WO2018127783A1 - Ionic liquid production method - Google Patents

Ionic liquid production method Download PDF

Info

Publication number
WO2018127783A1
WO2018127783A1 PCT/IB2018/000030 IB2018000030W WO2018127783A1 WO 2018127783 A1 WO2018127783 A1 WO 2018127783A1 IB 2018000030 W IB2018000030 W IB 2018000030W WO 2018127783 A1 WO2018127783 A1 WO 2018127783A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionic liquid
cation
anion
ionic
producing
Prior art date
Application number
PCT/IB2018/000030
Other languages
French (fr)
Japanese (ja)
Inventor
植田健太郎
杉山孝之
Original Assignee
大阪瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪瓦斯株式会社 filed Critical 大阪瓦斯株式会社
Publication of WO2018127783A1 publication Critical patent/WO2018127783A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/06Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D235/08Radicals containing only hydrogen and carbon atoms

Definitions

  • the present invention relates to an ionic liquid manufacturing method.
  • Patent Document 1 proposes a carbon dioxide separation and recovery method in which CO 2 is separated and recovered from a multicomponent mixed gas by a physical absorption method using an ionic liquid absorbing liquid.
  • Patent Document 3 describes a carbon dioxide recovery method using tetraethylphosphonium benzimidazolide (P2Bn).
  • Non-Patent Document 3 describes a method of reacting tetraethylphosphonium hydroxide and benzimidazole as a method for synthesizing tetraethylphosphonium benzimidazolide (P2Bn).
  • P2Bn tetraethylphosphonium benzimidazolide
  • both substances need to be mixed in methanol and stirred overnight to react, and it takes a long time to obtain the target substance.
  • the yield of the target substance is about 91%, and there is room for improvement in this respect.
  • the present invention has been made in view of the above-mentioned problems, and an object thereof is to provide an ionic liquid production method improved in terms of time efficiency and yield.
  • the characteristic configuration of the ionic liquid production method for achieving the above object is that a first ionic substance composed of a cation and a halogen is reacted with a second ionic substance composed of an alkali metal and an anion, and the cation and the anion are reacted.
  • the cation is a quaternary tetraalkylphosphonium or quaternary tetraalkylammonium
  • the anion is a benzimidazole derivative, an imidazole derivative, or a carbazole derivative. In that point.
  • the inventors have conducted intensive experiments and examinations, and when the cation is quaternary tetraalkylphosphonium or quaternary tetraalkylammonium and the anion is a benzimidazole derivative, imidazole derivative, or carbazole derivative, the cation
  • a ionic liquid consisting of a cation and an anion with high time efficiency and yield by reacting a first ionic substance consisting of alkenyl and a halogen with a second ionic substance consisting of an alkali metal and an anion.
  • the difference in solubility in solvents between the ionic liquid produced and the salt of the by-product (halogen and alkali metal salt) makes it easy to separate the two, resulting in high time efficiency and yield. It is thought that was realized.
  • Another characteristic configuration of the ionic liquid production method according to the present invention is that the reaction between the first ionic substance and the second ionic substance is performed in the presence of a solvent, and the solubility of the solvent in the ionic liquid.
  • the solubility is higher than the solubility in the salt composed of the halogen and the alkali metal.
  • the produced ionic liquid is more dissolved in the solvent, and the salt composed of halogen and alkali metal is less dissolved in the solvent. Therefore, the separation of the salt from the ionic liquid is further facilitated, which is preferable.
  • the solvent contains at least one of t-butanol, 2-propanol, 2-butanol, 2-methoxyethanol, and acetone.
  • the present invention can be suitably applied when the cation is tetraethylphosphonium and the anion is benzimidazole.
  • the present invention can be suitably applied when the cation is tetraethylammonium and the anion is benzimidazole.
  • the present invention can be suitably applied when the cation is tetraethylammonium and the anion is imidazole.
  • the present invention can be suitably applied when the cation is tetrabutylammonium and the anion is carbazole.
  • the present invention can be suitably applied when the halogen is fluorine, chlorine, bromine or iodine.
  • the present invention can be suitably applied when the alkali metal is lithium, sodium or potassium.
  • FIG. 1 is a graph showing 1H-NMR measurement results of the reaction intermediate of Example 1.
  • FIG. 2 is a graph showing 1H-NMR measurement results of benzimidazole.
  • FIG. 3 is a graph showing 1H-NMR measurement results of the reaction intermediate of Example 2.
  • FIG. 4 is a graph showing the results of 1H-NMR measurement of the reaction product of Example 2.
  • At least two ionic substances are mixed and reacted to generate an ionic liquid.
  • One ionic substance is a first ionic substance composed of a cation and a halogen
  • the other ionic substance is a second ionic substance composed of an alkali metal and an anion.
  • the cation of the first ionic substance is quaternary tetraalkylphosphonium or quaternary tetraalkylammonium, and is represented by the chemical formula 1 below.
  • A is phosphonium or ammonium
  • R1 to R4 are alkyl groups having 2 to 4 carbon atoms. R1 to R4 may have different carbon numbers.
  • the cation of the first ionic material specifically, tetraethyl phosphonium (tetraethylphosphonium, P 2222, of 2), tetraethylammonium (tetraethylammonium, N 2222, of 3), tetrabutylammonium (tetrabuthylammonium, N 4444, of 4 ) Is preferably used.
  • Fluorine, chlorine, bromine, iodine or the like can be used as the halogen of the first ionic substance, but bromine is preferably used.
  • alkali metal of the second ionic substance lithium, sodium, potassium and the like can be used, but potassium is preferably used.
  • a benzimidazole derivative As the anion of the second ionic substance, a benzimidazole derivative, an imidazole derivative, or a carbazole derivative can be used.
  • benzimidazole (benzimidazole, BnIm, Chemical formula 5), imidazole (imidazole, Im, Chemical formula 6), and carbazole (carbazole, Cz, chemical formula 7) are preferably used.
  • the reaction between the first ionic substance and the second ionic substance is performed in the presence of a solvent.
  • a solvent whose solubility in the generated ionic liquid is larger than the solubility in the salt (by-product salt) composed of the halogen of the first ionic substance and the alkali metal of the second ionic substance is preferably used. It is done.
  • the solvent contains at least one of t-butanol, 2-propanol, 2-butanol, 2-methoxyethanol, and acetone.
  • Example 1 Tetraethylphosphonium benzimidazolide (P2Bn)>
  • P2Bn tetraethylphosphonium benzimidazolide
  • the first ionic substance, second ionic substance and solvent used are as follows.
  • First ionic substance Cation Tetraethylphosphonium Halogen: Bromine
  • Second ionic substance Alkali metal: Potassium Anion: Benzimidazole
  • Solvent t-Butanol
  • the intermediate product was dissolved in d6-DMSO, and 1H-NMR (400 MHz NMR) was measured.
  • the results are shown in FIG. Compared with the result of 1H-NMR of benzimidazole in FIG. 2, the peak ( ⁇ ⁇ 12.5) corresponding to the NH proton of benzimidazole seen in FIG. 2 disappears in FIG. Since the peak of the benzene ring proton is shifted to the high magnetic field side in FIG. 2, the benzimidazole is a potassium salt, that is, a second ionic substance comprising an alkali metal (potassium) and an anion (benzimidazole). Was confirmed to be generated.
  • the ratio of the peak integration value of the cation to the anion is approximately 1: 1, so that the reaction product is tetraethylphosphonium benzimidazolide, that is, the cation and the second ionicity of the first ionic substance. It was confirmed that an ionic liquid composed of the anion of the substance was generated.
  • the purity of the reaction product was estimated to be 99% or more.
  • Example 2 Tetraethylammonium benzimidazolide (N2Bn)>
  • first ionic substance, second ionic substance and solvent used are as follows.
  • First ionic substance Cation Tetraethylammonium Halogen: Bromine
  • Second ionic substance Alkali metal: Potassium Anion: Benzimidazole
  • Solvent t-Butanol
  • the peak groups of 6.65-6.70 (2H), 7.27-7.32 (2H)), and 7.62 (1H) belong to hydrogen of benzimidazole.
  • the ratio of the peak integral value of the cation and the anion is approximately 1: 1
  • the reaction product is tetraethylammonium benzimidazolide, that is, an ion composed of the cation of the first ionic substance and the anion of the second ionic substance. It was confirmed that liquid was generated.
  • the purity of the reaction product was calculated from the peak integrated value of 1H-NMR in FIG. 4, the purity of the reaction product was estimated to be 90% or more.

Abstract

Provided is an ionic liquid production method in which the time efficiency and the yield have been improved. Specifically provided is an ionic solution production method for producing an ionic solution that comprises a cation and an anion by reacting a first ionic substance comprising a cation and a halogen with a second ionic substance comprising an alkali metal and an anion, wherein the cation is a quaternary tetraalkyl phosphonium compound or a quaternary tetraalkyl ammonium compound, and the anion is a benzimidazole derivative, an imidazole derivative or a carbazole derivative.

Description

イオン液体製造方法Ionic liquid manufacturing method
 本発明は、イオン液体製造方法に関する。 The present invention relates to an ionic liquid manufacturing method.
 これまでの研究(非特許文献1、2)により、イオン液体は、従来の物理吸収液より、優れた二酸化炭素吸収量を持つことが明らかにされている。特許文献1では、イオン液体吸収液を用いた物理吸収法により、多成分混合ガスからCOを分離回収する二酸化炭素分離回収方法が提案されている。非特許文献3では、テトラエチルホスホニウムベンゾイミダゾリド(P2Bn)を用いる二酸化炭素回収方法が記載されている。 From previous studies (Non-Patent Documents 1 and 2), it has been clarified that the ionic liquid has a carbon dioxide absorption superior to that of the conventional physical absorption liquid. Patent Document 1 proposes a carbon dioxide separation and recovery method in which CO 2 is separated and recovered from a multicomponent mixed gas by a physical absorption method using an ionic liquid absorbing liquid. Non-Patent Document 3 describes a carbon dioxide recovery method using tetraethylphosphonium benzimidazolide (P2Bn).
特許第5467394号明細書Japanese Patent No. 5467394
 非特許文献3には、テトラエチルホスホニウムベンゾイミダゾリド(P2Bn)の合成方法として、テトラエチルホスホニウムヒドロキシドと、ベンゾイミダゾールとを反応させる方法が記載されている。しかしこの合成方法では、両物質をメタノール中で混合して一晩攪拌して反応させる必要があり、目的物質を得るために長い時間を要する。加えて、目的物質の収率は91%程度であり、この点で改善の余地がある。 Non-Patent Document 3 describes a method of reacting tetraethylphosphonium hydroxide and benzimidazole as a method for synthesizing tetraethylphosphonium benzimidazolide (P2Bn). However, in this synthesis method, both substances need to be mixed in methanol and stirred overnight to react, and it takes a long time to obtain the target substance. In addition, the yield of the target substance is about 91%, and there is room for improvement in this respect.
 本発明は上述の課題に鑑みてなされたものであり、その目的は、時間効率と収率の点で改善されたイオン液体の製造方法を提供することにある。 The present invention has been made in view of the above-mentioned problems, and an object thereof is to provide an ionic liquid production method improved in terms of time efficiency and yield.
 上記目的を達成するためのイオン液体製造方法の特徴構成は、カチオンとハロゲンからなる第1イオン性物質と、アルカリ金属とアニオンからなる第2イオン性物質とを反応させて、前記カチオンと前記アニオンからなるイオン液体を製造するイオン液体製造方法であって、前記カチオンが、第4級テトラアルキルホスホニウム、または第4級テトラアルキルアンモニウムであり、前記アニオンが、ベンゾイミダゾール誘導体、イミダゾール誘導体、またはカルバゾール誘導体である点にある。 The characteristic configuration of the ionic liquid production method for achieving the above object is that a first ionic substance composed of a cation and a halogen is reacted with a second ionic substance composed of an alkali metal and an anion, and the cation and the anion are reacted. The cation is a quaternary tetraalkylphosphonium or quaternary tetraalkylammonium, and the anion is a benzimidazole derivative, an imidazole derivative, or a carbazole derivative. In that point.
 発明者らは鋭意実験・検討を行い、カチオンが、第4級テトラアルキルホスホニウム、または第4級テトラアルキルアンモニウムであり、アニオンが、ベンゾイミダゾール誘導体、イミダゾール誘導体、またはカルバゾール誘導体である場合に、カチオンとハロゲンからなる第1イオン性物質と、アルカリ金属とアニオンからなる第2イオン性物質とを反応させて、カチオンとアニオンからなるイオン液体を高い時間効率および収率で製造できることを確かめて、本願発明を完成した。特に、製造されるイオン液体と、副生成物の塩(ハロゲンとアルカリ金属の塩)との間で、溶媒に対する溶解度が大きく異なることが、両者の分離を容易にして、高い時間効率と収率を実現できたと考えられる。 The inventors have conducted intensive experiments and examinations, and when the cation is quaternary tetraalkylphosphonium or quaternary tetraalkylammonium and the anion is a benzimidazole derivative, imidazole derivative, or carbazole derivative, the cation To make it possible to produce a ionic liquid consisting of a cation and an anion with high time efficiency and yield by reacting a first ionic substance consisting of alkenyl and a halogen with a second ionic substance consisting of an alkali metal and an anion. Completed the invention. In particular, the difference in solubility in solvents between the ionic liquid produced and the salt of the by-product (halogen and alkali metal salt) makes it easy to separate the two, resulting in high time efficiency and yield. It is thought that was realized.
 本発明に係るイオン液体製造方法の別の特徴構成は、前記第1イオン性物質と前記第2イオン性物質との反応が、溶媒の存在下で行われ、前記溶媒の前記イオン液体に対する溶解性が、前記ハロゲンと前記アルカリ金属からなる塩に対する溶解性よりも大きい点にある。 Another characteristic configuration of the ionic liquid production method according to the present invention is that the reaction between the first ionic substance and the second ionic substance is performed in the presence of a solvent, and the solubility of the solvent in the ionic liquid. However, the solubility is higher than the solubility in the salt composed of the halogen and the alkali metal.
 上記の特徴構成によれば、生成したイオン液体は溶媒により多く溶解し、ハロゲンとアルカリ金属からなる塩の溶媒への溶解は少なくなるから、当該塩とイオン液体との分離が更に容易となり好ましい。具体的には、溶媒が、t−ブタノール、2−プロパノール、2−ブタノール、2−メトキシエタノール、アセトンのうち少なくとも一つを含有すれば好ましい。 According to the above characteristic configuration, the produced ionic liquid is more dissolved in the solvent, and the salt composed of halogen and alkali metal is less dissolved in the solvent. Therefore, the separation of the salt from the ionic liquid is further facilitated, which is preferable. Specifically, it is preferable if the solvent contains at least one of t-butanol, 2-propanol, 2-butanol, 2-methoxyethanol, and acetone.
 本発明は、前記カチオンがテトラエチルホスホニウムであり、前記アニオンがベンゾイミダゾールである場合に好適に適用できる。 The present invention can be suitably applied when the cation is tetraethylphosphonium and the anion is benzimidazole.
 本発明は、前記カチオンがテトラエチルアンモニウムであり、前記アニオンがベンゾイミダゾールである場合に好適に適用できる。 The present invention can be suitably applied when the cation is tetraethylammonium and the anion is benzimidazole.
 本発明は、前記カチオンがテトラエチルアンモニウムであり、前記アニオンがイミダゾールである場合に好適に適用できる。 The present invention can be suitably applied when the cation is tetraethylammonium and the anion is imidazole.
 本発明は、前記カチオンがテトラブチルアンモニウムであり、前記アニオンがカルバゾールである場合に好適に適用できる。 The present invention can be suitably applied when the cation is tetrabutylammonium and the anion is carbazole.
 本発明は、前記ハロゲンがフッ素、塩素、臭素またはヨウ素である場合に好適に適用できる。 The present invention can be suitably applied when the halogen is fluorine, chlorine, bromine or iodine.
 本発明は、前記アルカリ金属がリチウム、ナトリウムまたはカリウムである場合に好適に適用できる。 The present invention can be suitably applied when the alkali metal is lithium, sodium or potassium.
[図1]は、実施例1の反応中間物の1H−NMRの測定結果を示すグラフである。
[図2]は、ベンゾイミダゾールの1H−NMRの測定結果を示すグラフである。
[図3]は、実施例2の反応中間物の1H−NMRの測定結果を示すグラフである。
[図4]は、実施例2の反応生成物の1H−NMRの測定結果を示すグラフである。
FIG. 1 is a graph showing 1H-NMR measurement results of the reaction intermediate of Example 1.
FIG. 2 is a graph showing 1H-NMR measurement results of benzimidazole.
FIG. 3 is a graph showing 1H-NMR measurement results of the reaction intermediate of Example 2.
FIG. 4 is a graph showing the results of 1H-NMR measurement of the reaction product of Example 2.
 本実施形態に係るイオン液体製造方法では、少なくとも2つのイオン性物質が混合され、反応して、イオン液体が生成される。一方のイオン性物質は、カチオンとハロゲンからなる第1イオン性物質であり、他方のイオン性物質は、アルカリ金属とアニオンからなる第2イオン性物質である。 In the ionic liquid manufacturing method according to this embodiment, at least two ionic substances are mixed and reacted to generate an ionic liquid. One ionic substance is a first ionic substance composed of a cation and a halogen, and the other ionic substance is a second ionic substance composed of an alkali metal and an anion.
 第1イオン性物質のカチオンは、第4級テトラアルキルホスホニウム、または第4級テトラアルキルアンモニウムであり、下掲の化1で表される。Aはホスホニウムまたはアンモニウムであり、R1~R4は炭素数が2~4のアルキル基である。R1~R4は、炭素数が互いに異なっていてもよい。 The cation of the first ionic substance is quaternary tetraalkylphosphonium or quaternary tetraalkylammonium, and is represented by the chemical formula 1 below. A is phosphonium or ammonium, and R1 to R4 are alkyl groups having 2 to 4 carbon atoms. R1 to R4 may have different carbon numbers.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 第1イオン性物質のカチオンとしては、具体的には、テトラエチルホスホニウム(tetraethylphosphonium、P2222、化2)、テトラエチルアンモニウム(tetraethylammonium、N2222、化3)、テトラブチルアンモニウム(tetrabuthylammonium、N4444、化4)が好適に用いられる。 The cation of the first ionic material, specifically, tetraethyl phosphonium (tetraethylphosphonium, P 2222, of 2), tetraethylammonium (tetraethylammonium, N 2222, of 3), tetrabutylammonium (tetrabuthylammonium, N 4444, of 4 ) Is preferably used.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 第1イオン性物質のハロゲンは、フッ素、塩素、臭素、ヨウ素等を用い得るが、臭素が好適に用いられる。 Fluorine, chlorine, bromine, iodine or the like can be used as the halogen of the first ionic substance, but bromine is preferably used.
 第2イオン性物質のアルカリ金属は、リチウム、ナトリウム、カリウム等を用い得るが、カリウムが好適に用いられる。 As the alkali metal of the second ionic substance, lithium, sodium, potassium and the like can be used, but potassium is preferably used.
 第2イオン性物質のアニオンは、ベンゾイミダゾール誘導体、イミダゾール誘導体、またはカルバゾール誘導体を用い得る。特に、ベンゾイミダゾール(benzimidazole、BnIm、化5)、イミダゾール(imidazole、Im、化6)、カルバゾール(carbazole、Cz、化7)が好適に用いられる。 As the anion of the second ionic substance, a benzimidazole derivative, an imidazole derivative, or a carbazole derivative can be used. In particular, benzimidazole (benzimidazole, BnIm, Chemical formula 5), imidazole (imidazole, Im, Chemical formula 6), and carbazole (carbazole, Cz, chemical formula 7) are preferably used.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 本実施形態に係るイオン液体製造方法では、第1イオン性物質と第2イオン性物質との反応が、溶媒の存在下で行われる。溶媒としては、生成するイオン液体に対する溶解性が、第1イオン性物質のハロゲンと第2イオン性物質のアルカリ金属からなる塩(副生成物の塩)に対する溶解性よりも大きい溶媒が好適に用いられる。具体的には、溶媒がt−ブタノール、2−プロパノール、2−ブタノール、2−メトキシエタノール、アセトンのうち少なくとも一つを含有すると好適である。 In the ionic liquid production method according to this embodiment, the reaction between the first ionic substance and the second ionic substance is performed in the presence of a solvent. As the solvent, a solvent whose solubility in the generated ionic liquid is larger than the solubility in the salt (by-product salt) composed of the halogen of the first ionic substance and the alkali metal of the second ionic substance is preferably used. It is done. Specifically, it is preferable that the solvent contains at least one of t-butanol, 2-propanol, 2-butanol, 2-methoxyethanol, and acetone.
<実施例1:テトラエチルホスホニウムベンゾイミダゾリド(P2Bn)>
 以下、テトラエチルホスホニウムベンゾイミダゾリド(P2Bn)を合成した実施例について説明する。用いた第1イオン性物質、第2イオン性物質および溶媒は次の通りである。
 第1イオン性物質
  カチオン:テトラエチルホスホニウム
  ハロゲン:臭素
 第2イオン性物質
  アルカリ金属:カリウム
  アニオン:ベンゾイミダゾール
 溶媒:t−ブタノール
<Example 1: Tetraethylphosphonium benzimidazolide (P2Bn)>
Hereinafter, examples in which tetraethylphosphonium benzimidazolide (P2Bn) was synthesized will be described. The first ionic substance, second ionic substance and solvent used are as follows.
First ionic substance Cation: Tetraethylphosphonium Halogen: Bromine Second ionic substance Alkali metal: Potassium Anion: Benzimidazole Solvent: t-Butanol
 三つ口フラスコにベンゾイミダゾール1.0012g(98%品のため、8.31mmol)、t‐ブタノール5mlを加え、オイルバスで60℃で加熱撹拌し、カリウムt‐ブトキシド1.0428g(95%品であるため、8.83mmol)を添加した。溶媒を溜去し、中間生成物を得た。 To a three-necked flask, add 1.0012 g of benzimidazole (8.31 mmol for 98% product) and 5 ml of t-butanol, and heat and stir in an oil bath at 60 ° C. to obtain 1.0428 g of potassium t-butoxide (95% product). Therefore, 8.83 mmol) was added. The solvent was distilled off to obtain an intermediate product.
 中間生成物をd6‐DMSOに溶解し、1H‐NMR(400MHz NMR)を測定した。結果を図1に示す。図2のベンゾイミダゾールの1H‐NMRの結果と比較すると、図2に見られたベンゾイミダゾールのNHプロトンに対応するピーク(σ~12.5)が図1では消失していること、ベンゾイミダゾールのベンゼン環プロトンのピークが図2では高磁場側へシフトしていることから、ベンゾイミダゾールがカリウム塩となっていること、すなわちアルカリ金属(カリウム)とアニオン(ベンゾイミダゾール)からなる第2イオン性物質が生成していることが確認された。 The intermediate product was dissolved in d6-DMSO, and 1H-NMR (400 MHz NMR) was measured. The results are shown in FIG. Compared with the result of 1H-NMR of benzimidazole in FIG. 2, the peak (σ˜12.5) corresponding to the NH proton of benzimidazole seen in FIG. 2 disappears in FIG. Since the peak of the benzene ring proton is shifted to the high magnetic field side in FIG. 2, the benzimidazole is a potassium salt, that is, a second ionic substance comprising an alkali metal (potassium) and an anion (benzimidazole). Was confirmed to be generated.
 中間生成物にt‐ブタノールを5ml添加し、オイルバス60℃で加熱撹拌してカリウム塩(中間生成物)を溶解させた。滴下漏斗よりテトラエチルホスホニウムブロミド1.9260g(98%品であるため、8.31mmol)とt‐ブタノール20ml混合液を反応系中へ添加し、1時間オイルバス60℃で撹拌した。反応混合物をPTFEフィルター(孔径0.45μm)で濾過し、濾過物をt‐ブタノール10mlで洗浄した。得られた濾液から溶媒を溜去し減圧乾燥(60℃17hr)して白色固体の反応生成物2.17gを得た。 5 ml of t-butanol was added to the intermediate product and heated and stirred at 60 ° C. in an oil bath to dissolve the potassium salt (intermediate product). From the dropping funnel, 1.9260 g of tetraethylphosphonium bromide (8.31 mmol because it is a 98% product) and 20 ml of t-butanol were added to the reaction system, and the mixture was stirred at 60 ° C. for 1 hour. The reaction mixture was filtered through a PTFE filter (pore size 0.45 μm), and the filtrate was washed with 10 ml of t-butanol. The solvent was distilled off from the obtained filtrate and dried under reduced pressure (60 ° C., 17 hours) to obtain 2.17 g of a white solid reaction product.
 反応生成物をd6‐DMSOに溶解し、1H‐NMR(400MHz NMR)を測定した。結果を図3に示す。図3の結果から、図2に見られたベンゾイミダゾールのNHプロトンに対応するピーク(σ~12.5)が消失していること、各ピークの位置がテトラエチルホスホニウムベンゾイミダゾリドの文献値[σ=1.09‐1.15(dt,12H),2.18‐2.24(dq,8H),6.64‐6.66(dd,2H),7.27‐7.28(broad,2H),7.59(s,1H).]と一致していること、カチオンとアニオンのピーク積分値の比がほぼ1:1であることから、反応生成物はテトラエチルホスホニウムベンゾイミダゾリド、すなわち第1イオン性物質のカチオンと第2イオン性物質のアニオンからなるイオン液体が生成していることが確認された。 The reaction product was dissolved in d6-DMSO, and 1H-NMR (400 MHz NMR) was measured. The results are shown in FIG. From the results of FIG. 3, the peaks (σ˜12.5) corresponding to the NH protons of benzimidazole seen in FIG. 2 disappear, and the positions of each peak are the literature values [σ of tetraethylphosphonium benzimidazolide [σ = 1.09-1.15 (dt, 12H), 2.18-2.24 (dq, 8H), 6.64-6.66 (dd, 2H), 7.27-7.28 (broad, 2H), 7.59 (s, 1H). ], And the ratio of the peak integration value of the cation to the anion is approximately 1: 1, so that the reaction product is tetraethylphosphonium benzimidazolide, that is, the cation and the second ionicity of the first ionic substance. It was confirmed that an ionic liquid composed of the anion of the substance was generated.
 図3の1H−NMRのピーク積分値から生成物の純度を算出すると、反応生成物の純度は99%以上と推測された。 When the purity of the product was calculated from the peak integrated value of 1H-NMR in FIG. 3, the purity of the reaction product was estimated to be 99% or more.
 得られた反応生成物のモル量を計算すると、質量2.17g、分子量264.35、純度99%から、8.13mmolと計算される。ベンゾイミダゾール8.31mmolとテトラエチルホスホニウムブロミド8.31mmolからテトラエチルホスホニウムベンゾイミダゾリドが8.13mmol得られたことになるから、収率は8.13/8.31=97.8%となる。このように本実施形態のイオン液体製造方法によれば、短い反応時間でテトラエチルホスホニウムベンゾイミダゾリドが高い収率で得られた。 When the molar amount of the obtained reaction product is calculated, it is calculated as 8.13 mmol from the mass 2.17 g, the molecular weight 264.35, and the purity 99%. Since 8.13 mmol of tetraethylphosphonium benzimidazolide was obtained from 8.31 mmol of benzimidazole and 8.31 mmol of tetraethylphosphonium bromide, the yield was 8.13 / 8.31 = 97.8%. Thus, according to the ionic liquid production method of the present embodiment, tetraethylphosphonium benzimidazolide was obtained in a high yield in a short reaction time.
<実施例2:テトラエチルアンモニウムベンゾイミダゾリド(N2Bn)>
 以下、テトラエチルアンモニウムベンゾイミダゾリド(N2Bn)を合成した実施例について説明する。用いた第1イオン性物質、第2イオン性物質および溶媒は次の通りである。
 第1イオン性物質
  カチオン:テトラエチルアンモニウム
  ハロゲン:臭素
 第2イオン性物質
  アルカリ金属:カリウム
  アニオン:ベンゾイミダゾール
 溶媒:t−ブタノール
<Example 2: Tetraethylammonium benzimidazolide (N2Bn)>
Hereinafter, examples in which tetraethylammonium benzimidazolide (N2Bn) was synthesized will be described. The first ionic substance, second ionic substance and solvent used are as follows.
First ionic substance Cation: Tetraethylammonium Halogen: Bromine Second ionic substance Alkali metal: Potassium Anion: Benzimidazole Solvent: t-Butanol
 三つ口フラスコにベンゾイミダゾール9.96g(99%品のため、83.5mmol)、t‐ブタノール50mlを加え、オイルバスで60℃で加熱撹拌し、カリウムt‐ブトキシド17.8g(97%品のため、153.9mmol)を添加した。 To a three-necked flask, add 9.96 g of benzimidazole (83.5 mmol for 99% product) and 50 ml of t-butanol, and heat and stir in an oil bath at 60 ° C. Therefore, 153.9 mmol) was added.
 滴下漏斗よりテトラエチルアンモニウムブロミド17.90g(98%品のため、83.5mmol)とt‐ブタノール200ml混合液を反応系中へ添加し、1時間オイルバス60℃で撹拌した。反応混合物をPTFEフィルター(孔径0.50μm)で濾過し、濾過物をt‐ブタノールで洗浄した。得られた濾液から溶媒を溜去し減圧乾燥(60℃18hr)して白色固体の反応生成物22.05gを得た。 From the dropping funnel, 17.90 g of tetraethylammonium bromide (83.5 mmol for 98% product) and 200 ml of t-butanol were added to the reaction system, and the mixture was stirred at 60 ° C. for 1 hour. The reaction mixture was filtered through a PTFE filter (pore size 0.50 μm), and the filtrate was washed with t-butanol. The solvent was distilled off from the obtained filtrate and dried under reduced pressure (60 ° C., 18 hours) to obtain 22.05 g of a white solid reaction product.
 反応生成物をd6‐DMSOに溶解し、1H‐NMR(400MHz NMR)を測定した。結果を図4に示す。図4の結果から、図2に見られたベンゾイミダゾールのNHプロトンに対応するピーク(σ~12.5)が消失していること、各ピークの位置がテトラエチルアンモニウムベンゾイミダゾリドの構造式から推算される値と一致していること[σ=1.12‐1.18付近のピークはカチオン中の窒素原子上のエチル基末端のメチル基の水素(12H)に帰属。σ=3.14‐3.56付近のピークは同エチル基のメチレン基の水素(8H)に帰属。6.65‐6.70(2H)、7.27‐7.32(2H)),7.62(1H)のピーク群はベンズイミダゾールの水素に帰属.]、カチオンとアニオンのピーク積分値の比がほぼ1:1であることから、反応生成物はテトラエチルアンモニウムベンゾイミダゾリド、すなわち第1イオン性物質のカチオンと第2イオン性物質のアニオンからなるイオン液体が生成していることが確認された。 The reaction product was dissolved in d6-DMSO, and 1H-NMR (400 MHz NMR) was measured. The results are shown in FIG. From the results of FIG. 4, the peaks (σ˜12.5) corresponding to the NH protons of benzimidazole seen in FIG. 2 disappeared, and the position of each peak was estimated from the structural formula of tetraethylammonium benzimidazolide. [The peak near σ = 1.12-1.18 is attributed to hydrogen (12H) of the methyl group at the end of the ethyl group on the nitrogen atom in the cation. The peak around σ = 3.14-3.56 is attributed to hydrogen (8H) of the methylene group of the same ethyl group. The peak groups of 6.65-6.70 (2H), 7.27-7.32 (2H)), and 7.62 (1H) belong to hydrogen of benzimidazole. ] Since the ratio of the peak integral value of the cation and the anion is approximately 1: 1, the reaction product is tetraethylammonium benzimidazolide, that is, an ion composed of the cation of the first ionic substance and the anion of the second ionic substance. It was confirmed that liquid was generated.
 図4の1H−NMRのピーク積分値から生成物の純度を算出すると、反応生成物の純度は90%以上と推測された。 When the purity of the product was calculated from the peak integrated value of 1H-NMR in FIG. 4, the purity of the reaction product was estimated to be 90% or more.
 得られた反応生成物のモル量を計算すると、質量22.05g、分子量247.38、純度90%から、80.22mmolと計算される。ベンゾイミダゾール83.5mmolとテトラエチルアンモニウムブロミド83.5mmolからテトラエチルアンモニウムベンゾイミダゾリドが80.22mmol得られたことになるから、収率は80.22/83.5=96.1%となる。このように本実施形態のイオン液体製造方法によれば、短い反応時間でテトラエチルアンモニウムベンゾイミダゾリドが高い収率で得られた。 When the molar amount of the obtained reaction product is calculated, it is calculated as 80.22 mmol from a mass of 22.05 g, a molecular weight of 247.38, and a purity of 90%. Since 80.22 mmol of tetraethylammonium benzimidazolide was obtained from 83.5 mmol of benzimidazole and 83.5 mmol of tetraethylammonium bromide, the yield was 80.22 / 83.5 = 96.1%. Thus, according to the ionic liquid production method of the present embodiment, tetraethylammonium benzimidazolide was obtained in a high yield in a short reaction time.
<溶解性試験>
 t−ブタノール、2−プロパノール、2−ブタノール、2−メトキシエタノール、アセトンに対する、N2Bn、P2Bnおよび臭化カリウムの溶解性を確認する試験を行った。
<Solubility test>
A test was conducted to confirm the solubility of N2Bn, P2Bn and potassium bromide in t-butanol, 2-propanol, 2-butanol, 2-methoxyethanol and acetone.
 上掲の5つの溶媒に対して、濃度が12質量%となるようにイオン液体を投入し、30℃で3時間撹拌した。撹拌の終了後、溶液中の溶け残りの残留物の有無を目視で確認し、確認が困難な場合は減圧濾過を行い、濾紙上の残留物の有無を確認した。残留物が確認できた場合、溶解性小(表中×)とし、残留物が確認できない場合、溶解性大(表中○)とした。結果を表1に示す。
 上掲の5つの溶媒に対して、濃度が5質量%となるように臭化カリウムを投入し、十分撹拌した。上澄み液に対してイオンクロマトグラフ分析を行い、臭素の濃度を測定した。結果を表1に示す。
An ionic liquid was added to the above five solvents so as to have a concentration of 12% by mass, followed by stirring at 30 ° C. for 3 hours. After completion of the stirring, the presence or absence of undissolved residue in the solution was visually confirmed. If the confirmation was difficult, vacuum filtration was performed to confirm the presence of residue on the filter paper. When the residue could be confirmed, the solubility was low (× in the table), and when the residue could not be confirmed, the solubility was high (◯ in the table). The results are shown in Table 1.
Potassium bromide was added to the above five solvents so that the concentration was 5% by mass and stirred sufficiently. The supernatant was subjected to ion chromatographic analysis to determine the bromine concentration. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表1に示すように、5つの溶媒はいずれもイオン液体に対して溶解性を有している。また5つの溶媒の臭化カリウムに対する溶解性は小さい。2−メトキシエタノールについては他の溶媒よりも溶解度が大きいため、塩とイオン液体との分離の効率、および精製されるイオン液体の純度が若干悪化する可能性があるが、塩とイオン液体との分離は可能である。 As shown in Table 1, all five solvents are soluble in ionic liquids. Moreover, the solubility with respect to potassium bromide of five solvents is small. Since 2-methoxyethanol has higher solubility than other solvents, the efficiency of separation between the salt and the ionic liquid and the purity of the purified ionic liquid may be slightly deteriorated. Separation is possible.
 なお上述の実施形態(他の実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 Note that the configurations disclosed in the above-described embodiments (including the other embodiments, the same applies hereinafter) can be applied in combination with the configurations disclosed in the other embodiments unless there is a contradiction. The embodiments disclosed in this specification are exemplifications, and the embodiments of the present invention are not limited thereto, and can be appropriately modified without departing from the object of the present invention.

Claims (9)

  1.  カチオンとハロゲンからなる第1イオン性物質と、アルカリ金属とアニオンからなる第2イオン性物質とを反応させて、前記カチオンと前記アニオンからなるイオン液体を製造するイオン液体製造方法であって、
     前記カチオンが、第4級テトラアルキルホスホニウム、または第4級テトラアルキルアンモニウムであり、
     前記アニオンが、ベンゾイミダゾール誘導体、イミダゾール誘導体、またはカルバゾール誘導体であるイオン液体製造方法。
    An ionic liquid production method for producing an ionic liquid comprising the cation and the anion by reacting a first ionic substance comprising a cation and a halogen with a second ionic substance comprising an alkali metal and an anion,
    The cation is quaternary tetraalkylphosphonium or quaternary tetraalkylammonium;
    An ionic liquid production method, wherein the anion is a benzimidazole derivative, an imidazole derivative, or a carbazole derivative.
  2.  前記第1イオン性物質と前記第2イオン性物質との反応が、溶媒の存在下で行われ、前記溶媒の前記イオン液体に対する溶解性が、前記ハロゲンと前記アルカリ金属からなる塩に対する溶解性よりも大きい請求項1に記載のイオン液体製造方法。 The reaction between the first ionic substance and the second ionic substance is performed in the presence of a solvent, and the solubility of the solvent in the ionic liquid is greater than the solubility in the salt composed of the halogen and the alkali metal. The method for producing an ionic liquid according to claim 1, which is larger.
  3.  前記溶媒が、t−ブタノール、2−プロパノール、2−ブタノール、2−メトキシエタノール、アセトンのうち少なくとも一つを含有する請求項2記載のイオン液体製造方法。 The method for producing an ionic liquid according to claim 2, wherein the solvent contains at least one of t-butanol, 2-propanol, 2-butanol, 2-methoxyethanol, and acetone.
  4.  前記カチオンがテトラエチルホスホニウムであり、前記アニオンがベンゾイミダゾールである請求項1から3のいずれか1項に記載のイオン液体製造方法。 The method for producing an ionic liquid according to any one of claims 1 to 3, wherein the cation is tetraethylphosphonium and the anion is benzimidazole.
  5.  前記カチオンがテトラエチルアンモニウムであり、前記アニオンがベンゾイミダゾールである請求項1から3いずれか1項に記載のイオン液体製造方法。 The method for producing an ionic liquid according to any one of claims 1 to 3, wherein the cation is tetraethylammonium and the anion is benzimidazole.
  6.  前記カチオンがテトラエチルアンモニウムであり、前記アニオンがイミダゾールである請求項1から3のいずれか1項に記載のイオン液体製造方法。 The method for producing an ionic liquid according to any one of claims 1 to 3, wherein the cation is tetraethylammonium and the anion is imidazole.
  7.  前記カチオンがテトラブチルアンモニウムであり.前記アニオンがカルバゾールである請求項1から3のいずれか1項に記載のイオン液体製造方法。 The cation is tetrabutylammonium. The method for producing an ionic liquid according to any one of claims 1 to 3, wherein the anion is carbazole.
  8.  前記ハロゲンがフッ素、塩素、臭素またはヨウ素である請求項1から7のいずれか1項に記載のイオン液体製造方法。 The method for producing an ionic liquid according to any one of claims 1 to 7, wherein the halogen is fluorine, chlorine, bromine or iodine.
  9.  前記アルカリ金属がリチウム、ナトリウムまたはカリウムである請求項1から8のいずれか1項に記載のイオン液体製造方法。 The method for producing an ionic liquid according to any one of claims 1 to 8, wherein the alkali metal is lithium, sodium or potassium.
PCT/IB2018/000030 2016-12-02 2018-01-25 Ionic liquid production method WO2018127783A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-234848 2016-12-02
JP2016234848A JP2018090527A (en) 2016-12-02 2016-12-02 Ionic liquid production method

Publications (1)

Publication Number Publication Date
WO2018127783A1 true WO2018127783A1 (en) 2018-07-12

Family

ID=62564271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/000030 WO2018127783A1 (en) 2016-12-02 2018-01-25 Ionic liquid production method

Country Status (2)

Country Link
JP (1) JP2018090527A (en)
WO (1) WO2018127783A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114210365A (en) * 2021-12-23 2022-03-22 抚顺东科精细化工有限公司 Catalyst for synthesizing methyl ethyl carbonate and diethyl carbonate and method thereof
CN115521204A (en) * 2021-12-23 2022-12-27 沈阳工业大学 Method for catalytically synthesizing carbonic ester by alkaline ionic liquid one-pot method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137466A (en) * 1983-01-20 1984-08-07 イ−ライ・リリ−・アンド・カンパニ− Amine salt
JP2005511666A (en) * 2001-12-04 2005-04-28 ディーエスエム アイピー アセッツ ビー.ブイ. Production of ionic liquid
JP2005538944A (en) * 2002-04-30 2005-12-22 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Ionic liquid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137466A (en) * 1983-01-20 1984-08-07 イ−ライ・リリ−・アンド・カンパニ− Amine salt
JP2005511666A (en) * 2001-12-04 2005-04-28 ディーエスエム アイピー アセッツ ビー.ブイ. Production of ionic liquid
JP2005538944A (en) * 2002-04-30 2005-12-22 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Ionic liquid

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FAN, MINGMING ET AL.: "Biodiesel production by transesterification catalyzed by an efficient choline ionic liquid catalyst", APPLIED ENERGY, vol. 108, 2013, pages 333 - 339, XP028544254 *
LANDRUM, T. JOHN ET AL.: "Imidazolate complexes of iron and manganese tetraphenylporphyrins", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 102, no. 22, September 1980 (1980-09-01), pages 6729 - 6735, XP055517675 *
SMIGLAK, MARCIN ET AL.: "Ionic Liquids Based on Azolate Anions", CHEMISTRY-A EUROPEAN JOURNAL, vol. 16, no. 5, 2010, pages 1572 - 1584, XP055046685 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114210365A (en) * 2021-12-23 2022-03-22 抚顺东科精细化工有限公司 Catalyst for synthesizing methyl ethyl carbonate and diethyl carbonate and method thereof
CN114210365B (en) * 2021-12-23 2022-11-29 抚顺东科精细化工有限公司 Catalyst for synthesizing methyl ethyl carbonate and diethyl carbonate and method thereof
CN115521204A (en) * 2021-12-23 2022-12-27 沈阳工业大学 Method for catalytically synthesizing carbonic ester by alkaline ionic liquid one-pot method

Also Published As

Publication number Publication date
JP2018090527A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
JP6183790B2 (en) Novel allyl compound and production method thereof
WO2019168093A1 (en) Ammonia manufacturing method, molybdenum complex, and benzimidazole compound
WO2018127783A1 (en) Ionic liquid production method
Abel et al. Arylation of adamantanamines: VII. Copper (I)-catalyzed N-heteroarylation of adamantane-containing amines with halopyridines
JP5689321B2 (en) Process for producing 2-amino-4-trifluoromethylpyridines
JP2010235601A5 (en)
JP6336579B2 (en) Pyridine or pyrazine containing compounds
JP4320059B2 (en) Process for producing 5-aminomethyl-chloropyridines
KR101264166B1 (en) Method for preparing 1,2-bis(5-aminotetrazol-1-yl)ethane
CN108117564B (en) Process method for preparing cryptate 222
JP2022069882A (en) Novel compound and anion receptor
JP6506330B2 (en) Process for producing arylamines
CN107353217B (en) Preparation method of anthranilate and amide compound
CN107033032B (en) A kind of nitrogenous cup [4] arene derivatives and preparation method thereof
JP2016088899A (en) 4,4&#39;,10,10&#39;-bidihydro acridines and manufacturing method therefor
JP6182507B2 (en) Method for producing 2,3-dihalogenoaniline
JP2018162218A (en) Novel cyclic urea derivative-hydrotribromide
CN111499524B (en) Method for preparing amino alcohol compound by using halogenated intermediate
Nagao et al. Formation of bis (2-pyridylcarbonyl) aminate by oxidation of ethylbis (2-pyridylmethyl) amine on the trichloridoruthenium (III) complex
JP5594821B2 (en) Novel azacalix [3] pyridine and process for producing the same
KR20140124880A (en) Di(aminoguanidium) 4,4&#39;,5,5&#39;-tetranitro-2,2&#39;-biimidazole, and preparation method thereof
JP5878842B2 (en) Process for producing 2,3,6,7,10,11-hexahydroxytriphenylenes
JP5178098B2 (en) Alicyclic vinyl ether compounds
JP6295495B2 (en) Method for synthesizing ammonium salt and composition containing polysaccharide in synthesized ammonium salt
JP2021178811A (en) Production method of aromatic ether compound or aromatic sulfhydryl compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18735794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18735794

Country of ref document: EP

Kind code of ref document: A1