WO2018127989A1 - Environment homeostasis measurement device with environmental electrical-potential as indicator, environment homeostasis evaluation method, and automatic feeding system using environmental electrical-potential - Google Patents
Environment homeostasis measurement device with environmental electrical-potential as indicator, environment homeostasis evaluation method, and automatic feeding system using environmental electrical-potential Download PDFInfo
- Publication number
- WO2018127989A1 WO2018127989A1 PCT/JP2017/028271 JP2017028271W WO2018127989A1 WO 2018127989 A1 WO2018127989 A1 WO 2018127989A1 JP 2017028271 W JP2017028271 W JP 2017028271W WO 2018127989 A1 WO2018127989 A1 WO 2018127989A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- homeostasis
- potential
- feeding
- electrode
- sediment
- Prior art date
Links
- 230000013632 homeostatic process Effects 0.000 title claims abstract description 77
- 230000007613 environmental effect Effects 0.000 title claims description 39
- 238000005259 measurement Methods 0.000 title abstract description 63
- 238000011156 evaluation Methods 0.000 title description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 79
- 241000251468 Actinopterygii Species 0.000 claims abstract description 19
- 239000000463 material Substances 0.000 claims abstract description 8
- 239000013049 sediment Substances 0.000 claims description 91
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 25
- 229910052799 carbon Inorganic materials 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 12
- 230000009471 action Effects 0.000 claims description 8
- 241001465754 Metazoa Species 0.000 abstract description 22
- 238000005516 engineering process Methods 0.000 abstract description 9
- 239000002689 soil Substances 0.000 abstract description 5
- 244000005700 microbiome Species 0.000 description 22
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 229910021607 Silver chloride Inorganic materials 0.000 description 10
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 10
- 238000012851 eutrophication Methods 0.000 description 9
- 238000012544 monitoring process Methods 0.000 description 7
- 238000009360 aquaculture Methods 0.000 description 6
- 244000144974 aquaculture Species 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 239000004332 silver Substances 0.000 description 6
- 235000013305 food Nutrition 0.000 description 5
- 206010021143 Hypoxia Diseases 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000003610 charcoal Substances 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 241001233061 earthworms Species 0.000 description 3
- 230000003284 homeostatic effect Effects 0.000 description 3
- DOBUSJIVSSJEDA-UHFFFAOYSA-L 1,3-dioxa-2$l^{6}-thia-4-mercuracyclobutane 2,2-dioxide Chemical compound [Hg+2].[O-]S([O-])(=O)=O DOBUSJIVSSJEDA-UHFFFAOYSA-L 0.000 description 2
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 2
- 235000017491 Bambusa tulda Nutrition 0.000 description 2
- 241001330002 Bambuseae Species 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000011425 bamboo Substances 0.000 description 2
- 229960004374 befunolol Drugs 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229940074994 mercuric sulfate Drugs 0.000 description 2
- 229910000474 mercury oxide Inorganic materials 0.000 description 2
- 229910000372 mercury(II) sulfate Inorganic materials 0.000 description 2
- UKWHYYKOEPRTIC-UHFFFAOYSA-N mercury(ii) oxide Chemical compound [Hg]=O UKWHYYKOEPRTIC-UHFFFAOYSA-N 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 206010002660 Anoxia Diseases 0.000 description 1
- 241000976983 Anoxia Species 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000007953 anoxia Effects 0.000 description 1
- ZPQPDBIHYCBNIG-UHFFFAOYSA-N befunolol Chemical compound CC(C)NCC(O)COC1=CC=CC2=C1OC(C(C)=O)=C2 ZPQPDBIHYCBNIG-UHFFFAOYSA-N 0.000 description 1
- -1 bentos tricarboxylic acid Chemical class 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000005183 environmental health Effects 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 230000007954 hypoxia Effects 0.000 description 1
- 230000001146 hypoxic effect Effects 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 150000003627 tricarboxylic acid derivatives Chemical class 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K61/00—Culture of aquatic animals
- A01K61/80—Feeding devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/80—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
- Y02A40/81—Aquaculture, e.g. of fish
Definitions
- environmental homeostasis can be measured continuously and stably.
- FTO electrodes or ITO electrodes are used as electrodes, they are not easily affected by poisoning or oxygen concentration, and are suitable for long-term continuous measurement.
- the environmental homeostasis measuring device of the present invention can be used for examining a region having high microorganism activity in the sediment and determining a suitable place for aquaculture.
- the amount and timing of feeding can be automatically adjusted based on the environmental potential so that the constancy of the environment is maintained.
- One aspect of the method for evaluating homeostasis of the water environment region of the present invention is: Installing the FTO electrode or ITO electrode of the homeostasis measuring device in the bottom sediment of a real or artificial water environment area; Measuring the potential of the bottom sediment by the homeostasis measuring device, and supplying a material having a homeostasis improving action in the water environment when the measured potential does not satisfy a predetermined condition; including.
- the feeding system of the present invention includes an electrometer equipped with an FTO electrode or an ITO electrode installed in the sediment, a feeding device that supplies food into water, feeding timing based on the value of the potential measured by the electrometer, and And / or a control unit that controls the feeding device so that the amount of feeding is adjusted.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Environmental Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Physics & Mathematics (AREA)
- Zoology (AREA)
- Molecular Biology (AREA)
- Marine Sciences & Fisheries (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Animal Husbandry (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Farming Of Fish And Shellfish (AREA)
Abstract
The present invention addresses the problem of providing: a technology that enables the homeostasis capacity in environments such as soil or in water to be continuously monitored; and a technology for predicting and quantifying the feeding amount for fish and other animals being raised in an environment, on the basis of the measurement results of the homeostasis capacity in the environment. As a means for solving the problem, provided is an environment homeostatsis measurement device which includes a potentiometer comprising an FTO electrode or an ITO electrode. Also provided is a feeding system comprising: a potentiometer that comprises an FTO electrode or an ITO electrode and that is disposed in the bottom material; a feeding device that supplies feed into water; and a control unit that controls the feeding device so as to adjust the feeding timing and/or feeding amount on the basis of the value of the potential measured by the potentiometer.
Description
本発明は底質等に生息する生物によってもたらされる環境電位を測定し、水中(底質、底泥等も含む)や土壌の環境変化を測定し、環境の恒常性を保つことを目的とする技術に関する。本発明はまた水中の環境変化を測定し、環境の恒常性を保ちつつ水中に生育する魚等に給餌する自動給餌システムに関する。
It is an object of the present invention to measure environmental potentials caused by organisms that inhabit sediments, measure environmental changes in water (including sediments, sediments, etc.) and soil, and maintain environmental constancy. Regarding technology. The present invention also relates to an automatic feeding system that measures environmental changes in water and feeds fish and the like that grow in water while maintaining the homeostasis of the environment.
生態系は元来、恒常性ホメオスタシス(バランスを保つ能力)を有しており、多様な生物が相互作用することによって健全な環境を維持している。しかし、人間活動による生態系破壊は現在深刻な状況にあり、今後も健全な生態系を維持するためには積極的な環境の修復ならびにモニタリングは喫緊の課題である。特に水深10m~80m程度の沿岸域に広がる生態系は、日本の豊かな水産業を育む場として重要な役割を担う。しかし、生態系が本来有する恒常性能を超える養殖魚への飼料投与は、生態系に非可逆的なダメージを与え、富栄養化、貧酸素状態を作り出し、赤潮等で水産業に多大な損害をもたらす。よって、沿岸域の生態系の恒常性能を可視化し、投与可能な飼料の量を予測・定量化するための技術の開発は、自然と調和した水産技術を確立する上で、今後必須となる。
Ecosystems originally have homeostasis (the ability to maintain balance), and maintain a healthy environment through the interaction of various organisms. However, the destruction of ecosystems due to human activities is currently a serious situation, and active environmental restoration and monitoring are urgent issues in order to maintain a healthy ecosystem in the future. In particular, the ecosystem that spreads along the coastal area with a depth of 10 to 80m plays an important role as a place to nurture the rich Japanese fishery industry. However, the administration of feed to farmed fish that exceeds the normal performance inherent in the ecosystem will cause irreversible damage to the ecosystem, creating eutrophication and hypoxia, and causing significant damage to the fishery industry due to red tides, etc. Bring. Therefore, the development of technology for visualizing the permanent performance of coastal ecosystems and for predicting and quantifying the amount of feed that can be administered will be essential in the future to establish marine fishery technologies in harmony with nature.
しかし、これまでの養殖場の環境モニタリング技術は継続的なサンプリングと生物学的・化学的な多種パラメータの測定を要する点で、煩雑なものであった。また、近年注目を集めているメタゲノム/メタボローム技術を基盤とした環境診断技術も、データの取得ならびに解析は断続的であり、現場での時系列データの取得は困難となっている。
However, the conventional environmental monitoring technology for farms has been cumbersome in that it requires continuous sampling and measurement of various biological and chemical parameters. Also, environmental diagnosis technology based on metagenome / metabolome technology, which has been attracting attention in recent years, is intermittent in data acquisition and analysis, making it difficult to acquire time-series data in the field.
非特許文献1には海底から得られた試料に電極を挿入し、電位を負荷して海底に存在する微生物によって生じる電流を測定したことが記載されている。しかし、これは海底に存在する電流を引き起こす特殊な微生物を解析するためであって、海底に存在する一般的な微生物や小動物の活動によって生じる環境電位を測定しているわけではない。
また、特許文献1には、湿潤土壌の酸化還元電位を自動的に測定する測定装置が開示されている。しかし、電極には白金電極を使用しており、これは連続測定に耐えうるものではなく、また、酸素濃度によっても影響を受けるため、正確な測定が難しかった。 Non-PatentDocument 1 describes that an electrode was inserted into a sample obtained from the seabed, and an electric potential was applied to measure the current generated by microorganisms present on the seabed. However, this is to analyze special microorganisms that cause currents existing on the seabed, and does not measure the environmental potential generated by the activities of general microorganisms and small animals present on the seabed.
Patent Document 1 discloses a measuring device that automatically measures the oxidation-reduction potential of wet soil. However, a platinum electrode is used as the electrode, which cannot withstand continuous measurement, and is also affected by the oxygen concentration, so that accurate measurement is difficult.
また、特許文献1には、湿潤土壌の酸化還元電位を自動的に測定する測定装置が開示されている。しかし、電極には白金電極を使用しており、これは連続測定に耐えうるものではなく、また、酸素濃度によっても影響を受けるため、正確な測定が難しかった。 Non-Patent
本発明は、水中や土壌等の環境中の恒常性能を連続的にモニターできる技術を提供すること、および環境中の恒常性能の測定結果に基づいて環境中に生育する魚等の動物への摂餌量を予測・定量化するための技術を提供することを課題とする。
The present invention provides a technique capable of continuously monitoring the homeostatic performance in the environment such as water and soil, and the intake of fish and other animals that grow in the environment based on the measurement results of the homeostatic performance in the environment. It is an object to provide a technique for predicting and quantifying the amount of food.
本発明者らは上記課題を解決すべく鋭意検討を行った。その結果、本発明者らはFTOまたはITO電極を備えた電位計を用いて環境電位を測定することにより、環境中の状態を客観的に知ることができ、多様な環境要因を単一パラメータにより包括的に表現することができることを見出した。さらに、環境電位を測定することにより、人間と養殖魚、そして底生生物とそれを取り巻く微生物によって作り出されるエネルギーフローを電位の経時変化として計測し、底質生態系が許容できる飼料(餌)の投与量を予測し、評価することが可能となること、さらには、底質に炭素棒を一部埋設することにより底質の恒常性が改善することも見出し、本発明を完成させた。
The present inventors have intensively studied to solve the above problems. As a result, the present inventors can objectively know the state in the environment by measuring the environmental potential using an electrometer equipped with an FTO or ITO electrode, and various environmental factors with a single parameter. I found out that it can be expressed comprehensively. Furthermore, by measuring the environmental potential, the energy flow produced by humans, farmed fish, and benthic organisms and the microorganisms surrounding them is measured as a change in potential over time, and the feed (food) that the sediment ecosystem can tolerate is measured. The present inventors have found that it is possible to predict and evaluate the dose, and that the constancy of the bottom sediment is improved by partially embedding a carbon rod in the bottom sediment, thereby completing the present invention.
すなわち、本発明は以下のとおりである。
[1]FTO電極またはITO電極を備えた電位計を含む、環境の恒常性測定装置。
[2]環境が底質を有する水環境であり、FTO電極またはITO電極が底質に設置される、前記環境の恒常性測定装置。
[3]前記環境の恒常性測定装置を備えた水槽。
[4]水底に設置されるFTO電極またはITO電極を備えた電位計と、
水中に餌を供給する給餌装置と、
電位計で測定された電位の値に基づいて給餌タイミング及び/又は給餌量が調節されるように給餌装置を制御する制御部と、
を備えた、給餌システム。
[5]前記制御部とともに、又は前記制御部に替えて、一部が底質に埋没した炭素棒を備えた前記給餌システム。
[6]魚の養殖場に設置される、前記給餌システム。
[7]電位の測定値が負の値を示す場合に、前記制御部は給餌量を減らす及び/又は給餌タイミングを遅らせるように前記給餌装置を制御する、前記給餌システム。
[8]前記給餌システムを備えた水槽。
[9]実在する又は人工的な水環境領域の1以上の底質サンプルを準備すること、
前記恒常性測定装置により前記1以上の底質サンプルの電位を測定すること、
及び測定された電位に基づいて、前記水環境領域の恒常性を評価すること、
を含む水環境領域の恒常性評価方法。
[10]実在する又は人工的な水環境領域の水底の底質内に、前記恒常性測定装置のFTO電極又はITO電極を設置すること、
前記恒常性測定装置により底質の電位を測定すること、及び
測定された電位に基づいて、前記水環境領域の恒常性を評価すること、
を含む水環境領域の恒常性評価方法。
[11]実在する又は人工的な水環境領域の水底の底質内に、前記恒常性測定装置のFTO電極又はITO電極を設置すること、
前記恒常性測定装置により底質の電位を測定すること、及び
測定された電位が、あらかじめ決定した条件を満たさない場合に、恒常性改善作用のある素材を水環境内に供給すること、
を含む水環境領域の恒常性改善方法。 That is, the present invention is as follows.
[1] Environmental homeostasis measuring device including electrometer with FTO electrode or ITO electrode.
[2] The environmental homeostasis measuring apparatus, wherein the environment is a water environment having a sediment, and an FTO electrode or an ITO electrode is installed in the sediment.
[3] A water tank provided with the environmental homeostasis measuring device.
[4] An electrometer equipped with an FTO electrode or ITO electrode installed at the bottom of the water;
A feeding device for feeding the water;
A control unit for controlling the feeding device so that the feeding timing and / or the feeding amount is adjusted based on the value of the potential measured by the electrometer;
Feeding system with
[5] The feeding system including a carbon rod partially embedded in sediment along with or in place of the control unit.
[6] The feeding system installed in a fish farm.
[7] The feeding system, wherein the control unit controls the feeding device so as to reduce the feeding amount and / or delay the feeding timing when the measured value of the potential shows a negative value.
[8] A water tank provided with the feeding system.
[9] preparing one or more sediment samples of a real or artificial water environment area;
Measuring the potential of the one or more sediment samples by the homeostasis measuring device;
And evaluating the homeostasis of the water environment region based on the measured potential,
Method for evaluating the homeostasis of water environment areas including
[10] installing the FTO electrode or the ITO electrode of the homeostasis measuring device in the bottom sediment of a real or artificial water environment region;
Measuring the potential of the bottom sediment by the homeostasis measuring device, and evaluating the homeostasis of the water environment region based on the measured potential;
Method for evaluating the homeostasis of water environment areas including
[11] Installing the FTO electrode or the ITO electrode of the homeostasis measuring device in the bottom sediment of a real or artificial water environment region,
Measuring the potential of the bottom sediment by the homeostasis measuring device, and supplying a material having a homeostasis improving action in the water environment when the measured potential does not satisfy a predetermined condition;
To improve the homeostasis of the water environment area.
[1]FTO電極またはITO電極を備えた電位計を含む、環境の恒常性測定装置。
[2]環境が底質を有する水環境であり、FTO電極またはITO電極が底質に設置される、前記環境の恒常性測定装置。
[3]前記環境の恒常性測定装置を備えた水槽。
[4]水底に設置されるFTO電極またはITO電極を備えた電位計と、
水中に餌を供給する給餌装置と、
電位計で測定された電位の値に基づいて給餌タイミング及び/又は給餌量が調節されるように給餌装置を制御する制御部と、
を備えた、給餌システム。
[5]前記制御部とともに、又は前記制御部に替えて、一部が底質に埋没した炭素棒を備えた前記給餌システム。
[6]魚の養殖場に設置される、前記給餌システム。
[7]電位の測定値が負の値を示す場合に、前記制御部は給餌量を減らす及び/又は給餌タイミングを遅らせるように前記給餌装置を制御する、前記給餌システム。
[8]前記給餌システムを備えた水槽。
[9]実在する又は人工的な水環境領域の1以上の底質サンプルを準備すること、
前記恒常性測定装置により前記1以上の底質サンプルの電位を測定すること、
及び測定された電位に基づいて、前記水環境領域の恒常性を評価すること、
を含む水環境領域の恒常性評価方法。
[10]実在する又は人工的な水環境領域の水底の底質内に、前記恒常性測定装置のFTO電極又はITO電極を設置すること、
前記恒常性測定装置により底質の電位を測定すること、及び
測定された電位に基づいて、前記水環境領域の恒常性を評価すること、
を含む水環境領域の恒常性評価方法。
[11]実在する又は人工的な水環境領域の水底の底質内に、前記恒常性測定装置のFTO電極又はITO電極を設置すること、
前記恒常性測定装置により底質の電位を測定すること、及び
測定された電位が、あらかじめ決定した条件を満たさない場合に、恒常性改善作用のある素材を水環境内に供給すること、
を含む水環境領域の恒常性改善方法。 That is, the present invention is as follows.
[1] Environmental homeostasis measuring device including electrometer with FTO electrode or ITO electrode.
[2] The environmental homeostasis measuring apparatus, wherein the environment is a water environment having a sediment, and an FTO electrode or an ITO electrode is installed in the sediment.
[3] A water tank provided with the environmental homeostasis measuring device.
[4] An electrometer equipped with an FTO electrode or ITO electrode installed at the bottom of the water;
A feeding device for feeding the water;
A control unit for controlling the feeding device so that the feeding timing and / or the feeding amount is adjusted based on the value of the potential measured by the electrometer;
Feeding system with
[5] The feeding system including a carbon rod partially embedded in sediment along with or in place of the control unit.
[6] The feeding system installed in a fish farm.
[7] The feeding system, wherein the control unit controls the feeding device so as to reduce the feeding amount and / or delay the feeding timing when the measured value of the potential shows a negative value.
[8] A water tank provided with the feeding system.
[9] preparing one or more sediment samples of a real or artificial water environment area;
Measuring the potential of the one or more sediment samples by the homeostasis measuring device;
And evaluating the homeostasis of the water environment region based on the measured potential,
Method for evaluating the homeostasis of water environment areas including
[10] installing the FTO electrode or the ITO electrode of the homeostasis measuring device in the bottom sediment of a real or artificial water environment region;
Measuring the potential of the bottom sediment by the homeostasis measuring device, and evaluating the homeostasis of the water environment region based on the measured potential;
Method for evaluating the homeostasis of water environment areas including
[11] Installing the FTO electrode or the ITO electrode of the homeostasis measuring device in the bottom sediment of a real or artificial water environment region,
Measuring the potential of the bottom sediment by the homeostasis measuring device, and supplying a material having a homeostasis improving action in the water environment when the measured potential does not satisfy a predetermined condition;
To improve the homeostasis of the water environment area.
本発明によれば、環境の恒常性を連続的に安定して測定できる。特に、電極にはFTO電極またはITO電極を使用するため、被毒や酸素濃度等の影響を受けにくく、長期間の連続測定にも適している。また、測定された電位の値に基づき、環境の栄養や酸素そして硫化水素の状態を知ることができ、このようにして環境の恒常性を評価(リアルタイムモニタリング)することで、環境への負荷が少なくなるように調整することができる。また、本発明の環境の恒常性測定装置は底質における微生物の活性が高い領域を調べ、養殖場として適した場所を決定するために利用することもできる。さらに、本発明の給餌システムによれば、環境電位に基づき、環境の恒常性が保たれるように給餌の量やタイミングを自動的に調整することができる。
According to the present invention, environmental homeostasis can be measured continuously and stably. In particular, since FTO electrodes or ITO electrodes are used as electrodes, they are not easily affected by poisoning or oxygen concentration, and are suitable for long-term continuous measurement. In addition, based on the measured potential value, it is possible to know the state of environmental nutrition, oxygen, and hydrogen sulfide, and by evaluating the homeostasis of the environment in this way (real-time monitoring), the burden on the environment is reduced. It can be adjusted to be less. In addition, the environmental homeostasis measuring device of the present invention can be used for examining a region having high microorganism activity in the sediment and determining a suitable place for aquaculture. Furthermore, according to the feeding system of the present invention, the amount and timing of feeding can be automatically adjusted based on the environmental potential so that the constancy of the environment is maintained.
<環境の恒常性測定装置>
本発明の環境の恒常性測定装置は、FTO電極またはITO電極を備えた電位計を含む。
以下、図1を参照して、本発明の環境の恒常性測定装置の一態様を説明する。 <Environmental homeostasis measuring device>
The environmental homeostasis measuring device of the present invention includes an electrometer equipped with an FTO electrode or an ITO electrode.
Hereinafter, with reference to FIG. 1, one aspect of the environmental homeostasis measuring apparatus of the present invention will be described.
本発明の環境の恒常性測定装置は、FTO電極またはITO電極を備えた電位計を含む。
以下、図1を参照して、本発明の環境の恒常性測定装置の一態様を説明する。 <Environmental homeostasis measuring device>
The environmental homeostasis measuring device of the present invention includes an electrometer equipped with an FTO electrode or an ITO electrode.
Hereinafter, with reference to FIG. 1, one aspect of the environmental homeostasis measuring apparatus of the present invention will be described.
本実施形態に係る測定装置Aは、測定用電極10と、参照用電極11と、測定部12とを備えている。測定用電極10と参照用電極11はそれぞれ測定部12に接続されている。
そして、測定用電極10は、水底に存在する底質13内に設置される。底質13内には微生物や小動物が生息しており、それらの活動と環境の影響が酸化還元電位として計測される。 The measurement apparatus A according to the present embodiment includes ameasurement electrode 10, a reference electrode 11, and a measurement unit 12. The measurement electrode 10 and the reference electrode 11 are each connected to the measurement unit 12.
And theelectrode 10 for a measurement is installed in the sediment 13 which exists in a water bottom. Microorganisms and small animals inhabit the sediment 13 and their activities and environmental influences are measured as redox potentials.
そして、測定用電極10は、水底に存在する底質13内に設置される。底質13内には微生物や小動物が生息しており、それらの活動と環境の影響が酸化還元電位として計測される。 The measurement apparatus A according to the present embodiment includes a
And the
なお、測定装置Aの測定対象は、小動物や微生物が生息し、それらの活動により電位変化が生じうる環境であればよいが、ミミズなどの小動物および微生物が存在する環境であることが好ましく、例えば、海底、河底、湖底、水槽や養殖槽の底などの底質や、湛水した水田や畑等の土壌が挙げられる。本発明の測定装置の設置対象としての水槽には、熱帯魚等の観賞用小規模水槽、水族館等に設置される中規模、小規模、または大規模の水槽、養殖用水槽等のいずれの態様も含まれる。
The measurement target of the measuring apparatus A may be an environment in which small animals and microorganisms live and potential changes can occur due to their activities, but is preferably an environment in which small animals such as earthworms and microorganisms exist. , Sediments such as the seabed, riverbed, lake bottom, aquarium and aquaculture tank, and soil such as flooded paddy fields and fields. The aquarium as the installation target of the measuring device of the present invention may be any of an ornamental small-scale aquarium such as tropical fish, a medium-scale, small-scale or large-scale aquarium installed in an aquarium, an aquaculture tank, etc. included.
測定用電極10としては、FTO電極またはITO電極を使用する。ここで、FTO電極とは、フッ素(F)をドープした酸化スズ(SnO2:F)を素材とする電極を意味し、ITO電極とは、鉛(Sn)をドープした酸化インジウム(In2O3:Sn)を素材とする電極を意味する。測定用電極10は表面が親水性になるように加工されたものであることが好ましい。また、電流は流さないので、酸化還元酵素等は含まない電極が使用される。
As the measurement electrode 10, an FTO electrode or an ITO electrode is used. Here, the FTO electrode means an electrode made of tin oxide (SnO 2 : F) doped with fluorine (F), and the ITO electrode means indium oxide (In 2 O doped with lead (Sn)). 3 : It means an electrode made of Sn). The measurement electrode 10 is preferably processed so that the surface is hydrophilic. In addition, since no current flows, an electrode containing no oxidoreductase is used.
また、参照用電極11としては、特に限定されるものではないが、例えば、銀/塩化銀電極、飽和カロメル電極、硫酸第一水銀電極、酸化水銀電極などが利用できる。参照用電極11は通常水中に設置される。なお、測定用電極10、参照用電極11に加えて対極を含む電極系を使用してもよい。
The reference electrode 11 is not particularly limited, and for example, a silver / silver chloride electrode, a saturated calomel electrode, a mercuric sulfate electrode, a mercury oxide electrode, or the like can be used. The reference electrode 11 is usually installed in water. In addition to the measurement electrode 10 and the reference electrode 11, an electrode system including a counter electrode may be used.
測定部12は、測定用電極10と参照用電極11との間の電位差を連続的に測定するようになっている。測定部12の構成は特に制限されないが、例えば、接続端子、操作部、表示部などを備えることができる。具体的には、操作部を操作して測定を開始し、電位を連続的に測定し、表示する。測定部12としては、特に限定されるものではなく、例えば、市販の電圧ロガー等を用いることができる。
The measurement unit 12 continuously measures the potential difference between the measurement electrode 10 and the reference electrode 11. The configuration of the measurement unit 12 is not particularly limited, and can include, for example, a connection terminal, an operation unit, a display unit, and the like. Specifically, measurement is started by operating the operation unit, and the potential is continuously measured and displayed. The measuring unit 12 is not particularly limited, and for example, a commercially available voltage logger can be used.
測定部12において、底質中の電位を連続的にモニターすることにより、リアルタイムに底質環境の状態を知ることができる。例えば、電位が参照電極(銀/塩化銀電極)を基準にして負の値を示し続けていると、水環境が嫌気状態にあり、富栄養化が起こって環境に負荷がかかっていることが判定でき、必要な対策を講じることが可能である。
In the measurement unit 12, the state of the sediment environment can be known in real time by continuously monitoring the potential in the sediment. For example, if the potential continues to show a negative value relative to the reference electrode (silver / silver chloride electrode), the water environment is anaerobic and eutrophication occurs and the environment is overloaded. It is possible to make judgments and take necessary measures.
<水環境領域の恒常性評価方法>
本発明において、環境の恒常性とは、環境が一定の状態を保ち続ける傾向を意味し、恒常性の測定および評価とは、環境における酸素量が十分であるか、小動物や微生物の活動状態は正常であるか、栄養状態が正常であるか、など、環境が健全な状態を保っているかをリアルタイムでモニタリングし、評価することを意味する。 <Method for evaluating homeostasis in the water environment>
In the present invention, environmental homeostasis means the tendency of the environment to remain constant, and the measurement and evaluation of homeostasis means that the amount of oxygen in the environment is sufficient, or the activity state of small animals and microorganisms is It means monitoring and evaluating in real time whether the environment is healthy, such as whether it is normal or nutritional.
本発明において、環境の恒常性とは、環境が一定の状態を保ち続ける傾向を意味し、恒常性の測定および評価とは、環境における酸素量が十分であるか、小動物や微生物の活動状態は正常であるか、栄養状態が正常であるか、など、環境が健全な状態を保っているかをリアルタイムでモニタリングし、評価することを意味する。 <Method for evaluating homeostasis in the water environment>
In the present invention, environmental homeostasis means the tendency of the environment to remain constant, and the measurement and evaluation of homeostasis means that the amount of oxygen in the environment is sufficient, or the activity state of small animals and microorganisms is It means monitoring and evaluating in real time whether the environment is healthy, such as whether it is normal or nutritional.
本発明の水環境領域の恒常性評価方法の一態様は、
実在する又は人工的な水環境領域の1以上の底質サンプルを準備すること、
前記恒常性測定装置により前記1以上の底質サンプルの電位を測定すること、
及び測定された電位に基づいて、前記水環境領域の恒常性を評価すること、
を含む。
例えば、海底や湖底や川底等の砂や、水族館の水槽等の砂などの底質サンプルを採取して、それを容器の底に配置して水を含む測定系を準備し、当該底質サンプルに上記恒常性測定装置のFTO電極又はITO電極を設置して、電位を測定し、測定された電位に基づいて、底質サンプルの恒常性を評価する態様が挙げられる。例えば、電位を一定期間モニタリングし、電位が参照電極(銀/塩化銀電極)を基準にして、正の値を示し続けていると、底質サンプルが取得された水環境の恒常性は保たれていると評価できる。一方、電位が負の値を示し続けていると、底質サンプルが取得された水環境が嫌気状態にあり、富栄養化が起こって環境に負荷がかかっているなどと評価できる。 One aspect of the method for evaluating homeostasis of the water environment region of the present invention is:
Providing one or more sediment samples of a real or artificial water environment region;
Measuring the potential of the one or more sediment samples by the homeostasis measuring device;
And evaluating the homeostasis of the water environment region based on the measured potential,
including.
For example, take a bottom sample such as sand at the bottom of the sea, lake or river, sand from an aquarium tank, etc. and place it on the bottom of the container to prepare a measurement system containing water. The FTO electrode or the ITO electrode of the homeostasis measuring apparatus is installed in the above, the potential is measured, and the homeostasis of the sediment sample is evaluated based on the measured potential. For example, if the potential is monitored for a certain period and the potential continues to show a positive value relative to the reference electrode (silver / silver chloride electrode), the constancy of the water environment from which the bottom sample was obtained is maintained. Can be evaluated. On the other hand, if the potential continues to show a negative value, it can be evaluated that the water environment from which the bottom sample was obtained is in an anaerobic state, eutrophication has occurred, and the environment is being loaded.
実在する又は人工的な水環境領域の1以上の底質サンプルを準備すること、
前記恒常性測定装置により前記1以上の底質サンプルの電位を測定すること、
及び測定された電位に基づいて、前記水環境領域の恒常性を評価すること、
を含む。
例えば、海底や湖底や川底等の砂や、水族館の水槽等の砂などの底質サンプルを採取して、それを容器の底に配置して水を含む測定系を準備し、当該底質サンプルに上記恒常性測定装置のFTO電極又はITO電極を設置して、電位を測定し、測定された電位に基づいて、底質サンプルの恒常性を評価する態様が挙げられる。例えば、電位を一定期間モニタリングし、電位が参照電極(銀/塩化銀電極)を基準にして、正の値を示し続けていると、底質サンプルが取得された水環境の恒常性は保たれていると評価できる。一方、電位が負の値を示し続けていると、底質サンプルが取得された水環境が嫌気状態にあり、富栄養化が起こって環境に負荷がかかっているなどと評価できる。 One aspect of the method for evaluating homeostasis of the water environment region of the present invention is:
Providing one or more sediment samples of a real or artificial water environment region;
Measuring the potential of the one or more sediment samples by the homeostasis measuring device;
And evaluating the homeostasis of the water environment region based on the measured potential,
including.
For example, take a bottom sample such as sand at the bottom of the sea, lake or river, sand from an aquarium tank, etc. and place it on the bottom of the container to prepare a measurement system containing water. The FTO electrode or the ITO electrode of the homeostasis measuring apparatus is installed in the above, the potential is measured, and the homeostasis of the sediment sample is evaluated based on the measured potential. For example, if the potential is monitored for a certain period and the potential continues to show a positive value relative to the reference electrode (silver / silver chloride electrode), the constancy of the water environment from which the bottom sample was obtained is maintained. Can be evaluated. On the other hand, if the potential continues to show a negative value, it can be evaluated that the water environment from which the bottom sample was obtained is in an anaerobic state, eutrophication has occurred, and the environment is being loaded.
本発明の水環境領域の恒常性評価方法の他の態様は、
実在する又は人工的な水環境領域の水底の底質内に、前記恒常性測定装置のFTO電極又はITO電極を設置すること、
前記恒常性測定装置により底質の電位を測定すること、及び
測定された電位に基づいて、前記水環境領域の恒常性を評価すること、
を含む。 Another aspect of the method for evaluating homeostasis of the water environment region of the present invention is as follows:
Installing the FTO electrode or ITO electrode of the homeostasis measuring device in the bottom sediment of a real or artificial water environment area;
Measuring the potential of the bottom sediment by the homeostasis measuring device, and evaluating the homeostasis of the water environment region based on the measured potential;
including.
実在する又は人工的な水環境領域の水底の底質内に、前記恒常性測定装置のFTO電極又はITO電極を設置すること、
前記恒常性測定装置により底質の電位を測定すること、及び
測定された電位に基づいて、前記水環境領域の恒常性を評価すること、
を含む。 Another aspect of the method for evaluating homeostasis of the water environment region of the present invention is as follows:
Installing the FTO electrode or ITO electrode of the homeostasis measuring device in the bottom sediment of a real or artificial water environment area;
Measuring the potential of the bottom sediment by the homeostasis measuring device, and evaluating the homeostasis of the water environment region based on the measured potential;
including.
例えば、海底や湖底や川底等の砂や、水族館の水槽等の砂などの底質に上記恒常性測定装置のFTO電極又はITO電極を設置して、電位を測定し、測定された電位に基づいて、底質サンプルの恒常性を評価する態様が挙げられる。例えば、電位を一定期間モニタリングし、電位が参照電極(銀/塩化銀電極)を基準にして、正の値を示し続けていると水環境の恒常性は保たれていると評価できる。一方、電位が負の値を示し続けていると、水環境が嫌気状態にあり、富栄養化が起こって環境に負荷がかかっているなどと評価できる。
For example, the FTO electrode or ITO electrode of the above-mentioned homeostatic measuring device is installed on the bottom sediment such as the sand of the seabed, lake bottom, riverbed, sand of aquarium tanks, etc., and the potential is measured. Based on the measured potential Thus, an embodiment for evaluating the homeostasis of the bottom sample is mentioned. For example, if the potential is monitored for a certain period and the potential continues to show a positive value based on the reference electrode (silver / silver chloride electrode), it can be evaluated that the constancy of the water environment is maintained. On the other hand, if the potential continues to show a negative value, it can be evaluated that the water environment is in an anaerobic state, eutrophication occurs, and the environment is loaded.
<水環境領域の恒常性改善方法>
本発明の水環境領域の恒常性評価方法の一態様は、
実在する又は人工的な水環境領域の水底の底質内に、前記恒常性測定装置のFTO電極又はITO電極を設置すること、
前記恒常性測定装置により底質の電位を測定すること、及び
測定された電位が、あらかじめ決定した条件を満たさない場合に、恒常性改善作用のある素材を水環境内に供給すること、
を含む。 <Method for improving homeostasis in water environment>
One aspect of the method for evaluating homeostasis of the water environment region of the present invention is:
Installing the FTO electrode or ITO electrode of the homeostasis measuring device in the bottom sediment of a real or artificial water environment area;
Measuring the potential of the bottom sediment by the homeostasis measuring device, and supplying a material having a homeostasis improving action in the water environment when the measured potential does not satisfy a predetermined condition;
including.
本発明の水環境領域の恒常性評価方法の一態様は、
実在する又は人工的な水環境領域の水底の底質内に、前記恒常性測定装置のFTO電極又はITO電極を設置すること、
前記恒常性測定装置により底質の電位を測定すること、及び
測定された電位が、あらかじめ決定した条件を満たさない場合に、恒常性改善作用のある素材を水環境内に供給すること、
を含む。 <Method for improving homeostasis in water environment>
One aspect of the method for evaluating homeostasis of the water environment region of the present invention is:
Installing the FTO electrode or ITO electrode of the homeostasis measuring device in the bottom sediment of a real or artificial water environment area;
Measuring the potential of the bottom sediment by the homeostasis measuring device, and supplying a material having a homeostasis improving action in the water environment when the measured potential does not satisfy a predetermined condition;
including.
上記のようにして、底質の電位をモニタリングしつつ、あらかじめ決定した条件を満たさなくなった場合、例えば、電位が参照電極(銀/塩化銀電極)を基準にして負の値に低下して水環境の恒常性が低下したような場合に、恒常性改善作用のある素材を水環境内、好ましくは底質内に供給し、恒常性を改善することができる。恒常性改善作用のある素材としては、導電性素材(例えば、炭素棒や竹炭等の炭素材料、及び鉄含有量の高い鉄鋼スラッグ等の金属材料)が含まれる。また元々は導電性がなくても、底質内の微生物との作用により導電性になる素材(例えば、鉄含有量の低い鉄鋼スラッグ)も含まれる。
As described above, when the potential of the sediment is no longer met while monitoring the potential of the sediment, for example, the potential drops to a negative value with reference to the reference electrode (silver / silver chloride electrode), and the water When the homeostasis of the environment is lowered, the homeostasis can be improved by supplying a material having a homeostasis improving action into the water environment, preferably into the sediment. Examples of the material having the effect of improving homeostasis include conductive materials (for example, carbon materials such as carbon bars and bamboo charcoal, and metal materials such as steel slug having a high iron content). Moreover, the material (for example, steel slug with a low iron content) which becomes conductive by the action with microorganisms in the bottom sediment even if originally not conductive is included.
<給餌システム>
本発明の給餌システムは、底質に設置されるFTO電極またはITO電極を備えた電位計と、水中に餌を供給する給餌装置と、電位計で測定された電位の値に基づいて給餌タイミング及び/又は給餌量が調節されるように給餌装置を制御する制御部と、を備えたことを特徴とする。 <Feeding system>
The feeding system of the present invention includes an electrometer equipped with an FTO electrode or an ITO electrode installed in the sediment, a feeding device that supplies food into water, feeding timing based on the value of the potential measured by the electrometer, and And / or a control unit that controls the feeding device so that the amount of feeding is adjusted.
本発明の給餌システムは、底質に設置されるFTO電極またはITO電極を備えた電位計と、水中に餌を供給する給餌装置と、電位計で測定された電位の値に基づいて給餌タイミング及び/又は給餌量が調節されるように給餌装置を制御する制御部と、を備えたことを特徴とする。 <Feeding system>
The feeding system of the present invention includes an electrometer equipped with an FTO electrode or an ITO electrode installed in the sediment, a feeding device that supplies food into water, feeding timing based on the value of the potential measured by the electrometer, and And / or a control unit that controls the feeding device so that the amount of feeding is adjusted.
以下、図2を参照して、本発明の給餌システムの一態様を説明する。
本発明の給餌システムBは、図2に示されているように、測定用電極10と、参照用電極11と、測定部12とを備えた電位計A(環境恒常性測定装置Aに相当)と、開閉部16を有する給餌装置15と、電位計Aと給餌装置15に接続され、電位の測定値に基づいて給餌装置15の開閉部16を制御する制御部14を有する。 Hereinafter, with reference to FIG. 2, an aspect of the feeding system of the present invention will be described.
As shown in FIG. 2, the feeding system B of the present invention is an electrometer A (corresponding to the environmental homeostasis measuring device A) provided with a measuringelectrode 10, a reference electrode 11, and a measuring unit 12. And a feeding device 15 having an opening / closing unit 16 and a control unit 14 connected to the electrometer A and the feeding device 15 and controlling the opening / closing unit 16 of the feeding device 15 based on a measured value of the potential.
本発明の給餌システムBは、図2に示されているように、測定用電極10と、参照用電極11と、測定部12とを備えた電位計A(環境恒常性測定装置Aに相当)と、開閉部16を有する給餌装置15と、電位計Aと給餌装置15に接続され、電位の測定値に基づいて給餌装置15の開閉部16を制御する制御部14を有する。 Hereinafter, with reference to FIG. 2, an aspect of the feeding system of the present invention will be described.
As shown in FIG. 2, the feeding system B of the present invention is an electrometer A (corresponding to the environmental homeostasis measuring device A) provided with a measuring
上記<環境の恒常性測定装置>の項目で説明したと同様、測定用電極10はFTO電極またはITO電極であり、水底に存在する底質13内に設置される。また、参照用電極11は、銀/塩化銀電極、飽和カロメル電極、硫酸第一水銀電極、酸化水銀電極などが利用でき、参照用電極11は通常水中に設置される。なお、測定用電極10、参照用電極11に加えて対極を含む電極系を使用してもよい。そして、測定部12は、測定用電極10と参照用電極11にそれぞれ接続され、両電極間の電位差を連続的に測定する。測定部12の構成は特に制限されないが、例えば、接続端子、操作部、表示部などを備えることができる。
As described in the above item <Environmental homeostasis measurement device>, the measurement electrode 10 is an FTO electrode or an ITO electrode, and is installed in the sediment 13 existing on the bottom of the water. The reference electrode 11 can be a silver / silver chloride electrode, a saturated calomel electrode, a mercuric sulfate electrode, a mercury oxide electrode, or the like, and the reference electrode 11 is usually installed in water. In addition to the measurement electrode 10 and the reference electrode 11, an electrode system including a counter electrode may be used. The measurement unit 12 is connected to the measurement electrode 10 and the reference electrode 11, respectively, and continuously measures the potential difference between the electrodes. The configuration of the measurement unit 12 is not particularly limited, and can include, for example, a connection terminal, an operation unit, a display unit, and the like.
給餌装置15は、養殖魚用餌など、水中で生育するまたは飼育される魚等の動物用の餌を収容し、開閉部16を備えており、開閉部16が開口することにより、餌が水中に放出される。給餌装置15は水上や水中に設置されてよい。また、給餌装置の構造は開閉式には限られない。
The feeding device 15 accommodates food for animals such as fish that are grown or bred in water, such as aquaculture fish food, and includes an opening / closing part 16. To be released. The feeding device 15 may be installed on water or in water. Moreover, the structure of a feeding apparatus is not restricted to an open / close type.
制御部14は電位計Aの測定部12から受信した電位の値に基づいて給餌装置15の開閉部16の開閉のタイミングおよび開口時間等を制御する。すなわち、電位計Aで測定された電位の値は底質環境の状態を反映しており、例えば、電位が長時間負の値を示し続けていると、水底及び水中が嫌気状態にあり、富栄養化が起こって環境に負荷がかかっていることが判定でき、一方、電位が正の値を示していれば底質環境に過度の負荷はかかっておらず水底及び水中での生物の活動が正常に行われていることが理解できる。また、餌(飼料)が添加されることにより、一時的に電位が下がるが、正常であれば、すぐに正の値に回復するところ、飼料添加後、電位が長期間負の値を示す場合は、底質環境が富栄養化状態、貧酸素状態にあるので、次回給餌量を減らす、給餌タイミングを遅らせる等の必要がある。
このように、電位が負の値を示し続けている状態で給餌するとさらに底質及び水中の環境に負荷を増加させ、富栄養化及び環境破壊を促進させてしまうことになるので、電位が負の値を示しているときには給餌装置15の開閉部16を閉じたままにし、給餌を行わないように制御すること、あるいは、給餌の際の開口時間を短くして1回の給餌量を通常より減らすように制御することが好ましい。
このように制御することにより、環境に負荷をかけることなく、環境の恒常性を維持したまま給餌でき、環境の恒常性を維持した状態で魚等の動物を生育させることができる。 Thecontrol unit 14 controls the opening / closing timing and opening time of the opening / closing unit 16 of the feeding device 15 based on the value of the potential received from the measuring unit 12 of the electrometer A. That is, the value of the potential measured by the electrometer A reflects the state of the sediment environment. For example, if the potential continues to show a negative value for a long time, the bottom of the water and the water are in an anaerobic state. It can be determined that the environment is loaded with nutrients. On the other hand, if the potential shows a positive value, the sediment environment is not overloaded and the activities of living organisms in the bottom and water are not. You can see that it is done normally. In addition, the potential drops temporarily due to the addition of feed (feed), but if it is normal, it immediately recovers to a positive value. Since the sediment environment is eutrophic and anoxic, it is necessary to reduce the next feeding amount, delay the feeding timing, and the like.
In this way, feeding while the potential continues to show a negative value further increases the load on the sediment and the water environment, and promotes eutrophication and environmental destruction. The opening / closingpart 16 of the feeding device 15 is kept closed and control is performed so that feeding is not performed, or the opening time during feeding is shortened to reduce the amount of feeding once It is preferable to control so that it decreases.
By controlling in this manner, feeding can be performed while maintaining environmental homeostasis without imposing a load on the environment, and animals such as fish can be grown while maintaining environmental homeostasis.
このように、電位が負の値を示し続けている状態で給餌するとさらに底質及び水中の環境に負荷を増加させ、富栄養化及び環境破壊を促進させてしまうことになるので、電位が負の値を示しているときには給餌装置15の開閉部16を閉じたままにし、給餌を行わないように制御すること、あるいは、給餌の際の開口時間を短くして1回の給餌量を通常より減らすように制御することが好ましい。
このように制御することにより、環境に負荷をかけることなく、環境の恒常性を維持したまま給餌でき、環境の恒常性を維持した状態で魚等の動物を生育させることができる。 The
In this way, feeding while the potential continues to show a negative value further increases the load on the sediment and the water environment, and promotes eutrophication and environmental destruction. The opening / closing
By controlling in this manner, feeding can be performed while maintaining environmental homeostasis without imposing a load on the environment, and animals such as fish can be grown while maintaining environmental homeostasis.
制御部14は、例えば、プロセッサ等のCPU(Central Processing Unit)と、メモリと、ストレージと、PSU(Power Supply Unit)とを有する。メモリは、例えば、ROM(Read Only Memory)及びRAM(Random Access Memory)である。ストレージは、例えば、HDD(Hard Disk Drive)及びSDD(Solid State Drive)等の記憶装置である。また、制御部14は、インターフェースユニットを有してもよい。インターフェースユニットは、LANや外部インターフェースに接続される。インターフェースユニットには、例えば、モデムやLANアダプタが採用される。PSUからCPU、メモリ、ストレージ及びインターフェースユニットに電力が供給される。
The control unit 14 includes, for example, a CPU (Central Processing Unit) such as a processor, a memory, a storage, and a PSU (Power Supply Unit). The memory is, for example, a ROM (Read Only Memory) and a RAM (Random Access Memory). The storage is a storage device such as an HDD (Hard Disk Drive) and an SDD (Solid State Drive). Moreover, the control part 14 may have an interface unit. The interface unit is connected to a LAN or an external interface. For example, a modem or a LAN adapter is employed as the interface unit. Power is supplied from the PSU to the CPU, memory, storage, and interface unit.
図3に、給餌システムBにおける制御部14による制御のフローの一例を示す。まず、電位計により底質の電位が測定される(ステップS1)。この測定値をもとに、制御部14において判定が行われ(ステップS2)、給餌可(YES)と判定されたときは、給餌装置15に信号が送られ(ステップS3)、給餌装置15の開閉部16を開口する動作が行われて(ステップS4)、所定量の餌が水中に放出される。
FIG. 3 shows an example of a control flow by the control unit 14 in the feeding system B. First, the potential of the sediment is measured with an electrometer (step S1). Based on this measurement value, a determination is made in the control unit 14 (step S2). When it is determined that feeding is possible (YES), a signal is sent to the feeding device 15 (step S3). An operation of opening the opening / closing part 16 is performed (step S4), and a predetermined amount of bait is released into the water.
なお、判定の基準の例としては、電位の値が正の時は給餌可と判定するという基準、前回の給餌後に電位が一定時間以上、例えば、12時間以上負の値を示した場合に、開口時間を短くして給餌量を減らすという基準などが挙げられる。
判定は前回の給餌から6~12時間経過後、というように一定のタイミングで行われることが好ましい。
なお、制御部14では、水温や酸素濃度やBODなどの測定値についてもデータを取得し、電位値とともにこれらの測定値も考慮に入れて給餌装置15を制御してもよい。 In addition, as an example of the criterion of determination, when the potential value is positive, it is determined that feeding is possible, and when the potential shows a negative value for a certain time or longer after the previous feeding, for example, 12 hours or longer, For example, the standard of shortening the opening time and reducing the amount of feeding can be cited.
The determination is preferably made at a fixed timing such as 6 to 12 hours after the previous feeding.
Note that thecontrol unit 14 may acquire data on measured values such as water temperature, oxygen concentration, and BOD, and control the feeding device 15 in consideration of these measured values together with the potential value.
判定は前回の給餌から6~12時間経過後、というように一定のタイミングで行われることが好ましい。
なお、制御部14では、水温や酸素濃度やBODなどの測定値についてもデータを取得し、電位値とともにこれらの測定値も考慮に入れて給餌装置15を制御してもよい。 In addition, as an example of the criterion of determination, when the potential value is positive, it is determined that feeding is possible, and when the potential shows a negative value for a certain time or longer after the previous feeding, for example, 12 hours or longer, For example, the standard of shortening the opening time and reducing the amount of feeding can be cited.
The determination is preferably made at a fixed timing such as 6 to 12 hours after the previous feeding.
Note that the
本発明の給餌システムは、前記制御部とともに、一部が底質に埋没された炭素棒を備えたものであってもよい。炭素棒を底質に埋設することにより、給餌後の急激な電位低下は抑制され、水環境の恒常性が向上し、水環境の恒常性が維持されやすくなる。この現象は、導電性材料である炭素棒内の電子の移動により、底質内の汚染物質である硫化水素等が還元されるとともに、水中の酸素が水になるというような、酸化還元反応が進行することがそのメカニズムの一つと考えられる。
したがって、本発明の給餌システムは一部が底質に埋没された炭素棒を備えることにより、安定して給餌が行えるようになり、制御部による給餌タイミングの制御を軽減できる。
さらに、底質に前記のような炭素棒を埋設することにより、水環境の恒常性能が著しく向上し、連続的に給餌しても恒常性が保たれるような場合もありうるが、そのような場合には給餌タイミングを制御する必要がないので、本発明の給餌システムは、前記制御部に替えて、一部が底質に埋没された炭素棒を備えたものであってもよい。 The feeding system of the present invention may be provided with a carbon rod partially buried in the bottom sediment together with the control unit. By embedding the carbon rod in the bottom sediment, a rapid potential drop after feeding is suppressed, the homeostasis of the water environment is improved, and the homeostasis of the water environment is easily maintained. This phenomenon is caused by an oxidation-reduction reaction in which hydrogen sulfide, which is a contaminant in the sediment, is reduced by the movement of electrons in the carbon rod, which is a conductive material, and oxygen in the water becomes water. Proceeding is considered one of the mechanisms.
Therefore, the feeding system of the present invention includes a carbon rod partially buried in the bottom sediment, so that feeding can be stably performed, and control of feeding timing by the control unit can be reduced.
Furthermore, by embedding the carbon rod as described above in the bottom sediment, the constant performance of the water environment is remarkably improved, and there may be a case where the homeostasis is maintained even when continuously fed. In such a case, since it is not necessary to control the feeding timing, the feeding system of the present invention may be provided with a carbon rod partially buried in the sediment instead of the control unit.
したがって、本発明の給餌システムは一部が底質に埋没された炭素棒を備えることにより、安定して給餌が行えるようになり、制御部による給餌タイミングの制御を軽減できる。
さらに、底質に前記のような炭素棒を埋設することにより、水環境の恒常性能が著しく向上し、連続的に給餌しても恒常性が保たれるような場合もありうるが、そのような場合には給餌タイミングを制御する必要がないので、本発明の給餌システムは、前記制御部に替えて、一部が底質に埋没された炭素棒を備えたものであってもよい。 The feeding system of the present invention may be provided with a carbon rod partially buried in the bottom sediment together with the control unit. By embedding the carbon rod in the bottom sediment, a rapid potential drop after feeding is suppressed, the homeostasis of the water environment is improved, and the homeostasis of the water environment is easily maintained. This phenomenon is caused by an oxidation-reduction reaction in which hydrogen sulfide, which is a contaminant in the sediment, is reduced by the movement of electrons in the carbon rod, which is a conductive material, and oxygen in the water becomes water. Proceeding is considered one of the mechanisms.
Therefore, the feeding system of the present invention includes a carbon rod partially buried in the bottom sediment, so that feeding can be stably performed, and control of feeding timing by the control unit can be reduced.
Furthermore, by embedding the carbon rod as described above in the bottom sediment, the constant performance of the water environment is remarkably improved, and there may be a case where the homeostasis is maintained even when continuously fed. In such a case, since it is not necessary to control the feeding timing, the feeding system of the present invention may be provided with a carbon rod partially buried in the sediment instead of the control unit.
本発明の給餌システムは、養殖場、飼育水槽などに特に好適に使用できる。本発明の給餌システムを設置し得る水槽には、熱帯魚等の観賞用小規模水槽、水族館等に設置される中小大規模水槽、養殖用水槽等のいずれの態様も含まれる。
The feeding system of the present invention can be particularly suitably used for farms, breeding tanks, and the like. The aquarium in which the feeding system of the present invention can be installed includes any aspect such as a small-scale aquarium for ornamental fish such as tropical fish, a small / medium-scale aquarium installed in an aquarium, an aquaculture tank, and the like.
上記の通り、炭素棒が水環境の恒常性改善効果を有することが明らかにされたため、本発明はまた、炭素棒を含む水環境恒常性改善材、および水環境領域内の底質に炭素棒をその一部が埋設されるように設置する工程を含む水環境における恒常性改善方法を提供する。ここで、炭素棒の種類は導電性を有するものであれば特に制限されず、木炭、竹炭、バイオ炭などが例示される。炭素棒のサイズも特に制限されず、設置対象の水環境の規模などに応じて適宜設定できる。炭素棒はその一部が底質中に埋設されるが、底質中に埋設される部分の長さは、炭素棒内で電子の移動が生じ、炭素棒の一部が埋設された底質と、炭素棒の一部が露出した水中との間で共役した酸化還元反応が起こりうる程度であればよいが、例えば、炭素棒全体の長さのうち、20~80%の長さを底質中に埋設することができる。
As described above, since it has been clarified that the carbon rod has the effect of improving the homeostasis of the water environment, the present invention also provides a water environment homeostasis improving material including the carbon rod, and a carbon rod on the bottom in the water environment region. A method for improving the homeostasis in a water environment including a step of installing so that a part thereof is buried is provided. Here, the type of the carbon rod is not particularly limited as long as it has conductivity, and examples thereof include charcoal, bamboo charcoal, and biochar. The size of the carbon rod is not particularly limited, and can be appropriately set according to the scale of the water environment to be installed. A part of the carbon rod is buried in the bottom sediment, but the length of the portion buried in the bottom sediment is the bottom sediment in which a part of the carbon rod is buried due to the movement of electrons in the carbon rod. However, the length of the carbon rod may be 20 to 80% of the total length of the carbon rod. Can be buried in the quality.
以下、実施例を挙げて本発明を説明するが、本発明の態様は以下には限定されない。
Hereinafter, although an example is given and the present invention is explained, the mode of the present invention is not limited to the following.
実験系:底質試料としては、愛媛県の養殖場下から採取した底質サンプル、ならびに大阪湾沿岸域の底質サンプルを用いた。底面にガラス電極を置いた電気化学リアクター内に底質を入れ、培養を行い、経時的な電位変動をモニタリングした。投与可能な飼料の量を予測するために、電気化学リアクター内に養殖魚の飼料を投与し、その後の電位の経時変化を追跡した。
*電気化学測定の詳細(図4参照):作用極にはFTO電極(フッ素ドープ酸化スズ、電極面積3.14 cm2)、対極にはPt線、参照極にはAg|AgCl|KClsat.電極、電解質としては以下の人工海水を使いた。
NaCl 39.9g, MgCl2・6H2O 25.2g, MgSO4 6.48g, CaCl24.8g, KCl 1.1g, NaHCO3 0.32gを全量1Lとなるように蒸留水で溶解し、121℃, 20minで滅菌したのちに使用。 Experimental system: As the sediment samples, we used sediment samples collected from the farms in Ehime Prefecture, as well as sediment samples from the coastal area of Osaka Bay. Sediment was placed in an electrochemical reactor with a glass electrode on the bottom, cultured, and potential fluctuations over time were monitored. In order to predict the amount of feed that could be administered, farmed fish feed was administered in an electrochemical reactor and subsequent potential changes over time were followed.
* Details of electrochemical measurement (see Fig. 4): FTO electrode (fluorine-doped tin oxide, electrode area 3.14 cm 2 ) for working electrode, Pt wire for counter electrode, Ag | AgCl | KCl sat. Electrode for reference electrode, The following artificial seawater was used as the electrolyte.
Dissolve NaCl 39.9g, MgCl 2・ 6H 2 O 25.2g, MgSO 4 6.48g, CaCl 2 4.8g, KCl 1.1g, NaHCO 3 0.32g in distilled water to a total volume of 1L, and sterilize at 121 ° C, 20min Used after.
*電気化学測定の詳細(図4参照):作用極にはFTO電極(フッ素ドープ酸化スズ、電極面積3.14 cm2)、対極にはPt線、参照極にはAg|AgCl|KClsat.電極、電解質としては以下の人工海水を使いた。
NaCl 39.9g, MgCl2・6H2O 25.2g, MgSO4 6.48g, CaCl24.8g, KCl 1.1g, NaHCO3 0.32gを全量1Lとなるように蒸留水で溶解し、121℃, 20minで滅菌したのちに使用。 Experimental system: As the sediment samples, we used sediment samples collected from the farms in Ehime Prefecture, as well as sediment samples from the coastal area of Osaka Bay. Sediment was placed in an electrochemical reactor with a glass electrode on the bottom, cultured, and potential fluctuations over time were monitored. In order to predict the amount of feed that could be administered, farmed fish feed was administered in an electrochemical reactor and subsequent potential changes over time were followed.
* Details of electrochemical measurement (see Fig. 4): FTO electrode (fluorine-doped tin oxide, electrode area 3.14 cm 2 ) for working electrode, Pt wire for counter electrode, Ag | AgCl | KCl sat. Electrode for reference electrode, The following artificial seawater was used as the electrolyte.
Dissolve NaCl 39.9g, MgCl 2・ 6H 2 O 25.2g, MgSO 4 6.48g, CaCl 2 4.8g, KCl 1.1g, NaHCO 3 0.32g in distilled water to a total volume of 1L, and sterilize at 121 ° C, 20min Used after.
<実施例1>愛媛県より採取した底質サンプルを用いた測定
愛媛県の養殖場下の底質環境から採取した試料を用いた電位計測の結果を図5に示す。ここでは、微生物と底生生物(海産ミミズ)の両者を含む底質サンプルに対して、異なる量の飼料を添加した時の電位変化を計測している。以下に示す電位はすべて参照極のAg|AgCl|KClsat.電極に対するものである。 <Example 1> Measurement using a sediment sample collected from Ehime Prefecture Fig. 5 shows the results of potential measurement using a sample collected from the sediment environment under a farm in Ehime Prefecture. Here, changes in potential when different amounts of feed are added to a sediment sample containing both microorganisms and benthic organisms (marine earthworms) are measured. All potentials shown below are for the reference electrode Ag | AgCl | KCl sat .
愛媛県の養殖場下の底質環境から採取した試料を用いた電位計測の結果を図5に示す。ここでは、微生物と底生生物(海産ミミズ)の両者を含む底質サンプルに対して、異なる量の飼料を添加した時の電位変化を計測している。以下に示す電位はすべて参照極のAg|AgCl|KClsat.電極に対するものである。 <Example 1> Measurement using a sediment sample collected from Ehime Prefecture Fig. 5 shows the results of potential measurement using a sample collected from the sediment environment under a farm in Ehime Prefecture. Here, changes in potential when different amounts of feed are added to a sediment sample containing both microorganisms and benthic organisms (marine earthworms) are measured. All potentials shown below are for the reference electrode Ag | AgCl | KCl sat .
まず、電位計測を始めた直後から約100時間の間、電位は-0.15から-0.35Vの値で推移した。この結果は、底生環境が還元状態(富栄養化状態・酸素欠乏状態)にあることを示している。
First, for about 100 hours immediately after starting the potential measurement, the potential changed from -0.15 to -0.35V. This result shows that the benthic environment is in a reduced state (eutrophication state / oxygen deficiency state).
その後、100時間の計測点から、電位が正側に大きくシフトし、200時間後には、+0.25Vにまで達した。この電位の負から正へのシフトは、底質環境が還元状態(富栄養化)から酸化的環境(好気的)環境に移り変わっていること(環境が生物の力により回復していること)を示している。
After that, from the measurement point of 100 hours, the potential was greatly shifted to the positive side, and after 200 hours, it reached + 0.25V. This shift of potential from negative to positive means that the sediment environment has changed from a reduced state (eutrophication) to an oxidative environment (aerobic) (the environment has been restored by the power of living things). Is shown.
次に、養殖魚の飼料を添加した時の電位変化について説明する。微生物と底生生物(海産ミミズ)の両方を含む底質サンプルに対して、異なる量の飼料(1mgと10mg)を、192時間後と528時間後に加えた。興味深いことに、飼料の添加に応じて、両者とも環境電位の急激な負方向へのシフトが観測された。特に、192時間後に10mgを加えた試料においては、電位が+0.25Vから-0.4Vまで急激に低下し、その後550時間の計測の範囲においては、電位が正に戻ることはなかった。すなわち、過剰の飼料の投与により、過度な還元状態(富栄養化)状態となり、底生動物の作用をもってしても、元の酸化状態に戻るのが困難であることが分かる。
Next, the change in potential when the feed for cultured fish is added will be described. Different amounts of feed (1 mg and 10 mg) were added after 192 hours and 528 hours to sediment samples containing both microorganisms and benthic organisms (marine earthworms). Interestingly, in both cases, a rapid negative shift in environmental potential was observed with the addition of feed. In particular, in the sample to which 10 mg was added after 192 hours, the potential dropped rapidly from +0.25 V to -0.4 V, and then the potential did not return to positive in the measurement range of 550 hours thereafter. That is, it turns out that it will be in an excessive reduction | restoration state (eutrophication) state by administration of an excess feed, and even if it has the action of a benthic animal, it is difficult to return to the original oxidation state.
一方で、10分の1量(1mg)の飼料を加えた系においては、飼料の添加により電位は+0.25Vから-0.05Vにまで減少はするが、その後すぐに電位は正にシフトし、元の好気的環境へと復元された。
On the other hand, in the system to which 1/10 (1mg) of feed is added, the potential decreases from + 0.25V to -0.05V by the addition of feed, but soon the potential shifts to positive, It has been restored to its original aerobic environment.
以上の結果は、養殖魚の飼料の添加により、環境電位がどの様に変化するかを、リアルタイム(連続的なデータの取得)で計測可能であること、また、養殖魚へ添加する飼料の量に依存して、電位の正への復元が可能か否か、すなわち恒常性能を判断・評価できることを示している。すなわち、本実験系における適切な飼料の投与量は、1mgから10mgの間と、見積もることができる。
The above results show that it is possible to measure in real time (acquisition of continuous data) how the environmental potential changes due to the addition of cultured fish feed, and the amount of feed added to the cultured fish. It depends on whether or not the potential can be restored to positive, that is, the constant performance can be judged and evaluated. That is, an appropriate feed dose in this experimental system can be estimated between 1 mg and 10 mg.
ここで、環境電位が負の値で推移することは、底質環境が富栄養化状態、貧酸素状態にあることを示し、養殖魚に対して病害を引き起こすリスクがあることを意味する。一方、正の電位を示す環境においては、底質環境が好気的になっていることを示している。好気的な環境においては、底生生態系の代謝活動が活発となり、その結果、自浄作用力が強化されることから、環境が健全な状態にあると見なすことができる。
Here, the environmental potential changing to a negative value indicates that the sediment environment is eutrophic or hypoxic, and there is a risk of causing disease to the cultured fish. On the other hand, in an environment showing a positive potential, the bottom sediment environment is aerobic. In an aerobic environment, the metabolic activity of benthic ecosystems becomes active, and as a result, the self-cleaning action is strengthened, so it can be considered that the environment is in a healthy state.
本技術を実際に養殖場環境に設置することで、飼料の投与という人間活動と、底生生態系が持つ自浄作用の拮抗、言い換えると、底質生態系が許容できる飼料の投与量を、環境電位の恒常性(レドックス・ホメオスタシス)を指標にして、可視化、定量化することが可能になる。
By actually installing this technology in an aquaculture environment, the human activity of feed administration and the self-cleaning action of benthic ecosystems, in other words, the amount of feed that the bottom ecosystem can tolerate, Visualization and quantification can be performed using potential homeostasis (redox homeostasis) as an index.
<実施例2>大阪湾より採取した底質サンプルを用いた測定
大阪湾の底質環境から採取した試料を用い電位計測の結果を図6に示す。ここでは、底生動物と土着微生物(もともと、底質に生息している微生物)の役割を解析するため、以下の4条件で電位計測を行った。以下に示す電位はすべて参照極のAg|AgCl|KClsat.電極に対するものである。
1)底生動物を含まず、土着微生物を含む底質試料
2)底生動物ならびに土着微生物の両方を含まない底質試料
3)底生動物と土着微生物の両方を含む底質試料
4)土着微生物が存在せず、底生動物を含む底質試料 <Example 2> Measurement using a sediment sample collected from Osaka Bay Fig. 6 shows the results of potential measurement using a sample collected from the sediment environment of Osaka Bay. Here, in order to analyze the role of benthic animals and indigenous microorganisms (originally living in the sediment), potential measurements were performed under the following four conditions. All potentials shown below are for the reference electrode Ag | AgCl | KCl sat .
1) Bottom sample that does not contain benthic animals and contains indigenous microorganisms 2) Bottom sample that does not contain both benthic animals and indigenous microorganisms 3) Bottom sample that contains both benthic animals and indigenous microorganisms 4) Indigenous samples Sediment samples with no microorganisms and including benthic animals
大阪湾の底質環境から採取した試料を用い電位計測の結果を図6に示す。ここでは、底生動物と土着微生物(もともと、底質に生息している微生物)の役割を解析するため、以下の4条件で電位計測を行った。以下に示す電位はすべて参照極のAg|AgCl|KClsat.電極に対するものである。
1)底生動物を含まず、土着微生物を含む底質試料
2)底生動物ならびに土着微生物の両方を含まない底質試料
3)底生動物と土着微生物の両方を含む底質試料
4)土着微生物が存在せず、底生動物を含む底質試料 <Example 2> Measurement using a sediment sample collected from Osaka Bay Fig. 6 shows the results of potential measurement using a sample collected from the sediment environment of Osaka Bay. Here, in order to analyze the role of benthic animals and indigenous microorganisms (originally living in the sediment), potential measurements were performed under the following four conditions. All potentials shown below are for the reference electrode Ag | AgCl | KCl sat .
1) Bottom sample that does not contain benthic animals and contains indigenous microorganisms 2) Bottom sample that does not contain both benthic animals and indigenous microorganisms 3) Bottom sample that contains both benthic animals and indigenous microorganisms 4) Indigenous samples Sediment samples with no microorganisms and including benthic animals
まず、4種の条件における飼料を添加する前の電位計測の結果を比較してみる。底生動物と土着微生物の両者が存在する系においては、電位は負から正に大きく変化した(図6-3)。一方、底生動物および/または土着微生物を欠く系においては、電位は-0.15から-0.35の値で推移し、電位が増加する傾向は観測されなかった(図6-1,2,4)。この結果は、富栄養環境から好気的な環境への改善には、土着微生物と底生動物の両者が重要であることが分かる。
First, compare the results of potential measurement before adding feed under the four conditions. In the system where both benthic animals and indigenous microorganisms exist, the potential changed greatly from negative to positive (Fig. 6-3). On the other hand, in the system lacking benthic animals and / or indigenous microorganisms, the potential changed from -0.15 to -0.35, and no tendency for the potential to increase was observed (FIGS. 6-1, 2, and 4). This result shows that both indigenous microorganisms and benthic animals are important for improving the eutrophic environment to the aerobic environment.
なお、ベントス(底生動物)の代謝は、水環境の浄化の指標(例えば赤潮の発生の有無)と密接に相関していることが知られている。データは示さないが、本発明者らは、本発明の測定装置によって測定される電位が、底質に存在するベントスのトリカルボン酸(TCA)回路活性の程度を反映していることを、コハク酸やフマル酸のシグナルを追跡することで確認している。
In addition, it is known that the metabolism of bentos (benthic animals) is closely correlated with an index of purification of the water environment (for example, the presence or absence of red tide). Although data are not shown, the inventors have shown that the potential measured by the measuring device of the present invention reflects the extent of bentos tricarboxylic acid (TCA) circuit activity present in the sediment. And tracking the signal of fumaric acid.
続いて、上記の4つの条件において、それぞれ、魚の飼料10mgを添加し、電位の経時変化を追跡した際の結果を述べる。電位が大きく正に回復した底質試料(底生動物と微生物を含む:図6-3)に対して飼料添加を行ったところ、電位は一旦、+0.1から-0.05V付近にまで減少する。しかし、興味深いことに、負に変化した電位は、時間と共に正方向に増加し、最終的には、飼料を添加する前と同じ値にまで回復した。
一方で、底生動物のみを含む底質試料(図6-4)に対して飼料添加を行った際には、電位は-0.15Vから-0.45V付近まで減少し、正方向への回復は観測されなかった。 Subsequently, in each of the above four conditions, 10 mg of fish feed is added, and the results when the change in potential over time is traced are described. When feed was added to a sediment sample (including benthic animals and microorganisms: Fig. 6.3) whose potential was positively recovered positively, the potential decreased temporarily from +0.1 to around -0.05V. . Interestingly, however, the negatively changing potential increased in the positive direction with time and eventually recovered to the same value as before the feed was added.
On the other hand, when feed was added to a sediment sample containing only benthic animals (Fig. 6-4), the potential decreased from -0.15V to around -0.45V, and the positive recovery was Not observed.
一方で、底生動物のみを含む底質試料(図6-4)に対して飼料添加を行った際には、電位は-0.15Vから-0.45V付近まで減少し、正方向への回復は観測されなかった。 Subsequently, in each of the above four conditions, 10 mg of fish feed is added, and the results when the change in potential over time is traced are described. When feed was added to a sediment sample (including benthic animals and microorganisms: Fig. 6.3) whose potential was positively recovered positively, the potential decreased temporarily from +0.1 to around -0.05V. . Interestingly, however, the negatively changing potential increased in the positive direction with time and eventually recovered to the same value as before the feed was added.
On the other hand, when feed was added to a sediment sample containing only benthic animals (Fig. 6-4), the potential decreased from -0.15V to around -0.45V, and the positive recovery was Not observed.
これらの結果は、土着微生物と底生動物の両者が存在する環境においては、飼料の添加による富栄養化(貧酸素可)を抑制できることを示している。言い換えると、正の電位を一定の値に保とうとするレドックス恒常性能(環境の健康度)が高いことを示している。
These results indicate that in an environment where both indigenous microorganisms and benthic animals are present, eutrophication (possible anoxia) by adding feed can be suppressed. In other words, it indicates that the redox constant performance (environmental health degree) of maintaining a positive potential at a constant value is high.
<比較例1>白金電極を用いた測定
従来測定電極として使われている白金電極を用いて電位測定を行い、FTO電極の比較をおこなった。大阪湾底質サンプル60g、上述の人工海水20mLを100mLのガラスビーカーに入れたものを測定サンプルとし、作用極として白金線(直径0.3mm、測定部3cm)とFTO電極(3cm四方)、参照極Ag|AgCl|KClsat.電極をビーカー上部からサンプルに浸し24時間電位計測を行った。(図7、図8)白金線では測定開始時の電位が-0.12V、その後1時間で-0.06Vまで測定値が上昇した後に電位は低下し続け24時間目で-0.18Vとなった。対してFTO電極は測定開始時の電位が-0.15V、その後電位は緩やかに上昇し-0.11Vという測定値を安定して示している。以上の結果はFTO電極が白金線より安定的に電位計測が行えることを示すものであり、FTO電極を本発明において使用する理由である。 <Comparative example 1> Measurement using a platinum electrode Potential measurement was performed using a platinum electrode that has been used as a conventional measurement electrode, and FTO electrodes were compared. A sample of 60 g of Osaka Bay sediment, 20 mL of the artificial seawater described above placed in a 100 mL glass beaker is used as the measurement sample, platinum wire (diameter 0.3 mm, measurement part 3 cm), FTO electrode (3 cm square), reference electrode Ag | AgCl | KCl sat. The electrode was immersed in the sample from the top of the beaker and the potential was measured for 24 hours. (FIGS. 7 and 8) With the platinum wire, the potential at the start of the measurement was -0.12 V, and then the measured value increased to -0.06 V in 1 hour, and then the potential continued to decrease and became -0.18 V in the 24th hour. On the other hand, the potential of the FTO electrode is -0.15V at the start of measurement, and then the potential rises slowly and shows a stable value of -0.11V. The above results show that the FTO electrode can measure the potential more stably than the platinum wire, and is the reason why the FTO electrode is used in the present invention.
従来測定電極として使われている白金電極を用いて電位測定を行い、FTO電極の比較をおこなった。大阪湾底質サンプル60g、上述の人工海水20mLを100mLのガラスビーカーに入れたものを測定サンプルとし、作用極として白金線(直径0.3mm、測定部3cm)とFTO電極(3cm四方)、参照極Ag|AgCl|KClsat.電極をビーカー上部からサンプルに浸し24時間電位計測を行った。(図7、図8)白金線では測定開始時の電位が-0.12V、その後1時間で-0.06Vまで測定値が上昇した後に電位は低下し続け24時間目で-0.18Vとなった。対してFTO電極は測定開始時の電位が-0.15V、その後電位は緩やかに上昇し-0.11Vという測定値を安定して示している。以上の結果はFTO電極が白金線より安定的に電位計測が行えることを示すものであり、FTO電極を本発明において使用する理由である。 <Comparative example 1> Measurement using a platinum electrode Potential measurement was performed using a platinum electrode that has been used as a conventional measurement electrode, and FTO electrodes were compared. A sample of 60 g of Osaka Bay sediment, 20 mL of the artificial seawater described above placed in a 100 mL glass beaker is used as the measurement sample, platinum wire (diameter 0.3 mm, measurement part 3 cm), FTO electrode (3 cm square), reference electrode Ag | AgCl | KCl sat. The electrode was immersed in the sample from the top of the beaker and the potential was measured for 24 hours. (FIGS. 7 and 8) With the platinum wire, the potential at the start of the measurement was -0.12 V, and then the measured value increased to -0.06 V in 1 hour, and then the potential continued to decrease and became -0.18 V in the 24th hour. On the other hand, the potential of the FTO electrode is -0.15V at the start of measurement, and then the potential rises slowly and shows a stable value of -0.11V. The above results show that the FTO electrode can measure the potential more stably than the platinum wire, and is the reason why the FTO electrode is used in the present invention.
<実施例3>長崎県より採取した底質サンプルを用いた測定
長崎県の養殖場下の底質環境(st12)、そこから東に2km離れた底質環境(st13)、および、さらにそこから東に2km離れた底質環境(st14)からそれぞれ採取した試料を用いて実施例1と同様にして電位計測を行った。ただし、給餌のタイミングと量は図9に記載の通りとした。その結果、図9に示すように、マグロ養殖場からの距離が遠いほど、給餌後の電位低下の程度が大きく、マグロ養殖場からの距離に応じて底質が持つ恒常性能に差があることがわかった。したがって、本発明の測定装置は、適切な養殖場を選定する際の判断基準として使用可能であることがわかった。
なお、本発明の測定装置は、長期間の連続計測に適しており、実際に95日間の連続計測が可能であることが確認されている。 <Example 3> Measurement using bottom sample collected from Nagasaki Prefecture Bottom sediment environment under a farm in Nagasaki Prefecture (st12), bottom sediment environment 2 km east from there (st13), and further from there Potential measurement was performed in the same manner as in Example 1 using samples collected from the sediment environment (st14) 2 km away to the east. However, the timing and amount of feeding were as shown in FIG. As a result, as shown in FIG. 9, the farther the distance from the tuna farm, the greater the potential decrease after feeding, and there is a difference in the constant performance of the bottom sediment according to the distance from the tuna farm. I understood. Therefore, it was found that the measuring apparatus of the present invention can be used as a criterion for selecting an appropriate farm.
The measuring device of the present invention is suitable for long-term continuous measurement, and it has been confirmed that 95 days of continuous measurement is actually possible.
長崎県の養殖場下の底質環境(st12)、そこから東に2km離れた底質環境(st13)、および、さらにそこから東に2km離れた底質環境(st14)からそれぞれ採取した試料を用いて実施例1と同様にして電位計測を行った。ただし、給餌のタイミングと量は図9に記載の通りとした。その結果、図9に示すように、マグロ養殖場からの距離が遠いほど、給餌後の電位低下の程度が大きく、マグロ養殖場からの距離に応じて底質が持つ恒常性能に差があることがわかった。したがって、本発明の測定装置は、適切な養殖場を選定する際の判断基準として使用可能であることがわかった。
なお、本発明の測定装置は、長期間の連続計測に適しており、実際に95日間の連続計測が可能であることが確認されている。 <Example 3> Measurement using bottom sample collected from Nagasaki Prefecture Bottom sediment environment under a farm in Nagasaki Prefecture (st12), bottom sediment environment 2 km east from there (st13), and further from there Potential measurement was performed in the same manner as in Example 1 using samples collected from the sediment environment (st14) 2 km away to the east. However, the timing and amount of feeding were as shown in FIG. As a result, as shown in FIG. 9, the farther the distance from the tuna farm, the greater the potential decrease after feeding, and there is a difference in the constant performance of the bottom sediment according to the distance from the tuna farm. I understood. Therefore, it was found that the measuring apparatus of the present invention can be used as a criterion for selecting an appropriate farm.
The measuring device of the present invention is suitable for long-term continuous measurement, and it has been confirmed that 95 days of continuous measurement is actually possible.
<実施例4>底質サンプルに炭素棒を埋設した系での測定
長崎県の養殖場下の底質から採取した試料を用い、実施例1と同様の測定系を2つ用意し、そのうちの1つの系では、長さ20mm、直径4.3mmの炭素棒(木炭)を、15mmが底質内に挿入され、5mmが水中に現れるようにして底質に埋設した。この2種類の系で電位計測を行った。給餌のタイミングと量は図10に記載の通りである。その結果、図10に示すように、炭素棒を底質に挿入した系では給餌後も電位が負の値を示さず、炭素棒を底質に埋設することで、底質の恒常性が向上することが分かった。したがって、炭素棒は、低コスト・低環境負荷で養殖場の底質環境を浄化及び/または恒常性を維持するために有用であることが分かった。 <Example 4> Measurement with a system in which a carbon rod is embedded in a bottom sample Using two samples collected from bottom sediments under a farm in Nagasaki Prefecture, two measurement systems similar to Example 1 are prepared, of which In one system, a carbon rod (charcoal) having a length of 20 mm and a diameter of 4.3 mm was embedded in the sediment so that 15 mm was inserted into the sediment and 5 mm appeared in the water. Potential measurement was performed with these two types of systems. The timing and amount of feeding are as described in FIG. As a result, as shown in FIG. 10, in the system in which the carbon rod is inserted into the bottom sediment, the potential does not show a negative value even after feeding, and the carbon rod is embedded in the bottom sediment, thereby improving the sediment constancy. I found out that Therefore, it has been found that the carbon rod is useful for purifying and / or maintaining the homeostasis of the bottom sediment environment of the farm at low cost and low environmental load.
長崎県の養殖場下の底質から採取した試料を用い、実施例1と同様の測定系を2つ用意し、そのうちの1つの系では、長さ20mm、直径4.3mmの炭素棒(木炭)を、15mmが底質内に挿入され、5mmが水中に現れるようにして底質に埋設した。この2種類の系で電位計測を行った。給餌のタイミングと量は図10に記載の通りである。その結果、図10に示すように、炭素棒を底質に挿入した系では給餌後も電位が負の値を示さず、炭素棒を底質に埋設することで、底質の恒常性が向上することが分かった。したがって、炭素棒は、低コスト・低環境負荷で養殖場の底質環境を浄化及び/または恒常性を維持するために有用であることが分かった。 <Example 4> Measurement with a system in which a carbon rod is embedded in a bottom sample Using two samples collected from bottom sediments under a farm in Nagasaki Prefecture, two measurement systems similar to Example 1 are prepared, of which In one system, a carbon rod (charcoal) having a length of 20 mm and a diameter of 4.3 mm was embedded in the sediment so that 15 mm was inserted into the sediment and 5 mm appeared in the water. Potential measurement was performed with these two types of systems. The timing and amount of feeding are as described in FIG. As a result, as shown in FIG. 10, in the system in which the carbon rod is inserted into the bottom sediment, the potential does not show a negative value even after feeding, and the carbon rod is embedded in the bottom sediment, thereby improving the sediment constancy. I found out that Therefore, it has been found that the carbon rod is useful for purifying and / or maintaining the homeostasis of the bottom sediment environment of the farm at low cost and low environmental load.
A・・・環境恒常性測定装置、10・・・測定用電極、11・・・参照用電極、12・・・測定部、13・・・底質
B・・・給餌システム、10・・・測定用電極、11・・・参照用電極、12・・・測定部、13・・・底質、14・・・制御部、15・・・給餌装置、16・・・開閉部16 A ... Environmental homeostasis measuring device, 10 ... Measuring electrode, 11 ... Reference electrode, 12 ... Measuring part, 13 ... Bottom sediment B ... Feeding system, 10 ... Measurement electrode, 11 ... Reference electrode, 12 ... Measurement unit, 13 ... Sediment, 14 ... Control unit, 15 ... Feeding device, 16 ... Opening /closing unit 16
B・・・給餌システム、10・・・測定用電極、11・・・参照用電極、12・・・測定部、13・・・底質、14・・・制御部、15・・・給餌装置、16・・・開閉部16 A ... Environmental homeostasis measuring device, 10 ... Measuring electrode, 11 ... Reference electrode, 12 ... Measuring part, 13 ... Bottom sediment B ... Feeding system, 10 ... Measurement electrode, 11 ... Reference electrode, 12 ... Measurement unit, 13 ... Sediment, 14 ... Control unit, 15 ... Feeding device, 16 ... Opening /
Claims (11)
- FTO電極またはITO電極を備えた電位計を含む、環境の恒常性測定装置。 Environmental homeostasis measuring device including electrometer with FTO electrode or ITO electrode.
- 環境が底質を有する水環境であり、FTO電極またはITO電極が底質に設置される、請求項1に記載の環境の恒常性測定装置。 The environmental homeostasis measuring apparatus according to claim 1, wherein the environment is a water environment having a sediment, and an FTO electrode or an ITO electrode is installed in the sediment.
- 請求項1または2に記載の環境の恒常性測定装置を備えた水槽。 A water tank provided with the environmental homeostasis measuring device according to claim 1.
- 底質に設置されるFTO電極またはITO電極を備えた電位計と、
水中に餌を供給する給餌装置と、
電位計で測定された電位の値に基づいて給餌タイミング及び/又は給餌量が調節されるように給餌装置を制御する制御部と、
を備えた、給餌システム。 An electrometer equipped with FTO or ITO electrodes installed in the bottom sediment;
A feeding device for feeding the water;
A control unit for controlling the feeding device so that the feeding timing and / or the feeding amount is adjusted based on the value of the potential measured by the electrometer;
Feeding system with - 前記制御部とともに、又は前記制御部に替えて、一部が底質に埋没した炭素棒を備えた請求項4に記載の給餌システム。 The feeding system according to claim 4, further comprising a carbon rod partially buried in the sediment along with or in place of the control unit.
- 魚の養殖場に設置される、請求項4または5に記載の給餌システム。 The feeding system according to claim 4 or 5, which is installed in a fish farm.
- 電位の測定値が負の値を示す場合に、前記制御部は給餌量を減らす及び/又は給餌タイミングを遅らせるように前記給餌装置を制御する、請求項4~6のいずれか一項に記載の給餌システム。 The control unit according to any one of claims 4 to 6, wherein when the measured potential value shows a negative value, the control unit controls the feeding device so as to reduce a feeding amount and / or delay a feeding timing. Feeding system.
- 請求項4~7のいずれか1項に記載の給餌システムを備えた水槽。 A water tank comprising the feeding system according to any one of claims 4 to 7.
- 実在する又は人工的な水環境領域の1以上の底質サンプルを準備すること、
請求項1又は2に記載の恒常性測定装置により前記1以上の底質サンプルの電位を測定すること、
及び測定された電位に基づいて、前記水環境領域の恒常性を評価すること、
を含む水環境領域の恒常性評価方法。 Providing one or more sediment samples of a real or artificial water environment region;
Measuring the potential of the one or more sediment samples by the homeostasis measuring device according to claim 1 or 2,
And evaluating the homeostasis of the water environment region based on the measured potential,
Method for evaluating the homeostasis of water environment areas including - 実在する又は人工的な水環境領域の水底の底質内に、請求項1又は2に記載の恒常性測定装置のFTO電極又はITO電極を設置すること、
前記恒常性測定装置により底質の電位を測定すること、及び
測定された電位に基づいて、前記水環境領域の恒常性を評価すること、
を含む水環境領域の恒常性評価方法。 Installing the FTO electrode or ITO electrode of the homeostasis measuring device according to claim 1 or 2 in the bottom sediment of a real or artificial water environment region;
Measuring the potential of the bottom sediment by the homeostasis measuring device, and evaluating the homeostasis of the water environment region based on the measured potential;
Method for evaluating the homeostasis of water environment areas including - 実在する又は人工的な水環境領域の水底の底質内に、請求項1又は2に記載の恒常性測定装置のFTO電極又はITO電極を設置すること、
前記恒常性測定装置により底質の電位を測定すること、及び
測定された電位が、あらかじめ決定した条件を満たさない場合に、恒常性改善作用のある素材を水環境内に供給すること、
を含む水環境領域の恒常性改善方法。 Installing the FTO electrode or ITO electrode of the homeostasis measuring device according to claim 1 or 2 in the bottom sediment of a real or artificial water environment region;
Measuring the potential of the bottom sediment by the homeostasis measuring device, and supplying a material having a homeostasis improving action in the water environment when the measured potential does not satisfy a predetermined condition;
To improve the homeostasis of the water environment area.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018560316A JP6978744B2 (en) | 2017-01-05 | 2017-08-03 | Environmental homeostasis measuring device using environmental potential as an index, environmental homeostasis evaluation method, and automatic feeding system using environmental potential |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-000727 | 2017-01-05 | ||
JP2017000727 | 2017-01-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018127989A1 true WO2018127989A1 (en) | 2018-07-12 |
Family
ID=62789369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/028271 WO2018127989A1 (en) | 2017-01-05 | 2017-08-03 | Environment homeostasis measurement device with environmental electrical-potential as indicator, environment homeostasis evaluation method, and automatic feeding system using environmental electrical-potential |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6978744B2 (en) |
WO (1) | WO2018127989A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112730168A (en) * | 2021-01-28 | 2021-04-30 | 广西中医药大学 | Method for measuring food intake of sedimentary feeding small benthonic animals |
CN114521524A (en) * | 2021-12-07 | 2022-05-24 | 中国水产科学研究院渔业机械仪器研究所 | Automatic feeding device for shrimp and crab cultivation |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007113985A (en) * | 2005-10-19 | 2007-05-10 | Yokogawa Electric Corp | Oxidation-reduction potential measuring instrument |
JP2013011482A (en) * | 2011-06-28 | 2013-01-17 | Dainippon Printing Co Ltd | Inspection instrument and inspection device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2172767A1 (en) * | 2008-10-06 | 2010-04-07 | Sony Corporation | A sensor for thiol analytes |
JP6349840B2 (en) * | 2014-03-25 | 2018-07-04 | 大日本印刷株式会社 | Cell culture system and cell culture method |
-
2017
- 2017-08-03 JP JP2018560316A patent/JP6978744B2/en active Active
- 2017-08-03 WO PCT/JP2017/028271 patent/WO2018127989A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007113985A (en) * | 2005-10-19 | 2007-05-10 | Yokogawa Electric Corp | Oxidation-reduction potential measuring instrument |
JP2013011482A (en) * | 2011-06-28 | 2013-01-17 | Dainippon Printing Co Ltd | Inspection instrument and inspection device |
Non-Patent Citations (2)
Title |
---|
SUSUMU BISEIBUTSU KENKYU ET AL., NIKKAN KOGYO SHINBUN, 12 August 2016 (2016-08-12), Retrieved from the Internet <URL:https://www.nikkan.co.jp/articles> [retrieved on 20170914] * |
TEISHITSU DEN'I HAKARI SUISHITSU HOZEN, NIKKAN KOGYO SHINBUN, 4 August 2016 (2016-08-04), pages 27 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112730168A (en) * | 2021-01-28 | 2021-04-30 | 广西中医药大学 | Method for measuring food intake of sedimentary feeding small benthonic animals |
CN112730168B (en) * | 2021-01-28 | 2023-07-25 | 广西中医药大学 | Method for measuring food intake of small sediment-feeding zoobenthos |
CN114521524A (en) * | 2021-12-07 | 2022-05-24 | 中国水产科学研究院渔业机械仪器研究所 | Automatic feeding device for shrimp and crab cultivation |
CN114521524B (en) * | 2021-12-07 | 2023-09-15 | 中国水产科学研究院渔业机械仪器研究所 | Automatic feeding device for shrimp and crab culture |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018127989A1 (en) | 2020-01-16 |
JP6978744B2 (en) | 2021-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Santini et al. | Carbonate scale deactivating the biocathode in a microbial fuel cell | |
Forster et al. | Continuously measured changes in redox potential influenced by oxygen penetrating from burrows of Callianassa subterranea | |
Almén et al. | Coping with climate change? Copepods experience drastic variations in their physicochemical environment on a diurnal basis | |
Kainz et al. | Relationships between organic matter composition and methyl mercury content of offshore and carbon-rich littoral sediments in an oligotrophic lake | |
Gonzalez Olias et al. | Effect of electrode properties on the performance of a photosynthetic microbial fuel cell for atrazine detection | |
WO2018127989A1 (en) | Environment homeostasis measurement device with environmental electrical-potential as indicator, environment homeostasis evaluation method, and automatic feeding system using environmental electrical-potential | |
Quek et al. | In-line deoxygenation for organic carbon detections in seawater using a marine microbial fuel cell-biosensor | |
Sivri et al. | Electrooxidation of nonylphenol ethoxylate-10 (NP10E) in a continuous reactor by BDD anodes: optimisation of operating conditions | |
Marchan et al. | Effects of copper and zinc on the heart rate of the limpet Patella vulgata L. | |
Romih et al. | The role of PVP in the bioavailability of Ag from the PVP-stabilized Ag nanoparticle suspension | |
Cheek et al. | Diel hypoxia in marsh creeks impairs the reproductive capacity of estuarine fish populations | |
Takemura et al. | Suppression of phosphorus release from eutrophic lake sediments by sediment microbial fuel cells | |
Liu et al. | Decreasing sulfide in sediment and promoting plant growth by plant–sediment microbial fuel cells with emerged plants | |
Kozuki et al. | The after-effects of hypoxia exposure on the clam Ruditapes philippinarum in Omaehama beach, Japan | |
Zhang et al. | Simultaneous copper migration and removal from soil and water using a three-chamber microbial fuel cell | |
JP2020174665A (en) | Animal rearing system | |
Zhang et al. | Cyclic voltammetric studies of the behavior of lead-silver anodes in zinc electrolytes | |
Eashwar et al. | The influence of sunlight on the localized corrosion of UNS S31600 in natural seawater | |
Franzetti et al. | Monod kinetics degradation of low concentration residual organics in membraneless microbial fuel cells | |
Semeniuk | Spatial variability in epiphytic foraminifera from micro-to regional scale | |
Qiu et al. | Copper complexation by fulvic acid affects copper toxicity to the larvae of the polychaete Hydroides elegans | |
Chu et al. | Indicators of water biotoxicity obtained from turn-off microbial electrochemical sensors | |
Alif et al. | Performance of Sediment Microbial Fuel Cells in Generating Electricity using Fish Wastewater and Shrimp Wastewater as a Nutrient and Their Effect on Waste Quality | |
Тарануха et al. | Opportunities in the determination cysteine voltammetry using an electrode modified nanoparticles of gold | |
Källqvist | Effect of water hardness on the toxicity of cadmium to the green alga Pseudokirchneriella subcapitata in an artificial growth medium and nutrient-spiked natural lake waters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17889655 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018560316 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17889655 Country of ref document: EP Kind code of ref document: A1 |