WO2018126343A1 - 通信方法、终端设备和网络设备 - Google Patents

通信方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2018126343A1
WO2018126343A1 PCT/CN2017/000078 CN2017000078W WO2018126343A1 WO 2018126343 A1 WO2018126343 A1 WO 2018126343A1 CN 2017000078 W CN2017000078 W CN 2017000078W WO 2018126343 A1 WO2018126343 A1 WO 2018126343A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
beam pairs
network device
transmit beams
channel quality
Prior art date
Application number
PCT/CN2017/000078
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to PCT/CN2017/000078 priority Critical patent/WO2018126343A1/zh
Priority to US16/475,337 priority patent/US20190342871A1/en
Priority to CN201780080503.6A priority patent/CN110114985A/zh
Priority to EP17889714.6A priority patent/EP3565138B1/en
Priority to IL267718A priority patent/IL267718B/en
Priority to TW106144946A priority patent/TW201826738A/zh
Publication of WO2018126343A1 publication Critical patent/WO2018126343A1/zh
Priority to PH12019501553A priority patent/PH12019501553A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a communication method, a terminal device, and a network device.
  • a terminal device can receive data transmitted by a network device through multiple transmit beams through a receive beam.
  • a plurality of transmit beams respectively correspond to a channel pair formed by a receive beam of a terminal device.
  • the quality must meet certain conditions. If the channel quality corresponding to the beam pair composed of the transmit beam and the receive beam is poor, it is not conducive to data reception.
  • the terminal device needs to report the channel quality corresponding to the beam pair. Therefore, how to report the channel quality corresponding to the beam pair is a problem to be studied.
  • the present application provides a communication method, a terminal device and a network device, to reasonably report channel quality information corresponding to a transmit beam.
  • a communication method where a terminal device determines a channel quality corresponding to M ⁇ N beam pairs composed of M transmit beams of a network device and N receive beams of the terminal device; Determining L beam pairs in the M ⁇ N beam pairs, wherein a channel quality corresponding to any one of the L beam pairs is greater than or equal to the M ⁇ N beam pairs except the L beams Channel quality corresponding to other beam pairs, where M and N are integers greater than 1, and L is an integer less than M ⁇ N; the terminal device transmits the identifiers of the L beam pairs to the network device information.
  • the terminal device can directly select a partial beam pair with a better channel quality from all the beam pairs, and report the identification information of the partial beam pair, so that the network device can reasonably group the transmit beams according to the identification information of the partial beam pair. .
  • the above L may also be equal to M ⁇ N.
  • the L may be a pre-configured value in the communication protocol, or may be a value configured by the network device for the terminal device in a static or dynamic manner, and L may take a different value.
  • the terminal device determines L beam pairs in the M ⁇ N beam pairs, including: the terminal device is configured according to a channel quality Sorting M ⁇ N beam pairs; the terminal device determines the L beam pairs in the M ⁇ N beam pairs according to the sorting result.
  • the terminal device determines L beam pairs in the M ⁇ N beam pairs, including: the terminal device is in the M ⁇ N beams The pair determines the L beam pairs whose channel quality is greater than a first threshold.
  • a given number of beam pairs greater than a given threshold can be more conveniently selected.
  • the method further includes: the terminal device transmitting, to the network device, channel quality information corresponding to the L beam pairs.
  • the above channel quality information may be used to indicate the channel quality corresponding to the beam pair.
  • the terminal device may report the channel quality information corresponding to the L beam pairs to the network device, and the reported information is more comprehensive, so that the network device can perform the transmission beam according to the information of the L beam pairs. More reasonable grouping.
  • the method further includes: the terminal device receiving the report indication information sent by the network device, where the report indication information is used to indicate that the terminal device
  • the network device sends identification information of a beam pair composed of a transmit beam of the network device and a receive beam of the terminal device.
  • the reporting information can be dynamically indicated by the terminal device to report the identification information of the beam pair composed of the transmitting beam and the receiving beam.
  • a communication method where a terminal device determines L transmit beams in M transmit beams of a network device, where any one of the L transmit beams corresponds to the any one of the transmit beams a beam pair composed of a first receive beam corresponding to a channel quality greater than or equal to a beam composed of a first receive beam of the M transmit beams other than the L transmit beams and the other receive beams Corresponding channel quality, wherein the first receiving beam is a receiving beam of a signal whose receiving transmission beam meets a preset threshold or a signal with a best quality received by the transmitting beam; the terminal device is N beam pairs consisting of each of the L transmit beams and N receive beams Determining K beam pairs, wherein a channel quality corresponding to the K beam pairs is greater than a channel quality corresponding to other beam pairs of the N beam pairs except the K beam pairs, where M and N An integer greater than 1, L is an integer less than M, and K is an integer less than N; the terminal device sends identification information of
  • the terminal device not only reports the best receiving beam corresponding to the transmitting beam with better measurement signal, but also reports the other receiving beams corresponding to the transmitting beam.
  • the reported beam pair information is more comprehensive, so that the network device can report according to the terminal device.
  • the beam pair information is reasonably grouped into beam pairs.
  • the above L may also be equal to M ⁇ N.
  • the L may be a pre-configured value in the communication protocol, or may be a value configured by the network device for the terminal device in a static or dynamic manner, and L may take a different value.
  • K may also be equal to N
  • K may be a pre-configured value in the communication protocol, or may be a value configured by the network device for the terminal device in a static or dynamic manner, and K may take a different value.
  • the terminal device determines K beam pairs among N beam pairs corresponding to each of the L transmit beams, including: The terminal device sorts the N beam pairs according to the channel quality; the terminal device determines the K beam pairs in the N beam pairs according to the sorting result.
  • the terminal device determines K beam pairs among N beam pairs composed of each of the L transmit beams, including: The terminal device determines, in the N beams, the K beam pairs whose channel quality is greater than a first threshold.
  • a given number of beam pairs greater than a given threshold can be more conveniently selected.
  • the terminal device determines K beam pairs among N beam pairs corresponding to each of the L transmit beams, including: The terminal device sorts the N beam pairs according to the channel quality; the terminal device selects the K beam pairs from the N beam pairs, wherein the channel qualities corresponding to the K beam pairs are greater than a second threshold, and K is less than or equal to a preset first value, and the first value is An integer less than N.
  • the value of K above is not only smaller than a given first value, but the channel quality corresponding to the K beam pairs is also greater than a given threshold, and a partial beam pair can be more comprehensively selected from the N beam pairs.
  • the method further includes: the terminal device transmitting, to the network device, channel quality information corresponding to the K beam pairs corresponding to each of the transmit beams.
  • the above channel quality information may be used to indicate the channel quality corresponding to the beam pair.
  • the terminal device may report the channel quality information corresponding to the K beam pairs to the network device.
  • the information reported by each of the transmit beams is more comprehensive, so that the network is more comprehensive.
  • the device can group the transmit beams more reasonably according to the reported information.
  • the method further includes: the terminal device receiving the report indication information sent by the network device, where the report indication information is used to indicate that the terminal device reports Identification information of the beam pair formed by the transmit beam and the receive beam.
  • the network device can dynamically instruct the terminal device to report the identification information of the beam pair composed of the transmit beam and the receive beam by sending the report indication information to the terminal device.
  • a third aspect provides a communication method, where a network device receives identification information of L beam pairs sent by a terminal device, where the L beam pairs are M transmit beams of the terminal device in the network device a beam pair determined by M ⁇ N beam pairs composed of N receiving beams of the terminal device, and a channel quality corresponding to any one of the L beam pairs is greater than or equal to the M ⁇ N beam pairs Channel quality corresponding to other beam pairs except the L beam pairs, where M and N are integers greater than 1, and L is an integer less than M ⁇ N; the network device is based on the L beam pairs Identification information, grouping the transmit beams of the network device.
  • the network device receives, from the terminal device, the terminal device directly selects the identification information of the partial beam pair with the better channel quality from the entire beam pair, and the network device can reasonably group the transmit beams according to the identification information of the partial beam pair.
  • the above L may also be equal to M x N.
  • the L may be a pre-configured value in the communication protocol, or may be a value configured by the network device for the terminal device in a static or dynamic manner, and L may take a different value.
  • the network device according to the identifier information of the L beam pairs, grouping the transmit beams of the network device, including: the network device according to the The identification information of the L beam pairs determines a plurality of the transmit beams of the L beam pairs; the network device divides the transmit beams of the plurality of transmit beams corresponding to the same receive beam into a group.
  • the network device can reasonably group the transmit beams according to the identification information of the beam pairs reported by the receiving terminal device.
  • the method further includes: the network device receiving channel quality information corresponding to the L beam pairs sent by the terminal device.
  • the network device can also receive the channel quality information corresponding to the beam pair, and the received information is more comprehensive, and the transmit beam can be more reasonably grouped according to the information of the beam pair.
  • the method further includes: the network device sending, to the terminal device, report indication information, where the report indication information is used to indicate that the terminal device is The network device sends identification information of a beam pair composed of a transmit beam and a receive beam.
  • the network device can dynamically instruct the terminal device to report the identification information of the beam pair composed of the transmit beam and the receive beam by sending the report indication information to the terminal device.
  • the fourth aspect provides a communication method, where the network device receives, by the terminal device, identifier information of K beam pairs corresponding to each of the L transmit beams, where the L transmit beams are the terminal device. a plurality of transmit beams determined by the M transmit beams of the network device, and any one of the L transmit beams and a corresponding one of the first receive beams corresponding to the any one of the transmit beams a quality that is greater than or equal to a channel quality of a pair of the other one of the M transmit beams except the L transmit beams and a first receive beam of the other transmit beams, the K beam pairs a partial beam pair of the N beam pairs of each of the L transmit beams and the N receive beams of the network device, the channel quality of the K beam pairs And corresponding to other beam pairs except the K beam pairs, each of the N transmit beams that are larger than the L transmit beams and the N receive beams of the terminal device Channel quality, wherein the first receiving beam is a receiving beam of a signal that is received by the transmit
  • the network device can not only receive the identification information of the best receiving beam corresponding to the better transmitting beam of the measurement signal, but also receive the identification information of the other receiving beams corresponding to the transmitting beam, and the obtained beam pair information is more comprehensive and can be based on The information of the obtained beam pair is reasonably grouped into beam pairs.
  • the above L may also be equal to M x N.
  • the L may be a pre-configured value in the communication protocol, or may be a value configured by the network device for the terminal device in a static or dynamic manner, and L may take a different value.
  • K may also be equal to N
  • K may be a pre-configured value in the communication protocol, or may be a value configured by the network device for the terminal device in a static or dynamic manner, and K may take a different value.
  • the network device transmits the network device according to the identification information of the K beam pairs corresponding to each of the L transmit beams
  • the grouping of the beams includes: the network device dividing the transmit beams of the L transmit beams corresponding to the same receive beam into a group.
  • the transmit beams can be reasonably grouped.
  • the method further includes: receiving, by the network device, channel quality information corresponding to the K beam pairs corresponding to each of the transmit beams that are sent by the terminal device .
  • the network device can also receive the channel quality information corresponding to the beam pair, and the received information is more comprehensive, and the transmit beam can be more reasonably grouped according to the information of the beam pair.
  • the method further includes: the network device sending, to the terminal device, report indication information, where the report indication information is used to indicate that the terminal device is The network device sends the identifier information of the beam pair formed by the transmit beam and the receive beam.
  • the network device can dynamically instruct the terminal device to report the identification information of the beam pair composed of the transmit beam and the receive beam by sending the report indication information to the terminal device.
  • a terminal device comprising means for performing the method of the first aspect or various implementations thereof.
  • a terminal device comprising means for performing the method of the second aspect or the various implementations thereof.
  • a network device comprising means for performing the method of the third aspect or various implementations thereof.
  • a network device comprising means for performing the method of the fourth aspect or various implementations thereof.
  • a ninth aspect a computer readable medium storing program code for execution by a terminal device, the program code comprising instructions for performing the method of the first aspect or various implementations thereof .
  • a tenth aspect a computer readable medium storing program code for execution by a network device, the program code comprising instructions for performing the method of the second aspect or various implementations thereof .
  • a computer readable medium storing program code for execution by a terminal device, the program code comprising means for performing the method of the third aspect or various implementations thereof instruction.
  • a twelfth aspect a computer readable medium storing program code for execution by a network device, the program code comprising means for performing the method of the fourth aspect or various implementations thereof instruction.
  • a system chip comprising an input interface, an output interface, a processor, and a memory
  • the processor is configured to execute code in the memory, and when the code is executed, the processor can implement The first aspect and the methods in the various implementations.
  • a system chip comprising an input interface, an output interface, a processor, and a memory
  • the processor is configured to execute code in the memory, and when the code is executed, the processor can implement The second aspect and the methods of the various implementations.
  • a system chip comprising an input interface, an output interface, a processor, and a memory
  • the processor is configured to execute code in the memory, and when the code is executed, the processor can implement The third aspect and the methods in the various implementations.
  • a system chip comprising an input interface, an output interface, a processor, and a memory
  • the processor is configured to execute code in the memory, when the code is executed
  • the processor can implement the methods of the fourth aspect and various implementations described above.
  • FIG. 1 is a schematic diagram of a possible application scenario of an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a transmit beam and a receive beam in an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a transmit beam and a receive beam in an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a transmit beam and a receive beam in an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 16 is a schematic block diagram of a network device according to an embodiment of the present application.
  • 17 is a schematic block diagram of a system chip of an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • Universal Mobile Telecommunication System Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • NR New Radio Access Technology
  • the terminal device may include, but is not limited to, a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal), a mobile phone (Mobile Telephone), a user equipment (User Equipment, UE), a mobile device (handset) and portable devices, etc.
  • the terminal device can communicate with one or more core networks via a Radio Access Network (RAN), for example, the terminal device can be a mobile phone (or For "cellular" phones, computers with wireless communication capabilities, etc., the terminal devices can also be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices.
  • RAN Radio Access Network
  • the network device may be an access network device, for example, may be a base station, a Transmit and Receive Point (TRP) or an access point, and the base station may be a base station in GSM or CDMA (Base Transceiver Station).
  • BTS may also be a base station (NodeB) in WCDMA
  • NodeB may also be an evolved base station (evolved Node B, eNB or e-NodeB) in LTE, or may be an NR or 5G base station (gNB), this application
  • gNB 5G base station
  • the 5G system or network herein may also be referred to as a New Radio (NR) system or network.
  • NR New Radio
  • FIG. 1 shows a wireless communication system 100 to which an embodiment of the present application is applied.
  • the wireless communication system 100 can include a network device 110 and at least one terminal device 120 located within the coverage of the network device.
  • the network device 110 can transmit data to the terminal device 120 through a transmit beam, and the terminal device 120 can receive data transmitted by the network device 110 through the receive beam.
  • each transmit beam usually has an optimal receive beam.
  • the best receive beam corresponding to the transmit beam T1 is R1
  • the best receive beam corresponding to the transmit beam T2 is R2.
  • R2 receives the data transmitted by the transmit beam T1, and the reception effect will be relatively poor.
  • the data transmitted by the transmit beam T2 is received by the receive beam R1, the reception effect will be poor.
  • the terminal device receives the data from T1 better, but the effect of the data received from T2 is relatively poor, when the transmit beam T1 and the transmit beam
  • the optimal receiving beam corresponding to T2 is R1
  • the receiving beam R1 receives the transmitting beams T1 and T2 to receive data.
  • T1 and T2 When multiple transmit beams need to be used to jointly transmit data to the terminal device, for example, in FIG. 2, when the transmit beams T1 and T2 are used to jointly transmit data, the terminal device can only transmit by using one receive beam to receive the transmit beams T1 and T2. Data, and at this time, T1 and T2 should respectively have better channel quality corresponding to the beam pair composed of R1, or T1 and T2 should have better channel quality corresponding to the beam pair composed of R2, respectively, so that the transmit beam T1 and the transmit beam can be used. T2 jointly transmits data to the terminal device.
  • the network device transmits downlink control information and downlink data to the terminal device on the transmit beams T1 and T2, respectively, if the terminal device receives the downlink control information sent by the terminal device on the receive beams R1 and R2, respectively.
  • the terminal device needs to switch the receiving beam to R2 after receiving the downlink control information on the receiving beam R1 to receive the downlink data sent by the network device, which requires a certain switching time, which may result in the loss of part of the downlink data. . Therefore, in this case, the terminal device also needs to use one receiving beam to receive downlink control information and downlink data transmitted by the two transmitting beams T1 and T2.
  • FIG. 3 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • the method of Figure 3 includes:
  • the terminal device determines a channel quality corresponding to the M ⁇ N pairs of the M transmit beams of the network device and the N receive beams of the terminal device.
  • the network device includes three Transmit and Receive Point (TRP), TRP1, TRP2, and TRP3, where TRP1 includes transmit beams T1 and T2, and TRP2 includes transmit beams T3 and T4.
  • TRP3 includes transmit beams T5 and T6.
  • the terminal device includes two receive beams R1 and R2.
  • the network device has a total of six transmit beams, and the terminal device has a total of two receive beams.
  • the transmit beam of the network device and the receive beam of the terminal device form a total of 12 beam pairs.
  • each of the two transmit beams corresponds to one TRP.
  • the M transmit beams may correspond to the same TRP, or may correspond to multiple different TRPs.
  • the terminal device may determine the channel quality corresponding to the M ⁇ N beam pairs by measuring signal quality of the measurement signals sent by the respective transmit beams of the network device by using different receive beams.
  • the terminal device may first receive the measurement signal sent by the network device through the six transmit beams by using the receive beam R1, and then the terminal device receives the network device through the six transmit beams by using the receive beam R2.
  • the measurement signal sent by the beam is measured and the received measurement signal is measured to obtain the channel quality corresponding to each beam pair.
  • the terminal device determines L beam pairs in the M ⁇ N beam pairs, where a channel quality corresponding to any one of the L beam pairs is greater than or equal to the M ⁇ N beam pairs except the L Channel quality corresponding to other beam pairs than beam pairs, where M and N are integers greater than 1, and L is an integer less than M x N.
  • the above L may be a pre-configured value. That is to say, the terminal device can select a certain number of beam pairs with better channel quality among all the beam pairs according to the channel quality.
  • the size of the L may be a value specified in the communication protocol, or may be a value configured by the network device for the terminal device.
  • the L may be a static configuration of the network device for the terminal device (for example, when the terminal device just accesses the network)
  • the value that is configured for the terminal device may also be a value that is dynamically configured by the indication information for the terminal device before the terminal device needs to report the channel quality corresponding to the beam pair.
  • the above L may also be equal to M x N.
  • the terminal device sends the identifier information of the L beam pairs to the network device.
  • the terminal device can send the identification information of the beam pair to the network device, for example, the terminal device can periodically report the identification information of the beam pair to the network device.
  • the terminal device may also send the identifier information of the beam pair to the network device after receiving the indication information of the network device. Specifically, the terminal device receives the report indication information sent by the network device, where the report indication information is used to instruct the terminal device to send the identifier information of the beam pair composed of the transmit beam of the network device and the receive beam of the terminal device to the network device. After receiving the reporting indication information, the terminal device sends the identifier information of the beam pair to the network device.
  • the terminal device may send, to the network device, channel quality information corresponding to the L beam pairs.
  • the terminal device may report only the identification information of the L beam pairs, and may report the identification information of the L beam pairs and the channel quality information corresponding to the L beam pairs.
  • the terminal device can select the corresponding six beam pairs with the best channel quality among the 12 beam pairs according to the channel quality, and send the identification information of the six beam pairs to the network device.
  • the identifiers of the transmit beams are respectively T1, T2, T3, T4, T5, and T6, and the identifiers of the receive beams are respectively R1 and R2, and the identification information of the beam pairs reported by the terminal device may be [T3 R1].
  • [T4 R1], [T3 R2], [T4 R2], [T1 R1], and [T2 R2] (of course, only these beam pairs are used as an example to illustrate the identification information, and the terminal device can also report other 6 beams.
  • the identification information of the pair ).
  • the communication method of the prior art and the embodiment of the present application will be described in detail below with reference to FIG. 4 as an example.
  • FIG. 4 it is assumed that the channel quality of the beam pairs composed of the transmit beams B1, B2, B5, and B6 and the receive beam is poor, and only the beam pairs of the transmit beams B3 and B4 and the receive beam are better.
  • the channel quality corresponding to the beam pair consisting of the transmit beams B3 and B4 and the receive beams R1 and R2 is as follows:
  • the terminal device only reports the corresponding transmit beam with better channel quality and the best receive beam with the transmit beam. Specifically, the terminal device only reports the beam pair [B3 R1] and [B4 R2 to the network device. ] related information.
  • the network device needs to group the transmitting beams, but the information acquired by the network device is very limited (the optimal receiving beam of the transmitting beam B3 is R1, The best receiving beam of the transmitting beam B4 is R2), and the beams B3 and B4 cannot be divided into one group according to the limited information, and in some cases, it is impossible to transmit data to the same receiving beam of the terminal device by using multiple transmitting beams. .
  • the terminal device selects the beam pair to be reported according to the channel quality corresponding to each beam pair, and selects a beam pair corresponding to the better channel quality, for example, specifically, the terminal device may [B3 R1], [B3 R2], [B4 R1], and [B4 R2] are reported to the network device.
  • the channel quality corresponding to the beam pair composed of the transmit beams B3 and B4 and the receive beam are compared. Therefore, when it is required to use two transmit beams to jointly transmit data to the same receive beam of the terminal device, the network device can divide B3 and B4 into a group, and the receive beam corresponding to the set of transmit beams can be the receive beam.
  • R1 may also be the receive beam R2. Therefore, the communication method in the embodiment of the present application can better report the information of the beam pair compared with the prior art, so that the network device can group the transmit beams according to the information of the reported beam pair.
  • the terminal device can directly select a partial beam pair with a better channel quality from all the beam pairs, and report the identification information of the part of the beam pair to the network device, so that the network device can obtain the beam with better channel quality.
  • the identification information of the pair, and the transmit beams are reasonably grouped according to the identification information of the beam pairs.
  • the terminal device may first sort the M ⁇ N beam pairs according to the channel quality when determining the L beam pairs, and then determine the M ⁇ N beam pairs according to the sorting result. L beam pairs.
  • the ordering of M ⁇ N beam pairs may be performed in descending order of channel quality, or in order of channel quality from small to large, and the terminal device may select channel quality from all beam pairs after sorting is completed.
  • the best L beam pairs For example, if the transmit beam and the receive beam form a total of 10 beam pairs, then the 10 beam pairs can be sorted according to the channel quality from large to small, and then the first 5 corresponding channel qualities are selected from the 10 beam pairs. A better beam pair.
  • the terminal device may select L beam pairs according to the relationship between the channel quality of the beam pair and the preset threshold when determining the L beam pairs. For example, the terminal device may select the M ⁇ N beam pairs. The L beam pairs whose channel quality is greater than the first threshold. In this case, the terminal may not classify the beam pairs according to the channel quality of the beam pair, but directly compare the channel quality corresponding to each beam pair with the first threshold, and compare the beam pair whose channel quality is greater than the first threshold. The information can be reported. Of course, the terminal device can also sort the beam pairs according to the channel quality of the beam pair, and then compare the channel quality of each beam pair with the first threshold, and then report the corresponding channel quality to be greater than the first. Information of a threshold beam pair.
  • the six transmit beams of the network device and the two receive beams of the terminal device can form 12 beam pairs, and the terminal device can first correspond to the 12 beam pairs before determining the information of the beam pair to be reported.
  • the channel quality is sorted and the results are as follows:
  • the terminal device can determine the beam pair to be reported in the following two ways:
  • the first mode the terminal device selects the six beam pairs with the best channel quality (where L is 6), and the channel qualities corresponding to the six beam pairs and the six beam pairs are as follows:
  • the second mode the terminal device selects a beam pair whose channel quality is greater than 0.8 (the corresponding L is 4 when the first threshold is 0.8, and the corresponding L is 6 when the first threshold is less than 0.8 and greater than 0.2), these 4
  • the beam pair and the channel quality corresponding to the four beam pairs are as follows:
  • the beam pairs may be sorted according to the channel quality before the beam pairs to be reported are selected in the above two manners, or the beam pairs corresponding to the beam pairs may be sorted instead of the beam pairs to be reported.
  • FIG. 5 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • the method of Figure 5 includes:
  • the terminal device determines L transmit beams in the M transmit beams of the network device.
  • the channel quality of the beam pair consisting of any one of the L transmit beams and the first receive beam corresponding to any one of the transmit beams is greater than or equal to the other transmit beams of the M transmit beams except the L transmit beams.
  • the above L may be a pre-configured value. That is to say, the terminal device can select a certain number of beam pairs with better channel quality among all the beam pairs according to the channel quality.
  • the size of the L may be a value specified in the communication protocol, or may be a value configured by the network device for the terminal device.
  • the L may be a static configuration of the network device for the terminal device (for example, when the terminal device just accesses the network)
  • the value that is configured for the terminal device may also be a value that is dynamically configured by the indication information for the terminal device before the terminal device needs to report the channel quality corresponding to the beam pair.
  • the above L may also be equal to M x N.
  • the terminal device may select L transmit beams corresponding to the better channel quality from all the transmit beams, and the channel quality corresponding to the beam pair formed by the L transmit beams and the first receive beam is better.
  • the quality of the signal received by the terminal device from the transmit beams T3 and T4 is greater than the quality of the signal received by the terminal device from the transmit beams T1, T2, T5, and T6.
  • the device can select two transmit beams T3 and T4.
  • T3 can correspond to the receiving beams R1 and R2. Then, as long as the channel quality corresponding to [T3 R1] is greater than the channel quality corresponding to [T3 R2], the best T3 is obtained.
  • the receive beam is R1.
  • the terminal device determines K beam pairs in each of the L transmit beams and the N beam pairs formed by the N receive beams, where the channel quality corresponding to the K beam pairs is greater than the N beam pairs.
  • Channel quality corresponding to other beam pairs other than K beam pairs where M and N are integers greater than 1, L is an integer less than M, and K is an integer less than N.
  • the above K may be a pre-configured value.
  • the size of the K may be a value specified in the communication protocol, or may be a value configured by the network device for the terminal device.
  • K may be a static configuration of the terminal device by the network device (for example, when the terminal device just accesses the network)
  • the value that is configured for the terminal device may also be a value that is dynamically configured by the indication information for the terminal device before the terminal device needs to report the channel quality corresponding to the beam pair.
  • the above K can also Equal to N.
  • the terminal device selects K beam pairs from all beam pairs composed of each of the L transmit beams and the receive beam. If a total of 3 transmit beams are used, the terminal device will separately receive these three Selecting K beam pairs from all beam pairs consisting of each of the transmit beam and the receive beam.
  • the value of K may be different for different transmit beams, for example, from the first transmit beam to the receive beam. 3 beam pairs are selected among all the beam pairs (where K is 3), and for the second transmit beam, 2 beams can be selected from all beam pairs composed of the second transmit beam and the receive beam. Right (K is 2 at this time).
  • the terminal device sends, to the network device, identifier information of K beam pairs corresponding to each transmit beam.
  • the terminal device can send the identification information of the beam pair to the network device, for example, the terminal device can periodically report the identification information of the beam pair to the network device.
  • the terminal device may also send the identifier information of the beam pair to the network device after receiving the indication information of the network device. Specifically, the terminal device receives the report indication information sent by the network device, where the report indication information is used to instruct the terminal device to send the identifier information of the beam pair composed of the transmit beam of the network device and the receive beam of the terminal device to the network device. After receiving the reporting indication information, the terminal device sends the identifier information of the beam pair to the network device.
  • the terminal device not only reports the information of the best receiving beam corresponding to the transmitting beam with better measurement signals, but also reports the information of other receiving beams corresponding to the transmitting beam, and the information of the reported beam pair is more comprehensive.
  • the network device can reasonably group the beam pairs according to the information of the beam pair reported by the terminal device.
  • the terminal device may first sort the N beam pairs corresponding to each transmit beam according to the channel quality, and then, the terminal device performs the sorting result in the N beam pairs.
  • the K beam pairs are determined.
  • the channel quality may be in descending order, or the channel quality may be in ascending order.
  • the terminal device may select the best channel quality from all beam pairs. K beam pairs. For example, if a certain transmit beam and all the receive beams form a total of five beam pairs, the five beam pairs can be sorted according to the channel quality from large to small, and then the top three are selected from the five beam pairs. Corresponding to the beam pair with better channel quality.
  • the terminal device may also directly in the N beams when determining the K beam pairs. Determining K beam pairs whose channel quality is greater than the first threshold. In this case, the terminal may not classify the beam pairs according to the channel quality of the beam pair, but directly compare the channel quality corresponding to each beam pair with the first threshold, and compare the beam pair whose channel quality is greater than the first threshold. The information can be reported. Of course, the terminal device can also sort the beam pairs according to the channel quality of the beam pair, and then compare the channel quality of each beam pair with the first threshold, and then report the corresponding channel quality to be greater than the first. Information of a threshold beam pair.
  • the terminal device may select a certain number of beam pairs directly from the N beam pairs according to the quality, or compare the channel quality corresponding to the N beam pairs with a preset threshold, that is, It is said that the terminal device can only consider the number of K beam pairs, and can only consider the magnitude relationship between the beam pair and the preset threshold. Certainly, the terminal device can also consider the number and the relationship between the channel quality corresponding to the beam pair and the preset threshold when determining the K beam pairs.
  • the communication method in the embodiment of the present application is described in detail below with reference to FIG. 6 as an example.
  • FIG. 6 there are four transmit beams T1, T2, T3, and T4, and three receive beams R1, R2, and R3.
  • the transmit beam and the receive beam form a total of 12 beam pairs.
  • the channel quality corresponding to the beam pair composed of the respective optimal receiving beams of the transmitting beams T3 and T4 is greater than the channel quality corresponding to the beam pair composed of the respective optimal receiving beams of the transmitting beams T1 and T2.
  • the terminal device determines the transmit beams T3 and T4 from all the transmit beams, and then determines to report the beam pairs corresponding to the two transmit beams.
  • the beam pair of each transmit beam is determined in detail below by taking the transmit beam T3 as an example.
  • the transmit beam T3 corresponds to a total of three receive beams, and T3 and the three receive beams form a total of three beam pairs.
  • the three beam pairs may be corresponding to each other.
  • the channel quality is sorted from large to small, and the sorting results are as follows:
  • the terminal device can select two beam pairs [T3 R1] and [T3 R2] from the three beam pairs (in this case, the value of K is 2).
  • the terminal device may also select two beam pairs [T3 R1] and [T3 R2] corresponding to the channel quality greater than 0.5 from the three beam pairs.
  • the terminal device may further select two beam pairs [T3 R1] and [T3 R2] corresponding to the better channel quality from the three beam pairs, and then select corresponding channel quality from the two beam pairs to be greater than
  • the beam pair of 0.9 is [T3 R1] and is reported.
  • the terminal device first selects two beam pairs ([T3 R1] and [T3 R2]) corresponding to the channel quality greater than 0.5 from the three beam pairs, and then selects one beam pair corresponding to the better channel quality. [T3 R1] is reported.
  • the communication method of the embodiment of the present application is described in detail from the perspective of the terminal device in conjunction with FIG. 3 to FIG. 6 .
  • the communication method of the embodiment of the present application is described from the perspective of the network device in conjunction with FIG. 7 and FIG. 8 .
  • the communication method of the embodiment of the present application which is described from the perspective of the network device in FIG. 7 and FIG. 8 , corresponds to the communication method of the embodiment of the present application, which is described from the perspective of the terminal device in FIG. 3 to FIG. Duplicate descriptions are omitted as appropriate.
  • FIG. 7 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • the method 700 of Figure 7 includes:
  • the network device receives the identifier information of the L beam pairs sent by the terminal device, where the L beam pairs are the M transmit beams of the terminal device and the N receive beams of the terminal device. a beam pair determined by the M ⁇ N beam pairs, the channel quality corresponding to any one of the L beam pairs being greater than or equal to the L beam pairs of the M ⁇ N beam pairs Channel quality corresponding to other beam pairs, where M and N are integers greater than 1, and L is an integer less than M ⁇ N;
  • the network device groups the transmit beams of the network device according to the identifier information of the L beam pairs.
  • the terminal device directly selects a partial beam pair with a better channel quality from all the beam pairs, and reports the identification information of the part of the beam pair to the network device, so that the network device can obtain a beam with better channel quality.
  • the network device groups the transmit beams of the network device according to the identifier information of the L beam pairs, including: the identifier of the network device according to the L beam pairs.
  • the information determines a plurality of transmit beams of the L beam pairs; the network device divides transmit beams of the plurality of transmit beams that correspond to the same receive beam into a group.
  • the method 700 of FIG. 7 further includes: the network device receiving channel quality information corresponding to the L beam pairs sent by the terminal device.
  • the method 700 of FIG. 7 further includes: the network device sending, to the terminal device, report indication information, where the report indication information is used to indicate that the terminal device sends a report to the network device.
  • FIG. 8 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • the method 800 of Figure 8 includes:
  • the network device receives, by the terminal device, the identifier information of the K beam pairs corresponding to each of the L transmit beams.
  • the L transmit beams are multiple transmit beams determined by the terminal device in M transmit beams of the network device, and any one of the L transmit beams and the any one transmit beam And corresponding to the first receive beam, the corresponding channel quality is greater than or equal to the other receive beams of the M transmit beams except the L transmit beams and the first receive beams of the other transmit beams.
  • the K beam pairs being part of the N beam pairs of the terminal device in each of the L transmit beams and the N receive beams of the network device a beam pair, wherein the channel quality corresponding to the K beam pairs is greater than each of the L transmit beams and the N receive beams of the N receive beams of the terminal device, except for the K beam pairs
  • the first receiving beam is a receiving beam or a receiving transmitting beam that is sent by the receiving transmitting beam and whose quality meets a preset threshold.
  • M and N are integers greater than 1
  • L is an integer smaller than M
  • K is an integer less than N;
  • the network device groups the transmit beams of the network device according to the identifier information of the K beam pairs corresponding to each of the L transmit beams.
  • the terminal device not only reports the identification information of the best receiving beam corresponding to the transmitting beam that receives the measurement signal, but also reports the identification information of the other receiving beams corresponding to the transmitting beam, and the reported beam pair.
  • the information is more comprehensive, so that the network device can reasonably group the beam pairs according to the information of the beam pairs reported by the terminal device.
  • the network device groups, according to the identification information of the K beam pairs corresponding to each of the L transmit beams, the transmit beams of the network device, including: The network device divides the transmit beams of the L transmit beams corresponding to the same receive beam into a group.
  • the method 800 of FIG. 8 further includes: the network device receiving, by the terminal device, channel quality information corresponding to the K beam pairs corresponding to each of the transmit beams.
  • the method 800 of FIG. 8 further includes: the network device sending report indication information to the terminal device, where the report indication information is used to indicate that the terminal device sends the report to the network device Identification information of a beam pair composed of a transmit beam and the receive beam.
  • the communication method according to the embodiment of the present application is described in detail above with reference to FIG. 3 to FIG.
  • the terminal device and the network device of the embodiment of the present application will be described with reference to FIG. 9 to FIG.
  • terminal device and the network device described in FIGS. 9 to 16 can implement the respective steps of the communication method described in FIGS. 3 to 8, and the duplicated description is appropriately omitted for the sake of brevity.
  • FIG. 9 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 900 of FIG. 9 includes:
  • the processing module 910 is configured to determine a channel quality corresponding to the M ⁇ N pairs of the M transmit beams of the network device and the N receive beams of the terminal device 900;
  • the processing module 910 is further configured to determine L beam pairs in the M ⁇ N beam pairs, where a channel quality corresponding to any one of the L beam pairs is greater than or equal to the M ⁇ N Channel quality corresponding to other beam pairs except the L beam pairs, where M and N are integers greater than 1, and L is an integer less than M ⁇ N;
  • the communication module 920 sends the identification information of the L beam pairs to the network device.
  • the processing module 910 is specifically configured to: sort the M ⁇ N beam pairs according to a channel quality, and determine, in the M ⁇ N beam pairs, according to the sorting result. L beam pairs are described.
  • the processing module 910 is specifically configured to: determine, in the M ⁇ N beam pairs, the L beam pairs whose channel quality is greater than a first threshold.
  • the communications module 920 is further configured to send, to the network device, channel quality information corresponding to the L beam pairs.
  • the communication module 920 is further configured to: receive, by the network device, the report indication information, where the report indication information is used to instruct the terminal device 900 to send the Identification information of a beam pair composed of a transmit beam of the network device and a receive beam of the terminal device 900.
  • FIG. 10 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 1000 of FIG. 10 includes:
  • the processing module 1010 is configured to determine, in the M transmit beams of the network device, L transmit beams, where any one of the L transmit beams and the first receive beam corresponding to the any one of the transmit beams
  • the channel quality corresponding to the beam pair is greater than or equal to the channel quality corresponding to the beam pair composed of the other receive beams of the M transmit beams except the L transmit beams and the first receive beam of the other transmit beams, where
  • the first receiving beam is connected Receiving a beam of a signal transmitted by the transmitting beam that meets a preset threshold or a receiving beam of a signal of the highest quality received by the transmitting beam;
  • the processing module 1010 is further configured to determine K beam pairs in each of the L transmit beams and N receive beams, where the K beam pairs correspond to channels.
  • the quality is greater than the channel quality corresponding to the beam pairs other than the K beam pairs of the N beam pairs, where M and N are integers greater than 1, L is an integer less than M, and K is less than N Integer
  • the communication module 1020 is configured to send, to the network device, identifier information of K beam pairs corresponding to each of the transmit beams.
  • the processing module 1010 is specifically configured to: sort the N beam pairs according to a channel quality, and determine the K beams in the N beam pairs according to a sorting result. Correct.
  • the processing module 1010 is specifically configured to: determine, in the N beams, the K beam pairs whose channel quality is greater than a first threshold.
  • the processing module 1010 is specifically configured to: sort the N beam pairs according to a channel quality, and select the K beam pairs from the N beam pairs, where The channel quality corresponding to the K beam pairs is greater than a second threshold, and K is less than or equal to a preset first value, and the first value is an integer less than N.
  • the communications module 1020 is further configured to send, to the network device, channel quality information corresponding to the K beam pairs corresponding to each of the transmit beams.
  • the communication module 1020 is further configured to receive the report indication information that is sent by the network device, where the report indication information is used to instruct the terminal device 1000 to report the transmit beam and the receive Identification information of the beam pair composed of beams.
  • FIG. 11 is a schematic block diagram of a network device according to an embodiment of the present application.
  • the network device 1100 of FIG. 11 includes:
  • the communication module 1110 is configured to receive identifier information of L beam pairs sent by the terminal device, where
  • the L beam pairs are beam pairs determined by the terminal device in M ⁇ N beam pairs composed of M transmit beams of the network device 1100 and N receive beams of the terminal device, where The channel quality corresponding to any one of the L beam pairs is greater than or equal to the channel quality corresponding to the other beam pairs except the L beam pairs of the M ⁇ N beam pairs, where M and N are greater than An integer of 1, L is an integer less than M ⁇ N;
  • the processing module 1120 is configured to group the transmit beams of the network device 1100 according to the identifier information of the L beam pairs.
  • the processing module 1120 is specifically configured to: determine, according to the identifier information of the L beam pairs, multiple transmit beams in the L beam pairs; The transmit beams corresponding to the same receive beam are divided into a group.
  • the communications module 1110 is further configured to receive channel quality information corresponding to the L beam pairs sent by the terminal device.
  • the communication module 1110 is further configured to send, to the terminal device, report indication information, where the report indication information is used to instruct the terminal device to send a transmit beam and receive to the network device 1100. Identification information of the beam pair composed of beams.
  • FIG. 12 is a schematic block diagram of a network device according to an embodiment of the present application.
  • the network device 1200 of Figure 12 includes:
  • the communication module 1210 is configured to receive, by the terminal device, identifier information of K beam pairs corresponding to each of the L transmit beams.
  • the L transmit beams are multiple transmit beams determined by the terminal device in the M transmit beams of the network device 1200, and any one of the L transmit beams and the any one of the transmit beams
  • the channel quality of the beam pair corresponding to the first receiving beam corresponding to the beam is greater than or equal to the first receiving beam of the M transmitting beams except the L transmitting beams and the other receiving beams of the other transmitting beams
  • the K beam pairs being the N beam pairs of the terminal device in each of the L transmit beams and the N receive beams of the network device 1200 a partial beam pair
  • the channel quality corresponding to the K beam pairs being greater than each of the L transmit beams and the N receive beams of the N receive beams of the terminal device except the K beam pairs
  • the first receiving beam is a receiving beam or a receiving transmitting beam whose quality of the signal transmitted by the receiving transmitting beam meets a preset threshold
  • the best received beam of the transmitted signal, M and N are integers greater than 1, L
  • the processing module 1220 is configured to group the transmit beams of the network device 1200 according to the identifier information of the K beam pairs corresponding to each of the L transmit beams.
  • the processing module 1220 is specifically configured to: divide the transmit beams corresponding to the same receive beam in the L transmit beams into a group.
  • the communications module 1210 is further configured to receive channel quality information corresponding to the K beam pairs corresponding to each of the transmit beams that are sent by the terminal device.
  • the communication module 1210 is further configured to send, to the terminal device, report indication information, where the report indication information is used to instruct the terminal device to send the transmit beam to the network device 1200. Identification information of a beam pair composed of the receiving beam.
  • FIG. 13 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 1300 of FIG. 13 includes:
  • the processor 1310 is configured to determine a channel quality corresponding to the M ⁇ N pairs of the M transmit beams of the network device and the N receive beams of the terminal device 1300.
  • the processing module is further configured to determine L beam pairs in the M ⁇ N beam pairs, where a channel quality corresponding to any one of the L beam pairs is greater than or equal to the M ⁇ N a channel quality corresponding to a beam pair other than the L beam pairs, where M and N are integers greater than 1, and L is an integer less than M ⁇ N;
  • the transceiver 1320 sends the identification information of the L beam pairs to the network device.
  • the processor 1310 is specifically configured to: sort the M ⁇ N beam pairs according to a channel quality, and determine, in the M ⁇ N beam pairs, according to the sorting result. L beam pairs are described.
  • the processor 1310 is specifically configured to: determine, in the M ⁇ N beam pairs, the L beam pairs whose channel quality is greater than a first threshold.
  • the transceiver 1320 is further configured to send, to the network device, channel quality information corresponding to the L beam pairs.
  • the transceiver 1320 is further configured to: receive the report indication information that is sent by the network device, where the report indication information is used to instruct the terminal device 1300 to send the Identification information of a beam pair composed of a transmit beam of the network device and a receive beam of the terminal device 1300.
  • FIG. 14 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 1400 of FIG. 14 includes:
  • the processor 1410 is configured to determine L transmit beams in the M transmit beams of the network device, where any one of the L transmit beams is composed of a first receive beam corresponding to the any one of the transmit beams.
  • the channel quality corresponding to the beam pair is greater than or equal to the M transmissions.
  • the processor 1410 is further configured to determine K beam pairs in each of the L transmit beams and N receive beams, where the K beam pairs correspond to channels.
  • the quality is greater than the channel quality corresponding to the beam pairs other than the K beam pairs of the N beam pairs, where M and N are integers greater than 1, L is an integer less than M, and K is less than N Integer
  • the transceiver 1420 is configured to send, to the network device, identifier information of K beam pairs corresponding to each of the transmit beams.
  • the processor 1410 is specifically configured to: sort the N beam pairs according to a channel quality, and determine the K beams in the N beam pairs according to a sorting result. Correct.
  • the processor 1410 is specifically configured to: determine, in the N beams, the K beam pairs whose channel quality is greater than a first threshold.
  • the processor 1410 is specifically configured to: sort the N beam pairs according to a channel quality, and select the K beam pairs from the N beam pairs, where The channel quality corresponding to the K beam pairs is greater than a second threshold, and K is less than or equal to a preset first value, and the first value is an integer less than N.
  • the transceiver 1420 is further configured to send, to the network device, channel quality information corresponding to the K beam pairs corresponding to each of the transmit beams.
  • the transceiver 1420 is further configured to receive the report indication information that is sent by the network device, where the report indication information is used to instruct the terminal device 1400 to report the transmit beam and the receive Identification information of the beam pair composed of beams.
  • FIG. 15 is a schematic block diagram of a network device according to an embodiment of the present application.
  • the network device 1500 of Figure 15 includes:
  • the transceiver 1510 is configured to receive identifier information of L beam pairs sent by the terminal device, where
  • the L beam pairs are beam pairs determined by the terminal device in M ⁇ N beam pairs composed of M transmit beams of the network device 1500 and N receive beams of the terminal device, where The channel quality corresponding to any one of the L beam pairs is greater than or equal to the said a channel quality corresponding to a beam pair other than the L beam pairs among M ⁇ N beam pairs, where M and N are integers greater than 1, and L is an integer less than M ⁇ N;
  • the processor 1520 is configured to group the transmit beams of the network device 1500 according to the identifier information of the L beam pairs.
  • the processor 1520 is specifically configured to: determine, according to the identifier information of the L beam pairs, multiple transmit beams in the L beam pairs; The transmit beams corresponding to the same receive beam are divided into a group.
  • the transceiver 1510 is further configured to receive channel quality information corresponding to the L beam pairs sent by the terminal device.
  • the transceiver 1510 is further configured to send, to the terminal device, report indication information, where the report indication information is used to indicate that the terminal device sends a transmit beam and a receive to the network device 1500. Identification information of the beam pair composed of beams.
  • FIG. 16 is a schematic block diagram of a network device according to an embodiment of the present application.
  • the network device 1600 of Figure 16 includes:
  • the transceiver 1610 is configured to receive, by the terminal device, identifier information of K beam pairs corresponding to each of the L transmit beams.
  • the L transmit beams are multiple transmit beams determined by the terminal device in M transmit beams of the network device 1600, and any one of the L transmit beams and the any one of the transmit beams
  • the channel quality of the beam pair corresponding to the first receiving beam corresponding to the beam is greater than or equal to the first receiving beam of the M transmitting beams except the L transmitting beams and the other receiving beams of the other transmitting beams
  • the K beam pairs being the N beam pairs of the terminal device in each of the L transmit beams and the N receive beams of the network device 1600 a partial beam pair
  • the channel quality corresponding to the K beam pairs being greater than each of the L transmit beams and the N receive beams of the N receive beams of the terminal device except the K beam pairs
  • the first receiving beam is a receiving beam or a receiving transmitting beam whose quality of the signal transmitted by the receiving transmitting beam meets a preset threshold
  • the best received beam of the transmitted signal, M and N are integers greater than 1
  • L is an integer
  • the processor 1620 is configured to group the transmit beams of the network device 1600 according to the identifier information of the K beam pairs corresponding to each of the L transmit beams.
  • the processor 1620 is specifically configured to: divide the transmit beams of the L transmit beams that correspond to the same receive beam into a group.
  • the transceiver 1610 is further configured to receive channel quality information corresponding to the K beam pairs corresponding to each of the transmit beams that are sent by the terminal device.
  • the transceiver 1610 is further configured to send, to the terminal device, report indication information, where the report indication information is used to instruct the terminal device to send the transmit beam to the network device 1600. Identification information of a beam pair composed of the receiving beam.
  • FIG. 17 is a schematic structural diagram of a system chip according to an embodiment of the present application.
  • the system chip 1700 of FIG. 17 includes an input interface 1701, an output interface 1702, the processor 1703, and a memory 1704 connected by a bus 1705 for executing code in the memory 1704.
  • the processor 1703 when the code is executed, the processor 1703 implements a method performed by the terminal device in the method embodiment of the present application. For the sake of brevity, it will not be repeated here.
  • the processor 1703 when the code is executed, the processor 1703 implements a method performed by a network device in a method embodiment. For the sake of brevity, it will not be repeated here.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate.
  • the components displayed for the unit may or may not be physical units, ie may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in the embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the method described in this application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

本申请实施例提供一种通信方法、终端设备和网络设备。该方法包括终端设备确定网络设备的M个发射波束与终端设备的N个接收波束组成的M×N个波束对对应的信道质量;终端设备在M×N个波束对中确定L个波束对,并上报L个波束对的标识信息,其中,该L个波束对中的任意一个波束对对应的信道质量大于或者等于M×N个波束对中除L个波束对之外的其它波束对对应的信道质量,其中,M和N为大于1的整数,L为小于M×N的整数。本申请实施例能够上报对应信道质量较好的波束对。

Description

通信方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且具体地,涉及一种通信方法、终端设备和网络设备。
背景技术
在多波束系统中,终端设备可以通过一个接收波束接收网络设备通过多个发射波束发送的数据,为了保证数据的接收效果,多个发射波束分别与终端设备的接收波束组成的波束对对应的信道质量要满足一定的条件,如果发射波束与接收波束组成的波束对对应的信道质量较差的话就不利于数据的接收。而为了保证发射波束与接收波束组成的波束对对应的信道质量能够满足要求,需要终端设备上报波束对对应的信道质量的情况,因此,如何上报波束对对应的信道质量是一个需要研究的问题。
发明内容
本申请提供了一种通信方法,终端设备和网络设备,以合理上报发射波束对应的信道质量信息。
第一方面,提供了一种通信方法,终端设备确定网络设备的M个发射波束与所述终端设备的N个接收波束组成的M×N个波束对对应的信道质量;所述终端设备在所述M×N个波束对中确定L个波束对,其中,所述L个波束对中的任意一个波束对对应的信道质量大于或者等于所述M×N个波束对中除所述L个波束对之外的其它波束对对应的信道质量,其中,M和N为大于1的整数,L为小于M×N的整数;所述终端设备向所述网络设备发送所述L个波束对的标识信息。
终端设备能够直接从全部波束对中选择对应的信道质量较好的部分波束对,并上报该部分波束对的标识信息,使得网络设备能够根据该部分波束对的标识信息对发射波束进行合理的分组。
可选地,上述L也可以等于M×N。
上述L可以是通信协议中预先配置的数值,也可以是网络设备通过静态或者动态的方式为终端设备配置的数值,并且L可以取不同的数值。
结合第一方面,在第一方面的某些实现方式中,所述终端设备在所述M×N个波束对中确定L个波束对,包括:所述终端设备根据信道质量的大小对所述M×N个波束对进行排序;所述终端设备根据排序结果在所述M×N个波束对中确定所述L个波束对。
通过对各个波束对对应的信道质量进行排序,能够较为方便地根据信道质量的排序结果直接从全部波束对中选择出预定数量的波束对。
结合第一方面,在第一方面的某些实现方式中,所述终端设备在所述M×N个波束对中确定L个波束对,包括:所述终端设备在所述M×N个波束对中确定信道质量大于第一阈值的所述L个波束对。
通过将各个波束对对应的信道质量与给定阈值进行比较,能够较为方便地选择出大于给定阈值的给定数量的波束对。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述终端设备向所述网络设备发送所述L个波束对对应的信道质量信息。
上述信道质量信息可以用于指示波束对对应的信道质量。
终端设备除了上报L个波束的标识信息之外,还可以向网络设备上报L个波束对对应的信道质量信息,上报的信息更加全面,使得网络设备能够根据L个波束对的信息对发射波束进行更合理的分组。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述终端设备接收所述网络设备发送的上报指示信息,所述上报指示信息用于指示所述终端设备向所述网络设备发送所述网络设备的发射波束与所述终端设备的接收波束组成的波束对的标识信息。
通过上报指示信息能够动态的指示终端设备上报发射波束与接收波束组成的波束对的标识信息。
第二方面,提供了一种通信方法,终端设备在网络设备的M个发射波束中确定L个发射波束,其中,所述L个发射波束中的任意一个发射波束与所述任意一个发射波束对应的第一接收波束组成的波束对对应的信道质量大于或者等于所述M个发射波束中除所述L个发射波束之外的其它发射波束与所述其它发射波束的第一接收波束组成的波束对对应的信道质量,其中,所述第一接收波束为接收发射波束发送的信号的质量满足预设阈值的接收波束或者接收发射波束发送的信号的质量最好的接收波束;所述终端设备在所述L个发射波束中的每个发射波束与N个接收波束组成的N个波束对 中确定K个波束对,其中,所述K个波束对对应的信道质量大于所述N个波束对中除所述K个波束对之外的其它波束对对应的信道质量,其中,M和N为大于1的整数,L为小于M的整数,K为小于N的整数;所述终端设备向所述网络设备发送所述每个发射波束对应的K个波束对的标识信息。
终端设备不仅会上报接收测量信号较好的发射波束对应的最佳接收波束,而且还可以上报发射波束对应的其它接收波束,上报的波束对的信息更加全面,使得网络设备能够根据终端设备上报的波束对的信息对波束对进行合理的分组。
可选地,上述L也可以等于M×N。另外,上述L可以是通信协议中预先配置的数值,也可以是网络设备通过静态或者动态的方式为终端设备配置的数值,并且L可以取不同的数值。
类似地,上述K也可以等于N,K可以是通信协议中预先配置的数值,也可以是网络设备通过静态或者动态的方式为终端设备配置的数值,并且K可以取不同的数值。
结合第二方面,在第二方面的某些实现方式中,所述终端设备在所述L个发射波束中的每个发射波束对应的N个波束对中确定K个波束对,包括:所述终端设备按照信道质量的大小对所述N个波束对进行排序;所述终端设备根据排序结果在所述N个波束对中确定所述K个波束对。
通过对N个波束对对应的信道质量进行排序,能够较为方便地根据信道质量的排序结果直接从N个波束对中选择出K个波束对。
结合第二方面,在第二方面的某些实现方式中,所述终端设备在所述L个发射波束中的每个发射波束组成的N个波束对中确定K个波束对,包括:所述终端设备在所述N个波束中确定信道质量大于第一阈值的所述K个波束对。
通过将N个波束对对应的信道质量与给定阈值进行比较,能够较为方便地选择出大于给定阈值的给定数量的波束对。
结合第二方面,在第二方面的某些实现方式中,所述终端设备在所述L个发射波束中的每个发射波束对应的N个波束对中确定K个波束对,包括:所述终端设备按照信道质量的大小对所述N个波束对进行排序;所述终端设备从所述N个波束对中选择所述K个波束对,其中,所述K个波束对对应的信道质量大于第二阈值,且K小于等于预设的第一数值,所述第一数值为 小于N的整数。
上述K的数值不仅要小于给定的第一数值,而且K个波束对对应的信道质量也要大于给定的阈值,能够更全面的从N个波束对中选择部分波束对进行上报。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述终端设备向所述网络设备发送所述每个发射波束对应的K个波束对对应的信道质量信息。
上述信道质量信息可以用于指示波束对对应的信道质量。
终端设备除了上报K个波束的标识信息之外,还可以向网络设备上报K个波束对对应的信道质量信息,对于L个发射波束来说,对每个发射波束上报的信息更加全面,使得网络设备能够根据上报的信息对发射波束进行更合理的分组。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述终端设备接收所述网络设备发送的上报指示信息,所述上报指示信息用于指示所述终端设备上报所述发射波束与所述接收波束组成的波束对的标识信息。
网络设备通过向终端设备发送上报指示信息,能够动态的指示终端设备上报发射波束与接收波束组成的波束对的标识信息。
第三方面,提供了一种通信方法,网络设备接收终端设备发送的L个波束对的标识信息,其中,所述L个波束对是所述终端设备在所述网络设备的M个发射波束与所述终端设备的N个接收波束组成的M×N个波束对中确定的波束对,所述L个波束对中的任意一个波束对对应的信道质量大于或者等于所述M×N个波束对中除所述L个波束对之外的其它波束对对应的信道质量,其中,M和N为大于1的整数,L为小于M×N的整数;所述网络设备根据所述L个波束对的标识信息,对所述网络设备的发射波束进行分组。
网络设备从终端设备接收的是终端设备直接从全部波束对中选择对应的信道质量较好的部分波束对的标识信息,网络设备能够根据该部分波束对的标识信息对发射波束进行合理的分组。
上述L也可以等于M×N。另外,上述L可以是通信协议中预先配置的数值,也可以是网络设备通过静态或者动态的方式为终端设备配置的数值,并且L可以取不同的数值。
结合第三方面,在第三方面的某些实现方式中,所述网络设备根据所述L个波束对的标识信息,对所述网络设备的发射波束进行分组,包括:所述网络设备根据所述L个波束对的标识信息确定所述L个波束对中的多个发射波束;所述网络设备将所述多个发射波束中对应同一接收波束的发射波束划分成一组。
网络设备根据接收终端设备上报的波束对的标识信息,能够合理的为发射波束进行分组。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:所述网络设备接收所述终端设备发送的所述L个波束对对应的信道质量信息。
网络设备除了可以接收到波束对的标识信息之外,还可接收到波束对对应的信道质量信息,接收到的信息更加全面,能够根据波束对的信息对发射波束进行更合理的分组。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:所述网络设备向所述终端设备发送上报指示信息,所述上报指示信息用于指示所述终端设备向所述网络设备发送发射波束与接收波束组成的波束对的标识信息。
网络设备通过向终端设备发送上报指示信息,能够动态的指示终端设备上报发射波束与接收波束组成的波束对的标识信息。
第四方面,提供了一种通信方法,网络设备接收终端设备发送L个发射波束中的每个发射波束对应的K个波束对的标识信息,其中,所述L个发射波束为所述终端设备在所述网络设备的M个发射波束中确定的多个发射波束,所述L个发射波束中的任意一个发射波束与所述任意一个发射波束对应的第一接收波束组成的波束对对应的信道质量大于或者等于所述M个发射波束中除所述L个发射波束之外的其它发射波束与所述其它发射波束的第一接收波束组成的波束对对应的信道质量,所述K个波束对为所述终端设备在所述L个发射波束中的每个发射波束与所述网络设备的N个接收波束组成的N个波束对中的部分波束对,所述K个波束对对应的信道质量大于所述L个发射波束中的每个发射波束与终端设备的N个接收波束组成的N个波束对中除所述K个波束对之外的其它波束对对应的信道质量,其中,所述第一接收波束为接收发射波束发送的信号的质量满足预设阈值的接收波束或者接收发射波束发送的信号的质量最好的接收波束,M和N为大于1 的整数,L为小于M的整数,K为小于N的整数;所述网络设备根据所述L个发射波束中的每个发射波束对应的K个波束对的标识信息,对所述网络设备的发射波束进行分组。
网络设备不仅可以接收到测量信号较好的发射波束对应的最佳接收波束的标识信息,而且还可以接收到发射波束对应的其它接收波束的标识信息,得到的波束对的信息更加全面,能够根据得到的波束对的信息对波束对进行合理的分组。
上述L也可以等于M×N。另外,上述L可以是通信协议中预先配置的数值,也可以是网络设备通过静态或者动态的方式为终端设备配置的数值,并且L可以取不同的数值。
类似地,上述K也可以等于N,K可以是通信协议中预先配置的数值,也可以是网络设备通过静态或者动态的方式为终端设备配置的数值,并且K可以取不同的数值。
结合第四方面,在第四方面的某些实现方式中,所述网络设备根据所述L个发射波束中的每个发射波束对应的K个波束对的标识信息,对所述网络设备的发射波束进行分组,包括:所述网络设备将所述L个发射波束中对应同一接收波束的发射波束划分成一组。
根据终端设备上报的波束对的标识信息,能够对发射波束进行合理的分组。
结合第四方面,在第四方面的某些实现方式中,所述方法还包括:所述网络设备接收所述终端设备发送的所述每个发射波束对应的K个波束对对应的信道质量信息。
网络设备除了可以接收到波束对的标识信息之外,还可接收到波束对对应的信道质量信息,接收到的信息更加全面,能够根据波束对的信息对发射波束进行更合理的分组。
结合第四方面,在第四方面的某些实现方式中,所述方法还包括:所述网络设备向所述终端设备发送上报指示信息,所述上报指示信息用于指示所述终端设备向所述网络设备发送所述发射波束与所述接收波束组成的波束对的标识信息。
网络设备通过向终端设备发送上报指示信息,能够动态的指示终端设备上报发射波束与接收波束组成的波束对的标识信息。
第五方面,提供一种终端设备,包括用于执行第一方面或其各种实现方式中的方法的模块。
第六方面,提供一种终端设备,包括用于执行第二方面或其各种实现方式中的方法的模块。
第七方面,提供一种网络设备,包括用于执行第三方面或其各种实现方式中的方法的模块。
第八方面,提供一种网络设备,包括用于执行第四方面或其各种实现方式中的方法的模块。
第九方面,提供一种计算机可读介质,所述计算机可读介质存储用于终端设备执行的程序代码,所述程序代码包括用于执行第一方面或其各种实现方式中的方法的指令。
第十方面,提供一种计算机可读介质,所述计算机可读介质存储用于网络设备执行的程序代码,所述程序代码包括用于执行第二方面或其各种实现方式中的方法的指令。
第十一方面,提供一种计算机可读介质,所述计算机可读介质存储用于终端设备执行的程序代码,所述程序代码包括用于执行第三方面或其各种实现方式中的方法的指令。
第十二方面,提供一种计算机可读介质,所述计算机可读介质存储用于网络设备执行的程序代码,所述程序代码包括用于执行第四方面或其各种实现方式中的方法的指令。
第十三方面,提供了一种系统芯片,该系统芯片包括输入接口、输出接口、处理器和存储器,该处理器用于执行该存储器中的代码,当该代码被执行时,该处理器可以实现前述第一方面及各种实现方式中的方法。
第十四方面,提供了一种系统芯片,该系统芯片包括输入接口、输出接口、处理器和存储器,该处理器用于执行该存储器中的代码,当该代码被执行时,该处理器可以实现前述第二方面及各种实现方式中的方法。
第十五方面,提供了一种系统芯片,该系统芯片包括输入接口、输出接口、处理器和存储器,该处理器用于执行该存储器中的代码,当该代码被执行时,该处理器可以实现前述第三方面及各种实现方式中的方法。
第十六方面,提供了一种系统芯片,该系统芯片包括输入接口、输出接口、处理器和存储器,该处理器用于执行该存储器中的代码,当该代码被执 行时,该处理器可以实现前述第四方面及各种实现方式中的方法。
附图说明
图1是本申请实施例的一种可能的应用场景的示意图。
图2是本申请实施例的发射波束和接收波束的示意性图。
图3是本申请实施例的通信方法的示意性流程图。
图4是本申请实施例的发射波束和接收波束的示意性图。
图5是本申请实施例的通信方法的示意性流程图。
图6是本申请实施例的发射波束和接收波束的示意性图。
图7是本申请实施例的通信方法的示意性流程图。
图8是本申请实施例的通信方法的示意性流程图。
图9是本申请实施例的终端设备的示意性框图。
图10是本申请实施例的终端设备的示意性框图。
图11是本申请实施例的网络设备的示意性框图。
图12是本申请实施例的网络设备的示意性框图。
图13是本申请实施例的终端设备的示意性框图。
图14是本申请实施例的终端设备的示意性框图。
图15是本申请实施例的网络设备的示意性框图。
图16是本申请实施例的网络设备的示意性框图。
图17是本申请实施例的系统芯片的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、LTE系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、NR(New Radio Access Technology)、 5G等。
还应理解,在本申请实施例中,终端设备可以包括但不限于移动台(Mobile Station,MS)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、用户设备(User Equipment,UE)、手机(handset)及便携设备(portable equipment)等,该终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
本申请实施例中,网络设备可以是接入网设备,例如可以是基站、发射和接收点(Transmit and Receive Point,TRP)或接入点,基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(evolved Node B,eNB或e-NodeB),还可以是NR或5G的基站(gNB),本申请实施例对此不作具体限定。另外,这里的5G系统或网络还可以称为新无线(New Radio,NR)系统或网络。
下面先结合图1和图2对本申请实施例可能的应用场景进行简单的介绍。
图1示出了本申请实施例应用的无线通信系统100。该无线通信系统100可以包括网络设备110,以及位于该网络设备覆盖范围内的至少一个终端设备120。网络设备110可以通过发射波束向终端设备120发送数据,终端设备120可以通过接收波束接收网络设备110发送的数据。
图2示出了本申请实施例的发射波束和接收波束的示意图,在图2中,网络设备有4个发射波束,终端设备有2个接收波束,网络设备可以通过这4个发射波束向终端设备发送数据,终端设备可以通过两个接收波束接收网络设备通过4个发射波束发送的数据。在传输数据时,通常每个发射波束对应的都有一个最佳接收波束,例如,发射波束T1对应的最佳接收波束为R1,发射波束T2对应的最佳接收波束为R2,如果采用接收波束R2接收发射波束T1发送的数据,那么接收效果会比较差,同样,如果采用接收波束R1接收发射波束T2发送的数据,那么接收效果也会比较差。如果采用接收波束R1接收发射波束T1和T2发送的数据,那么终端设备从T1接收数据的效果较好,但是从T2接收的数据的效果比较差,当发射波束T1和发射波束 T2对应的最佳接收波束均是R1时,采用接收波束R1接收发射波束T1和T2接收数据的效果较好。
当需要采用多个发射波束向终端设备联合传输数据时,例如,在图2中,当采用发射波束T1和T2联合传输数据时,终端设备只能采用一个接收波束接收发射波束T1和T2发送的数据,而这时T1和T2要分别与R1组成的波束对对应的信道质量较好,或者,T1和T2要分别与R2组成的波束对对应的信道质量较好,这样才能采用发射波束T1和T2向终端设备联合传输数据。
同样,以图2为例,当网络设备在发射波束T1和T2上分别向终端设备传输下行控制信息和下行数据时,如果终端设备分别在接收波束R1和R2上接收终端设备发送的下行控制信息和下行数据时,由于终端设备需要在接收波束R1上解调完下行控制信息之后将接收波束切换到R2来接收网络设备发送的下行数据,这需要一定的切换时间,很可能导致丢失部分下行数据。因此,在这种情况下终端设备也需要采用一个接收波束来接收两个发射波束T1和T2发送的下行控制信息和下行数据。
在通过多个波束联合传输数据的情况下,以及通过不同的波束分别传输控制信息和数据时的情况下都需要对发射波束进行分组,并且被分配到一组的发射波束可以对应同一个接收波束,利用该接收波束接收这一组发射波束的数据时接收的效果较好。
但是网络设备把哪些发射波束分成一组取决于终端设备上报的波束对的信息,下面就结合附图对本申请实施例中如何上报波束对的信息进行详细的描述。
图3是本申请实施例的通信方法的示意性流程图。图3的方法包括:
310、终端设备确定网络设备的M个发射波束与所述终端设备的N个接收波束组成的M×N个波束对对应的信道质量。
例如,如图4所示,网络设备包括3个收发点和接收点(Transmit and Receive Point,TRP),TRP1、TRP2和TRP3,其中,TRP1包括发射波束T1和T2,TRP2包括发射波束T3和T4,TRP3包括发射波束T5和T6。终端设备包括两个接收波束R1和R2。在图4中,网络设备一共有6个发射波束,终端设备一共有2个接收波束,网络设备的发射波束与终端设备的接收波束一共组成12个波束对。终端设备在通过不同的接收波束接收网络设备通过不同的发射波束发送的信号时,接收到信号的效果并不相同,也就是说 不同的波束对对应的信道质量不同。应理解,在图4中,每两个发射波束对应于一个TRP,事实上,在本申请实施例中,M个发射波束可以对应于同一个TRP,也可以对应于多个不同的TRP。
可选地,终端设备可以通过测量以不同接收波束来接收网络设备各个发射波束发送的测量信号的信号质量来确定上述M×N个波束对对应的信道质量。
具体地,以图4为例,终端设备可以先以接收波束R1来分别接收网络设备通过6个发射波束发送的测量信号,接下来,终端设备再以接收波束R2来接收网络设备通过6个发射波束发送的测量信号,并对接收到的测量信号进行测量以得到各个波束对对应的信道质量。
320、终端设备在M×N个波束对中确定L个波束对,其中,L个波束对中的任意一个波束对对应的信道质量大于或者等于所述M×N个波束对中除所述L个波束对之外的其它波束对对应的信道质量,其中,M和N为大于1的整数,L为小于M×N的整数。
可选地,上述L可以是预先配置的数值。也就是说终端设备可以按照信道质量在全部的波束对中选择一定数量的对应信道质量较好的波束对。L的大小可以是通信协议中规定的数值,也可以是网络设备为终端设备配置的数值,具体地,L可以是网络设备为终端设备静态配置(例如,可以在终端设备刚接入网络时就为终端设备配置)的数值,也可以是在终端设备需要上报波束对对应的信道质量之前通过指示信息为终端设备动态配置的数值。另外,应理解,上述L也可以等于M×N。
330、终端设备向网络设备发送上述L个波束对的标识信息。
应理解,终端设备可以自发地向网络设备发送波束对的标识信息,例如,终端设备可以周期性地向网络设备上报波束对的标识信息。
另外,终端设备也可以在收到网络设备的指示信息后再向网络设备发送波束对的标识信息。具体地,终端设备接收网络设备发送的上报指示信息,该上报指示信息用于指示终端设备向网络设备发送网络设备的发射波束与终端设备的接收波束组成的波束对的标识信息。在接收到该上报指示信息后,终端设备再向网络设备发送波束对的标识信息。
可选地,终端设备可以向网络设备发送上述L个波束对对应的信道质量信息。
应理解,终端设备在向网络设备上报信息时,可以只上报上述L个波束对的标识信息,也可以既上报L个波束对的标识信息,也上报L个波束对对应的信道质量信息。
以图4为例,终端设备可以按照信道质量在12个波束对中选择出对应的信道质量最好的6个波束对,并将该6个波束对的标识信息发送给网络设备。在图4中,发射波束的标识分别为T1、T2、T3、T4、T5和T6,接收波束的标识分别为R1和R2,终端设备上报的波束对的标识信息的具体可以是[T3 R1]、[T4 R1]、[T3 R2]、[T4 R2]、[T1 R1]和[T2 R2](当然,这里仅仅以这些波束对为例来说明标识信息,终端设备也可以上报其它6个波束对的标识信息)。
下面仍以图4为例对现有技术和本申请实施例的通信方法进行详细的介绍。在图4中,假设发射波束B1、B2、B5和B6与接收波束组成的波束对的信道质量较差,而只有发射波束B3和B4与接收波束组成的波束对的信道质量较好,其中,发射波束B3和B4与接收波束R1和R2组成的波束对对应的信道质量如下:
[B3 R1]1
[B3 R2]0.9
[B4 R1]0.8
[B4 R2]1
在现有技术中,终端设备只上报对应的信道质量较好的发射波束以及与该发射波束的最佳接收波束,具体地,终端设备只向网络设备上报波束对[B3 R1]和[B4 R2]的相关信息。当网络设备需要通过多个发射波束向终端设备的一个接收波束传输数据时,网络设备需要对发射波束进行分组,但是由于网络设备获取的信息非常有限(发射波束B3的最佳接收波束是R1,发射波束B4的最佳接收波束是R2),不能根据这些有限的信息将波束B3和B4划分成一组,进而在某些情况下无法实现采用多个发射波束向终端设备的同一个接收波束传输数据。
而在本申请实施例中,终端设备在选择要上报的波束对时根据的是各个波束对对应的信道质量,并从中选择对应信道质量较好的波束对,例如,具体地,终端设备可以将[B3 R1]、[B3 R2]、[B4 R1]以及[B4 R2]上报给网络设备,由于发射波束B3、B4与接收波束组成的波束对对应的信道质量都比较 好,因此,在需要采用两个发射波束联合向终端设备的同一个接收波束传输数据时,网络设备可以将B3和B4分成一组,并且这一组发射波束对应的接收波束既可以是接收波束R1也可以是接收波束R2。因此,本申请实施例中的通信方法与现有技术相比能够更好地上报波束对的信息,便于网络设备根据上报的波束对的信息对发射波束进行分组。
本申请实施例中,终端设备能够直接从全部波束对中选择信道质量较好的部分波束对,并将该部分波束对的标识信息上报给网络设备,使得网络设备能够获得信道质量较好的波束对的标识信息,并根据这些波束对的标识信息对发射波束进行合理的分组。
可选地,终端设备在确定L个波束对时可以先根据信道质量的大小对所述M×N个波束对进行排序,接下来,再根据排序结果在M×N个波束对中确定所述L个波束对。
在对M×N个波束对进行排序时可以按照信道质量从大到小的顺序,也可以按照信道质量从小到大的顺序进行,在排序完成后终端设备可以从所有的波束对中选择信道质量最好的L个波束对。例如,发射波束和接收波束一共组成10个波束对,那么可以先对这10个波束对按照信道质量从大到小进行排序后,然后再从这10个波束对中选择前5个对应信道质量较好的波束对。
可选地,终端设备在确定L个波束对时还可以按照波束对对应的信道质量与预设阈值的关系来选择L个波束对,例如,终端设备可以在上述M×N个波束对中选择信道质量大于第一阈值的L个波束对。在这种情况下,终端可以不按照波束对的信道质量对波束对进行排序,而是直接将各个波束对对应的信道质量与第一阈值进行比较,将对应信道质量大于第一阈值的波束对的信息上报即可,当然,终端设备也可以按照波束对的信道质量对波束对进行排序,然后再将各个波束对的信道质量与第一阈值进行比较,接下来再上报对应的信道质量大于第一阈值的波束对的信息。
如图4所示,网络设备的6个发射波束与终端设备的2个接收波束可以组成12个波束对,终端设备在确定要上报的波束对的信息之前,可以先对这12个波束对对应的信道质量进行排序,排序结果如下:
[T2 R1]1
[T3 R2]1
[T5 R1]0.9
[T6 R2]0.9
[T5 R2]0.8
[T6 R1]0.8
[T4 R2]0.2
[T1 R1]0.2
[T1 R2]0.1
[T2 R2]0.1
[T3 R1]0.1
[T4 R1]0.1
终端设备可以采用以下两种方式来确定要上报的波束对:
第一种方式:终端设备选择对应信道质量最好的6个波束对(此时L为6),这6个波束对以及这6个波束对对应的信道质量如下:
[T2 R1]1
[T3 R2]1
[T5 R1]0.9
[T6 R2]0.9
[T5 R2]0.8
[T6 R1]0.8
第二种方式:终端设备选择信道质量大于0.8的波束对(当第一阈值为0.8时对应的L为4,当第一阈值为小于0.8且大于0.2时对应的L为6),这4个波束对以及这4个波束对对应的信道质量如下:
[T2 R1]1
[T3 R2]1
[T5 R1]0.9
[T6 R2]0.9
应理解,在采用上述两种方式选择要上报的波束对之前可以按照信道质量对波束对进行排序,也可以不对波束对对应的信道质量进行排序而是直接选择要上报的波束对。
图5是本申请实施例的通信方法的示意性流程图。图5的方法包括:
510、终端设备在网络设备的M个发射波束中确定L个发射波束,
其中,L个发射波束中的任意一个发射波束与任意一个发射波束对应的第一接收波束组成的波束对对应的信道质量大于或者等于M个发射波束中除L个发射波束之外的其它发射波束与其它发射波束的第一接收波束组成的波束对对应的信道质量,其中,第一接收波束为接收发射波束发送的信号的质量满足预设阈值的接收波束或者接收发射波束发送的信号的质量最好的接收波束。
可选地,上述L可以是预先配置的数值。也就是说终端设备可以按照信道质量在全部的波束对中选择一定数量的对应信道质量较好的波束对。L的大小可以是通信协议中规定的数值,也可以是网络设备为终端设备配置的数值,具体地,L可以是网络设备为终端设备静态配置(例如,可以在终端设备刚接入网络时就为终端设备配置)的数值,也可以是在终端设备需要上报波束对对应的信道质量之前通过指示信息为终端设备动态配置的数值。另外,应理解,上述L也可以等于M×N。
应理解,终端设备可以从全部的发射波束中选择出对应信道质量较好的L个发射波束,该L个发射波束与第一接收波束组成的波束对对应的信道质量较好。
例如,如图4所示,共有6个发射波束,终端设备从发射波束T3和T4接收到的信号的质量大于终端设备从发射波束T1、T2、T5和T6接收到的信号的质量,那么终端设备可以从中选择出T3和T4这两个发射波束。
下面以发射波束T3为例对最佳接收波束进行说明,T3可以对应接收波束R1和R2,那么,只要[T3 R1]对应的信道质量大于[T3 R2]对应的信道质量,那么T3的最佳接收波束是R1。
520、终端设备在L个发射波束中的每个发射波束与N个接收波束组成的N个波束对中确定K个波束对,其中,K个波束对对应的信道质量大于N个波束对中除K个波束对之外的其它波束对对应的信道质量,其中,M和N为大于1的整数,L为小于M的整数,K为小于N的整数。
可选地,上述K可以是预先配置的数值。K的大小可以是通信协议中规定的数值,也可以是网络设备为终端设备配置的数值,具体地,K可以是网络设备为终端设备静态配置(例如,可以在终端设备刚接入网络时就为终端设备配置)的数值,也可以是在终端设备需要上报波束对对应的信道质量之前通过指示信息为终端设备动态配置的数值。另外,应理解,上述K也可以 等于N。
应理解,终端设备会从L个发射波束中的每个发射波束与接收波束组成的所有波束对中选择K个波束对,假设,一共有3个发射波束,那么终端设备会分别从这3个发射波束中的每一个发射波束与接收波束组成的所有波束对中选择K个波束对,另外,对于不同的发射波束来说K的取值可以不同,例如,可以从第一发射波束与接收波束组成的所有波束对中选择3个波束对(此时K取值为3),而对于第二发射波束来说,可以从该第二发射波束与接收波束组成的所有波束对中选择2个波束对(此时K取值为2)。
530、终端设备向网络设备发送每个发射波束对应的K个波束对的标识信息。
应理解,终端设备可以自发地向网络设备发送波束对的标识信息,例如,终端设备可以周期性地向网络设备上报波束对的标识信息。
另外,终端设备也可以在收到网络设备的指示信息后再向网络设备发送波束对的标识信息。具体地,终端设备接收网络设备发送的上报指示信息,该上报指示信息用于指示终端设备向网络设备发送网络设备的发射波束与终端设备的接收波束组成的波束对的标识信息。在接收到该上报指示信息后,终端设备再向网络设备发送波束对的标识信息。
在本申请实施例中,终端设备不仅上报接收测量信号较好的发射波束对应的最佳接收波束的信息,而且还可以上报发射波束对应的其它接收波束的信息,上报的波束对的信息更加全面,使得网络设备能够根据终端设备上报的波束对的信息对波束对进行合理的分组。
可选地,终端设备在确定上述K个波束对时可以先按照信道质量的大小对每个发射波束对应的N个波束对进行排序,接下来,终端设备再根据排序结果在N个波束对中确定所述K个波束对。
在对N个波束对进行排序时可以按照信道质量从大到小的顺序,也可以按照信道质量从小到大的顺序进行,在排序完成后终端设备可以从所有的波束对中选择信道质量最好的K个波束对。例如,某个发射波束与所有的接收波束一共组成5个波束对,那么可以先对这5个波束对按照信道质量从大到小进行排序后,然后再从这5个波束对中选择前3个对应信道质量较好的波束对。
可选地,终端设备在确定上述K个波束对时还可以直接在N个波束中 确定信道质量大于第一阈值的K个波束对。在这种情况下,终端可以不按照波束对的信道质量对波束对进行排序,而是直接将各个波束对对应的信道质量与第一阈值进行比较,将对应信道质量大于第一阈值的波束对的信息上报即可,当然,终端设备也可以按照波束对的信道质量对波束对进行排序,然后再将各个波束对的信道质量与第一阈值进行比较,接下来再上报对应的信道质量大于第一阈值的波束对的信息。
终端设备在确定上述K个波束对时,既可以从N个波束对中直接按照质量选择一定数量的波束对,也可以将N个波束对对应的信道质量与预设的阈值进行比较,也就是说终端设备在确定K个波束对可以只考虑数量,也可以只考虑波束对与预设阈值的大小关系。当然,终端设备在确定K个波束对时也可以同时考虑数量以及波束对对应的信道质量与预设阈值的关系。
下面以图6为例对本申请实施例中的通信方法进行详细的描述。在图6中,共有T1、T2、T3和T4这4个发射波束,以及R1、R2和R3这三个接收波束,发射波束和接收波束一共组成了12个波束对。其中,发射波束T3和T4与各自的最佳接收波束组成的波束对对应的信道质量大于发射波束T1和T2与各自的最佳接收波束组成的波束对对应的信道质量。
终端设备从全部的发射波束中确定出发射波束T3和T4,接下来再确定上报这两个发射波束对应的波束对。下面以发射波束T3为例对确定每个发射波束的波束对进行详细的说明。
发射波束T3一共对应3个接收波束,T3与这3个接收波束一共组成3个波束对,在从这3个波束对中确定要上报的波束对时,可以先对这三个波束对对应的信道质量按照从大到小进行排序,排序结果如下所示:
[T3 R1]1
[T3 R2]0.8
[T3 R3]0.5
接下来,终端设备可以从这3个波束对中选择2个波束对[T3 R1]和[T3 R2]进行上报(此时K的取值为2)。
或者,终端设备还可以从这3个波束对中选择对应的信道质量大于0.5的两个波束对[T3 R1]和[T3 R2]进行上报。
或者,终端设备还可以从这3个波束对中选择2个对应信道质量较好的波束对[T3 R1]和[T3 R2],然后再从这2个波束对中选择对应信道质量大于 0.9的波束对[T3 R1],并进行上报。或者,终端设备先从这3个波束对中选择出对应信道质量大于0.5的2个波束对([T3 R1]和[T3 R2]),然后再从中选择1个对应信道质量更好的波束对[T3 R1]进行上报。
上文结合图3至图6从终端设备的角度对本申请实施例的通信方法进行了详细的描述,下面结合图7和图8从网络设备的角度对本申请实施例的通信方法进行描述,应理解,图7和图8中从网络设备的角度描述的本申请实施例的通信方法与图3至图6中从终端设备的角度描述的本申请实施例的通信方法是对应的,为了简洁,下面适当省略重复的描述。
图7是本申请实施例的通信方法的示意性流程图。图7的方法700包括:
710、网络设备接收终端设备发送的L个波束对的标识信息,其中,所述L个波束对是所述终端设备在所述网络设备的M个发射波束与所述终端设备的N个接收波束组成的M×N个波束对中确定的波束对,所述L个波束对中的任意一个波束对对应的信道质量大于或者等于所述M×N个波束对中除所述L个波束对之外的其它波束对对应的信道质量,其中,M和N为大于1的整数,L为小于M×N的整数;
720、所述网络设备根据所述L个波束对的标识信息,对所述网络设备的发射波束进行分组。
本申请实施例中,终端设备直接从全部的波束对中选择信道质量较好的部分波束对,并将该部分波束对的标识信息上报给网络设备,使得网络设备能够获得信道质量较好的波束对的标识信息,并根据这些波束对的标识信息进行合理的分组。
可选地,作为一个实施例,所述网络设备根据所述L个波束对的标识信息,对所述网络设备的发射波束进行分组,包括:所述网络设备根据所述L个波束对的标识信息确定所述L个波束对中的多个发射波束;所述网络设备将所述多个发射波束中对应同一接收波束的发射波束划分成一组。
可选地,作为一个实施例,图7的方法700还包括:所述网络设备接收所述终端设备发送的所述L个波束对对应的信道质量信息。
可选地,作为一个实施例,图7的方法700还包括:所述网络设备向所述终端设备发送上报指示信息,所述上报指示信息用于指示所述终端设备向所述网络设备发送发射波束与接收波束组成的波束对的标识信息。
图8是本申请实施例的通信方法的示意性流程图。图8的方法800包括:
810、网络设备接收终端设备发送L个发射波束中的每个发射波束对应的K个波束对的标识信息,
其中,所述L个发射波束为所述终端设备在所述网络设备的M个发射波束中确定的多个发射波束,所述L个发射波束中的任意一个发射波束与所述任意一个发射波束对应的第一接收波束组成的波束对对应的信道质量大于或者等于所述M个发射波束中除所述L个发射波束之外的其它发射波束与所述其它发射波束的第一接收波束组成的波束对对应的信道质量,所述K个波束对为所述终端设备在所述L个发射波束中的每个发射波束与所述网络设备的N个接收波束组成的N个波束对中的部分波束对,所述K个波束对对应的信道质量大于所述L个发射波束中的每个发射波束与终端设备的N个接收波束组成的N个波束对中除所述K个波束对之外的其它波束对对应的信道质量,其中,所述第一接收波束为接收发射波束发送的信号的质量满足预设阈值的接收波束或者接收发射波束发送的信号的质量最好的接收波束,M和N为大于1的整数,L为小于M的整数,K为小于N的整数;
820、网络设备根据所述L个发射波束中的每个发射波束对应的K个波束对的标识信息,对所述网络设备的发射波束进行分组。
在本申请实施例中,终端设备不仅仅会上报接收测量信号较好的发射波束对应的最佳接收波束的标识信息,而且还可以上报发射波束对应的其它接收波束的标识信息,上报的波束对的信息更加全面,使得网络设备能够根据终端设备上报的波束对的信息对波束对进行合理的分组。
可选地,作为一个实施例,所述网络设备根据所述L个发射波束中的每个发射波束对应的K个波束对的标识信息,对所述网络设备的发射波束进行分组,包括:所述网络设备将所述L个发射波束中对应同一接收波束的发射波束划分成一组。
可选地,作为一个实施例,图8的方法800还包括:所述网络设备接收所述终端设备发送的所述每个发射波束对应的K个波束对对应的信道质量信息。
可选地,作为一个实施例,图8的方法800还包括:所述网络设备向所述终端设备发送上报指示信息,所述上报指示信息用于指示所述终端设备向所述网络设备发送所述发射波束与所述接收波束组成的波束对的标识信息。
上文结合图3至图8,详细的描述了根据本申请实施例的通信方法,下面 将结合图9至图16,描述本申请实施例的终端设备和网络设备。
应理解,图9至图16描述的终端设备和网络设备能够实现图3至图8中描述的通信方法的各个步骤,为了简洁,适当省略重复的描述。
图9是本申请实施例的终端设备的示意性框图。图9的终端设备900包括:
处理模块910,用于确定网络设备的M个发射波束与所述终端设备900的N个接收波束组成的M×N个波束对对应的信道质量;
所述处理模块910还用于在所述M×N个波束对中确定L个波束对,其中,所述L个波束对中的任意一个波束对对应的信道质量大于或者等于所述M×N个波束对中除所述L个波束对之外的其它波束对对应的信道质量,其中,M和N为大于1的整数,L为小于M×N的整数;
通信模块920,所述终端设备900向所述网络设备发送所述L个波束对的标识信息。
可选的,作为一个实施例,所述处理模块910具体用于:根据信道质量的大小对所述M×N个波束对进行排序;根据排序结果在所述M×N个波束对中确定所述L个波束对。
可选的,作为一个实施例,所述处理模块910具体用于:在所述M×N个波束对中确定信道质量大于第一阈值的所述L个波束对。
可选的,作为一个实施例,所述通信模块920还用于向所述网络设备发送所述L个波束对对应的信道质量信息。
可选的,作为一个实施例,所述通信模块920还用于:接收所述网络设备发送的上报指示信息,所述上报指示信息用于指示所述终端设备900向所述网络设备发送所述网络设备的发射波束与所述终端设备900的接收波束组成的波束对的标识信息。
图10是本申请实施例的终端设备的示意性框图。图10的终端设备1000包括:
处理模块1010,用于在网络设备的M个发射波束中确定L个发射波束,其中,所述L个发射波束中的任意一个发射波束与所述任意一个发射波束对应的第一接收波束组成的波束对对应的信道质量大于或者等于所述M个发射波束中除所述L个发射波束之外的其它发射波束与所述其它发射波束的第一接收波束组成的波束对对应的信道质量,其中,所述第一接收波束为接 收发射波束发送的信号的质量满足预设阈值的接收波束或者接收发射波束发送的信号的质量最好的接收波束;
所述处理模块1010还用于在所述L个发射波束中的每个发射波束与N个接收波束组成的N个波束对中确定K个波束对,其中,所述K个波束对对应的信道质量大于所述N个波束对中除所述K个波束对之外的其它波束对对应的信道质量,其中,M和N为大于1的整数,L为小于M的整数,K为小于N的整数;
通信模块1020,用于向所述网络设备发送所述每个发射波束对应的K个波束对的标识信息。
可选的,作为一个实施例,所述处理模块1010具体用于:按照信道质量的大小对所述N个波束对进行排序;根据排序结果在所述N个波束对中确定所述K个波束对。
可选的,作为一个实施例,所述处理模块1010具体用于:在所述N个波束中确定信道质量大于第一阈值的所述K个波束对。
可选的,作为一个实施例,所述处理模块1010具体用于:按照信道质量的大小对所述N个波束对进行排序;从所述N个波束对中选择所述K个波束对,其中,所述K个波束对对应的信道质量大于第二阈值,且K小于等于预设的第一数值,所述第一数值为小于N的整数。
可选的,作为一个实施例,所述通信模块1020还用于向所述网络设备发送所述每个发射波束对应的K个波束对对应的信道质量信息。
可选的,作为一个实施例,所述通信模块1020还用于接收所述网络设备发送的上报指示信息,所述上报指示信息用于指示所述终端设备1000上报所述发射波束与所述接收波束组成的波束对的标识信息。
图11是本申请实施例的网络设备的示意性框图。图11的网络设备1100包括:
通信模块1110,用于接收终端设备发送的L个波束对的标识信息,
其中,所述L个波束对是所述终端设备在所述网络设备1100的M个发射波束与所述终端设备的N个接收波束组成的M×N个波束对中确定的波束对,所述L个波束对中任意一个波束对对应的信道质量大于或者等于所述M×N个波束对中除所述L个波束对之外的其它波束对对应的信道质量,其中,M和N为大于1的整数,L为小于M×N的整数;
处理模块1120,用于根据所述L个波束对的标识信息,对所述网络设备1100的发射波束进行分组。
可选的,作为一个实施例,所述处理模块1120具体用于:根据所述L个波束对的标识信息确定所述L个波束对中的多个发射波束;将所述多个发射波束中对应同一接收波束的发射波束划分成一组。
可选的,作为一个实施例,所述通信模块1110还用于接收所述终端设备发送的所述L个波束对对应的信道质量信息。
可选的,作为一个实施例,所述通信模块1110还用于向所述终端设备发送上报指示信息,所述上报指示信息用于指示所述终端设备向所述网络设备1100发送发射波束与接收波束组成的波束对的标识信息。
图12是本申请实施例的网络设备的示意性框图。图12的网路设备1200包括:
通信模块1210,用于接收终端设备发送L个发射波束中的每个发射波束对应的K个波束对的标识信息,
其中,所述L个发射波束为所述终端设备在所述网络设备1200的M个发射波束中确定的多个发射波束,所述L个发射波束中的任意一个发射波束与所述任意一个发射波束对应的第一接收波束组成的波束对对应的信道质量大于或者等于所述M个发射波束中除所述L个发射波束之外的其它发射波束与所述其它发射波束的第一接收波束组成的波束对对应的信道质量,所述K个波束对为所述终端设备在所述L个发射波束中的每个发射波束与所述网络设备1200的N个接收波束组成的N个波束对中的部分波束对,所述K个波束对对应的信道质量大于所述L个发射波束中的每个发射波束与终端设备的N个接收波束组成的N个波束对中除所述K个波束对之外的其它波束对对应的信道质量,其中,所述第一接收波束为接收发射波束发送的信号的质量满足预设阈值的接收波束或者接收发射波束发送的信号的质量最好的接收波束,M和N为大于1的整数,L为小于M的整数,K为小于N的整数;
处理模块1220,用于根据所述L个发射波束中的每个发射波束对应的K个波束对的标识信息,对所述网络设备1200的发射波束进行分组。
可选的,作为一个实施例,所述处理模块1220具体用于:将所述L个发射波束中对应同一接收波束的发射波束划分成一组。
可选的,作为一个实施例,所述通信模块1210还用于接收所述终端设备发送的所述每个发射波束对应的K个波束对对应的信道质量信息。
可选的,作为一个实施例,所述通信模块1210还用于向所述终端设备发送上报指示信息,所述上报指示信息用于指示所述终端设备向所述网络设备1200发送所述发射波束与所述接收波束组成的波束对的标识信息。
图13是本申请实施例的终端设备的示意性框图。图13的终端设备1300包括:
处理器1310,用于确定网络设备的M个发射波束与所述终端设备1300的N个接收波束组成的M×N个波束对对应的信道质量;
所述处理模块还用于在所述M×N个波束对中确定L个波束对,其中,所述L个波束对中的任意一个波束对对应的信道质量大于或者等于所述M×N个波束对中除所述L个波束对之外的其它波束对对应的信道质量,其中,M和N为大于1的整数,L为小于M×N的整数;
收发器1320,所述终端设备1300向所述网络设备发送所述L个波束对的标识信息。
可选的,作为一个实施例,所述处理器1310具体用于:根据信道质量的大小对所述M×N个波束对进行排序;根据排序结果在所述M×N个波束对中确定所述L个波束对。
可选的,作为一个实施例,所述处理器1310具体用于:在所述M×N个波束对中确定信道质量大于第一阈值的所述L个波束对。
可选的,作为一个实施例,所述收发器1320还用于向所述网络设备发送所述L个波束对对应的信道质量信息。
可选的,作为一个实施例,所述收发器1320还用于:接收所述网络设备发送的上报指示信息,所述上报指示信息用于指示所述终端设备1300向所述网络设备发送所述网络设备的发射波束与所述终端设备1300的接收波束组成的波束对的标识信息。
图14是本申请实施例的终端设备的示意性框图。图14的终端设备1400包括:
处理器1410,用于在网络设备的M个发射波束中确定L个发射波束,其中,所述L个发射波束中的任意一个发射波束与所述任意一个发射波束对应的第一接收波束组成的波束对对应的信道质量大于或者等于所述M个发 射波束中除所述L个发射波束之外的其它发射波束与所述其它发射波束的第一接收波束组成的波束对对应的信道质量,其中,所述第一接收波束为接收发射波束发送的信号的质量满足预设阈值的接收波束或者接收发射波束发送的信号的质量最好的接收波束;
所述处理器1410还用于在所述L个发射波束中的每个发射波束与N个接收波束组成的N个波束对中确定K个波束对,其中,所述K个波束对对应的信道质量大于所述N个波束对中除所述K个波束对之外的其它波束对对应的信道质量,其中,M和N为大于1的整数,L为小于M的整数,K为小于N的整数;
收发器1420,用于向所述网络设备发送所述每个发射波束对应的K个波束对的标识信息。
可选的,作为一个实施例,所述处理器1410具体用于:按照信道质量的大小对所述N个波束对进行排序;根据排序结果在所述N个波束对中确定所述K个波束对。
可选的,作为一个实施例,所述处理器1410具体用于:在所述N个波束中确定信道质量大于第一阈值的所述K个波束对。
可选的,作为一个实施例,所述处理器1410具体用于:按照信道质量的大小对所述N个波束对进行排序;从所述N个波束对中选择所述K个波束对,其中,所述K个波束对对应的信道质量大于第二阈值,且K小于等于预设的第一数值,所述第一数值为小于N的整数。
可选的,作为一个实施例,所述收发器1420还用于向所述网络设备发送所述每个发射波束对应的K个波束对对应的信道质量信息。
可选的,作为一个实施例,所述收发器1420还用于接收所述网络设备发送的上报指示信息,所述上报指示信息用于指示所述终端设备1400上报所述发射波束与所述接收波束组成的波束对的标识信息。
图15是本申请实施例的网络设备的示意性框图。图15的网络设备1500包括:
收发器1510,用于接收终端设备发送的L个波束对的标识信息,
其中,所述L个波束对是所述终端设备在所述网络设备1500的M个发射波束与所述终端设备的N个接收波束组成的M×N个波束对中确定的波束对,所述L个波束对中任意一个波束对对应的信道质量大于或者等于所述 M×N个波束对中除所述L个波束对之外的其它波束对对应的信道质量,其中,M和N为大于1的整数,L为小于M×N的整数;
处理器1520,用于根据所述L个波束对的标识信息,对所述网络设备1500的发射波束进行分组。
可选的,作为一个实施例,所述处理器1520具体用于:根据所述L个波束对的标识信息确定所述L个波束对中的多个发射波束;将所述多个发射波束中对应同一接收波束的发射波束划分成一组。
可选的,作为一个实施例,所述收发器1510还用于接收所述终端设备发送的所述L个波束对对应的信道质量信息。
可选的,作为一个实施例,所述收发器1510还用于向所述终端设备发送上报指示信息,所述上报指示信息用于指示所述终端设备向所述网络设备1500发送发射波束与接收波束组成的波束对的标识信息。
图16是本申请实施例的网络设备的示意性框图。图16的网路设备1600包括:
收发器1610,用于接收终端设备发送L个发射波束中的每个发射波束对应的K个波束对的标识信息,
其中,所述L个发射波束为所述终端设备在所述网络设备1600的M个发射波束中确定的多个发射波束,所述L个发射波束中的任意一个发射波束与所述任意一个发射波束对应的第一接收波束组成的波束对对应的信道质量大于或者等于所述M个发射波束中除所述L个发射波束之外的其它发射波束与所述其它发射波束的第一接收波束组成的波束对对应的信道质量,所述K个波束对为所述终端设备在所述L个发射波束中的每个发射波束与所述网络设备1600的N个接收波束组成的N个波束对中的部分波束对,所述K个波束对对应的信道质量大于所述L个发射波束中的每个发射波束与终端设备的N个接收波束组成的N个波束对中除所述K个波束对之外的其它波束对对应的信道质量,其中,所述第一接收波束为接收发射波束发送的信号的质量满足预设阈值的接收波束或者接收发射波束发送的信号的质量最好的接收波束,M和N为大于1的整数,L为小于M的整数,K为小于N的整数;
处理器1620,用于根据所述L个发射波束中的每个发射波束对应的K个波束对的标识信息,对所述网络设备1600的发射波束进行分组。
可选的,作为一个实施例,所述处理器1620具体用于:将所述L个发射波束中对应同一接收波束的发射波束划分成一组。
可选的,作为一个实施例,所述收发器1610还用于接收所述终端设备发送的所述每个发射波束对应的K个波束对对应的信道质量信息。
可选的,作为一个实施例,所述收发器1610还用于向所述终端设备发送上报指示信息,所述上报指示信息用于指示所述终端设备向所述网络设备1600发送所述发射波束与所述接收波束组成的波束对的标识信息。
图17是本申请实施例的系统芯片的一个示意性结构图。图17的系统芯片1700包括输入接口1701、输出接口1702、所述处理器1703以及存储器1704之间通过总线1705相连,所述处理器1703用于执行所述存储器1704中的代码。
可选地,当所述代码被执行时,所述处理器1703实现本申请方法实施例中由终端设备执行的方法。为了简洁,在此不再赘述。
可选地,当所述代码被执行时,所述处理器1703实现方法实施例中由网络设备执行的方法。为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (38)

  1. 一种通信方法,其特征在于,包括:
    终端设备确定网络设备的M个发射波束与所述终端设备的N个接收波束组成的M×N个波束对对应的信道质量;
    所述终端设备在所述M×N个波束对中确定L个波束对,其中,所述L个波束对中的任意一个波束对对应的信道质量大于或者等于所述M×N个波束对中除所述L个波束对之外的其它波束对对应的信道质量,其中,M和N为大于1的整数,L为小于M×N的整数;
    所述终端设备向所述网络设备发送所述L个波束对的标识信息。
  2. 如权利要求1所述的方法,其特征在于,所述终端设备在所述M×N个波束对中确定L个波束对,包括:
    所述终端设备根据信道质量的大小对所述M×N个波束对进行排序;
    所述终端设备根据排序结果在所述M×N个波束对中确定所述L个波束对。
  3. 如权利要求1所述的方法,其特征在于,所述终端设备在所述M×N个波束对中确定L个波束对,包括:
    所述终端设备在所述M×N个波束对中确定信道质量大于第一阈值的所述L个波束对。
  4. 如权利要求1-3中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送所述L个波束对对应的信道质量信息。
  5. 如权利要求1-4中任一项所述的方法,所述方法还包括:
    所述终端设备接收所述网络设备发送的上报指示信息,所述上报指示信息用于指示所述终端设备向所述网络设备发送所述网络设备的发射波束与所述终端设备的接收波束组成的波束对的标识信息。
  6. 一种通信方法,其特征在于,包括:
    终端设备在网络设备的M个发射波束中确定L个发射波束,其中,所述L个发射波束中的任意一个发射波束与所述任意一个发射波束对应的第一接收波束组成的波束对对应的信道质量大于或者等于所述M个发射波束中除所述L个发射波束之外的其它发射波束与所述其它发射波束的第一接 收波束组成的波束对对应的信道质量,其中,所述第一接收波束为接收发射波束发送的信号的质量满足预设阈值的接收波束或者接收发射波束发送的信号的质量最好的接收波束;
    所述终端设备在所述L个发射波束中的每个发射波束与N个接收波束组成的N个波束对中确定K个波束对,其中,所述K个波束对对应的信道质量大于所述N个波束对中除所述K个波束对之外的其它波束对对应的信道质量,其中,M和N为大于1的整数,L为小于M的整数,K为小于N的整数;
    所述终端设备向所述网络设备发送所述每个发射波束对应的K个波束对的标识信息。
  7. 如权利要求6所述的方法,其特征在于,所述终端设备在所述L个发射波束中的每个发射波束对应的N个波束对中确定K个波束对,包括:
    所述终端设备按照信道质量的大小对所述N个波束对进行排序;
    所述终端设备根据排序结果在所述N个波束对中确定所述K个波束对。
  8. 如权利要求6所述的方法,其特征在于,所述终端设备在所述L个发射波束中的每个发射波束组成的N个波束对中确定K个波束对,包括:
    所述终端设备在所述N个波束中确定信道质量大于第一阈值的所述K个波束对。
  9. 如权利要求6所述的方法,其特征在于,所述终端设备在所述L个发射波束中的每个发射波束对应的N个波束对中确定K个波束对,包括:
    所述终端设备按照信道质量的大小对所述N个波束对进行排序;
    所述终端设备从所述N个波束对中选择所述K个波束对,其中,所述K个波束对对应的信道质量大于第二阈值,且K小于等于预设的第一数值,所述第一数值为小于N的整数。
  10. 如权利要求6-9中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送所述每个发射波束对应的K个波束对对应的信道质量信息。
  11. 如权利要求6-10中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的上报指示信息,所述上报指示信 息用于指示所述终端设备上报所述发射波束与所述接收波束组成的波束对的标识信息。
  12. 一种通信方法,其特征在于,包括:
    网络设备接收终端设备发送的L个波束对的标识信息,
    其中,所述L个波束对是所述终端设备在所述网络设备的M个发射波束与所述终端设备的N个接收波束组成的M×N个波束对中确定的波束对,所述L个波束对中的任意一个波束对对应的信道质量大于或者等于所述M×N个波束对中除所述L个波束对之外的其它波束对对应的信道质量,其中,M和N为大于1的整数,L为小于M×N的整数;
    所述网络设备根据所述L个波束对的标识信息,对所述网络设备的发射波束进行分组。
  13. 如权利要求12所述的方法,其特征在于,所述网络设备根据所述L个波束对的标识信息,对所述网络设备的发射波束进行分组,包括:
    所述网络设备根据所述L个波束对的标识信息确定所述L个波束对中的多个发射波束;
    所述网络设备将所述多个发射波束中对应同一接收波束的发射波束划分成一组。
  14. 如权利要求12或13所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备发送的所述L个波束对对应的信道质量信息。
  15. 如权利要求12-14中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送上报指示信息,所述上报指示信息用于指示所述终端设备向所述网络设备发送发射波束与接收波束组成的波束对的标识信息。
  16. 一种通信方法,其特征在于,包括:
    网络设备接收终端设备发送L个发射波束中的每个发射波束对应的K个波束对的标识信息,
    其中,所述L个发射波束为所述终端设备在所述网络设备的M个发射波束中确定的多个发射波束,所述L个发射波束中的任意一个发射波束与所述任意一个发射波束对应的第一接收波束组成的波束对对应的信道质量大 于或者等于所述M个发射波束中除所述L个发射波束之外的其它发射波束与所述其它发射波束的第一接收波束组成的波束对对应的信道质量,所述K个波束对为所述终端设备在所述L个发射波束中的每个发射波束与所述网络设备的N个接收波束组成的N个波束对中的部分波束对,所述K个波束对对应的信道质量大于所述L个发射波束中的每个发射波束与终端设备的N个接收波束组成的N个波束对中除所述K个波束对之外的其它波束对对应的信道质量,其中,所述第一接收波束为接收发射波束发送的信号的质量满足预设阈值的接收波束或者接收发射波束发送的信号的质量最好的接收波束,M和N为大于1的整数,L为小于M的整数,K为小于N的整数;
    所述网络设备根据所述L个发射波束中的每个发射波束对应的K个波束对的标识信息,对所述网络设备的发射波束进行分组。
  17. 如权利要求16所述的方法,其特征在于,所述网络设备根据所述L个发射波束中的每个发射波束对应的K个波束对的标识信息,对所述网络设备的发射波束进行分组,包括:
    所述网络设备将所述L个发射波束中对应同一接收波束的发射波束划分成一组。
  18. 如权利要求16或17所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备发送的所述每个发射波束对应的K个波束对对应的信道质量信息。
  19. 如权利要求16-18中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送上报指示信息,所述上报指示信息用于指示所述终端设备向所述网络设备发送所述发射波束与所述接收波束组成的波束对的标识信息。
  20. 一种终端设备,其特征在于,包括:
    处理模块,用于确定网络设备的M个发射波束与所述终端设备的N个接收波束组成的M×N个波束对对应的信道质量;
    所述处理模块还用于在所述M×N个波束对中确定L个波束对,其中,所述L个波束对中的任意一个波束对对应的信道质量大于或者等于所述M×N个波束对中除所述L个波束对之外的其它波束对对应的信道质量,其中,M和N为大于1的整数,L为小于M×N的整数;
    通信模块,所述终端设备向所述网络设备发送所述L个波束对的标识信息。
  21. 如权利要求20所述的终端设备,其特征在于,所述处理模块具体用于:
    根据信道质量的大小对所述M×N个波束对进行排序;
    根据排序结果在所述M×N个波束对中确定所述L个波束对。
  22. 如权利要求20所述的终端设备,其特征在于,所述处理模块具体用于:
    在所述M×N个波束对中确定信道质量大于第一阈值的所述L个波束对。
  23. 如权利要求20-22中任一项所述的终端设备,其特征在于,所述通信模块还用于向所述网络设备发送所述L个波束对对应的信道质量信息。
  24. 如权利要求20-23中任一项所述的终端设备,所述通信模块还用于:
    接收所述网络设备发送的上报指示信息,所述上报指示信息用于指示所述终端设备向所述网络设备发送所述网络设备的发射波束与所述终端设备的接收波束组成的波束对的标识信息。
  25. 一种终端设备,其特征在于,包括:
    处理模块,用于在网络设备的M个发射波束中确定L个发射波束,其中,所述L个发射波束中的任意一个发射波束与所述任意一个发射波束对应的第一接收波束组成的波束对对应的信道质量大于或者等于所述M个发射波束中除所述L个发射波束之外的其它发射波束与所述其它发射波束的第一接收波束组成的波束对对应的信道质量,其中,所述第一接收波束为接收发射波束发送的信号的质量满足预设阈值的接收波束或者接收发射波束发送的信号的质量最好的接收波束;
    所述处理模块还用于在所述L个发射波束中的每个发射波束与N个接收波束组成的N个波束对中确定K个波束对,其中,所述K个波束对对应的信道质量大于所述N个波束对中除所述K个波束对之外的其它波束对对应的信道质量,其中,M和N为大于1的整数,L为小于M的整数,K为小于N的整数;
    通信模块,用于向所述网络设备发送所述每个发射波束对应的K个波束对的标识信息。
  26. 如权利要求25所述的终端设备,其特征在于,所述处理模块具体 用于:
    按照信道质量的大小对所述N个波束对进行排序;
    根据排序结果在所述N个波束对中确定所述K个波束对。
  27. 如权利要求25所述的终端设备,其特征在于,所述处理模块具体用于:
    在所述N个波束中确定信道质量大于第一阈值的所述K个波束对。
  28. 如权利要求25所述的终端设备,其特征在于,所述处理模块具体用于:
    按照信道质量的大小对所述N个波束对进行排序;
    从所述N个波束对中选择所述K个波束对,其中,所述K个波束对对应的信道质量大于第二阈值,且K小于等于预设的第一数值,所述第一数值为小于N的整数。
  29. 如权利要求25-28中任一项所述的终端设备,其特征在于,所述通信模块还用于向所述网络设备发送所述每个发射波束对应的K个波束对对应的信道质量信息。
  30. 如权利要求25-29中任一项所述的终端设备,其特征在于,所述通信模块还用于接收所述网络设备发送的上报指示信息,所述上报指示信息用于指示所述终端设备上报所述发射波束与所述接收波束组成的波束对的标识信息。
  31. 一种网络设备,其特征在于,包括:
    通信模块,用于接收终端设备发送的L个波束对的标识信息,
    其中,所述L个波束对是所述终端设备在所述网络设备的M个发射波束与所述终端设备的N个接收波束组成的M×N个波束对中确定的波束对,所述L个波束对中任意一个波束对对应的信道质量大于或者等于所述M×N个波束对中除所述L个波束对之外的其它波束对对应的信道质量,其中,M和N为大于1的整数,L为小于M×N的整数;
    处理模块,用于根据所述L个波束对的标识信息,对所述网络设备的发射波束进行分组。
  32. 如权利要求31所述的网络设备,其特征在于,所述处理模块具体用于:
    根据所述L个波束对的标识信息确定所述L个波束对中的多个发射波 束;
    将所述多个发射波束中对应同一接收波束的发射波束划分成一组。
  33. 如权利要求31或32所述的网络设备,其特征在于,所述通信模块还用于接收所述终端设备发送的所述L个波束对对应的信道质量信息。
  34. 如权利要求31-33中任一项所述的网络设备,其特征在于,所述通信模块还用于向所述终端设备发送上报指示信息,所述上报指示信息用于指示所述终端设备向所述网络设备发送发射波束与接收波束组成的波束对的标识信息。
  35. 一种网络设备,其特征在于,包括:
    通信模块,用于接收终端设备发送L个发射波束中的每个发射波束对应的K个波束对的标识信息,
    其中,所述L个发射波束为所述终端设备在所述网络设备的M个发射波束中确定的多个发射波束,所述L个发射波束中的任意一个发射波束与所述任意一个发射波束对应的第一接收波束组成的波束对对应的信道质量大于或者等于所述M个发射波束中除所述L个发射波束之外的其它发射波束与所述其它发射波束的第一接收波束组成的波束对对应的信道质量,所述K个波束对为所述终端设备在所述L个发射波束中的每个发射波束与所述网络设备的N个接收波束组成的N个波束对中的部分波束对,所述K个波束对对应的信道质量大于所述L个发射波束中的每个发射波束与终端设备的N个接收波束组成的N个波束对中除所述K个波束对之外的其它波束对对应的信道质量,其中,所述第一接收波束为接收发射波束发送的信号的质量满足预设阈值的接收波束或者接收发射波束发送的信号的质量最好的接收波束,M和N为大于1的整数,L为小于M的整数,K为小于N的整数;
    处理模块,用于根据所述L个发射波束中的每个发射波束对应的K个波束对的标识信息,对所述网络设备的发射波束进行分组。
  36. 如权利要求35所述的网络设备,其特征在于,所述处理模块具体用于:
    将所述L个发射波束中对应同一接收波束的发射波束划分成一组。
  37. 如权利要求35或36所述的网络设备,其特征在于,所述通信模块还用于接收所述终端设备发送的所述每个发射波束对应的K个波束对对应 的信道质量信息。
  38. 如权利要求35-37中任一项所述的网络设备,其特征在于,所述通信模块还用于向所述终端设备发送上报指示信息,所述上报指示信息用于指示所述终端设备向所述网络设备发送所述发射波束与所述接收波束组成的波束对的标识信息。
PCT/CN2017/000078 2017-01-03 2017-01-03 通信方法、终端设备和网络设备 WO2018126343A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2017/000078 WO2018126343A1 (zh) 2017-01-03 2017-01-03 通信方法、终端设备和网络设备
US16/475,337 US20190342871A1 (en) 2017-01-03 2017-01-03 Communication method, terminal device and network device
CN201780080503.6A CN110114985A (zh) 2017-01-03 2017-01-03 通信方法、终端设备和网络设备
EP17889714.6A EP3565138B1 (en) 2017-01-03 2017-01-03 Communication method, terminal device and network device
IL267718A IL267718B (en) 2017-01-03 2017-01-03 A method of communication, a terminal device and a network device
TW106144946A TW201826738A (zh) 2017-01-03 2017-12-21 通信方法、終端設備和網絡設備
PH12019501553A PH12019501553A1 (en) 2017-01-03 2019-07-02 Communication method, terminal device and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/000078 WO2018126343A1 (zh) 2017-01-03 2017-01-03 通信方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2018126343A1 true WO2018126343A1 (zh) 2018-07-12

Family

ID=62788974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/000078 WO2018126343A1 (zh) 2017-01-03 2017-01-03 通信方法、终端设备和网络设备

Country Status (7)

Country Link
US (1) US20190342871A1 (zh)
EP (1) EP3565138B1 (zh)
CN (1) CN110114985A (zh)
IL (1) IL267718B (zh)
PH (1) PH12019501553A1 (zh)
TW (1) TW201826738A (zh)
WO (1) WO2018126343A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022012522A1 (zh) * 2020-07-14 2022-01-20 华为技术有限公司 测量方法和终端设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109756279B (zh) * 2017-11-03 2021-08-31 大唐移动通信设备有限公司 一种波束检测方法及装置
CN110753400A (zh) * 2018-07-24 2020-02-04 索尼公司 用户设备、电子设备、无线通信方法和存储介质
US11856391B2 (en) * 2020-04-17 2023-12-26 Qualcomm Incorporated Reusing a cross link interference framework for self-interference measurement
WO2022015031A1 (en) * 2020-07-13 2022-01-20 Samsung Electronics Co., Ltd. Method and apparatus for selecting beam pairs in a beamforming based communication system
US20230155651A1 (en) * 2021-11-17 2023-05-18 Qualcomm Incorporated Adaptive beamforming from a configured beam subset

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150244432A1 (en) * 2012-05-22 2015-08-27 Mediatek Singapore Pte. Ltd. Method and Apparatus of Beam Training for MIMO Operation and Multiple Antenna Beamforming Operation
WO2015139208A1 (zh) * 2014-03-18 2015-09-24 华为技术有限公司 定向方向选择方法、装置及系统
CN105379140A (zh) * 2013-07-08 2016-03-02 三星电子株式会社 用于在使用波束成形的通信系统中发送和接收数据的方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9237475B2 (en) * 2012-03-09 2016-01-12 Samsung Electronics Co., Ltd. Channel quality information and beam index reporting
CN110602721B (zh) * 2013-08-20 2021-08-13 华为技术有限公司 通信方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150244432A1 (en) * 2012-05-22 2015-08-27 Mediatek Singapore Pte. Ltd. Method and Apparatus of Beam Training for MIMO Operation and Multiple Antenna Beamforming Operation
CN105379140A (zh) * 2013-07-08 2016-03-02 三星电子株式会社 用于在使用波束成形的通信系统中发送和接收数据的方法和装置
WO2015139208A1 (zh) * 2014-03-18 2015-09-24 华为技术有限公司 定向方向选择方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3565138A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022012522A1 (zh) * 2020-07-14 2022-01-20 华为技术有限公司 测量方法和终端设备

Also Published As

Publication number Publication date
EP3565138A1 (en) 2019-11-06
CN110114985A (zh) 2019-08-09
EP3565138A4 (en) 2020-01-08
PH12019501553A1 (en) 2020-06-01
EP3565138B1 (en) 2021-07-07
US20190342871A1 (en) 2019-11-07
TW201826738A (zh) 2018-07-16
IL267718B (en) 2022-06-01

Similar Documents

Publication Publication Date Title
WO2018126343A1 (zh) 通信方法、终端设备和网络设备
US20210273711A1 (en) Wireless communication method and device
CN110880958B (zh) 一种射频参数的上报方法及装置
WO2020063502A1 (zh) 无线资源管理rrm测量的方法和装置
AU2016427904B2 (en) Beam measurement method and apparatus
US11564228B2 (en) Method for transmitting reference signal, network device, and terminal device
US11811481B2 (en) Beam training method and device, communication system
EP3996416A1 (en) Switching method and communication apparatus
US20210410142A1 (en) Communication Method and Device
US20210160899A1 (en) Resource Use Status Reporting Method and Communications Apparatus
WO2018145313A1 (zh) 无线通信方法、终端设备和网络设备
US20180145736A1 (en) Method for Transmitting Channel State Information and Transmission Device
CN108631841B (zh) 一种发送波束确定方法、发送端和接收端
CN110535579B (zh) 下行数据的传输方法、网络设备及终端
JP2023532803A (ja) ビーム指示方法、ネットワークデバイス、端末、装置及び記憶媒体
CN112054831B (zh) 信道状态信息的反馈方法及装置
US20230036406A1 (en) Method of codebook sounding reference signal (srs) antenna mapping to improve uplink performance
US11206566B2 (en) Method for downlink signal transmission, terminal device and network device
CN111565434B (zh) 一种通信方法和接入网设备
US10673495B2 (en) Antenna port configuration method and apparatus
CN109714780A (zh) 通信方法、终端和接入网设备
US20190280754A1 (en) Channel state information obtaining method and device
EP4319248A1 (en) Measurement reporting method and apparatus
TWI718381B (zh) 一種指示導頻預編碼方式的方法、網路側設備及終端
US20240340675A1 (en) Group channel state information (csi) reporting enhancement for multi-rx chain capable ue

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889714

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 267718

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017889714

Country of ref document: EP

Effective date: 20190729