, there is a shape in which the wells 31 are periodically arranged.
図2Aは、ウエル31が2次元的に周期的に配列した形状の液滴ガイド部3の構造例を示す模式図であり、図2BはそのB-B断面図である。ウエルは、様々な形状を取ることが可能である。ウエル31の形状の例として、円柱状、楕円柱状、多角柱状(三角柱状、四角柱状、五角柱状、六角柱状など)、四面体状などが挙げられる。また、ウエル31の周期配列の例として、正方配列や三角配列が考えられ、ウエル31の密度は、用途に応じて調整することが可能である。
FIG. 2A is a schematic view showing a structural example of the droplet guide portion 3 having a shape in which the wells 31 are periodically arranged two-dimensionally, and FIG. 2B is a sectional view taken along the line BB. The well can take various shapes. Examples of the shape of the well 31 include a columnar shape, an elliptical columnar shape, a polygonal columnar shape (triangular columnar shape, quadrangular columnar shape, pentagonal columnar shape, hexagonal columnar shape, etc.), tetrahedral shape, and the like. Further, as an example of the periodic arrangement of the wells 31, a square arrangement or a triangular arrangement can be considered, and the density of the wells 31 can be adjusted according to the application.
特に、ウエル31の形状が円柱状の場合、液滴ガイド部3は、液滴の配列において良好な効果を発揮する。円筒状のウエルの形状は下記の(1)~(3)の関係を全て満たすことが望ましい。本実施例で、既存技術と同等の判別速度を実現するためには、液滴の直径は50μm以下であることが望ましく、ウエルの最大径を液滴の直径の0.5倍から1.2倍の範囲として、液滴位置のドリフトを最小限に抑えることが望ましい。また、ウエルの平均深さは、ウエルの最大径の0.01倍より大きく1倍より小さいことが望ましい。ウエルの平均深さがウエルの平均径の0.01倍より小さいと、液滴の捕捉が困難となり、好ましくない。また、ウエルの平均深さがウエルの平均径の1倍より大きいと、液滴ガイド部3の加工が困難となり好ましくない。
In particular, when the shape of the well 31 is cylindrical, the droplet guide portion 3 exhibits a good effect in the arrangement of droplets. The shape of the cylindrical well preferably satisfies all the following relationships (1) to (3). In this embodiment, in order to realize a discrimination speed equivalent to that of the existing technology, it is desirable that the droplet diameter is 50 μm or less, and the maximum well diameter is 0.5 to 1.2 times the droplet diameter. It is desirable to minimize droplet position drift as a doubled range. Further, it is desirable that the average depth of the well is larger than 0.01 times the maximum diameter of the well and smaller than 1 time. If the average depth of the well is smaller than 0.01 times the average diameter of the well, it becomes difficult to capture the droplet, which is not preferable. In addition, if the average depth of the well is larger than the average diameter of the well, the processing of the droplet guide part 3 becomes difficult, which is not preferable.
Dd<50μm (1)
0.5Dd<Dw<1.2Dd (2)
0.01≦d/Dw≦1 (3)
ただし、Dd[μm]:液滴の直径の平均、Dw[μm]:ウエルの最大径の平均、d[μm]:ウエルの平均深さである。 D d <50 μm (1)
0.5D d <D w <1.2D d (2)
0.01 ≦ d / D w ≦ 1 (3)
Where D d [μm]: average diameter of droplets, D w [μm]: average maximum diameter of wells, d [μm]: average well depth.
0.5Dd<Dw<1.2Dd (2)
0.01≦d/Dw≦1 (3)
ただし、Dd[μm]:液滴の直径の平均、Dw[μm]:ウエルの最大径の平均、d[μm]:ウエルの平均深さである。 D d <50 μm (1)
0.5D d <D w <1.2D d (2)
0.01 ≦ d / D w ≦ 1 (3)
Where D d [μm]: average diameter of droplets, D w [μm]: average maximum diameter of wells, d [μm]: average well depth.
試料注入口4は、液滴とオイルとを含む流体を測定セル1中に注入できる構造であれば特に制限はない。また、流路5は、液滴とオイルとを含む流体をトラップ部2に誘導し、過剰のオイルを排出口6まで誘導する構造であれば特に制約はない。また、排出口6は、オイルを測定セル1の外部に排出できる構造であれば特に制限はない。
The sample inlet 4 is not particularly limited as long as it can inject a fluid containing droplets and oil into the measurement cell 1. The channel 5 is not particularly limited as long as it has a structure that guides a fluid containing droplets and oil to the trap portion 2 and guides excess oil to the discharge port 6. Further, the discharge port 6 is not particularly limited as long as it has a structure capable of discharging oil to the outside of the measurement cell 1.
試料注入口4と排出口6には、蓋部材を設置して、オイルの蒸発と液滴の流出を防止することが可能である。この場合、試料注入口4と排出口6は、蓋部材を設置して開口部を塞ぐことができる構造となっていることが望ましい。
It is possible to install a lid member at the sample inlet 4 and the outlet 6 to prevent oil evaporation and droplet outflow. In this case, it is desirable that the sample injection port 4 and the discharge port 6 have a structure in which a lid member can be installed to close the opening.
筐体8は、測定セル1の構造を維持し、液滴を構成する溶液の沸点(100℃程度)までの耐熱性を有することが望ましい。また、液滴の光学観察をする場合には、液滴ガイド部3と測定セル1の外周とに挟まれた筐体部分9の、波長450~750nmにおける光透過率が70%以上であることが望ましい。透過率が70%より小さいと、測定セル1の外部から液滴の蛍光を計測することが困難となるため、好ましくない。また、倒立顕微鏡などの顕微鏡を用いて、トラップ部2を通して液滴を光学観察する場合には、トラップ部2と測定セル1の外周とに挟まれた筐体部分10の、波長450~750nmにおける光透過率が70%以上であることが望ましい。透過率が70%より小さいと、測定セル1の外部から液滴の蛍光を計測することが困難となるため、好ましくない。
The housing 8 desirably maintains the structure of the measurement cell 1 and has heat resistance up to the boiling point (about 100 ° C.) of the solution constituting the droplet. In addition, when optically observing the droplet, the light transmittance at a wavelength of 450 to 750 nm of the casing portion 9 sandwiched between the droplet guide portion 3 and the outer periphery of the measurement cell 1 is 70% or more. Is desirable. If the transmittance is less than 70%, it is difficult to measure the fluorescence of the droplet from the outside of the measurement cell 1, which is not preferable. In addition, when optically observing a droplet through the trap unit 2 using a microscope such as an inverted microscope, the housing portion 10 sandwiched between the trap unit 2 and the outer periphery of the measurement cell 1 has a wavelength of 450 to 750 nm. It is desirable that the light transmittance is 70% or more. If the transmittance is less than 70%, it is difficult to measure the fluorescence of the droplet from the outside of the measurement cell 1, which is not preferable.
次に、本発明の一実施形態に係る液滴のトラップ方法について説明する。なお、以下の各図において共通する構成については、同一の符号を付し、重複した説明を省略する。
Next, a droplet trapping method according to an embodiment of the present invention will be described. In addition, about the structure which is common in the following each figure, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.
図3A~3Cは、実施例の測定セルを用いた液滴のトラップ方法を模式的に示す図である。図3Aは測定セル1中に液滴11とオイル12とを含む流体を流した後の状態を示す断面模式図、図3Bは測定セル1を反転させた状態を示す断面模式図、図3Cは液滴11が液滴ガイド部3に捕捉された状態を示す断面模式図である。
3A to 3C are diagrams schematically showing a droplet trapping method using the measurement cell of the embodiment. 3A is a schematic cross-sectional view showing a state after flowing a fluid containing droplets 11 and oil 12 in the measurement cell 1, FIG. 3B is a schematic cross-sectional view showing a state in which the measurement cell 1 is inverted, and FIG. FIG. 4 is a schematic cross-sectional view showing a state where a droplet 11 is captured by a droplet guide unit 3.
まず、試料注入口4から、測定セル1中に液滴11とオイル12とを含む流体を流す。流体の流し方は、流体が測定セル中に入る方法であれば特に制限はない。流体の流し方の例として、マイクロピペットを使って注入する方法や、試料注入口4にチューブなどを接続し、ポンプなどを用いて注入する方法などが挙げられる。液滴11は、オイル12よりも密度が低く、オイル12の表面に浮遊するものが好ましい。また、液滴11は、液滴中の観察対象や、液滴中で観察対象を形成するために必要な分子を含有してもよい。液滴11が含有してもよい分子の例として、生体関連分子、PCR反応に必要な薬剤、蛍光色素、塩などが挙げられる。また、液滴11は、界面活性剤で安定化されていることが好ましい。界面活性剤の例として、EA surfactant(RainDance社製)や、Pico-SurfTM 1(dolomite社製)などが挙げられる。また、オイル12は、液滴11を浮遊させる液体であればよい。オイル12の例として、フロリナート(3M製)、Novec(3M製)などが挙げられる。
First, a fluid containing droplets 11 and oil 12 is caused to flow from the sample inlet 4 into the measurement cell 1. There is no particular limitation on the way the fluid flows as long as the fluid enters the measurement cell. Examples of fluid flow include a method of injecting using a micropipette and a method of injecting using a pump or the like by connecting a tube or the like to the sample injection port 4. It is preferable that the droplets 11 have a lower density than the oil 12 and float on the surface of the oil 12. Further, the droplet 11 may contain an observation target in the droplet and molecules necessary for forming the observation target in the droplet. Examples of molecules that the droplet 11 may contain include biologically relevant molecules, drugs necessary for PCR reactions, fluorescent dyes, salts, and the like. The droplet 11 is preferably stabilized with a surfactant. Examples of the surfactant include EA surfactant (made by RainDance), Pico-Surf ™ 1 (made by dolomite), and the like. The oil 12 may be any liquid that floats the droplet 11. Examples of the oil 12 include florinate (manufactured by 3M), Novec (manufactured by 3M), and the like.
液滴11とオイル12とを含む流体を測定セル1に流すと、液滴11は浮力を受けて、図3Aのようにトラップ部2に捕捉される。そのため、排出口6から液滴11が抜け出ることはほとんどない。従って、本実施例の液滴トラップ方法によって、液滴の捕捉率を大幅に向上させることが可能である。
When a fluid containing the droplet 11 and the oil 12 is flowed to the measurement cell 1, the droplet 11 receives buoyancy and is captured by the trap portion 2 as shown in FIG. 3A. For this reason, the liquid droplet 11 hardly escapes from the discharge port 6. Therefore, the droplet trapping rate can be greatly improved by the droplet trapping method of this embodiment.
液滴11とオイル12とを含む流体を測定セル1に流した後、試料注入口4と排出口6に蓋部材7を設置して、オイル12の蒸発と液滴11の流出を防止してもよい。蓋部材7は、オイル12の蒸発と液滴11の流出を防止できる構造と材質であれば、特に制限はない。また、この場合、試料注入口4と排出口6は、蓋部材7を設置できる構造となっていることが望ましい。また、蓋部材7として、粘着テープなどを使用することも可能である。
After flowing the fluid containing the droplet 11 and the oil 12 to the measurement cell 1, the lid member 7 is installed at the sample inlet 4 and the outlet 6 to prevent the oil 12 from evaporating and the droplet 11 from flowing out. Also good. The lid member 7 is not particularly limited as long as it has a structure and material that can prevent the evaporation of the oil 12 and the outflow of the droplets 11. In this case, it is desirable that the sample inlet 4 and the outlet 6 have a structure in which the lid member 7 can be installed. Further, an adhesive tape or the like can be used as the lid member 7.
試料注入口4と排出口6を蓋部材7で塞いだ後、液滴ガイド部3がトラップ部2の上に来るように測定セル1を反転させる。このとき液滴11に浮力が働き、トラップ部2に捕捉されていた液滴11は、図3Bに示すように液滴ガイド部3に誘導される。
After the sample injection port 4 and the discharge port 6 are closed with the lid member 7, the measurement cell 1 is inverted so that the droplet guide unit 3 comes on the trap unit 2. At this time, buoyancy acts on the droplet 11, and the droplet 11 trapped in the trap portion 2 is guided to the droplet guide portion 3 as shown in FIG. 3B.
その後、時間経過とともに、図3Cに示すように、液滴11が液滴ガイド部3のウエルに従って配列する。このプロセスでは、液滴11は、液滴ガイド部3に沿って移動し、浮力、または、液滴表面の電荷と、液滴ガイド部3の窪みの角に集中する静電気との間に働く相互作用によって窪みに捕捉される。また、測定セル1を反転させた後に、測定セル1に振動を印加して、液滴11のウエルへの配列時間を短縮することも可能である。振動の印加方法は、液滴11の配列時間が短縮できる方法であれば、特に制限はない。
Thereafter, as time passes, the droplets 11 are arranged according to the wells of the droplet guide unit 3 as shown in FIG. 3C. In this process, the droplet 11 moves along the droplet guide portion 3 and acts between buoyancy or charge on the surface of the droplet and static electricity concentrated on the corner of the recess of the droplet guide portion 3. It is trapped in the depression by the action. In addition, after inverting the measurement cell 1, it is possible to apply vibration to the measurement cell 1 to shorten the arrangement time of the droplets 11 in the well. The method for applying vibration is not particularly limited as long as the arrangement time of the droplets 11 can be shortened.
以上に示した液滴のトラップ方法により、高捕捉率で測定セル1中に液滴11を捕捉し、液滴ガイド部3のウエルに配列させることができる。なお、液滴11の蛍光強度変化を効率良く計測する必要がある場合には、液滴11の直径を小さくして、液滴11を高密度に配列する方がよい。例えば、液滴流路を流れる液滴に含まれるDNAの種類を判別する現行のddPCR装置では、液滴を104個/分程度の速度で判別している。本実施例で同等の判別速度を実現するためには、液滴11の直径は50μm以下であることが望ましい。
By the droplet trapping method described above, the droplet 11 can be captured in the measurement cell 1 with a high capture rate and can be arranged in the well of the droplet guide unit 3. When it is necessary to efficiently measure the fluorescence intensity change of the droplet 11, it is better to reduce the diameter of the droplet 11 and arrange the droplets 11 at a high density. For example, in a current ddPCR apparatus that determines the type of DNA contained in a droplet flowing in a droplet channel, the droplet is determined at a speed of about 10 4 / min. In order to achieve the same discrimination speed in this embodiment, the diameter of the droplet 11 is desirably 50 μm or less.
次に、本発明の一実施形態に係る液滴トラップ装置について説明する。なお、以下の各図において共通する構成については、同一の符号を付し、重複した説明を省略する。
Next, a droplet trap apparatus according to an embodiment of the present invention will be described. In addition, about the structure which is common in the following each figure, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.
図4は、本実施例の液滴トラップ装置を模式的に示した図である。本実施例の液滴トラップ装置100は、設置部101と、反転部102と、制御部103とを有する。設置部101は、筐体の外表面に平行な方向に広がりを持つ内部空間の一方の内壁面に窪み部を有するトラップ部が設けられ、他方の内壁面に複数のウエルを有する液滴ガイド部が設けられた測定セル1を配置する部位である。反転部102は、設置部101に配置した測定セルを反転する機構を有する。制御部103は、反転部102が測定セルを反転するタイミングを制御する。
FIG. 4 is a diagram schematically showing the droplet trapping apparatus of the present embodiment. The droplet trap apparatus 100 according to the present embodiment includes an installation unit 101, a reversing unit 102, and a control unit 103. The installation portion 101 is provided with a trap portion having a depression on one inner wall surface of an internal space that extends in a direction parallel to the outer surface of the housing, and a droplet guide portion having a plurality of wells on the other inner wall surface It is a site | part which arrange | positions the measurement cell 1 provided with. The reversing unit 102 has a mechanism for reversing the measurement cell arranged in the installation unit 101. The control unit 103 controls the timing at which the inversion unit 102 inverts the measurement cell.
図5A~5Cは、本実施例の液滴トラップ装置100の動作を模式的に示した説明図である。各図の上方に、液滴トラップ装置100の内部での測定セル1の状態を拡大して示した。
5A to 5C are explanatory views schematically showing the operation of the droplet trapping apparatus 100 of the present embodiment. The state of the measurement cell 1 inside the droplet trap apparatus 100 is shown in an enlarged manner above each figure.
測定セル1の流路に液滴11とオイル12とを含む流体を流し、図3Aに示すようにオイル中に浮遊した液滴をトラップ部2に捕捉して、試料注入口4と排出口6を蓋部材7で塞ぐ。この測定セル1のトラップ部2に液滴を捕捉する工程は、測定セル1を液滴トラップ装置100の反転部102に固定した状態で行ってもよいし、別の場所で行ってもよい。別の場所でトラップ部2に液滴を捕捉する工程を行った場合には、トラップ部2が液滴ガイド部3より上方に位置する姿勢を維持したまま、図5Aに示すように測定セル1を反転部102に固定する。
A fluid containing the droplet 11 and the oil 12 is caused to flow through the flow channel of the measurement cell 1, and the droplet suspended in the oil is captured by the trap portion 2 as shown in FIG. Is closed with a lid member 7. The step of capturing droplets in the trap unit 2 of the measurement cell 1 may be performed in a state where the measurement cell 1 is fixed to the reversing unit 102 of the droplet trap apparatus 100 or may be performed in another place. When the step of capturing droplets in the trap unit 2 is performed at another location, the measurement cell 1 is maintained as shown in FIG. 5A while maintaining the posture in which the trap unit 2 is positioned above the droplet guide unit 3. Is fixed to the inverting unit 102.
次に、トラップ部が上面になるように測定セル1を保持した反転部102は、制御部103の命令により反転し、図5Bに示すように、設置部101に測定セル1を設置する。このとき、測定セル1は液滴ガイド部3が上面になり、液滴ガイド部3がトラップ部2より上方に位置する。反転の方法は、測定セルの上面と下面とが反転できれば特に制限はない。反転の方法の例として、図5Aに矢印で示すように、円弧を描くようにセル平面に平行な軸を回転させる方法や、セル平面に平行な軸を中心に回転させる方法が挙げられる。測定セル1を設置部101に配置した後に、反転部102は測定セル1の保持を解除してもよい。また、反転部102が測定セル1の保持を解除した後は、図5Cに示すように、反転部102は、次の操作に備えて、測定セル1を反転させる前の位置に移動してもよい。
Next, the reversing unit 102 holding the measurement cell 1 so that the trap unit is on the upper surface is reversed by the command of the control unit 103, and the measurement cell 1 is installed in the installation unit 101 as shown in FIG. 5B. At this time, in the measurement cell 1, the droplet guide portion 3 is on the upper surface, and the droplet guide portion 3 is positioned above the trap portion 2. The inversion method is not particularly limited as long as the upper surface and the lower surface of the measurement cell can be inverted. Examples of the inversion method include a method of rotating an axis parallel to the cell plane so as to draw an arc as shown by an arrow in FIG. 5A and a method of rotating around an axis parallel to the cell plane. After placing the measurement cell 1 on the installation unit 101, the reversing unit 102 may release the holding of the measurement cell 1. Further, after the reversing unit 102 releases the holding of the measurement cell 1, as shown in FIG. 5C, the reversing unit 102 moves to a position before reversing the measurement cell 1 in preparation for the next operation. Good.
反転部102によって反転した測定セル1の中では、トラップ部に捕捉されていた液滴が浮上して上方の液滴ガイド部に誘導され、液滴ガイド部のウエルに従って配列する。この配列に要する時間を短縮するために、設置部101と一体化した振動部を設置し、測定セル1に振動を印加してもよい。印加する振動の種類や振幅は、液滴の配列時間が短縮できる振動であれば特に制限はない。振動の種類の例として、測定セル1の法線方向に平行な振動や、測定セル1の平面方向に平行な振動が挙げられる。また、振動の周波数は、液滴径やオイルの物性に応じて1~100Hzの範囲、より好適には10~50Hzの範囲から選択することが可能である。また、測定セル1中のオイルを、例えば35~60℃の温度範囲で加熱することにより、オイルの粘度を低減して、液滴の配列時間をさらに短縮することが可能である。従って、設置部101は、振動印加時に測定セル1を加熱する機構を有していても良い。
In the measurement cell 1 inverted by the inversion unit 102, the droplets captured by the trap unit float up and are guided to the upper droplet guide unit, and are arranged according to the wells of the droplet guide unit. In order to shorten the time required for this arrangement, a vibration unit integrated with the installation unit 101 may be installed to apply vibration to the measurement cell 1. The type and amplitude of the vibration to be applied are not particularly limited as long as the vibration can reduce the arrangement time of the droplets. Examples of the type of vibration include vibration parallel to the normal direction of the measurement cell 1 and vibration parallel to the plane direction of the measurement cell 1. The frequency of vibration can be selected from the range of 1 to 100 Hz, more preferably from the range of 10 to 50 Hz, depending on the droplet diameter and the physical properties of the oil. In addition, by heating the oil in the measurement cell 1 in a temperature range of, for example, 35 to 60 ° C., it is possible to reduce the viscosity of the oil and further shorten the droplet arrangement time. Therefore, the installation unit 101 may have a mechanism for heating the measurement cell 1 when applying vibration.
[実施例と比較例]
以下、本発明の実施例、比較例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれに限定されるものではない。 [Examples and Comparative Examples]
EXAMPLES Hereinafter, although this invention is demonstrated in detail using the Example and comparative example of this invention, the technical scope of this invention is not limited to this.
以下、本発明の実施例、比較例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれに限定されるものではない。 [Examples and Comparative Examples]
EXAMPLES Hereinafter, although this invention is demonstrated in detail using the Example and comparative example of this invention, the technical scope of this invention is not limited to this.
図6A~6Cは、下記の実施例と比較例で使用した測定セルの構造を示す模式図である。図6Aは、実施例の測定セルと比較例の測定セルの上面図である。図6Bは実施例1~3で使用した測定セルの断面模式図、図6Cは比較例で使用した測定セルの断面模式図である。実施例1~3の測定セルと比較例の測定セルの主な違いは、トラップ部2の有無である。実施例の測定セルにはトラップ部があるが、比較例の測定セルにはトラップ部が無い。
6A to 6C are schematic views showing the structures of measurement cells used in the following examples and comparative examples. FIG. 6A is a top view of the measurement cell of the example and the measurement cell of the comparative example. 6B is a schematic cross-sectional view of the measurement cell used in Examples 1 to 3, and FIG. 6C is a schematic cross-sectional view of the measurement cell used in the comparative example. The main difference between the measurement cells of Examples 1 to 3 and the measurement cell of the comparative example is the presence or absence of the trap unit 2. The measurement cell of the example has a trap part, but the measurement cell of the comparative example has no trap part.
これらの測定セルは、スライドガラス(松浪硝子工業製S1111)と粘着シート(3M製9969)を積層して作製した。流路の幅は1mm、高さは100μmとした。実施例で使用した測定セルのトラップ部2の深さは75μmとした。液滴ガイド部3は光ナノインプリント法を用いて作製した。液滴ガイド部3を構成する材料として、光架橋性のポリウレタン(ダイセルサイテック社製EB8405)と光架橋剤(新中村化学製A-NPG)の混合物(1:2)を用いた。
These measurement cells were prepared by laminating a slide glass (S1111 manufactured by Matsunami Glass Industry) and an adhesive sheet (9969 manufactured by 3M). The width of the flow path was 1 mm and the height was 100 μm. The depth of the trap portion 2 of the measurement cell used in the examples was 75 μm. The droplet guide part 3 was produced using the optical nanoimprint method. As a material constituting the droplet guide part 3, a mixture (1: 2) of photocrosslinkable polyurethane (EB8405 manufactured by Daicel Cytec Co., Ltd.) and a photocrosslinker (A-NPG manufactured by Shin-Nakamura Chemical Co., Ltd.) was used.
図7A,7Bは、実施例の測定セルと比較例の測定セルの液滴ガイド部の構造を示す模式図である。図7Aは液滴ガイド部の平面模式図、図7BはそのB-B断面模式図である。ウエル31は正方配列しており、ウエル間の最短ピッチは40μmであった。個々のウエル31は、直径が20μm、深さが1μmであった。ウエルの総数は約5×104個である。
7A and 7B are schematic views showing the structures of the droplet guide portions of the measurement cell of the example and the measurement cell of the comparative example. FIG. 7A is a schematic plan view of the droplet guide portion, and FIG. 7B is a schematic cross-sectional view taken along the line BB. The wells 31 were arranged in a square, and the shortest pitch between the wells was 40 μm. Each well 31 had a diameter of 20 μm and a depth of 1 μm. The total number of wells is about 5 × 10 4 .
実施例と比較例のいずれにおいても、RainDance社製のRainDrop Systemを用いて作製した液滴(粒径20μm)を用い、オイルとしてRainDance社製のキャリアオイルを用いた。それぞれの実施例、比較例において、オイル上に浮遊した液滴(0.1μl)をオイル(100μl)に添加し、混合液を調製した。混合液中においても、液滴はオイル上に浮遊した。
In both the examples and comparative examples, droplets (particle diameter 20 μm) prepared using the RainDrop® System made by RainDance were used, and carrier oil made by RainDance was used as the oil. In each of the examples and comparative examples, droplets (0.1 μl) suspended on the oil were added to the oil (100 μl) to prepare a mixed solution. Even in the liquid mixture, the droplets floated on the oil.
<実施例1>
液滴ガイド部3が下面となるように設置した測定セルの試料注入口4から、調製した混合液を全量注入し、測定セルに入りきらないオイルを排出口6から排出した。その後、試料注入口4と排出口6を粘着テープ(日東電工社製ニトフロン粘着テープ903)で塞ぎ、オイルの蒸発と液滴の流出を防止した。その後、液滴ガイド部3が上面となるように測定セルを反転した。1時間放置後に光学顕微鏡で液滴を観察したところ、液滴はほとんどウエルに捕捉されていなかった。一方、一晩放置後、光学顕微鏡を用いて液滴を観察したところ、液滴は、ウエルに従い規則配列していた。また、光学顕微鏡像から液滴ガイド部に存在する液滴の数を求めた結果、4×104個の液滴が捕捉されていることが分かった。 <Example 1>
The entire amount of the prepared mixed liquid was injected from thesample injection port 4 of the measurement cell installed so that the droplet guide part 3 was on the lower surface, and oil that could not enter the measurement cell was discharged from the discharge port 6. Thereafter, the sample injection port 4 and the discharge port 6 were closed with an adhesive tape (Nitoflon adhesive tape 903 manufactured by Nitto Denko Corporation) to prevent oil evaporation and droplet outflow. Thereafter, the measurement cell was inverted so that the droplet guide portion 3 was on the upper surface. When the droplet was observed with an optical microscope after being left for 1 hour, the droplet was hardly trapped in the well. On the other hand, when the droplets were observed using an optical microscope after being left overnight, the droplets were regularly arranged according to the wells. Further, as a result of obtaining the number of droplets present in the droplet guide portion from the optical microscope image, it was found that 4 × 10 4 droplets were captured.
液滴ガイド部3が下面となるように設置した測定セルの試料注入口4から、調製した混合液を全量注入し、測定セルに入りきらないオイルを排出口6から排出した。その後、試料注入口4と排出口6を粘着テープ(日東電工社製ニトフロン粘着テープ903)で塞ぎ、オイルの蒸発と液滴の流出を防止した。その後、液滴ガイド部3が上面となるように測定セルを反転した。1時間放置後に光学顕微鏡で液滴を観察したところ、液滴はほとんどウエルに捕捉されていなかった。一方、一晩放置後、光学顕微鏡を用いて液滴を観察したところ、液滴は、ウエルに従い規則配列していた。また、光学顕微鏡像から液滴ガイド部に存在する液滴の数を求めた結果、4×104個の液滴が捕捉されていることが分かった。 <Example 1>
The entire amount of the prepared mixed liquid was injected from the
比較例1では、実施例1と同様の操作を行い、試料注入口4と排出口6を粘着テープで塞ぎ、オイルの蒸発と液滴の流出を防止した。その後、液滴ガイド部3が上面となるように測定セルを保持し、一晩放置した。光学顕微鏡を用いて液滴を観察したところ、液滴は、ウエルに従い規則配列していた。また、光学顕微鏡像から液滴ガイド部に存在する液滴の数を求めた結果、1×104個の液滴が捕捉されていることがわかった。
In Comparative Example 1, the same operation as in Example 1 was performed, and the sample inlet 4 and the outlet 6 were closed with an adhesive tape to prevent oil evaporation and droplet outflow. Thereafter, the measurement cell was held so that the droplet guide portion 3 was on the upper surface, and left overnight. When the droplets were observed using an optical microscope, the droplets were regularly arranged according to the wells. Further, as a result of obtaining the number of droplets present in the droplet guide portion from the optical microscope image, it was found that 1 × 10 4 droplets were captured.
<実施例2>
実施例1と同様の操作を行い、試料注入口4と排出口6を粘着テープで塞ぎ、オイルの蒸発と液滴の流出を防止した。その後、液滴ガイド部が上面となるように測定セルを反転し、ブロックバスシェーカ(アズワン製ブロックバスシェーカMyBL-100CS)を用いて測定セルに振動を印加した。振動の振動数は25Hzとし、振動幅は2mmとした。図8Aは測定セルを反転した直後の液滴ガイド部の光学顕微鏡像、図8Bは振動を60分印加した後の液滴ガイド部の光学顕微鏡像である。この図から、振動印加により、ウエルに従い液滴が迅速に配列することが分かった。 <Example 2>
The same operation as in Example 1 was performed, and thesample inlet 4 and the outlet 6 were closed with an adhesive tape to prevent oil evaporation and droplet outflow. Thereafter, the measurement cell was inverted so that the droplet guide portion was on the upper surface, and vibration was applied to the measurement cell using a block bath shaker (block bath shaker MyBL-100CS manufactured by ASONE). The vibration frequency was 25 Hz, and the vibration width was 2 mm. FIG. 8A is an optical microscope image of the droplet guide portion immediately after the measurement cell is inverted, and FIG. 8B is an optical microscope image of the droplet guide portion after vibration is applied for 60 minutes. From this figure, it was found that droplets were rapidly arranged according to the wells by applying vibration.
実施例1と同様の操作を行い、試料注入口4と排出口6を粘着テープで塞ぎ、オイルの蒸発と液滴の流出を防止した。その後、液滴ガイド部が上面となるように測定セルを反転し、ブロックバスシェーカ(アズワン製ブロックバスシェーカMyBL-100CS)を用いて測定セルに振動を印加した。振動の振動数は25Hzとし、振動幅は2mmとした。図8Aは測定セルを反転した直後の液滴ガイド部の光学顕微鏡像、図8Bは振動を60分印加した後の液滴ガイド部の光学顕微鏡像である。この図から、振動印加により、ウエルに従い液滴が迅速に配列することが分かった。 <Example 2>
The same operation as in Example 1 was performed, and the
<実施例3>
EGFR遺伝子(0.4μM)とDNAインターカレータ(EvaGreen、0.8μM)とを含む液滴をRainDance社製のRainDrop Systemを用いて作製した。その後、実施例2と同じ手順に従い、測定セル中で液滴を配列させた。 <Example 3>
A droplet containing an EGFR gene (0.4 μM) and a DNA intercalator (EvaGreen, 0.8 μM) was prepared using a RainDrop Raindrop System. Thereafter, according to the same procedure as in Example 2, the droplets were arranged in the measurement cell.
EGFR遺伝子(0.4μM)とDNAインターカレータ(EvaGreen、0.8μM)とを含む液滴をRainDance社製のRainDrop Systemを用いて作製した。その後、実施例2と同じ手順に従い、測定セル中で液滴を配列させた。 <Example 3>
A droplet containing an EGFR gene (0.4 μM) and a DNA intercalator (EvaGreen, 0.8 μM) was prepared using a RainDrop Raindrop System. Thereafter, according to the same procedure as in Example 2, the droplets were arranged in the measurement cell.
次に、配列した液滴の蛍光像を観察した。図9は、測定セル中の配列液滴の蛍光像を観察した計測システムの概略図である。測定セル1は測定セル設置部208に設置されている。測定セル設置部208は、図4に示した液滴トラップ装置の設置部101であってもよい。すなわち、ddPCR検出装置を構成する計測システムを、液滴トラップ装置と一体化して構成してもよい。
Next, the fluorescence image of the arranged droplets was observed. FIG. 9 is a schematic diagram of a measurement system in which a fluorescent image of the array droplets in the measurement cell is observed. The measurement cell 1 is installed in the measurement cell installation unit 208. The measurement cell installation unit 208 may be the installation unit 101 of the droplet trap apparatus shown in FIG. That is, the measurement system constituting the ddPCR detection device may be integrated with the droplet trap device.
本観察では、光源201から出た光をダイクロイックミラー202で反射させ、対物レンズ203を通して測定セル1を照射した。光照射により液滴ガイド部のウエルに配列した液滴から発せられた蛍光は、対物レンズ203、ダイクロイックミラー202、結像レンズ204、ロングパスフィルター205、バンドパスフィルター206を通過し、撮像装置207の受光素子表面で結像した。この場合、ダイクロイックミラー202と対物レンズ203は、光源201からの出射光を測定セル設置部208に配置された測定セル1に光照射する照射光学系を構成する。また、対物レンズ203、ダイクロイックミラー202、結像レンズ204、ロングパスフィルター205、バンドパスフィルター206は、測定セル1の複数のウエルから発生された蛍光を撮像装置207に結像する結像光学系を構成する。図10は、図9に示した計測システムを用いて測定セル1中の配列液滴の蛍光像を測定した結果を示す図である。図10から、図9の光学システムを用いて、配列した液滴の蛍光像が観察できることが分かった。
In this observation, the light emitted from the light source 201 was reflected by the dichroic mirror 202, and the measurement cell 1 was irradiated through the objective lens 203. The fluorescence emitted from the droplets arranged in the well of the droplet guide portion by the light irradiation passes through the objective lens 203, the dichroic mirror 202, the imaging lens 204, the long pass filter 205, and the band pass filter 206. An image was formed on the surface of the light receiving element. In this case, the dichroic mirror 202 and the objective lens 203 constitute an irradiation optical system that emits light emitted from the light source 201 to the measurement cell 1 disposed in the measurement cell installation unit 208. The objective lens 203, the dichroic mirror 202, the imaging lens 204, the long pass filter 205, and the band pass filter 206 are imaging optical systems that image fluorescence generated from a plurality of wells of the measurement cell 1 on the imaging device 207. Constitute. FIG. 10 is a diagram showing a result of measuring the fluorescence image of the array droplets in the measurement cell 1 using the measurement system shown in FIG. From FIG. 10, it was found that the fluorescence image of the arranged droplets can be observed using the optical system of FIG.
実施例1と比較例1の比較から、実施例1の測定セルの液滴ガイド部に存在する液滴の数が、比較例1に比べて4倍程度多いことが分かった。以上から、トラップ部を有する測定セルを用いると、トラップ部の無い測定セルに比較して液滴の捕捉率を大幅に向上できることが分かった。また、実施例1と実施例2の比較から、測定セルに振動を印加することによって、液滴の配列時間が短縮できることが分かった。また、実施例3から、本実施例の測定セル中で配列させた液滴の蛍光像が観察できることが分かった。
From the comparison between Example 1 and Comparative Example 1, it was found that the number of droplets present in the droplet guide part of the measurement cell of Example 1 was about four times as large as that of Comparative Example 1. From the above, it was found that when a measurement cell having a trap part is used, the droplet capture rate can be greatly improved compared to a measurement cell having no trap part. Further, from comparison between Example 1 and Example 2, it was found that the arrangement time of the droplets can be shortened by applying vibration to the measurement cell. Further, from Example 3, it was found that the fluorescence image of the droplets arranged in the measurement cell of this example can be observed.
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
1 測定セル
2 トラップ部
3 液滴ガイド部
4 試料注入口
5 流路
6 排出口
7 蓋部材
8 筐体
11 液滴
12 オイル
31 ウエル
100 液滴トラップ装置
101 設置部
102 反転部
103 制御部
201 光源
202 ダイクロイックミラー
203 対物レンズ
204 結像レンズ
207 撮像装置 DESCRIPTION OFSYMBOLS 1 Measurement cell 2 Trap part 3 Droplet guide part 4 Sample injection port 5 Flow path 6 Outlet 7 Lid member 8 Case 11 Droplet 12 Oil 31 Well 100 Droplet trap apparatus 101 Installation part 102 Inversion part 103 Control part 201 Light source 202 Dichroic mirror 203 Objective lens 204 Imaging lens 207 Imaging device
2 トラップ部
3 液滴ガイド部
4 試料注入口
5 流路
6 排出口
7 蓋部材
8 筐体
11 液滴
12 オイル
31 ウエル
100 液滴トラップ装置
101 設置部
102 反転部
103 制御部
201 光源
202 ダイクロイックミラー
203 対物レンズ
204 結像レンズ
207 撮像装置 DESCRIPTION OF
Claims (11)
- 内部空間の一方の内壁面に複数のウエルを有する液滴ガイド部が設けられ、前記一方の内壁面に対向する他方の内壁面に、浮遊する液滴を捕捉する窪み部を有するトラップ部が設けられた測定セル内に、前記トラップ部を上に前記液滴ガイド部を下にした状態で複数の液滴とオイルとを含む流体を流し、前記トラップ部に前記複数の液滴をトラップする工程と、
前記測定セルを反転させ、前記トラップ部にトラップされた前記複数の液滴を前記液滴ガイド部の前記複数のウエルに捕捉させる工程と、
を有する液滴のトラップ方法。 A droplet guide portion having a plurality of wells is provided on one inner wall surface of the internal space, and a trap portion having a hollow portion for capturing floating droplets is provided on the other inner wall surface facing the one inner wall surface. Flowing a fluid containing a plurality of droplets and oil in the measurement cell with the trap portion on top and the droplet guide portion on the bottom, and trapping the plurality of droplets in the trap portion When,
Reversing the measurement cell and capturing the plurality of droplets trapped in the trap portion in the plurality of wells of the droplet guide portion;
A method for trapping droplets having - 前記測定セルを反転した後に前記測定セルを振動させる、請求項1に記載の液滴のトラップ方法。 The droplet trapping method according to claim 1, wherein the measurement cell is vibrated after being inverted.
- 前記測定セル内に前記流体を流したのち、前記測定セルに前記流体を注入した注入口及び前記測定セルから前記流体が排出された排出口を塞ぐ、請求項1に記載の液滴のトラップ方法。 2. The droplet trapping method according to claim 1, wherein after flowing the fluid into the measurement cell, an inlet for injecting the fluid into the measurement cell and an outlet for discharging the fluid from the measurement cell are closed. .
- 筐体の外表面に開口した試料注入口及び排出口と、
前記試料注入口と前記排出口とを結ぶ前記筐体の内部に設けられた流路と、
前記流路の途中に設けられ前記筐体の外表面に平行な方向に広がりを持つ内部空間と、
前記内部空間の一方の内壁面に設けられた複数のウエルを有する液滴ガイド部と、
前記内部空間の他方の内壁面に設けられた浮遊する液滴を捕捉する窪み部を有するトラップ部と、
を有する測定セル。 A sample inlet and outlet opened on the outer surface of the housing;
A flow path provided inside the housing connecting the sample inlet and the outlet;
An internal space provided in the middle of the flow path and having a spread in a direction parallel to the outer surface of the housing;
A droplet guide portion having a plurality of wells provided on one inner wall surface of the internal space;
A trap portion having a hollow portion for capturing a floating droplet provided on the other inner wall surface of the internal space;
A measuring cell. - Dd[μm]を前記液滴の直径の平均、Dw[μm]を前記ウエルの最大径の平均、d[μm]を前記ウエルの平均深さとするとき、下記(1)~(3)の関係を満たす、請求項4に記載の測定セル。
Dd<50μm (1)
0.5Dd<Dw<1.2Dd (2)
0.01≦d/Dw≦1 (3) When D d [μm] is the average of the diameters of the droplets, D w [μm] is the average of the maximum diameters of the wells, and d [μm] is the average depth of the wells, the following (1) to (3) The measurement cell according to claim 4, satisfying the relationship:
D d <50 μm (1)
0.5D d <D w <1.2D d (2)
0.01 ≦ d / D w ≦ 1 (3) - 前記トラップ部が流路面から5μm以上窪んだ単数又は複数の領域を有する、請求項4に記載の測定セル。 The measurement cell according to claim 4, wherein the trap part has one or a plurality of regions recessed by 5 μm or more from the flow path surface.
- 前記液滴ガイド部と前記測定セルの外周とに挟まれた前記筐体の部分の波長450~750nmにおける光透過率が70%以上である、請求項4に記載の測定セル。 The measurement cell according to claim 4, wherein the light transmittance at a wavelength of 450 to 750 nm of the portion of the casing sandwiched between the droplet guide portion and the outer periphery of the measurement cell is 70% or more.
- 前記トラップ部と前記測定セルの外周とに挟まれた前記筐体の部分の波長450~750nmにおける光透過率が70%以上である、請求項4に記載の測定セル。 The measurement cell according to claim 4, wherein a light transmittance at a wavelength of 450 to 750 nm of a portion of the casing sandwiched between the trap portion and an outer periphery of the measurement cell is 70% or more.
- 測定セルに液滴を捕捉させるための装置であって、
内部空間の内壁面に複数のウエルを有する液滴ガイド部と浮遊する液滴を捕捉する窪み部を有するトラップ部とが対面して設けられた測定セルを保持し、反転させる機構を有する反転部と、
前記反転部によって反転された前記測定セルを配置する設置部と、
前記反転部による前記測定セルの反転タイミングを制御する制御部と、
を有する液滴トラップ装置。 An apparatus for capturing a droplet in a measurement cell,
A reversing unit having a mechanism for holding and reversing a measurement cell in which a droplet guide unit having a plurality of wells on an inner wall surface of an internal space and a trap unit having a recess for capturing a floating droplet are opposed to each other. When,
An installation unit for arranging the measurement cell inverted by the inversion unit;
A control unit for controlling the inversion timing of the measurement cell by the inversion unit;
A droplet trapping device. - 前記測定セルを振動させる振動部が前記設置部に一体化されている、請求項9に記載の液滴トラップ装置。 The droplet trapping device according to claim 9, wherein a vibration part for vibrating the measurement cell is integrated with the installation part.
- 前記設置部の上方に、光源、撮像装置、前記光源からの出射光を前記設置部に配置される前記測定セルに光照射する照射光学系、前記測定セルの前記複数のウエルから発生された蛍光を前記撮像装置に結像する結像光学系を含む計測システムを有する、請求項9に記載の液滴トラップ装置。 Above the installation unit, a light source, an imaging device, an irradiation optical system for irradiating the measurement cell disposed in the installation unit with light emitted from the light source, and fluorescence generated from the plurality of wells of the measurement cell The droplet trap apparatus according to claim 9, further comprising a measurement system including an imaging optical system that forms an image on the imaging device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-000683 | 2017-01-05 | ||
JP2017000683A JP6656185B2 (en) | 2017-01-05 | 2017-01-05 | Droplet trapping method, measurement cell, and droplet trapping device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018127997A1 true WO2018127997A1 (en) | 2018-07-12 |
Family
ID=62789339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/034256 WO2018127997A1 (en) | 2017-01-05 | 2017-09-22 | Method for trapping droplets, measurement cell, and droplet-trapping device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6656185B2 (en) |
WO (1) | WO2018127997A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019159905A1 (en) * | 2018-02-14 | 2019-08-22 | 株式会社エンプラス | Fluid handling device and fluid handling system |
WO2019163688A1 (en) * | 2018-02-21 | 2019-08-29 | 株式会社エンプラス | Fluid handling device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014065758A1 (en) * | 2012-10-25 | 2014-05-01 | Star Array Pte Ltd | A method of isolating nucleic acids in an aqueous sample using microfluidic device |
WO2016149639A1 (en) * | 2015-03-19 | 2016-09-22 | The Board Of Trustees Of The Leland Stanford Junior University | Devices and methods for high-throughput single cell and biomolecule analysis and retrieval in a microfluidic chip |
WO2017048975A1 (en) * | 2015-09-17 | 2017-03-23 | The Regents Of The University Of California | Droplet-trapping devices for bioassays and diagnostics |
-
2017
- 2017-01-05 JP JP2017000683A patent/JP6656185B2/en active Active
- 2017-09-22 WO PCT/JP2017/034256 patent/WO2018127997A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014065758A1 (en) * | 2012-10-25 | 2014-05-01 | Star Array Pte Ltd | A method of isolating nucleic acids in an aqueous sample using microfluidic device |
WO2016149639A1 (en) * | 2015-03-19 | 2016-09-22 | The Board Of Trustees Of The Leland Stanford Junior University | Devices and methods for high-throughput single cell and biomolecule analysis and retrieval in a microfluidic chip |
WO2017048975A1 (en) * | 2015-09-17 | 2017-03-23 | The Regents Of The University Of California | Droplet-trapping devices for bioassays and diagnostics |
Non-Patent Citations (2)
Title |
---|
LABANIEH, L. ET AL.: "Floating droplet array: an ultrahigh-throughput device for droplet trapping, real-time analysis and recovery", MICROMACHINES, vol. 6, no. 10, 2015, pages 1469 - 1482, XP055371355, ISSN: 2072-666X * |
SHIMAZAKI, Y. ET AL.: "Parallel evaluation of melting temperatures of DNAs in the arrayed droplets through the fluorescence from DNA intercalators", ANALYTICAL CHEMISTRY, vol. 89, 7 June 2017 (2017-06-07), pages 6305 - 6308, XP055513407, ISSN: 0003-2700 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019159905A1 (en) * | 2018-02-14 | 2019-08-22 | 株式会社エンプラス | Fluid handling device and fluid handling system |
WO2019163688A1 (en) * | 2018-02-21 | 2019-08-29 | 株式会社エンプラス | Fluid handling device |
Also Published As
Publication number | Publication date |
---|---|
JP2018109576A (en) | 2018-07-12 |
JP6656185B2 (en) | 2020-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10488321B2 (en) | Devices and methods for high-throughput single cell and biomolecule analysis and retrieval in a microfluidic chip | |
JP2021521417A (en) | Methods and equipment for single biological nanoparticle analysis | |
US20080047833A1 (en) | Microfluidic device, measuring apparatus, and microfluid stirring method | |
US8325349B2 (en) | Focal plane adjustment by back propagation in optofluidic microscope devices | |
Cecchini et al. | Ultrafast surface enhanced resonance Raman scattering detection in droplet-based microfluidic systems | |
Rosenauer et al. | Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes | |
US20140220557A1 (en) | Device and Method for Laser Analysis and Separation (LAS) of Particles | |
US20160096172A1 (en) | Method and apparatus for the discretization and manipulation of sample volumes | |
JP2009529670A (en) | Apparatus for carrying out a reaction in a droplet and method of use thereof | |
JP2010521671A (en) | Optical fluid microscope | |
US9267918B2 (en) | Microfluidic systems | |
WO2018127997A1 (en) | Method for trapping droplets, measurement cell, and droplet-trapping device | |
WO2016170345A1 (en) | Mifrofluidic apparatus and method for producing an emulsion, use of the apparatus, method for making a microfluidic apparatus and a surfactant | |
i Solvas et al. | Fluorescence detection methods for microfluidic droplet platforms | |
KR101416452B1 (en) | Method and apparatus for measuring velocity profile by collective imaging of microfluidic tracer particle and computer-readable recording medium recorded with program performing the method | |
US20020015149A1 (en) | Multiple microchannels chip for biomolecule imaging | |
US20050067337A1 (en) | Laser optical separator and method for separating colloidal suspensions | |
US10281385B2 (en) | Device for laser analysis and separation (LAS) of particles | |
Maruyama et al. | Immobilization of individual cells by local photo-polymerization on a chip | |
JP2021500586A (en) | Microdroplet generator | |
US20190351408A1 (en) | Microfluidic Device for Sorting Out Droplets | |
WO2018134311A1 (en) | Microfluidic system and method with tightly controlled incubation time and conditions | |
CN113993455A (en) | Improvements in or relating to optical elements | |
JP7285049B2 (en) | Droplet capture method, measurement cell and drop capture device | |
US20220193674A1 (en) | Microfluidic Device Unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17890456 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17890456 Country of ref document: EP Kind code of ref document: A1 |