WO2018124781A1 - Positive electrode active material for secondary battery, preparation method therefor, positive electrode comprising same for secondary battery, and secondary battery - Google Patents

Positive electrode active material for secondary battery, preparation method therefor, positive electrode comprising same for secondary battery, and secondary battery Download PDF

Info

Publication number
WO2018124781A1
WO2018124781A1 PCT/KR2017/015666 KR2017015666W WO2018124781A1 WO 2018124781 A1 WO2018124781 A1 WO 2018124781A1 KR 2017015666 W KR2017015666 W KR 2017015666W WO 2018124781 A1 WO2018124781 A1 WO 2018124781A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
cobalt
positive electrode
secondary battery
lithium
Prior art date
Application number
PCT/KR2017/015666
Other languages
French (fr)
Korean (ko)
Inventor
채화석
박상민
박신영
박홍규
강성훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201780080266.3A priority Critical patent/CN110140242B/en
Publication of WO2018124781A1 publication Critical patent/WO2018124781A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a positive electrode active material for a secondary battery, a method for manufacturing the same, a positive electrode for a secondary battery and a secondary battery including the same, and more particularly, a high concentration having a low amount of lithium by-products remaining on the surface of the active material, and having excellent high temperature stability, capacity characteristics, and lifetime characteristics.
  • the present invention relates to a nickel (Ni-rich) cathode active material, a method of manufacturing the same, and a cathode and a secondary battery for a secondary battery including the same.
  • lithium secondary batteries having high energy density and voltage, long cycle life, and low self discharge rate have been commercialized and widely used.
  • Lithium transition metal composite oxide is used as a positive electrode active material of a lithium secondary battery, and among these, lithium cobalt composite metal oxide of LiCoO 2 having a high operating voltage and excellent capacity characteristics is mainly used.
  • LiCoO 2 is very poor in thermal properties due to destabilization of crystal structure due to de-lithium and is expensive, there is a limit to using LiCoO 2 as a power source in fields such as electric vehicles.
  • lithium manganese composite metal oxides such as LiMnO 2 or LiMn 2 O 4
  • lithium iron phosphate compounds such as LiFePO 4
  • lithium nickel composite metal oxides such as LiNiO 2
  • research and development of lithium nickel composite metal oxides having a high reversible capacity of about 200 mAh / g and easy to implement a large-capacity battery have been actively studied.
  • LiNiO 2 has a poor thermal stability compared to LiCoO 2, and when an internal short circuit occurs due to pressure from the outside in a charged state, the positive electrode active material itself decomposes, causing a battery to rupture and ignite.
  • a nickel cobalt manganese-based lithium composite metal oxide in which a part of Ni is substituted with Mn and Co (hereinafter, simply referred to as 'NCM-based lithium oxide') has been developed.
  • 'NCM-based lithium oxide' a nickel cobalt manganese-based lithium composite metal oxide in which a part of Ni is substituted with Mn and Co
  • the present invention is to solve the above problems, a low amount of lithium by-products, cobalt-rich layer (Co-rich layer) is formed on the surface of the high-concentration nickel cathode active material that can simultaneously realize excellent capacity characteristics and high temperature stability And, to provide a manufacturing method, and a positive electrode and a secondary battery for a secondary battery comprising the same.
  • the present invention is a lithium composite metal oxide represented by the formula (1); And a cobalt-rich layer formed on the surface of the lithium composite metal oxide and having a higher cobalt content than the lithium composite metal oxide.
  • M is one metal element selected from the group consisting of Al, Mg, Ge, V, Mo, Nb, Si, Ti, Zr and W, and X is P or F.
  • the ratio of the number of atoms of cobalt to the sum of the number of atoms of nickel, cobalt, manganese and M in the cobalt-rich layer and the number of atoms of cobalt to the sum of the number of atoms of nickel, cobalt, manganese and M in the lithium composite metal oxide may be 0.05 to 0.2, preferably 0.05 to 0.15.
  • the ratio of the number of atoms of cobalt to the sum of the number of atoms of nickel, cobalt, manganese and M in the cobalt-rich layer may be 0.05 to 0.45, and preferably 0.05 to 0.35.
  • the cobalt rich layer may have a thickness of 10 to 100 nm, preferably 10 to 70 nm.
  • the positive electrode active material when the heat flow measured by differential scanning calorimetry (DSC)
  • a peak appears in the temperature range of 230 °C to 250 °C, preferably 235 °C to 245 °C
  • the maximum value of the heat flow may be 1000 mW or less, preferably 600 mW or less, and more preferably 400 mW or less.
  • the lithium by-product content in the positive electrode active material may be 1% by weight or less, preferably 0.5% by weight or less, and more preferably 0.3% by weight or less.
  • the present invention comprises the steps of preparing a lithium composite metal oxide represented by the formula (1); Washing the lithium composite metal oxide; And it provides a method for producing a positive electrode active material for a secondary battery comprising the step of mixing the washed lithium composite metal oxide and cobalt-containing raw material and heat treatment at an temperature of 700 °C or more in an oxidizing atmosphere.
  • the step of preparing a lithium composite metal oxide represented by the formula (1), a nickel-cobalt precursor, a manganese-containing raw material, M-containing raw material, and a lithium-containing raw material mixed and fired at 600 °C to 900 °C It can be performed as.
  • the washing step may be performed at a temperature of 20 °C or less.
  • the cobalt-containing raw material may be mixed to 0.001 to 0.01 parts by weight, preferably 0.002 to 0.008 parts by weight based on 100 parts by weight of the lithium composite metal oxide.
  • the heat treatment may be performed within 10 hours at 700 °C to 800 °C temperature.
  • the present invention provides a secondary battery positive electrode including the positive electrode active material for a secondary battery according to the present invention, and a secondary battery comprising the positive electrode for the secondary battery.
  • a cobalt-rich layer including a high content of cobalt having excellent output characteristics and stability is formed on the surface thereof, unlike the conventional high concentration nickel positive electrode active material, it is not only structurally stable but also repeatedly charged. Even when the secondary battery is excellent in capacity characteristics and has a small resistance increase rate.
  • a positive electrode active material can be manufactured.
  • Example 1 is a graph showing the heat flow (Heat Flow) according to the temperature of the positive electrode active material of Example 1 and Comparative Example 3.
  • FIG. 2 is a graph showing pH titration curves of the positive electrode active materials of Example 1, Comparative Examples 1 and 4 to 6.
  • FIG. 2 is a graph showing pH titration curves of the positive electrode active materials of Example 1, Comparative Examples 1 and 4 to 6.
  • FIG. 3 is a graph showing capacity retention rates according to charge and discharge cycles of battery cells prepared using the cathode active materials of Example 1 and Comparative Examples 2 and 3.
  • FIG. 3 is a graph showing capacity retention rates according to charge and discharge cycles of battery cells prepared using the cathode active materials of Example 1 and Comparative Examples 2 and 3.
  • Example 4 is a graph showing the resistance increase rate according to the charge and discharge cycle of the battery cell prepared using the positive electrode active material of Example 1 and Comparative Examples 2 and 3.
  • the inventors of the present invention have been researched to produce a high-density nickel-based positive electrode active material having a low residual amount of lithium by-products and excellent high temperature stability.
  • a lithium composite metal oxide containing a specific metal element M in an appropriate composition ratio together with nickel, cobalt, and manganese is used. After washing with water, the mixture was mixed with the cobalt-containing raw material and then heat treated at an temperature of 700 ° C. or higher in an oxidizing atmosphere to find a high concentration nickel-based cathode active material having low residual amount of lithium by-product and excellent high temperature stability. It was.
  • Method for producing a positive electrode active material comprises the steps of (1) preparing a lithium composite metal oxide represented by the formula (1), (2) washing the lithium composite metal oxide and (3) the washed lithium composite metal oxide Mixing the cobalt-containing raw material and heat-treating at an temperature of 700 ° C. or higher in an oxidizing atmosphere.
  • each step of the present invention will be described in more detail.
  • a lithium composite metal oxide is prepared.
  • the lithium composite metal oxide used in the present invention is nickel, cobalt, manganese, and four components of M, which is one metal element selected from the group consisting of Al, Mg, Ge, V, Mo, Nb, Si, Ti, Zr, and W. It is a four-component lithium composite metal oxide containing essential as a high concentration nickel (high-nickel) four-component lithium composite metal oxide in which the molar ratio of nickel in the said four components exceeds 0.7.
  • the lithium composite metal oxide may be a lithium composite metal oxide represented by Formula 1 below.
  • M is one metal element selected from the group consisting of Al, Mg, Ge, V, Mo, Nb, Si, Ti, Zr, and W
  • X is P or F.
  • a represents an atomic fraction of nickel among the metal elements excluding lithium, and a may be greater than 0.7 but less than 1, preferably 0.8 to 0.95, and more preferably 0.8 to 0.9.
  • B represents an atomic fraction of cobalt among metal elements excluding lithium, and b may be greater than 0 and less than 0.3, preferably 0.001 to 0.25, more preferably 0.01 to 0.2.
  • C represents an atomic fraction of manganese among metal elements excluding lithium, and c may be greater than 0 and less than 0.1, preferably 0.001 to 0.05.
  • the d represents an atomic fraction of the M element among the metal elements excluding lithium, and d may be greater than 0 and less than 0.1, preferably 0.001 to 0.05.
  • x represents the extent to which some of the metal elements except lithium are replaced by lithium
  • y represents the extent to which oxygen is replaced by the X element, 0 ⁇ x ⁇ 0.1, 0 ⁇ y ⁇ 0.5.
  • the lithium composite metal oxide having the composition as shown in [Formula 1] is relatively high in structural stability, while implementing a high capacity characteristic compared to the conventional NMC-based lithium oxide.
  • the lithium composite metal oxide of [Formula 1] has a high nickel content having a high capacity characteristic, thereby realizing excellent capacity characteristics, and Mn and M elements are doped inside the active material, compared to the conventional NMC-based lithium oxide. Structurally stable.
  • oxygen is replaced with P or F, desorption of oxygen is prevented during charge and discharge of the lithium secondary battery, and interfacial reaction with the electrolyte is suppressed, thereby improving surface stability.
  • the lithium composite metal oxide of [Formula 1] is not limited thereto, but for example, a nickel-cobalt precursor, a manganese-containing raw material, a M-containing raw material, and a lithium-containing raw material are mixed, and 700 ° C. to 900 ° C. It may be prepared by the method of firing at °C.
  • the nickel-cobalt precursor may be, for example, nickel-cobalt hydroxide, specifically, a compound represented by Ni a ' Co b' OOH, wherein a 'is 0.7 to 0.95, preferably Preferably it may be 0.8 to 0.95, the b 'may be 0.05 to 0.3, preferably 0.05 to 0.2.
  • the nickel-cobalt precursor may be purchased by using a commercially available nickel-cobalt hydroxide, or may be prepared according to a method for preparing a nickel-cobalt precursor well known in the art.
  • the nickel-cobalt precursor may be prepared by coprecipitation reaction by adding an ammonium cation-containing complex former and a basic compound to a metal solution containing a nickel-containing raw material and a cobalt-containing raw material.
  • the nickel-containing raw material may be, for example, nickel-containing acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide or oxyhydroxide, and the like, specifically, Ni (OH) 2 , NiO, NiOOH, NiCO 3. 2Ni (OH) 2 4H 2 O, NiC 2 O 2 2H 2 O, Ni (NO 3 ) 2 6H 2 O, NiSO 4 , NiSO 4 6H 2 O, fatty acid nickel salts, nickel halides or their It may be a combination, but is not limited thereto.
  • the cobalt-containing raw material may be cobalt-containing acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide or oxyhydroxide, and the like, specifically, Co (OH) 2 , CoOOH, Co (OCOCH 3 ) 2 ⁇ 4H 2 O , Co (NO 3 ) 2 ⁇ 6H 2 O, Co (SO 4 ) 2 ⁇ 7H 2 O or a combination thereof, but is not limited thereto.
  • the metal solution is prepared by adding a nickel-containing raw material and a cobalt-containing raw material to a solvent, in particular water, or a mixed solvent of an organic solvent (eg, alcohol, etc.) that can be mixed uniformly with water, or It may be prepared by mixing an aqueous solution of the nickel-containing raw material and an aqueous solution of the cobalt-containing raw material.
  • a solvent in particular water, or a mixed solvent of an organic solvent (eg, alcohol, etc.) that can be mixed uniformly with water, or It may be prepared by mixing an aqueous solution of the nickel-containing raw material and an aqueous solution of the cobalt-containing raw material.
  • the ammonium cation-containing complex former may be, for example, NH 4 OH, (NH 4 ) 2 SO 4 , NH 4 NO 3 , NH 4 Cl, CH 3 COONH 4 , NH 4 CO 3, or a combination thereof. It is not limited to this.
  • the ammonium cation-containing complex forming agent may be used in the form of an aqueous solution, wherein a solvent may be a mixture of water or an organic solvent (specifically, alcohol, etc.) that can be uniformly mixed with water.
  • the basic compound may be a hydroxide of an alkali metal or alkaline earth metal such as NaOH, KOH or Ca (OH) 2 , a hydrate thereof, or a combination thereof.
  • the basic compound may also be used in the form of an aqueous solution, and as the solvent, a mixture of water or an organic solvent (specifically, alcohol, etc.) that can be uniformly mixed with water may be used.
  • the basic compound may be used by dissolving an anionic compound including the X element, that is, P and / or F.
  • an anionic compound including the X element that is, P and / or F.
  • the X element derived from the anionic compound is partially substituted at the oxygen position of the precursor, it is possible to obtain the effect of suppressing oxygen desorption and reaction with the electrolyte during charging and discharging of the secondary battery.
  • the basic compound is added to adjust the pH of the reaction solution, and may be added in an amount such that the pH of the metal solution is 11 to 13.
  • the coprecipitation reaction may be carried out at a temperature of 40 °C to 70 °C under an inert atmosphere such as nitrogen or argon.
  • nickel-cobalt hydroxide particles are produced and precipitated in the reaction solution.
  • the precipitated nickel-cobalt hydroxide particles can be separated according to a conventional method and dried to obtain a nickel-cobalt precursor.
  • the nickel cobalt precursor prepared by the above method, a manganese-containing raw material, an M-containing raw material and a lithium-containing raw material are mixed and calcined at 600 ° C to 900 ° C, preferably 600 ° C to 800 ° C to form a lithium composite metal oxide. You can get it.
  • the manganese-containing raw material may be, for example, manganese-containing acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide, oxyhydroxide or a combination thereof, and specifically Mn 2 O 3 , MnO 2 Manganese oxides such as Mn 3 O 4 and the like; Manganese salts such as MnCO 3 , Mn (NO 3 ) 2 , MnSO 4 , manganese acetate, manganese dicarboxylic acid, manganese citrate, fatty acid manganese; Manganese oxy hydroxide, manganese chloride or a combination thereof, but is not limited thereto.
  • the M-containing raw material may be acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide, oxyhydroxide or a combination thereof containing M element, specifically, Al 2 O 3 , AlSO 4 , AlCl 3 , Al-isopropoxide, AlNO 3 , or a combination thereof, but is not limited thereto.
  • the lithium-containing raw material may be a lithium-containing carbonate (e.g., lithium carbonate), a hydrate (e.g., lithium hydroxide I hydrate (LiOH, H 2 O), etc.), a hydroxide (e.g., lithium hydroxide, etc.), a nitrate ( For example, lithium nitrate (LiNO 3 ), etc.), chlorides (for example, lithium chloride (LiCl), etc.), and the like may be used alone, or a mixture of two or more thereof may be used.
  • a lithium-containing carbonate e.g., lithium carbonate
  • a hydrate e.g., lithium hydroxide I hydrate (LiOH, H 2 O), etc.
  • a hydroxide e.g., lithium hydroxide, etc.
  • a nitrate For example, lithium nitrate (LiNO 3 ), etc.
  • chlorides for example, lithium chloride (LiCl), etc.
  • the mixing of the nickel-cobalt precursor, the manganese containing raw material, the M containing raw material, and the lithium containing raw material may be made by solid phase mixing such as jet milling. Meanwhile, the mixing ratio of the nickel-cobalt precursor, the manganese-containing raw material, the M-containing raw material, and the lithium-containing raw material may be determined in a range satisfying the atomic fraction of each metal component in the finally manufactured lithium composite metal oxide.
  • the X-containing raw material may be further mixed during the firing.
  • the X-containing raw material may be, for example, Na 3 PO 4 , K 3 PO 4 , Mg 3 (PO 4 ) 2 , AlF 3 , NH 4 F, LiF, and the like, but is not limited thereto.
  • the lithium composite metal oxide is prepared in the same manner as above, the lithium composite metal oxide is washed with water to remove lithium by-products remaining in the lithium composite metal oxide.
  • Lithium composite metal oxides containing high concentrations of nickel are more structurally unstable than lithium composite metal oxides with low nickel content, resulting in more lithium byproducts such as unreacted lithium hydroxide or lithium carbonate in the manufacturing process.
  • the amount of lithium byproducts after synthesis is about 0.5 to 0.6 wt%, whereas in the case of a lithium composite metal oxide having a nickel fraction of 80 atomic% or more, lithium after synthesis The amount of by-products appears as high as 1% by weight.
  • the washing step may be performed, for example, by adding a lithium composite metal oxide to ultrapure water and stirring the mixture.
  • the washing temperature may be 20 °C or less, preferably 10 °C to 20 °C, the washing time may be about 10 minutes to 1 hour.
  • the water washing temperature and the water washing time satisfy the above range, lithium by-products can be effectively removed.
  • the washed lithium composite metal oxide and the cobalt-containing raw material are mixed and heat-treated.
  • the heat treatment is performed at a temperature of 700 °C or more in an oxidizing atmosphere.
  • the heat treatment step is to improve the structural stability and thermal stability by further removing lithium by-products, and recrystallization of the metal elements in the positive electrode active material through high temperature heat treatment.
  • the cobalt-containing raw material may include cobalt-containing acetates, nitrates, sulfates, halides, sulfides, hydroxides, oxides, or oxyhydroxides, and specifically, Co (OH) 2 , CoOOH, Co (OCOCH 3 ) 2 ⁇ 4H. 2 O, Co (nO 3) 2 and 6H 2 O, Co (SO 4 ) 2 and 7H 2 O, or the like may be used a combination thereof, and the like.
  • the cobalt-containing raw material may be mixed in an amount of 0.001 to 0.01 parts by weight, preferably 0.002 to 0.008 parts by weight, based on 100 parts by weight of the lithium composite metal oxide.
  • the content of the cobalt-containing raw material satisfies the above range, the output characteristics can be effectively improved without inhibiting the capacity characteristics of the lithium composite metal oxide.
  • the amount is less than 0.001 part by weight, the effect of improving the output is insignificant.
  • nickel in the lithium composite metal oxide may be replaced with cobalt to deteriorate capacity characteristics.
  • the cobalt component When the heat treatment is performed by additionally adding the cobalt-containing raw material, the cobalt component is coated on the surface of the lithium composite metal oxide during the heat treatment process, and thus the cobalt-rich layer having a relatively higher cobalt content than the inside of the lithium composite metal oxide ( Cobalt-Rich Layer is formed. As such, when the cobalt-rich layer is formed on the surface of the lithium composite metal oxide, an output characteristic may be improved.
  • the heat treatment is carried out in an oxidizing atmosphere, for example, an oxygen atmosphere.
  • the heat treatment may be performed while supplying oxygen at a flow rate of 0.5 to 10 L / min, preferably 1 to 5 L / min.
  • the heat treatment is performed in an oxidizing atmosphere as in the present invention, lithium by-products are effectively removed.
  • the effect of removing lithium by-products is remarkably decreased when heat treatment is performed in the air.
  • heat treatment is performed at 700 or more in the air, the amount of lithium by-products increases rather than before heat treatment.
  • the heat treatment is preferably performed within 10 hours, for example, 1 hour to 10 hours at 700 °C or more, for example, 700 °C to 800 °C temperature.
  • the heat treatment temperature and time satisfy the above range, the effect of improving the thermal stability is excellent. According to the researches of the present inventors, it was found that when the heat treatment temperature is less than 700 ° C., there is little effect of improving thermal stability.
  • the cathode active material for a secondary battery of the present invention manufactured according to the above method includes a lithium composite metal oxide represented by the following Chemical Formula 1, and a cobalt-rich layer formed on the surface of the lithium composite metal oxide.
  • M is one metal element selected from the group consisting of Al, Mg, Ge, V, Mo, Nb, Si, Ti, Zr and W
  • the cobalt-rich layer is a layer formed by coating a surface of a lithium composite metal oxide with a cobalt component derived from a cobalt-containing raw material in a process of mixing and heat treating a lithium composite metal oxide and a cobalt-containing raw material. It is a layer containing more cobalt than metal oxide.
  • the cobalt atomic fraction of the lithium composite metal oxide may be 0.05 to 0.2, preferably 0.05 to 0.15.
  • the atomic fraction of cobalt among nickel, cobalt, manganese, and M in the cobalt-rich layer ie, the ratio of the number of atoms of cobalt to the sum of the number of atoms of nickel, cobalt, manganese, and M
  • the output characteristics can be effectively improved without disturbing the capacity characteristics of the lithium composite metal oxide.
  • the cobalt rich layer may have a thickness of 10 to 100nm, preferably 30nm to 70nm.
  • the thickness of the cobalt rich layer satisfies the above range, when the thickness of the cobalt rich layer exceeds 100 nm, the initial discharge capacity may decrease, and when the thickness of the cobalt rich layer is less than 10 nm, output and cycle characteristics may be degraded. Can be.
  • the cathode active material according to the present invention as described above is manufactured through a process of high temperature heat treatment in an oxidizing atmosphere after washing with water, the residual amount of lithium by-products is significantly less than the conventional high concentration nickel-containing cathode active material, it is possible to implement excellent high temperature stability.
  • the positive electrode active material according to the present invention when the heat flow (Heat Flow) is measured by differential scanning calorimetry (DSC), in the temperature range of 230 °C to 250 °C, preferably in the temperature range of 235 °C to 245 °C A peak appears, and the maximum value of the heat flow is 1000 mW or less, preferably 600 mW or less, more preferably 400 mW or less. If the heat treatment is not performed after washing, or even if the heat treatment temperature and atmosphere does not satisfy the conditions of the present invention, the peak appears at a lower temperature, that is, less than 230 °C, a high heat flow value of more than 1000mW.
  • DSC differential scanning calorimetry
  • the positive electrode active material of the present invention has a relatively high temperature range in which peaks appear and a small maximum amount of heat flow, so that the explosion risk is small even when the internal temperature of the battery rises due to overcharge or the like.
  • the positive electrode active material according to the present invention has a lithium byproduct content of 1% by weight or less, preferably 0.5% by weight or less, more preferably 0.3% by weight or less. Therefore, when the secondary battery is manufactured using the cathode active material according to the present invention, gas generation and swelling phenomenon during charging and discharging can be effectively suppressed.
  • the positive electrode active material for a secondary battery according to the present invention may be usefully used for the production of a positive electrode for a secondary battery.
  • the secondary battery positive electrode according to the present invention includes a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector, wherein the positive electrode active material layer comprises a positive electrode active material according to the present invention.
  • the positive electrode may be manufactured according to a conventional positive electrode manufacturing method except using the positive electrode active material according to the present invention.
  • the positive electrode may be prepared by dissolving or dispersing components constituting the positive electrode active material layer, that is, the positive electrode active material, a conductive material and / or a binder, etc. in a solvent, and manufacturing the positive electrode mixture to the positive electrode current collector. After coating on at least one surface, it may be produced by drying and rolling, or by casting the positive electrode mixture on a separate support, and then laminating the film obtained by peeling from the support onto a positive electrode current collector.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery, for example, stainless steel, aluminum, nickel, titanium, calcined carbon or carbon or nickel on the surface of aluminum or stainless steel Surface treated with titanium, silver, or the like can be used.
  • the positive electrode current collector may have a thickness of typically 3 ⁇ m to 500 ⁇ m, and may form fine irregularities on the surface of the current collector to increase adhesion of the positive electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • At least one surface of the current collector includes a cathode active material according to the present invention, and optionally a cathode active material layer further comprising at least one of a conductive material and a binder.
  • the cathode active material includes a cathode active material according to the present invention, that is, a lithium composite metal oxide represented by Chemical Formula 1 and a cobalt-rich layer formed on the surface of the lithium composite metal oxide.
  • a cathode active material according to the present invention that is, a lithium composite metal oxide represented by Chemical Formula 1 and a cobalt-rich layer formed on the surface of the lithium composite metal oxide.
  • Specific details of the positive electrode active material according to the present invention are the same as described above, so a detailed description thereof will be omitted.
  • the cathode active material may be included in an amount of 80 to 99% by weight, more specifically 85 to 98% by weight, based on the total weight of the cathode active material layer. When included in the above content range may exhibit excellent capacity characteristics.
  • the conductive material is used to impart conductivity to the electrode, and in the battery constituted, any conductive material may be used as long as it has electronic conductivity without causing chemical change. Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum, and silver; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Or conductive polymers such as polyphenylene derivatives, and the like, or a mixture of two or more kinds thereof may be used.
  • the conductive material may be included in an amount of 1 wt% to 30 wt% with respect to the total weight of the positive electrode active material layer.
  • the binder serves to improve adhesion between the cathode active material particles and adhesion between the cathode active material and the current collector.
  • specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC).
  • the binder may be included in an amount of 1% by weight to 30% by weight based on the total weight of the positive electrode active material layer.
  • the solvent used to prepare the positive electrode mixture may be a solvent generally used in the art, for example, dimethyl sulfoxide (DMSO), isopropyl alcohol (isopropyl alcohol), N-methylpyrroli Don (NMP), acetone (acetone) or water or the like may be used alone or in combination thereof.
  • DMSO dimethyl sulfoxide
  • NMP N-methylpyrroli Don
  • acetone acetone
  • water or the like may be used alone or in combination thereof.
  • the amount of the solvent used may be appropriately adjusted in consideration of the coating thickness of the slurry, the production yield, the viscosity, and the like.
  • the secondary battery according to the present invention includes a positive electrode, a negative electrode positioned to face the positive electrode, a separator and an electrolyte interposed between the positive electrode and the negative electrode, wherein the positive electrode is the positive electrode according to the present invention described above.
  • the secondary battery may further include a battery container accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member sealing the battery container.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer positioned on at least one surface of the negative electrode current collector.
  • the negative electrode may be prepared according to a conventional negative electrode manufacturing method generally known in the art.
  • the negative electrode may be prepared by dissolving or dispersing components constituting the negative electrode active material layer, that is, the negative electrode active material, a conductive material and / or a binder, and the like in a solvent, and preparing the negative electrode mixture of the negative electrode current collector. After coating on at least one surface, it may be produced by drying and rolling, or by casting the negative electrode mixture on a separate support, and then laminating the film obtained by peeling from the support onto a negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • the negative electrode current collector may be formed on a surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper, or stainless steel. Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy and the like can be used.
  • the negative electrode current collector may have a thickness of 3 ⁇ m to 500 ⁇ m, and similarly to the positive electrode current collector, fine concavities and convexities may be formed on the surface of the current collector to enhance the bonding force of the negative electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fibers, and amorphous carbon;
  • Metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys;
  • a composite including the metallic compound and the carbonaceous material such as a Si-C composite or a Sn-C composite, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the anode active material.
  • the carbon material both low crystalline carbon and high crystalline carbon can be used. Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is amorphous, plate, scaly, spherical or fibrous natural graphite or artificial graphite, Kish graphite (Kish) graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch High-temperature calcined carbon such as derived cokes is typical.
  • the binder and the conductive material may be the same as described above in the positive electrode.
  • the separator separates the negative electrode and the positive electrode and provides a passage for the movement of lithium ions, and can be used without particular limitation as long as it is usually used as a separator in the secondary battery, in particular with respect to the ion movement of the electrolyte It is preferable that it is resistance and excellent in electrolyte solution moisture-wetting ability.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like Laminate structures of two or more layers may be used.
  • a porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
  • the electrolyte may be an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, or the like, which can be used in manufacturing a secondary battery, but is not limited thereto.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent may be an ester solvent such as methyl acetate, ethyl acetate, ⁇ -butyrolactone or ⁇ -caprolactone; Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), ethyl methyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate, Carbonate solvents such as PC); Alcohol solvents such as ethyl alcohol and isopropyl alcohol; R a -CN nitriles, such as (R a may include a straight, branched, or a hydrocarbon group
  • carbonate-based solvents are preferable, and cyclic carbonates having high ionic conductivity and high dielectric constant (for example, ethylene carbonate or propylene carbonate) that can improve the charge and discharge performance of a battery, and low viscosity linear carbonate compounds (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate and the like is more preferable.
  • the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of about 1: 1 to 9, so that the performance of the electrolyte may be excellent.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (C 2 F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB (C 2 O 4 ) 2 and the like can be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1M to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can move effectively.
  • the electrolyte includes, in addition to the electrolyte components, haloalkylene carbonate-based compounds such as difluoroethylene carbonate for the purpose of improving the life characteristics of the battery, suppressing the reduction of the battery capacity, and improving the discharge capacity of the battery; Or pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N
  • One or more additives such as -substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol or aluminum trichloride may be included. In this case, the additive may be included in an amount of 0.1% by weight to 5% by weight based on the total weight of the electrolyte.
  • the secondary battery including the cathode active material according to the present invention has excellent capacity characteristics and high temperature stability, such as a portable device such as a mobile phone, a notebook computer, a digital camera, and a hybrid electric vehicle (HEV). It can be usefully applied to the electric vehicle field.
  • a portable device such as a mobile phone, a notebook computer, a digital camera, and a hybrid electric vehicle (HEV). It can be usefully applied to the electric vehicle field.
  • HEV hybrid electric vehicle
  • the secondary battery according to the present invention can be used as a unit cell of the battery module, the battery module can be applied to a battery pack.
  • the battery module or the battery pack is a power tool (Power Tool); Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • Power Tool Power Tool
  • Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs)
  • PHEVs plug-in hybrid electric vehicles
  • a positive electrode active material was prepared in the same manner as in Example 1 except that heat treatment was not performed.
  • a positive electrode active material was prepared in the same manner as in Example 1 except that Co (OH) 2 was not added during the heat treatment.
  • a positive electrode active material was manufactured in the same manner as in Example 1, except that Co (OH) 2 was not added during the heat treatment and heat-treated at 300 ° C. without oxygen supply.
  • a positive electrode active material was manufactured in the same manner as in Example 1, except that Co (OH) 2 was not added during the heat treatment and heat-treated at 500 ° C. without oxygen supply.
  • a positive electrode active material was manufactured in the same manner as in Example 1, except that Co (OH) 2 was not added during the heat treatment and heat-treated at 600 ° C. without oxygen supply.
  • a positive electrode active material was manufactured in the same manner as in Example 1, except that Co (OH) 2 was not added during the heat treatment and heat-treated at 700 ° C. without oxygen supply.
  • the positive electrode active material of Example 1 showed a peak at 240 ° C., and the maximum amount of heat flow was less than 200 mW, whereas the positive electrode active material of Comparative Example 3 showed a peak at 225 ° C., and the maximum value of heat flow exceeded 1000 mW. can confirm.
  • Residual LiOH and LiCO 3 residues in each cathode active material were calculated using the pH titration curve, and the sum of these values was evaluated as total lithium byproduct residues, and is shown in Table 1 below.
  • the lithium by-product residual amount of the positive electrode active material of Example 1 satisfying the heat treatment conditions of the present invention does not perform the heat treatment process (Comparative Example 1), or when the heat treatment is performed without oxygen supply (Comparative Example Compared to 4 ⁇ 6) it can be seen that significantly falling.
  • the heat treatment is performed in the air atmosphere without supplying oxygen as in Comparative Examples 4 to 6, it can be seen that the residual amount of lithium by-products increases rather than Comparative Example 1 without heat treatment.
  • Each positive electrode active material, carbon black conductive material, and PVdF binder prepared by Example 1, Comparative Example 2 and Comparative Example 3 were mixed in an N-methylpyrrolidone solvent in a ratio of 95: 2.5: 2.5 by weight in a positive electrode mixture (Viscosity: 5000 mPa ⁇ s) was prepared, which was applied to one surface of an aluminum current collector, dried at 130 ° C., and rolled to prepare a positive electrode.
  • a negative electrode active material a natural graphite, a carbon black conductive material, and a PVdF binder were mixed in an N-methylpyrrolidone solvent in a ratio of 85: 10: 5 in a weight ratio to prepare a composition for forming a negative electrode active material layer, and the copper current collector It was applied to one side of to prepare a negative electrode.
  • An electrode assembly was manufactured between the positive electrode and the negative electrode prepared as described above through a separator of porous polyethylene, the electrode assembly was placed in a case, and an electrolyte solution was injected into the case to prepare a lithium secondary battery.
  • the measurement results are shown in FIGS. 3 and 4. 3 is a graph showing a capacity retention rate, and FIG. 4 is a graph showing a resistance increase rate.

Abstract

The present invention relates to a positive electrode active material for a secondary battery, a preparation method therefor, a positive electrode comprising the same, and a secondary battery, the positive electrode active material comprising: a lithium composite metal oxide represented by chemical formula 1; and a cobalt-rich layer formed on a surface of the lithium composite metal oxide and having a higher cobalt content than the lithium composite metal oxide.

Description

이차전지용 양극 활물질, 그 제조 방법, 이를 포함하는 이차전지용 양극 및 이차전지Cathode active material for secondary battery, manufacturing method thereof, cathode for secondary battery and secondary battery comprising same
[관련출원과의 상호인용][Citations with Related Applications]
본 출원은 2016.12.28에 출원된 한국특허출원 제10-2016-0181027호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0181027, filed on December 28, 2016, all the contents disclosed in the Korean patent application document is included as part of this specification.
[기술분야][Technical Field]
본 발명은 이차전지용 양극 활물질, 그 제조 방법, 이를 포함하는 이차전지용 양극 및 이차전지에 관한 것으로, 보다 상세하게는 활물질 표면에 리튬 부산물의 잔류량이 적고, 고온 안정성, 용량 특성 및 수명 특성이 우수한 고농도 니켈(Ni-rich) 양극 활물질, 그 제조 방법 및 이를 포함하는 이차전지용 양극 및 이차전지에 관한 것이다.The present invention relates to a positive electrode active material for a secondary battery, a method for manufacturing the same, a positive electrode for a secondary battery and a secondary battery including the same, and more particularly, a high concentration having a low amount of lithium by-products remaining on the surface of the active material, and having excellent high temperature stability, capacity characteristics, and lifetime characteristics. The present invention relates to a nickel (Ni-rich) cathode active material, a method of manufacturing the same, and a cathode and a secondary battery for a secondary battery including the same.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다. As technology development and demand for mobile devices increase, the demand for secondary batteries as a source of energy is rapidly increasing. Among such secondary batteries, lithium secondary batteries having high energy density and voltage, long cycle life, and low self discharge rate have been commercialized and widely used.
리튬 이차전지의 양극 활물질로는 리튬 전이금속 복합 산화물이 이용되고 있으며, 이 중에서도 작용전압이 높고 용량 특성이 우수한 LiCoO2의 리튬코발트 복합금속 산화물이 주로 사용되고 있다. 그러나, LiCoO2는 탈 리튬에 따른 결정 구조의 불안정화로 열적 특성이 매우 열악하고, 또 고가이기 때문에 전기 자동차 등과 같은 분야의 동력원으로 대량 사용하기에는 한계가 있다. Lithium transition metal composite oxide is used as a positive electrode active material of a lithium secondary battery, and among these, lithium cobalt composite metal oxide of LiCoO 2 having a high operating voltage and excellent capacity characteristics is mainly used. However, since LiCoO 2 is very poor in thermal properties due to destabilization of crystal structure due to de-lithium and is expensive, there is a limit to using LiCoO 2 as a power source in fields such as electric vehicles.
LiCoO2를 대체하기 위한 재료로서, 리튬망간 복합금속 산화물(LiMnO2 또는 LiMn2O4 등), 리튬 인산철 화합물(LiFePO4 등) 또는 리튬니켈 복합금속 산화물(LiNiO2 등) 등이 개발되었다. 이 중에서도 약 200 mAh/g의 높은 가역용량을 가져 대용량의 전지 구현이 용이한 리튬니켈 복합금속 산화물에 대한 연구 및 개발이 보다 활발히 연구되고 있다. 그러나, LiNiO2는 LiCoO2와 비교하여 열안정성이 나쁘고, 충전 상태에서 외부로부터의 압력 등에 의해 내부 단락이 생기면 양극 활물질 그 자체가 분해되어 전지의 파열 및 발화를 초래하는 문제가 있다.As a material for replacing LiCoO 2 , lithium manganese composite metal oxides (such as LiMnO 2 or LiMn 2 O 4 ), lithium iron phosphate compounds (such as LiFePO 4 ), or lithium nickel composite metal oxides (such as LiNiO 2 ) have been developed. Among them, research and development of lithium nickel composite metal oxides having a high reversible capacity of about 200 mAh / g and easy to implement a large-capacity battery have been actively studied. However, LiNiO 2 has a poor thermal stability compared to LiCoO 2, and when an internal short circuit occurs due to pressure from the outside in a charged state, the positive electrode active material itself decomposes, causing a battery to rupture and ignite.
이에 따라 LiNiO2의 우수한 가역용량은 유지하면서도 낮은 열안정성을 개선하기 위한 방법으로서, Ni의 일부를 Mn과 Co으로 치환한 니켈코발트망간계 리튬 복합금속 산화물(이하, 간단히 'NCM계 리튬 산화물'이라 함)이 개발되었다. 그러나, 종래의 현재까지 개발된 NCM계 리튬 산화물은 용량 특성이 충분하지 않아 적용에 한계가 있었다. Accordingly, as a method for improving low thermal stability while maintaining excellent reversible capacity of LiNiO 2 , a nickel cobalt manganese-based lithium composite metal oxide in which a part of Ni is substituted with Mn and Co (hereinafter, simply referred to as 'NCM-based lithium oxide') Has been developed. However, the conventional NCM-based lithium oxide developed to date has a limitation in application due to insufficient capacity characteristics.
이와 같은 문제점을 개선하기 위해, 최근에는 NCM계 리튬 산화물에서 Ni의 함량을 증가시키려는 연구가 이루어지고 있다. 그러나, 니켈 함량이 높은 고농도 니켈 양극 활물질의 경우, 활물질의 구조적 안정성과 화학적 안정성이 떨어져 열 안정성이 급격히 저하된다는 문제점이 있다. 또한, 활물질 내의 니켈 함량이 높아짐에 따라 양극 활물질 표면에 LiOH, Li2CO3 형태로 존재하는 리튬 부산물의 잔류량이 높아져 이로 인한 가스 발생 및 스웰링(swelling) 현상이 발생하여 전지의 수명 및 안정성이 저하되는 문제점도 발생한다. In order to improve such a problem, researches have recently been made to increase the content of Ni in NCM-based lithium oxide. However, in the case of a high nickel content of a high concentration of the nickel positive electrode active material, there is a problem that the structural stability and chemical stability of the active material is lowered, the thermal stability is sharply lowered. In addition, as the nickel content in the active material increases, the amount of lithium by-products present in the form of LiOH and Li 2 CO 3 on the surface of the positive electrode active material increases, resulting in gas generation and swelling, thereby improving battery life and stability. The problem of deterioration also arises.
따라서, 고용량화에 부합하면서도 리튬 부산물의 잔류량이 적고, 고온 안정성이 우수한 고농도 니켈(Ni-rich) 양극 활물질의 개발이 요구되고 있다.Accordingly, there is a demand for development of a high-density nickel (Ni-rich) cathode active material having high residual capacity and low residual amount of lithium by-products while meeting high capacity.
[선행기술문헌][Preceding technical literature]
1. 한국공개특허 제10-2016-0063982호(공개일: 2016.06.07)1. Korean Patent Publication No. 10-2016-0063982 (published: 2016.06.07)
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 리튬 부산물의 잔류량이 적고, 표면에 코발트-리치층(Co-rich layer)이 형성되어 우수한 용량 특성 및 고온 안정성을 동시에 구현할 수 있는 고농도 니켈 양극 활물질과, 그 제조 방법과, 이를 포함하는 이차 전지용 양극 및 이차 전지를 제공하고자 한다.The present invention is to solve the above problems, a low amount of lithium by-products, cobalt-rich layer (Co-rich layer) is formed on the surface of the high-concentration nickel cathode active material that can simultaneously realize excellent capacity characteristics and high temperature stability And, to provide a manufacturing method, and a positive electrode and a secondary battery for a secondary battery comprising the same.
일 측면에서, 본 발명은 하기 화학식 1로 표시되는 리튬 복합 금속 산화물; 및 상기 리튬 복합 금속 산화물 표면에 형성되고, 상기 리튬 복합 금속 산화물에 비해 코발트 함량이 높은 코발트-리치층(Cobalt-rich layer)을 포함하는 이차 전지용 양극 활물질을 제공한다. In one aspect, the present invention is a lithium composite metal oxide represented by the formula (1); And a cobalt-rich layer formed on the surface of the lithium composite metal oxide and having a higher cobalt content than the lithium composite metal oxide.
[화학식 1][Formula 1]
Li1+x[NiaCobMncMd]1-xO2-yXy Li 1 + x [Ni a Co b Mn c M d ] 1-x O 2-y X y
상기 화학식 1에서, 0.7<a<1, 0<b<0.3, 0<c<0.1, 0<d<0.1, a+b+c+d=1, 0≤x≤0.05, 0≤y≤0.2이고, M은 Al, Mg, Ge, V, Mo, Nb, Si, Ti, Zr 및 W로 이루어진 군에서 선택된 1종의 금속 원소이며, X는 P 또는 F임.In Formula 1, 0.7 <a <1, 0 <b <0.3, 0 <c <0.1, 0 <d <0.1, a + b + c + d = 1, 0 ≦ x ≦ 0.05, 0 ≦ y ≦ 0.2 M is one metal element selected from the group consisting of Al, Mg, Ge, V, Mo, Nb, Si, Ti, Zr and W, and X is P or F.
상기 코발트-리치층 내의 니켈, 코발트, 망간 및 M의 원자 개수 합에 대한 코발트의 원자 개수의 비와 상기 리튬 복합 금속 산화물 내의 니켈, 코발트, 망간 및 M의 원자 개수의 합에 대한 코발트의 원자 개수의 비의 차가 0.05 내지 0.2, 바람직하게는 0.05 내지 0.15일 수 있다. The ratio of the number of atoms of cobalt to the sum of the number of atoms of nickel, cobalt, manganese and M in the cobalt-rich layer and the number of atoms of cobalt to the sum of the number of atoms of nickel, cobalt, manganese and M in the lithium composite metal oxide The difference in ratio of may be 0.05 to 0.2, preferably 0.05 to 0.15.
구체적으로는, 상기 코발트-리치층 내의 니켈, 코발트, 망간 및 M의 원자 개수의 합에 대한 코발트의 원자 개수의 비가 0.05 내지 0.45, 바람직하게는 0. 05 내지 0.35일 수 있다. Specifically, the ratio of the number of atoms of cobalt to the sum of the number of atoms of nickel, cobalt, manganese and M in the cobalt-rich layer may be 0.05 to 0.45, and preferably 0.05 to 0.35.
상기 코발트 리치층은 두께가 10 내지 100nm, 바람직하게는 10 내지 70nm일 수 있다. The cobalt rich layer may have a thickness of 10 to 100 nm, preferably 10 to 70 nm.
한편, 상기 양극 활물질은 시차주사열량측정법(DSC)에 의해 열류량(Heat Flow)을 측정하였을 때, 230℃ 내지 250℃의 온도 범위, 바람직하게는 235℃ 내지 245℃의 온도 범위에서 피크가 나타나고, 상기 열류량(Heat Flow)의 최대값이 1000mW 이하, 바람직하게는 600mW 이하, 더 바람직하게는 400mW 이하일 수 있다. On the other hand, the positive electrode active material when the heat flow (Heat Flow) measured by differential scanning calorimetry (DSC), a peak appears in the temperature range of 230 ℃ to 250 ℃, preferably 235 ℃ to 245 ℃, The maximum value of the heat flow may be 1000 mW or less, preferably 600 mW or less, and more preferably 400 mW or less.
또한, 상기 양극 활물질 내 리튬 부산물의 함량은 1중량% 이하, 바람직하게는 0.5중량% 이하, 더 바람직하게는 0.3중량% 이하일 수 있다. In addition, the lithium by-product content in the positive electrode active material may be 1% by weight or less, preferably 0.5% by weight or less, and more preferably 0.3% by weight or less.
다른 측면에서, 본 발명은 상기 화학식 1로 표시되는 리튬 복합 금속 산화물을 준비하는 단계; 상기 리튬 복합 금속 산화물을 수세하는 단계; 및 상기 수세된 리튬 복합 금속 산화물과 코발트 함유 원료 물질을 혼합한 후 산화 분위기에서 700℃ 이상 온도로 열처리하는 단계를 포함하는 이차 전지용 양극 활물질의 제조 방법을 제공한다. In another aspect, the present invention comprises the steps of preparing a lithium composite metal oxide represented by the formula (1); Washing the lithium composite metal oxide; And it provides a method for producing a positive electrode active material for a secondary battery comprising the step of mixing the washed lithium composite metal oxide and cobalt-containing raw material and heat treatment at an temperature of 700 ℃ or more in an oxidizing atmosphere.
이때, 상기 화학식 1로 표시되는 리튬 복합 금속 산화물을 준비하는 단계는, 니켈-코발트 전구체, 망간 함유 원료 물질, M 함유 원료 물질, 및 리튬 함유 원료 물질을 혼합하고 600℃ 내지 900℃에서 소성하는 방법으로 수행될 수 있다. 상기 수세하는 단계는 20℃ 이하의 온도에서 수행될 수 있다. At this time, the step of preparing a lithium composite metal oxide represented by the formula (1), a nickel-cobalt precursor, a manganese-containing raw material, M-containing raw material, and a lithium-containing raw material mixed and fired at 600 ℃ to 900 ℃ It can be performed as. The washing step may be performed at a temperature of 20 ℃ or less.
상기 열처리 단계에서, 상기 코발트 함유 원료 물질은 리튬 복합 금속 산화물 100중량부에 대하여 0.001 내지 0.01 중량부, 바람직하게는 0.002 내지 0.008중량부로 혼합될 수 있다. In the heat treatment step, the cobalt-containing raw material may be mixed to 0.001 to 0.01 parts by weight, preferably 0.002 to 0.008 parts by weight based on 100 parts by weight of the lithium composite metal oxide.
또한, 상기 열처리하는 단계는 700℃ 내지 800℃ 온도에서 10시간 이내로 수행될 수 있다. In addition, the heat treatment may be performed within 10 hours at 700 ℃ to 800 ℃ temperature.
또 다른 측면에서, 본 발명은 상기 본 발명에 따른 이차전지용 양극 활물질을 포함하는 이차전지용 양극과, 상기 이차 전지용 양극을 포함하는 이차 전지를 제공한다.In another aspect, the present invention provides a secondary battery positive electrode including the positive electrode active material for a secondary battery according to the present invention, and a secondary battery comprising the positive electrode for the secondary battery.
본 발명에 따른 이차 전지용 양극 활물질은 표면에 출력 특성 및 안정성이 우수한 코발트가 높은 함량으로 포함된 코발트-리치층이 형성되어 있어, 종래의 고농도 니켈 양극 활물질과 달리 구조적으로 안정할 뿐 아니라, 반복 충전 시에도 용량 특성이 우수하고, 저항 증가율이 작은 이차 전지를 구현할 수 있다. In the positive electrode active material for a secondary battery according to the present invention, a cobalt-rich layer including a high content of cobalt having excellent output characteristics and stability is formed on the surface thereof, unlike the conventional high concentration nickel positive electrode active material, it is not only structurally stable but also repeatedly charged. Even when the secondary battery is excellent in capacity characteristics and has a small resistance increase rate.
또한, 본 발명의 제조 방법과 같이 수세 후에 코발트 함유 원료 물질을 혼합하고, 산화 분위기에서 고온 열처리 수행할 경우, 리튬 부산물의 잔류량이 감소하고, 재결정화가 발생하면서 구조 안정성이 향상되어 우수한 고온 안정성을 갖는 양극 활물질을 제조할 수 있다.In addition, when the cobalt-containing raw material is mixed after washing with water and subjected to high temperature heat treatment in an oxidizing atmosphere, the residual amount of lithium by-products is reduced, structural stability is improved while recrystallization occurs, and thus has excellent high temperature stability. A positive electrode active material can be manufactured.
도 1은 실시예 1 및 비교예 3의 양극활물질의 온도에 따른 열류량(Heat Flow)을 보여주는 그래프이다.1 is a graph showing the heat flow (Heat Flow) according to the temperature of the positive electrode active material of Example 1 and Comparative Example 3.
도 2는 실시예 1, 비교예 1, 4 ~ 6의 양극활물질들의 pH 적정 곡선(pH titration Curve)을 도시한 그래프이다. FIG. 2 is a graph showing pH titration curves of the positive electrode active materials of Example 1, Comparative Examples 1 and 4 to 6. FIG.
도 3은 실시예 1 및 비교예 2 및 3의 양극활물질을 이용하여 제조된 전지 셀의 충반전 사이클에 따른 용량 유지율을 도시한 그래프이다.3 is a graph showing capacity retention rates according to charge and discharge cycles of battery cells prepared using the cathode active materials of Example 1 and Comparative Examples 2 and 3. FIG.
도 4는 실시예 1 및 비교예 2 및 3의 양극활물질을 이용하여 제조된 전지 셀의 충방전 사이클에 따른 저항 증가율을 도시한 그래프이다.4 is a graph showing the resistance increase rate according to the charge and discharge cycle of the battery cell prepared using the positive electrode active material of Example 1 and Comparative Examples 2 and 3.
이하. 본 발명을 보다 자세히 설명한다. Below. The present invention is described in more detail.
본 발명자들은 리튬 부산물의 잔류량이 낮고 고온 안정성이 우수한 고농도 니켈계 양극 활물질을 제조하기 위해 연구를 거듭한 결과, 니켈, 코발트, 망간과 함께 특정한 금속원소 M을 적절한 조성비로 포함하는 리튬 복합 금속 산화물을 수세한 후, 코발트 함유 원료 물질과 혼합한 후 산화 분위기에서 700℃ 이상의 온도로 열처리함으로써, 리튬 부산물의 잔류량이 낮고 고온 안정성이 우수한 고농도 니켈계 양극 활물질을 제조할 수 있음을 알아내고 본 발명을 완성하였다.The inventors of the present invention have been researched to produce a high-density nickel-based positive electrode active material having a low residual amount of lithium by-products and excellent high temperature stability. As a result, a lithium composite metal oxide containing a specific metal element M in an appropriate composition ratio together with nickel, cobalt, and manganese is used. After washing with water, the mixture was mixed with the cobalt-containing raw material and then heat treated at an temperature of 700 ° C. or higher in an oxidizing atmosphere to find a high concentration nickel-based cathode active material having low residual amount of lithium by-product and excellent high temperature stability. It was.
먼저, 본 발명에 따른 이차 전지용 양극 활물질의 제조 방법에 대해 설명한다.First, the manufacturing method of the positive electrode active material for secondary batteries which concerns on this invention is demonstrated.
이차 전지용 양극 활물질의 제조 방법Manufacturing method of positive electrode active material for secondary batteries
본 발명에 따른 양극 활물질 제조 방법은 (1) 화학식 1로 표시되는 리튬 복합 금속 산화물을 준비하는 단계, (2) 상기 리튬 복합 금속 산화물을 수세하는 단계 및 (3) 상기 수세된 리튬 복합 금속 산화물과 코발트 함유 원료 물질을 혼합한 후 산화 분위기에서 700℃ 이상 온도로 열처리하는 단계를 포함한다. 이하, 본 발명의 각 단계에 대해 보다 구체적으로 설명한다.Method for producing a positive electrode active material according to the present invention comprises the steps of (1) preparing a lithium composite metal oxide represented by the formula (1), (2) washing the lithium composite metal oxide and (3) the washed lithium composite metal oxide Mixing the cobalt-containing raw material and heat-treating at an temperature of 700 ° C. or higher in an oxidizing atmosphere. Hereinafter, each step of the present invention will be described in more detail.
(1) 리튬 복합 금속 산화물을 준비하는 단계(1) preparing a lithium composite metal oxide
먼저, 리튬 복합 금속 산화물을 준비한다. First, a lithium composite metal oxide is prepared.
본 발명에서 사용되는 리튬 복합 금속 산화물은 니켈, 코발트, 망간 및 Al, Mg, Ge, V, Mo, Nb, Si, Ti, Zr, W로 이루어진 군에서 선택된 1종의 금속 원소인 M의 4성분을 필수로 포함하는 4성분계 리튬 복합 금속 산화물이며, 상기 4성분 중 니켈의 몰비율이 0.7을 초과하는 고농도 니켈(high-nickel)계 4성분계 리튬 복합 금속 산화물이다. The lithium composite metal oxide used in the present invention is nickel, cobalt, manganese, and four components of M, which is one metal element selected from the group consisting of Al, Mg, Ge, V, Mo, Nb, Si, Ti, Zr, and W. It is a four-component lithium composite metal oxide containing essential as a high concentration nickel (high-nickel) four-component lithium composite metal oxide in which the molar ratio of nickel in the said four components exceeds 0.7.
구체적으로는, 상기 리튬 복합 금속 산화물은 하기 화학식 1로 표시되는 리튬 복합 금속 산화물일 수 있다. Specifically, the lithium composite metal oxide may be a lithium composite metal oxide represented by Formula 1 below.
[화학식 1][Formula 1]
Li1+x[NiaCobMncMd]1-xO2-yXy Li 1 + x [Ni a Co b Mn c M d ] 1-x O 2-y X y
상기 화학식 1에서, M은 Al, Mg, Ge, V, Mo, Nb, Si, Ti, Zr 및 W로 이루어진 군에서 선택된 1종의 금속 원소이며, X는 P 또는 F이다.In Formula 1, M is one metal element selected from the group consisting of Al, Mg, Ge, V, Mo, Nb, Si, Ti, Zr, and W, X is P or F.
상기 a, b, c, d는 각각 리튬을 제외한 금속 원소들 중 Ni, Co, Mn 및 M 원소 각각의 원자분율, 즉, Ni, Co Mn 및 M의 원자 개수의 합에 대한 각 원소들의 원자 개수의 비율을 나타내는 것으로, 0.7<a<1, 0<b<0.3, 0<c<0.1, 0<d<0.1, a+b+c+d=1이다. A, b, c, and d are the atomic fractions of each of Ni, Co, Mn, and M elements among the metal elements excluding lithium, that is, the sum of the atomic numbers of Ni, Co Mn, and M, respectively. It represents ratio of 0.7 <a <1, 0 <b <0.3, 0 <c <0.1, 0 <d <0.1, a + b + c + d = 1.
구체적으로는, 상기 a는 리튬을 제외한 금속 원소들 중 니켈의 원자 분율을 나타내는 것으로, 상기 a는 0.7 초과 1 미만, 바람직하게는 0.8 내지 0.95, 더 바람직하게는 0.8 내지 0.9일 수 있다. Specifically, a represents an atomic fraction of nickel among the metal elements excluding lithium, and a may be greater than 0.7 but less than 1, preferably 0.8 to 0.95, and more preferably 0.8 to 0.9.
상기 b는 리튬을 제외한 금속 원소들 중 코발트의 원자 분율을 나타내는 것으로, 상기 b는 0 초과 0.3 미만, 바람직하게는 0.001 내지 0.25, 더 바람직하게는 0.01 내지 0.2일 수 있다. B represents an atomic fraction of cobalt among metal elements excluding lithium, and b may be greater than 0 and less than 0.3, preferably 0.001 to 0.25, more preferably 0.01 to 0.2.
상기 c는 리튬을 제외한 금속 원소들 중 망간의 원자 분율을 나타내는 것으로, 상기 c는 0 초과 0.1 미만, 바람직하게는 0.001 내지 0.05일 수 있다.C represents an atomic fraction of manganese among metal elements excluding lithium, and c may be greater than 0 and less than 0.1, preferably 0.001 to 0.05.
상기 d는 리튬을 제외한 금속 원소들 중 M 원소의 원자 분율을 나타내는 것으로, 상기 d는 0 초과 0.1 미만, 바람직하게는 0.001 내지 0.05일 수 있다.The d represents an atomic fraction of the M element among the metal elements excluding lithium, and d may be greater than 0 and less than 0.1, preferably 0.001 to 0.05.
한편, 상기 x는 리튬을 제외한 금속 원소들 중 일부가 리튬에 의해 대체된 정도를 나타내는 것이고, 상기 y는 산소가 X 원소에 의해 대체된 정도를 나타내는 것으로, 0≤x≤0.1, 0≤y≤0.5일 수 있다. 바람직하게는 0≤x≤0.05, 0≤y≤0.2일 수 있다. On the other hand, x represents the extent to which some of the metal elements except lithium are replaced by lithium, and y represents the extent to which oxygen is replaced by the X element, 0≤x≤0.1, 0≤y≤ 0.5. Preferably 0 ≦ x ≦ 0.05, 0 ≦ y ≦ 0.2.
상기 [화학식 1]과 같은 조성을 갖는 리튬 복합 금속 산화물은 종래의 NMC계 리튬 산화물에 비해 높은 용량 특성을 구현하면서도, 상대적으로 구조적 안정성이 높다. 구체적으로는 상기 [화학식 1]의 리튬 복합 금속 산화물은 고용량 특성을 갖는 니켈 함유량이 높아 우수한 용량특성을 구현할 수 있으며, 활물질 내부에 Mn 및 M 원소가 도핑되어 있어, 종래의 NMC계 리튬 산화물에 비해 구조적으로 안정하다. 또한, P 또는 F로 산소를 대체될 경우, 리튬 이차 전지의 충방전 과정에서 산소의 탈리를 방지하고, 전해액과의 계면 반응이 억제되어 표면 안정성이 개선된다. The lithium composite metal oxide having the composition as shown in [Formula 1] is relatively high in structural stability, while implementing a high capacity characteristic compared to the conventional NMC-based lithium oxide. Specifically, the lithium composite metal oxide of [Formula 1] has a high nickel content having a high capacity characteristic, thereby realizing excellent capacity characteristics, and Mn and M elements are doped inside the active material, compared to the conventional NMC-based lithium oxide. Structurally stable. In addition, when oxygen is replaced with P or F, desorption of oxygen is prevented during charge and discharge of the lithium secondary battery, and interfacial reaction with the electrolyte is suppressed, thereby improving surface stability.
상기 [화학식 1]의 리튬 복합 금속 산화물은, 이로써 한정되는 것은 아니나, 예를 들면, 니켈-코발트 전구체, 망간 함유 원료 물질, M 함유 원료 물질, 및 리튬 함유 원료 물질을 혼합하고, 700℃ 내지 900℃에서 소성하는 방법으로 제조된 것일 수 있다. The lithium composite metal oxide of [Formula 1] is not limited thereto, but for example, a nickel-cobalt precursor, a manganese-containing raw material, a M-containing raw material, and a lithium-containing raw material are mixed, and 700 ° C. to 900 ° C. It may be prepared by the method of firing at ℃.
이때, 상기 니켈-코발트 전구체는, 예를 들면, 니켈-코발트 수산화물일 수 있으며, 구체적으로는 Nia'Cob'OOH로 표시되는 화합물일 수 있으며, 이때, 상기 a'은 0.7 내지 0.95, 바람직하게는 0.8 내지 0.95일 수 있으며, 상기 b'은 0.05 내지 0.3, 바람직하게는 0.05 내지 0.2일 수 있다. 상기 니켈-코발트 전구체는 시판되는 니켈-코발트 수산화물을 구입하여 사용하거나, 당해 기술 분야에 잘 알려진 니켈-코발트 전구체의 제조 방법에 따라 제조될 수 있다. In this case, the nickel-cobalt precursor may be, for example, nickel-cobalt hydroxide, specifically, a compound represented by Ni a ' Co b' OOH, wherein a 'is 0.7 to 0.95, preferably Preferably it may be 0.8 to 0.95, the b 'may be 0.05 to 0.3, preferably 0.05 to 0.2. The nickel-cobalt precursor may be purchased by using a commercially available nickel-cobalt hydroxide, or may be prepared according to a method for preparing a nickel-cobalt precursor well known in the art.
예를 들면, 상기 니켈-코발트 전구체는 니켈 함유 원료 물질과 코발트 함유 원료 물질을 포함하는 금속 용액에 암모늄 양이온 함유 착물 형성제와 염기성 화합물을 첨가하여 공침 반응시켜 제조되는 것일 수 있다. For example, the nickel-cobalt precursor may be prepared by coprecipitation reaction by adding an ammonium cation-containing complex former and a basic compound to a metal solution containing a nickel-containing raw material and a cobalt-containing raw material.
상기 니켈 함유 원료 물질은 예를 들면, 니켈 함유 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등일 수 있으며, 구체적으로는, Ni(OH)2, NiO, NiOOH, NiCO3ㆍ2Ni(OH)2ㆍ4H2O, NiC2O2ㆍ2H2O, Ni(NO3)2ㆍ6H2O, NiSO4, NiSO4ㆍ6H2O, 지방산 니켈염, 니켈 할로겐화물 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다. The nickel-containing raw material may be, for example, nickel-containing acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide or oxyhydroxide, and the like, specifically, Ni (OH) 2 , NiO, NiOOH, NiCO 3. 2Ni (OH) 2 4H 2 O, NiC 2 O 2 2H 2 O, Ni (NO 3 ) 2 6H 2 O, NiSO 4 , NiSO 4 6H 2 O, fatty acid nickel salts, nickel halides or their It may be a combination, but is not limited thereto.
상기 코발트 함유 원료 물질은 코발트 함유 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등일 수 있으며, 구체적으로는 Co(OH)2, CoOOH, Co(OCOCH3)2ㆍ4H2O, Co(NO3)2ㆍ6H2O, Co(SO4)2ㆍ7H2O 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다. The cobalt-containing raw material may be cobalt-containing acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide or oxyhydroxide, and the like, specifically, Co (OH) 2 , CoOOH, Co (OCOCH 3 ) 2 ㆍ 4H 2 O , Co (NO 3 ) 2 ㆍ 6H 2 O, Co (SO 4 ) 2 ㆍ 7H 2 O or a combination thereof, but is not limited thereto.
상기 금속 용액은 니켈 함유 원료 물질과 코발트 함유 원료 물질을 용매, 구체적으로는 물, 또는 물과 균일하게 혼합될 수 있는 유기 용매(예를 들면, 알코올 등)의 혼합 용매에 첨가하여 제조되거나, 또는 니켈 함유 원료 물질의 수용액과 코발트 함유 원료 물질의 수용액을 혼합하여 제조된 것일 수 있다. The metal solution is prepared by adding a nickel-containing raw material and a cobalt-containing raw material to a solvent, in particular water, or a mixed solvent of an organic solvent (eg, alcohol, etc.) that can be mixed uniformly with water, or It may be prepared by mixing an aqueous solution of the nickel-containing raw material and an aqueous solution of the cobalt-containing raw material.
상기 암모늄 양이온 함유 착물 형성제는, 예를 들면 NH4OH, (NH4)2SO4, NH4NO3, NH4Cl, CH3COONH4, NH4CO3 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다. 한편, 상기 암모늄 양이온 함유 착물 형성제는 수용액의 형태로 사용될 수도 있으며, 이때 용매로는 물, 또는 물과 균일하게 혼합 가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다. The ammonium cation-containing complex former may be, for example, NH 4 OH, (NH 4 ) 2 SO 4 , NH 4 NO 3 , NH 4 Cl, CH 3 COONH 4 , NH 4 CO 3, or a combination thereof. It is not limited to this. On the other hand, the ammonium cation-containing complex forming agent may be used in the form of an aqueous solution, wherein a solvent may be a mixture of water or an organic solvent (specifically, alcohol, etc.) that can be uniformly mixed with water.
상기 염기성 화합물은 NaOH, KOH 또는 Ca(OH)2 등과 같은 알칼리 금속 또는 알칼리 토금속의 수산화물, 이들의 수화물 또는 이들의 조합일 수 있다. 상기 염기성 화합물 역시 수용액의 형태로 사용될 수도 있으며, 이때 용매로는 물, 또는 물과 균일하게 혼합가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다. The basic compound may be a hydroxide of an alkali metal or alkaline earth metal such as NaOH, KOH or Ca (OH) 2 , a hydrate thereof, or a combination thereof. The basic compound may also be used in the form of an aqueous solution, and as the solvent, a mixture of water or an organic solvent (specifically, alcohol, etc.) that can be uniformly mixed with water may be used.
한편, 필수적인 것은 아니나, 필요에 따라, 상기 염기성 화합물에 상기 X 원소, 즉, P 및/또는 F를 포함하는 음이온성 화합물을 용해시켜 사용될 수도 있다. 이 경우, 상기 음이온성 화합물로부터 유래된 X 원소가 전구체의 산소 위치에 일부 치환되면서 이차 전지의 충방전 시의 산소 탈리 및 전해액과의 반응을 억제하는 효과를 얻을 수 있다. On the other hand, although not essential, if necessary, the basic compound may be used by dissolving an anionic compound including the X element, that is, P and / or F. In this case, while the X element derived from the anionic compound is partially substituted at the oxygen position of the precursor, it is possible to obtain the effect of suppressing oxygen desorption and reaction with the electrolyte during charging and discharging of the secondary battery.
상기 염기성 화합물은 반응 용액의 pH를 조절하기 위해 첨가되는 것으로, 금속 용액의 pH가 11 내지 13이 되는 양으로 첨가될 수 있다. The basic compound is added to adjust the pH of the reaction solution, and may be added in an amount such that the pH of the metal solution is 11 to 13.
한편, 상기 공침 반응은 질소 또는 아르곤 등의 비활성 분위기하에서, 40℃ 내지 70℃의 온도에서 수행될 수 있다.On the other hand, the coprecipitation reaction may be carried out at a temperature of 40 ℃ to 70 ℃ under an inert atmosphere such as nitrogen or argon.
상기와 같은 공정에 의해 니켈-코발트 수산화물의 입자가 생성되고, 반응용액 내에 침전된다. 침전된 니켈-코발트 수산화물 입자를 통상의 방법에 따라 분리시키고, 건조시켜 니켈-코발트 전구체를 얻을 수 있다.By the above process, particles of nickel-cobalt hydroxide are produced and precipitated in the reaction solution. The precipitated nickel-cobalt hydroxide particles can be separated according to a conventional method and dried to obtain a nickel-cobalt precursor.
상기 방법으로 제조된 니켈 코발트 전구체와, 망간 함유 원료 물질, M 함유 원료 물질 및 리튬 함유 원료 물질을 혼합하고, 600℃ 내지 900℃, 바람직하게는 600℃ 내지 800℃에서 소성하여 리튬 복합 금속 산화물을 얻을 수 있다. The nickel cobalt precursor prepared by the above method, a manganese-containing raw material, an M-containing raw material and a lithium-containing raw material are mixed and calcined at 600 ° C to 900 ° C, preferably 600 ° C to 800 ° C to form a lithium composite metal oxide. You can get it.
이때, 상기 망간 함유 원료 물질은, 예를 들면, 망간 함유 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물, 옥시수산화물 또는 이들의 조합일 수 있으며, 구체적으로는 Mn2O3, MnO2, Mn3O4 등과 같은 망간산화물; MnCO3, Mn(NO3)2, MnSO4, 아세트산 망간, 디카르복실산 망간염, 시트르산 망간, 지방산 망간염과 같은 망간염; 옥시 수산화망간, 염화 망간 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.In this case, the manganese-containing raw material may be, for example, manganese-containing acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide, oxyhydroxide or a combination thereof, and specifically Mn 2 O 3 , MnO 2 Manganese oxides such as Mn 3 O 4 and the like; Manganese salts such as MnCO 3 , Mn (NO 3 ) 2 , MnSO 4 , manganese acetate, manganese dicarboxylic acid, manganese citrate, fatty acid manganese; Manganese oxy hydroxide, manganese chloride or a combination thereof, but is not limited thereto.
또한, 상기 M 함유 원료 물질은 M 원소를 함유하는 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물, 옥시수산화물 또는 이들의 조합일 수 있으며, 구체적으로는 Al2O3, AlSO4, AlCl3, Al-이소프로폭사이드(Al-isopropoxide), AlNO3, 또는 이들의 조합을 들 수 있으나, 이에 한정되는 것은 아니다. In addition, the M-containing raw material may be acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide, oxyhydroxide or a combination thereof containing M element, specifically, Al 2 O 3 , AlSO 4 , AlCl 3 , Al-isopropoxide, AlNO 3 , or a combination thereof, but is not limited thereto.
상기 리튬 함유 원료 물질은 리튬 함유 탄산염(예를 들어, 탄산리튬 등), 수화물(예를 들어 수산화리튬 I수화물(LiOHㆍH2O) 등), 수산화물(예를 들어 수산화리튬 등), 질산염(예를 들어, 질산리튬(LiNO3) 등), 염화물(예를 들어, 염화리튬(LiCl) 등) 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. The lithium-containing raw material may be a lithium-containing carbonate (e.g., lithium carbonate), a hydrate (e.g., lithium hydroxide I hydrate (LiOH, H 2 O), etc.), a hydroxide (e.g., lithium hydroxide, etc.), a nitrate ( For example, lithium nitrate (LiNO 3 ), etc.), chlorides (for example, lithium chloride (LiCl), etc.), and the like may be used alone, or a mixture of two or more thereof may be used.
한편, 니켈-코발트 전구체와, 망간 함유 원료 물질, M 함유 원료 물질 및 리튬 함유 원료 물질의 혼합은 제트 밀링과 같은 고상 혼합으로 이루어질 수 있다. 한편, 상기 니켈-코발트 전구체, 망간 함유 원료 물질 및 M 함유 원료 물질 및 리튬 함유 원료 물질의 혼합비는 최종적으로 제조되는 리튬 복합금속 산화물에서의 각 금속 성분의 원자 분율을 만족하는 범위로 결정될 수 있다. On the other hand, the mixing of the nickel-cobalt precursor, the manganese containing raw material, the M containing raw material, and the lithium containing raw material may be made by solid phase mixing such as jet milling. Meanwhile, the mixing ratio of the nickel-cobalt precursor, the manganese-containing raw material, the M-containing raw material, and the lithium-containing raw material may be determined in a range satisfying the atomic fraction of each metal component in the finally manufactured lithium composite metal oxide.
또한, 필수적인 것은 아니나, 리튬 복합금속 산화물의 산소 중 일부를 X 원소로 도핑하기 위해, 상기 소성 시에 X 함유 원료 물질을 추가로 혼합할 수도 있다. 이때, 상기 X 함유 원료 물질로는, 예를 들면, Na3PO4, K3PO4, Mg3(PO4)2, AlF3, NH4F, LiF 등일 수 있으나, 이에 한정되는 것은 아니다. In addition, although not essential, in order to dope some of the oxygen of the lithium composite metal oxide with the element X, the X-containing raw material may be further mixed during the firing. In this case, the X-containing raw material may be, for example, Na 3 PO 4 , K 3 PO 4 , Mg 3 (PO 4 ) 2 , AlF 3 , NH 4 F, LiF, and the like, but is not limited thereto.
상기와 같이 X 원소에 의해 산소의 일부가 대체될 경우, 이차 전지의 충방전 시의 산소 탈리 및 전해액과의 반응을 억제하는 효과를 얻을 수 있다. As described above, when a part of oxygen is replaced by the element X, the effect of suppressing oxygen desorption and reaction with the electrolyte during charging and discharging of the secondary battery can be obtained.
(2) (2) 수세하는Flushed 단계 step
상기와 같은 방법으로 리튬 복합금속 산화물이 준비되면, 이를 수세하여 리튬 복합 금속 산화물에 잔류된 리튬 부산물을 제거한다. When the lithium composite metal oxide is prepared in the same manner as above, the lithium composite metal oxide is washed with water to remove lithium by-products remaining in the lithium composite metal oxide.
니켈을 고 농도로 함유하는 리튬 복합 금속 산화물의 경우, 니켈 함량이 적은 리튬 복합 금속 산화물에 비해 구조적으로 불안정하기 때문에 제조 공정에서 미반응 수산화리튬이나 탄산리튬과 같은 리튬 부산물이 더 많이 발생한다. 구체적으로는 니켈 분율이 80원자% 미만인 리튬 복합 금속 산화물의 경우, 합성 후 리튬 부산물의 양이 0.5~0.6중량% 정도인데 반해, 니켈 분율이 80원자% 이상인 리튬 복합 금속 산화물의 경우, 합성 후 리튬 부산물의 양이 1중량% 정도로 높게 나타난다. 한편, 양극 활물질에 리튬 부산물이 다량 존재할 경우, 리튬 부산물과 전해액이 반응하여 가스 발생 및 스웰링 현상이 발생하게 되고, 이로 인해 고온 안정성이 현저하게 저하되게 된다. 따라서, 고농도 니켈을 포함하는 리튬 복합 금속 산화물로부터 리튬 부산물을 제거하기 위한 수세 공정이 필수적으로 요구된다. Lithium composite metal oxides containing high concentrations of nickel are more structurally unstable than lithium composite metal oxides with low nickel content, resulting in more lithium byproducts such as unreacted lithium hydroxide or lithium carbonate in the manufacturing process. Specifically, in the case of a lithium composite metal oxide having a nickel fraction of less than 80 atomic%, the amount of lithium byproducts after synthesis is about 0.5 to 0.6 wt%, whereas in the case of a lithium composite metal oxide having a nickel fraction of 80 atomic% or more, lithium after synthesis The amount of by-products appears as high as 1% by weight. On the other hand, when a large amount of lithium by-products are present in the positive electrode active material, lithium by-products and electrolytes react to generate gas and swelling, and thus high temperature stability is significantly lowered. Therefore, a washing process for removing lithium by-products from lithium composite metal oxides containing high concentrations of nickel is essential.
상기 수세 단계는, 예를 들면, 초순수에 리튬 복합 금속 산화물을 투입하고, 교반시키는 방법으로 수행될 수 있다. 이때, 상기 수세 온도는 20℃ 이하, 바람직하게는 10℃ 내지 20℃일 수 있으며, 수세 시간은 10분 내지 1시간 정도일 수 있다. 수세 온도 및 수세 시간이 상기 범위를 만족할 때, 리튬 부산물이 효과적으로 제거될 수 있다. The washing step may be performed, for example, by adding a lithium composite metal oxide to ultrapure water and stirring the mixture. In this case, the washing temperature may be 20 ℃ or less, preferably 10 ℃ to 20 ℃, the washing time may be about 10 minutes to 1 hour. When the water washing temperature and the water washing time satisfy the above range, lithium by-products can be effectively removed.
(3) 열처리하는 단계(3) heat treatment step
수세가 완료되면, 수세된 리튬 복합 금속 산화물과 코발트 함유 원료 물질을 혼합하여 열처리한다. 이때, 상기 열처리는 산화 분위기에서 700℃ 이상 온도로 수행된다. 상기 열처리 단계는 리튬 부산물을 추가로 제거하고, 고온 열처리를 통해 양극 활물질 내의 금속 원소들을 재결정화함으로써 구조 안정성 및 열 안정성을 향상시키기 위한 것이다. After the washing is completed, the washed lithium composite metal oxide and the cobalt-containing raw material are mixed and heat-treated. At this time, the heat treatment is performed at a temperature of 700 ℃ or more in an oxidizing atmosphere. The heat treatment step is to improve the structural stability and thermal stability by further removing lithium by-products, and recrystallization of the metal elements in the positive electrode active material through high temperature heat treatment.
상기 코발트 함유 원료 물질로는, 코발트 함유 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등일 수 있으며, 구체적으로는 Co(OH)2, CoOOH, Co(OCOCH3)2ㆍ4H2O, Co(NO3)2ㆍ6H2O, Co(SO4)2ㆍ7H2O 또는 이들의 조합 등이 사용될 수 있으나, 이에 한정되는 것은 아니다. The cobalt-containing raw material may include cobalt-containing acetates, nitrates, sulfates, halides, sulfides, hydroxides, oxides, or oxyhydroxides, and specifically, Co (OH) 2 , CoOOH, Co (OCOCH 3 ) 2 ㆍ 4H. 2 O, Co (nO 3) 2 and 6H 2 O, Co (SO 4 ) 2 and 7H 2 O, or the like may be used a combination thereof, and the like.
한편, 상기 코발트 함유 원료 물질은 리튬 복합 금속 산화물 100중량부에 대하여 0.001 내지 0.01 중량부, 바람직하게는 0.002 내지 0.008중량부로 혼합될 수 있다. 코발트 함유 원료 물질의 함량이 상기 범위를 만족하는 경우, 리튬 복합 금속 산화물의 용량 특성을 저해하지 않으면서 출력 특성을 효과적으로 개선할 수 있다. 구체적으로는 0.001중량부 미만인 경우에는 출력 향상 효과가 미미하고, 0.01중량부를 초과할 경우, 리튬 복합 금속 산화물 내의 니켈이 코발트로 대체되어 용량 특성이 저하될 수 있다. Meanwhile, the cobalt-containing raw material may be mixed in an amount of 0.001 to 0.01 parts by weight, preferably 0.002 to 0.008 parts by weight, based on 100 parts by weight of the lithium composite metal oxide. When the content of the cobalt-containing raw material satisfies the above range, the output characteristics can be effectively improved without inhibiting the capacity characteristics of the lithium composite metal oxide. Specifically, when the amount is less than 0.001 part by weight, the effect of improving the output is insignificant. When the amount exceeds 0.01 part by weight, nickel in the lithium composite metal oxide may be replaced with cobalt to deteriorate capacity characteristics.
이와 같이 코발트 함유 원료 물질을 추가로 투입하여 열처리를 수행할 경우, 열처리 과정에서 리튬 복합 금속 산화물의 표면에 코발트 성분이 코팅되면서 리튬 복합 금속 산화물 내부에 비해 코발트 함량이 상대적으로 높은 코발트-리치층(Cobalt-Rich Layer)이 형성되게 된다. 이와 같이 리튬 복합 금속 산화물 표면에 코발트-리치층이 형성되면, 출력 특성이 향상되는 효과를 얻을 수 있다. When the heat treatment is performed by additionally adding the cobalt-containing raw material, the cobalt component is coated on the surface of the lithium composite metal oxide during the heat treatment process, and thus the cobalt-rich layer having a relatively higher cobalt content than the inside of the lithium composite metal oxide ( Cobalt-Rich Layer is formed. As such, when the cobalt-rich layer is formed on the surface of the lithium composite metal oxide, an output characteristic may be improved.
한편, 상기 열처리는 산화 분위기, 예를 들면, 산소 분위기에서 수행된다. 구체적으로는 상기 열처리는 0.5 ~ 10L/min, 바람직하게는 1 ~ 5L/min 유량으로 산소를 공급하면서 수행될 수 있다. 본 발명과 같이 산화 분위기에서 열처리가 수행될 경우, 리튬 부산물이 효과적으로 제거된다. 본 발명자들의 연구에 따르면 대기 하에서 열처리를 수행할 경우 리튬 부산물 제거 효과가 현저하게 떨어지며, 특히, 대기 하에서 700 이상으로 열처리를 수행할 경우, 리튬 부산물의 양이 열처리 전보다 오히려 증가하는 것으로 나타났다. On the other hand, the heat treatment is carried out in an oxidizing atmosphere, for example, an oxygen atmosphere. Specifically, the heat treatment may be performed while supplying oxygen at a flow rate of 0.5 to 10 L / min, preferably 1 to 5 L / min. When the heat treatment is performed in an oxidizing atmosphere as in the present invention, lithium by-products are effectively removed. According to the researches of the present inventors, the effect of removing lithium by-products is remarkably decreased when heat treatment is performed in the air. In particular, when heat treatment is performed at 700 or more in the air, the amount of lithium by-products increases rather than before heat treatment.
또한, 상기 열처리는 700℃ 이상, 예를 들면, 700℃ 내지 800℃ 온도에서 10시간 이내, 예를 들면, 1시간 내지 10시간 정도 수행되는 것이 바람직하다. 열처리 온도 및 시간이 상기 범위를 만족할 때, 열 안정성 개선 효과가 우수하게 나타난다. 본 발명자들의 연구에 따르면, 열처리 온도가 700℃ 미만인 경우에는 열 안정성 개선 효과가 거의 없는 것으로 나타났다. In addition, the heat treatment is preferably performed within 10 hours, for example, 1 hour to 10 hours at 700 ℃ or more, for example, 700 ℃ to 800 ℃ temperature. When the heat treatment temperature and time satisfy the above range, the effect of improving the thermal stability is excellent. According to the researches of the present inventors, it was found that when the heat treatment temperature is less than 700 ° C., there is little effect of improving thermal stability.
이차 전지용 양극 활물질Cathode Active Material for Secondary Battery
다음으로, 본 발명에 따른 이차 전지용 양극 활물질에 대해 설명한다. Next, the positive electrode active material for secondary batteries which concerns on this invention is demonstrated.
상기와 같은 방법에 따라 제조된 본 발명의 이차 전지용 양극 활물질은 하기 화학식 1로 표시되는 리튬 복합 금속 산화물, 및 상기 리튬 복합 금속 산화물 표면에 형성된 코발트-리치층(Cobalt-rich layer)을 포함한다. The cathode active material for a secondary battery of the present invention manufactured according to the above method includes a lithium composite metal oxide represented by the following Chemical Formula 1, and a cobalt-rich layer formed on the surface of the lithium composite metal oxide.
[화학식 1][Formula 1]
Li1+x[NiaCobMncMd]1-xO2-yXy Li 1 + x [Ni a Co b Mn c M d ] 1-x O 2-y X y
상기 화학식 1에서, M은 Al, Mg, Ge, V, Mo, Nb, Si, Ti, Zr 및 W로 이루어진 군에서 선택된 1종의 금속 원소이며, X는 P 또는 F이고, 0.7<a<1, 0<b<0.3, 0<c<0.1, 0<d<0.1, a+b+c+d=1, 0≤x≤0.05, 0≤y≤0.2이다. 상기 [화학식 1]로 표시되는 리튬 복합 금속 산화물의 구체적인 사양은 상기 제조방법에서 설명한 것과 동일하므로, 구체적인 설명은 생략한다. In Formula 1, M is one metal element selected from the group consisting of Al, Mg, Ge, V, Mo, Nb, Si, Ti, Zr and W, X is P or F, 0.7 <a <1 , 0 <b <0.3, 0 <c <0.1, 0 <d <0.1, a + b + c + d = 1, 0 ≦ x ≦ 0.05, 0 ≦ y ≦ 0.2. Specific specifications of the lithium composite metal oxide represented by the above [Formula 1] are the same as those described in the above manufacturing method, and thus, detailed description thereof will be omitted.
한편, 상기 코발트-리치층은, 리튬 복합 금속 산화물과 코발트 함유 원료 물질을 혼합하여 열처리하는 과정에서 코발트 함유 원료 물질로부터 유래된 코발트 성분이 리튬 복합 금속 산화물의 표면에 코팅되어 형성된 층으로, 리튬 복합 금속 산화물에 비해 상대적으로 많은 코발트를 포함하는 층이다. Meanwhile, the cobalt-rich layer is a layer formed by coating a surface of a lithium composite metal oxide with a cobalt component derived from a cobalt-containing raw material in a process of mixing and heat treating a lithium composite metal oxide and a cobalt-containing raw material. It is a layer containing more cobalt than metal oxide.
구체적으로는, 상기 코발트-리치층의 리튬을 제외한 금속 원소의 총 원자 개수(즉, 니켈, 코발트, 망간 및 M의 원자 개수의 합)에 대한 코발트의 원자 개수의 비(이하, '코발트 원자분율'이라 함)와 리튬 복합 금속 산화물의 코발트 원자 분율의 차가 0.05 내지 0.2, 바람직하게는 0.05 내지 0.15 정도일 수 있다. 보다 구체적으로는, 상기 코발트-리치층 내의 니켈, 코발트, 망간 및 M 중 코발트의 원자분율(즉, 니켈, 코발트, 망간 및 M의 원자 개수의 합에 대한 코발트의 원자 개수의 비)은 0.05 내지 0.45, 바람직하게는 0.05 내지 0.35일 수 있다. 코발트 리치층 내의 코발트 원자 분율이 상기 범위를 만족할 때, 리튬 복합 금속 산화물의 용량 특성을 저해하지 않으면서 출력 특성을 효과적으로 개선할 수 있다. Specifically, the ratio of the number of atoms of cobalt to the total number of atoms (ie, sum of the number of atoms of nickel, cobalt, manganese, and M) of metal elements excluding lithium of the cobalt-rich layer (hereinafter, referred to as' cobalt atomic fraction) ') And the cobalt atomic fraction of the lithium composite metal oxide may be 0.05 to 0.2, preferably 0.05 to 0.15. More specifically, the atomic fraction of cobalt among nickel, cobalt, manganese, and M in the cobalt-rich layer (ie, the ratio of the number of atoms of cobalt to the sum of the number of atoms of nickel, cobalt, manganese, and M) is 0.05 to 0.45, preferably 0.05 to 0.35. When the cobalt atomic fraction in the cobalt rich layer satisfies the above range, the output characteristics can be effectively improved without disturbing the capacity characteristics of the lithium composite metal oxide.
한편, 상기 코발트 리치층은 두께가 10 내지 100nm, 바람직하게는 30nm 내지 70nm일 수 있다. 코발트 리치층의 두께가 상기 범위를 만족할 때, 코발트 리치층의 두께가 100nm를 초과할 경우, 초기 방전 용량이 감소할 수 있으며, 코발트 리치층의 두께가 10nm 미만인 경우에는 출력 및 사이클 특성이 저하될 수 있다.On the other hand, the cobalt rich layer may have a thickness of 10 to 100nm, preferably 30nm to 70nm. When the thickness of the cobalt rich layer satisfies the above range, when the thickness of the cobalt rich layer exceeds 100 nm, the initial discharge capacity may decrease, and when the thickness of the cobalt rich layer is less than 10 nm, output and cycle characteristics may be degraded. Can be.
상기와 같은 본 발명에 따른 양극 활물질은 수세 후에 산화 분위기에서 고온 열처리하는 공정을 거쳐 제조되어, 종래의 고농도 니켈 함유 양극 활물질에 비해 리튬 부산물 잔류량이 현저하게 적고, 우수한 고온 안정성을 구현할 수 있다.The cathode active material according to the present invention as described above is manufactured through a process of high temperature heat treatment in an oxidizing atmosphere after washing with water, the residual amount of lithium by-products is significantly less than the conventional high concentration nickel-containing cathode active material, it is possible to implement excellent high temperature stability.
구체적으로는 본 발명에 따른 양극 활물질은 시차주사열량측정법(DSC)에 의해 열류량(Heat Flow)을 측정하였을 때, 230℃ 내지 250℃의 온도 범위, 바람직하게는 235℃ 내지 245℃의 온도 범위에서 피크(peak)가 나타나고, 상기 열류량(Heat Flow)의 최대값이 1000mW 이하, 바람직하게는 600mW 이하, 더 바람직하게는 400mW 이하로 나타난다. 수세 후 열처리를 하지 않거나, 열처리를 하더라도 열처리 온도 및 분위기가 본 발명의 조건을 만족하지 못할 경우, 더 낮은 온도, 즉 230℃ 미만에서 피크가 나타나며, 1000mW를 초과하는 높은 열류량 값이 나타난다. 이와 같이 낮은 온도 범위에서 피크가 나타나고, 열류량 최대값이 높은 양극 활물질을 사용할 경우, 과충전 등으로 전지 내부의 온도가 상승하면 열류량이 급격하게 증가하면서 폭발이 발생할 수 있다. 이에 비해 본 발명의 양극 활물질은 피크가 나타나는 온도 범위가 상대적으로 높고, 열류량 최대값이 작기 때문에, 과충전 등에 의해 전지 내부 온도가 상승하는 경우에도 폭발 위험성이 작다. Specifically, the positive electrode active material according to the present invention, when the heat flow (Heat Flow) is measured by differential scanning calorimetry (DSC), in the temperature range of 230 ℃ to 250 ℃, preferably in the temperature range of 235 ℃ to 245 ℃ A peak appears, and the maximum value of the heat flow is 1000 mW or less, preferably 600 mW or less, more preferably 400 mW or less. If the heat treatment is not performed after washing, or even if the heat treatment temperature and atmosphere does not satisfy the conditions of the present invention, the peak appears at a lower temperature, that is, less than 230 ℃, a high heat flow value of more than 1000mW. As such, when a peak appears in a low temperature range and a cathode active material having a high maximum heat flow amount is used, when the temperature inside the battery increases due to overcharging or the like, an explosion may occur while the heat flow rate increases rapidly. On the other hand, the positive electrode active material of the present invention has a relatively high temperature range in which peaks appear and a small maximum amount of heat flow, so that the explosion risk is small even when the internal temperature of the battery rises due to overcharge or the like.
또한, 본 발명에 따른 양극 활물질은 리튬 부산물의 함량이 1중량% 이하, 바람직하게는 0.5중량% 이하, 더 바람직하게는 0.3중량% 이하이다. 따라서, 본 발명에 따른 양극 활물질을 이용하여 이차전지를 제조할 경우, 충반전 시 가스 발생 및 스웰링 현상을 효과적으로 억제할 수 있다.In addition, the positive electrode active material according to the present invention has a lithium byproduct content of 1% by weight or less, preferably 0.5% by weight or less, more preferably 0.3% by weight or less. Therefore, when the secondary battery is manufactured using the cathode active material according to the present invention, gas generation and swelling phenomenon during charging and discharging can be effectively suppressed.
양극 및 이차 전지Positive and Secondary Batteries
본 발명에 따른 이차 전지용 양극 활물질은 이차 전지용 양극 제조에 유용하게 사용될 수 있다. The positive electrode active material for a secondary battery according to the present invention may be usefully used for the production of a positive electrode for a secondary battery.
구체적으로는, 본 발명에 따른 이차 전지용 양극은 양극집전체 및 상기 양극집전체 위에 형성되는 양극활물질층을 포함하며, 이때, 상기 양극활물질층은 본 발명에 따른 양극활물질을 포함한다.Specifically, the secondary battery positive electrode according to the present invention includes a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector, wherein the positive electrode active material layer comprises a positive electrode active material according to the present invention.
상기 양극은 본 발명에 따른 양극활물질을 사용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 예를 들면, 상기 양극은 양극활물질층을 구성하는 성분들, 즉, 양극활물질과, 도전재 및/또는 바인더 등을 용매에 용해 또는 분산시켜 양극 합재를 제조하고, 상기 양극 합재를 양극집전체의 적어도 일면에 도포한 후, 건조, 압연시키는 방법으로 제조하거나, 또는 상기 양극 합재를 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극집전체 상에 라미네이션함으로써 제조될 수 있다.The positive electrode may be manufactured according to a conventional positive electrode manufacturing method except using the positive electrode active material according to the present invention. For example, the positive electrode may be prepared by dissolving or dispersing components constituting the positive electrode active material layer, that is, the positive electrode active material, a conductive material and / or a binder, etc. in a solvent, and manufacturing the positive electrode mixture to the positive electrode current collector. After coating on at least one surface, it may be produced by drying and rolling, or by casting the positive electrode mixture on a separate support, and then laminating the film obtained by peeling from the support onto a positive electrode current collector.
이때, 상기 양극집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.At this time, the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery, for example, stainless steel, aluminum, nickel, titanium, calcined carbon or carbon or nickel on the surface of aluminum or stainless steel Surface treated with titanium, silver, or the like can be used. In addition, the positive electrode current collector may have a thickness of typically 3 μm to 500 μm, and may form fine irregularities on the surface of the current collector to increase adhesion of the positive electrode active material. For example, it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
상기 집전체의 적어도 일면에 본 발명에 따른 양극활물질을 포함하며, 필요에 따라 도전재 및 바인더 중 적어도 1종을 선택적으로 더 포함하는 양극활물질층이 위치한다.At least one surface of the current collector includes a cathode active material according to the present invention, and optionally a cathode active material layer further comprising at least one of a conductive material and a binder.
상기 양극 활물질은, 상기 본 발명에 따른 양극 활물질, 즉, 상기 화학식 1로 표시되는 리튬 복합 금속 산화물 및 상기 리튬 복합 금속 산화물 표면에 형성된 코발트-리치층(Cobalt-rich layer)을 포함한다. 본 발명에 따른 양극활물질의 구체적인 내용은 상술한 바와 동일하므로, 구체적인 설명은 생략한다. The cathode active material includes a cathode active material according to the present invention, that is, a lithium composite metal oxide represented by Chemical Formula 1 and a cobalt-rich layer formed on the surface of the lithium composite metal oxide. Specific details of the positive electrode active material according to the present invention are the same as described above, so a detailed description thereof will be omitted.
상기 양극활물질은 양극활물질층 총 중량에 대하여 80 내지 99중량%, 보다 구체적으로는 85 내지 98중량%의 함량으로 포함될 수 있다. 상기한 함량범위로 포함될 때 우수한 용량 특성을 나타낼 수 있다.The cathode active material may be included in an amount of 80 to 99% by weight, more specifically 85 to 98% by weight, based on the total weight of the cathode active material layer. When included in the above content range may exhibit excellent capacity characteristics.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 양극활물질층 총 중량에 대하여 1중량% 내지 30중량%로 포함될 수 있다.The conductive material is used to impart conductivity to the electrode, and in the battery constituted, any conductive material may be used as long as it has electronic conductivity without causing chemical change. Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum, and silver; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Or conductive polymers such as polyphenylene derivatives, and the like, or a mixture of two or more kinds thereof may be used. The conductive material may be included in an amount of 1 wt% to 30 wt% with respect to the total weight of the positive electrode active material layer.
또, 상기 바인더는 양극활물질 입자들 간의 부착 및 양극활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극활물질층 총 중량에 대하여 1중량% 내지 30중량%로 포함될 수 있다.In addition, the binder serves to improve adhesion between the cathode active material particles and adhesion between the cathode active material and the current collector. Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC). ), Starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubbers, or various copolymers thereof, and the like, and one or a mixture of two or more thereof may be used. The binder may be included in an amount of 1% by weight to 30% by weight based on the total weight of the positive electrode active material layer.
한편, 양극 합재 제조에 사용되는 용매는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 예를 들면, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 단독 또는 이들을 혼합하여 사용할 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율, 점도 등을 고려하여 적절하게 조절될 수 있다.On the other hand, the solvent used to prepare the positive electrode mixture may be a solvent generally used in the art, for example, dimethyl sulfoxide (DMSO), isopropyl alcohol (isopropyl alcohol), N-methylpyrroli Don (NMP), acetone (acetone) or water or the like may be used alone or in combination thereof. The amount of the solvent used may be appropriately adjusted in consideration of the coating thickness of the slurry, the production yield, the viscosity, and the like.
다음으로, 본 발명에 따른 이차 전지에 대해 설명한다. Next, a secondary battery according to the present invention will be described.
본 발명에 따른 이차 전지는 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 세퍼레이터 및 전해질을 포함하며, 이때, 상기 양극은 상술한 본 발명에 따른 양극이다. The secondary battery according to the present invention includes a positive electrode, a negative electrode positioned to face the positive electrode, a separator and an electrolyte interposed between the positive electrode and the negative electrode, wherein the positive electrode is the positive electrode according to the present invention described above.
한편, 상기 이차전지는 상기 양극, 음극, 세퍼레이터의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다. The secondary battery may further include a battery container accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member sealing the battery container.
상기 이차전지에 있어서, 상기 음극은 음극집전체 및 상기 음극집전체의 적어도 일면에 위치하는 음극활물질층을 포함한다.In the secondary battery, the negative electrode includes a negative electrode current collector and a negative electrode active material layer positioned on at least one surface of the negative electrode current collector.
상기 음극은 당해 기술 분야에 일반적으로 알려져 있는 통상의 음극 제조방법에 따라 제조될 수 있다. 예를 들면, 상기 음극은 음극활물질층을 구성하는 성분들, 즉, 음극활물질과, 도전재 및/또는 바인더 등을 용매에 용해 또는 분산시켜 음극 합재를 제조하고, 상기 음극 합재를 음극집전체의 적어도 일면에 도포한 후, 건조, 압연시키는 방법으로 제조하거나, 또는 상기 음극 합재를 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극집전체 상에 라미네이션함으로써 제조될 수 있다.The negative electrode may be prepared according to a conventional negative electrode manufacturing method generally known in the art. For example, the negative electrode may be prepared by dissolving or dispersing components constituting the negative electrode active material layer, that is, the negative electrode active material, a conductive material and / or a binder, and the like in a solvent, and preparing the negative electrode mixture of the negative electrode current collector. After coating on at least one surface, it may be produced by drying and rolling, or by casting the negative electrode mixture on a separate support, and then laminating the film obtained by peeling from the support onto a negative electrode current collector.
상기 음극집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery. For example, the negative electrode current collector may be formed on a surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper, or stainless steel. Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy and the like can be used. In addition, the negative electrode current collector may have a thickness of 3 μm to 500 μm, and similarly to the positive electrode current collector, fine concavities and convexities may be formed on the surface of the current collector to enhance the bonding force of the negative electrode active material. For example, it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
상기 음극활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOv(0<v<2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.As the negative electrode active material, a compound capable of reversible intercalation and deintercalation of lithium may be used. Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fibers, and amorphous carbon; Metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys; Metal oxides capable of doping and undoping lithium, such as SiO v (0 <v <2), SnO 2 , vanadium oxide, lithium vanadium oxide; Or a composite including the metallic compound and the carbonaceous material, such as a Si-C composite or a Sn-C composite, and any one or a mixture of two or more thereof may be used. In addition, a metal lithium thin film may be used as the anode active material. As the carbon material, both low crystalline carbon and high crystalline carbon can be used. Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is amorphous, plate, scaly, spherical or fibrous natural graphite or artificial graphite, Kish graphite (Kish) graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch High-temperature calcined carbon such as derived cokes is typical.
또, 상기 바인더 및 도전재는 앞서 양극에서 설명한 바와 동일한 것일 수 있다.In addition, the binder and the conductive material may be the same as described above in the positive electrode.
한편, 상기 이차전지에 있어서, 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.On the other hand, in the secondary battery, the separator separates the negative electrode and the positive electrode and provides a passage for the movement of lithium ions, and can be used without particular limitation as long as it is usually used as a separator in the secondary battery, in particular with respect to the ion movement of the electrolyte It is preferable that it is resistance and excellent in electrolyte solution moisture-wetting ability. Specifically, a porous polymer film, for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like Laminate structures of two or more layers may be used. In addition, conventional porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used. In addition, a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
한편, 상기 전해질로는 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 사용될 수 있으나, 이들로 한정되는 것은 아니다. Meanwhile, the electrolyte may be an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, or the like, which can be used in manufacturing a secondary battery, but is not limited thereto.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다. Specifically, the electrolyte may include an organic solvent and a lithium salt.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; Ra-CN(Ra는 탄소수 2 내지 20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1 : 1 ~ 9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다. The organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move. Specifically, the organic solvent may be an ester solvent such as methyl acetate, ethyl acetate, γ-butyrolactone or ε-caprolactone; Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), ethyl methyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate, Carbonate solvents such as PC); Alcohol solvents such as ethyl alcohol and isopropyl alcohol; R a -CN nitriles, such as (R a may include a straight, branched, or a hydrocarbon group of a cyclic structure, an aromatic ring or a double bond, ether bond, having 2 to 20 carbon atoms); Amides such as dimethylformamide; Dioxolanes such as 1,3-dioxolane; Or sulfolanes may be used. Of these, carbonate-based solvents are preferable, and cyclic carbonates having high ionic conductivity and high dielectric constant (for example, ethylene carbonate or propylene carbonate) that can improve the charge and discharge performance of a battery, and low viscosity linear carbonate compounds ( For example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate and the like is more preferable. In this case, the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of about 1: 1 to 9, so that the performance of the electrolyte may be excellent.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1M 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.The lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery. Specifically, the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (C 2 F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 . LiCl, LiI, or LiB (C 2 O 4 ) 2 and the like can be used. The concentration of the lithium salt is preferably used within the range of 0.1M to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can move effectively.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로에틸렌 카보네이트 등과 같은 할로알킬렌 카보네이트계 화합물; 또는 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌글리콜 디알킬에테르, 암모늄염, 피롤, 2-메톡시에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1중량% 내지 5중량%로 포함될 수 있다. The electrolyte includes, in addition to the electrolyte components, haloalkylene carbonate-based compounds such as difluoroethylene carbonate for the purpose of improving the life characteristics of the battery, suppressing the reduction of the battery capacity, and improving the discharge capacity of the battery; Or pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N One or more additives such as -substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol or aluminum trichloride may be included. In this case, the additive may be included in an amount of 0.1% by weight to 5% by weight based on the total weight of the electrolyte.
상기와 같이 본 발명에 따른 양극활물질을 포함하는 이차전지는 우수한 용량 특성 및 고온 안정성을 가져, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하게 적용될 수 있다. As described above, the secondary battery including the cathode active material according to the present invention has excellent capacity characteristics and high temperature stability, such as a portable device such as a mobile phone, a notebook computer, a digital camera, and a hybrid electric vehicle (HEV). It can be usefully applied to the electric vehicle field.
또한, 본 발명에 따른 이차전지는 전지모듈의 단위셀로 사용될 수 있으며, 상기 전지모듈은 전지팩에 적용될 수 있다. 상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.In addition, the secondary battery according to the present invention can be used as a unit cell of the battery module, the battery module can be applied to a battery pack. The battery module or the battery pack is a power tool (Power Tool); Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily practice the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
실시예Example 1 One
Ni0 . 9Co0 . 1OOH, Mn3O4, Al2O3 및 LiOH를 고상혼합한 후, 750℃에서 소성하여 리튬 복합금속 산화물 Li(Ni0 . 86Co0 . 1Mn0 . 02Al0 . 02)O2을 제조하였다. Ni 0 . 9 Co 0 . 1 OOH, Mn 3 O 4, Al 2 O 3 , and then a solution of the solid phase the LiOH, then fired at 750 ℃ lithium-metal composite oxide Li (Ni 0. 86 Co 0 . 1 Mn 0. 02 Al 0. 02) O 2 Was prepared.
상기 리튬 복합금속 산화물 300g을 초순수 300mL에 넣고 30분 동안 교반하여 수세하고, 20분간 필터링을 수행하였다. 필터링된 리튬 복합금속 산화물을 진공오븐에서 130℃로 건조시킨 후 체거름(seiving)을 진행하였다. 그런 다음, 상기 리튬 복합금속 산화물에 Co(OH)2를 5000ppm의 농도로 첨가하고, 1L/min 유량으로 산소를 공급하면서 700℃로 5시간 동안 열처리하여 양극 활물질을 제조하였다. 300 g of the lithium composite metal oxide was added to 300 mL of ultrapure water, washed with stirring for 30 minutes, and filtered for 20 minutes. The filtered lithium composite metal oxide was dried at 130 ° C. in a vacuum oven, followed by sieving. Then, Co (OH) 2 was added to the lithium composite metal oxide at a concentration of 5000 ppm, and heat treatment was performed at 700 ° C. for 5 hours while supplying oxygen at a flow rate of 1 L / min to prepare a cathode active material.
비교예Comparative example 1 One
열처리를 수행하지 않은 점을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.A positive electrode active material was prepared in the same manner as in Example 1 except that heat treatment was not performed.
비교예Comparative example 2 2
열처리 시에 Co(OH)2를 첨가하지 않은 점을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다. A positive electrode active material was prepared in the same manner as in Example 1 except that Co (OH) 2 was not added during the heat treatment.
비교예Comparative example 3 3
열처리 시에 Co(OH)2를 첨가하지 않고, 산소 공급 없이 300℃로 열처리한 점을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다. A positive electrode active material was manufactured in the same manner as in Example 1, except that Co (OH) 2 was not added during the heat treatment and heat-treated at 300 ° C. without oxygen supply.
비교예Comparative example 4 4
열처리 시에 Co(OH)2를 첨가하지 않고, 산소 공급 없이 500℃로 열처리한 점을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다. A positive electrode active material was manufactured in the same manner as in Example 1, except that Co (OH) 2 was not added during the heat treatment and heat-treated at 500 ° C. without oxygen supply.
비교예Comparative example 5 5
열처리 시에 Co(OH)2를 첨가하지 않고, 산소 공급 없이 600℃로 열처리한 점을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다. A positive electrode active material was manufactured in the same manner as in Example 1, except that Co (OH) 2 was not added during the heat treatment and heat-treated at 600 ° C. without oxygen supply.
비교예Comparative example 6 6
열처리 시에 Co(OH)2를 첨가하지 않고, 산소 공급 없이 700℃로 열처리한 점을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다. A positive electrode active material was manufactured in the same manner as in Example 1, except that Co (OH) 2 was not added during the heat treatment and heat-treated at 700 ° C. without oxygen supply.
실험예Experimental Example 1 -  One - 열류량Heat flow 평가 evaluation
시차주사열량측정기(SETARAM Instrumentation, Sensys evo DSC)를 이용하여 실시예 1 및 비교예 3의 양극활물질의 온도에 따른 열류량(Heat Flow)을 측정하였다. 구체적으로는 상기 실시예 1 및 비교예 3의 양극활물질 16mg을 DSC 측정용 내압펜에 투입한 후 전해액(EVPS) 20μL를 주입하였다. DSC 분석을 위한 온도 범위는 25 ~ 400℃로 하였으며, 승온 속도는 10/min으로 하였다. 각각의 양극 활물질에 대하여 3회 이상 DSC 측정을 실시하여 평균값을 산측하였다.Differential scanning calorimetry (SETARAM Instrumentation, Sensys evo DSC) to measure the heat flow (Heat Flow) according to the temperature of the positive electrode active material of Example 1 and Comparative Example 3. Specifically, 16 mg of the positive electrode active material of Example 1 and Comparative Example 3 was added to a pressure-resistant pen for DSC measurement, and 20 μL of electrolyte (EVPS) was injected. The temperature range for DSC analysis was 25 to 400 ° C., and the temperature increase rate was 10 / min. DSC measurements were performed three times or more on each positive electrode active material, and the average value was calculated.
측정 결과는 도 1에 도시하였다. 도 1을 통해, 실시예 1의 양극활물질은 240℃에서 피크가 나타나고, 열류량 최대값이 200mW 미만인데 반해, 비교예 3의 양극활물질은 225℃에서 피크가 나타나고, 열류량 최대값이 1000mW을 초과함을 확인할 수 있다. 이는 실시예 1의 양극활물질이 비교예 3의 양극활물질에 비해 우수한 고온 안정성을 가짐을 보여주는 것이다.The measurement result is shown in FIG. 1, the positive electrode active material of Example 1 showed a peak at 240 ° C., and the maximum amount of heat flow was less than 200 mW, whereas the positive electrode active material of Comparative Example 3 showed a peak at 225 ° C., and the maximum value of heat flow exceeded 1000 mW. can confirm. This shows that the positive electrode active material of Example 1 has excellent high temperature stability compared to the positive electrode active material of Comparative Example 3.
실험예Experimental Example 2 - 리튬 부산물 잔류량 평가 2-Lithium By-Product Residue Evaluation
실시예 1 및 비교예 1, 2, 4 ~ 6에 의해 제조된 양극활물질 5g을 물 100mL에 분산시킨 후 0.1M의 HCl로 적정하면서 pH 값의 변화를 측정하여 pH 적정 곡선(pH titration Curve)을 얻었다. 상기 pH 적정 곡선(pH titration Curve)은 도 2에 도시하였다.5 g of the positive electrode active material prepared according to Example 1 and Comparative Examples 1, 2, 4 to 6 was dispersed in 100 mL of water, and titrated with 0.1 M HCl, and the pH titration curve was measured by measuring the change in pH value. Got it. The pH titration curve is shown in FIG. 2.
상기 pH 적정 곡선을 이용하여 각 양극 활물질 내의 LiOH 잔류량과 LiCO3 잔류량을 계산하였으며, 이들을 합한 값을 전체 리튬 부산물 잔류량으로 평가하여 하기 표 1에 나타내었다. Residual LiOH and LiCO 3 residues in each cathode active material were calculated using the pH titration curve, and the sum of these values was evaluated as total lithium byproduct residues, and is shown in Table 1 below.
LiOH 잔류량(wt%)Residual LiOH (wt%) LiCO3 잔류량(wt%)Residual LiCO 3 (wt%) 전체 리튬 부산물 잔류량(wt%)Total Lithium By-Product Residues (wt%)
실시예 1Example 1 0.1580.158 0.0630.063 0.2210.221
비교예 1Comparative Example 1 0.1650.165 0.1190.119 0.2840.284
비교예 4Comparative Example 4 0.1110.111 0.3340.334 0.4450.445
비교예 5Comparative Example 5 0.1460.146 0.3720.372 0.5180.518
비교예 6Comparative Example 6 0.2280.228 0.6050.605 0.8330.833
상기 [표 1]을 통해, 본 발명의 열처리 조건을 만족하는 실시예 1의 양극 활물질의 리튬 부산물 잔류량이 열처리 공정을 수행하지 않거나(비교예 1), 산소 공급 없이 열처리를 수행한 경우(비교예 4 ~ 6)에 비해 현저하게 떨어짐을 확인할 수 있다. 또한, 비교예 4 ~ 6과 같이 산소 공급 없이 대기 분위기에서 열처리를 수행할 경우, 열처리를 하지 않은 비교예 1에 비해 리튬 부산물 잔류량이 오히려 증가함을 확인할 수 있다. [Table 1], the lithium by-product residual amount of the positive electrode active material of Example 1 satisfying the heat treatment conditions of the present invention does not perform the heat treatment process (Comparative Example 1), or when the heat treatment is performed without oxygen supply (Comparative Example Compared to 4 ~ 6) it can be seen that significantly falling. In addition, when the heat treatment is performed in the air atmosphere without supplying oxygen as in Comparative Examples 4 to 6, it can be seen that the residual amount of lithium by-products increases rather than Comparative Example 1 without heat treatment.
실험예Experimental Example 3 - 전지 성능 평가 3-battery performance evaluation
실시예 1, 비교예 2 및 비교예 3에 의해 제조된 각각의 양극 활물질, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 95:2.5:2.5의 비율로 혼합하여 양극 합재(점도: 5000mPa·s)을 제조하고, 이를 알루미늄 집전체의 일면에 도포한 후, 130℃에서 건조 후, 압연하여 양극을 제조하였다.Each positive electrode active material, carbon black conductive material, and PVdF binder prepared by Example 1, Comparative Example 2 and Comparative Example 3 were mixed in an N-methylpyrrolidone solvent in a ratio of 95: 2.5: 2.5 by weight in a positive electrode mixture (Viscosity: 5000 mPa · s) was prepared, which was applied to one surface of an aluminum current collector, dried at 130 ° C., and rolled to prepare a positive electrode.
또, 음극활물질로서 천연흑연, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 85:10:5의 비율로 혼합하여 음극활물질층 형성용 조성물을 제조하고, 이를 구리 집전체의 일면에 도포하여 음극을 제조하였다.In addition, as a negative electrode active material, a natural graphite, a carbon black conductive material, and a PVdF binder were mixed in an N-methylpyrrolidone solvent in a ratio of 85: 10: 5 in a weight ratio to prepare a composition for forming a negative electrode active material layer, and the copper current collector It was applied to one side of to prepare a negative electrode.
상기와 같이 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차 전지를 제조하였다. 이때 전해액은 에틸렌카보네이트/디메틸카보네이트/에틸메틸카보네이트(EC/DMC/EMC의 혼합 부피비=3/4/3)로 이루어진 유기 용매에 1.0M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시켜 제조하였다. An electrode assembly was manufactured between the positive electrode and the negative electrode prepared as described above through a separator of porous polyethylene, the electrode assembly was placed in a case, and an electrolyte solution was injected into the case to prepare a lithium secondary battery. At this time, the electrolyte is prepared by dissolving 1.0M concentration of lithium hexafluorophosphate (LiPF 6 ) in an organic solvent consisting of ethylene carbonate / dimethyl carbonate / ethyl methyl carbonate (mixing volume ratio of EC / DMC / EMC = 3/4/3). It was.
상기와 같이 제조된 리튬 이차 전지를 45℃에서 충전 종지 전압 4.25V, 방전 종지 전압 2.5V, 0.5C/0.5C 조건으로 50사이클 충방전을 실시하면서 용량 유지율(Capacity Retention[%]) 및 저항 증가율(DCR Incress[%])을 측정하였다. 측정 결과는 도 3 및 도 4에 나타내었다. 도 3은 용량 유지율을 나타낸 그래프이고, 도 4는 저항 증가율을 나타낸 그래프이다. Capacity retention rate (%) and resistance increase rate of the lithium secondary battery prepared as described above while charging and discharging 50 cycles at 45 ° C. under a charge end voltage of 4.25V, a discharge end voltage of 2.5V, and 0.5C / 0.5C. (DCR Incress [%]) was measured. The measurement results are shown in FIGS. 3 and 4. 3 is a graph showing a capacity retention rate, and FIG. 4 is a graph showing a resistance increase rate.
도 3 및 도 4를 통해, 실시예 1의 양극활물질을 적용한 이차 전지의 경우, 비교예 2 및 3의 양극활물질을 적용한 이차 전지에 비해, 50회 충방전 시에 용량 감소율 및 저항 증가율이 현저하게 낮음을 확인할 수 있다.3 and 4, in the case of the secondary battery to which the cathode active material of Example 1 is applied, the capacity reduction rate and the resistance increase rate are remarkably increased at 50 charge / discharge cycles, compared to the secondary batteries to which the cathode active materials of Comparative Examples 2 and 3 are applied. You can see the low.

Claims (14)

  1. 하기 화학식 1로 표시되는 리튬 복합 금속 산화물; 및A lithium composite metal oxide represented by Formula 1 below; And
    상기 리튬 복합 금속 산화물 표면에 형성되고, 상기 리튬 복합 금속 산화물에 비해 코발트 함량이 높은 코발트-리치층(Cobalt-rich layer)을 포함하는 이차 전지용 양극 활물질.A cathode active material for a secondary battery formed on the surface of the lithium composite metal oxide and including a cobalt-rich layer having a higher cobalt content than the lithium composite metal oxide.
    [화학식 1][Formula 1]
    Li1+x[NiaCobMncMd]1-xO2-yXy Li 1 + x [Ni a Co b Mn c M d ] 1-x O 2-y X y
    상기 화학식 1에서, 0.7<a<1, 0<b<0.3, 0<c<0.1, 0<d<0.1, a+b+c+d=1, 0=x≤0.05, 0≤y≤0.2이고, M은 Al, Mg, Ge, V, Mo, Nb, Si, Ti, Zr 및 W로 이루어진 군에서 선택된 1종의 금속 원소이며, X는 P 또는 F임.In Formula 1, 0.7 <a <1, 0 <b <0.3, 0 <c <0.1, 0 <d <0.1, a + b + c + d = 1, 0 = x ≦ 0.05, 0 ≦ y ≦ 0.2 M is one metal element selected from the group consisting of Al, Mg, Ge, V, Mo, Nb, Si, Ti, Zr and W, and X is P or F.
  2. 제1항에 있어서,The method of claim 1,
    상기 코발트-리치층 내의 니켈, 코발트, 망간 및 M의 원자 개수의 합에 대한 코발트의 원자 개수의 비와 상기 리튬 복합 금속 산화물 내의 니켈, 코발트, 망간 및 M의 원자 개수의 합에 대한 코발트의 원자 개수의 비의 차가 0.05 내지 0.2인 이차 전지용 양극 활물질.The ratio of the number of atoms of cobalt to the sum of the number of atoms of nickel, cobalt, manganese and M in the cobalt-rich layer and the atoms of cobalt to the sum of the number of atoms of nickel, cobalt, manganese and M in the lithium composite metal oxide The positive electrode active material for secondary batteries whose difference of ratio of numbers is 0.05-0.2.
  3. 제1항에 있어서,The method of claim 1,
    상기 코발트-리치층 내의 니켈, 코발트, 망간 및 M의 원자 개수의 합에 대한 코발트의 원자 개수의 비가 0.05 내지 0.45인 이차 전지용 양극 활물질.The positive electrode active material for secondary batteries, wherein the ratio of the number of atoms of cobalt to the sum of the number of atoms of nickel, cobalt, manganese, and M in the cobalt-rich layer is 0.05 to 0.45.
  4. 제1항에 있어서,The method of claim 1,
    상기 코발트 리치층은 두께가 10nm 내지 100nm인 이차 전지용 양극 활물질.The cobalt rich layer is a positive electrode active material for a secondary battery having a thickness of 10nm to 100nm.
  5. 제1항에 있어서,The method of claim 1,
    상기 양극 활물질은 시차주사열량측정법(DSC)에 의해 열류량(Heat Flow)을 측정하였을 때, 230℃ 내지 250℃의 온도 범위에서 피크가 나타나는 이차 전지용 양극 활물질.The positive electrode active material is a positive electrode active material for secondary batteries, the peak appears in the temperature range of 230 ℃ to 250 ℃ when the heat flow (Heat Flow) measured by differential scanning calorimetry (DSC).
  6. 제1항에 있어서,The method of claim 1,
    상기 양극 활물질은 시차주사열량측정법(DSC)에 의해 측정한 열류량(Heat Flow)의 최대값이 1000mW 이하인 이차 전지용 양극 활물질.The cathode active material is a cathode active material for secondary batteries, the maximum value of the heat flow (Heat Flow) measured by differential scanning calorimetry (DSC) is 1000mW or less.
  7. 제1항에 있어서,The method of claim 1,
    상기 양극 활물질 내 리튬 부산물의 함량이 1중량% 이하인 이차 전지용 양극 활물질.A cathode active material for a secondary battery having a lithium byproduct content of 1% by weight or less in the cathode active material.
  8. 하기 화학식 1로 표시되는 리튬 복합 금속 산화물을 준비하는 단계; Preparing a lithium composite metal oxide represented by Formula 1;
    [화학식 1][Formula 1]
    Li1+x[NiaCobMncMd]1-xO2-yXy Li 1 + x [Ni a Co b Mn c M d ] 1-x O 2-y X y
    (상기 화학식 1에서, 0.7<a<1, 0<b<0.3, 0<c<0.1, 0<d<0.1, a+b+c+d=1, 0≤x≤0.05, 0≤y≤0.2이고, M은 Al, Mg, Ge, V, Mo, Nb, Si, Ti, Zr 및 W로 이루어진 군에서 선택된 1종의 금속 원소이며, X는 P 또는 F임.)(In Formula 1, 0.7 <a <1, 0 <b <0.3, 0 <c <0.1, 0 <d <0.1, a + b + c + d = 1, 0 ≦ x ≦ 0.05, 0 ≦ y ≦ 0.2, M is one metal element selected from the group consisting of Al, Mg, Ge, V, Mo, Nb, Si, Ti, Zr and W, and X is P or F.
    상기 리튬 복합 금속 산화물을 수세하는 단계; 및Washing the lithium composite metal oxide; And
    상기 수세된 리튬 복합 금속 산화물과 코발트 함유 원료 물질을 혼합한 후 산화 분위기에서 700℃ 이상 온도로 열처리하는 단계를 포함하는 이차 전지용 양극 활물질의 제조 방법. After mixing the washed lithium composite metal oxide and cobalt-containing raw material and heat treatment at an temperature of 700 ℃ or more in an oxidizing atmosphere.
  9. 제8항에 있어서,The method of claim 8,
    상기 화학식 1로 표시되는 리튬 복합 금속 산화물을 준비하는 단계는, 니켈-코발트 전구체, 망간 함유 원료 물질, M 함유 원료 물질, 및 리튬 함유 원료 물질을 혼합하고, 600℃ 내지 900℃에서 소성하는 방법으로 수행되는 것인 이차 전지용 양극 활물질의 제조 방법.The preparing of the lithium composite metal oxide represented by Chemical Formula 1 may include mixing a nickel-cobalt precursor, a manganese-containing raw material, an M-containing raw material, and a lithium-containing raw material, and firing at 600 ° C to 900 ° C. Method for producing a positive active material for a secondary battery that is carried out.
  10. 제8항에 있어서,The method of claim 8,
    상기 수세하는 단계는 20℃ 이하의 온도에서 수행되는 것인 이차 전지용 양극 활물질의 제조 방법.The washing step is a method of manufacturing a positive electrode active material for a secondary battery that is carried out at a temperature of 20 ℃ or less.
  11. 제8항에 있어서,The method of claim 8,
    상기 열처리 단계에서, 상기 코발트 함유 원료 물질은 리튬 복합 금속 산화물 100중량부에 대하여 0.001 내지 0.01 중량부로 혼합되는 것인 이차 전지용 양극 활물질의 제조 방법.In the heat treatment step, the cobalt-containing raw material is mixed with 0.001 to 0.01 parts by weight based on 100 parts by weight of the lithium composite metal oxide.
  12. 제8항에 있어서,The method of claim 8,
    상기 열처리하는 단계는 700℃ 내지 800℃ 온도에서 10시간 이내로 수행되는 것인 이차 전지용 양극 활물질의 제조 방법.The heat treatment is a method of manufacturing a positive electrode active material for a secondary battery that is performed within 10 hours at 700 ℃ to 800 ℃ temperature.
  13. 제1항 내지 제7항 중 어느 한 항의 이차 전지용 양극 활물질을 포함하는 이차 전지용 양극.The positive electrode for secondary batteries containing the positive electrode active material for secondary batteries of any one of Claims 1-7.
  14. 제13항의 이차 전지용 양극을 포함하는 이차 전지.A secondary battery comprising the positive electrode for secondary battery of claim 13.
PCT/KR2017/015666 2016-12-28 2017-12-28 Positive electrode active material for secondary battery, preparation method therefor, positive electrode comprising same for secondary battery, and secondary battery WO2018124781A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780080266.3A CN110140242B (en) 2016-12-28 2017-12-28 Positive electrode active material for secondary battery, method for producing same, positive electrode for secondary battery comprising same, and secondary battery comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160181027A KR20180076647A (en) 2016-12-28 2016-12-28 Positive electrode active material for secondary battery, method for producing the same, positive electrode and secondary battery comprising the same
KR10-2016-0181027 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018124781A1 true WO2018124781A1 (en) 2018-07-05

Family

ID=62709955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015666 WO2018124781A1 (en) 2016-12-28 2017-12-28 Positive electrode active material for secondary battery, preparation method therefor, positive electrode comprising same for secondary battery, and secondary battery

Country Status (3)

Country Link
KR (1) KR20180076647A (en)
CN (1) CN110140242B (en)
WO (1) WO2018124781A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111600017A (en) * 2019-02-20 2020-08-28 日亚化学工业株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115072806A (en) * 2022-07-22 2022-09-20 宁波容百新能源科技股份有限公司 Positive electrode active material, positive electrode slurry, positive plate and secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331845A (en) * 2002-05-13 2003-11-21 Samsung Sdi Co Ltd Method for manufacturing positive active material for lithium secondary battery
KR20140081663A (en) * 2012-12-13 2014-07-01 주식회사 에코프로 Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same
KR20150080199A (en) * 2013-12-31 2015-07-09 주식회사 에코프로 Manufacturing method of positive active material for lithium rechargeable batteries and positive active material made by the same
KR101568263B1 (en) * 2014-08-07 2015-11-11 주식회사 에코프로 Cathod active material for lithium rechargeable battery and lithium rechargeable battery comprising the same
KR20160074236A (en) * 2014-12-18 2016-06-28 삼성에스디아이 주식회사 Composit cathode active material, preparation method thereof, and cathode and lithium battery containing the composite cathode active material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101615413B1 (en) * 2012-11-30 2016-04-25 주식회사 엘지화학 Anode active material for lithium secondary battery, preparation method of thereof, and lithium secondary battery comprising the same
CN103700821B (en) * 2013-12-18 2016-01-13 宁夏科捷锂电池股份有限公司 The coated nickelic stratiform LiNi of Co, Mn 0.92co 0.04mn 0.04o 2the preparation method of anode material of lithium battery
CN105406036B (en) * 2015-11-02 2019-03-05 湖南长远锂科有限公司 A kind of lithium ion battery high-voltage lithium cobaltate cathode material and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331845A (en) * 2002-05-13 2003-11-21 Samsung Sdi Co Ltd Method for manufacturing positive active material for lithium secondary battery
KR20140081663A (en) * 2012-12-13 2014-07-01 주식회사 에코프로 Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same
KR20150080199A (en) * 2013-12-31 2015-07-09 주식회사 에코프로 Manufacturing method of positive active material for lithium rechargeable batteries and positive active material made by the same
KR101568263B1 (en) * 2014-08-07 2015-11-11 주식회사 에코프로 Cathod active material for lithium rechargeable battery and lithium rechargeable battery comprising the same
KR20160074236A (en) * 2014-12-18 2016-06-28 삼성에스디아이 주식회사 Composit cathode active material, preparation method thereof, and cathode and lithium battery containing the composite cathode active material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111600017A (en) * 2019-02-20 2020-08-28 日亚化学工业株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same

Also Published As

Publication number Publication date
KR20180076647A (en) 2018-07-06
CN110140242B (en) 2022-05-27
CN110140242A (en) 2019-08-16

Similar Documents

Publication Publication Date Title
WO2020106024A1 (en) Positive electrode active material for lithium secondary battery and preparation method therefor
WO2019221497A1 (en) Cathode active material for secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2019168301A1 (en) Positive electrode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2016175597A1 (en) Cathode active material for secondary battery, preparation method therefor, and secondary battery comprising same
WO2019172568A1 (en) Cathode active material, method for producing same, and cathode electrode and secondary battery comprising same
WO2019235885A1 (en) Cathode active material for secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2017150945A1 (en) Precursor of positive electrode active material for secondary battery and positive electrode active material prepared using same
WO2019059552A2 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2019103363A1 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2018160023A1 (en) Cathode active material for lithium secondary battery, production method therefor, and lithium secondary battery comprising same
WO2019103461A2 (en) Cathode active material precursor, manufacturing method therefor, and cathode active material, cathode and secondary battery manufactured by using same
WO2019212321A1 (en) Method for cleaning positive electrode active material, positive electrode active material manufacturing method comprising same, and positive electrode active material manufactured by same
WO2021154021A1 (en) Positive electrode active material precursor for secondary battery, positive electrode active material, and lithium secondary battery comprising same
WO2019059647A2 (en) Positive electrode material for lithium secondary battery, method for manufacturing same, and positive electrode for lithium secondary battery and lithium secondary battery comprising same
WO2020111545A1 (en) Positive electrode active material, and positive electrode and lithium secondary battery comprising positive electrode active material
WO2016053051A1 (en) Positive electrode active material for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2019078688A2 (en) Lithium secondary battery positive electrode active material, method for preparing same, and lithium secondary battery positive electrode and lithium secondary battery comprising same
WO2022139311A1 (en) Positive electrode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same
WO2020004988A1 (en) Cathode active material for lithium secondary battery, method for manufacturing same, cathode comprising same for lithium secondary battery, and lithium secondary battery
WO2019194609A1 (en) Method for manufacturing cathode active material for lithium secondary battery, cathode active material for lithium secondary battery, cathode, comprising same, for lithium secondary battery, and lithium secondary battery comprising same
WO2020080800A1 (en) Method for preparing cathode additive for lithium secondary battery, and cathode additive for lithium secondary battery, prepared thereby
WO2021025464A1 (en) Copolymer for polymer electrolyte, gel polymer electrolyte comprising same, and lithium secondary battery
WO2020145638A1 (en) Method for producing positive electrode active material for lithium secondary battery, and positive electrode active material produced thereby
WO2018124781A1 (en) Positive electrode active material for secondary battery, preparation method therefor, positive electrode comprising same for secondary battery, and secondary battery
WO2020153701A1 (en) Method for producing positive electrode active material for secondary batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889286

Country of ref document: EP

Kind code of ref document: A1