WO2018124453A1 - Method for producing n-substituted maleimide using solid acid catalyst - Google Patents

Method for producing n-substituted maleimide using solid acid catalyst Download PDF

Info

Publication number
WO2018124453A1
WO2018124453A1 PCT/KR2017/012499 KR2017012499W WO2018124453A1 WO 2018124453 A1 WO2018124453 A1 WO 2018124453A1 KR 2017012499 W KR2017012499 W KR 2017012499W WO 2018124453 A1 WO2018124453 A1 WO 2018124453A1
Authority
WO
WIPO (PCT)
Prior art keywords
maleimide
catalyst
substituted
amine
substituted maleimide
Prior art date
Application number
PCT/KR2017/012499
Other languages
French (fr)
Korean (ko)
Inventor
천주영
최준선
김지연
조왕래
김경수
염응섭
이원균
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170133529A external-priority patent/KR102175831B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/091,475 priority Critical patent/US10487052B2/en
Priority to CN201780024748.7A priority patent/CN109071432B/en
Priority to JP2019503184A priority patent/JP6697124B2/en
Priority to EP17887093.7A priority patent/EP3421451B1/en
Publication of WO2018124453A1 publication Critical patent/WO2018124453A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/44Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members
    • C07D207/444Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5
    • C07D207/448Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. maleimide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/44Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members
    • C07D207/444Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5
    • C07D207/448Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. maleimide
    • C07D207/452Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. maleimide with hydrocarbon radicals, substituted by hetero atoms, directly attached to the ring nitrogen atom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a method for synthesizing N-substituted maleimide using zirconium (IV) hydrogenphosphate as a solid acid catalyst.
  • the maleimide compound is a compound useful as a raw material for water support fees, pharmaceutical pesticides, and the like, and in particular, styrene resins such as ABS resins, AS resins, AB resins, ACS resins, AES resins, AAS resins, polyvinyl chloride resins, In order to improve heat resistance of polymethyl methacrylate resins and phenol resins, they are frequently used as one of copolymerization components. Among them, N-phenyl maleimide (hereinafter also referred to as PMI) is excellent in terms of reactivity and heat resistance, and is particularly widely used.
  • PMI N-phenyl maleimide
  • maleimide compound About the manufacturing method of a maleimide compound, 1) the method obtained by dehydrating maleic anhydride (henceforth MAH) and primary amines in one step, 2) maleamine from maleic anhydride and primary amines Many methods conventionally, such as the method of producing
  • N-phenyl maleimide is aniline (henceforth ANL)
  • maleamic acid is N-phenyl maleamic acid (henceforth PMA).
  • the inventors of the present invention have solved the above problems when using zirconium hydrogenphosphate as a solid acid catalyst in the method for preparing N-phenylmaleimide of 2). It has been found that the present invention has been completed.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-1051543 (Registered July 18, 2011)
  • the problem to be solved of the present invention is to use a zirconium hydrogen phosphate (Zirconium (IV) hydrogenphosphate) solid acid catalyst as a catalyst for the N-substituted maleimide synthesis reaction, thereby minimizing the loss of the catalyst to supplement the catalyst during the synthesis reaction It is to provide a method for producing unnecessary N-substituted maleimide.
  • Zirconium (IV) hydrogenphosphate zirconium (IV) hydrogenphosphate
  • the solid acid catalyst can be separated and recovered through simple filtration, so that the separation and recovery process is simplified, and the activity of the separated and recovered catalyst is reduced, washed or calcined.
  • the complete regeneration of the catalyst there is provided a method for producing N-substituted maleimide without limitation of the solvent that can be used in the catalyst washing process.
  • Another object of the present invention is to provide a method for producing N-substituted maleimide having high yield of N-substituted maleimide.
  • the present invention is to solve the above problems
  • the catalyst provides a method for producing N-substituted maleimide, characterized in that the zirconium hydrogen phosphate (Zirconium (IV) hydrogenphosphate) solid acid catalyst.
  • N-substituted maleimide production method of the present invention by using a zirconium hydrogen phosphate solid acid catalyst during the synthesis reaction of N-substituted maleimide, there is an effect that unnecessary replacement of the catalyst during the synthesis reaction to minimize the loss of the catalyst.
  • the solid acid catalyst is capable of separating and recovering the catalyst through simple filtration, and thus, the separation and recovery process of the catalyst is simple, and the catalyst can be completely regenerated by washing or firing. There is an effect that the solvent can be used without any kind.
  • the zirconium hydrogen phosphate solid acid catalyst has an effect of high N-substituted maleimide synthesis yield.
  • 1 is a flowchart showing the procedure of the N-substituted maleimide production method of the present invention.
  • FIG. 2 is a flowchart showing the procedure of a conventional method for producing N-substituted maleimide.
  • the present invention is a.
  • the catalyst provides a method for producing N-substituted maleimide, characterized in that the zirconium hydrogen phosphate (Zirconium (IV) hydrogenphosphate) solid acid catalyst.
  • Step 1) is a step for synthesizing N-substituted maleimide, by introducing maleic anhydride and primary amine in the presence of an organic solvent and a catalyst to form N-substituted maleimide It is characterized by synthesizing.
  • maleimide compound About the manufacturing method of a maleimide compound, 1) the method obtained by dehydrating maleic anhydride and a primary amine in one step, 2) maleic anhydride is produced
  • N-substituted maleimide production method of the present invention maleic anhydride and primary amine are heated to acylate in one step to obtain N-substituted maleamic acid as an intermediate, and the N is substituted on the surface of the catalyst in two steps.
  • N-substituted maleimide can be synthesize
  • maleic anhydride or aniline may be used as it is, but is preferably used in the form of a solution dissolved in an organic solvent.
  • the following dehydration ring closure imidation reaction of N-phenyl maleamic acid can be performed in a solution (organic solvent) as it is.
  • the organic solvent used in the present invention is insoluble or immiscible in water, inert to the reaction, and capable of releasing water generated by the dehydration ring closure reaction of N-substituted maleamic acid through the azeotropic distillation. Do not participate.
  • the boiling point is at least 50 ° C. or higher for the smooth progress of the reaction, and the boiling point is lower than 170 ° C. for the stability of the resulting N-substituted maleimide.
  • suitable organic solvents for this reaction include benzene, toluene, xylene, o-xylene, ethylbenzene, isopropylbenzene, cumene, mesitylene, tert-butylbenzene, pseudocumene, trimethylhexane, octane, tetra Chloroethane, nonane, chlorobenzene, ethylcyclohexane, m-dichlorobenzene, sec-butylbenzene, p-dichlorobenzene, decane, p-cymene, o-dichlorobenzene, butylbenzene, decahydronaphthalene, te
  • the amount of the organic solvent to be used is not particularly limited. However, the amount of the organic solvent is about 1 to 20 times (by weight) more preferably about 1 to 20 times the amount of the primary amine to be used as a raw material, in order to satisfy the economic conditions while smoothly carrying out the reaction. The range of 2 to 10 times (by weight) is appropriate.
  • the amount of the organic solvent is less than 2 times, there is a problem in that the yield is not easy to effectively remove the water produced through the dehydration ring-closure reaction of the N-substituted maleamic acid from the reaction system, if the amount exceeds 10 times synthesized In the process of separating the organic solvent from the N-substituted maleimide solution, excessive energy is consumed, which is not preferable from an economic point of view.
  • the organic solvent should be determined in consideration of environmental factors and solubility, price and ease of handling of N-substituted maleimide, and moreover, a solvent suitable for easy removal and reuse after completion of the reaction should be selected.
  • maleic anhydride and primary amine may be dissolved in the same organic solvent or in another organic solvent, but are preferably dissolved in the same organic solvent.
  • the concentration of maleic anhydride or primary amine in the case of using maleic anhydride or primary amine in the form of a solution dissolved in an organic solvent is not particularly limited as long as it can dissolve maleic anhydride or primary amine. Do not. Specifically, it is preferable that 0-500 g of organic solvents, more preferably 10-200 g are added and melt
  • the primary amine is a saturated or unsaturated alkylamine having 1 to 20 carbon atoms, cycloalkylamine having 5 to 20 carbon atoms, cycloalkylamine having 6 to 20 carbon atoms or 6 to 20 carbon atoms
  • One kind of primary amine selected from among aromatic alkylamines may be used, specifically, methyl amine, ethyl amine, n-propyl amine, isopropyl amine, n-butyl amine, sec-butyl amine, iso-butyl amine , at least one selected from the group consisting of tert-butylamine, n-hexyl amine, n-octyl amine, n-decyl amine, n-dodecyl amine, cyclohexyl amine and aniline can be used.
  • Aniline can be used as the primary amine to synthesize phenyl maleimide.
  • the amount of maleic anhydride is preferably used in an amount of 1.0 to 1.3 molar ratio relative to the primary amine used in the synthesis of N-substituted maleimides.
  • maleic anhydride is used at less than 1.0 molar ratio, problems of yield reduction and by-products increase.
  • the maleic anhydride is used at 1.3 molar ratio or higher, unreacted maleic anhydride remains excessive after N-substituted maleimide synthesis. It is not preferable in terms of.
  • the N-substituted maleimide production method of the present invention synthesizes N-substituted maleimides using a heterogeneous solid acid catalyst rather than a homogeneous liquid catalyst or a supported catalyst. It is characterized by being able to solve the problem.
  • the homogeneous system means that the reactants of the N-substituted maleimide synthesis reaction and the catalyst have the same phase
  • the heterogeneous system means that the reactants and the catalyst have different states.
  • the heterogeneous solid acid catalyst used in the present invention is characterized in that the zirconium hydrogen phosphate (Zirconium (IV) hydrogenphosphate).
  • Zirconium hydrogenphosphate (Zirconium (IV) hydrogenphosphate, Zr (HPO 4 ) 2 ) is an acidic, inorganic cation exchange material with a layered structure, with high thermal and chemical stability, solid ion conductivity, resistance to ionizing radiation, and To introduce different types of molecules of different sizes into their layers.
  • the zirconium hydrogen phosphate may exist in a variety of states having a variety of interlayer space and crystal structure, the most widely known zirconium hydrogen phosphate is alpha type of Zr (HPO 4 ) 2 ⁇ H 2 O and Zr (PO 4 ) (H 2 PO 4 ) ⁇ 2H 2 O.
  • the zirconium hydrogen phosphate may be utilized in various fields such as drug delivery, catalysis, nanocomposites, nuclear waste management or clinical dialysis machine.
  • the zirconium hydrogen phosphate used as the solid acid catalyst is an amorphous zirconium hydrogen phosphate rather than the crystalline structures of the alpha type and the gamma type, and the degree of hydration may vary depending on the reaction conditions. Can be displayed.
  • the method for preparing N-substituted maleimide compounds of the present invention can minimize the possibility of loss of the catalyst by using a heterogeneous solid acid catalyst having a different state from the reactant of the N-substituted maleimide synthesis reaction.
  • the yield of N-substituted maleimides is high by using zirconium hydrogen phosphate.
  • the catalyst of the present invention is a solid in a state different from the reactants, and the loss of the active component by water, which is a by-product generated during the synthesis of N-substituted maleimide, and the loss of the catalyst in the phase separation process after completion of the synthesis reaction.
  • the zirconium hydrogen phosphate used in the present invention is structurally very stable, and since the reactivity with water is low, it is not necessary to replenish and regenerate the catalyst during the reaction, thereby preparing N-substituted maleimides. The process also has the effect of being simplified.
  • the zirconium hydrogen phosphate of the present invention has a higher yield of N-substituted maleimide synthesis than other solid acid catalysts, and specifically, when zirconium hydrogen phosphate is added in an amount of 0.06 weight or more relative to the input reaction solvent, N-substituted male
  • the yield of mids synthesis can be made 70% or more.
  • the heterogeneous solid acid catalyst of the present invention should be added in an appropriate amount from the viewpoint of process operation and cost, specifically, it is added in a weight ratio of 0.01 to 1.0 weight ratio, more specifically 0.05 to 0.5 with respect to the input reaction solvent. desirable.
  • the total reaction time is low because the ratio of N-substituted maleamic acid converted per unit time is low, and if it exceeds 1.0 weight ratio, the reaction medium is generated according to the production of N-substituted maleamic acid as an intermediate product. Agitation due to increased solids may not be smooth.
  • the metal-containing compound and the stabilizer may be coexisted in the reaction system and reacted.
  • the metal-containing compound used at this time is not particularly limited, but at least one metal oxide, acetate, maleate, succinate salt selected from the group consisting of zinc, chromium, palladium, cobalt, nickel, iron and aluminum. of succinic acid, nitrates, phosphates, chlorides and sulfates. Of these, zinc acetate is particularly effective.
  • the amount of these used is 0.005 to 0.5 mol%, preferably 0.01 to 0.1 mol%, as a metal, based on maleic anhydride and / or primary amine as a raw material.
  • methoxybenzoquinone, p-methoxyphenol, phenothiazine, hydroquinone, alkylated diphenyl amines, methylene blue, tert-butyl catechol, tert-butylhydroquinone, dimethyldithiocarba Mate zinc, dimethyldithiocarbamate, copper dibutyldithiocarbamic acid, copper salicylate, thiodipropionic acid esters, mercaptobenzimidazole, triphenyl phosphite, alkyl phenols, alkyl bisphenols, and the like are used as a stabilizer.
  • the effect of these stabilizers plays a role of making the N-substituted maleimide produced by the dehydration ring closure imidization reaction stably exist without deterioration even at a high temperature of the imidization reaction.
  • the addition amount is not specifically limited, 0.001 to 0.5 mol% can be used with respect to maleic anhydride and / or primary amine which are raw materials.
  • the said stabilizing effect can fully be exhibited and the problem mixed in a product can also be avoided.
  • the reaction temperature of the N-substituted maleimide of step 1) is generally 50 to 200 ° C, more preferably 100 to 140 ° C.
  • the synthesis reaction temperature is less than 50 °C, a problem that the yield is lowered, when the temperature is 200 °C or more, the polymerization of N-substituted maleimide synthesized by side reaction is inhibited, the purity and yield of the synthesized N-substituted maleimide This deterioration problem occurs.
  • reaction pressure in the present invention, and it can be selected in a wide range from reduced pressure, atmospheric pressure and pressure.
  • the reaction may vary depending on conditions such as the type of solvent, the amount of raw materials, the amount of catalyst and the reaction temperature, but is generally about 1 to 16 hours, more preferably within 1 to 10 hours.
  • Step 2) is a separation and recovery step for reusing the catalyst, characterized in that the catalyst is separated and recovered from a solution containing N-substituted maleimide.
  • a solution layer in which N-substituted maleimide is dissolved is first separated from the catalyst layer to separate layers, and secondly, a catalyst remaining in the product through a washing solvent.
  • the catalyst was separated and recovered by removing and removing impurities.
  • the separation of the homogeneous catalyst is not easy, and the supported catalyst also loses the active ingredient in the carrier, and a large amount of wastewater is generated, making the separation and recovery process difficult and complicated.
  • the catalyst used in the N-substituted maleimide production method of the present invention uses a zirconium hydrogen phosphate, which is a structural acid and a chemically stable solid acid as a solid acid catalyst, so that cooling and reheating processes are unnecessary, thereby adding energy. No input is required and the catalyst is filtered by simple filtration even at a temperature from the lowest temperature at which the product does not precipitate as a solid on the solution containing the product to the break point of the solution containing the product, more specifically at a high temperature of 70 to 160 ° C. Since separation and recovery of the catalyst are possible, there is an effect of simplifying the separation and recovery of the catalyst.
  • the washing solvent that can be used to wash the impurities in the washing or calcining process for regenerating the activity of the catalyst has a limitation, and the catalyst can not be regenerated through the simple calcining process. There was a limit to give.
  • a heterogeneous solid acid catalyst is used as a catalyst, and when the activity of the separated and recovered catalyst is partially reduced, the catalyst is maintained while the stability of the catalyst is maintained by washing with a washing solvent without any kind. It is possible to regenerate, and when the catalyst is completely inactive because the activity is completely reduced, there is a characteristic that the catalyst can be easily regenerated through a calcination process.
  • the washing solvent that can be used in the washing process can be used without limitation, a polar solvent, specifically, at least one polar solvent selected from the group consisting of water, acetone, sulfoxide series and cyclic polar organic solvent containing oxygen Can be used.
  • the reactant is stored by mixing the catalyst which has been separated, recovered and regenerated with N-substituted maleimide compounds mixed with an organic solvent of the same type as used in the synthesis reaction to ensure fluidity. It can be transferred to a tank or synthesis reactor for reuse.
  • the method for preparing N-substituted maleimide compounds of the present invention uses a heterogeneous zirconium hydrogenphosphate solid acid catalyst as a catalyst, thereby minimizing the loss of the catalyst.
  • Separation and recovery of catalysts including the limitation of solvents that can be used to separate catalysts generated in the production process, the generation of large amounts of waste water in the removal of residual catalysts and impurities, and the need for energy input for cooling and reheating, and The regeneration process can solve complex problems.
  • the supported catalyst was separated by filtration to recover an N-phenyl maleimide o-xylene solution.
  • the recovered N-phenyl maleimide o-xylene solution was heated to 80 ° C. under 10 mmHg reduced pressure, and o-xylene was removed by distillation under reduced pressure to prepare N-phenyl maleimide.
  • N-phenyl maleimide was prepared in the same manner as in Example 1, except that 0.8 g of the zirconium (IV) hydrogenphosphate solid acid catalyst was added in Example 1.
  • N-phenyl maleimide was prepared in the same manner as in Example 1 except that 0.6 g of a Zirconium (IV) hydrogenphosphate solid acid catalyst was added in Example 1.
  • N-phenyl maleimide was prepared in the same manner as in Example 1, except that the solid acid catalyst described in Table 1 was used instead of the zirconium hydrogen phosphate solid acid catalyst in Example 1.
  • Comparative Examples 1 to 10 are the same as Examples 1 to 3 solid acid catalyst or a catalyst of the Phosphate series Even if using the N-phenyl maleimide (PMI) yield or ANL (aniline) based selectivity is not confirmed that high.
  • PMI N-phenyl maleimide
  • ANL aniline
  • Examples 1 to 3 using the zirconium hydrogen phosphate solid acid catalyst showed that the N-phenyl maleimide (PMI) yield and the ANL (aniline) standard Selectivity were excellent.
  • PMI N-phenyl maleimide
  • ANL aniline

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pyrrole Compounds (AREA)

Abstract

The present invention relates to a method for producing an N-substituted maleimide using a heterogeneous solid acid catalyst. Specifically, the purpose of the present invention is to provide a method for producing an N-substituted maleimide, wherein, by using a zirconium(IV) hydrogenphosphate solid acid catalyst as a catalyst of an N-substituted maleimide synthesis reaction, the loss of the catalyst is minimized, the separation and recovery processes of the catalyst are simplified, the catalyst can be completely regenerated through washing or firing when the activity of the separated and recovered catalyst is reduced, there is no restriction on the choice of washing solvent, and the yield of N-substituted maleimide synthesis is high.

Description

고체산 촉매를 이용한 N-치환 말레이미드 제조방법Method for preparing N-substituted maleimide using solid acid catalyst
관련출원과의 상호인용Citation with Related Applications
본 출원은 2016년 12월 28일자 한국 특허출원 제10-2016-0181021호 및 2017년 10월 13일자 한국 특허출원 제10-2017-0133529호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0181021 dated December 28, 2016 and Korean Patent Application No. 10-2017-0133529 dated October 13, 2017. All content disclosed in the literature is included as part of this specification.
기술분야Technical Field
본 발명은 고체산 촉매로서 지르코늄 하이드로겐포스페이트 (Zirconium(IV) hydrogenphosphate)를 이용하여 N-치환 말레이미드를 합성하는 방법에 관한 것이다. The present invention relates to a method for synthesizing N-substituted maleimide using zirconium (IV) hydrogenphosphate as a solid acid catalyst.
말레이미드 화합물은, 수지원료, 의약농약 등의 원료로서 유용한 화합물이며, 특히, ABS수지, AS수지, AB수지, ACS수지, AES수지, AAS수지 등의 스티렌계 수지, 및, 폴리염화비닐수지, 폴리메틸메타크릴레이트수지, 페놀수지 등의 내열성 향상을 위해, 공중합 성분의 하나로 많이 이용되고 있다. 그 중에서도, N-페닐 말레이미드 (이하, PMI라고도 한다.)가 반응성이나 내열성의 점에서 우수하여, 특히 널리 사용되고 있다.The maleimide compound is a compound useful as a raw material for water support fees, pharmaceutical pesticides, and the like, and in particular, styrene resins such as ABS resins, AS resins, AB resins, ACS resins, AES resins, AAS resins, polyvinyl chloride resins, In order to improve heat resistance of polymethyl methacrylate resins and phenol resins, they are frequently used as one of copolymerization components. Among them, N-phenyl maleimide (hereinafter also referred to as PMI) is excellent in terms of reactivity and heat resistance, and is particularly widely used.
말레이미드 화합물의 제조 방법에 대하여는, 1) 말레산 무수물(이하, MAH라고도 한다.)과 1차 아민류를 1 단계로 탈수 반응시키는 것에 의해 얻는 방법, 2) 말레산 무수물과 1차 아민류로부터 말레아민산류를 생성시켜, 이 말레아민산의 탈수 폐환(ring-closure) 이미드화 반응에 의해 얻는 방법, 3) 대응하는 말레아민산 모노에스테르류의 폐환 이미드화 반응에 의해 얻는 방법 등, 종래부터 많은 방법이 알려져 있다. About the manufacturing method of a maleimide compound, 1) the method obtained by dehydrating maleic anhydride (henceforth MAH) and primary amines in one step, 2) maleamine from maleic anhydride and primary amines Many methods conventionally, such as the method of producing | generating an acid and obtaining it by the ring-closure imidation reaction of this maleamic acid, and 3) the method obtained by the ring-ring imidation reaction of corresponding maleamic acid monoesters. This is known.
이들 방법 중, 1) 말레산 무수물과 1차 아민류로부터 1 단계에 의해 얻는 방법에서는, 아직 수율이 낮아 생산성이 나쁘다고 하는 문제, 또한, 3) 말레아민산 모노에스테르류로부터 얻는 방법에서는, 폐환 이미드화 반응에 의해 발생하는 알코올이 제품 중에 잔존 혼입되는 문제 등이 있으므로, 공업적으로는 일반적으로 2) 말레아민산의 탈수 폐환 이미드화 반응에 의해 얻는 방법이 행해지고 있다.Among these methods, in the method of 1) obtaining in one step from maleic anhydride and primary amines, there is still a problem that the yield is low and the productivity is poor, and 3) the method of obtaining from maleamic acid monoesters, the ring-ring imidization Since the alcohol which arises by reaction remains in a product, etc. remain, industrially, the method of obtaining by 2) the dehydration ring closure imidation reaction of maleamic acid is generally performed.
한편, N-페닐 말레이미드를 제조할 때의 1차 아민류는 아닐린(이하, ANL이라고도 한다.)이며, 말레아민산류는 N-페닐 말레아민산(이하, PMA라고도 한다.)이다.In addition, the primary amines at the time of manufacturing N-phenyl maleimide are aniline (henceforth ANL), and maleamic acid is N-phenyl maleamic acid (henceforth PMA).
상기 2) 의 종래 N-페닐 말레이미드 합성 방법에서 사용되는 촉매의 대부분은 균일계인 액상의 촉매를 직접 사용하거나 담지체에 균일계 활성 성분을 담지한 촉매를 사용하였다. 그러나 이 경우 N-페닐 말레이미드를 합성하는 과정 중에 발생하는 부산물인 물에 의해 활성 성분의 손실이 발생할 수 있고, 상기 손실된 활성 성분의 보충 및 재생이 어려운 문제가 있으며, 촉매를 분리하기 위해 사용하는 용매의 제한, 잔존 촉매 및 불순물의 제거 공정에서의 다량의 폐수 발생 및 냉각과 가열 수행에 따른 에너지 투입이 필요하는 등 촉매의 분리 공정이 복잡한 문제가 있었다. Most of the catalysts used in the conventional method of synthesizing N-phenyl maleimide of 2) used a liquid catalyst which is a homogeneous system directly or a catalyst having a homogeneous active component supported on a carrier. However, in this case, the loss of the active ingredient may occur due to water, a by-product generated during the synthesis of N-phenyl maleimide, it is difficult to supplement and regenerate the lost active ingredient, it is used to separate the catalyst There is a problem in that the separation process of the catalyst is complicated, such as the limitation of the solvent, the generation of a large amount of waste water in the process of removing residual catalyst and impurities, and the input of energy according to the cooling and heating.
이에 본 발명의 발명자들은 상기 문제를 해결하기 위하여 연구한 끝에 2)의 N-페닐말레이미드 제조 방법에 있어서, 고체산 촉매인 지르코늄 하이드로겐포스페이트 (Zirconium(IV) hydrogenphosphate)를 이용하는 경우 상기 문제들을 해결할 수 있다는 점을 발견하여 본 발명을 완성하게 되었다. In order to solve the above problems, the inventors of the present invention have solved the above problems when using zirconium hydrogenphosphate as a solid acid catalyst in the method for preparing N-phenylmaleimide of 2). It has been found that the present invention has been completed.
[선행기술문헌][Preceding technical literature]
(특허문헌 1) 대한민국 등록특허공보 제10-1051543호 (2011.07.18 등록)(Patent Document 1) Republic of Korea Patent Publication No. 10-1051543 (Registered July 18, 2011)
본 발명의 해결하고자 하는 과제는 N-치환 말레이미드류 합성 반응의 촉매로서 지르코늄 하이드로겐포스페이트 (Zirconium(IV) hydrogenphosphate) 고체산 촉매를 이용함으로써, 촉매의 손실을 최소화하여 합성 반응 시 촉매의 보충이 불필요한 N-치환 말레이미드류 제조방법을 제공하는 것이다.The problem to be solved of the present invention is to use a zirconium hydrogen phosphate (Zirconium (IV) hydrogenphosphate) solid acid catalyst as a catalyst for the N-substituted maleimide synthesis reaction, thereby minimizing the loss of the catalyst to supplement the catalyst during the synthesis reaction It is to provide a method for producing unnecessary N-substituted maleimide.
또한, 본 발명의 해결하고자 하는 다른 과제는 상기 고체산 촉매는 단순 여과만을 통해 분리 및 회수가 가능한 바, 분리 및 회수 공정이 단순화되고, 분리 및 회수된 촉매의 활성이 감소된 경우, 세척 또는 소성을 통해 촉매의 완전한 재생이 가능하며, 상기 촉매 세척 공정 시 사용할 수 있는 용매의 제한이 없는 N-치환 말레이미드류 제조방법을 제공하는 것이다.In addition, another problem to be solved of the present invention is that the solid acid catalyst can be separated and recovered through simple filtration, so that the separation and recovery process is simplified, and the activity of the separated and recovered catalyst is reduced, washed or calcined. Through the complete regeneration of the catalyst, there is provided a method for producing N-substituted maleimide without limitation of the solvent that can be used in the catalyst washing process.
또한, 본 발명의 해결하고자 하는 또 다른 과제는 N-치환 말레이미드류 합성 수율이 높은 N-치환 말레이미드류 제조방법을 제공하는 것이다.In addition, another object of the present invention is to provide a method for producing N-substituted maleimide having high yield of N-substituted maleimide.
본 발명은 상기와 같은 과제를 해결하기 위한 것으로서, The present invention is to solve the above problems,
N-치환 말레이미드류 제조방법에 있어서, In the manufacturing method of N-substituted maleimide,
1) 유기 용매 및 촉매 존재 하에 말레산 무수물 및 1차 아민을 투입하여 N-치환 말레이미드류를 합성하는 단계; 및1) adding maleic anhydride and a primary amine in the presence of an organic solvent and a catalyst to synthesize N-substituted maleimides; And
2) 상기 N-치환 말레이미드류 포함하는 용액으로부터 촉매를 분리하는 단계를 포함하고,2) separating the catalyst from the solution containing the N-substituted maleimide,
상기 촉매는 지르코늄 하이드로겐포스페이트(Zirconium(IV) hydrogenphosphate) 고체산 촉매인 것을 특징으로 하는 N-치환 말레이미드류 제조방법을 제공한다. The catalyst provides a method for producing N-substituted maleimide, characterized in that the zirconium hydrogen phosphate (Zirconium (IV) hydrogenphosphate) solid acid catalyst.
본 발명의 N-치환 말레이미드류 제조방법은 N-치환 말레이미드류 합성 반응 시 지르코늄 하이드로겐포스페이트 고체산 촉매를 이용함으로써, 촉매의 손실을 최소화하여 합성 반응 시 촉매의 보충이 불필요한 효과가 있다. N-substituted maleimide production method of the present invention by using a zirconium hydrogen phosphate solid acid catalyst during the synthesis reaction of N-substituted maleimide, there is an effect that unnecessary replacement of the catalyst during the synthesis reaction to minimize the loss of the catalyst.
또한, 상기 고체산 촉매는 단순 여과만을 통해서도 촉매의 분리 및 회수가 가능한 바 촉매의 분리 및 회수 공정이 간단하고, 세척 또는 소성을 통해 촉매의 완전한 재생이 가능하며, 상기 촉매 세척 공정 시 사용되는 세척 용매를 종류의 제한없이 사용할 수 있는 효과가 있다. In addition, the solid acid catalyst is capable of separating and recovering the catalyst through simple filtration, and thus, the separation and recovery process of the catalyst is simple, and the catalyst can be completely regenerated by washing or firing. There is an effect that the solvent can be used without any kind.
또한, 상기 지르코늄 하이드로겐포스페이트 고체산 촉매는 N-치환 말레이미드류 합성 수율이 높은 효과가 있다. In addition, the zirconium hydrogen phosphate solid acid catalyst has an effect of high N-substituted maleimide synthesis yield.
본 명세서에 첨부되는 다음의 도면은 본 발명의 구체적인 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.The following drawings, which are attached to this specification, illustrate specific embodiments of the present invention, and together with the contents of the present invention, the present invention serves to further understand the technical spirit of the present invention. It should not be construed as limited.
도 1은 본 발명의 N-치환 말레이미드류 제조방법의 순서를 나타내는 순서도이다. 1 is a flowchart showing the procedure of the N-substituted maleimide production method of the present invention.
도 2는 종래의 N-치환 말레이미드류 제조방법의 순서를 나타내는 순서도이다.2 is a flowchart showing the procedure of a conventional method for producing N-substituted maleimide.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in more detail to aid in understanding the present invention. At this time, the terms or words used in the present specification and claims should not be construed as being limited to ordinary or dictionary meanings, and the inventors appropriately define the concept of terms in order to explain their own invention in the best way. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that it can.
본 발명은 The present invention
N-치환 말레이미드류 제조방법에 있어서, In the manufacturing method of N-substituted maleimide,
1) 유기 용매 및 촉매 존재 하에 말레산 무수물 및 1차 아민을 투입하여 N-치환 말레이미드류를 합성하는 단계; 및1) adding maleic anhydride and a primary amine in the presence of an organic solvent and a catalyst to synthesize N-substituted maleimides; And
2) 상기 N-치환 말레이미드류 포함하는 용액으로부터 촉매를 분리하는 단계를 포함하고,2) separating the catalyst from the solution containing the N-substituted maleimide,
상기 촉매는 지르코늄 하이드로겐포스페이트(Zirconium(IV) hydrogenphosphate) 고체산 촉매인 것을 특징으로 하는 N-치환 말레이미드류 제조방법을 제공한다.The catalyst provides a method for producing N-substituted maleimide, characterized in that the zirconium hydrogen phosphate (Zirconium (IV) hydrogenphosphate) solid acid catalyst.
이하 도 1을 참고하여 상기 본 발명의 N-치환 말레이미드류 제조방법을 각 단계별로 상세히 설명하기로 한다. Hereinafter, the method for preparing N-substituted maleimide compounds of the present invention will be described in detail with reference to FIG. 1.
단계 1)Step 1)
본 발명의 일 실시예에 따른 상기 단계 1)은, N-치환 말레이미드류를 합성하기 위한 단계로서, 유기 용매 및 촉매 존재 하에 말레산 무수물 및 1차 아민을 투입하여 N-치환 말레이미드류를 합성하는 것을 특징으로 한다. Step 1) according to an embodiment of the present invention is a step for synthesizing N-substituted maleimide, by introducing maleic anhydride and primary amine in the presence of an organic solvent and a catalyst to form N-substituted maleimide It is characterized by synthesizing.
말레이미드 화합물의 제조 방법에 대하여는, 1) 말레산 무수물과 1차 아민류를 1 단계로 탈수 반응시키는 것에 의해 얻는 방법, 2) 말레산 무수물과 1차 아민류로부터 말레아민산류를 생성시켜, 이 말레아민산의 탈수 폐환 이미드화 반응에 의해 얻는 방법, 3) 대응하는 말레아민산 모노에스테르류의 폐환 이미드화 반응에 의해 얻는 방법 등이 있다. About the manufacturing method of a maleimide compound, 1) the method obtained by dehydrating maleic anhydride and a primary amine in one step, 2) maleic anhydride is produced | generated from maleic anhydride and a primary amine, and this malea The method obtained by the dehydration ring closure imidation reaction of a hydrochloric acid, 3) The method obtained by ring closure imidation reaction of the corresponding maleic acid monoester, etc. are mentioned.
그러나, 1) 말레산 무수물과 1차 아민류로부터 1 단계에 의해 얻는 방법에서는, 아직 수율이 낮아 생산성이 나쁘다고 하는 문제, 또한, 3) 말레아민산 모노에스테르류로부터 얻는 방법에서는, 폐환 이미드화 반응에 의해 발생하는 알코올이 제품 중에 잔존 혼입되는 문제 등이 있으므로, 본 발명의 N-치환 말레이미드류 제조방법은 2) 말레아민산의 탈수 폐환 이미드화 반응에 의해 N-치환 말레이미드류를 합성하는 실시 형태에 대해 상세하게 설명한다.However, in 1) the method of obtaining from a maleic anhydride and a primary amine by one step, there is still a problem that productivity is low because a yield is still low, and 3) the method obtained from a maleamic acid monoester is used for a ring-ring imidation reaction. There is a problem in that the alcohol generated by the residue remaining in the product, etc., the method for producing N-substituted maleimide of the present invention is carried out to synthesize N-substituted maleimide by 2) dehydration ring closure imidization reaction of maleamic acid The form is explained in full detail.
본 발명의 N-치환 말레이미드류 제조방법은 1 단계로 말레산 무수물 및 1차 아민을 가열하여 아실화 반응시켜 중간체인 N-치환 말레아민산류를 수득하고, 2 단계로 촉매의 표면 상에서 상기 N-치환 말레아민산류의 탈수 폐환 이미드화 반응시키는 방법에 의하여 N-치환 말레이미드류를 합성할 수 있다. In the N-substituted maleimide production method of the present invention, maleic anhydride and primary amine are heated to acylate in one step to obtain N-substituted maleamic acid as an intermediate, and the N is substituted on the surface of the catalyst in two steps. N-substituted maleimide can be synthesize | combined by the method of the dehydration ring-closure imidation reaction of -substituted maleamic acid.
또한, 상기 말레산 무수물과 아닐린으로부터 N-페닐 말레아민산을 얻는 공정에 있어서, 말레산 무수물 또는 아닐린은, 그대로의 형태로 사용될 수도 있으나, 유기 용매에 용해된 용액의 형태로 사용하는 것이 바람직하다. 한편, 말레산 무수물 또는 아닐린을 유기 용매에 용해한 용액의 형태로 사용했을 경우에는, 다음의 N-페닐 말레아민산의 탈수 폐환 이미드화 반응은, 그대로 용액(유기 용매)중에서 실행할 수 있다.In addition, in the step of obtaining N-phenyl maleamic acid from the maleic anhydride and aniline, maleic anhydride or aniline may be used as it is, but is preferably used in the form of a solution dissolved in an organic solvent. . On the other hand, when using maleic anhydride or aniline in the form of the solution which melt | dissolved in the organic solvent, the following dehydration ring closure imidation reaction of N-phenyl maleamic acid can be performed in a solution (organic solvent) as it is.
본 발명에 사용되는 상기 유기 용매는 N-치환 말레아민산의 탈수 폐환 반응에 의해 생성되는 물을 공비 증류를 통하여 계 밖으로 방출시킬 수 있도록, 물에 불용성이거나 불혼화성이며, 반응에 불활성이고 반응에 참여하지 않아야 한다.The organic solvent used in the present invention is insoluble or immiscible in water, inert to the reaction, and capable of releasing water generated by the dehydration ring closure reaction of N-substituted maleamic acid through the azeotropic distillation. Do not participate.
또한, 반응의 원활한 진행을 위해 끓는점이 최소 50 ℃ 이상이며, 생성된 N-치환 말레이미드의 안정성을 위해 끓는점이 170 ℃ 미만인 것이 적당하다. 본 반응에 적합한 유기 용매의 예로는 벤젠, 톨루엔, 크실렌, o-자일렌, 에틸벤젠, 이소프로필벤젠, 큐멘, 메시틸렌, tert-부틸벤젠, 슈도쿠멘(pseudocumene), 트리메틸헥산, 옥탄, 테트라클로로에탄, 노난, 클로로벤젠, 에틸시클로헥산, m-디클로로벤젠, sec-부틸벤젠, p-디클로로벤젠, 데칸, p-시멘, o-디클로로벤젠, 부틸벤젠, 데카하이드로나프탈렌, 테트라하이드로나프탈렌, 도데칸, 나프탈렌, 및 사이클로헥실벤젠 등이 있으며, 상기 유기 용매는, 단독으로 사용되거나 2 종 이상의 혼합물의 형태로 사용될 수 있다. In addition, it is suitable that the boiling point is at least 50 ° C. or higher for the smooth progress of the reaction, and the boiling point is lower than 170 ° C. for the stability of the resulting N-substituted maleimide. Examples of suitable organic solvents for this reaction include benzene, toluene, xylene, o-xylene, ethylbenzene, isopropylbenzene, cumene, mesitylene, tert-butylbenzene, pseudocumene, trimethylhexane, octane, tetra Chloroethane, nonane, chlorobenzene, ethylcyclohexane, m-dichlorobenzene, sec-butylbenzene, p-dichlorobenzene, decane, p-cymene, o-dichlorobenzene, butylbenzene, decahydronaphthalene, tetrahydronaphthalene, dode Cane, naphthalene, cyclohexylbenzene, and the like, and the organic solvent may be used alone or in the form of a mixture of two or more thereof.
상기 유기 용매의 사용량은, 특별히 제한되지 않으나, 반응을 원활히 실행하면서 경제적 조건을 만족시킨다는 점에서, 원료로 투입되는 1차 아민의 사용량의 약 1 ~ 20 배(중량기준), 보다 바람직하게는 약 2 ~ 10 배(중량기준)의 범위가 적당하다. 유기 용매의 사용량이 2 배 미만일 경우에는 반응계로부터 N-치환 말레아민산의 탈수 폐환 반응을 통해 생성되는 물의 효과적인 제거가 용이하지 않아 수율이 저하되는 문제가 있으며, 10 배를 초과하는 경우에는 합성된 N-치환 말레이미드 용액으로부터 유기 용매를 분리하는 과정에서 과량의 에너지가 소비되기 때문에 경제적인 관점에서 바람직하지 않다.The amount of the organic solvent to be used is not particularly limited. However, the amount of the organic solvent is about 1 to 20 times (by weight) more preferably about 1 to 20 times the amount of the primary amine to be used as a raw material, in order to satisfy the economic conditions while smoothly carrying out the reaction. The range of 2 to 10 times (by weight) is appropriate. If the amount of the organic solvent is less than 2 times, there is a problem in that the yield is not easy to effectively remove the water produced through the dehydration ring-closure reaction of the N-substituted maleamic acid from the reaction system, if the amount exceeds 10 times synthesized In the process of separating the organic solvent from the N-substituted maleimide solution, excessive energy is consumed, which is not preferable from an economic point of view.
또한, 상기 유기 용매는 환경적인 요소 및 N-치환 말레이미드의 용해도, 가격 및 취급 용이성 등을 고려하여 결정하여야 하며, 더욱이 반응 종료 후의 용이한 제거 및 재사용에 적합한 용매를 선택하여야 한다. 여기에서, 말레산 무수물과 1차 아민은, 같은 유기 용매로 용해되거나 혹은 다른 유기 용매로 용해될 수도 있으나, 같은 유기 용매에 용해되는 것이 바람직하다. In addition, the organic solvent should be determined in consideration of environmental factors and solubility, price and ease of handling of N-substituted maleimide, and moreover, a solvent suitable for easy removal and reuse after completion of the reaction should be selected. Here, maleic anhydride and primary amine may be dissolved in the same organic solvent or in another organic solvent, but are preferably dissolved in the same organic solvent.
또한, 말레산 무수물 또는 1차 아민을 유기 용매에 용해된 용액의 형태로 사용할 경우의 말레산 무수물 또는 1차 아민의 농도는, 말레산 무수물 또는 1차 아민을 용해할 수 있는 농도이면 특별히 제한되지 않는다. 구체적으로는, 말레산 무수물 100 g에 대하여, 유기 용매 0 내지 500 g, 보다 바람직하게는 10 내지 200 g 첨가·용해되는 것이 바람직하다. 또한, 1차 아민 100 g에 대하여, 유기 용매 0 내지 500 g, 보다 바람직하게는 5 내지 200 g 첨가·용해되는 것이 바람직하다.In addition, the concentration of maleic anhydride or primary amine in the case of using maleic anhydride or primary amine in the form of a solution dissolved in an organic solvent is not particularly limited as long as it can dissolve maleic anhydride or primary amine. Do not. Specifically, it is preferable that 0-500 g of organic solvents, more preferably 10-200 g are added and melt | dissolved with respect to 100 g of maleic anhydride. Moreover, it is preferable that 0-500 g of organic solvents, More preferably, 5-200 g are added and melt | dissolved with respect to 100 g of primary amines.
본 발명의 일 실시예에 있어서, 상기 1차 아민은 탄소수 1 ~ 20을 갖는 포화 또는 불포화알킬아민, 탄소수 5 ~ 20을 갖는 사이클로알킬아민, 탄소수 6 ~ 20을 갖는 사이클로알킬아민 또는 탄소수 6 ~ 20을 갖는 방향족알킬아민 중에서 선택된 1 종의 1차 아민을 사용할 수 있으며, 구체적으로는 메틸 아민, 에틸 아민, n-프로필 아민, 이소프로필 아민, n-부틸 아민, sec-부틸 아민, iso-부틸 아민, tert-부틸아민, n-헥실 아민, n-옥틸 아민, n-데실 아민, n-도데실 아민, 시클로 헥실 아민 및 아닐린으로 이루어진 군에서 선택된 1 종 이상을 사용할 수 있으며, 본 발명의 N-페닐 말레이미드를 합성하기 위해서 1차 아민으로서 아닐린을 사용할 수 있다.In one embodiment of the present invention, the primary amine is a saturated or unsaturated alkylamine having 1 to 20 carbon atoms, cycloalkylamine having 5 to 20 carbon atoms, cycloalkylamine having 6 to 20 carbon atoms or 6 to 20 carbon atoms One kind of primary amine selected from among aromatic alkylamines may be used, specifically, methyl amine, ethyl amine, n-propyl amine, isopropyl amine, n-butyl amine, sec-butyl amine, iso-butyl amine , at least one selected from the group consisting of tert-butylamine, n-hexyl amine, n-octyl amine, n-decyl amine, n-dodecyl amine, cyclohexyl amine and aniline can be used. Aniline can be used as the primary amine to synthesize phenyl maleimide.
본 발명에 있어서 말레산 무수물의 사용량은 N-치환 말레이미드류 합성시 사용되는 1차 아민에 대해 몰비 1.0 내지 1.3 의 양을 사용하는 것이 바람직하다. 말레산 무수물이 1.0 몰비 미만으로 사용되는 경우, 수율 저하 및 부산물 증가의 문제가 발생하며, 1.3 몰비 이상으로 사용하는 경우, N-치환 말레이미드 합성 후 미반응 말레산 무수물이 과량 잔류하게 되어 경제적인 면에서 바람직하지 않다.In the present invention, the amount of maleic anhydride is preferably used in an amount of 1.0 to 1.3 molar ratio relative to the primary amine used in the synthesis of N-substituted maleimides. When maleic anhydride is used at less than 1.0 molar ratio, problems of yield reduction and by-products increase. When the maleic anhydride is used at 1.3 molar ratio or higher, unreacted maleic anhydride remains excessive after N-substituted maleimide synthesis. It is not preferable in terms of.
한편, 종래 N-치환 말레이미드 합성 방법에서 사용되는 촉매의 대부분은 균일계인 액상의 촉매를 직접 사용하거나 담지체에 균일계 활성 성분을 담지한 담지 촉매를 사용하였다. 그러나 상기 균일계 액상 촉매를 사용하는 경우 합성 반응 종료 후 극성 차이에 의한 층분리를 통해 생성물과 촉매를 분리하는 과정에서 촉매의 손실이 발생할 수 있으며, 상기 담지 촉매를 사용하는 경우 N-치환 말레이미드를 합성하는 과정 중에 발생하는 부산물인 물에 의해 활성 성분의 손실이 발생하여 지속적으로 활성 성분의 손실 부분을 보충해야 할 필요가 있었으며, 상기 활성 성분의 보충 역시 담지 촉매를 분리 및 건조한 이후 가능한 바, 공정이 복잡하여 활성 성분의 보충이 용이하지 않은 문제가 있었다. On the other hand, most of the catalysts used in the conventional N-substituted maleimide synthesis method used a liquid catalyst which is a homogeneous system directly or a supported catalyst carrying a homogeneous active component in the carrier. However, in the case of using the homogeneous liquid catalyst, the loss of the catalyst may occur in the process of separating the product from the catalyst through layer separation due to the polarity difference after the completion of the synthesis reaction, and in the case of using the supported catalyst, N-substituted maleimide Loss of the active ingredient was generated by water, a by-product generated during the synthesis, and it was necessary to continuously replenish the lost part of the active ingredient, and the supplementation of the active ingredient was also possible after separating and drying the supported catalyst. There is a problem that the process is complicated and the supplementation of the active ingredient is not easy.
본 발명의 N-치환 말레이미드류 제조방법은 종래의 제조방법과 달리 균일계인 액상의 촉매 또는 담지 촉매가 아닌 불균일계 고체산 촉매를 이용하여 N-치환 말레이미드류를 합성하는 바, 상기 종래 발생되는 문제를 해결할 수 있는 것을 특징으로 한다. 한편, 본 발명에 있어서, 균일계란 N-치환 말레이미드류 합성 반응의 반응물과 촉매의 상태(phase)가 동일한 것을 의미하고, 불균일계란 반응물과 촉매의 상태가 상이한 것을 의미한다. Unlike the conventional manufacturing method, the N-substituted maleimide production method of the present invention synthesizes N-substituted maleimides using a heterogeneous solid acid catalyst rather than a homogeneous liquid catalyst or a supported catalyst. It is characterized by being able to solve the problem. In the present invention, the homogeneous system means that the reactants of the N-substituted maleimide synthesis reaction and the catalyst have the same phase, and the heterogeneous system means that the reactants and the catalyst have different states.
보다 구체적으로, 본 발명에서 사용하는 불균일계 고체산 촉매는 지르코늄 하이드로겐포스페이트(Zirconium(IV) hydrogenphosphate) 인 것을 특징으로 한다. More specifically, the heterogeneous solid acid catalyst used in the present invention is characterized in that the zirconium hydrogen phosphate (Zirconium (IV) hydrogenphosphate).
지르코늄 하이드로겐포스페이트 (Zirconium(IV) hydrogenphosphate, Zr(HPO4)2)는 층상형의 구조를 갖는 산성, 무기 양이온 교환 물질로서, 높은 열적 및 화학적 안정성, 고체 이온 전도도, 이온화 방사선에 대한 저항, 및 그들의 층 내에 다른 크기의 다른 타입의 분자를 도입하는 특성 등을 갖는다. 상기 지르코늄 하이드로겐포스페이트는 다양한 층간 공간 및 결정 구조를 갖는 다양한 상태로 존재할 수 있으며, 가장 널리 알려진 지르코늄 하이드로겐포스페이트는 Zr(HPO4)2 ·H2O 의 알파형 및 Zr(PO4)(H2PO4)·2H2O 의 감마형이다. 상기 지르코늄 하이드로겐포스페이트는 약물 전달, 촉매 작용, 나노복합체, 핵 폐기물 관리 또는 임상 투석기 등 다양한 분야에서 활용될 수 있다. Zirconium hydrogenphosphate (Zirconium (IV) hydrogenphosphate, Zr (HPO 4 ) 2 ) is an acidic, inorganic cation exchange material with a layered structure, with high thermal and chemical stability, solid ion conductivity, resistance to ionizing radiation, and To introduce different types of molecules of different sizes into their layers. The zirconium hydrogen phosphate may exist in a variety of states having a variety of interlayer space and crystal structure, the most widely known zirconium hydrogen phosphate is alpha type of Zr (HPO 4 ) 2 · H 2 O and Zr (PO 4 ) (H 2 PO 4 ) · 2H 2 O. The zirconium hydrogen phosphate may be utilized in various fields such as drug delivery, catalysis, nanocomposites, nuclear waste management or clinical dialysis machine.
본 발명의 경우 고체산 촉매로 사용되는 지르코늄 하이드로겐포스페이트는 상기 알파형 및 감마형의 결정성 구조가 아닌 비결정성 지르코늄 하이드로겐포스페이트로서, 수화도는 반응 조건에 의해 달라질 수 있으며, 하기 화학식 1로 표시될 수 있다. In the case of the present invention, the zirconium hydrogen phosphate used as the solid acid catalyst is an amorphous zirconium hydrogen phosphate rather than the crystalline structures of the alpha type and the gamma type, and the degree of hydration may vary depending on the reaction conditions. Can be displayed.
[화학식 1][Formula 1]
Zrx(HaPOb)c Zr x (H a PO b ) c
(상기 화학식 1에서, 0.5≤x≤1.5, 0≤a≤8, 0≤b≤8, 1≤c≤4 이다.)(In Formula 1, 0.5≤x≤1.5, 0≤a≤8, 0≤b≤8, 1≤c≤4.)
상기와 같이 본 발명의 N-치환 말레이미드류 제조방법은 N-치환 말레이미드류 합성 반응의 반응물과 상태가 상이한 불균일계 고체산 촉매를 이용하여 촉매의 손실 가능성이 최소화할 수 있으며, 고체산 촉매 중에서도 지르코늄 하이드로겐포스페이트를 이용함으로써, N-치환 말레이미드류 합성 수율이 높은 것을 특징으로 한다.As described above, the method for preparing N-substituted maleimide compounds of the present invention can minimize the possibility of loss of the catalyst by using a heterogeneous solid acid catalyst having a different state from the reactant of the N-substituted maleimide synthesis reaction. Among them, the yield of N-substituted maleimides is high by using zirconium hydrogen phosphate.
구체적으로, 본 발명의 촉매는 반응물과 상태가 다른 고체인 바, N-치환 말레이미드를 합성하는 과정 중에 발생하는 부산물인 물에 의해 활성 성분의 손실 및 합성 반응 완료 후의 층분리 과정에서 촉매의 손실이 발생할 염려가 없으며, 또한, 본 발명에서 사용하는 지르코늄 하이드로겐포스페이트는 구조적으로 매우 안정한 바, 물과의 반응성이 낮아 반응 도중 촉매의 보충 및 재생이 필수적으로 요구되지 않아 N-치환 말레이미드류 제조 공정 역시 단순화되는 효과가 있다. Specifically, the catalyst of the present invention is a solid in a state different from the reactants, and the loss of the active component by water, which is a by-product generated during the synthesis of N-substituted maleimide, and the loss of the catalyst in the phase separation process after completion of the synthesis reaction. The zirconium hydrogen phosphate used in the present invention is structurally very stable, and since the reactivity with water is low, it is not necessary to replenish and regenerate the catalyst during the reaction, thereby preparing N-substituted maleimides. The process also has the effect of being simplified.
또한, 본 발명의 지르코늄 하이드로겐포스페이트는 다른 고체산 촉매에 비해 N-치환 말레이미드류 합성 수율이 높으며, 구체적으로 지르코늄 하이드로겐포스페이트를 투입 반응 용매 대비 0.06 중량비 이상으로 첨가하는 경우, N-치환 말레이미드류 합성 수율을 70 % 이상이 되게 할 수 있다.In addition, the zirconium hydrogen phosphate of the present invention has a higher yield of N-substituted maleimide synthesis than other solid acid catalysts, and specifically, when zirconium hydrogen phosphate is added in an amount of 0.06 weight or more relative to the input reaction solvent, N-substituted male The yield of mids synthesis can be made 70% or more.
한편, 상기 본 발명의 불균일계 고체산 촉매는 공정 운전 및 비용 관점에서 적절한 양으로 투입하여야 하며, 구체적으로 투입 반응 용매에 대하여 0.01 내지 1.0 중량비, 보다 구체적으로는 0.05 내지 0.5의 중량비로 투입되는 것이 바람직하다.On the other hand, the heterogeneous solid acid catalyst of the present invention should be added in an appropriate amount from the viewpoint of process operation and cost, specifically, it is added in a weight ratio of 0.01 to 1.0 weight ratio, more specifically 0.05 to 0.5 with respect to the input reaction solvent. desirable.
상기 투입량이 0.01 중량비 미만일 경우 단위 시간당 전환되는 N-치환 말레아민산 비율이 낮아 총 반응 시간이 늘어나야 하는 문제점이 있으며, 1.0 중량비를 초과할 경우 중간 생성물인 N-치환 말레아민산 생성에 따른 반응중간 고형물 증가로 인한 교반이 원활하지 못할 수 있다.If the input amount is less than 0.01 weight ratio, there is a problem in that the total reaction time is low because the ratio of N-substituted maleamic acid converted per unit time is low, and if it exceeds 1.0 weight ratio, the reaction medium is generated according to the production of N-substituted maleamic acid as an intermediate product. Agitation due to increased solids may not be smooth.
또한 경우에 따라, 금속 함유 화합물이나 안정제를 반응계에 공존시켜서 반응시킬 수도 있다. 이 때 사용되는 금속 함유 화합물로는, 특별히 제한되지 않으나, 아연, 크롬, 팔라듐, 코발트, 니켈, 철 및 알루미늄으로 이루어진 군으로부터 선택된 적어도 1종의 금속산화물, 초산염, 말레산염, 석시네이트염(salt of succinic acid), 질산염(nitrate), 인산염, 염화물 및 황산염 등을 들 수 있다. 이 중, 특히 유효한 것은, 초산아연(zinc acetate)이다. 이들의 사용량은 원료인 말레산 무수물 및/또는 1차 아민에 대하여, 금속으로서 0.005 내지 0.5 몰% 이며, 바람직하게는 0.01 내지 0.1 몰% 이다.In some cases, the metal-containing compound and the stabilizer may be coexisted in the reaction system and reacted. The metal-containing compound used at this time is not particularly limited, but at least one metal oxide, acetate, maleate, succinate salt selected from the group consisting of zinc, chromium, palladium, cobalt, nickel, iron and aluminum. of succinic acid, nitrates, phosphates, chlorides and sulfates. Of these, zinc acetate is particularly effective. The amount of these used is 0.005 to 0.5 mol%, preferably 0.01 to 0.1 mol%, as a metal, based on maleic anhydride and / or primary amine as a raw material.
또한, 안정제로서, 메톡시벤조퀴논(Methoxybenzoquinone), p-메톡시페놀, 페노티아진, 하이드로퀴논, 알킬화 디페닐 아민류, 메틸렌블루, tert-부틸 카테콜, tert-부틸하이드로퀴논, 디메틸디치오 카바메이트아연, 디메틸디티오카바민산구리, 디부틸디티오카르바믹산구리, 살리실산구리, 티오디프로피온산 에스테르류, 메르캅토벤즈이미다졸, 트리페닐 포스파이트, 알킬 페놀류, 알킬 비스페놀류 등이 이용된다. 이것들 안정제의 효과는 탈수 폐환 이미드화 반응에 의해 생성된 N-치환 말레이미드를 해당 이미드화 반응의 고온 하에 있어서도 변질되지 않고 안정되게 존재하게 하는 역할을 한다. 그 첨가량은, 특별히 제한되지 않으나, 원료인 말레산 무수물 및/또는 1차 아민에 대하여 0.001 내지 0.5 몰% 를 사용할 수 있다. 여기에서, 이러한 첨가량이면, 상기 안정화 효과를 충분히 발휘할 수 있고, 또한, 제품 내에 혼입되는 문제도 회피할 수 있다.In addition, as a stabilizer, methoxybenzoquinone, p-methoxyphenol, phenothiazine, hydroquinone, alkylated diphenyl amines, methylene blue, tert-butyl catechol, tert-butylhydroquinone, dimethyldithiocarba Mate zinc, dimethyldithiocarbamate, copper dibutyldithiocarbamic acid, copper salicylate, thiodipropionic acid esters, mercaptobenzimidazole, triphenyl phosphite, alkyl phenols, alkyl bisphenols, and the like are used. The effect of these stabilizers plays a role of making the N-substituted maleimide produced by the dehydration ring closure imidization reaction stably exist without deterioration even at a high temperature of the imidization reaction. Although the addition amount is not specifically limited, 0.001 to 0.5 mol% can be used with respect to maleic anhydride and / or primary amine which are raw materials. Here, if it is such an addition amount, the said stabilizing effect can fully be exhibited and the problem mixed in a product can also be avoided.
본 발명의 N-치환 말레이미드류 제조방법에 있어서 단계 1)의 N-치환 말레이미드류를 합성 반응의 반응 온도는 일반적으로 50 내지 200 ℃ 이며, 보다 구체적으로는 100 내지 140 ℃ 가 바람직하다. 합성 반응 온도가 50 ℃ 미만일 경우에는 수율이 저하되는 문제가 발생하며, 200 ℃ 이상일 경우에는 부반응으로 합성된 N-치환 말레이미드류의 중합이 저해되어 합성된 N-치환 말레이미드류의 순도 및 수율이 저하되는 문제가 발생한다.In the method for producing N-substituted maleimide of the present invention, the reaction temperature of the N-substituted maleimide of step 1) is generally 50 to 200 ° C, more preferably 100 to 140 ° C. When the synthesis reaction temperature is less than 50 ℃, a problem that the yield is lowered, when the temperature is 200 ℃ or more, the polymerization of N-substituted maleimide synthesized by side reaction is inhibited, the purity and yield of the synthesized N-substituted maleimide This deterioration problem occurs.
본 발명에 있어 반응 압력에는 특별한 제한이 없으며, 감압, 상압 및 가압에서 광범위하게 선택될 수 있다. 반응은 용매의 종류, 원료의 투입량, 촉매량 및 반응 온도 등과 같은 조건에 따라 달라질 수 있으나 일반적으로 1 내지 16 시간 정도이며, 보다 바람직하게는 1 내지 10 시간 이내이다.There is no particular limitation on the reaction pressure in the present invention, and it can be selected in a wide range from reduced pressure, atmospheric pressure and pressure. The reaction may vary depending on conditions such as the type of solvent, the amount of raw materials, the amount of catalyst and the reaction temperature, but is generally about 1 to 16 hours, more preferably within 1 to 10 hours.
이러한 반응 조건이면, N-치환 말레아민산의 탈수 폐환 이미드화 반응이 효율적으로 진행하여, N-치환 말레이미드를 효율적으로 얻을 수 있다.Under such reaction conditions, the dehydration ring closure imidation reaction of the N-substituted maleamic acid proceeds efficiently, and the N-substituted maleimide can be efficiently obtained.
단계 2)Step 2)
본 발명의 일 실시예에 따른 상기 단계 2)는, 촉매를 재사용하기 위한 분리 및 회수 단계로서, N-치환 말레이미드류 포함하는 용액으로부터 촉매를 분리 및 회수하는 것을 특징으로 한다. Step 2) according to an embodiment of the present invention is a separation and recovery step for reusing the catalyst, characterized in that the catalyst is separated and recovered from a solution containing N-substituted maleimide.
균일계 촉매 또는 담지 촉매를 사용하는 종래의 제조방법은 1차적으로 N-치환 말레이미드류가 용해되어 있는 용액층을 촉매층으로부터 분리하여 층 분리를 하고, 2차적으로 세척 용매를 통한 생성물 내 잔존 촉매를 제거하고 불순물을 제거하는 과정을 통해 촉매를 분리 및 회수하였다. 그러나 이 경우, 균일계 촉매의 분리가 용이하지 않고, 담지 촉매 역시 담지체에서 활성 성분의 손실이 일어나고, 다량의 폐수가 발생하여 분리 및 회수 공정이 어렵고 복잡한 문제가 있었다. In the conventional production method using a homogeneous catalyst or a supported catalyst, a solution layer in which N-substituted maleimide is dissolved is first separated from the catalyst layer to separate layers, and secondly, a catalyst remaining in the product through a washing solvent. The catalyst was separated and recovered by removing and removing impurities. However, in this case, the separation of the homogeneous catalyst is not easy, and the supported catalyst also loses the active ingredient in the carrier, and a large amount of wastewater is generated, making the separation and recovery process difficult and complicated.
또한, N-치환 말레이미드류 합성 반응의 반응 온도에서와 같은 고온에서는 층 분리가 용이하지 않은 바, 층 분리를 위해 냉각 과정을 수행하고, 촉매 재사용을 위한 재가열 과정을 수행하였는 바, 상기 냉각 및 재가열에 다른 추가 에너지의 투입이 필요한 문제가 있었다. In addition, since the separation of the layers is not easy at high temperatures such as the reaction temperature of the N-substituted maleimide synthesis reaction, a cooling process is performed to separate the layers, and a reheating process is performed to reuse the catalyst. There was a problem in that other additional energy was required for reheating.
그러나, 본 발명의 N-치환 말레이미드류 제조방법에서 사용하는 촉매는 고체산 촉매로서, 구조적으로 또한 화학적으로 안정한 고체산인 지르코늄 하이드로겐포스페이트를 사용하는 바, 냉각 및 재가열 과정이 불필요하여 에너지의 추가 투입이 필요하지 않고, 생성물을 포함하는 용액상에서 생성물이 고형물로 석출되지 않는 최저의 온도에서부터 생성물을 포함하는 용액의 끊는점에 이르는 온도, 보다 구체적으로 70 내지 160 ℃ 의 고온에서도 단순 여과로 상기 촉매의 분리 및 회수가 가능한 바, 촉매의 분리 및 회수 공정이 단순화되는 효과가 있다. However, the catalyst used in the N-substituted maleimide production method of the present invention uses a zirconium hydrogen phosphate, which is a structural acid and a chemically stable solid acid as a solid acid catalyst, so that cooling and reheating processes are unnecessary, thereby adding energy. No input is required and the catalyst is filtered by simple filtration even at a temperature from the lowest temperature at which the product does not precipitate as a solid on the solution containing the product to the break point of the solution containing the product, more specifically at a high temperature of 70 to 160 ° C. Since separation and recovery of the catalyst are possible, there is an effect of simplifying the separation and recovery of the catalyst.
한편, 분리 및 회수된 촉매를 다음 주기의 반응에 재사용되는 경우에는 활성 성분의 손실 또는 불순물에 의한 활성 성분의 손상에 의해 촉매의 활성이 감소되어 반응 수율 역시 비례적으로 저하되는 것이 일반적이다. On the other hand, when the separated and recovered catalyst is reused in the next cycle of reaction, the activity of the catalyst is reduced due to the loss of the active ingredient or damage to the active ingredient by impurities, so that the reaction yield also generally decreases proportionally.
종래의 제조방법은 상기 촉매의 활성을 재생하기 위한 세척 또는 소성 공정에서 불순물을 세척하기 위해 사용할 수 있는 세척 용매는 종류의 제한이 있었으며, 단순 소성 공정을 통해서는 촉매의 재생이 불가하여 촉매를 교체해 주어야 하는 한계가 있었다. In the conventional manufacturing method, the washing solvent that can be used to wash the impurities in the washing or calcining process for regenerating the activity of the catalyst has a limitation, and the catalyst can not be regenerated through the simple calcining process. There was a limit to give.
그러나 본 발명의 경우에는 불균일계 고체산 촉매를 촉매로 사용하는 바, 상기 분리 및 회수된 촉매의 활성이 일부 감소하는 경우에는 종류의 제한없이 세척 용매를 통한 세척을 통해 촉매의 안정성을 유지하면서도 촉매의 재생이 가능하게 되었으며, 활성이 완전히 감소하여 촉매가 완전 비활성되는 경우에는 소성 과정을 통해 촉매를 용이하게 재생할 수 있는 특징이 있다. However, in the case of the present invention, a heterogeneous solid acid catalyst is used as a catalyst, and when the activity of the separated and recovered catalyst is partially reduced, the catalyst is maintained while the stability of the catalyst is maintained by washing with a washing solvent without any kind. It is possible to regenerate, and when the catalyst is completely inactive because the activity is completely reduced, there is a characteristic that the catalyst can be easily regenerated through a calcination process.
상기 세척 공정에서 사용될 수 있는 세척 용매는 극성 용매를 제한없이 사용할 수 있으며, 구체적으로, 물, 아세톤, 설폭사이드 계열 및 산소를 포함하는 고리형 극성 유기 용매로 이루어진 군에서 선택된 1 종 이상의 극성 용매를 사용할 수 있다.The washing solvent that can be used in the washing process can be used without limitation, a polar solvent, specifically, at least one polar solvent selected from the group consisting of water, acetone, sulfoxide series and cyclic polar organic solvent containing oxygen Can be used.
본 발명의 N-치환 말레이미드류 제조방법은 이렇게 분리 및 회수, 재생 과정을 거친 촉매를 유동성 확보를 위해 N-치환 말레이미드류를 합성 반응에 사용되는 것과 동일한 종류의 유기 용매와 혼합하여 반응물 보관 탱크 또는 합성 반응기로 이송하여 재사용할 수 있다. In the method for preparing N-substituted maleimide compounds of the present invention, the reactant is stored by mixing the catalyst which has been separated, recovered and regenerated with N-substituted maleimide compounds mixed with an organic solvent of the same type as used in the synthesis reaction to ensure fluidity. It can be transferred to a tank or synthesis reactor for reuse.
한편, 세척 용매의 재사용과 관련하여, 종래의 인산 성분(활성 성분)을 담지한 담지 촉매의 경우에는 세척 용매에 불순물과 같이 인산 성분이 용해되어 나와 세척 용매를 재순환하기 위해 증류 공정에 투입 시, 고온에서 인산 성분에 의한 증류 공정 장치의 부식이 우려되어 재사용이 불가하였으나, 본 발명의 N-치환 말레이미드류 제조방법은 촉매로서 고체산 촉매를 이용하는 바, 본 발명의 세척 용매 역시 증류 공정으로 이송되어 재사용될 수 있는 부수적인 이점이 있다.On the other hand, with respect to the reuse of the washing solvent, in the case of a supported catalyst carrying a conventional phosphoric acid component (active ingredient) when the phosphoric acid component is dissolved in the washing solvent, such as impurities in the washing solvent, when put into the distillation process to recycle the washing solvent, Reuse of the distillation process by the phosphoric acid component at high temperature is not possible to reuse, but the N-substituted maleimide production method of the present invention uses a solid acid catalyst as a catalyst, so the washing solvent of the present invention is also transferred to the distillation process. There is an additional advantage that can be reused.
상기와 같이 본 발명의 N-치환 말레이미드류 제조방법은 촉매로서, 불균일계인 지르코늄 하이드로겐포스페이트(Zirconium(IV) hydrogenphosphate) 고체산 촉매를 사용하는 바, 촉매의 손실을 최소화할 수 있고, 종래의 제조방법에서 발생하던 촉매를 분리하기 위해 사용할 수 있는 용매의 제한, 잔존 촉매 및 불순물의 제거 공정에서의 다량의 폐수 발생 및 냉각과 재가열 수행에 따른 에너지 투입이 필요하는 등 촉매의 분리 및 회수, 및 재생 공정이 복잡한 문제를 해결할 수 있다. As described above, the method for preparing N-substituted maleimide compounds of the present invention uses a heterogeneous zirconium hydrogenphosphate solid acid catalyst as a catalyst, thereby minimizing the loss of the catalyst. Separation and recovery of catalysts, including the limitation of solvents that can be used to separate catalysts generated in the production process, the generation of large amounts of waste water in the removal of residual catalysts and impurities, and the need for energy input for cooling and reheating, and The regeneration process can solve complex problems.
실시예Example 1 One
교반기, 온도계, 물 분리기 및 냉각기를 가진 100 mL 반응기에 용매로서 o-자일렌 20 ml, 아닐린 2.5 g과 80 ℃에서 용융된 무수 말레산 2.9 g, 지르코늄 하이드로겐포스페이트(Zirconium(IV) hydrogenphosphate) 고체산 촉매 1.249 g 을 첨가한 후, 반응계의 온도를 125 ℃까지 승온하여 N-페닐 말레이미드를 합성하였다. 반응 중 탈수 폐환 반응으로 생성되는 물은 공비증류를 통해 o-자일렌과 함께 반응계 밖으로 제거하였다. 반응계로부터 제거된 o-자일렌은 반응계 내부로 재투여하면서 합성 반응을 4 시간 동안 추가로 실시하였다. 합성 반응 종료 후 여과를 통해 담지 촉매를 분리하고 N-페닐 말레이미드 o-자일렌 용액을 회수하였다. 회수된 N-페닐 말레이미드 o-자일렌 용액을 10 mmHg 감압 하에서 80 ℃까지 승온하여 o-자일렌을 감압 증류를 통해 제거하여 N-페닐 말레이미드를 제조하였다.In a 100 mL reactor with a stirrer, a thermometer, a water separator and a cooler, 20 ml of o-xylene, 2.5 g of aniline and 2.9 g of maleic anhydride, zirconium (H) hydrogenphosphate solid dissolved at 80 ° C as a solvent After the addition of 1.249 g of acid catalyst, the temperature of the reaction system was raised to 125 ° C to synthesize N-phenyl maleimide. Water generated by the dehydration ring closure reaction was removed out of the reaction system with o-xylene through azeotropic distillation. The o-xylene removed from the reaction system was further administered for 4 hours while being re-administered into the reaction system. After completion of the synthesis reaction, the supported catalyst was separated by filtration to recover an N-phenyl maleimide o-xylene solution. The recovered N-phenyl maleimide o-xylene solution was heated to 80 ° C. under 10 mmHg reduced pressure, and o-xylene was removed by distillation under reduced pressure to prepare N-phenyl maleimide.
실시예Example 2 2
상기 실시예 1에서 지르코늄 하이드로겐포스페이트(Zirconium(IV) hydrogenphosphate) 고체산 촉매를 0.8 g 을 첨가한 것을 제외하고는 실시예 1 과 동일한 방법으로 N-페닐 말레이미드를 제조하였다. N-phenyl maleimide was prepared in the same manner as in Example 1, except that 0.8 g of the zirconium (IV) hydrogenphosphate solid acid catalyst was added in Example 1.
실시예Example 3 3
상기 실시예 1에서 지르코늄 하이드로겐포스페이트(Zirconium(IV) hydrogenphosphate) 고체산 촉매를 0.6 g 을 첨가한 것을 제외하고는 실시예 1 과 동일한 방법으로 N-페닐 말레이미드를 제조하였다. N-phenyl maleimide was prepared in the same manner as in Example 1 except that 0.6 g of a Zirconium (IV) hydrogenphosphate solid acid catalyst was added in Example 1.
비교예Comparative example 1 내지 10 1 to 10
상기 실시예 1에서 지르코늄 하이드로겐포스페이트(Zirconium(IV) hydrogenphosphate) 고체산 촉매 대신 하기 표 1에 기재된 고체산 촉매를 사용한 것을 제외하고는 실시예 1 과 동일한 방법으로 N-페닐 말레이미드를 제조하였다. N-phenyl maleimide was prepared in the same manner as in Example 1, except that the solid acid catalyst described in Table 1 was used instead of the zirconium hydrogen phosphate solid acid catalyst in Example 1.
실험예Experimental Example
상기 실시예 1 및 비교예 1 내지 10의 N-페닐 말레이미드 합성 반응 종료 후 생성 용액을 채취하여 Liquid chromatography (LC)로 생성물을 분석하여 N-페닐 말레이미드(PMI)의 수율, ANL(아닐린) 기준 Selectivity, 불순물로서 APSI(2-Anilino-N-Phenyl Succinimide) 및 기타 성분(others)의 함량을 측정하여 하기 표 1에 나타내었다. After the completion of the N-phenyl maleimide synthesis reaction of Example 1 and Comparative Examples 1 to 10, the resulting solution was collected and analyzed by liquid chromatography (LC) to yield N-phenyl maleimide (PMI), ANL (aniline). Standard selectivity, and the content of APSI (2-Anilino-N-Phenyl Succinimide) and other ingredients (others) as impurities are shown in Table 1 below.
* PMI 수율 = (아닐린 전환율) x (생성물 상의 PMI 선택도)* PMI yield = (aniline conversion) x (PMI selectivity on product)
* ANL 기준 Selectivity = (생성물 상의 PMI 몰수)/(전환된 ANL 몰수)* Selectivity based on ANL = (moles of PMI on product) / (moles of converted ANL)
반응 조건Reaction conditions PMI수율(%)PMI yield (%) ANL 기준 Selectivity(몰 %)Selectivity based on ANL (% molar) APSI(몰 %)APSI (mol%) Others(몰 %)Others (% mall)
촉매catalyst 계열line
실시예 1Example 1 ZrP (Zirconium phosphate)ZrP (Zirconium phosphate) Phosphate 계열Phosphate Series 77.277.2 77.277.2 2.92.9 19.919.9
실시예 2Example 2 38.938.9 38.938.9 0.70.7 58.6358.63
실시예 3Example 3 15.815.8 15.815.8 0.360.36 83.8583.85
비교예 1Comparative Example 1 SnPO (tin phosphate)SnPO (tin phosphate) 7.407.40 7.427.42 0.670.67 91.9291.92
비교예 2Comparative Example 2 BPO4 (Boron phosphate)BPO 4 (Boron phosphate) 0.040.04 0.040.04 0.000.00 99.9699.96
비교예 3Comparative Example 3 FePO4 FePO 4 0.020.02 0.020.02 0.280.28 99.7099.70
비교예 4Comparative Example 4 B-Zeolite (cp811c-300)B-Zeolite (cp811c-300) Zeolite 계열Zeolite series 3.233.23 3.233.23 0.250.25 96.5296.52
비교예 5Comparative Example 5 Y-Zeolite (CBA300)Y-Zeolite (CBA300) 1.751.75 1.881.88 0.510.51 97.6197.61
비교예 6Comparative Example 6 Y-Zeolite (CBA500)Y-Zeolite (CBA500) 1.521.52 1.551.55 1.421.42 97.0497.04
비교예 7Comparative Example 7 ZSM-5ZSM-5 0.690.69 0.690.69 0.890.89 98.4298.42
비교예 8Comparative Example 8 CaSO4 CaSO 4 Sulfate 계열Sulfate Series 0.070.07 0.070.07 0.200.20 99.7399.73
비교예 9Comparative Example 9 MnSO4 MnSO 4 0.020.02 0.020.02 0.050.05 99.9399.93
비교예 10Comparative Example 10 Amberlite IR120H (acidic cation exchange resin)Amberlite IR120H (acidic cation exchange resin) 이온교환 수지 계열Ion Exchange Resin Series 4.514.51 4.514.51 0.000.00 95.4995.49
상기 표 1에서 보는 바와 같이, 본 발명의 실시예 1 내지 3과 비교예 1 내지 10을 비교하면, 비교예 1 내지 10은 실시예 1 내지 3과 동일하게 고체산 촉매 또는 그 중 Phosphate 계열의 촉매를 사용한다고 하더라도 N-페닐 말레이미드(PMI) 수율 또는 ANL(아닐린) 기준 Selectivity 가 높지 않은 것을 확인할 수 있다. As shown in Table 1, when comparing Examples 1 to 3 and Comparative Examples 1 to 10 of the present invention, Comparative Examples 1 to 10 are the same as Examples 1 to 3 solid acid catalyst or a catalyst of the Phosphate series Even if using the N-phenyl maleimide (PMI) yield or ANL (aniline) based selectivity is not confirmed that high.
이에 반해 지르코늄 하이드로겐포스페이트 고체산 촉매를 이용한 실시예 1 내지 3은 N-페닐 말레이미드(PMI) 수율 및 ANL(아닐린) 기준 Selectivity 가 상당히 우수한 것을 확인할 수 있었다. 구체적으로 비교예의 촉매 첨가량과 동일한 양을 첨가한 실시예 1은 비교예 대비 합성 효율이 현저히 우수하였으며, 비교예의 촉매 첨가량의 약 50 내지 60 중량% 만을 첨가한 실시예 2 및 3의 경우에도 여전히 비교예 대비 합성 효율이 우수한 것을 확인할 수 있었다. On the contrary, Examples 1 to 3 using the zirconium hydrogen phosphate solid acid catalyst showed that the N-phenyl maleimide (PMI) yield and the ANL (aniline) standard Selectivity were excellent. Specifically, Example 1, in which the same amount as the catalyst added in Comparative Example, was added, the synthesis efficiency was remarkably superior to Comparative Example, and in the case of Examples 2 and 3 in which only about 50 to 60 wt% of the catalyst added in the Comparative Example was added, It was confirmed that the synthesis efficiency is superior to the example.
이로써, N-치환 말레이미드류 합성 반응의 촉매로서 지르코늄 하이드로겐포스페이트(Zirconium(IV) hydrogenphosphate) 고체산 촉매를 이용하는 경우, 촉매의 손실을 최소화하고, 촉매의 분리 및 회수 공정을 단순화시키며, 분리 및 회수된 촉매의 활성이 감소된 경우, 세척 또는 소성을 통해 촉매의 완전한 재생이 가능하고, 상기 세척 용매의 선택에 제한이 없는 공정이 단순한 효과가 있으며, 나아가 합성 수율도 우수한 효과가 있음을 알 수 있었다. Thus, when using a zirconium (IV) hydrogenphosphate solid acid catalyst as a catalyst for the N-substituted maleimide synthesis reaction, the loss of the catalyst is minimized, the catalyst separation and recovery process is simplified, and the separation and When the activity of the recovered catalyst is reduced, the catalyst can be completely regenerated by washing or calcining, and the process without restriction on the selection of the washing solvent has a simple effect, and furthermore, the synthesis yield is excellent. there was.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Claims (11)

  1. N-치환 말레이미드류 제조방법에 있어서, In the manufacturing method of N-substituted maleimide,
    1) 유기 용매 및 촉매 존재 하에 말레산 무수물 및 1차 아민을 투입하여 N-치환 말레이미드류를 합성하는 단계; 및1) adding maleic anhydride and a primary amine in the presence of an organic solvent and a catalyst to synthesize N-substituted maleimides; And
    2) 상기 N-치환 말레이미드류 포함하는 용액으로부터 촉매를 분리하는 단계를 포함하고,2) separating the catalyst from the solution containing the N-substituted maleimide,
    상기 촉매는 지르코늄 하이드로겐포스페이트(Zirconium(IV) hydrogenphosphate) 고체산 촉매인 것을 특징으로 하는 N-치환 말레이미드류 제조방법.The catalyst is a zirconium hydrogen phosphate (Zirconium (IV) hydrogenphosphate) solid acid catalyst, characterized in that the N-substituted maleimide production method.
  2. 제1항에 있어서, The method of claim 1,
    상기 지르코늄 하이드로겐포스페이트는 비결정성인 것을 특징으로 하는 N-치환 말레이미드류 제조방법.The zirconium hydrogen phosphate is N-substituted maleimide production method, characterized in that the amorphous.
  3. 제1항에 있어서, The method of claim 1,
    상기 지르코늄 하이드로겐포스페이트는 하기 화학식 1로 표시되는 것을 특징으로 하는 N-치환 말레이미드류 제조방법.The zirconium hydrogen phosphate is N-substituted maleimide production method characterized in that represented by the formula (1).
    [화학식 1][Formula 1]
    Zrx(HaPOb)c Zr x (H a PO b ) c
    (상기 화학식 1에서, 0.5≤x≤1.5, 0≤a≤8, 0≤b≤8, 1≤c≤4 이다.)(In Formula 1, 0.5≤x≤1.5, 0≤a≤8, 0≤b≤8, 1≤c≤4.)
  4. 제1항에 있어서, The method of claim 1,
    상기 촉매는 투입 반응 용매에 대하여 0.01 내지 1.0 의 중량비로 첨가하는 것을 특징으로 하는 N-치환 말레이미드류 제조방법.The catalyst is N-substituted maleimide production method characterized in that the addition of a weight ratio of 0.01 to 1.0 with respect to the input reaction solvent.
  5. 제1항에 있어서, The method of claim 1,
    상기 촉매의 분리는 70 내지 160 ℃의 고온 여과 단계에 의해 수행되는 것을 특징으로 하는 N-치환 말레이미드류 제조방법.Separation of the catalyst is N-substituted maleimide production method, characterized in that carried out by high temperature filtration step of 70 to 160 ℃.
  6. 제1항에 있어서, The method of claim 1,
    상기 분리된 촉매를 세척 또는 소성하여 촉매를 재생시키는 단계를 더 포함하는 것을 특징으로 하는 N-치환 말레이미드류 제조방법.N-substituted maleimide production method further comprising the step of regenerating the catalyst by washing or calcining the separated catalyst.
  7. 제6항에 있어서, The method of claim 6,
    상기 촉매의 세척은 물, 아세톤, 설폭사이드 계열 및 산소를 포함하는 고리형 극성 유기 용매로 이루어진 군에서 선택된 1 종 이상의 극성 용매를 사용하는 것을 특징으로 하는 N-치환 말레이미드류 제조방법.The washing of the catalyst is a method for producing N-substituted maleimide, characterized in that using at least one polar solvent selected from the group consisting of cyclic polar organic solvent containing water, acetone, sulfoxide series and oxygen.
  8. 제6항에 있어서, The method of claim 6,
    상기 재생된 촉매를 재사용하는 것을 특징으로 하는 N-치환 말레이미드류 제조방법.N-substituted maleimide production method, characterized in that for reuse the regenerated catalyst.
  9. 제1항에 있어서, The method of claim 1,
    상기 유기 용매는 벤젠, 톨루엔, 크실렌, o-자일렌, 에틸벤젠, 이소프로필벤젠, 큐멘, 메시틸렌, tert-부틸벤젠, 슈도쿠멘(pseudocumene), 트리메틸헥산, 옥탄, 테트라클로로에탄, 노난, 클로로벤젠, 에틸시클로헥산, m-디클로로벤젠, sec-부틸벤젠, p-디클로로벤젠, 데칸, p-시멘, o-디클로로벤젠, 부틸벤젠, 데카하이드로나프탈렌, 테트라하이드로나프탈렌, 도데칸, 나프탈렌 및 사이클로헥실벤젠으로 이루어진 군에서 선택된 1 종 이상인 특징으로 하는 N-치환 말레이미드류 제조방법.The organic solvent is benzene, toluene, xylene, o-xylene, ethylbenzene, isopropylbenzene, cumene, mesitylene, tert-butylbenzene, pseudocumene, trimethylhexane, octane, tetrachloroethane, nonane, Chlorobenzene, ethylcyclohexane, m-dichlorobenzene, sec-butylbenzene, p-dichlorobenzene, decane, p-cymene, o-dichlorobenzene, butylbenzene, decahydronaphthalene, tetrahydronaphthalene, dodecane, naphthalene and cyclo N-substituted maleimide production method characterized in that at least one member selected from the group consisting of hexylbenzene.
  10. 제1항에 있어서, The method of claim 1,
    상기 1차 아민은 메틸 아민, 에틸 아민, n-프로필 아민, 이소프로필 아민, n-부틸 아민, sec-부틸 아민, iso-부틸 아민, tert-부틸아민, n-헥실 아민, n-옥틸 아민, n-데실 아민, n-도데실 아민, 시클로헥실 아민 및 아닐린으로 이루어진 군에서 선택된 1 종 이상인 특징으로 하는 N-치환 말레이미드류 제조방법.The primary amines are methyl amine, ethyl amine, n-propyl amine, isopropyl amine, n-butyl amine, sec-butyl amine, iso-butyl amine, tert-butylamine, n-hexyl amine, n-octyl amine, N-substituted maleimide production method characterized in that at least one member selected from the group consisting of n-decyl amine, n-dodecyl amine, cyclohexyl amine and aniline.
  11. 제1항에 있어서, The method of claim 1,
    상기 N-치환 말레이미드류는 N-메틸 말레이미드, N-에틸 말레이미드, N-헥실 말레이미드, N-옥틸 말레이미드, N-도데실 말레이미드와 같은 N-알킬 말레이미드; N-벤질말레이미드; N-사이클로헥실 말레이미드와 같은 N-사이클로알킬 말레이미드; N-페닐 말레이미드; 및 N-니트로페닐 말레이미드, N-메톡시페닐 말레이미드, N-메틸페닐 말레이미드, N-카르복시페닐 말레이미드, N-하이드록시페닐 말레이미드, N-클로로페닐 말레이미드, N-디메틸페닐 말레이미드, N-디클로로페닐 말레이미드, N-브로모페닐 말레이미드, N-디브로모페닐 말레이미드, N-트리클로로페닐 말레이미드, N-트리브로모페닐 말레이미드와 같은 니트로기, 알콕시기, 알킬기, 카복실기, 하이드록실기, 할로겐 원자가 페닐기에 치환된 N-치환 페닐 말레이미드로 이루어진 군에서 선택된 1 종 이상인 특징으로 하는 N-치환 말레이미드류 제조방법.The N-substituted maleimides include N-alkyl maleimides such as N-methyl maleimide, N-ethyl maleimide, N-hexyl maleimide, N-octyl maleimide, and N-dodecyl maleimide; N-benzylmaleimide; N-cycloalkyl maleimide, such as N-cyclohexyl maleimide; N-phenyl maleimide; And N-nitrophenyl maleimide, N-methoxyphenyl maleimide, N-methylphenyl maleimide, N-carboxyphenyl maleimide, N-hydroxyphenyl maleimide, N-chlorophenyl maleimide, N-dimethylphenyl maleimide Nitro groups such as N-dichlorophenyl maleimide, N-bromophenyl maleimide, N-dibromophenyl maleimide, N-trichlorophenyl maleimide, N-tribromophenyl maleimide, alkoxy groups, alkyl groups N-substituted maleimide production method, characterized in that at least one member selected from the group consisting of a carboxyl group, a hydroxyl group, a halogen atom is substituted with a phenyl group N-substituted phenyl maleimide.
PCT/KR2017/012499 2016-12-28 2017-11-06 Method for producing n-substituted maleimide using solid acid catalyst WO2018124453A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/091,475 US10487052B2 (en) 2016-12-28 2017-11-06 Synthesis method of N-substituted maleimide using solid acid catalysts
CN201780024748.7A CN109071432B (en) 2016-12-28 2017-11-06 Synthesis method of N-substituted maleimide by using solid acid catalyst
JP2019503184A JP6697124B2 (en) 2016-12-28 2017-11-06 Method for producing N-substituted maleimide using solid acid catalyst
EP17887093.7A EP3421451B1 (en) 2016-12-28 2017-11-06 Method for producing n-substituted maleimide using solid acid catalyst

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160181021 2016-12-28
KR10-2016-0181021 2016-12-28
KR10-2017-0133529 2017-10-13
KR1020170133529A KR102175831B1 (en) 2016-12-28 2017-10-13 Synthesis method of n-substituted maleimide using solid acid catalysts

Publications (1)

Publication Number Publication Date
WO2018124453A1 true WO2018124453A1 (en) 2018-07-05

Family

ID=62711008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012499 WO2018124453A1 (en) 2016-12-28 2017-11-06 Method for producing n-substituted maleimide using solid acid catalyst

Country Status (1)

Country Link
WO (1) WO2018124453A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3578544A4 (en) * 2017-12-21 2019-12-11 Lg Chem, Ltd. N-substituted maleimide purification method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0213933A2 (en) * 1985-08-28 1987-03-11 Nippon Shokubai Co., Ltd. Maleimide manufacture
US4786738A (en) * 1984-06-18 1988-11-22 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for production of maleimides
KR20090054494A (en) * 2007-11-27 2009-06-01 주식회사 엘지화학 Method for production of n-substituted maleimides
KR20090069016A (en) * 2007-12-24 2009-06-29 금호석유화학 주식회사 Method for preparation of the n-substitution maleimide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786738A (en) * 1984-06-18 1988-11-22 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for production of maleimides
EP0213933A2 (en) * 1985-08-28 1987-03-11 Nippon Shokubai Co., Ltd. Maleimide manufacture
KR20090054494A (en) * 2007-11-27 2009-06-01 주식회사 엘지화학 Method for production of n-substituted maleimides
KR20090069016A (en) * 2007-12-24 2009-06-29 금호석유화학 주식회사 Method for preparation of the n-substitution maleimide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAMIYA, Y. ET AL.: "Zirconium Phosphate with a High Surface Area as a Water-tolerant Solid Acid", CATALYSIS LETTERS, vol. 94, no. 1- 2, April 2004 (2004-04-01), pages 45 - 47, XP002456899 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3578544A4 (en) * 2017-12-21 2019-12-11 Lg Chem, Ltd. N-substituted maleimide purification method
US10899708B2 (en) 2017-12-21 2021-01-26 Lg Chem, Ltd. Method for purifying n-substituted maleimide

Similar Documents

Publication Publication Date Title
KR102175831B1 (en) Synthesis method of n-substituted maleimide using solid acid catalysts
WO2018124453A1 (en) Method for producing n-substituted maleimide using solid acid catalyst
KR950002152B1 (en) Method of producting maleimides
WO2019124674A1 (en) N-substituted maleimide purification method
WO2019022426A1 (en) Method for preparing n-substituted maleimide using photocatalyst
KR102347980B1 (en) Method for recycling catalysts for preparing n-substituted maleimide
WO2018080025A1 (en) Method for preparing butadiene with excellent catalyst reproducibility
KR910003006B1 (en) Process for the preparation of maleimide
WO2021054607A1 (en) Method for decomposing phenolic by-product
WO2018097690A1 (en) Removal unit for methanol and acetone and system comprising same for preparing phenol and bisphenol a
KR102275849B1 (en) Method for preparing imide compounds
US6630595B2 (en) Method for producing maleimides
SK287102B6 (en) Method of preparation of maleimides by thermal cyclization of maleamic acids
WO2016105107A2 (en) Efficient method for producing and purifying anhydrous sugar alcohol
WO2021096075A1 (en) Method for preparing acrylonitrile dimers
KR102574282B1 (en) Method for purifying n-substituted maleimide
KR20190094030A (en) Method for preparing imide compounds
JPS6263562A (en) Production of maleimide
KR102450746B1 (en) Method for purifying n-substituted maleimide
WO2022092484A1 (en) Method for preparation of acrylonitrile dimer
KR102111638B1 (en) Method for purifying n-substituted maleimide
WO2021118010A1 (en) Method for preparing acrylonitrile dimer
JPS6335560A (en) Production of maleimide compound
JPH0611755B2 (en) Method for producing maleimides
WO2015050292A1 (en) Method for preparing carbonate by using organometallic compound

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017887093

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019503184

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017887093

Country of ref document: EP

Effective date: 20180926

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE