WO2018124841A1 - Real-time seizure brainwave early detection method - Google Patents

Real-time seizure brainwave early detection method Download PDF

Info

Publication number
WO2018124841A1
WO2018124841A1 PCT/KR2018/000014 KR2018000014W WO2018124841A1 WO 2018124841 A1 WO2018124841 A1 WO 2018124841A1 KR 2018000014 W KR2018000014 W KR 2018000014W WO 2018124841 A1 WO2018124841 A1 WO 2018124841A1
Authority
WO
WIPO (PCT)
Prior art keywords
seizure
eeg
real
frequency band
specific frequency
Prior art date
Application number
PCT/KR2018/000014
Other languages
French (fr)
Korean (ko)
Inventor
이향운
최규완
Original Assignee
이화여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이화여자대학교 산학협력단 filed Critical 이화여자대학교 산학협력단
Publication of WO2018124841A1 publication Critical patent/WO2018124841A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/372Analysis of electroencephalograms
    • A61B5/374Detecting the frequency distribution of signals, e.g. detecting delta, theta, alpha, beta or gamma waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • A61B5/4094Diagnosing or monitoring seizure diseases, e.g. epilepsy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor

Definitions

  • Embodiments of the present invention relate to a method for detecting real-time spasm electroencephalograms measured from an intracranial EEG electrode or a scalp EEG electrode.
  • An epileptic seizure causes a change in behavior or consciousness, such as a loss of consciousness or shaking arms or legs for a few seconds or minutes during a seizure.
  • Epilepsy is a disorder of the brain that is usually abnormally active. Epilepsy may involve unfamiliar feelings, emotions, or behaviors, or sometimes seizures, such as racing, muscle spasms, or loss of consciousness. In some patients with epilepsy, seizures occur only occasionally, while in others, more than 100 times a day. These seizures vary in number of seizures according to individual differences, and there is a difference in the risk of seizures. The risk of seizures is higher if the patient with epilepsy attacks has diseases such as hypoxia (chronic obstructive pulmonary disease, severe asthma), meningitis (meningitis), encephalitis, and brain tumors.
  • hypoxia chronic obstructive pulmonary disease, severe asthma
  • meningitis meningitis
  • encephalitis and brain tumors.
  • epilepsy patients The number of epilepsy patients is reported to be more than 2 million in the United States, and 80% of these epilepsy patients are reported to be able to control seizures by medicine and surgery. However, the remaining 25-30% of patients continue to experience seizures. In the UK, there are 600,000 people with epilepsy. About 500 of these people are injured by sudden seizures and are killed by such injuries. Although there is no accurate statistics in Korea, it is estimated that there are about 30 to 400,000 epilepsy patients.
  • EEG is a measurement of the current flow in the living body caused by the synchronized activity of nerve cells occurring on the surface of the brain cortex using an electrode (electrode) attached to the skin of the scalp or surgically in the cranial cavity It can be measured by inserting an EEG electrode.
  • electrode electrode
  • epilepsy data analysis using EEG has been used for epilepsy diagnosis, seizure detection and prediction, but to accurately analyze EEG data at all or EEG frequencies on all EEG electrodes for the time before and after the seizure occurs. This takes a long time, making it difficult to detect convulsions early in the onset of convulsions.
  • embodiments of the present invention automatically select a reference region and a frequency range capable of determining whether a seizure is detected from a measurement region of a plurality of intracranial EEG electrodes or scalp EEG electrodes in a fast time.
  • the present invention aims to provide an early detection method for real-time spasm EEG.
  • receiving pre-measured EEG signals from each of a plurality of measurement regions for a subject calculating a power spectrum density (PSD) for the EEG signals, and the EEG Analyzing the power spectral density of the signals to detect a specific frequency band including a frequency having a largest separation between a baseline and a seizure signal, wherein the specific frequency band corresponds to the detected specific frequency band.
  • Extracting a feature of the power spectral density (PSD) of the EEG signals to classify one or more detection areas including valid shapes of the plurality of measurement areas; and the one or more detection areas and the specific frequency band of the examinee Measure real-time EEG signals corresponding to the test, and examine the blood based on the real-time EEG signals. That includes the steps of determining whether a seizure, and provides real-time EEG seizure early detection methods.
  • the real-time spasm EEG early detection method detects a specific frequency band including a frequency having the largest separation between the reference signal and the seizure signal, and has an effective shape of power spectral density from a plurality of measurement regions.
  • FIG. 1 is a flow chart sequentially showing a real-time spasm EEG early detection method according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating power spectral density (PSD) for each frequency of the EEG signals measured from a plurality of subjects using the Welch method.
  • PSD power spectral density
  • FIG. 3 is a conceptual diagram schematically illustrating a plurality of measurement regions in which an EEG electrode is disposed in the cranial cavity or the scalp of the examinee P.
  • FIG. 4 is a diagram illustrating the shapes of power spectral densities of reference signals and seizure signals extracted from the plurality of measurement areas of the examinee B of FIG. 2.
  • FIG. 5 is an exemplary diagram illustrating segregation of a seizure signal and a reference signal using a sparse probit classifier SPC from a feature of a power spectral density PSD extracted from one or more detection regions of an examinee.
  • receiving pre-measured EEG signals from each of a plurality of measurement regions for a subject calculating a power spectrum density (PSD) for the EEG signals, and the EEG Analyzing the power spectral density of the signals to detect a specific frequency band including a frequency having a largest separation between a baseline and a seizure signal, wherein the specific frequency band corresponds to the detected specific frequency band.
  • Extracting a feature of the power spectral density (PSD) of the EEG signals to classify one or more detection areas including valid shapes of the plurality of measurement areas; and the one or more detection areas and the specific frequency band of the examinee Measure real-time EEG signals corresponding to the test, and examine the blood based on the real-time EEG signals. That comprises determining whether a seizure, and provides real-time EEG seizure early detection methods.
  • the EEG signals corresponding to the at least one detection area and the specific frequency band of the examinee are separated into the reference signal and the seizure signal, and the reference signal and the seizure signal are separated.
  • the method may further include selecting a reference range.
  • the determining of the seizure of the examinee may be determined to be a seizure when a first signal out of the reference range exists among the measured real-time EEG signals.
  • the step of classifying one or more detection areas by detecting a shape in the specific frequency band may be performed by using a sparse probit classifier (SPC). Signal and the seizure signal.
  • SPC sparse probit classifier
  • the detecting of the specific frequency band may detect the specific frequency band by using a Welch method.
  • the EEG signals corresponding to the plurality of measurement areas can be measured using EEG electrodes arranged in a matrix form measured in the intracranial electrode or the scalp electrode of the examinee. have.
  • An embodiment of the present invention provides a computer program stored in a recording medium for executing the method of any one of claims 1 to 6 using a computer.
  • a part such as a film, a region, a component, or the like is on or on another part, not only is it directly above the other part, but also another film, a region, a component, etc. is interposed therebetween. It also includes cases where there is.
  • a film, a region, a component, or the like when a film, a region, a component, or the like is connected, not only the film, the region, and the components are directly connected, but also other films, regions, and components are interposed between the film, the region, and the components. And indirectly connected.
  • the film, the region, the component, and the like when the film, the region, the component, and the like are electrically connected, not only the film, the region, the component, and the like are directly electrically connected, but other films, the region, the component, and the like are interposed therebetween. This includes indirect electrical connections.
  • FIG. 1 is a flow chart sequentially showing a real-time spasm electroencephalogram early detection method according to an embodiment of the present invention
  • Figure 2 is a power signal for each frequency by using the Welch method for the EEG signals measured from a plurality of subjects It is a figure represented by spectral density (PSD).
  • 3 is a conceptual diagram schematically illustrating a plurality of measurement regions in which the intracranial EEG or scalp EEG electrodes of the test subject P are disposed
  • FIG. 4 is a reference signal and a seizure extracted from the plurality of measurement regions of the test subject B of FIG. 2. It is a figure which shows the shape of the power spectral density (PSD) of a signal.
  • FIG. 5 is an exemplary diagram illustrating segregation of a seizure signal and a reference signal using a sparse probit classifier (SPC) from a feature of power spectral density extracted from one or more detection regions of an examinee.
  • SPC sparse probit classifier
  • the method for early detection of real-time spasm EEG first receives pre-measured EEG signals from each of a plurality of measurement regions for a subject (S100).
  • the measured EEG signals may be EEG signals measured when an actual seizure occurs.
  • the EEG signals may be measured by inserting an EEG electrode into the cranial cavity of a portion estimated to be the subject's focus.
  • the present invention is not limited to the measurement of EEG through intracranial electrodes, and in another embodiment, non-invasive scalp EEG by placing a sensor of the EEG electrode on the part of the subject suspected or more extensively outside the cranial cavity, especially the scalp. You can also measure the signal.
  • the sensor for non-invasive measurement of the brain signal can measure not only brain waves but also various brain signals using a non-invasive method through the brain-imaging technique.
  • non-invasive brain imaging techniques include electroencephalography or electroencephalography (ElectroEncephaloGraphy, EEG), magnetoencephaloGraphy (MEG), near-infrared spectroscopy (NIRS), or functional magnetic resonance imaging. resonance imaging, fMRI), and the like.
  • the EEG electrode in the cranial cavity is inserted to measure the EEG signal.
  • various sampling rates such as 200Hz, 256Hz, 516Hz, 1600Hz, etc.can be measured.
  • the EEG signal measured at a sampling rate of 1600 Hz is continuously analyzed in units of windows having a width of 1 sec and an overlapping size of 125 msec.
  • the data can be verified by a cross validation method that trains the classification model into six parts, and classifies the classification model into six parts.
  • a power spectrum density (PSD) of the EEG signals is calculated and analyzed to detect a specific frequency band including a frequency having the largest separation between the reference signal and the seizure signal (S200).
  • the specific frequency band may be a frequency band having a certain range based on the frequency having the largest separation width.
  • the specific frequency band can be detected using the Welch method.
  • the present invention is not limited thereto and may use various methods for detecting a specific frequency band.
  • a specific frequency band including a frequency where the baseline and seizure have the largest separation width for each subject. 15 Hz for subject A, 40 Hz for subject B, 20 Hz for subject C, 25 Hz for subject D, 200 Hz for subject E, 200 Hz for subject F, and 8 Hz for subject F It can be seen that the seizure signal is larger than the other frequencies. In this manner, by the Welch method, a specific frequency band capable of effectively separating the seizure signal from the reference signal can be detected.
  • a feature of the power spectral density of the EEG signals corresponding to the detected specific frequency band is extracted to classify one or more detection areas including valid shapes among the plurality of measurement areas (S300).
  • EEG signals corresponding to the plurality of measurement regions may be measured using an EEG electrode arranged in a matrix (M) form in the cranial cavity of the examinee P. Can be.
  • M matrix
  • the EEG electrodes E are arranged to be somewhat exaggerated for convenience of explanation, but the electrodes inserted into the cranial cavity of the examinee P may be smaller than this.
  • an 8 ⁇ 16 matrix form is illustrated as an example in the drawings, the present invention is not limited thereto, and electrodes may be arranged in various shapes or numbers that may represent a plurality of measurement regions.
  • Electroencephalogram electrode (E) may be surgically inserted into the intracranial electrode in order to measure in detail the part suspected to be the lesion of the subject (P), the method of attaching the electrode to the scalp without using an invasive method such as surgery It can also be arranged to measure the EEG signal.
  • the shape of the power spectral density (PSD) of the EEG signals corresponding to the detected specific frequency band among the EEG signals obtained from the plurality of measurement areas is extracted as shown in FIG.
  • the dotted line represents the feature of the reference signal
  • the solid line represents the feature of the seizure signal.
  • the present invention can classify one or more detection areas including shapes effective for the seizure signal among the plurality of measurement areas and use them for analysis.
  • the EEG signals may be separated into a reference signal and a seizure signal using a sparse probit classifier (SPC).
  • Sparse probit classifiers SPCs are designed in mathematics and are also used in the field of EEG.
  • the present invention can effectively separate seizure and reference signals from one or more detection regions classified using them. Can be.
  • At least one detection region of the examinee and real-time EEG signals corresponding to the specific frequency band are measured (S500), and whether the examinee has seizures is determined based on the real-time EEG signals (S700).
  • one or more detection areas and EEG signals corresponding to a specific frequency band of the examinee may be separated into a reference signal and a seizure signal, and a reference range for dividing the reference signal and the seizure signal may be selected ( S400).
  • the dividing line SL may be a reference range for dividing the examinee's reference signal and the seizure signal.
  • one or more detection areas classified from a plurality of measurement areas may be different, and specific frequency bands in which seizure signals and reference signals are best separated may be different. Therefore, the reference range derived according to one or more detection regions and specific frequency regions may vary from subject to subject.
  • the present invention enables patient-specific seizure detection by analyzing real-time EEG signals using this reference range.
  • the determining of the seizure of the examinee may be determined to be a seizure when there is a first signal out of a reference range among the measured real-time EEG signals.
  • the present invention can detect the seizure at the initial stage of the seizure.
  • Table 1 shows the accuracy of predicting the moment when seizure occurs from the EEG signals of a plurality of subjects.
  • the real-time spasm EEG early detection method detects a specific frequency band having the largest separation between the reference signal and the seizure signal, the power spectrum density (PSD) of the plurality of measurement areas By classifying one or more detection areas having an effective shape and analyzing the real-time EEG signals of the examinee, it is possible to quickly and accurately detect the seizure of the examinee.
  • PSD power spectrum density
  • Embodiments according to the present invention described above may be implemented in the form of a computer program that can be executed through various components on a computer, such a computer program may be recorded on a computer readable medium.
  • the media may be magnetic media such as hard disks, floppy disks and magnetic tape, optical recording media such as CD-ROMs and DVDs, magneto-optical media such as floptical disks, and ROMs.
  • the computer program is specifically designed and configured for the present invention, but may be known and available to those skilled in the computer software field.
  • Examples of computer programs may include not only machine code generated by a compiler, but also high-level language code executable by a computer using an interpreter or the like.
  • connection or connection members of the lines between the components shown in the drawings by way of example shows a functional connection and / or physical or circuit connections, in the actual device replaceable or additional various functional connections, physical It may be represented as a connection, or circuit connections.
  • such as "essential”, “important” may not be a necessary component for the application of the present invention.
  • embodiments of the present invention there is provided a real-time spasm EEG early detection method.
  • embodiments of the present invention can be applied to the detection of cramped brain waves used in industry.

Abstract

An embodiment of the present invention provides a real-time seizure brainwave early detection method including: a step for receiving pre-measured brainwave signals from each of a plurality of measurement areas of an examinee; a step for calculating power spectrum densities (PSDs) of the brainwave signals; a step for analyzing the PSDs of the brainwave signals to detect a specific frequency band including the frequency at which the separation width between a reference signal and a seizure signal is largest; a step for extracting features of the PSDs of the brainwave signals corresponding to the detected specific frequency band to classify one or more detection areas including effective features from among the plurality of measurement areas; and a step for measuring real-time brainwave signals corresponding to the one or more detection areas and the specific frequency band of the examinee, and determining whether the examinee is having seizure on the basis of the real-time brainwave signals.

Description

실시간 경련뇌파 조기탐지 방법Real-time spasm EEG early detection method
본 발명의 실시예들은 두개강 내 뇌파전극 혹은 두피 뇌파전극으로부터 측정한 실시간 경련뇌파 조기탐지 방법에 관한 것이다.Embodiments of the present invention relate to a method for detecting real-time spasm electroencephalograms measured from an intracranial EEG electrode or a scalp EEG electrode.
뇌전증 발작은 환자가 발작을 일으키는 동안 짧게는 몇 초 혹은 몇 분 동안 의식을 잃거나 팔 다리를 마구 흔드는 등과 같은 행동이나 의식에 변화를 초래한다. 뇌전증은 일반적으로 비정상적으로 활동하는 뇌의 질환이다. 뇌전증은 낯선 느낌, 감정, 행동, 혹은 때때로 경기(경련), 근육 경련, 의식을 잃는 등의 발작 현상을 수반한다. 일부 뇌전증 환자에게 발작은 아주 가끔 발생하기도 하지만 또 다른 사람에게는 하루에 100번 이상 발생하는 경우도 있다. 이러한 발작은 개인차에 따라 발작 발생 횟수가 다르며, 발작의 위험에도 그 차이를 보인다. 뇌전증 발작 환자가 저산소증(만성 폐색성 폐질환, 심한 천식), 뇌막염(수막염), 뇌염, 뇌종양과 같은 질병을 갖고 있는 경우 발작에 따른 위험성은 더 높아진다. An epileptic seizure causes a change in behavior or consciousness, such as a loss of consciousness or shaking arms or legs for a few seconds or minutes during a seizure. Epilepsy is a disorder of the brain that is usually abnormally active. Epilepsy may involve unfamiliar feelings, emotions, or behaviors, or sometimes seizures, such as racing, muscle spasms, or loss of consciousness. In some patients with epilepsy, seizures occur only occasionally, while in others, more than 100 times a day. These seizures vary in number of seizures according to individual differences, and there is a difference in the risk of seizures. The risk of seizures is higher if the patient with epilepsy attacks has diseases such as hypoxia (chronic obstructive pulmonary disease, severe asthma), meningitis (meningitis), encephalitis, and brain tumors.
뇌전증 환자의 수는 미국의 경우, 2백만명 이상의 환자가 있는 것으로 알려져 있으며, 이러한 뇌전증 환자들 중 80%는 의약과 수술에 의해 발작을 제어할 수 있다고 보고되고 있다. 그러나 나머지 25 내지 30%의 환자는 계속적으로 발작을 경험하고 있다. 영국의 경우에는 뇌전증환자의 수가 60만명에 이른다. 이들 중 약 500명의 환자들은 갑작스런 발작에 의해 부상을 입고 그러한 부상에 의하여 목숨을 잃고 있다. 우리나라의 경우 정확한 통계는 없지만 약 30 내지 40만명의 뇌전증 환자가 있는 것으로 추정되고 있다.The number of epilepsy patients is reported to be more than 2 million in the United States, and 80% of these epilepsy patients are reported to be able to control seizures by medicine and surgery. However, the remaining 25-30% of patients continue to experience seizures. In the UK, there are 600,000 people with epilepsy. About 500 of these people are injured by sudden seizures and are killed by such injuries. Although there is no accurate statistics in Korea, it is estimated that there are about 30 to 400,000 epilepsy patients.
한편, 뇌파(EEG)는 뇌 피질 표면에서 발생하는 신경 세포들의 동기화된 활동으로 인하여 발생하는 생체 내부의 전류 흐름을 전극(electrode)을 이용하여 측정하는 것으로 두피의 피부에 부착하거나 수술적으로 두개강 내에 뇌파전극을 삽입하여 측정할 수 있다. 종래에 뇌파를 이용한 뇌전증 데이터 분석은 뇌전증 진단, 발작 탐지 및 예측을 위해 이용되고 있으나, 경련이 일어나는 전후 시간에 대해 전체 또는 광범위한 구간의 주파수에 대한 뇌파 데이터를 모든 뇌파전극에서 정밀하게 분석하기 때문에 시간이 오래 걸리고, 경련 발생 초기에 경련을 탐지하는 것이 어려웠다.Meanwhile, EEG (EEG) is a measurement of the current flow in the living body caused by the synchronized activity of nerve cells occurring on the surface of the brain cortex using an electrode (electrode) attached to the skin of the scalp or surgically in the cranial cavity It can be measured by inserting an EEG electrode. Conventionally, epilepsy data analysis using EEG has been used for epilepsy diagnosis, seizure detection and prediction, but to accurately analyze EEG data at all or EEG frequencies on all EEG electrodes for the time before and after the seizure occurs. This takes a long time, making it difficult to detect convulsions early in the onset of convulsions.
이러한 문제점을 해결하기 위하여, 본 발명의 실시예들은 복수의 두개강 내 뇌파전극 또는 두피 뇌파전극의 측정영역으로부터 발작 여부를 판단할 수 있는 기준영역 및 주파수의 범위를 빠른 시간에 자동으로 선정하여 발작의 조기탐지가 가능한 실시간 경련뇌파 조기탐지 방법을 제공하고자 한다.In order to solve this problem, embodiments of the present invention automatically select a reference region and a frequency range capable of determining whether a seizure is detected from a measurement region of a plurality of intracranial EEG electrodes or scalp EEG electrodes in a fast time. The present invention aims to provide an early detection method for real-time spasm EEG.
본 발명의 일 실시예는, 피검사자에 대한 복수의 측정 영역 각각으로부터 기측정된 뇌파 신호들을 제공받는 단계, 상기 뇌파 신호들에 대한 전력 스펙트럼 밀도(power spectrum density, PSD)를 계산하는 단계, 상기 뇌파 신호들에 대한 상기 전력 스펙트럼 밀도를 분석하여 기준신호(baseline)와 발작신호(seizure)를 분리폭이 가장 큰 주파수를 포함하는 특정주파수 대역을 검출하는 단계, 상기 검출된 특정주파수 대역에 해당하는 상기 뇌파 신호들의 전력 스펙트럼 밀도(PSD)의 형상(feature)을 추출하여 상기 복수의 측정 영역 중 유효한 형상들을 포함하는 하나 이상의 검출 영역을 분류하는 단계 및 상기 피검사자의 상기 하나 이상의 검출 영역 및 상기 특정주파수 대역에 해당하는 실시간 뇌파 신호들을 측정하고, 상기 실시간 뇌파 신호들에 기초하여 상기 피검사자의 발작 여부를 판단하는 단계를 포함하는, 실시간 경련뇌파 조기탐지 방법을 제공한다.According to an embodiment of the present invention, receiving pre-measured EEG signals from each of a plurality of measurement regions for a subject, calculating a power spectrum density (PSD) for the EEG signals, and the EEG Analyzing the power spectral density of the signals to detect a specific frequency band including a frequency having a largest separation between a baseline and a seizure signal, wherein the specific frequency band corresponds to the detected specific frequency band. Extracting a feature of the power spectral density (PSD) of the EEG signals to classify one or more detection areas including valid shapes of the plurality of measurement areas; and the one or more detection areas and the specific frequency band of the examinee. Measure real-time EEG signals corresponding to the test, and examine the blood based on the real-time EEG signals. That includes the steps of determining whether a seizure, and provides real-time EEG seizure early detection methods.
본 발명의 실시예들에 따른 실시간 경련뇌파 조기탐지 방법은 기준신호와 발작신호의 분리폭이 가장 큰 주파수를 포함하는 특정주파수 대역을 검출하고, 복수의 측정영역으로부터 전력 스펙트럼 밀도의 유효한 형상을 갖는 하나 이상의 검출 영역을 분류하여, 이를 통해 피검사자의 실시간 뇌파 신호를 분석함으로써, 피검사자의 발작 발생 초기 시점에서 발작 여부를 빠르고 정확하게 검출할 수 있다.The real-time spasm EEG early detection method according to embodiments of the present invention detects a specific frequency band including a frequency having the largest separation between the reference signal and the seizure signal, and has an effective shape of power spectral density from a plurality of measurement regions. By classifying one or more detection areas and analyzing the real-time EEG signals of the examinee, it is possible to quickly and accurately detect the seizure at the initial time of the seizure occurrence of the examinee.
도 1은 본 발명의 일 실시예에 따른 실시간 경련뇌파 조기탐지 방법을 순차적으로 도시한 순서도이다.1 is a flow chart sequentially showing a real-time spasm EEG early detection method according to an embodiment of the present invention.
도 2는 복수의 피검사자로부터 측정된 뇌파 신호들을 웰치(Welch) 방법을 이용하여 각 주파수에 대한 전력 스펙트럼 밀도(PSD)로 나타낸 도면이다.FIG. 2 is a diagram illustrating power spectral density (PSD) for each frequency of the EEG signals measured from a plurality of subjects using the Welch method.
도 3은 피검사자(P)의 두개강 내 또는 두피에 뇌파전극이 배치되는 복수의 측정 영역을 개략적으로 도시한 개념도이다. FIG. 3 is a conceptual diagram schematically illustrating a plurality of measurement regions in which an EEG electrode is disposed in the cranial cavity or the scalp of the examinee P. Referring to FIG.
도 4는 도 2의 피검사자 B에 대한 복수의 측정 영역으로부터 추출된 기준신호와 발작신호의 전력 스펙트럼 밀도의 형상을 나타낸 도면이다.FIG. 4 is a diagram illustrating the shapes of power spectral densities of reference signals and seizure signals extracted from the plurality of measurement areas of the examinee B of FIG. 2.
도 5는 피검사자의 하나 이상의 검출 영역으로부터 추출된 전력 스펙트럼 밀도(PSD)의 형상(feature)을 스파스 프로빗 분류자(SPC)를 이용하여 발작신호와 기준신호를 분리한 것을 나타낸 예시도이다.FIG. 5 is an exemplary diagram illustrating segregation of a seizure signal and a reference signal using a sparse probit classifier SPC from a feature of a power spectral density PSD extracted from one or more detection regions of an examinee.
본 발명의 일 실시예는, 피검사자에 대한 복수의 측정 영역 각각으로부터 기측정된 뇌파 신호들을 제공받는 단계, 상기 뇌파 신호들에 대한 전력 스펙트럼 밀도(power spectrum density, PSD)를 계산하는 단계, 상기 뇌파 신호들에 대한 상기 전력 스펙트럼 밀도를 분석하여 기준신호(baseline)와 발작신호(seizure)를 분리폭이 가장 큰 주파수를 포함하는 특정주파수 대역을 검출하는 단계, 상기 검출된 특정주파수 대역에 해당하는 상기 뇌파 신호들의 전력 스펙트럼 밀도(PSD)의 형상(feature)을 추출하여 상기 복수의 측정 영역 중 유효한 형상들을 포함하는 하나 이상의 검출 영역을 분류하는 단계 및 상기 피검사자의 상기 하나 이상의 검출 영역 및 상기 특정주파수 대역에 해당하는 실시간 뇌파 신호들을 측정하고, 상기 실시간 뇌파 신호들에 기초하여 상기 피검사자의 발작 여부를 판단하는 단계를 포함하는, 실시간 경련뇌파 조기탐지 방법을 제공한다.According to an embodiment of the present invention, receiving pre-measured EEG signals from each of a plurality of measurement regions for a subject, calculating a power spectrum density (PSD) for the EEG signals, and the EEG Analyzing the power spectral density of the signals to detect a specific frequency band including a frequency having a largest separation between a baseline and a seizure signal, wherein the specific frequency band corresponds to the detected specific frequency band. Extracting a feature of the power spectral density (PSD) of the EEG signals to classify one or more detection areas including valid shapes of the plurality of measurement areas; and the one or more detection areas and the specific frequency band of the examinee. Measure real-time EEG signals corresponding to the test, and examine the blood based on the real-time EEG signals. That comprises determining whether a seizure, and provides real-time EEG seizure early detection methods.
본 발명의 일 실시예에 있어서, 상기 피검사자의 상기 하나 이상의 검출 영역 및 상기 특정주파수 대역에 해당하는 상기 뇌파 신호들을 상기 기준신호와 상기 발작신호로 분리하고, 상기 기준신호와 상기 발작신호를 구분하는 기준범위를 선정하는 단계를 더 포함할 수 있다.In one embodiment of the present invention, the EEG signals corresponding to the at least one detection area and the specific frequency band of the examinee are separated into the reference signal and the seizure signal, and the reference signal and the seizure signal are separated. The method may further include selecting a reference range.
본 발명의 일 실시예에 있어서, 상기 피검사자의 발작 여부를 판단하는 단계는 상기 측정된 실시간 뇌파 신호들 중 상기 기준범위를 벗어나는 제1 신호가 존재하는 경우 발작이라고 판단할 수 있다.In an embodiment of the present disclosure, the determining of the seizure of the examinee may be determined to be a seizure when a first signal out of the reference range exists among the measured real-time EEG signals.
본 발명의 일 실시예에 있어서, 상기 특정 주파수 대역에서의 형상을 검출하여 하나 이상의 검출 영역을 분류하는 단계는 스파스 프로빗 분류자(sparse probit classifier, SPC)를 이용하여 상기 뇌파 신호들을 상기 기준신호와 상기 발작신호로 분리할 수 있다.In one embodiment of the present invention, the step of classifying one or more detection areas by detecting a shape in the specific frequency band may be performed by using a sparse probit classifier (SPC). Signal and the seizure signal.
본 발명의 일 실시예에 있어서, 상기 특정주파수 대역을 검출하는 단계는 웰치(Welch) 방법을 이용하여 상기 특정주파수 대역을 검출할 수 있다.In one embodiment of the present invention, the detecting of the specific frequency band may detect the specific frequency band by using a Welch method.
본 발명의 일 실시예에 있어서, 상기 복수의 측정 영역들에 해당하는 상기 뇌파 신호들은 상기 피검사자의 두개강 내 전극 또는 두피 전극에서 측정한 매트릭스(matrix) 형태로 배열된 뇌파 전극들을 이용하여 측정할 수 있다. In one embodiment of the present invention, the EEG signals corresponding to the plurality of measurement areas can be measured using EEG electrodes arranged in a matrix form measured in the intracranial electrode or the scalp electrode of the examinee. have.
본 발명의 일 실시예는, 컴퓨터를 이용하여 제1항 내지 제6항 중 어느 하나의 방법을 실행시키기 위하여 기록 매체에 저장된 컴퓨터 프로그램을 제공한다.An embodiment of the present invention provides a computer program stored in a recording medium for executing the method of any one of claims 1 to 6 using a computer.
전술한 것 외의 다른 측면, 특징, 이점이 이하의 도면, 특허청구범위 및 발명의 상세한 설명으로부터 명확해질 것이다.Other aspects, features, and advantages other than those described above will become apparent from the following drawings, claims, and detailed description of the invention.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다. As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. Effects and features of the present invention, and methods of achieving them will be apparent with reference to the embodiments described below in detail together with the drawings. However, the present invention is not limited to the embodiments disclosed below but may be implemented in various forms.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, and the same or corresponding components will be denoted by the same reference numerals, and redundant description thereof will be omitted. .
이하의 실시예에서, 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용되었다. In the following embodiments, the terms first, second, etc. are used for the purpose of distinguishing one component from other components rather than a restrictive meaning.
이하의 실시예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.In the following examples, the singular forms "a", "an" and "the" include plural forms unless the context clearly indicates otherwise.
이하의 실시예에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다. In the following examples, the terms including or having have meant that there is a feature or component described in the specification and does not preclude the possibility of adding one or more other features or components.
이하의 실시예에서, 막, 영역, 구성 요소 등의 부분이 다른 부분 위에 또는 상에 있다고 할 때, 다른 부분의 바로 위에 있는 경우뿐만 아니라, 그 중간에 다른 막, 영역, 구성 요소 등이 개재되어 있는 경우도 포함한다. In the following embodiments, when a part such as a film, a region, a component, or the like is on or on another part, not only is it directly above the other part, but also another film, a region, a component, etc. is interposed therebetween. It also includes cases where there is.
도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.In the drawings, components may be exaggerated or reduced in size for convenience of description. For example, the size and thickness of each component shown in the drawings are arbitrarily shown for convenience of description, and thus the present invention is not necessarily limited to the illustrated.
어떤 실시예가 달리 구현 가능한 경우에 특정한 공정 순서는 설명되는 순서와 다르게 수행될 수도 있다. 예를 들어, 연속하여 설명되는 두 공정이 실질적으로 동시에 수행될 수도 있고, 설명되는 순서와 반대의 순서로 진행될 수 있다. In the case where an embodiment may be implemented differently, a specific process order may be performed differently from the described order. For example, two processes described in succession may be performed substantially simultaneously or in the reverse order of the described order.
이하의 실시예에서, 막, 영역, 구성 요소 등이 연결되었다고 할 때, 막, 영역, 구성 요소들이 직접적으로 연결된 경우뿐만 아니라 막, 영역, 구성요소들 중간에 다른 막, 영역, 구성 요소들이 개재되어 간접적으로 연결된 경우도 포함한다. 예컨대, 본 명세서에서 막, 영역, 구성 요소 등이 전기적으로 연결되었다고 할 때, 막, 영역, 구성 요소 등이 직접 전기적으로 연결된 경우뿐만 아니라, 그 중간에 다른 막, 영역, 구성 요소 등이 개재되어 간접적으로 전기적 연결된 경우도 포함한다.In the following embodiments, when a film, a region, a component, or the like is connected, not only the film, the region, and the components are directly connected, but also other films, regions, and components are interposed between the film, the region, and the components. And indirectly connected. For example, in the present specification, when the film, the region, the component, and the like are electrically connected, not only the film, the region, the component, and the like are directly electrically connected, but other films, the region, the component, and the like are interposed therebetween. This includes indirect electrical connections.
도 1은 본 발명의 일 실시예에 따른 실시간 경련뇌파 조기탐지 방법을 순차적으로 도시한 순서도이고, 도 2는 복수의 피검사자로부터 측정된 뇌파 신호들을 웰치(Welch) 방법을 이용하여 각 주파수에 대한 전력 스펙트럼 밀도(PSD)로 나타낸 도면이다. 도 3은 피검사자(P)의 두개강 내 또는 두피 뇌파전극이 배치되는 복수의 측정 영역을 개략적으로 도시한 개념도이고, 도 4는 도 2의 피검사자 B에 대한 복수의 측정 영역으로부터 추출된 기준신호와 발작신호의 전력 스펙트럼 밀도(PSD)의 형상을 나타낸 도면이다. 도 5는 피검사자의 하나 이상의 검출 영역으로부터 추출된 전력 스펙트럼 밀도의 형상(feature)을 스파스 프로빗 분류자(SPC)를 이용하여 발작신호와 기준신호를 분리한 것을 나타낸 예시도이다.1 is a flow chart sequentially showing a real-time spasm electroencephalogram early detection method according to an embodiment of the present invention, Figure 2 is a power signal for each frequency by using the Welch method for the EEG signals measured from a plurality of subjects It is a figure represented by spectral density (PSD). 3 is a conceptual diagram schematically illustrating a plurality of measurement regions in which the intracranial EEG or scalp EEG electrodes of the test subject P are disposed, and FIG. 4 is a reference signal and a seizure extracted from the plurality of measurement regions of the test subject B of FIG. 2. It is a figure which shows the shape of the power spectral density (PSD) of a signal. FIG. 5 is an exemplary diagram illustrating segregation of a seizure signal and a reference signal using a sparse probit classifier (SPC) from a feature of power spectral density extracted from one or more detection regions of an examinee.
도 1을 참조하면, 본 발명의 일 실시예에 따른 실시간 경련뇌파 조기탐지 방법은 먼저, 피검사자에 대한 복수의 측정 영역 각각으로부터 기측정된 뇌파 신호들을 제공받는다(S100). 기측정된 뇌파 신호들은 실제 발작이 일어났을 때 측정된 뇌파 신호일 수 있다. 뇌파 신호들은 피검사자의 병소(focus)로 추정되는 부분의 두개강 내에 뇌파전극을 삽입하여 측정할 수 있다. 그러나, 본 발명은 두개강 내 전극을 통한 뇌파 측정에 제한되지 않으며, 다른 실시예로서, 피검사자의 병소로 추정되는 부분 또는 더 광범위하게 두개강 외부 특히 두피에 뇌파 전극의 센서를 배치하여 비침습적으로 두피뇌파 신호를 측정할 수도 있다. 또한 상기 뇌신호를 비침습적으로 측정하는 센서는 뇌-영상 기법을 통해 비침습적 방법을 사용하여 뇌파 뿐만이 아니라 다양한 뇌 신호를 측정할 수 있다. 예를 들면, 비침습적 방법의 뇌 영상 기법은 뇌파 또는 뇌전도(ElectroEncephaloGraphy, EEG), 뇌자도(MagnetoEncephaloGraphy, MEG), 근적외선 분광도(near-infrared spectroscopy, NIRS), 혹은 기능성 자기공명영상기법(functional magnetic resonance imaging, fMRI) 등이 될 수 있다. Referring to FIG. 1, the method for early detection of real-time spasm EEG according to an embodiment of the present invention first receives pre-measured EEG signals from each of a plurality of measurement regions for a subject (S100). The measured EEG signals may be EEG signals measured when an actual seizure occurs. The EEG signals may be measured by inserting an EEG electrode into the cranial cavity of a portion estimated to be the subject's focus. However, the present invention is not limited to the measurement of EEG through intracranial electrodes, and in another embodiment, non-invasive scalp EEG by placing a sensor of the EEG electrode on the part of the subject suspected or more extensively outside the cranial cavity, especially the scalp. You can also measure the signal. In addition, the sensor for non-invasive measurement of the brain signal can measure not only brain waves but also various brain signals using a non-invasive method through the brain-imaging technique. For example, non-invasive brain imaging techniques include electroencephalography or electroencephalography (ElectroEncephaloGraphy, EEG), magnetoencephaloGraphy (MEG), near-infrared spectroscopy (NIRS), or functional magnetic resonance imaging. resonance imaging, fMRI), and the like.
이하에서는, 설명의 편의를 위하여 두개강 내 뇌파 전극을 삽입하여 뇌파 신호를 측정하는 경우를 중심으로 설명하기로 한다. 예를 들면, 두개강 내에 뇌파 전극을 삽입하여 측정하는 경우, 뇌파 전극을 통해 일반적인 상황에서 발생하는 기준신호와 발작을 할 때 발생하는 발작신호를 200Hz, 256Hz, 516Hz, 1600Hz 등 다양한 샘플링 레이트(sampling rate)로 측정할 수 있다. 예를 들어 1600Hz 샘플링 레이트(sampling rate)로 측정된 뇌파 신호를 폭(width)이 1 sec이고, 중첩크기(overlapping size)가 125 msec인 윈도우(windows) 단위로 연속적으로 분석한다고 할 때, 전체 데이터를 7등분하고, 그 중 6등분으로 분류모델(classification model)을 훈련(training)시키고, 이에 포함되지 않는 1등분의 데이터로 테스트하는 교차타당화(cross validation) 방법으로 데이터를 검증할 수 있다.Hereinafter, for convenience of explanation, the case where the EEG electrode in the cranial cavity is inserted to measure the EEG signal will be described. For example, in the case of measuring by inserting an EEG electrode into the cranial cavity, various sampling rates such as 200Hz, 256Hz, 516Hz, 1600Hz, etc. Can be measured. For example, when the EEG signal measured at a sampling rate of 1600 Hz is continuously analyzed in units of windows having a width of 1 sec and an overlapping size of 125 msec. The data can be verified by a cross validation method that trains the classification model into six parts, and classifies the classification model into six parts.
다음, 상기 뇌파 신호들에 대한 전력 스펙트럼 밀도(power spectrum density, PSD)를 계산하고, 이를 분석하여 기준신호와 발작신호의 분리폭이 가장 큰 주파수를 포함하는 특정주파수 대역을 검출한다(S200). 예를 들면, 특정주파수 대역은 분리폭이 가장 큰 주파수를 기준으로 일정 범위를 갖는 주파수 대역일 수 있다. 특정주파수 대역은 웰치(Welch) 방법을 이용하여 검출될 수 있다. 다만, 본 발명은 이에 제한되지 않으며, 특정 주파수 대역을 검출할 수 있는 다양한 방법들을 이용할 수도 있다. Next, a power spectrum density (PSD) of the EEG signals is calculated and analyzed to detect a specific frequency band including a frequency having the largest separation between the reference signal and the seizure signal (S200). For example, the specific frequency band may be a frequency band having a certain range based on the frequency having the largest separation width. The specific frequency band can be detected using the Welch method. However, the present invention is not limited thereto and may use various methods for detecting a specific frequency band.
도 1 및 도 2를 참조하면, 각 피검사자마다 기준신호(baseline)와 발작신호(seizure)를 분리폭이 가장 큰 주파수를 포함하는 특정주파수 대역에 차이가 있음을 알 수 있다. 피검사자 A의 경우 15 Hz, 피검사자 B의 경우 40 Hz, 피검사자 C의 경우 20 Hz, 피검사자 D의 경우 25 Hz, 피검사자 E의 경우 200 Hz, 피검사자 F의 경우는 8 Hz에서 기준 신호와 경련 상태 뇌파인 발작신호가 분리폭이 다른 주파수에 비해 큼을 알 수 있다. 이와 같이, 웰치(Welch) 방법에 의하여, 발작신호를 기준신호로부터 효과적으로 분리할 수 있는 특정주파수 대역을 검출할 수 있다.Referring to FIGS. 1 and 2, it can be seen that there is a difference in a specific frequency band including a frequency where the baseline and seizure have the largest separation width for each subject. 15 Hz for subject A, 40 Hz for subject B, 20 Hz for subject C, 25 Hz for subject D, 200 Hz for subject E, 200 Hz for subject F, and 8 Hz for subject F It can be seen that the seizure signal is larger than the other frequencies. In this manner, by the Welch method, a specific frequency band capable of effectively separating the seizure signal from the reference signal can be detected.
이후, 검출된 특정주파수 대역에 해당하는 뇌파 신호들의 전력 스펙트럼 밀도의 형상(feature)을 추출하여 복수의 측정 영역 중 유효한 형상들을 포함하는 하나 이상의 검출 영역을 분류한다(S300). Thereafter, a feature of the power spectral density of the EEG signals corresponding to the detected specific frequency band is extracted to classify one or more detection areas including valid shapes among the plurality of measurement areas (S300).
도 1, 도 3 및 도 4를 참조하면, 복수의 측정 영역들에 해당하는 뇌파 신호들은 피검사자(P)의 두개강 내에 매트릭스(matrix, M) 형태로 배열된 뇌파 전극(E)을 이용하여 측정될 수 있다. 도 3에서는 설명의 편의를 위해 뇌파 전극(E)이 배열된 모습을 다소 과장되게 도시하였으나, 실제로 피검사자(P)의 두개강 내에 삽입되는 전극은 이보다 더 작게 배치될 수 있다. 또한, 도면에서는 8×16 매트릭스 형태를 일 예로서 도시하였으나, 본 발명은 이에 제한되지 않으며, 복수의 측정 영역을 나타낼 수 있는 다양한 형태 또는 개수로 전극을 배열할 수 있다. 1, 3, and 4, EEG signals corresponding to the plurality of measurement regions may be measured using an EEG electrode arranged in a matrix (M) form in the cranial cavity of the examinee P. Can be. In FIG. 3, the EEG electrodes E are arranged to be somewhat exaggerated for convenience of explanation, but the electrodes inserted into the cranial cavity of the examinee P may be smaller than this. In addition, although an 8 × 16 matrix form is illustrated as an example in the drawings, the present invention is not limited thereto, and electrodes may be arranged in various shapes or numbers that may represent a plurality of measurement regions.
뇌파 전극(E)은 피검사자(P)의 병소로 추정되는 부분을 자세히 측정하기 위하여 수술적으로 두개강내 전극을 삽입할 수도 있고, 수술과 같은 침습적인 방법을 사용하지 않고 두피에 전극을 부착하는 방식으로 배치되어, 뇌파 신호를 측정할 수도 있다. 이때, 복수의 측정 영역으로부터 획득된 뇌파 신호들 중 상기 검출된 특정주파수 대역에 해당하는 뇌파 신호들의 전력 스펙트럼 밀도(PSD)의 형상을 추출하면 도 4와 같다. 점선은 기준신호의 형상(feature)을 나타내고, 실선이 발작 신호의 형상(feature)을 나타내는데, 우하단 영역에서 강하게 나타남을 알 수 있다. 이와 같이, 일부 측정 영역에서 분리가 잘되는 특징들이 집중되어 있을 때, 전체 측정 영역을 이용하여 발작신호를 분리하는 것보다 일부 측정 영역에 대해서 분석하는 것이 더욱 효율적이며 정확한 결과를 도출할 수 있다. 따라서, 본 발명은 복수의 측정 영역 중 전술한 바와 같이 발작신호에 대하여 유효한 형상들을 포함하는 하나 이상의 검출 영역을 분류하여 분석에 이용할 수 있다. Electroencephalogram electrode (E) may be surgically inserted into the intracranial electrode in order to measure in detail the part suspected to be the lesion of the subject (P), the method of attaching the electrode to the scalp without using an invasive method such as surgery It can also be arranged to measure the EEG signal. At this time, the shape of the power spectral density (PSD) of the EEG signals corresponding to the detected specific frequency band among the EEG signals obtained from the plurality of measurement areas is extracted as shown in FIG. The dotted line represents the feature of the reference signal, and the solid line represents the feature of the seizure signal. As such, when features that are easily separated in some measurement areas are concentrated, analysis of some measurement areas may be more efficient and accurate than analysis of seizure signals using the entire measurement area. Therefore, the present invention can classify one or more detection areas including shapes effective for the seizure signal among the plurality of measurement areas and use them for analysis.
한편, 하나 이상의 검출 영역을 분류하는 단계는 스파스 프로빗 분류자(sparse probit classifier, SPC)를 이용하여 뇌파 신호들을 기준신호와 발작신호로 분리할 수 있다. 스파스 프로빗 분류자(sparse probit classifier, SPC)는 수학 학계에서 고안된 것으로 뇌파 분야에도 활용되고 있는바, 본 발명은 이를 이용하여 분류된 하나 이상의 검출 영역들로부터 발작신호와 기준신호를 효과적으로 분리할 수 있다. Meanwhile, in the classifying of one or more detection regions, the EEG signals may be separated into a reference signal and a seizure signal using a sparse probit classifier (SPC). Sparse probit classifiers (SPCs) are designed in mathematics and are also used in the field of EEG. The present invention can effectively separate seizure and reference signals from one or more detection regions classified using them. Can be.
다음, 피검사자의 하나 이상의 검출 영역 및 상기 특정주파수 대역에 해당하는 실시간 뇌파 신호들을 측정하고(S500), 실시간 뇌파 신호들에 기초하여 피검사자의 발작 여부를 판단한다(S700). 이때, 기측정된 뇌파 신호들 중 피검사자의 하나 이상의 검출 영역 및 특정주파수 대역에 해당하는 뇌파 신호들을 기준신호와 발작신호로 분리하고, 기준신호와 발작신호를 구분하는 기준범위를 선정할 수 있다(S400).Next, at least one detection region of the examinee and real-time EEG signals corresponding to the specific frequency band are measured (S500), and whether the examinee has seizures is determined based on the real-time EEG signals (S700). At this time, among the pre-measured EEG signals, one or more detection areas and EEG signals corresponding to a specific frequency band of the examinee may be separated into a reference signal and a seizure signal, and a reference range for dividing the reference signal and the seizure signal may be selected ( S400).
도 1 및 도 5를 참조하면, 복수의 측정 영역으로부터 분류된 하나 이상의 검출 영역 및 특정주파수 대역에 해당하는 뇌파 신호들이 유의미한 구분선(SL)을 기준으로 발작신호와 기준신호로 효과적으로 분리되었음을 알 수 있다. 1 and 5, it can be seen that one or more detection regions classified from a plurality of measurement regions and EEG signals corresponding to a specific frequency band are effectively separated into seizure signals and reference signals based on a significant dividing line SL. .
여기서, 구분선(SL)은 피검사자의 기준신호와 발작신호를 구분하는 기준범위일 수 있다. 피검사자에 따라 복수의 측정 영역으로부터 분류되는 하나 이상의 검출 영역이 다르고, 발작신호와 기준신호가 가장 잘 분리되는 특정주파수 대역이 다를 수 있다. 따라서, 하나 이상의 검출 영역 및 특정주파수 영역에 따라 도출된 기준범위는 피검사자마다 다를 수 있다. 본 발명은 이러한 기준범위를 이용하여 실시간 뇌파 신호를 분석함으로써, 환자맞춤형 발작 탐지가 가능하다. 피검사자의 발작 여부를 판단하는 단계는 측정된 실시간 뇌파 신호들 중 기준범위를 벗어나는 제1 신호가 존재하는 경우 발작이라고 판단할 수 있다. 다시 말해, 피검사자로부터 실시간으로 실시간 뇌파 신호를 측정하고, 실시간 뇌파 신호들로부터 전력 스펙트럼 밀도(PSD)의 형상을 추출하여 기준범위와 비교를 통해 기준범위를 벗어난 제1 신호가 존재하는 경우 발작이라고 판단할 수 있다. 이러한, 기준범위를 이용하여 실시간으로 측정된 뇌파신호로부터 발작 여부를 판단할 수 있기 때문에, 본 발명은 발작이 일어나는 초기에 발작 여부를 탐지할 수 있다. Here, the dividing line SL may be a reference range for dividing the examinee's reference signal and the seizure signal. According to an examinee, one or more detection areas classified from a plurality of measurement areas may be different, and specific frequency bands in which seizure signals and reference signals are best separated may be different. Therefore, the reference range derived according to one or more detection regions and specific frequency regions may vary from subject to subject. The present invention enables patient-specific seizure detection by analyzing real-time EEG signals using this reference range. The determining of the seizure of the examinee may be determined to be a seizure when there is a first signal out of a reference range among the measured real-time EEG signals. In other words, by measuring the real-time EEG signals in real time from the examinee, and extracting the shape of the power spectral density (PSD) from the real-time EEG signals, it is determined to be a seizure when there is a first signal outside the reference range by comparing with the reference range can do. Since the seizure can be determined from the EEG signal measured in real time using the reference range, the present invention can detect the seizure at the initial stage of the seizure.
표 1은 복수의 피검사자들의 뇌파 신호로부터 발작(seizure)이 발생하는 순간을 예측한 정확도를 나타낸 표이다.Table 1 shows the accuracy of predicting the moment when seizure occurs from the EEG signals of a plurality of subjects.
1One 22 33 44 55 66 77
Patient 1 Patient 1 98.7398.73 100100 100100 100100 100100 100100 98.4298.42
Patient 2(data 1)Patient 2 (data 1) 100100 100100 100100 100100 100100 100100 98.9498.94
Patient 2(data 2)Patient 2 (data 2) 100100 98.7298.72 100100 100100 100100 100100 100100
Patient 3Patient 3 100100 96.9796.97 100100 100100 100100 100100 100100
Patient 4Patient 4 100100 100100 100100 100100 100100 100100 100100
Patient 5Patient 5 100100 100100 100100 100100 100100 100100 100100
Patient 6Patient 6 100100 100100 100100 87.5087.50 100100 100100 100100
표 1을 참조하면, 뇌전증 환자 6명의 뇌파 신호로부터 발작 신호와 기준신호를 평균정확도 99.58±0.00185%로 거의 정확하게 분리하고 있음을 알 수 있다. Referring to Table 1, it can be seen that the seizure signal and the reference signal are almost accurately separated from the EEG signals of six epileptic patients with an average accuracy of 99.58 ± 0.00185%.
전술한 바와 같이, 본 발명의 일 실시예에 따른 실시간 경련뇌파 조기탐지 방법은 기준신호와 발작신호의 분리폭이 가장 큰 특정주파수 대역을 검출하고, 복수의 측정영역으로부터 전력 스펙트럼 밀도(PSD)의 유효한 형상을 갖는 하나 이상의 검출 영역을 분류하여, 이를 통해 피검사자의 실시간 뇌파 신호를 분석함으로써, 피검사자의 발작 여부를 빠르고 정확하게 검출할 수 있다.As described above, the real-time spasm EEG early detection method according to an embodiment of the present invention detects a specific frequency band having the largest separation between the reference signal and the seizure signal, the power spectrum density (PSD) of the plurality of measurement areas By classifying one or more detection areas having an effective shape and analyzing the real-time EEG signals of the examinee, it is possible to quickly and accurately detect the seizure of the examinee.
이상 설명된 본 발명에 따른 실시예는 컴퓨터 상에서 다양한 구성요소를 통하여 실행될 수 있는 컴퓨터 프로그램의 형태로 구현될 수 있으며, 이와 같은 컴퓨터 프로그램은 컴퓨터로 판독 가능한 매체에 기록될 수 있다. 이때, 매체는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM 및 DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical medium), 및 ROM, RAM, 플래시 메모리 등과 같은, 프로그램 명령어를 저장하고 실행하도록 특별히 구성된 하드웨어 장치를 포함할 수 있다. Embodiments according to the present invention described above may be implemented in the form of a computer program that can be executed through various components on a computer, such a computer program may be recorded on a computer readable medium. At this time, the media may be magnetic media such as hard disks, floppy disks and magnetic tape, optical recording media such as CD-ROMs and DVDs, magneto-optical media such as floptical disks, and ROMs. Hardware devices specifically configured to store and execute program instructions, such as memory, RAM, flash memory, and the like.
한편, 상기 컴퓨터 프로그램은 본 발명을 위하여 특별히 설계되고 구성된 것이나 컴퓨터 소프트웨어 분야의 당업자에게 공지되어 사용 가능한 것일 수 있다. 컴퓨터 프로그램의 예에는, 컴파일러에 의하여 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용하여 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드도 포함될 수 있다.On the other hand, the computer program is specifically designed and configured for the present invention, but may be known and available to those skilled in the computer software field. Examples of computer programs may include not only machine code generated by a compiler, but also high-level language code executable by a computer using an interpreter or the like.
본 발명에서 설명하는 특정 실행들은 일 실시예들로서, 어떠한 방법으로도 본 발명의 범위를 한정하는 것은 아니다. 명세서의 간결함을 위하여, 종래 전자적인 구성들, 제어 시스템들, 소프트웨어, 상기 시스템들의 다른 기능적인 측면들의 기재는 생략될 수 있다. 또한, 도면에 도시된 구성 요소들 간의 선들의 연결 또는 연결 부재들은 기능적인 연결 및/또는 물리적 또는 회로적 연결들을 예시적으로 나타낸 것으로서, 실제 장치에서는 대체 가능하거나 추가의 다양한 기능적인 연결, 물리적인 연결, 또는 회로 연결들로서 나타내어질 수 있다. 또한, "필수적인", "중요하게" 등과 같이 구체적인 언급이 없다면 본 발명의 적용을 위하여 반드시 필요한 구성 요소가 아닐 수 있다.Particular implementations described in the present invention are examples and do not limit the scope of the present invention in any way. For brevity of description, descriptions of conventional electronic configurations, control systems, software, and other functional aspects of the systems may be omitted. In addition, the connection or connection members of the lines between the components shown in the drawings by way of example shows a functional connection and / or physical or circuit connections, in the actual device replaceable or additional various functional connections, physical It may be represented as a connection, or circuit connections. In addition, unless specifically mentioned, such as "essential", "important" may not be a necessary component for the application of the present invention.
이와 같이 본 발명은 도면에 도시된 일 실시예를 참고로 하여 설명하였으나 이는 예시적인 것에 불과하며 당해 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 실시예의 변형이 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.As described above, the present invention has been described with reference to one embodiment shown in the drawings, which is merely exemplary, and it will be understood by those skilled in the art that various modifications and embodiments may be made therefrom. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.
본 발명의 일 실시예에 의하면, 실시간 경련뇌파 조기탐지 방법을 제공한다. 또한, 산업상 이용하는 경련뇌파 탐지 등에 본 발명의 실시예들을 적용할 수 있다.According to an embodiment of the present invention, there is provided a real-time spasm EEG early detection method. In addition, embodiments of the present invention can be applied to the detection of cramped brain waves used in industry.

Claims (7)

  1. 피검사자에 대한 복수의 측정 영역 각각으로부터 기측정된 뇌파 신호들을 제공받는 단계;Receiving pre-measured EEG signals from each of the plurality of measurement regions for the subject;
    상기 뇌파 신호들에 대한 전력 스펙트럼 밀도(power spectrum density, PSD)를 계산하는 단계;Calculating a power spectrum density (PSD) for the brain wave signals;
    상기 뇌파 신호들에 대한 상기 전력 스펙트럼 밀도(PSD)를 분석하여 기준신호와 발작신호의 분리폭이 가장 큰 주파수를 포함하는 특정주파수 대역을 검출하는 단계;Analyzing the power spectral density (PSD) of the EEG signals to detect a specific frequency band including a frequency having a largest separation between a reference signal and a seizure signal;
    상기 검출된 특정주파수 대역에 해당하는 상기 뇌파 신호들의 전력 스펙트럼 밀도(PSD)의 형상(feature)을 추출하여 상기 복수의 측정 영역 중 유효한 형상들을 포함하는 하나 이상의 검출 영역을 분류하는 단계; 및Extracting a feature of a power spectral density (PSD) of the EEG signals corresponding to the detected specific frequency band to classify one or more detection areas including valid shapes among the plurality of measurement areas; And
    상기 피검사자의 상기 하나 이상의 검출 영역 및 상기 특정주파수 대역에 해당하는 실시간 뇌파 신호들을 측정하고, 상기 실시간 뇌파 신호들에 기초하여 상기 피검사자의 발작 여부를 판단하는 단계를 포함하는, 실시간 경련뇌파 조기탐지 방법.Measuring real time EEG signals corresponding to the at least one detection region and the specific frequency band of the examinee, and determining whether the examinee has a seizure based on the real time EEG signals; .
  2. 제1 항에 있어서,According to claim 1,
    상기 분류하는 단계 이후에, 상기 피검사자의 상기 하나 이상의 검출 영역 및 상기 특정주파수 대역에 해당하는 상기 뇌파 신호들을 상기 기준신호와 상기 발작신호로 분리하고, 상기 기준신호와 상기 발작신호를 구분하는 기준범위를 선정하는 단계를 더 포함하는, 실시간 경련뇌파 조기탐지 방법.After the classifying step, the reference range for separating the EEG signals corresponding to the at least one detection area and the specific frequency band of the examinee into the reference signal and the seizure signal, and distinguishes the reference signal from the seizure signal Further comprising the step of selecting, real-time spasm EEG early detection method.
  3. 제2 항에 있어서,The method of claim 2,
    상기 피검사자의 발작 여부를 판단하는 단계는 상기 측정된 실시간 뇌파 신호들 중 상기 기준범위를 벗어나는 제1 신호가 존재하는 경우 발작이라고 판단하는, 실시간 경련뇌파 조기탐지 방법.The determining of the seizure of the examinee is determined to be a seizure when the first signal out of the reference range of the measured real-time EEG signals, real-time spasm EEG early detection method.
  4. 제2 항에 있어서,The method of claim 2,
    상기 하나 이상의 검출 영역을 분류하는 단계는 스파스 프로빗 분류자(sparse probit classifier)를 이용하여 상기 뇌파 신호들을 상기 기준신호와 상기 발작신호로 분리하는, 실시간 경련뇌파 조기탐지 방법.The classifying the at least one detection region may include separating the EEG signals into the reference signal and the seizure signal using a sparse probit classifier.
  5. 제1 항에 있어서,According to claim 1,
    상기 특정주파수 대역을 검출하는 단계는 웰치(Welch) 방법을 이용하여 상기 특정주파수 대역을 검출하는, 실시간 경련뇌파 조기탐지 방법.The detecting of the specific frequency band may include detecting the specific frequency band by using a Welch method.
  6. 제1 항에 있어서,According to claim 1,
    상기 복수의 측정 영역에 해당하는 상기 뇌파 신호들은 상기 피검사자의 두개강내 또는 두피에 매트릭스(matrix) 형태로 배열된 뇌파 전극들을 이용하여 측정되는, 실시간 경련뇌파 조기탐지 방법.The EEG signals corresponding to the plurality of measurement areas are measured using EEG electrodes arranged in a matrix form in the intracranial or scalp of the examinee, real-time spasm EEG early detection method.
  7. 컴퓨터를 이용하여 제1항 내지 제6항 중 어느 하나의 방법을 실행시키기 위하여 기록 매체에 저장된 컴퓨터 프로그램.A computer program stored in a recording medium for executing the method of any one of claims 1 to 6 using a computer.
PCT/KR2018/000014 2017-01-02 2018-01-02 Real-time seizure brainwave early detection method WO2018124841A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0000335 2017-01-02
KR1020170000335A KR101887182B1 (en) 2017-01-02 2017-01-02 Real time early seizure detection method

Publications (1)

Publication Number Publication Date
WO2018124841A1 true WO2018124841A1 (en) 2018-07-05

Family

ID=62710625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000014 WO2018124841A1 (en) 2017-01-02 2018-01-02 Real-time seizure brainwave early detection method

Country Status (2)

Country Link
KR (1) KR101887182B1 (en)
WO (1) WO2018124841A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11134900B2 (en) * 2019-07-23 2021-10-05 KMZ Holdings LLC System and method for diagnostic analysis of human body systems, organs, and cells
KR20230151418A (en) 2022-04-25 2023-11-01 주식회사 에이아이트릭스 Apparatus and method for detecting seizures in real time based on eeg

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110087501A (en) * 2010-01-26 2011-08-03 중앙대학교 산학협력단 Apparatus and method for feature extraction of bio signal
KR20130005915A (en) * 2011-07-08 2013-01-16 서울대학교산학협력단 Methods for detecting seizure termination with using sample entropy of electroencephalography
KR101375673B1 (en) * 2012-12-21 2014-03-27 전남대학교산학협력단 Method for warning of epileptic seizure using excitatory-inhibitory model based on the chaos neuron and electronic device supporting the same
KR20140081095A (en) * 2012-12-21 2014-07-01 전남대학교산학협력단 Method For Analysis of Epileptic EEG and Electronic Device supporting the same
KR20140119315A (en) * 2013-03-28 2014-10-10 한국과학기술원 The method of epileptic seizure prediction by sensing the change of the relative ratio of EEG (Electroencephalography) frequency components

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304775B1 (en) * 1999-09-22 2001-10-16 Leonidas D. Iasemidis Seizure warning and prediction
KR100425532B1 (en) * 2001-04-19 2004-03-30 학교법인 포항공과대학교 Method and system for predicting epileptic seizures by using non-linear time series analyses of phase patterns
JP2011502647A (en) 2007-11-06 2011-01-27 ハイドロドット, インク. Apparatus and method for performing electroencephalogram recording

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110087501A (en) * 2010-01-26 2011-08-03 중앙대학교 산학협력단 Apparatus and method for feature extraction of bio signal
KR20130005915A (en) * 2011-07-08 2013-01-16 서울대학교산학협력단 Methods for detecting seizure termination with using sample entropy of electroencephalography
KR101375673B1 (en) * 2012-12-21 2014-03-27 전남대학교산학협력단 Method for warning of epileptic seizure using excitatory-inhibitory model based on the chaos neuron and electronic device supporting the same
KR20140081095A (en) * 2012-12-21 2014-07-01 전남대학교산학협력단 Method For Analysis of Epileptic EEG and Electronic Device supporting the same
KR20140119315A (en) * 2013-03-28 2014-10-10 한국과학기술원 The method of epileptic seizure prediction by sensing the change of the relative ratio of EEG (Electroencephalography) frequency components

Also Published As

Publication number Publication date
KR20180079757A (en) 2018-07-11
KR101887182B1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
US20200170575A1 (en) Systems and methods to infer brain state during burst suppression
CA2472156C (en) System and method of assessment of neurological conditions using eeg bispectrum
Rissanen et al. Surface EMG and acceleration signals in Parkinson’s disease: feature extraction and cluster analysis
US5230346A (en) Diagnosing brain conditions by quantitative electroencephalography
US6466816B2 (en) Method and apparatus for assessing susceptibility to stroke
EP1880667B1 (en) Detection of focal epileptiform activity
US20110295142A1 (en) Detector for identifying physiological artifacts from physiological signals and method
US20110230781A1 (en) Apparatus and method for dementia diagnosis through eeg (electroencephalogram) analysis
CN111093471B (en) Method for detecting pathological brain activity from scalp electroencephalograms
WO2016113718A1 (en) System and method to diagnose and predict different systemic disorders and mental states
Bola et al. Loss of consciousness is related to hyper-correlated gamma-band activity in anesthetized macaques and sleeping humans
WO2019176905A1 (en) Mood disorder measurement device and mood disorder measurement method
KR101978905B1 (en) Early seizure detection method
Dobrowolski et al. Classification of auditory brainstem response using wavelet decomposition and SVM network
WO2018124841A1 (en) Real-time seizure brainwave early detection method
CN113288174B (en) Method for detecting cognitive function of schizophrenic patient
Kempfner et al. Automatic REM sleep detection associated with idiopathic rem sleep Behavior Disorder
Lou et al. Multichannel linear descriptors analysis for event-related EEG of vascular dementia patients during visual detection task
Joshi et al. Spatiotemporal analysis of interictal EEG for automated seizure detection and classification
KR20170004547A (en) Method and apparatus for extracting Brain information
KR20200142441A (en) Measurement apparatus of altered cortical region using functional network and method thereof
Kołodziej et al. A new method of cardiac sympathetic index estimation using a 1D-convolutional neural network
Tolmacheva et al. Estimation of inter-channel phase synchronization of EEG signals in the ridges of their wavelet spectrograms in patients with traumatic brain injury
Liang et al. Detection of myasthenia gravis using electrooculography signals
KR102538720B1 (en) Apparatus and method for diagnosis of psychiatric disorders using mean amplitude-based features of event-related potential signal to improve diagnostic performances of computer-aided diagnosis system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18734036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18734036

Country of ref document: EP

Kind code of ref document: A1