WO2018124310A1 - Image formation device - Google Patents

Image formation device Download PDF

Info

Publication number
WO2018124310A1
WO2018124310A1 PCT/JP2017/047419 JP2017047419W WO2018124310A1 WO 2018124310 A1 WO2018124310 A1 WO 2018124310A1 JP 2017047419 W JP2017047419 W JP 2017047419W WO 2018124310 A1 WO2018124310 A1 WO 2018124310A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller
potential difference
toner
developing
developer
Prior art date
Application number
PCT/JP2017/047419
Other languages
French (fr)
Japanese (ja)
Inventor
藤原 基裕
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2018124310A1 publication Critical patent/WO2018124310A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/10Apparatus for electrographic processes using a charge pattern for developing using a liquid developer

Definitions

  • the present invention relates to an image forming apparatus that forms an image using a liquid developer containing toner and a carrier liquid.
  • a configuration is known in which image formation is performed using a liquid developer in which toner is dispersed in a carrier liquid.
  • a configuration is known in which a liquid developer stored in a developer storage tank is adsorbed on a developing roller by an electrode, and an electrostatic image formed on a photoconductor is developed with toner in the liquid developer adsorbed on the developing roller. (JP-A-10-28295).
  • a developing roller having a compression member disposed opposite to the developing roller, and applying an electric field between the compressing member and the developing roller to compress the toner in the liquid developer to the developing roller side by the electric field
  • a configuration of a cleaning roller that contacts a toner and cleans the developer on the developing roller by an electric field Japanese Patent Laid-Open No. 2007-147976.
  • a developer carrying member that carries and rotates a liquid developer containing toner and a carrier liquid and develops an electrostatic latent image carried on the image carrying member, and the developer carrying member.
  • a recovery roller that recovers the toner remaining on the developer carrier by forming a potential difference between the developer carrier and a potential difference between the developer carrier and the recovery roller.
  • a developing device including a potential difference forming unit to be formed and a switching unit that switches a set value of a potential difference between the developer carrying member and the collecting roller during an image forming operation.
  • the present invention even if the state of the developer on the developing roller changes, it is possible to reduce the deterioration of the cleaning property by the cleaning roller.
  • FIG. 1 is a schematic sectional view of an image forming apparatus according to the first embodiment.
  • FIG. 2 is a schematic sectional view of the image forming unit.
  • FIG. 3 is a schematic sectional view of the developing device.
  • FIG. 4 is a conceptual diagram of film formation on the developing roller of the film formation electrode.
  • FIG. 5 shows the case where the compression state of the toner layer formed through the gap between the developing roller and the squeezing roller is appropriate, (b) shows the case where the compression is excessive, and (c) shows the case where the compression is the same. It is a schematic diagram which respectively shows the case of a shortage.
  • FIG. 6 is a diagram showing cleaning characteristics with respect to development cleaning contrast.
  • FIG. 7A shows the behavior of the toner at the contact portion between the developing cleaning roller and the cleaning blade when the toner layer is compressed properly and FIG. 7B shows the case where the toner layer is excessively compressed. It is a schematic diagram.
  • FIG. 8 is a diagram showing the cleaning characteristics with respect to the development cleaning contrast when the compressed state of the toner layer is good and when the toner layer is excessively compressed.
  • FIG. 9 is a schematic diagram showing the electric field applied to the toner in the gap between the developing roller and the squeezing roller.
  • FIG. 10 is a graph showing the relationship between the conductivity of the liquid developer and the development cleaning contrast.
  • FIG. 11 is a control block diagram of the image forming apparatus according to the first embodiment.
  • FIG. 12 is a flowchart of control for determining a recovery voltage according to the first embodiment.
  • FIG. 13 is a control block diagram of the image forming apparatus according to the second embodiment.
  • FIG. 14 is a control block diagram of the image forming apparatus according to the third embodiment.
  • FIG. 15 is a control block diagram of the image forming apparatus according to the fourth embodiment.
  • an image forming apparatus 100 includes four image forming units 1Y, 1M, 1M, 4M provided corresponding to four colors of yellow (Y), magenta (M), cyan (C), and black (K).
  • An electrophotographic full-color printer having 1C and 1K.
  • the image forming units 1Y, 1M, 1C, and 1Bk are tandem type arranged along the rotation direction of the intermediate transfer belt 70 described later.
  • the image forming apparatus 100 forms a toner image on the recording material P in accordance with an image signal from an external device that is communicably connected to the image forming apparatus main body.
  • the recording material include sheet materials such as paper, plastic film, and cloth.
  • Each of the image forming units 1Y, 1M, 1C, and 1K forms a toner image of each color on the photoreceptors 20Y, 20M, 20C, and 20K as image carriers using a liquid developer containing toner and a carrier liquid. To do. A detailed configuration of the image forming unit will be described later.
  • the intermediate transfer belt 70 as an intermediate transfer member is an endless belt stretched around a driving roller 82, a driven roller 85, and a secondary transfer inner roller 86, and the photoreceptors 20Y, 20M, 20C, and 20K, outside the secondary transfer. It is driven to rotate while contacting the roller 81.
  • Primary transfer rollers 61Y, 61M, 61C, and 61K are disposed at positions facing the photoconductors 20Y, 20M, 20C, and 20K with the intermediate transfer belt 70 interposed therebetween, and primary transfer portions T1Y, T1M, T1C, and T1K are formed. is doing.
  • each primary transfer portion T1Y, T1M, T1C, T1K four color toner images are sequentially transferred onto the intermediate transfer belt 70 from the respective photoreceptors 20Y, 20M, 20C, 20K, and transferred onto the intermediate transfer belt 70.
  • a full-color toner image is formed. For example, only a single color toner image such as black can be formed on the intermediate transfer belt 70.
  • a secondary transfer outer roller 81 is disposed at a position facing the secondary transfer inner roller 86 across the intermediate transfer belt 70, and forms a secondary transfer portion T2.
  • the single color toner image or full color toner image formed on the intermediate transfer belt 70 is transferred to the recording material at the secondary transfer portion T2.
  • the liquid developer that has not been transferred to the recording material is cleaned by a cleaning device (not shown) that is in contact with the intermediate transfer belt 70.
  • a blade 83 is in contact with the secondary transfer outer roller 81, and the liquid developer adhering to the secondary transfer outer roller 81 is scraped off by the blade 83 and collected by the collection unit 84.
  • the toner image transferred onto the recording material is fixed on the recording material by a fixing device (not shown).
  • the image forming units 1Y, 1M, 1C, and 1K will be described with reference to FIGS.
  • the image forming units 1Y, 1M, 1C, and 1K have developing devices 50Y, 50M, 50C, and 50K, respectively.
  • the developing devices 50Y, 50M, 50C, and 50K contain liquid developers containing toner particles that develop colors of yellow (Y), magenta (M), cyan (C), and black (K), respectively.
  • the developing devices 50Y, 50M, 50C, and 50K have a function of developing the electrostatic latent images formed on the photoreceptors 20Y, 20M, 20C, and 20K with the liquid developers.
  • the four image forming units 1Y, 1M, 1C, and 1K have substantially the same configuration except that the development colors are different. Therefore, hereinafter, the image forming unit 1K will be representatively described with reference to FIG. 2, and description of other image forming units will be omitted.
  • the subscript (Y, M, C, K) corresponding to each color is attached
  • a charging device 30K that charges the photosensitive member 20K
  • an exposure device 40K that forms an electrostatic latent image on the charged photosensitive member 20K
  • a developing device 50K that forms an electrostatic latent image on the charged photosensitive member 20K
  • a cleaning device 21K Etc. are arranged.
  • the photoreceptor 20K is a photosensitive drum formed in a cylindrical shape, has a cylindrical base material and a photosensitive layer formed on the outer peripheral surface thereof, and is rotatable around a central axis.
  • the photosensitive layer is composed of an organic photoreceptor or an amorphous silicon photoreceptor.
  • the photoconductor 20K can carry an electrostatic latent image described below. In the present embodiment, the photoconductor 20K rotates counterclockwise as indicated by an arrow in FIG.
  • the charging device 30K is a device for charging the photoconductor 20K.
  • a corona charger is used.
  • the exposure device 40K has a semiconductor laser, a polygon mirror, an F- ⁇ lens, and the like, and irradiates the charged photoconductor 20K with a laser modulated in accordance with an image signal, thereby electrostatically forming the photoconductor 20K.
  • a latent image is formed. That is, an electrostatic latent image is carried on the photoconductor 20K.
  • the developing device 50K is a device for developing the electrostatic latent image formed on the photoconductor 20K using black (K) toner. Details of the developing device 50K will be described later.
  • the toner image formed on the photoreceptor 20K is primarily transferred to the intermediate transfer belt 70 by applying a transfer voltage between the primary transfer roller 61K and the photoreceptor 20K.
  • the cleaning device 21K includes a cleaning blade 21Ka and a recovery unit 21Kb, and can recover the liquid developer on the photoreceptor 20K after the primary transfer.
  • the developing device 50K includes a developing roller 54K as a developer carrying member that carries a liquid developer and conveys it to the photoreceptor 20K.
  • a developing roller 54K As a developer carrying member that carries a liquid developer and conveys it to the photoreceptor 20K.
  • a developer tank 53K Around the developing roller 54K, a developer tank 53K, a film forming electrode 51K, a compression roller and a squeezing roller 52K as a compression rotator, and a developing cleaning roller 58K as a recovery member and a recovery rotator are arranged.
  • the developing roller 54K rotates while carrying a liquid developer, and develops the electrostatic latent image carried on the photoconductor 20K with toner at a development position facing the photoconductor 20K.
  • the developing roller 54K is a cylindrical member, and rotates clockwise around the central axis as indicated by an arrow in FIG.
  • the developing roller 54K includes an elastic body such as conductive urethane rubber, a resin layer, and a rubber layer on the outer peripheral portion of a metal inner core such as stainless steel.
  • the developer tank 53K stores a liquid developer in which black toner particles are dispersed in a carrier liquid.
  • the liquid developer used in the present embodiment is, for example, toner particles having an average particle diameter of 0.8 ⁇ m, in which a colorant such as a pigment is dispersed in a resin, in a carrier liquid such as an organic solvent, a dispersant, a toner charge control agent, It is added together with the charge directing agent.
  • the concentration of toner particles in the liquid developer is set to 7% by weight, for example.
  • the toner particle surface is charged with a certain amount of negative polarity.
  • the liquid developer stored in the developer tank 53K is supplied from the mixer 200K.
  • the mixer 200K for example, the carrier liquid and the toner are appropriately replenished from the carrier tank in which the replenishment carrier liquid is stored and the toner tank in which the replenishment toner is stored.
  • the mixer 200K contains stirring blades that are driven by a motor (not shown), mixes the supplied carrier liquid and toner by stirring, and disperses the toner in the carrier liquid.
  • a conductivity sensor 201K is accommodated as a conductivity detecting means capable of detecting the conductivity of the liquid developer. Based on the detection result of the conductivity sensor 201K, the carrier liquid and toner are replenished so that the conductivity of the liquid developer in the mixer 200K falls within a predetermined range.
  • the predetermined range of the conductivity of the liquid developer in the mixer 200K is 10 ⁇ 11 [S / cm] or more and 10 ⁇ 9 [S / cm] or less. Since the liquid developer in the mixer 200K is supplied to the developer tank 53K, the conductivity of the liquid developer stored in the developer tank 53K is almost the same as the conductivity of the liquid developer in the mixer 200K. . Therefore, the conductivity of the liquid developer stored in the developer tank 53K can be detected by the conductivity sensor 201K.
  • the conductivity sensor may be provided directly in the developer tank 53K.
  • the film forming electrode 51K is arranged with a predetermined gap from the developing roller 54K, and the liquid developer is developed so that a predetermined toner concentration is obtained by applying a predetermined film forming voltage from the film forming power source 12K.
  • the film is formed on the developing roller 54K from the agent tank 53K.
  • the squeezing roller 52K is disposed downstream of the film forming electrode 51K and upstream of the developing position with respect to the rotation direction of the developing roller 54K, and the toner in the liquid developer formed on the developing roller 54K (on the developer carrier). Compress the layer.
  • the squeezing roller 52K is applied with a predetermined squeezing voltage from the squeezing power supply 13K, thereby bringing toner particles contained in the liquid developer formed on the developing roller 54K toward the developing roller 54K, and at the same time extra Squeeze and collect the appropriate carrier liquid.
  • Such a squeeze roller 52K is a cylindrical member made of metal, and in this embodiment, a roller made of stainless steel is used.
  • the squeezing roller 52K is in contact with the developing roller 54K and rotates counterclockwise around the central axis as shown by the arrow in FIG.
  • a certain amount of the liquid developer pumped up in the developer tank 53K and passed through the film forming electrode 51K is carried on the developing roller 54K. Therefore, the liquid developer conveyed at a predetermined speed to the contact portion between the squeezing roller 52K and the developing roller 54K has a gap of approximately 6 ⁇ m and a rotational width of approximately 5 mm between the squeezing roller 52K and the developing roller 54K.
  • a nip is stably formed.
  • the liquid developer is separated in the vicinity of the exit between the squeezing roller 52K and the developing roller 54K and is carried on each roller.
  • a predetermined potential difference is set so that the toner in the liquid developer approaches the developing roller 54K side. It is generated between both rollers. For this reason, the toner concentration in the liquid developer on the surface of the developing roller 54K after passing between the rollers greatly increases, for example, about 35% by weight.
  • the liquid developer carried on the squeeze roller 52K is scraped off by the blade 56K.
  • the developing cleaning roller 58K is disposed downstream of the developing position in the rotation direction of the developing roller 54K, and is applied with a recovery voltage from a recovery power supply 14K as a potential difference applying unit. The remaining toner is collected. That is, the developing cleaning roller 58K collects the toner on the developing roller 54K by applying a recovery potential difference to the developing roller 54K.
  • the developing cleaning roller 58K is in contact with the surface of the developing roller 54K and rotates counterclockwise as indicated by an arrow in FIG. 3, and is, for example, a stainless steel or aluminum roller.
  • the recovery power source 14K can variably apply a recovery voltage between the developing roller 54K and the developing cleaning roller 58K.
  • the recovery power source 14K can variably apply the recovery potential difference between the development cleaning roller 58K and the development roller 54K.
  • a potential difference that is, a recovery potential difference
  • a potential difference is generated between the two rollers so that the toner on the developing roller 54K approaches the developing cleaning roller 58K. Then, the toner remaining on the surface of the developing roller 54K is removed by being collected by the developing cleaning roller 58K.
  • the toner collected by the developing cleaning roller 58K is removed by a cleaning blade 59K as a cleaning means.
  • the cleaning blade 59K is disposed so as to contact the developing cleaning roller 58K downstream of the position facing the developing roller 54K with respect to the rotation direction of the developing cleaning roller 58K.
  • the developing cleaning roller 58K from which the toner has been removed again removes the toner from the developing roller 54K.
  • the cleaning blade 59K is made of aluminum having a thickness of 0.2 mm, and is in contact with the developing cleaning roller 58K in the counter direction.
  • the developing device will be described with reference to FIG. 3 taking the developing device 50K as an example.
  • a developing voltage of ⁇ 400 V is applied to the developing roller 54K by the developing power supply 11K.
  • Most of the liquid developer supplied from the mixer 200K to the developer tank 53K is supplied to the gap between the film forming electrode 51K and the developing roller 54K.
  • the conductivity of the liquid developer in the mixer 200K is detected by the conductivity sensor 201K as described above.
  • a liquid developer is carried on the surface of the developing roller 54K when passing through the film forming electrode 51K.
  • a film-forming voltage of ⁇ 600 V, for example, is applied to the film-forming electrode 51K by the film-forming power source 12K, and the negatively charged toner due to the potential difference between the film-forming electrode 51K and the developing roller 54K is the developing roller 54K. Compressed and supported on the side.
  • the liquid developer In the vicinity of the outlet of the film forming electrode 51K, the liquid developer is divided into one that moves along the surface of the developing roller 54K and one that flows down to the back surface of the film forming electrode 51K.
  • the developing roller 54K carrying the liquid developer then comes into contact with the squeezing roller 52K, and the squeezing roller 52K rotates in the follower direction at a constant speed with respect to the surface of the developing roller 54K.
  • a diaphragm voltage that is 50 to 120 V higher in absolute value than the developing voltage applied to the developing roller 54K by the diaphragm power source 13K is applied to the diaphragm roller 52K. That is, if the developing voltage applied to the developing roller 54K is ⁇ 400V, the diaphragm voltage applied to the diaphragm roller 52K is ⁇ 450 to ⁇ 520V.
  • the squeezing roller 52K By the action of the squeezing roller 52K, a thin layer coat of liquid developer having a toner concentration of about 35% by weight is formed on the developing roller 54K. Thereafter, the thin coat is moved to the developing position with respect to the photoreceptor 20K by the rotation of the developing roller 54K.
  • the liquid developer flowing down to the back surface of the film forming electrode 51K falls on the developing trough, and then the toner concentration is adjusted by the mixer 200K or the like, and is supplied again to the developer tank 53K.
  • the developing roller 54K after passing through the developing position is next brought into contact with the developing cleaning roller 58K.
  • a recovery voltage of ⁇ 250 V is applied to the developing cleaning roller 58K by the recovery power source 14K. Due to the potential difference between the developing cleaning roller 58K and the developing roller 54K, the toner that has not been developed at the developing position is electrophoresed on the developing cleaning roller 58K. Then, the toner is scraped off by the cleaning blade 59K.
  • the recovery voltage applied by the recovery power supply 14K can be changed by the control described later.
  • the photoconductor 20K uses amorphous silicon.
  • the surface of the photoreceptor 20K is charged to about ⁇ 800 V by applying about ⁇ 4.5 kV to ⁇ 5.5 kV to the wire of the charging device 30K that is a corona charger.
  • an electrostatic latent image is formed by the exposure device 40K so that the potential of the image portion is approximately 50V.
  • the developing voltage -400V applied to the developing roller 54K and the potential of the electrostatic latent image on the photosensitive member 20K image portion -50V, non-image portion- An electric field is formed with a potential difference of 800V.
  • the toner particles selectively move to the image portion on the photoconductor 20K.
  • a toner image is formed on the photoreceptor 20K. Since the carrier liquid is not affected by the electric field, it is separated at the outlet between the developing roller 54K and the photosensitive member 20K at the developing position, and adheres to both the developing roller 54K and the photosensitive member 20K.
  • the photosensitive member 20K that has passed the development position reaches a primary transfer portion that is a nip portion with the intermediate transfer belt 70, and a toner image formed on the photosensitive member 20K is primarily transferred to the intermediate transfer belt 70.
  • the primary transfer roller 61K is applied with a primary transfer voltage of about +200 V having a polarity opposite to the charging characteristics of the toner particles, and the toner particles on the photoconductor 20K are primarily transferred to the intermediate transfer belt 70 to be photosensitive. Only the carrier liquid remains on the body 20K. The carrier liquid remaining on the photoconductor 20K is scraped off by the cleaning blade 21Ka of the cleaning device 21K downstream of the primary transfer portion T1K and recovered by the recovery portion 21Kb.
  • the toner image primarily transferred onto the intermediate transfer belt 70 goes to the secondary transfer portion T2.
  • a secondary transfer voltage of +1000 V is applied to the secondary transfer outer roller 81, the secondary transfer inner roller 86 is maintained at 0 V, and the toner particles on the intermediate transfer belt 70 are Secondary transfer is performed on the surface of the recording material conveyed to the next transfer portion T2.
  • the toner transfer efficiency in each subsequent toner particle transfer process including the transfer from the developing roller 54K to the photosensitive member 20K is adjusted to be extremely high, approximately 95% or more. It is. Therefore, in each of the developing devices 50Y, 50M, 50C, and 50K, the amount of toner contained in the liquid developer on the developing rollers 54Y, 54M, 54C, and 54K before being developed on the photoconductors 20Y, 20M, 20C, and 20K. Is desired to be stabilized with high accuracy. Thereby, the image quality of the image output on the recording material can be stabilized.
  • the film forming electrodes 51Y, 51M, 51C, and 51K are used to form the liquid developer on the developing rollers 54Y, 54M, 54C, and 54K.
  • a film forming voltage is applied to the substrate.
  • the gaps between the film forming electrodes 51Y, 51M, 51C, and 51K and the developing rollers 54Y, 54M, 54C, and 54K are set to be 400 ⁇ m, respectively.
  • the developing device 50K will be described as an example.
  • the concept of film formation with the film forming electrode 51K will be described with reference to FIG. In FIG. 4, for the sake of explanation, the gap between the film forming electrode 51K and the developing roller 54K is shown large.
  • the toner (indicated by black circles) is distributed substantially uniformly.
  • the toner gradually moves to the developing roller 54K by applying the film forming voltage as it goes downstream (upper part in the drawing) of the film forming area.
  • the reason why the liquid developer containing toner goes upward in the drawing is that it is lifted as the developing roller 54K rotates.
  • there are two directions of flow a direction in which the toner moves along the rotation of the developing roller 54K, and a direction in which the toner moves to the developing roller 54K by an electric field.
  • the toner approaches the developing roller 54K.
  • the toner closer to the developing roller 54K than the gap between the developing roller 54K and the squeezing roller 52K is in contact with the squeezing roller 52K.
  • the aperture roller 52K is a regulating roller that presses the developing roller 54K and regulates the developer on the developing roller 54K.
  • FIG. 5A shows a case where the film is appropriately formed on the developing roller 54K.
  • FIG. 5B shows a state where the electric field at the squeeze roller 52K is too strong and the toner is compressed too much on the developing roller 54K, that is, when the film is formed due to excessive compression.
  • FIG. 5C shows a case where the electric field on the squeezing roller 52K is too weak and toner is formed on the developing roller 54K due to insufficient compression.
  • the thin toner layer formed on the developing roller 54K may or may not contribute to the development of the electrostatic latent image on the photoreceptor 20K according to the image signal.
  • the toner that has not contributed to the development is removed from the developing roller 54K by the developing cleaning roller 58K.
  • a process in which toner that has not contributed to development is removed from the developing roller 54K by the developing cleaning roller 58K will be described.
  • the ratio (%) of the toner remaining on the developing roller 54K without moving to the developing cleaning roller 58K out of the toner on the developing roller 54K when passing through the developing cleaning roller 58K is the development CLN residual efficiency. I will call it.
  • the development CLN residual efficiency is desirably 0%, and when it is 0%, all the toner on the development roller 54K has been removed by the development cleaning roller 58K.
  • the ratio (%) of the toner remaining on the developing cleaning roller 58K without being scraped off by the cleaning blade 59K out of the toner on the developing cleaning roller 58K is referred to as developing CLN blade remaining efficiency.
  • FIG. 6 shows the relationship between the development CLN residual efficiency and the development CLN blade residual efficiency when the potential difference between the development cleaning roller 58K and the development roller 54K (recovery potential difference, hereinafter referred to as development cleaning contrast) is changed.
  • the development CLN residual efficiency is indicated by a solid line on the Y1 axis
  • the development CLN blade residual efficiency is indicated by a dotted line on the Y2 axis.
  • the development cleaning contrast is small, the development CLN residual efficiency is high, and a large amount of toner remains on the development roller 54K.
  • the development CLN residual efficiency is increased as the development cleaning contrast is increased.
  • the development CLN blade residual efficiency is increased.
  • the development cleaning contrast is set within a range in which the two remaining efficiencies are substantially zero. This is shown as an appropriate range in the figure.
  • the toner on the developing roller 54K is electrophoresed by the potential difference between the developing cleaning roller 58K and the developing roller 54K, a predetermined potential difference is required between them.
  • the compression state of the toner layer on the development cleaning roller 58K changes in the same manner as in the cases shown in FIGS.
  • the development cleaning contrast is excessively increased, the toner layer is in a highly compressed state as in the case shown in FIG. As a result, the toner layer on the developing cleaning roller 58K slips through the cleaning blade 59K.
  • FIGS. 7 (a) and 7 (b) The schematic diagram is shown in FIGS. 7 (a) and 7 (b).
  • FIG. 7A shows a case where the toner layer on the developing cleaning roller 58K is in an appropriate compression state
  • FIG. 7B shows a case where the compression is excessive.
  • the toner is indicated by white circles.
  • the toner layer on the developing cleaning roller 58K is scraped off satisfactorily by the cleaning blade 59K.
  • the compression is excessive, the toner layer on the developing cleaning roller 58K pushes the cleaning blade 59K and the toner slips out. [Relationship between compressed state of toner layer and development cleaning contrast]
  • the cleaning characteristics for the development cleaning contrast shown in FIG. 6 differ depending on the compression state of the toner layer formed on the developing roller 54K.
  • an electric field sufficient to overcome the compression is required.
  • FIG. 8 shows the cleaning characteristics with respect to the development cleaning contrast when compression is good and excessive as shown in FIGS. 5 (a) and 5 (b).
  • FIG. 8 shows the relationship between the development CLN residual efficiency and the development CLN blade residual efficiency when the development cleaning contrast is changed.
  • the developed CLN remaining efficiency is indicated by a thick line on the Y1 axis
  • the developed CLN blade remaining efficiency is indicated by a thin line on the Y2 axis.
  • the solid line in the figure indicates the case where the toner layer on the developing roller 54K is well compressed
  • the dotted line indicates the case where the toner layer on the developing roller 54K is excessively compressed.
  • the appropriate range of the development cleaning contrast varies depending on the compression state of the toner on the development roller 54K.
  • the developer cleaning contrast is increased as the toner layer is excessively compressed.
  • the development cleaning contrast is controlled according to the compressed state of the toner layer as described above, but it is difficult to directly detect the compressed state of the toner layer on the developing roller 54K.
  • the compression of the toner layer is determined by the movement of the toner between the developing roller 54K and the squeezing roller 52K. Therefore, the toner compression state can be predicted by detecting or predicting the movement.
  • the toner layer compression state is determined by the toner charge amount Q and the potential difference ⁇ V between the developing roller 54K and the squeezing roller 52K.
  • the toner compression state is predicted by detecting the charge amount Q of the toner.
  • the toner charge amount Q is detected by a conductivity sensor 201K in the mixer 200K.
  • the mixer 200K stores the liquid developer and supplies the liquid developer to the film forming electrode 51K via the developer tank 53K. Since the charge amount of the toner affects the conductivity of the liquid developer, the conductivity of the liquid developer has a correlation with the charge amount of the toner.
  • the toner concentration and the liquid developer amount of the liquid developer in the mixer 200K are controlled to be substantially constant. Therefore, the measurement result of the conductivity of the liquid developer in the mixer 200K has a correlation with the charge of the toner particles.
  • the conductivity sensor 201K corresponds to an acquisition unit that can acquire information regarding the compression state of the toner layer on the developing roller 54K that has passed between the aperture roller 52K and the developing roller 54K.
  • the toner charge amount is calculated from the detection result of the toner density sensor 202K (see FIG. 11 described later) for detecting the toner density in the mixer 200K and the detection result of the conductivity of the liquid developer,
  • the compression state may be predicted.
  • FIG. 10 shows the relationship between the conductivity (S / cm) of the liquid developer and the development cleaning contrast, which is the measurement result of the conductivity sensor 201K.
  • the development CLN residual efficiency becomes high (development CLN residual efficiency NG) unless a higher development cleaning contrast is applied. That is, the range below the line ⁇ in FIG. 10 is the development CLN residual efficiency NG.
  • the toner layer on the development cleaning roller 58K is further compressed, so that cleaning with the cleaning blade 59K becomes difficult (development CLN blade residual efficiency NG). That is, the range above the line ⁇ in FIG. 10 is the development CLN blade remaining efficiency NG.
  • the conductivity of the liquid developer in the mixer 200K is adjusted to 10 ⁇ 11 to 10 ⁇ 9 [S / cm] (1e-11 to 1e-9 [S / cm]).
  • the development cleaning contrast changes the recovery voltage applied to the development cleaning roller 58K within a range of 70 V or more and 280 V or less (within a predetermined range) according to the conductivity of the liquid developer.
  • the recovery voltage applied to the developing cleaning roller 58K is in the range of ⁇ 330V ( ⁇ 400 + 70) to ⁇ 120V ( ⁇ 400 + 280). I am trying to change it within.
  • the polarity of the voltage applied to the developing cleaning roller 58K is the same as the normal charging polarity of the toner.
  • the absolute value of the recovery voltage is smaller than the absolute value of the development voltage.
  • the conductivity of the liquid developer may change due to various factors. For example, when the environment such as the temperature and humidity where the image forming apparatus is placed changes, the temperature and humidity of the liquid developer change, the charge amount of the toner also changes, and the charge amount of the liquid developer also changes. . In addition, the toner charge imparting agent or toner added to the liquid developer is deteriorated by being compressed at the nip portion of each member when used at the time of image formation, and the charge amount of the toner is reduced. As a result, the charge amount of the liquid developer also changes. In the present embodiment, such a change in the conductivity of the liquid developer is detected, and the development cleaning contrast is controlled within the range shown in FIG. 10 according to the value.
  • FIG. 11 and FIG. 12 are block diagrams and flowcharts for controlling the development cleaning contrast.
  • the control unit 110 as a control unit is provided with a CPU (Central Processing Unit) 111 that performs high-pressure control.
  • the memory 112 has a ROM (Read Only Memory) 112a.
  • the ROM 112a stores a program corresponding to the control procedure.
  • the CPU 111 controls each part while reading data and programs previously written in the ROM 112a.
  • the memory 112 also includes a RAM (Randon Access Memory) 112b in which work data and input data read from each sensor and the like are stored.
  • the CPU 111 performs control with reference to data stored in the RAM 112b based on the above-described program and the like.
  • the CPU 111 is also connected to a conductivity sensor 201K that detects the conductivity of the liquid developer in the mixer 200K that circulates the liquid developer to and from the developer tank 53K, and the results are sequentially controlled. It can be used. Further, the CPU 111 is also connected to a recovery power supply 14K as a control destination. Then, the CPU 111 changes the developing cleaning contrast as the recovery potential difference by controlling the recovery power supply 14K as the potential difference application unit according to the information (that is, the conductivity) acquired by the conductivity sensor 201K as the acquisition unit. Is possible. In FIG. 11, only the black image forming unit 1 ⁇ / b> K is shown, but the other image forming units are similarly connected to the CPU 111 with a conductivity sensor and a recovery power source and controlled in the same manner as described below. .
  • the development cleaning contrast can be controlled during image formation or at other timings. For example, it may be performed at any time after the image forming job is started, may be performed every predetermined number of times, or may be performed at a timing when an image is not formed on the recording material, such as pre-rotation at the start of the image forming job. Also good.
  • the image forming job is a period from the start of image formation to the completion of the image forming operation based on a print signal for forming an image on a recording material. Specifically, it refers to the period from the pre-rotation to the post-rotation after receiving the print signal (input of the image forming job), and includes the image forming period and the interval between sheets (during non-image forming).
  • the pre-rotation is a period in which rotation of the photosensitive member and the intermediate transfer belt is started as a preparatory operation before image formation, and various voltages are sequentially raised and various voltages are adjusted.
  • the post-rotation is a period in which various voltages are sequentially lowered while the rotation of the photosensitive member and the intermediate transfer belt is continued as an operation after image formation, and finally the rotation of the photosensitive member and the intermediate transfer belt is stopped.
  • the interval between the sheets is a period corresponding to the interval between the recording material that continuously passes through the secondary transfer portion T2.
  • the CPU 111 detects the conductivity of the liquid developer in the mixer 200K by the conductivity sensor 201K (S2). Next, based on the detection result of the conductivity, the CPU 111 calculates an optimum development cleaning contrast using the table shown in FIG. 10 (S3). Next, a recovery voltage that achieves the calculated development cleaning contrast is determined and applied to the recovery power supply 14K (S4).
  • the CPU 111 controls the recovery power supply 14K so that the development cleaning contrast becomes the first recovery potential difference. Further, when the conductivity detected by the conductivity sensor 201K is the second conductivity higher than the first conductivity, the CPU 111 causes the development cleaning contrast to be a high second recovery potential difference that is larger than the first recovery potential difference.
  • the recovery power source 14K is controlled. In other words, the CPU 111 controls the recovery power supply 14K so that the higher the conductivity detected by the conductivity sensor 201K, the greater the development cleaning contrast. Thereafter, this control ends (S5). In this embodiment, this control is performed once for each recording material.
  • control of the voltage for recovery may include limit control that applies a limit when the result of this control exceeds a desired value, control that suppresses the amount of change in voltage once, etc. .
  • the toner remains appropriately on the developing roller 54K regardless of the compression state of the toner layer on the developing roller 54K that has passed between the squeezing roller 52K and the developing roller 54K. Collected toner. That is, even when the charge amount of the toner particles changes due to various factors and the compression state of the toner layer on the developing roller 54K changes, the developing cleaning contrast is appropriately controlled. For this reason, it can suppress that the development CLN residual efficiency mentioned above becomes NG, and development CLN blade residual efficiency becomes NG.
  • the development cleaning contrast may be controlled by changing the development voltage or by changing both the development voltage and the recovery voltage.
  • the development voltage when the development voltage is changed, other parts such as the aperture voltage are also affected. Therefore, it is preferable to control the development cleaning contrast by changing the recovery voltage as in this embodiment.
  • the development voltage may be changed from the viewpoint of developability. In this case, the recovery voltage is changed so as to satisfy the development cleaning contrast table shown in FIG. 10 in accordance with the change in the development voltage.
  • the development cleaning contrast is controlled in accordance with the conductivity of the liquid developer detected by the conductivity sensor 201K.
  • the development cleaning contrast is controlled according to the potential difference (compression potential difference) ⁇ V between the developing roller 54K and the squeezing roller 52K. Since other configurations and operations are the same as those of the first embodiment described above, the following description will focus on portions that are different from the first embodiment.
  • the black image forming unit 1K will be described as an example, but the same applies to other image forming units.
  • the force F due to the electric field applied to the toner in the gap between the developing roller 54K and the squeezing roller 52K also depends on the compression potential difference ⁇ V.
  • the compression potential difference ⁇ V may be changed according to the environment such as temperature and humidity, or the detection result of the density of the formed toner image. For this reason, the force F due to the electric field applied to the toner also changes due to the change in the compression potential difference ⁇ V, which affects the compression state of the toner layer on the developing roller 54K that has passed between the squeezing roller 52K and the developing roller 54K. Therefore, in this embodiment, the development cleaning contrast is controlled according to the compression potential difference ⁇ V.
  • the diaphragm power source 13K as the compression power source of the present embodiment can variably apply a compression potential difference between the developing roller 54K and the diaphragm roller 52K. That is, the diaphragm power supply 13K can variably apply the diaphragm voltage.
  • the image forming apparatus 100 includes an environment sensor 120 capable of detecting temperature and humidity in the apparatus main body. Further, the image forming apparatus 100 includes a density sensor 121 that can detect the density of the toner image formed on the intermediate transfer belt 70.
  • the density sensor 121 is disposed further downstream than the most downstream image forming unit 1K and upstream of the secondary transfer unit T2 with respect to the rotation direction of the intermediate transfer belt 70.
  • the density sensor 121 has a light emitting portion and a light receiving portion, emits light from the light emitting portion toward the surface of the intermediate transfer belt 70, receives the reflected light by the light receiving portion, and detects the amount of reflected light. . Since the amount of reflected light changes according to the amount of toner applied to the toner image, the amount of toner applied, that is, the density of the toner image can be detected by detecting the amount of reflected light of the toner image by the density sensor 121.
  • the control for detecting the density of the toner image is performed, for example, between sheets in an image forming job.
  • a control toner image (patch) is formed on the intermediate transfer belt 70 for every predetermined number of sheets, and the density sensor 121 detects the density of the control toner image.
  • the CPU 111 controls the developing power supply 11K and the like so as to change the developing voltage, for example, according to the detection result. As a result, the compression potential difference also changes. Further, the CPU 111 may change the development voltage based on the detection result of the environment sensor 120.
  • the control unit 110 that is also an acquisition unit can acquire the compressed potential difference. That is, the CPU 111 compares the compression potential difference, which is the potential difference between the diaphragm voltage and the development voltage, from the diaphragm voltage applied by the diaphragm power supply 13K and the development voltage applied by the development power supply 11K set based on the detection result of the environment sensor 120 or the like. To get. Then, the CPU 111 controls the development cleaning contrast according to the acquired compressed potential difference. Specifically, the recovery power source 14K is controlled so as to change the recovery voltage.
  • the CPU 111 controls the recovery power supply 14K so that the development cleaning contrast becomes the first recovery potential difference. Further, when the acquired compression potential difference is a second compression potential difference larger than the first compression potential difference, the CPU 111 controls the recovery power supply 14K so that the development cleaning contrast becomes a second recovery potential difference larger than the first recovery potential difference. To do. In other words, the CPU 111 controls the recovery power supply 14K so that the developing cleaning contrast increases as the compression potential difference increases.
  • the developing roller 54K is appropriately set regardless of the compression state of the toner layer on the developing roller 54K that has passed between the squeezing roller 52K and the developing roller 54K.
  • the remaining toner can be collected. That is, it is possible to prevent the development CLN remaining efficiency from becoming NG or the development CLN blade remaining efficiency from becoming NG.
  • the development cleaning contrast may be determined from the above-described formula 1 in consideration of both the charge amount of the toner (that is, the conductivity detected by the conductivity sensor 201K) and the compression potential difference.
  • the development cleaning contrast is controlled in accordance with the conductivity of the liquid developer detected by the conductivity sensor 201K.
  • the development cleaning contrast is controlled according to the current flowing between the development roller 54K and the squeeze roller 52K. Since other configurations and operations are the same as those in the first embodiment or the second embodiment described above, the following description will focus on parts that are different from the first embodiment or the second embodiment.
  • the black image forming unit 1K will be described as an example, but the same applies to other image forming units.
  • the main ions in the gap between the developing roller 54K and the squeezing roller 52K are toner, and the current that is the amount of movement of these ions per unit time is also a measure of toner movement. As the current is larger, the toner is closer to the developing roller 54K, which means that the compressed state of the toner layer on the developing roller 54K is higher.
  • an aperture current detector 130 is provided as a current detector capable of detecting the current flowing between the developing roller 54K and the aperture roller 52K.
  • the aperture current detection unit 130 corresponds to an acquisition unit.
  • the CPU 111 controls the development cleaning contrast in accordance with the current detected by the aperture current detection unit 130.
  • the recovery power source 14K is controlled so as to change the recovery voltage.
  • the CPU 111 controls the recovery power supply 14K so that the development cleaning contrast becomes the first recovery potential difference.
  • the CPU 111 determines the power supply for recovery so that the development cleaning contrast becomes the second recovery potential difference larger than the first recovery potential difference when the current detected by the aperture current detection unit 130 is the second current larger than the first current. 14K is controlled. In other words, the CPU 111 controls the recovery power supply 14K so that the developing cleaning contrast increases as the current detected by the aperture current detection unit 130 increases.
  • the developing roller 54K is appropriately set regardless of the compression state of the toner layer on the developing roller 54K that has passed between the squeezing roller 52K and the developing roller 54K.
  • the remaining toner can be collected. That is, it is possible to prevent the development CLN remaining efficiency from becoming NG or the development CLN blade remaining efficiency from becoming NG.
  • the development cleaning contrast is controlled in accordance with the conductivity of the liquid developer detected by the conductivity sensor 201K.
  • the development cleaning contrast is controlled according to one or more currents flowing between the developing roller 54K and each part.
  • Other configurations and operations are the same as those of any one of the first to third embodiments described above, and therefore the following description will focus on the differences from the first to third embodiments. To do.
  • the black image forming unit 1K will be described as an example, but the same applies to other image forming units.
  • the toner moves between each of them by electrophoresis.
  • the amount of toner movement between them has a high correlation with the current as described above, and also has a high correlation with the charge amount of the toner. That is, the current between each of them has a high correlation with the charge amount of the toner, and it can be known that the toner is compressed by the squeezing roller 52K toward the developing roller 54K.
  • a film forming power source 12K, a diaphragm power source 13K, a developing power source 11K, and a recovery power source 14K are provided.
  • the film-forming power source 12K as the first power source can apply a voltage between the developing roller 54K and the film-forming electrode 51K.
  • the diaphragm power source 13K as the second power source can apply a voltage between the developing roller 54K and the diaphragm roller 52K.
  • a developing power source 11K as a third power source can apply a voltage between the developing roller 54K and the photoconductor 20K.
  • a film forming current detection unit 131 detects a current flowing between the developing roller 54K and the film forming electrode 51K.
  • the aperture current detector 130 detects the current flowing between the developing roller 54K and the aperture roller 52K.
  • the cleaning current detector 132 detects a current flowing between the developing roller 54K and the developing cleaning roller 58K. It is difficult to directly detect the current flowing between the developing roller 54K and the photoconductor 20K. However, since the total current flowing through the developing roller 54K is 0, the current flowing between the developing roller 54K and the photoconductor 20K can be calculated by obtaining the sum of the currents flowing from other than the photoconductor 20K. .
  • the control unit 110 that is also an acquisition unit includes the current detected by the film forming current detection unit 131, the aperture current detection unit 130, and the cleaning current detection unit 132, and the calculated current between the developing roller 54K and the photoconductor 20K.
  • One or more currents can be acquired.
  • the CPU 111 controls the development cleaning contrast in accordance with one or more currents acquired in this way. Specifically, the recovery power source 14K is controlled so as to change the recovery voltage.
  • the toner layer on the developing roller 54K increases as the current increases. It becomes easy to be compressed. Further, as described above, an electric field in the direction toward the developing roller 54K is applied to the toner between the developing roller 54K and the photoconductor 20K in the area where the photoconductor 20K is not developed. Therefore, the larger the current during this period, the more the toner layer on the developing roller 54K is compressed.
  • the cleaning current detection unit 132 detects the current flowing between the development roller 54K and the development cleaning roller 58K. In this case, for example, when more current flows than expected from the development cleaning contrast obtained using one or more of the three currents, control is performed to lower the obtained development cleaning contrast. On the other hand, when a current smaller than the current expected from the development cleaning contrast obtained using one or more of the three currents flows, control is performed to increase the obtained development cleaning contrast. That is, the development cleaning contrast is controlled so that the current detected by the cleaning current detection unit 132 has a preset current value.
  • the developing roller 54K is appropriately set regardless of the compression state of the toner layer on the developing roller 54K that has passed between the squeezing roller 52K and the developing roller 54K.
  • the remaining toner can be collected. That is, it is possible to prevent the development CLN remaining efficiency from becoming NG or the development CLN blade remaining efficiency from becoming NG.
  • the embodiments described above can be implemented in combination as appropriate.
  • the configuration of the first embodiment is combined with the configuration of any one of the second to third embodiments, the development cleaning contrast obtained with one of the configurations is corrected with the other configuration. .
  • the compression member may be a non-rotating member such as a blade.
  • the compression member is preferably a rotating body that rotates at the same peripheral speed as the developing roller.
  • the configuration using the developing cleaning roller as the collecting member has been described.
  • the toner on the developing roller can be collected by a potential difference
  • other than the roller for example, a blade that does not rotate may be used.
  • the collecting member is preferably a rotating body that rotates at the same peripheral speed as the developing roller.
  • the intermediate transfer member may be, for example, an intermediate transfer drum.
  • an image forming apparatus that forms an image using a liquid developer containing toner and a carrier liquid, and that can reduce a decrease in cleaning performance due to a cleaning roller.
  • 11K Development power source (third power source) / 12K ... Film forming power source (first power source) / 13K ... Power source for diaphragm (second power source, compression power source) / 14K ...
  • Power source potential difference applying means
  • Photoconductor image carrier
  • Roller compression member, compression rotating body
  • Control section control means, Take Means
  • 130 ... stop current detector current detection means
  • conductivity sensor acquisition means, the conductivity sensing means

Abstract

A squeezing roller 52K compresses a toner layer in a liquid developer formed as a film on a developing roller 54K by a film-forming electrode 51K. A developing cleaning contrast is applied between a developing cleaning roller 58K and the developing roller 54K, whereby the developing cleaning roller 58K recovers a toner remaining on the developing roller 54K that has passed the development position. A recovery power supply 14K is capable of variably applying a recovery potential difference. A control unit is capable of controlling the recovery power supply 14K and changing the developing cleaning contrast according to information pertaining to the compression state of the toner layer on the developing roller 54K that has passed between the squeezing roller 52K and the developing roller 54K.

Description

画像形成装置Image forming apparatus
 本発明は、トナーとキャリア液を含む液体現像剤を用いて画像形成を行う画像形成装置に関する。 The present invention relates to an image forming apparatus that forms an image using a liquid developer containing toner and a carrier liquid.
 画像形成装置として、トナーをキャリア液中に分散させた液体現像剤を用いて画像形成を行う構成が知られている。例えば、現像剤収容槽に収容された液体現像剤を電極により現像ローラに吸着させ、現像ローラに吸着された液体現像剤中のトナーにより感光体に形成された静電像を現像する構成が知られている(特開平10−282795号公報)。 As an image forming apparatus, a configuration is known in which image formation is performed using a liquid developer in which toner is dispersed in a carrier liquid. For example, a configuration is known in which a liquid developer stored in a developer storage tank is adsorbed on a developing roller by an electrode, and an electrostatic image formed on a photoconductor is developed with toner in the liquid developer adsorbed on the developing roller. (JP-A-10-28295).
 また、現像ローラと対向配置される圧縮部材を有し、圧縮部材と現像ローラとの間に電界を付与することで、電界により液体現像剤中のトナーを現像ローラ側に圧縮する構成及び現像ローラと接触し、電界により現像ローラ上の現像剤をクリーニングするクリーニングローラの構成が知られている(特開2007−147976号公報)。 A developing roller having a compression member disposed opposite to the developing roller, and applying an electric field between the compressing member and the developing roller to compress the toner in the liquid developer to the developing roller side by the electric field There is known a configuration of a cleaning roller that contacts a toner and cleans the developer on the developing roller by an electric field (Japanese Patent Laid-Open No. 2007-147976).
 特開2007−147976号公報に記載のように、一定の電圧をクリーニングローラに印加してクリーニングする構成において、クリーニング電圧が小さいと、現像ローラ上の現像剤の状態が変化すると、クリーニングに必要な電界を得ることができなくなる。
また、そのような懸念をなくすために、予め大きな電圧を印加すると、クリーニングローラに現像剤に付着する力が大きくなることで、クリーニングローラ上に現像剤が残存する虞がある。
As described in Japanese Patent Application Laid-Open No. 2007-147976, in a configuration in which a constant voltage is applied to the cleaning roller and cleaning is performed, if the cleaning voltage is small and the state of the developer on the developing roller changes, it is necessary for cleaning. An electric field cannot be obtained.
Further, in order to eliminate such a concern, when a large voltage is applied in advance, the force that adheres to the developer on the cleaning roller increases, so that the developer may remain on the cleaning roller.
 本発明の一態様によれば、トナーとキャリア液を含む液体現像剤を担持して回転し、像担持体に担持された静電潜像を現像する現像剤担持体と、前記現像剤担持体と接触し、前記現像剤担持体との間に電位差が形成されることで前記現像剤担持体上に残ったトナーを回収する回収ローラと、前記現像剤担持体と前記回収ローラ間に電位差を形成する電位差形成手段と、画像形成動作中における前記現像剤担持体と前記回収ローラ間の電位差の設定値を切り換える切り換え手段と、を備えた現像装置が提供される。
[発明の効果]
According to one aspect of the present invention, a developer carrying member that carries and rotates a liquid developer containing toner and a carrier liquid and develops an electrostatic latent image carried on the image carrying member, and the developer carrying member. A recovery roller that recovers the toner remaining on the developer carrier by forming a potential difference between the developer carrier and a potential difference between the developer carrier and the recovery roller. There is provided a developing device including a potential difference forming unit to be formed and a switching unit that switches a set value of a potential difference between the developer carrying member and the collecting roller during an image forming operation.
[The invention's effect]
 本発明によれば、現像ローラ上の現像剤の状態が変化したような場合であっても、クリーニングローラによるクリーニング性の低下を低減することができる。 According to the present invention, even if the state of the developer on the developing roller changes, it is possible to reduce the deterioration of the cleaning property by the cleaning roller.
 図1は第1の実施形態に係る画像形成装置の概略構成断面図である。 FIG. 1 is a schematic sectional view of an image forming apparatus according to the first embodiment.
 図2は画像形成部の概略構成断面図である。 FIG. 2 is a schematic sectional view of the image forming unit.
 図3は現像装置の概略構成断面図である。 FIG. 3 is a schematic sectional view of the developing device.
 図4は製膜電極の現像ローラへの製膜の概念図である。 FIG. 4 is a conceptual diagram of film formation on the developing roller of the film formation electrode.
 図5において、(a)は現像ローラと絞りローラのギャップを抜けて形成されたトナー層の圧縮状態が適切な場合を、(b)は同じく圧縮が過多の場合を、(c)は同じく圧縮不足の場合を、それぞれ示す模式図である。 In FIG. 5, (a) shows the case where the compression state of the toner layer formed through the gap between the developing roller and the squeezing roller is appropriate, (b) shows the case where the compression is excessive, and (c) shows the case where the compression is the same. It is a schematic diagram which respectively shows the case of a shortage.
 図6は現像クリーニングコントラストに対するクリーニング特性を示す図である。 FIG. 6 is a diagram showing cleaning characteristics with respect to development cleaning contrast.
 図7において、(a)はトナー層の圧縮状態が適正な場合の、(b)はトナー層の圧縮が過多の場合の、それぞれ現像クリーニングローラとクリーニングブレードの当接部におけるトナーの挙動を示した模式図である。 7A shows the behavior of the toner at the contact portion between the developing cleaning roller and the cleaning blade when the toner layer is compressed properly and FIG. 7B shows the case where the toner layer is excessively compressed. It is a schematic diagram.
 図8はトナー層の圧縮状態が良好な場合と、トナー層の圧縮が過多の場合の、現像クリーニングコントラストに対するクリーニング特性を示す図である。 FIG. 8 is a diagram showing the cleaning characteristics with respect to the development cleaning contrast when the compressed state of the toner layer is good and when the toner layer is excessively compressed.
 図9は現像ローラと絞りローラのギャップでトナーにかかる電界を示す模式図である。 FIG. 9 is a schematic diagram showing the electric field applied to the toner in the gap between the developing roller and the squeezing roller.
 図10は液体現像剤の導電率と現像クリーニングコントラストの関係を示す図である。 FIG. 10 is a graph showing the relationship between the conductivity of the liquid developer and the development cleaning contrast.
 図11は第1の実施形態に係る画像形成装置の制御ブロック図である。 FIG. 11 is a control block diagram of the image forming apparatus according to the first embodiment.
 図12は第1の実施形態に係る回収電圧を決定する制御のフローチャート。 FIG. 12 is a flowchart of control for determining a recovery voltage according to the first embodiment.
 図13は第2の実施形態に係る画像形成装置の制御ブロック図である。 FIG. 13 is a control block diagram of the image forming apparatus according to the second embodiment.
 図14は第3の実施形態に係る画像形成装置の制御ブロック図である。 FIG. 14 is a control block diagram of the image forming apparatus according to the third embodiment.
 図15は第4の実施形態に係る画像形成装置の制御ブロック図である。 FIG. 15 is a control block diagram of the image forming apparatus according to the fourth embodiment.
<第1の実施形態>
 第1の実施形態について、図1ないし図12を用いて説明する。まず、本実施形態の画像形成装置の概略構成について、図1及び図2を用いて説明する。
<First Embodiment>
A first embodiment will be described with reference to FIGS. First, a schematic configuration of the image forming apparatus according to the present exemplary embodiment will be described with reference to FIGS. 1 and 2.
画像形成装置Image forming apparatus
 図1に示すように、画像形成装置100は、イエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)の4色に対応して設けられ4つの画像形成部1Y、1M、1C、1Kを有する電子写真方式のフルカラープリンタである。本実施形態では、画像形成部1Y、1M、1C、1Bkを後述する中間転写ベルト70の回転方向に沿って配置したタンデム型としている。画像形成装置100は、例えば、画像形成装置本体に対し通信可能に接続された外部機器からの画像信号に応じてトナー像を記録材Pに形成する。記録材としては、用紙、プラスチックフィルム、布などのシート材が挙げられる。 As shown in FIG. 1, an image forming apparatus 100 includes four image forming units 1Y, 1M, 1M, 4M provided corresponding to four colors of yellow (Y), magenta (M), cyan (C), and black (K). An electrophotographic full-color printer having 1C and 1K. In the present embodiment, the image forming units 1Y, 1M, 1C, and 1Bk are tandem type arranged along the rotation direction of the intermediate transfer belt 70 described later. For example, the image forming apparatus 100 forms a toner image on the recording material P in accordance with an image signal from an external device that is communicably connected to the image forming apparatus main body. Examples of the recording material include sheet materials such as paper, plastic film, and cloth.
 各画像形成部1Y、1M、1C、1Kは、それぞれ、像担持体としての感光体20Y、20M、20C、20K上に、トナーとキャリア液を含む液体現像剤を用いて各色のトナー像を形成する。画像形成部の詳しい構成については後述する。 Each of the image forming units 1Y, 1M, 1C, and 1K forms a toner image of each color on the photoreceptors 20Y, 20M, 20C, and 20K as image carriers using a liquid developer containing toner and a carrier liquid. To do. A detailed configuration of the image forming unit will be described later.
 中間転写体としての中間転写ベルト70は、駆動ローラ82、従動ローラ85、および二次転写内ローラ86に張架されたエンドレスベルトであり、感光体20Y、20M、20C、20K、二次転写外ローラ81と当接しながら回転駆動される。中間転写ベルト70を挟んで感光体20Y、20M、20C、20Kと対向する位置には、それぞれ一次転写ローラ61Y、61M、61C、61Kが配置され、一次転写部T1Y、T1M、T1C、T1Kを形成している。そして、各一次転写部T1Y、T1M、T1C、T1Kで、各感光体20Y、20M、20C、20Kから中間転写ベルト70上に4色のトナー像が順次重ねて転写され、中間転写ベルト70上にフルカラーのトナー像が形成される。なお、例えば、ブラックなどの単色のトナー像のみを中間転写ベルト70上に形成することも可能である。 The intermediate transfer belt 70 as an intermediate transfer member is an endless belt stretched around a driving roller 82, a driven roller 85, and a secondary transfer inner roller 86, and the photoreceptors 20Y, 20M, 20C, and 20K, outside the secondary transfer. It is driven to rotate while contacting the roller 81. Primary transfer rollers 61Y, 61M, 61C, and 61K are disposed at positions facing the photoconductors 20Y, 20M, 20C, and 20K with the intermediate transfer belt 70 interposed therebetween, and primary transfer portions T1Y, T1M, T1C, and T1K are formed. is doing. Then, at each primary transfer portion T1Y, T1M, T1C, T1K, four color toner images are sequentially transferred onto the intermediate transfer belt 70 from the respective photoreceptors 20Y, 20M, 20C, 20K, and transferred onto the intermediate transfer belt 70. A full-color toner image is formed. For example, only a single color toner image such as black can be formed on the intermediate transfer belt 70.
 中間転写ベルト70を挟んで二次転写内ローラ86と対向する位置には、二次転写外ローラ81が配置され、二次転写部T2を形成している。中間転写ベルト70上に形成された単色トナー像やフルカラートナー像は、二次転写部T2で記録材に転写される。なお、記録材に転写されなかった液体現像剤は、中間転写ベルト70に当接したクリーニング装置(不図示)によってクリーニングされる。二次転写外ローラ81には、ブレード83が当接しており、二次転写外ローラ81に付着した液体現像剤はブレード83により掻き取られ、回収部84に回収される。記録材上に転写されたトナー像は、不図示の定着装置により記録材上に定着される。 A secondary transfer outer roller 81 is disposed at a position facing the secondary transfer inner roller 86 across the intermediate transfer belt 70, and forms a secondary transfer portion T2. The single color toner image or full color toner image formed on the intermediate transfer belt 70 is transferred to the recording material at the secondary transfer portion T2. The liquid developer that has not been transferred to the recording material is cleaned by a cleaning device (not shown) that is in contact with the intermediate transfer belt 70. A blade 83 is in contact with the secondary transfer outer roller 81, and the liquid developer adhering to the secondary transfer outer roller 81 is scraped off by the blade 83 and collected by the collection unit 84. The toner image transferred onto the recording material is fixed on the recording material by a fixing device (not shown).
画像形成部Image forming unit
 画像形成部1Y、1M、1C、1Kについて、図1及び図2を用いて説明する。画像形成部1Y、1M、1C、1Kは、それぞれ、現像装置50Y、50M、50C、50Kを有する。現像装置50Y、50M、50C、50Kは、それぞれ、イエロー(Y)、マゼンタ(M)、シアン(C)、およびブラック(K)に発色するトナー粒子を含む液体現像剤を収容している。そして、現像装置50Y、50M、50C、50Kは、各液体現像剤により、感光体20Y、20M、20C、20K上に形成された静電潜像を現像する機能を有している。 The image forming units 1Y, 1M, 1C, and 1K will be described with reference to FIGS. The image forming units 1Y, 1M, 1C, and 1K have developing devices 50Y, 50M, 50C, and 50K, respectively. The developing devices 50Y, 50M, 50C, and 50K contain liquid developers containing toner particles that develop colors of yellow (Y), magenta (M), cyan (C), and black (K), respectively. The developing devices 50Y, 50M, 50C, and 50K have a function of developing the electrostatic latent images formed on the photoreceptors 20Y, 20M, 20C, and 20K with the liquid developers.
 なお、4つの画像形成部1Y、1M、1C、1Kは、現像色が異なることを除いて実質的に同一の構成を有する。したがって、以下、代表して画像形成部1Kについて図2を用いて説明し、他の画像形成部については説明を省略する。なお、図1の各部の符号については、各色に対応した添え字(Y、M、C、K)を付して示している。 The four image forming units 1Y, 1M, 1C, and 1K have substantially the same configuration except that the development colors are different. Therefore, hereinafter, the image forming unit 1K will be representatively described with reference to FIG. 2, and description of other image forming units will be omitted. In addition, about the code | symbol of each part of FIG. 1, the subscript (Y, M, C, K) corresponding to each color is attached | subjected and shown.
 感光体20Kの周囲には、その回転方向に沿って、感光体20Kを帯電する帯電装置30K、帯電された感光体20Kに静電潜像を形成する露光装置40K、現像装置50K、クリーニング装置21Kなどが配置される。 Around the photosensitive member 20K, along the rotation direction, a charging device 30K that charges the photosensitive member 20K, an exposure device 40K that forms an electrostatic latent image on the charged photosensitive member 20K, a developing device 50K, and a cleaning device 21K. Etc. are arranged.
 感光体20Kは、円筒状に形成された感光ドラムであり、円筒状の基材とその外周面に形成された感光層を有し、中心軸を中心に回転可能である。感光層は、有機感光体又はアモルファスシリコン感光体などで構成される。感光体20Kは、次述する静電潜像を担持可能である。本実施形態では、感光体20Kは、図2に矢印で示すように反時計回りに回転する。 The photoreceptor 20K is a photosensitive drum formed in a cylindrical shape, has a cylindrical base material and a photosensitive layer formed on the outer peripheral surface thereof, and is rotatable around a central axis. The photosensitive layer is composed of an organic photoreceptor or an amorphous silicon photoreceptor. The photoconductor 20K can carry an electrostatic latent image described below. In the present embodiment, the photoconductor 20K rotates counterclockwise as indicated by an arrow in FIG.
 帯電装置30Kは、感光体20Kを帯電するための装置である。本実施形態では、コロナ帯電器を用いている。露光装置40Kは、半導体レーザ、ポリゴンミラー、F−θレンズなどを有しており、画像信号に応じて変調されたレーザを帯電された感光体20K上に照射し、感光体20K上に静電潜像を形成する。即ち、感光体20K上に静電潜像が担持される。 The charging device 30K is a device for charging the photoconductor 20K. In this embodiment, a corona charger is used. The exposure device 40K has a semiconductor laser, a polygon mirror, an F-θ lens, and the like, and irradiates the charged photoconductor 20K with a laser modulated in accordance with an image signal, thereby electrostatically forming the photoconductor 20K. A latent image is formed. That is, an electrostatic latent image is carried on the photoconductor 20K.
 現像装置50Kは、感光体20K上に形成された静電潜像を、ブラック(K)のトナーを用いて現像するための装置である。現像装置50Kの詳細につては後述する。感光体20K上に形成されたトナー像は、一次転写ローラ61Kと感光体20Kとの間に転写電圧が印加されることで、中間転写ベルト70に一次転写される。クリーニング装置21Kは、クリーニングブレード21Ka、回収部21Kbを有し、一次転写後に感光体20K上の液体現像剤を回収可能である。 The developing device 50K is a device for developing the electrostatic latent image formed on the photoconductor 20K using black (K) toner. Details of the developing device 50K will be described later. The toner image formed on the photoreceptor 20K is primarily transferred to the intermediate transfer belt 70 by applying a transfer voltage between the primary transfer roller 61K and the photoreceptor 20K. The cleaning device 21K includes a cleaning blade 21Ka and a recovery unit 21Kb, and can recover the liquid developer on the photoreceptor 20K after the primary transfer.
現像装置Development device
 次に、本実施形態における現像装置50Kの構成について、図3を用いて説明する。現像装置50Kは、液体現像剤を担持して感光体20Kへと搬送する現像剤担持体としての現像ローラ54Kを有する。現像ローラ54Kの周囲には、現像剤槽53K、製膜電極51K、圧縮部材及び圧縮回転体としての絞りローラ52K、回収部材及び回収回転体としての現像クリーニングローラ58Kが配置されている。 Next, the configuration of the developing device 50K in the present embodiment will be described with reference to FIG. The developing device 50K includes a developing roller 54K as a developer carrying member that carries a liquid developer and conveys it to the photoreceptor 20K. Around the developing roller 54K, a developer tank 53K, a film forming electrode 51K, a compression roller and a squeezing roller 52K as a compression rotator, and a developing cleaning roller 58K as a recovery member and a recovery rotator are arranged.
 現像ローラ54Kは、液体現像剤を担持して回転し、感光体20Kと対向する現像位置で感光体20Kに担持された静電潜像をトナーにより現像する。現像ローラ54Kは、円筒状の部材であり、中心軸を中心に図3に矢印で示すように時計回りに回転する。現像ローラ54Kは、ステンレスなどの金属製の内芯の外周部に導電性ウレタンゴムなどの弾性体と樹脂層やゴム層を備えたものである。 The developing roller 54K rotates while carrying a liquid developer, and develops the electrostatic latent image carried on the photoconductor 20K with toner at a development position facing the photoconductor 20K. The developing roller 54K is a cylindrical member, and rotates clockwise around the central axis as indicated by an arrow in FIG. The developing roller 54K includes an elastic body such as conductive urethane rubber, a resin layer, and a rubber layer on the outer peripheral portion of a metal inner core such as stainless steel.
 現像剤槽53Kは、ブラックのトナー粒子をキャリア液に分散させた液体現像剤を貯蔵する。本実施形態で用いる液体現像剤は、樹脂中へ顔料などの着色料を分散させた例えば平均粒径0.8μmのトナー粒子を、有機溶媒などのキャリア液中に分散剤やトナー帯電制御剤、帯電指向剤とともに添加したものである。本実施形態では、液体現像剤中トナー粒子の濃度を例えば7重量%とした。また、本実施形態では、トナー粒子表面が負極性に一定量帯電している。 The developer tank 53K stores a liquid developer in which black toner particles are dispersed in a carrier liquid. The liquid developer used in the present embodiment is, for example, toner particles having an average particle diameter of 0.8 μm, in which a colorant such as a pigment is dispersed in a resin, in a carrier liquid such as an organic solvent, a dispersant, a toner charge control agent, It is added together with the charge directing agent. In this embodiment, the concentration of toner particles in the liquid developer is set to 7% by weight, for example. In this embodiment, the toner particle surface is charged with a certain amount of negative polarity.
 現像剤槽53Kに貯蔵される液体現像剤は、ミキサー200Kから供給される。ミキサー200Kは、例えば、補給用のキャリア液が貯蔵されたキャリアタンクと、補給用のトナーが貯蔵されたトナータンクから適宜、キャリア液とトナーが補給される。ミキサー200Kは、不図示のモータにより駆動される攪拌羽根が収容されており、供給されたキャリア液とトナーを攪拌することで混合し、キャリア液中にトナーを分散させている。 The liquid developer stored in the developer tank 53K is supplied from the mixer 200K. In the mixer 200K, for example, the carrier liquid and the toner are appropriately replenished from the carrier tank in which the replenishment carrier liquid is stored and the toner tank in which the replenishment toner is stored. The mixer 200K contains stirring blades that are driven by a motor (not shown), mixes the supplied carrier liquid and toner by stirring, and disperses the toner in the carrier liquid.
 このようなミキサー200K内には、液体現像剤の導電率を検知可能な導電率検知手段としての導電率センサ201Kが収容されている。そして、導電率センサ201Kの検知結果に基づいて、ミキサー200K内の液体現像剤の導電率が所定の範囲となるように、キャリア液やトナーの補給などを行うようにしている。例えば、ミキサー200K内の液体現像剤の導電率の所定の範囲は、10−11[S/cm]以上10−9[S/cm]以下としている。現像剤槽53Kにはミキサー200K内の液体現像剤が供給されるため、現像剤槽53Kに貯蔵された液体現像剤の導電率は、ミキサー200K内の液体現像剤の導電率とほぼ同じである。このため、導電率センサ201Kにより、現像剤槽53Kに貯蔵された液体現像剤の導電率が検知可能となる。なお、導電率センサは、現像剤槽53K内に直接設けても良い。 In such a mixer 200K, a conductivity sensor 201K is accommodated as a conductivity detecting means capable of detecting the conductivity of the liquid developer. Based on the detection result of the conductivity sensor 201K, the carrier liquid and toner are replenished so that the conductivity of the liquid developer in the mixer 200K falls within a predetermined range. For example, the predetermined range of the conductivity of the liquid developer in the mixer 200K is 10 −11 [S / cm] or more and 10 −9 [S / cm] or less. Since the liquid developer in the mixer 200K is supplied to the developer tank 53K, the conductivity of the liquid developer stored in the developer tank 53K is almost the same as the conductivity of the liquid developer in the mixer 200K. . Therefore, the conductivity of the liquid developer stored in the developer tank 53K can be detected by the conductivity sensor 201K. The conductivity sensor may be provided directly in the developer tank 53K.
 製膜電極51Kは、現像ローラ54Kと所定のギャップを介して配置され、製膜用電源12Kから所定の製膜電圧が印加されることで、所望のトナー濃度となるように液体現像剤を現像剤槽53Kから現像ローラ54Kに製膜させる。 The film forming electrode 51K is arranged with a predetermined gap from the developing roller 54K, and the liquid developer is developed so that a predetermined toner concentration is obtained by applying a predetermined film forming voltage from the film forming power source 12K. The film is formed on the developing roller 54K from the agent tank 53K.
 絞りローラ52Kは、現像ローラ54Kの回転方向に関して、製膜電極51Kの下流で現像位置の上流に配置され、現像ローラ54K上(現像剤担持体上)に製膜された液体現像剤中のトナー層を圧縮する。即ち、絞りローラ52Kは、絞り用電源13Kから所定の絞り電圧を印加されることで、現像ローラ54Kに製膜された液体現像剤に含まれるトナー粒子を現像ローラ54K側に寄せると同時に、余分なキャリア液を絞って回収する。 The squeezing roller 52K is disposed downstream of the film forming electrode 51K and upstream of the developing position with respect to the rotation direction of the developing roller 54K, and the toner in the liquid developer formed on the developing roller 54K (on the developer carrier). Compress the layer. In other words, the squeezing roller 52K is applied with a predetermined squeezing voltage from the squeezing power supply 13K, thereby bringing toner particles contained in the liquid developer formed on the developing roller 54K toward the developing roller 54K, and at the same time extra Squeeze and collect the appropriate carrier liquid.
 このような絞りローラ52Kは、金属からなる円筒状の部材であり、本実施形態ではステンレス鋼で作成されたローラを用いる。絞りローラ52Kは、現像ローラ54Kに当接され、中心軸を中心に図3に矢印で示すように反時計回りに回転する。現像剤槽53Kで汲み上げられ製膜電極51Kを通過した液体現像剤は、一定量、現像ローラ54Kに担持される。そのため、絞りローラ52Kと現像ローラ54Kとの当接部に所定速度で搬送された液体現像剤により、絞りローラ52Kと現像ローラ54Kとの間には、ギャップ略6μm、回転方向の幅略5mmのニップが安定的に形成される。 Such a squeeze roller 52K is a cylindrical member made of metal, and in this embodiment, a roller made of stainless steel is used. The squeezing roller 52K is in contact with the developing roller 54K and rotates counterclockwise around the central axis as shown by the arrow in FIG. A certain amount of the liquid developer pumped up in the developer tank 53K and passed through the film forming electrode 51K is carried on the developing roller 54K. Therefore, the liquid developer conveyed at a predetermined speed to the contact portion between the squeezing roller 52K and the developing roller 54K has a gap of approximately 6 μm and a rotational width of approximately 5 mm between the squeezing roller 52K and the developing roller 54K. A nip is stably formed.
 液体現像剤は、絞りローラ52Kと現像ローラ54Kとの間の出口付近で分離して、それぞれのローラに担持される。この際、詳しくは後述するように、液体現像剤が絞りローラ52Kと現像ローラ54Kとの間を通過する際に、液体現像剤中のトナーが現像ローラ54K側に寄るように、所定の電位差を両ローラ間に発生させている。このため、ローラ間を通過後の現像ローラ54K表面の液体現像剤中のトナー濃度は大幅に上昇し、例えば35重量%程度となる。なお、絞りローラ52Kに担持された液体現像剤は、ブレード56Kにより掻き取られる。 The liquid developer is separated in the vicinity of the exit between the squeezing roller 52K and the developing roller 54K and is carried on each roller. At this time, as will be described in detail later, when the liquid developer passes between the squeeze roller 52K and the developing roller 54K, a predetermined potential difference is set so that the toner in the liquid developer approaches the developing roller 54K side. It is generated between both rollers. For this reason, the toner concentration in the liquid developer on the surface of the developing roller 54K after passing between the rollers greatly increases, for example, about 35% by weight. The liquid developer carried on the squeeze roller 52K is scraped off by the blade 56K.
 現像クリーニングローラ58Kは、現像位置よりも現像ローラ54Kの回転方向下流側に配置され、電位差印加手段としての回収用電源14Kから回収電圧が印加されることで、現像位置を通過した現像ローラ54K上に残ったトナーを回収する。即ち、現像クリーニングローラ58Kは、現像ローラ54Kとの間に回収電位差が印加されることで、現像ローラ54K上のトナーを回収する。現像クリーニングローラ58Kは、現像ローラ54Kの表面に当接して、図3の矢印で示す反時計方向に回転するもので、例えばステンレス鋼製或いはアルミニウム製のローラである。 The developing cleaning roller 58K is disposed downstream of the developing position in the rotation direction of the developing roller 54K, and is applied with a recovery voltage from a recovery power supply 14K as a potential difference applying unit. The remaining toner is collected. That is, the developing cleaning roller 58K collects the toner on the developing roller 54K by applying a recovery potential difference to the developing roller 54K. The developing cleaning roller 58K is in contact with the surface of the developing roller 54K and rotates counterclockwise as indicated by an arrow in FIG. 3, and is, for example, a stainless steel or aluminum roller.
 回収用電源14Kは、現像ローラ54Kと現像クリーニングローラ58Kとの間に回収電圧を可変に印加可能である。言い換えれば、回収用電源14Kは、現像クリーニングローラ58Kと現像ローラ54Kとの間の回収電位差を可変に印加可能である。これにより、詳しくは後述するように、現像ローラ54K上のトナーが現像クリーニングローラ58Kに寄るような電位差(即ち、回収電位差)を両ローラ間に発生させている。そして、現像ローラ54K表面上に残存するトナーを現像クリーニングローラ58Kで回収することで除去する。 The recovery power source 14K can variably apply a recovery voltage between the developing roller 54K and the developing cleaning roller 58K. In other words, the recovery power source 14K can variably apply the recovery potential difference between the development cleaning roller 58K and the development roller 54K. Thus, as will be described in detail later, a potential difference (that is, a recovery potential difference) is generated between the two rollers so that the toner on the developing roller 54K approaches the developing cleaning roller 58K. Then, the toner remaining on the surface of the developing roller 54K is removed by being collected by the developing cleaning roller 58K.
 現像クリーニングローラ58Kで回収されたトナーは、クリーニング手段としてのクリーニングブレード59Kにより除去される。クリーニングブレード59Kは、現像クリーニングローラ58Kの回転方向に関し、現像ローラ54Kと対向する位置よりも下流に現像クリーニングローラ58Kと当接するように配置されている。そして、トナーが除去された現像クリーニングローラ58Kは、再度、現像ローラ54Kからのトナーの除去を行う。クリーニングブレード59Kは、厚み0.2mmのアルミニウム製であり、現像クリーニングローラ58Kにカウンター方向に当設している。 The toner collected by the developing cleaning roller 58K is removed by a cleaning blade 59K as a cleaning means. The cleaning blade 59K is disposed so as to contact the developing cleaning roller 58K downstream of the position facing the developing roller 54K with respect to the rotation direction of the developing cleaning roller 58K. The developing cleaning roller 58K from which the toner has been removed again removes the toner from the developing roller 54K. The cleaning blade 59K is made of aluminum having a thickness of 0.2 mm, and is in contact with the developing cleaning roller 58K in the counter direction.
現像装置および画像形成装置の動作Operation of developing device and image forming apparatus
 次にこのような現像装置とそれを用いた画像形成装置の動作について説明する。引き続き、現像装置は、現像装置50Kを例にとり図3を用いて説明する。現像ローラ54Kには、現像用電源11Kにより、例えば−400Vの現像電圧が印加されている。ミキサー200Kより現像剤槽53Kに供給された液体現像剤の大半は、製膜電極51Kと現像ローラ54Kのギャップへと供給される。なお、ミキサー200K内の液体現像剤の導電率は、上述のように導電率センサ201Kにより検知されている。 Next, the operation of such a developing device and an image forming apparatus using the developing device will be described. Subsequently, the developing device will be described with reference to FIG. 3 taking the developing device 50K as an example. For example, a developing voltage of −400 V is applied to the developing roller 54K by the developing power supply 11K. Most of the liquid developer supplied from the mixer 200K to the developer tank 53K is supplied to the gap between the film forming electrode 51K and the developing roller 54K. Note that the conductivity of the liquid developer in the mixer 200K is detected by the conductivity sensor 201K as described above.
 現像ローラ54K表面には、製膜電極51Kを通過する際に液体現像剤が担持される。製膜電極51Kには、製膜用電源12Kにより、例えば−600Vの製膜電圧が印加されており、製膜電極51Kと現像ローラ54Kとの電位差により、ネガに帯電したトナーは、現像ローラ54K側に圧縮されて担持される。 A liquid developer is carried on the surface of the developing roller 54K when passing through the film forming electrode 51K. A film-forming voltage of −600 V, for example, is applied to the film-forming electrode 51K by the film-forming power source 12K, and the negatively charged toner due to the potential difference between the film-forming electrode 51K and the developing roller 54K is the developing roller 54K. Compressed and supported on the side.
 製膜電極51K出口近傍において、液体現像剤は現像ローラ54K表面に連れまわるものと、製膜電極51K背面に流れ落ちるものとに別れる。液体現像剤を担持した現像ローラ54Kは、次に絞りローラ52Kに当接し、絞りローラ52Kが現像ローラ54K表面に対して等速で連れまわり方向に回転する。 In the vicinity of the outlet of the film forming electrode 51K, the liquid developer is divided into one that moves along the surface of the developing roller 54K and one that flows down to the back surface of the film forming electrode 51K. The developing roller 54K carrying the liquid developer then comes into contact with the squeezing roller 52K, and the squeezing roller 52K rotates in the follower direction at a constant speed with respect to the surface of the developing roller 54K.
 絞りローラ52Kには、絞り用電源13Kにより現像ローラ54Kに印加される現像電圧より絶対値で50~120V高い絞り電圧が印加される。つまり、現像ローラ54Kに印加される現像電圧が−400Vなら、絞りローラ52Kに印加する絞り電圧は−450~−520Vとなる。この絞りローラ52Kの作用により、現像ローラ54K上には、トナー濃度35重量%前後の液体現像剤の薄層コートが形成される。その後、現像ローラ54Kの回転によって、薄層コートは感光体20Kとの間の現像位置に移動する。 A diaphragm voltage that is 50 to 120 V higher in absolute value than the developing voltage applied to the developing roller 54K by the diaphragm power source 13K is applied to the diaphragm roller 52K. That is, if the developing voltage applied to the developing roller 54K is −400V, the diaphragm voltage applied to the diaphragm roller 52K is −450 to −520V. By the action of the squeezing roller 52K, a thin layer coat of liquid developer having a toner concentration of about 35% by weight is formed on the developing roller 54K. Thereafter, the thin coat is moved to the developing position with respect to the photoreceptor 20K by the rotation of the developing roller 54K.
 なお、図示は省略するが、製膜電極51K背面に流れ落ちる液体現像剤は現像桶に落下し、その後、ミキサー200Kなどでトナー濃度が調整され、再度、現像剤槽53Kに供給される。 Although illustration is omitted, the liquid developer flowing down to the back surface of the film forming electrode 51K falls on the developing trough, and then the toner concentration is adjusted by the mixer 200K or the like, and is supplied again to the developer tank 53K.
 現像位置通過後の現像ローラ54Kは、次に、現像クリーニングローラ58Kと当設する。現像クリーニングローラ58Kには、回収用電源14Kにより、例えば−250Vの回収電圧が印加されている。現像クリーニングローラ58Kと現像ローラ54Kとの電位差により、現像位置で現像しなかったトナーは現像クリーニングローラ58Kに電気泳動する。そして、そのトナーは、クリーニングブレード59Kにより掻き取られる。本実施形態では、回収用電源14Kにより印加する回収電圧は、後述する制御で変更可能である。 The developing roller 54K after passing through the developing position is next brought into contact with the developing cleaning roller 58K. For example, a recovery voltage of −250 V is applied to the developing cleaning roller 58K by the recovery power source 14K. Due to the potential difference between the developing cleaning roller 58K and the developing roller 54K, the toner that has not been developed at the developing position is electrophoresed on the developing cleaning roller 58K. Then, the toner is scraped off by the cleaning blade 59K. In the present embodiment, the recovery voltage applied by the recovery power supply 14K can be changed by the control described later.
 次に、画像形成装置全体の動作について、図1及び図2を用いて説明する。感光体20Kは、本実施形態ではアモルファスシリコンを用いている。感光体20Kの表面は、コロナ帯電器である帯電装置30Kのワイヤに約−4.5kV~−5.5kVを印加することにより、略−800Vに帯電する。帯電後、露光装置40Kにより画像部の電位が略50Vとなるように静電潜像が形成される。 Next, the operation of the entire image forming apparatus will be described with reference to FIGS. In the present embodiment, the photoconductor 20K uses amorphous silicon. The surface of the photoreceptor 20K is charged to about −800 V by applying about −4.5 kV to −5.5 kV to the wire of the charging device 30K that is a corona charger. After charging, an electrostatic latent image is formed by the exposure device 40K so that the potential of the image portion is approximately 50V.
 現像位置における現像ローラ54Kと感光体20Kとの間には、現像ローラ54Kに印加されている現像電圧−400Vと感光体20K上の静電潜像の電位(画像部−50V、非画像部−800V)との電位差で電界が形成される。そして、形成された電界にしたがい、選択的にトナー粒子が感光体20K上の画像部へと移動する。これにより、感光体20K上にトナー像が形成される。キャリア液は、電界の影響を受けないため、現像位置における現像ローラ54Kと感光体20Kとの間の出口で分離し、現像ローラ54Kと感光体20Kとの両方に付着する。 Between the developing roller 54K and the photosensitive member 20K at the developing position, the developing voltage -400V applied to the developing roller 54K and the potential of the electrostatic latent image on the photosensitive member 20K (image portion -50V, non-image portion- An electric field is formed with a potential difference of 800V). Then, according to the formed electric field, the toner particles selectively move to the image portion on the photoconductor 20K. As a result, a toner image is formed on the photoreceptor 20K. Since the carrier liquid is not affected by the electric field, it is separated at the outlet between the developing roller 54K and the photosensitive member 20K at the developing position, and adheres to both the developing roller 54K and the photosensitive member 20K.
 現像位置を通過した感光体20Kは、中間転写ベルト70とのニップ部である一次転写部に到達し、感光体20K上に形成されたトナー像が中間転写ベルト70に一次転写される。この際、一次転写ローラ61Kには、トナー粒子の帯電特性と逆極性の約+200Vの一次転写電圧が印加されており、感光体20K上のトナー粒子は、中間転写ベルト70に一次転写され、感光体20Kにはキャリア液のみが残る。感光体20K上に残ったキャリア液は、一次転写部T1K下流のクリーニング装置21Kのクリーニングブレード21Kaにより掻き取られ、回収部21Kbで回収される。 The photosensitive member 20K that has passed the development position reaches a primary transfer portion that is a nip portion with the intermediate transfer belt 70, and a toner image formed on the photosensitive member 20K is primarily transferred to the intermediate transfer belt 70. At this time, the primary transfer roller 61K is applied with a primary transfer voltage of about +200 V having a polarity opposite to the charging characteristics of the toner particles, and the toner particles on the photoconductor 20K are primarily transferred to the intermediate transfer belt 70 to be photosensitive. Only the carrier liquid remains on the body 20K. The carrier liquid remaining on the photoconductor 20K is scraped off by the cleaning blade 21Ka of the cleaning device 21K downstream of the primary transfer portion T1K and recovered by the recovery portion 21Kb.
 中間転写ベルト70上に一次転写されたトナー像は、二次転写部T2へ向かう。二次転写部T2において、二次転写外ローラ81には+1000Vの二次転写電圧が印加され、二次転写内ローラ86は0Vに保たれており、中間転写ベルト70上のトナー粒子は、二次転写部T2に搬送された記録材の表面に二次転写される。 The toner image primarily transferred onto the intermediate transfer belt 70 goes to the secondary transfer portion T2. In the secondary transfer portion T2, a secondary transfer voltage of +1000 V is applied to the secondary transfer outer roller 81, the secondary transfer inner roller 86 is maintained at 0 V, and the toner particles on the intermediate transfer belt 70 are Secondary transfer is performed on the surface of the recording material conveyed to the next transfer portion T2.
 このような画像形成装置による画像形成動作では、現像ローラ54Kから感光体20Kへの移動を含む、これ以降のそれぞれのトナー粒子移動プロセスにおけるトナーの移動効率は略95%以上と極めて高くなるよう調整してある。そのため、各現像装置50Y、50M、50C、50Kにおいては、感光体20Y、20M、20C、20Kに現像される前の現像ローラ54Y、54M、54C、54K上の液体現像剤中に含まれるトナー量を精度よく安定させることが望まれる。これにより、記録材上に出力される画像の画質安定化を図れる。 In such an image forming operation by the image forming apparatus, the toner transfer efficiency in each subsequent toner particle transfer process including the transfer from the developing roller 54K to the photosensitive member 20K is adjusted to be extremely high, approximately 95% or more. It is. Therefore, in each of the developing devices 50Y, 50M, 50C, and 50K, the amount of toner contained in the liquid developer on the developing rollers 54Y, 54M, 54C, and 54K before being developed on the photoconductors 20Y, 20M, 20C, and 20K. Is desired to be stabilized with high accuracy. Thereby, the image quality of the image output on the recording material can be stabilized.
製膜Film formation
 次に、製膜電極51kによる現像ローラ54Kへの液体現像剤の製膜について、図4及び図5(a)~(c)を用いて詳しく説明する。上述のように、それぞれの現像装置50Y、50M、50C、50Kにおいて、現像ローラ54Y、54M、54C、54K上に液体現像剤の製膜を行うために、製膜電極51Y、51M、51C、51Kに製膜電圧が印加される。製膜電極51Y、51M、51C、51Kと現像ローラ54Y、54M、54C、54Kのギャップは、それぞれ400μmになるように設定されている。引き続き、現像装置50Kを例にとり説明する。 Next, film formation of the liquid developer onto the developing roller 54K by the film forming electrode 51k will be described in detail with reference to FIGS. 4 and 5A to 5C. As described above, in each of the developing devices 50Y, 50M, 50C, and 50K, the film forming electrodes 51Y, 51M, 51C, and 51K are used to form the liquid developer on the developing rollers 54Y, 54M, 54C, and 54K. A film forming voltage is applied to the substrate. The gaps between the film forming electrodes 51Y, 51M, 51C, and 51K and the developing rollers 54Y, 54M, 54C, and 54K are set to be 400 μm, respectively. Next, the developing device 50K will be described as an example.
 まず、図4を用いて、製膜電極51Kでの製膜の概念を説明する。なお、図4では、説明のために、製膜電極51Kと現像ローラ54Kとのギャップを大きく示している。製膜電極51Kと現像ローラ54Kとの間の製膜エリアの入り口部(図中では下部)では、トナー(黒丸で表示)は略均一に分散している。製膜エリアの下流(図中では上部)に行くに従い、前述したように、製膜電圧の印加によりトナーが徐々に現像ローラ54Kへと移動していく。トナーを含んだ液体現像剤が図中で上に行くのは、現像ローラ54Kの回転に伴い持ち上げられるためである。製膜エリアでは、トナーが現像ローラ54Kの回転に沿って移動する方向と、トナーが電界により現像ローラ54Kに移動していく方向の二つの方向の流れが存在する。 First, the concept of film formation with the film forming electrode 51K will be described with reference to FIG. In FIG. 4, for the sake of explanation, the gap between the film forming electrode 51K and the developing roller 54K is shown large. At the entrance (in the drawing, the lower part) of the film forming area between the film forming electrode 51K and the developing roller 54K, the toner (indicated by black circles) is distributed substantially uniformly. As described above, the toner gradually moves to the developing roller 54K by applying the film forming voltage as it goes downstream (upper part in the drawing) of the film forming area. The reason why the liquid developer containing toner goes upward in the drawing is that it is lifted as the developing roller 54K rotates. In the film forming area, there are two directions of flow: a direction in which the toner moves along the rotation of the developing roller 54K, and a direction in which the toner moves to the developing roller 54K by an electric field.
 このように、製膜エリアでは、トナーが現像ローラ54Kに寄っていくが、寄ったトナーのうちで現像ローラ54Kと絞りローラ52Kのギャップよりも現像ローラ54Kに寄ったトナーが絞りローラ52Kとの間を抜けて、薄膜が製膜される。絞りローラ52Kは現像ローラ54Kを押圧して現像ローラ54K上の現像剤を規制する規制ローラである。この薄膜の模式図を図5に示す。なお、図5では、トナーを白丸で示す。図5(a)は、現像ローラ54K上に適切に製膜された場合を示す。図5(b)は、絞りローラ52Kでの電界が強すぎてトナーが現像ローラ54K上で圧縮され過ぎた状態、即ち、圧縮過多で製膜された場合を示す。図5(c)は、逆に絞りローラ52Kでの電界が弱すぎてトナーが現像ローラ54K上で圧縮不足で製膜された場合を示す。 As described above, in the film forming area, the toner approaches the developing roller 54K. Among the offset toners, the toner closer to the developing roller 54K than the gap between the developing roller 54K and the squeezing roller 52K is in contact with the squeezing roller 52K. After a short time, a thin film is formed. The aperture roller 52K is a regulating roller that presses the developing roller 54K and regulates the developer on the developing roller 54K. A schematic diagram of this thin film is shown in FIG. In FIG. 5, the toner is indicated by white circles. FIG. 5A shows a case where the film is appropriately formed on the developing roller 54K. FIG. 5B shows a state where the electric field at the squeeze roller 52K is too strong and the toner is compressed too much on the developing roller 54K, that is, when the film is formed due to excessive compression. FIG. 5C shows a case where the electric field on the squeezing roller 52K is too weak and toner is formed on the developing roller 54K due to insufficient compression.
 図5(c)のように、圧縮が弱い場合は、トナーが絞りローラ52Kを抜ける際に生じる乱流などの影響によりトナー層が均一に形成されず、不均一な画像が形成されてしまう。一方、図5(b)のように、圧縮過多の場合は、図で見ても分かるように、製膜では特に問題はなく、良好な均一な製膜が達成される。ここで、図5(a)のように、非常に良好な状態の製膜を常に維持することは難しい。このため、本実施形態では、図5(a)、(b)のように、圧縮が正常な状態、或いは、圧縮過多の状態になるように絞りローラ52Kと現像ローラ54Kとの間に電界を形成し、良好な均一な製膜を得るようにしている。しかしながら、図5(b)のように圧縮過多の場合には、現像クリーニングローラ58Kにおけるトナーの回収工程(クリーニング工程)で次のような問題が生じる虞がある。この点について説明する。 As shown in FIG. 5C, when the compression is weak, the toner layer is not uniformly formed due to the influence of turbulence generated when the toner passes through the squeeze roller 52K, and a non-uniform image is formed. On the other hand, as shown in FIG. 5B, in the case of excessive compression, as can be seen from the drawing, there is no particular problem in film formation, and good uniform film formation is achieved. Here, as shown in FIG. 5A, it is difficult to always maintain a very good film formation. For this reason, in this embodiment, as shown in FIGS. 5A and 5B, an electric field is applied between the squeezing roller 52K and the developing roller 54K so that the compression is normal or excessively compressed. It is formed so as to obtain a good uniform film formation. However, in the case of excessive compression as shown in FIG. 5B, the following problem may occur in the toner recovery process (cleaning process) in the developing cleaning roller 58K. This point will be described.
現像CLN残効率と現像CLNブレード残効率Development CLN residual efficiency and development CLN blade residual efficiency
 まず、現像ローラ54K上に形成された薄膜のトナー層は、画像信号に応じて、感光体20K上の静電潜像への現像に寄与したり、寄与しなかったりする。現像に寄与しなかったトナーは現像クリーニングローラ58Kにて現像ローラ54Kから除去される。ここでは、現像に寄与しなかったトナーが現像クリーニングローラ58Kにて現像ローラ54Kから除去される工程を説明する。 First, the thin toner layer formed on the developing roller 54K may or may not contribute to the development of the electrostatic latent image on the photoreceptor 20K according to the image signal. The toner that has not contributed to the development is removed from the developing roller 54K by the developing cleaning roller 58K. Here, a process in which toner that has not contributed to development is removed from the developing roller 54K by the developing cleaning roller 58K will be described.
 感光体20Kの現像されないエリアでは、トナーに対して、現像ローラ54Kに向かう方向の電界がかかっている。そのことにより、現像ローラ54K上のトナー層は、より圧縮される。その後、現像クリーニングローラ58Kと現像ローラ54Kの間の電位差で電気泳動し、トナーは現像クリーニングローラ58Kへ移動する。次に、現像クリーニングローラ58K上のトナーはクリーニングブレード59Kに掻き取られる。 In the undeveloped area of the photoreceptor 20K, an electric field in the direction toward the developing roller 54K is applied to the toner. As a result, the toner layer on the developing roller 54K is further compressed. Thereafter, electrophoresis is caused by a potential difference between the developing cleaning roller 58K and the developing roller 54K, and the toner moves to the developing cleaning roller 58K. Next, the toner on the developing cleaning roller 58K is scraped off by the cleaning blade 59K.
 ここで、現像クリーニングローラ58Kを通過する際の現像ローラ54K上のトナーのうち、現像クリーニングローラ58Kに移動せずに現像ローラ54K上に残ってしまったトナーの割合(%)を現像CLN残効率と呼ぶこととする。現像CLN残効率は0%が望ましく、0%の場合、現像ローラ54K上の全てのトナーが現像クリーニングローラ58Kにより除去されたことになる。 Here, the ratio (%) of the toner remaining on the developing roller 54K without moving to the developing cleaning roller 58K out of the toner on the developing roller 54K when passing through the developing cleaning roller 58K is the development CLN residual efficiency. I will call it. The development CLN residual efficiency is desirably 0%, and when it is 0%, all the toner on the development roller 54K has been removed by the development cleaning roller 58K.
 また、現像クリーニングローラ58K上のトナーのうち、クリーニングブレード59Kに掻き取られずに、現像クリーニングローラ58K上に残ってしまったトナーの割合(%)を、現像CLNブレード残効率と呼ぶこととする。 Further, the ratio (%) of the toner remaining on the developing cleaning roller 58K without being scraped off by the cleaning blade 59K out of the toner on the developing cleaning roller 58K is referred to as developing CLN blade remaining efficiency.
 図6に、現像クリーニングローラ58Kと現像ローラ54Kとの間の電位差(回収電位差、以下、現像クリーニングコントラスト)を変えた時の、現像CLN残効率と、現像CLNブレード残効率の関係を示す。Y1軸に現像CLN残効率を実線で、Y2軸に現像CLNブレード残効率を点線で示す。図に示すように、現像クリーニングコントラストが小さい時には、現像CLN残効率が高く、多くのトナーが現像ローラ54K上に残ってしまう。 FIG. 6 shows the relationship between the development CLN residual efficiency and the development CLN blade residual efficiency when the potential difference between the development cleaning roller 58K and the development roller 54K (recovery potential difference, hereinafter referred to as development cleaning contrast) is changed. The development CLN residual efficiency is indicated by a solid line on the Y1 axis, and the development CLN blade residual efficiency is indicated by a dotted line on the Y2 axis. As shown in the figure, when the development cleaning contrast is small, the development CLN residual efficiency is high, and a large amount of toner remains on the development roller 54K.
 このため、現像CLN残効率としては、現像クリーニングコントラストを上げていくほど望ましいが、上げすぎると、現像CLNブレード残効率が高くなってしまう。即ち、現像クリーニングコントラストを高くし過ぎると、現像クリーニングローラ58K側にトナーがより寄せられることで、現像クリーニングローラ58K上のトナー層の圧縮が過多になる。この結果、現像クリーニングローラ58Kにより現像クリーニングローラ58K上のトナーを掻き取りにくくなり、現像クリーニングローラ58K上に多くのトナーが残り易くなる。したがって、本実施形態では、この二つの残効率が略0になる範囲内に現像クリーニングコントラストを設定する。それを図中では適正範囲として示している。 For this reason, it is desirable that the development CLN residual efficiency is increased as the development cleaning contrast is increased. However, if the development CLN residual efficiency is excessively increased, the development CLN blade residual efficiency is increased. In other words, if the development cleaning contrast is too high, the toner is brought closer to the development cleaning roller 58K, and the toner layer on the development cleaning roller 58K is excessively compressed. As a result, it becomes difficult for the developing cleaning roller 58K to scrape off the toner on the developing cleaning roller 58K, and a lot of toner tends to remain on the developing cleaning roller 58K. Therefore, in this embodiment, the development cleaning contrast is set within a range in which the two remaining efficiencies are substantially zero. This is shown as an appropriate range in the figure.
 より詳しく説明する。前述のように、現像クリーニングローラ58Kと現像ローラ54Kの間の電位差で現像ローラ54K上のトナーは電気泳動するため、この間には所定の電位差が必要である。また、現像クリーニングコントラストを上げていった場合には、現像クリーニングローラ58K上のトナー層の圧縮状態が、図5(a)~(c)で示した場合と同様に変化する。そして、過度に現像クリーニングコントラストを上げた場合には、図5(b)で示した場合と同様に、トナー層が高い圧縮状態となる。この結果、現像クリーニングローラ58K上のトナー層は、クリーニングブレード59Kをすり抜けてしまう。 More detailed explanation. As described above, since the toner on the developing roller 54K is electrophoresed by the potential difference between the developing cleaning roller 58K and the developing roller 54K, a predetermined potential difference is required between them. When the development cleaning contrast is increased, the compression state of the toner layer on the development cleaning roller 58K changes in the same manner as in the cases shown in FIGS. When the development cleaning contrast is excessively increased, the toner layer is in a highly compressed state as in the case shown in FIG. As a result, the toner layer on the developing cleaning roller 58K slips through the cleaning blade 59K.
 その模式図を図7(a)、(b)に示す。図7(a)は、現像クリーニングローラ58K上のトナー層の圧縮状態が適正な場合を、図7(b)は、圧縮過多な場合を示している。なお、図7では、トナーを白丸で示す。図からも分かるように、圧縮が適正な状態では、現像クリーニングローラ58K上のトナー層は、クリーニングブレード59Kにより良好に掻き取られる。これに対して、圧縮が過多の場合には、現像クリーニングローラ58K上のトナー層がクリーニングブレード59Kを押しのけて、トナーのすり抜けが発生してしまう。
[トナー層の圧縮状態と現像クリーニングコントラストの関係]
The schematic diagram is shown in FIGS. 7 (a) and 7 (b). FIG. 7A shows a case where the toner layer on the developing cleaning roller 58K is in an appropriate compression state, and FIG. 7B shows a case where the compression is excessive. In FIG. 7, the toner is indicated by white circles. As can be seen from the figure, when the compression is appropriate, the toner layer on the developing cleaning roller 58K is scraped off satisfactorily by the cleaning blade 59K. On the other hand, if the compression is excessive, the toner layer on the developing cleaning roller 58K pushes the cleaning blade 59K and the toner slips out.
[Relationship between compressed state of toner layer and development cleaning contrast]
 一方で、現像ローラ54K上に形成されたトナー層の圧縮状態によって、図6で示した現像クリーニングコントラストに対するクリーニング特性が異なる。例えば、圧縮が過多のトナー層を現像クリーニングローラ58Kに電気泳動させるためには、圧縮に打ち勝つだけの電界が必要となる。ここで、図5(a)、(b)で示したような圧縮良好時と過多時の、現像クリーニングコントラストに対するクリーニング特性を図8に示す。 On the other hand, the cleaning characteristics for the development cleaning contrast shown in FIG. 6 differ depending on the compression state of the toner layer formed on the developing roller 54K. For example, in order to cause the toner layer that is excessively compressed to be electrophoresed on the developing cleaning roller 58K, an electric field sufficient to overcome the compression is required. Here, FIG. 8 shows the cleaning characteristics with respect to the development cleaning contrast when compression is good and excessive as shown in FIGS. 5 (a) and 5 (b).
 図8は、現像クリーニングコントラストを変えた時の、現像CLN残効率と、現像CLNブレード残効率の関係を示す。Y1軸に現像CLN残効率を太線で、Y2軸に現像CLNブレード残効率を細線で示す。図中の実線は、現像ローラ54K上のトナー層の圧縮が良好な場合を、点線は、現像ローラ54K上のトナー層の圧縮が過多な場合をそれぞれ示す。図からも分かるように、現像ローラ54K上のトナーの圧縮状態によって、現像クリーニングコントラストの適正範囲が異なる。 FIG. 8 shows the relationship between the development CLN residual efficiency and the development CLN blade residual efficiency when the development cleaning contrast is changed. The developed CLN remaining efficiency is indicated by a thick line on the Y1 axis, and the developed CLN blade remaining efficiency is indicated by a thin line on the Y2 axis. The solid line in the figure indicates the case where the toner layer on the developing roller 54K is well compressed, and the dotted line indicates the case where the toner layer on the developing roller 54K is excessively compressed. As can be seen from the figure, the appropriate range of the development cleaning contrast varies depending on the compression state of the toner on the development roller 54K.
 本実施形態では、現像ローラ54K上のトナー層の圧縮状態に応じて、現像クリーニングコントラストを変化させることで、良好な現像ローラ54からのクリーニング、及び、現像クリーニングローラ58Kからのクリーニングを行うようにしている。特にトナー層の圧縮が過多になるほど、現像クリーニングコントラストを上げるようにしている。 In the present embodiment, by changing the development cleaning contrast according to the compression state of the toner layer on the development roller 54K, good cleaning from the development roller 54 and cleaning from the development cleaning roller 58K are performed. ing. In particular, the developer cleaning contrast is increased as the toner layer is excessively compressed.
トナー層の圧縮状態の予測Prediction of toner layer compression
 本実施形態では、上述のようにトナー層の圧縮状態に応じて現像クリーニングコントラストを制御するが、現像ローラ54K上のトナー層の圧縮状態を直接に検知することは困難である。しかし、トナー層の圧縮は、前述のように、現像ローラ54Kと絞りローラ52Kとの間でのトナーの移動で決まる。そのため、その移動を検知ないしは予測することでトナーの圧縮状態を予測することが可能である。 In this embodiment, the development cleaning contrast is controlled according to the compressed state of the toner layer as described above, but it is difficult to directly detect the compressed state of the toner layer on the developing roller 54K. However, as described above, the compression of the toner layer is determined by the movement of the toner between the developing roller 54K and the squeezing roller 52K. Therefore, the toner compression state can be predicted by detecting or predicting the movement.
 この点について、図9を用いて説明する。トナーが有する電荷量をQ、トナーにかかる電界による力をFとし、現像ローラ54Kと絞りローラ52Kとのギャップをd、現像ローラ54Kと絞りローラ52Kとの間の電位差をΔV、電界をEとすると、式1が成り立つ。
F=Q×E=Q×ΔV/d   ・・・(式1)
This point will be described with reference to FIG. The charge amount of the toner is Q, the force due to the electric field applied to the toner is F, the gap between the developing roller 54K and the squeezing roller 52K is d, the potential difference between the developing roller 54K and the squeezing roller 52K is ΔV, and the electric field is E. Then, Formula 1 is established.
F = Q × E = Q × ΔV / d (Formula 1)
 トナーにより大きな力がかかるとトナーは現像ローラ54Kに寄ることから、現像ローラ54K上のトナー層の圧縮状態は高くなる。つまり、トナーの電荷量Q、現像ローラ54Kと絞りローラ52Kの電位差ΔVでトナー層の圧縮状態が決まる。本実施形態では、トナーの電荷量Qを検知することで、トナーの圧縮状態を予測する。 When a large force is applied to the toner, the toner approaches the developing roller 54K, and the compressed state of the toner layer on the developing roller 54K becomes high. That is, the toner layer compression state is determined by the toner charge amount Q and the potential difference ΔV between the developing roller 54K and the squeezing roller 52K. In this embodiment, the toner compression state is predicted by detecting the charge amount Q of the toner.
 トナーの電荷量Qは、ミキサー200K内の導電率センサ201Kで検知している。ミキサー200Kは、上述のように、液体現像剤を貯蔵し、現像剤槽53Kを経由し、製膜電極51Kに液体現像剤を供給するものである。トナーの電荷量は、液体現像剤の導電性に影響を与えるため、液体現像剤の導電率は、トナーの電荷量と相関がある。ミキサー200K内の液体現像剤のトナー濃度及び液体現像剤量はほぼ一定となるように制御されている。そのため、ミキサー200K内の液体現像剤の導電率の測定結果は、トナー粒子の電荷と相関があるものとなる。 The toner charge amount Q is detected by a conductivity sensor 201K in the mixer 200K. As described above, the mixer 200K stores the liquid developer and supplies the liquid developer to the film forming electrode 51K via the developer tank 53K. Since the charge amount of the toner affects the conductivity of the liquid developer, the conductivity of the liquid developer has a correlation with the charge amount of the toner. The toner concentration and the liquid developer amount of the liquid developer in the mixer 200K are controlled to be substantially constant. Therefore, the measurement result of the conductivity of the liquid developer in the mixer 200K has a correlation with the charge of the toner particles.
 ここで、ミキサー200K内のトナー濃度が変わると、液体現像剤中のトナーの量が変化しているため、ミキサー200K内の導電率の変化が、トナーの量の違いによる電荷量の違いなのか、トナー粒子の電荷量の違いかが分からなくなる。しかしながら、ミキサー200K内のトナー濃度及び液体現像剤の量は、ほぼ一定であるため、ミキサー200K内の導電率の変化は、トナーの電荷量の変化とみなすことができる。このため、本実施形態では、導電率センサ201Kの検知結果から現像ローラ54K上のトナー層の圧縮状態を予測することとしている。したがって、導電率センサ201Kが、絞りローラ52Kと現像ローラ54Kとの間を通過した現像ローラ54K上のトナー層の圧縮状態に関する情報を取得可能な取得手段に相当する。 Here, if the toner concentration in the mixer 200K changes, the amount of toner in the liquid developer changes, so whether the change in conductivity in the mixer 200K is a difference in charge amount due to the difference in toner amount. The difference in the charge amount of the toner particles cannot be understood. However, since the toner concentration and the amount of liquid developer in the mixer 200K are substantially constant, the change in the conductivity in the mixer 200K can be regarded as a change in the charge amount of the toner. For this reason, in this embodiment, the compressed state of the toner layer on the developing roller 54K is predicted from the detection result of the conductivity sensor 201K. Therefore, the conductivity sensor 201K corresponds to an acquisition unit that can acquire information regarding the compression state of the toner layer on the developing roller 54K that has passed between the aperture roller 52K and the developing roller 54K.
 なお、トナー濃度が変わっても、その量を鑑みて、トナー粒子の電荷量を計算することは可能である。したがって、ミキサー200K内のトナー濃度を検知するトナー濃度センサ202K(後述する図11参照)の検知結果と、液体現像剤の導電率の検知結果とから、トナーの電荷量を計算して、トナーの圧縮状態を予測しても良い。 Note that even if the toner concentration changes, it is possible to calculate the charge amount of the toner particles in view of the amount. Therefore, the toner charge amount is calculated from the detection result of the toner density sensor 202K (see FIG. 11 described later) for detecting the toner density in the mixer 200K and the detection result of the conductivity of the liquid developer, The compression state may be predicted.
液体現像剤の導電率と現像クリーニングコントラストの関係Relationship between conductivity of liquid developer and development cleaning contrast
 次に、導電率センサ201Kにより検知する液体現像剤の導電率と現像クリーニングコントラストの関係について、図10を用いて説明する。図10は、導電率センサ201Kの測定結果である液体現像剤の導電率(S/cm)と現像クリーニングコントラストの関係を示す。導電率が上がるにつれ、トナー粒子の電荷量が増え、トナーが現像ローラ54Kと絞りローラ52Kとの間の電界による力を受けるため、トナーがより現像ローラ54K側に移動し、トナー層の圧縮状態が高くなる。 Next, the relationship between the conductivity of the liquid developer detected by the conductivity sensor 201K and the development cleaning contrast will be described with reference to FIG. FIG. 10 shows the relationship between the conductivity (S / cm) of the liquid developer and the development cleaning contrast, which is the measurement result of the conductivity sensor 201K. As the conductivity increases, the charge amount of the toner particles increases, and the toner is subjected to a force due to the electric field between the developing roller 54K and the squeezing roller 52K, so that the toner moves further toward the developing roller 54K and the toner layer is compressed. Becomes higher.
 この場合、前述のように圧縮状態からの電気泳動となるため、より高い現像クリーニングコントラストを印加しないと、現像CLN残効率が高くなってしまう(現像CLN残効率NG)。即ち、図10の線αよりも下方の範囲は、現像CLN残効率NGとなる。一方、高い現像クリーニングコントラストを印加した場合には、現像クリーニングローラ58K上のトナー層がより圧縮されるため、クリーニングブレード59Kでのクリーニングが困難となる(現像CLNブレード残効率NG)。即ち、図10の線βよりも上方の範囲は、現像CLNブレード残効率NGとなる。 In this case, since the electrophoresis is performed from the compressed state as described above, the development CLN residual efficiency becomes high (development CLN residual efficiency NG) unless a higher development cleaning contrast is applied. That is, the range below the line α in FIG. 10 is the development CLN residual efficiency NG. On the other hand, when a high development cleaning contrast is applied, the toner layer on the development cleaning roller 58K is further compressed, so that cleaning with the cleaning blade 59K becomes difficult (development CLN blade residual efficiency NG). That is, the range above the line β in FIG. 10 is the development CLN blade remaining efficiency NG.
 このため、現像クリーニングコントラストは、図に示す線αと線βの間の範囲が適正となる。本実施形態では、上述のように、ミキサー200K内の液体現像剤の導電率が、10−11~10−9[S/cm](1e−11~1e−9[S/cm])に調整されている。このため、現像クリーニングコントラストは、液体現像剤の導電率に応じて、70V以上280V以下の範囲内(所定の範囲内)で、現像クリーニングローラ58Kに印加する回収電圧を変更するようにしている。ここで、本実施形態では、現像ローラ54Kに印加する現像電圧を−400Vとしているので、現像クリーニングローラ58Kに印加する回収電圧は、−330V(−400+70)以上−120V(−400+280)以下の範囲内で変更するようにしている。本実施例では、現像クリーニングローラ58Kに印加する電圧の極性は、トナーの正規の帯電極性と同じである。また、回収電圧の絶対値は、現像電圧の絶対値よりも小さい。 For this reason, the range between the line α and the line β shown in FIG. In the present embodiment, as described above, the conductivity of the liquid developer in the mixer 200K is adjusted to 10 −11 to 10 −9 [S / cm] (1e-11 to 1e-9 [S / cm]). Has been. For this reason, the development cleaning contrast changes the recovery voltage applied to the development cleaning roller 58K within a range of 70 V or more and 280 V or less (within a predetermined range) according to the conductivity of the liquid developer. In this embodiment, since the developing voltage applied to the developing roller 54K is −400V, the recovery voltage applied to the developing cleaning roller 58K is in the range of −330V (−400 + 70) to −120V (−400 + 280). I am trying to change it within. In this embodiment, the polarity of the voltage applied to the developing cleaning roller 58K is the same as the normal charging polarity of the toner. Further, the absolute value of the recovery voltage is smaller than the absolute value of the development voltage.
液体現像剤の導電率の変化の要因Factors of change in conductivity of liquid developer
 液体現像剤の導電率は様々な要因で変化する可能性がある。例えば、画像形成装置が置かれている温度や湿度などの環境が変化することにより、液体現像剤の温度、湿度が変化してトナーの電荷量も変化し、液体現像剤の電荷量も変化する。また、液体現像剤に添加しているトナー電荷付与剤やトナーなどが、画像形成時に使用されている際に各部材のニップ部などで圧縮されることなどにより劣化して、トナーの電荷量が変化し、液体現像剤の電荷量も変化する。本実施形態では、このような液体現像剤の導電率の変化を検知し、その値に応じて、図10に示したような範囲に、現像クリーニングコントラストを制御する。 The conductivity of the liquid developer may change due to various factors. For example, when the environment such as the temperature and humidity where the image forming apparatus is placed changes, the temperature and humidity of the liquid developer change, the charge amount of the toner also changes, and the charge amount of the liquid developer also changes. . In addition, the toner charge imparting agent or toner added to the liquid developer is deteriorated by being compressed at the nip portion of each member when used at the time of image formation, and the charge amount of the toner is reduced. As a result, the charge amount of the liquid developer also changes. In the present embodiment, such a change in the conductivity of the liquid developer is detected, and the development cleaning contrast is controlled within the range shown in FIG. 10 according to the value.
現像クリーニングコントラストの制御Development cleaning contrast control
 現像クリーニングコントラストの制御のブロック図およびフローチャートを図11および図12に示す。図11に示すように、制御手段としての制御部110には、高圧制御を行うCPU(Central Processing Unit:中央演算装置)111が設けられている。更に、メモリ112内にはROM(Read Only Memory)112aを有している。ROM112aには、制御手順に対応するプログラムなどが格納されている。CPU111は、ROM112aに予め書き込んでおいたデータやプログラムを読み出しながら各部の制御を行うようになっている。また、メモリ112内には、各センサなどから読みだされた作業用データや入力データが格納されたRAM(Randon Access Memory)112bも有している。CPU111は、前述のプログラム等に基づいてRAM112bに収納されたデータを参照して制御を行うようになっている。 FIG. 11 and FIG. 12 are block diagrams and flowcharts for controlling the development cleaning contrast. As shown in FIG. 11, the control unit 110 as a control unit is provided with a CPU (Central Processing Unit) 111 that performs high-pressure control. Further, the memory 112 has a ROM (Read Only Memory) 112a. The ROM 112a stores a program corresponding to the control procedure. The CPU 111 controls each part while reading data and programs previously written in the ROM 112a. The memory 112 also includes a RAM (Randon Access Memory) 112b in which work data and input data read from each sensor and the like are stored. The CPU 111 performs control with reference to data stored in the RAM 112b based on the above-described program and the like.
 また、CPU111は、現像剤槽53Kとの間で液体現像剤を循環しているミキサー200K中の液体現像剤の導電率を検知する導電率センサ201Kとも接続しており、その結果を逐次制御に使用可能である。さらに、CPU111は、制御先として、回収用電源14Kにも接続している。そして、CPU111は、取得手段としての導電率センサ201Kにより取得した情報(即ち、導電率)に応じて、電位差印加手段としての回収用電源14Kを制御して、回収電位差としての現像クリーニングコントラストを変更可能である。なお、図11では、ブラックの画像形成部1Kについてのみ示しているが、他の画像形成部についても、同様に、導電率センサや回収用電源がCPU111に接続され、以下と同様に制御される。 The CPU 111 is also connected to a conductivity sensor 201K that detects the conductivity of the liquid developer in the mixer 200K that circulates the liquid developer to and from the developer tank 53K, and the results are sequentially controlled. It can be used. Further, the CPU 111 is also connected to a recovery power supply 14K as a control destination. Then, the CPU 111 changes the developing cleaning contrast as the recovery potential difference by controlling the recovery power supply 14K as the potential difference application unit according to the information (that is, the conductivity) acquired by the conductivity sensor 201K as the acquisition unit. Is possible. In FIG. 11, only the black image forming unit 1 </ b> K is shown, but the other image forming units are similarly connected to the CPU 111 with a conductivity sensor and a recovery power source and controlled in the same manner as described below. .
 次に、現像クリーニングコントラストの制御フローについて、図12を用いて説明する。現像クリーニングコントラストの制御は、画像形成中であっても、それ以外のタイミングであっても行うことができる。例えば、画像形成ジョブが開始されてから随時行っても良いし、所定枚数毎に行っても良いし、画像形成ジョブの開始時の前回転など記録材に画像を形成していないタイミングで行っても良い。 Next, a development cleaning contrast control flow will be described with reference to FIG. The development cleaning contrast can be controlled during image formation or at other timings. For example, it may be performed at any time after the image forming job is started, may be performed every predetermined number of times, or may be performed at a timing when an image is not formed on the recording material, such as pre-rotation at the start of the image forming job. Also good.
 なお、画像形成ジョブとは、記録材に画像形成するプリント信号に基づいて、画像形成開始してから画像形成動作が完了するまでの期間である。具体的には、プリント信号を受けた(画像形成ジョブの入力)後の前回転時から、後回転までのことを指し、画像形成期間、紙間(非画像形成時)を含む期間である。また、前回転とは、画像形成前の準備動作として、感光体及び中間転写ベルトの回転を開始し、各種電圧の順次立ち上げや、各種電圧の調整などを行う期間である。後回転とは、画像形成後の動作として、感光体及び中間転写ベルトの回転を継続しつつ各種電圧を順次立ち下げ、最終的に感光体及び中間転写ベルトの回転を停止する期間である。紙間とは、二次転写部T2を連続して通過する記録材と記録材との間に対応する期間である。 The image forming job is a period from the start of image formation to the completion of the image forming operation based on a print signal for forming an image on a recording material. Specifically, it refers to the period from the pre-rotation to the post-rotation after receiving the print signal (input of the image forming job), and includes the image forming period and the interval between sheets (during non-image forming). The pre-rotation is a period in which rotation of the photosensitive member and the intermediate transfer belt is started as a preparatory operation before image formation, and various voltages are sequentially raised and various voltages are adjusted. The post-rotation is a period in which various voltages are sequentially lowered while the rotation of the photosensitive member and the intermediate transfer belt is continued as an operation after image formation, and finally the rotation of the photosensitive member and the intermediate transfer belt is stopped. The interval between the sheets is a period corresponding to the interval between the recording material that continuously passes through the secondary transfer portion T2.
 図12に示すように、制御が開始されると(S1)、CPU111は、導電率センサ201Kによりミキサー200K内の液体現像剤の導電率を検知する(S2)。次に、その導電率の検知結果を元に、CPU111が、図10に示したテーブルを用いて最適な現像クリーニングコントラストを算出する(S3)。次に、算出した現像クリーニングコントラストになる回収電圧を決定し、回収用電源14Kに印加する(S4)。 As shown in FIG. 12, when the control is started (S1), the CPU 111 detects the conductivity of the liquid developer in the mixer 200K by the conductivity sensor 201K (S2). Next, based on the detection result of the conductivity, the CPU 111 calculates an optimum development cleaning contrast using the table shown in FIG. 10 (S3). Next, a recovery voltage that achieves the calculated development cleaning contrast is determined and applied to the recovery power supply 14K (S4).
 具体的には、CPU111は、導電率センサ201Kにより検知した導電率が第1導電率の場合には現像クリーニングコントラストが第1回収電位差となるように回収用電源14Kを制御する。また、CPU111は、導電率センサ201Kにより検知した導電率が第1導電率よりも高い第2導電率の場合には現像クリーニングコントラストが第1回収電位差よりも大きい高い第2回収電位差となるように回収用電源14Kを制御する。言い換えれば、CPU111は、導電率センサ201Kにより検知した導電率が高いほど、現像クリーニングコントラストが大きくなるように回収用電源14Kを制御する。その後、本制御は終了する(S5)。本実施形態では、本制御を記録材1枚毎に1回行った。 Specifically, when the conductivity detected by the conductivity sensor 201K is the first conductivity, the CPU 111 controls the recovery power supply 14K so that the development cleaning contrast becomes the first recovery potential difference. Further, when the conductivity detected by the conductivity sensor 201K is the second conductivity higher than the first conductivity, the CPU 111 causes the development cleaning contrast to be a high second recovery potential difference that is larger than the first recovery potential difference. The recovery power source 14K is controlled. In other words, the CPU 111 controls the recovery power supply 14K so that the higher the conductivity detected by the conductivity sensor 201K, the greater the development cleaning contrast. Thereafter, this control ends (S5). In this embodiment, this control is performed once for each recording material.
 なお、回収用電圧の制御には、本制御の結果が所望の値以上となったらリミットをかけるようなリミット制御や、一回の電圧の変化量を一定量に抑える制御等を加えても良い。 In addition, the control of the voltage for recovery may include limit control that applies a limit when the result of this control exceeds a desired value, control that suppresses the amount of change in voltage once, etc. .
 本実施形態の場合、上述のような制御を行うことで、絞りローラ52Kと現像ローラ54Kとの間を通過した現像ローラ54K上のトナー層の圧縮状態に関わらず、適切に現像ローラ54Kに残ったトナーを回収できる。即ち、トナー粒子の電荷量が様々な要因で変化し、現像ローラ54K上のトナー層の圧縮状態が変化した場合にも、現像クリーニングコントラストを適切に制御している。このため、上述した現像CLN残効率がNGになったり、現像CLNブレード残効率がNGになったりすることを抑制できる。 In the case of the present embodiment, by performing the control as described above, the toner remains appropriately on the developing roller 54K regardless of the compression state of the toner layer on the developing roller 54K that has passed between the squeezing roller 52K and the developing roller 54K. Collected toner. That is, even when the charge amount of the toner particles changes due to various factors and the compression state of the toner layer on the developing roller 54K changes, the developing cleaning contrast is appropriately controlled. For this reason, it can suppress that the development CLN residual efficiency mentioned above becomes NG, and development CLN blade residual efficiency becomes NG.
 なお、現像クリーニングコントラストの制御は、現像電圧を変更することで行っても良いし、現像電圧と回収電圧の両方を変更することで行っても良い。但し、現像電圧を変更した場合、絞り電圧など他の部分にも影響を与えるため、本実施形態のように、回収電圧を変更することで現像クリーニングコントラストの制御を行うことが好ましい。但し、現像電圧は、現像性の観点から変更する場合があり、この場合には、現像電圧の変化に合わせて、図10に示した現像クリーニングコントラストのテーブルを満たすように回収電圧を変更する。
<第2の実施形態>
Note that the development cleaning contrast may be controlled by changing the development voltage or by changing both the development voltage and the recovery voltage. However, when the development voltage is changed, other parts such as the aperture voltage are also affected. Therefore, it is preferable to control the development cleaning contrast by changing the recovery voltage as in this embodiment. However, the development voltage may be changed from the viewpoint of developability. In this case, the recovery voltage is changed so as to satisfy the development cleaning contrast table shown in FIG. 10 in accordance with the change in the development voltage.
<Second Embodiment>
 第2の実施形態について、図1ないし図3を参照しつつ、図13を用いて説明する。上述の第1の実施形態では、導電率センサ201Kにより検知した液体現像剤の導電率に応じて現像クリーニングコントラストを制御した。これに対して本実施形態では、現像ローラ54Kと絞りローラ52Kとの間の電位差(圧縮電位差)ΔVに応じて、現像クリーニングコントラストを制御する。その他の構成及び作用は、上述の第1の実施形態と同様であるため、以下、第1の実施形態と異なる部分を中心に説明する。なお、本実施形態でも、第1の実施形態と同様に、ブラックの画像形成部1Kを例に説明するが、その他の画像形成部においても同様である。 A second embodiment will be described with reference to FIGS. 1 to 3 and FIG. In the first embodiment described above, the development cleaning contrast is controlled in accordance with the conductivity of the liquid developer detected by the conductivity sensor 201K. In contrast, in the present embodiment, the development cleaning contrast is controlled according to the potential difference (compression potential difference) ΔV between the developing roller 54K and the squeezing roller 52K. Since other configurations and operations are the same as those of the first embodiment described above, the following description will focus on portions that are different from the first embodiment. In this embodiment as well, as in the first embodiment, the black image forming unit 1K will be described as an example, but the same applies to other image forming units.
 前述の式1で示したように、現像ローラ54Kと絞りローラ52Kとのギャップ中で、トナーにかかる電界による力Fは、圧縮電位差ΔVにも依存する。圧縮電位差ΔVは、温度や湿度などの環境や、形成されたトナー像の濃度の検知結果に応じて変化させる場合がある。このため、圧縮電位差ΔVの変化によりトナーにかかる電界による力Fも変化し、絞りローラ52Kと現像ローラ54Kとの間を通過した現像ローラ54K上のトナー層の圧縮状態に影響を及ぼす。したがって、本実施形態では、圧縮電位差ΔVに応じて、現像クリーニングコントラストを制御するようにしている。 As shown in Equation 1 above, the force F due to the electric field applied to the toner in the gap between the developing roller 54K and the squeezing roller 52K also depends on the compression potential difference ΔV. The compression potential difference ΔV may be changed according to the environment such as temperature and humidity, or the detection result of the density of the formed toner image. For this reason, the force F due to the electric field applied to the toner also changes due to the change in the compression potential difference ΔV, which affects the compression state of the toner layer on the developing roller 54K that has passed between the squeezing roller 52K and the developing roller 54K. Therefore, in this embodiment, the development cleaning contrast is controlled according to the compression potential difference ΔV.
 このために本実施形態の圧縮用電源としての絞り用電源13Kは、現像ローラ54Kと絞りローラ52Kとの間に圧縮電位差を可変に印加可能である。即ち、絞り用電源13Kは、絞り電圧を可変に印加可能である。また、画像形成装置100は、装置本体内に、温度及び湿度を検知可能な環境センサ120を備えている。更に、画像形成装置100は、中間転写ベルト70上に形成されたトナー像の濃度を検知可能な濃度センサ121を備えている。 For this reason, the diaphragm power source 13K as the compression power source of the present embodiment can variably apply a compression potential difference between the developing roller 54K and the diaphragm roller 52K. That is, the diaphragm power supply 13K can variably apply the diaphragm voltage. Further, the image forming apparatus 100 includes an environment sensor 120 capable of detecting temperature and humidity in the apparatus main body. Further, the image forming apparatus 100 includes a density sensor 121 that can detect the density of the toner image formed on the intermediate transfer belt 70.
 濃度センサ121は、中間転写ベルト70の回転方向に関して、最下流の画像形成部1Kよりも更に下流で、二次転写部T2の上流に配置されている。濃度センサ121は、発光部と受光部とを有し、発光部から中間転写ベルト70の表面に向けて発光され、その反射光を受光部で受光して、その反射光量を検出するものである。反射光量は、トナー像のトナー載り量に応じて変化するため、濃度センサ121によりトナー像の反射光量を検出することで、そのトナー像のトナー載り量、即ち、濃度を検出することができる。 The density sensor 121 is disposed further downstream than the most downstream image forming unit 1K and upstream of the secondary transfer unit T2 with respect to the rotation direction of the intermediate transfer belt 70. The density sensor 121 has a light emitting portion and a light receiving portion, emits light from the light emitting portion toward the surface of the intermediate transfer belt 70, receives the reflected light by the light receiving portion, and detects the amount of reflected light. . Since the amount of reflected light changes according to the amount of toner applied to the toner image, the amount of toner applied, that is, the density of the toner image can be detected by detecting the amount of reflected light of the toner image by the density sensor 121.
 トナー像の濃度を検知する制御は、例えば、画像形成ジョブ中の紙間で行われる。例えば、所定枚数毎に制御用のトナー像(パッチ)を中間転写ベルト70上に形成し、濃度センサ121により制御用のトナー像の濃度を検知する。そして、CPU111は、この検知結果に応じて、例えば、現像電圧を変更するように現像用電源11Kなどを制御する。この結果、圧縮電位差も変わってしまう。また、CPU111は、環境センサ120の検知結果から、現像電圧を変更する場合もある。 The control for detecting the density of the toner image is performed, for example, between sheets in an image forming job. For example, a control toner image (patch) is formed on the intermediate transfer belt 70 for every predetermined number of sheets, and the density sensor 121 detects the density of the control toner image. Then, the CPU 111 controls the developing power supply 11K and the like so as to change the developing voltage, for example, according to the detection result. As a result, the compression potential difference also changes. Further, the CPU 111 may change the development voltage based on the detection result of the environment sensor 120.
 上述のように、環境センサ120の検知結果や濃度センサ121の検知結果などに応じて圧縮電位差を変更した場合、トナー層の圧縮状態に影響を及ぼす。そして、現像CLN残効率がNGになったり、現像CLNブレード残効率がNGになったりする可能性がある。したがって、本実施形態では、取得手段でもある制御部110が、圧縮電位差を取得可能である。即ち、CPU111は、絞り用電源13Kにより印加する絞り電圧と、環境センサ120などの検知結果により設定した現像用電源11Kにより印加する現像電圧とから、絞り電圧と現像電圧との電位差である圧縮電位差を取得する。そして、CPU111は、取得した圧縮電位差に応じて、現像クリーニングコントラストを制御する。具体的には、回収電圧を変更するように回収用電源14Kを制御する。 As described above, when the compression potential difference is changed according to the detection result of the environmental sensor 120 or the detection result of the density sensor 121, the compression state of the toner layer is affected. Then, there is a possibility that the development CLN residual efficiency becomes NG or the development CLN blade residual efficiency becomes NG. Therefore, in the present embodiment, the control unit 110 that is also an acquisition unit can acquire the compressed potential difference. That is, the CPU 111 compares the compression potential difference, which is the potential difference between the diaphragm voltage and the development voltage, from the diaphragm voltage applied by the diaphragm power supply 13K and the development voltage applied by the development power supply 11K set based on the detection result of the environment sensor 120 or the like. To get. Then, the CPU 111 controls the development cleaning contrast according to the acquired compressed potential difference. Specifically, the recovery power source 14K is controlled so as to change the recovery voltage.
 具体的には、CPU111は、取得した圧縮電位差が第1圧縮電位差の場合には現像クリーニングコントラストが第1回収電位差となるように回収用電源14Kを制御する。また、CPU111は、取得した圧縮電位差が第1圧縮電位差よりも大きい第2圧縮電位差の場合には現像クリーニングコントラストが第1回収電位差よりも大きい第2回収電位差となるように回収用電源14Kを制御する。言い換えれば、CPU111は、圧縮電位差が大きいほど、現像クリーニングコントラストが大きくなるように回収用電源14Kを制御する。 Specifically, when the acquired compression potential difference is the first compression potential difference, the CPU 111 controls the recovery power supply 14K so that the development cleaning contrast becomes the first recovery potential difference. Further, when the acquired compression potential difference is a second compression potential difference larger than the first compression potential difference, the CPU 111 controls the recovery power supply 14K so that the development cleaning contrast becomes a second recovery potential difference larger than the first recovery potential difference. To do. In other words, the CPU 111 controls the recovery power supply 14K so that the developing cleaning contrast increases as the compression potential difference increases.
 本実施形態の場合も、上述のような制御を行うことで、絞りローラ52Kと現像ローラ54Kとの間を通過した現像ローラ54K上のトナー層の圧縮状態に関わらず、適切に現像ローラ54Kに残ったトナーを回収できる。即ち、上述した現像CLN残効率がNGになったり、現像CLNブレード残効率がNGになったりすることを抑制できる。なお、上述の式1から、トナーの電荷量(即ち、導電率センサ201Kにより検知した導電率)および圧縮電位差の両方を考慮して、現像クリーニングコントラストを決定するようにしても良い。
<第3の実施形態>
Also in the present embodiment, by performing the control as described above, the developing roller 54K is appropriately set regardless of the compression state of the toner layer on the developing roller 54K that has passed between the squeezing roller 52K and the developing roller 54K. The remaining toner can be collected. That is, it is possible to prevent the development CLN remaining efficiency from becoming NG or the development CLN blade remaining efficiency from becoming NG. It should be noted that the development cleaning contrast may be determined from the above-described formula 1 in consideration of both the charge amount of the toner (that is, the conductivity detected by the conductivity sensor 201K) and the compression potential difference.
<Third Embodiment>
 第3の実施形態について、図1ないし図3を参照しつつ、図14を用いて説明する。上述の第1の実施形態では、導電率センサ201Kにより検知した液体現像剤の導電率に応じて現像クリーニングコントラストを制御した。これに対して本実施形態では、現像ローラ54Kと絞りローラ52Kとの間に流れる電流に応じて、現像クリーニングコントラストを制御する。その他の構成及び作用は、上述の第1の実施形態又は第2の実施形態と同様であるため、以下、第1の実施形態又は第2の実施形態と異なる部分を中心に説明する。なお、本実施形態でも、第1の実施形態と同様に、ブラックの画像形成部1Kを例に説明するが、その他の画像形成部においても同様である。 The third embodiment will be described with reference to FIGS. 1 to 3 and FIG. In the first embodiment described above, the development cleaning contrast is controlled in accordance with the conductivity of the liquid developer detected by the conductivity sensor 201K. In contrast, in the present embodiment, the development cleaning contrast is controlled according to the current flowing between the development roller 54K and the squeeze roller 52K. Since other configurations and operations are the same as those in the first embodiment or the second embodiment described above, the following description will focus on parts that are different from the first embodiment or the second embodiment. In this embodiment as well, as in the first embodiment, the black image forming unit 1K will be described as an example, but the same applies to other image forming units.
 現像ローラ54Kと絞りローラ52Kとのギャップ中の主なイオンはトナーであり、それらイオンの単位時間当たりの移動量である電流でも、トナーの移動の目安となる。そして、電流が大きいほど、よりトナーが現像ローラ54Kに寄っており、現像ローラ54K上のトナー層の圧縮状態が高くなっていることを意味する。 The main ions in the gap between the developing roller 54K and the squeezing roller 52K are toner, and the current that is the amount of movement of these ions per unit time is also a measure of toner movement. As the current is larger, the toner is closer to the developing roller 54K, which means that the compressed state of the toner layer on the developing roller 54K is higher.
 このために本実施形態の場合、現像ローラ54Kと絞りローラ52Kとの間に流れる電流を検知可能な電流検知手段としての絞り電流検知部130を備えている。本実施形態では、絞り電流検知部130が取得手段に相当する。CPU111は、絞り電流検知部130により検知した電流に応じて、現像クリーニングコントラストを制御する。具体的には、回収電圧を変更するように回収用電源14Kを制御する。 For this reason, in the case of the present embodiment, an aperture current detector 130 is provided as a current detector capable of detecting the current flowing between the developing roller 54K and the aperture roller 52K. In the present embodiment, the aperture current detection unit 130 corresponds to an acquisition unit. The CPU 111 controls the development cleaning contrast in accordance with the current detected by the aperture current detection unit 130. Specifically, the recovery power source 14K is controlled so as to change the recovery voltage.
 具体的には、CPU111は、絞り電流検知部130により検知した電流が第1電流の場合には現像クリーニングコントラストが第1回収電位差となるように回収用電源14Kを制御する。また、CPU111は、絞り電流検知部130により検知した電流が第1電流よりも大きい第2電流の場合には現像クリーニングコントラストが第1回収電位差よりも大きい第2回収電位差となるように回収用電源14Kを制御する。言い換えれば、CPU111は、絞り電流検知部130で検知した電流が大きいほど、現像クリーニングコントラストが大きくなるように回収用電源14Kを制御する。 More specifically, when the current detected by the aperture current detector 130 is the first current, the CPU 111 controls the recovery power supply 14K so that the development cleaning contrast becomes the first recovery potential difference. In addition, the CPU 111 determines the power supply for recovery so that the development cleaning contrast becomes the second recovery potential difference larger than the first recovery potential difference when the current detected by the aperture current detection unit 130 is the second current larger than the first current. 14K is controlled. In other words, the CPU 111 controls the recovery power supply 14K so that the developing cleaning contrast increases as the current detected by the aperture current detection unit 130 increases.
 本実施形態の場合も、上述のような制御を行うことで、絞りローラ52Kと現像ローラ54Kとの間を通過した現像ローラ54K上のトナー層の圧縮状態に関わらず、適切に現像ローラ54Kに残ったトナーを回収できる。即ち、上述した現像CLN残効率がNGになったり、現像CLNブレード残効率がNGになったりすることを抑制できる。
<第4の実施形態>
Also in the present embodiment, by performing the control as described above, the developing roller 54K is appropriately set regardless of the compression state of the toner layer on the developing roller 54K that has passed between the squeezing roller 52K and the developing roller 54K. The remaining toner can be collected. That is, it is possible to prevent the development CLN remaining efficiency from becoming NG or the development CLN blade remaining efficiency from becoming NG.
<Fourth Embodiment>
 第4の実施形態について、図1ないし図3を参照しつつ、図15を用いて説明する。上述の第1の実施形態では、導電率センサ201Kにより検知した液体現像剤の導電率に応じて現像クリーニングコントラストを制御した。これに対して本実施形態では、現像ローラ54Kと各部との間に流れる電流の1ないし複数の電流に応じて、現像クリーニングコントラストを制御する。その他の構成及び作用は、上述の第1の実施形態ないし第3の実施形態の何れか1つと同様であるため、以下、第1の実施形態ないし第3の実施形態と異なる部分を中心に説明する。なお、本実施形態でも、第1の実施形態と同様に、ブラックの画像形成部1Kを例に説明するが、その他の画像形成部においても同様である。 The fourth embodiment will be described using FIG. 15 with reference to FIGS. 1 to 3. In the first embodiment described above, the development cleaning contrast is controlled in accordance with the conductivity of the liquid developer detected by the conductivity sensor 201K. On the other hand, in the present embodiment, the development cleaning contrast is controlled according to one or more currents flowing between the developing roller 54K and each part. Other configurations and operations are the same as those of any one of the first to third embodiments described above, and therefore the following description will focus on the differences from the first to third embodiments. To do. In this embodiment as well, as in the first embodiment, the black image forming unit 1K will be described as an example, but the same applies to other image forming units.
 製膜電極51Kと現像ローラ54Kとの間、現像ローラ54Kと絞りローラ52Kとの間、感光体20Kと現像ローラ54Kとの間、現像クリーニングローラ58Kと現像ローラ54Kとの間は、それぞれ電位差がある。そして、それぞれの間で、電気泳動によりトナーが移動している。これらの間のトナーの移動量は、前述のように電流と相関が高く、また、トナーの電荷量とも相関が高い。つまり、各間での電流は、トナーの電荷量と相関が高く、絞りローラ52Kによりトナーが現像ローラ54Kに寄って圧縮状態になっていることを知ることができる。 There are potential differences between the film forming electrode 51K and the developing roller 54K, between the developing roller 54K and the squeezing roller 52K, between the photosensitive member 20K and the developing roller 54K, and between the developing cleaning roller 58K and the developing roller 54K. is there. In addition, the toner moves between each of them by electrophoresis. The amount of toner movement between them has a high correlation with the current as described above, and also has a high correlation with the charge amount of the toner. That is, the current between each of them has a high correlation with the charge amount of the toner, and it can be known that the toner is compressed by the squeezing roller 52K toward the developing roller 54K.
 本実施形態の場合も、製膜用電源12K、絞り用電源13K、現像用電源11K、回収用電源14Kを備える。第1電源としての製膜用電源12Kは、現像ローラ54Kと製膜電極51Kとの間に電圧を印加可能である。第2電源としての絞り用電源13Kは、現像ローラ54Kと絞りローラ52Kとの間に電圧を印加可能である。第3電源としての現像用電源11Kは、現像ローラ54Kと感光体20Kとの間に電圧を印加可能である。 Also in the case of the present embodiment, a film forming power source 12K, a diaphragm power source 13K, a developing power source 11K, and a recovery power source 14K are provided. The film-forming power source 12K as the first power source can apply a voltage between the developing roller 54K and the film-forming electrode 51K. The diaphragm power source 13K as the second power source can apply a voltage between the developing roller 54K and the diaphragm roller 52K. A developing power source 11K as a third power source can apply a voltage between the developing roller 54K and the photoconductor 20K.
 また、本実施形態の場合、製膜電流検知部131、絞り電流検知部130、クリーニング電流検知部132を備える。製膜電流検知部131は、現像ローラ54Kと製膜電極51Kとの間に流れる電流を検知する。絞り電流検知部130は、現像ローラ54Kと絞りローラ52Kとの間に流れる電流を検知する。クリーニング電流検知部132は、現像ローラ54Kと現像クリーニングローラ58Kとの間に流れる電流を検知する。現像ローラ54Kと感光体20Kとの間に流れている電流の検知は直接には難しい。但し、現像ローラ54Kに流れている総電流は0となるため、感光体20K以外から流れ込んでいる電流の総和を求めれば、現像ローラ54Kと感光体20Kとの間に流れている電流を算出できる。 Further, in the case of the present embodiment, a film forming current detection unit 131, an aperture current detection unit 130, and a cleaning current detection unit 132 are provided. The film forming current detector 131 detects a current flowing between the developing roller 54K and the film forming electrode 51K. The aperture current detector 130 detects the current flowing between the developing roller 54K and the aperture roller 52K. The cleaning current detector 132 detects a current flowing between the developing roller 54K and the developing cleaning roller 58K. It is difficult to directly detect the current flowing between the developing roller 54K and the photoconductor 20K. However, since the total current flowing through the developing roller 54K is 0, the current flowing between the developing roller 54K and the photoconductor 20K can be calculated by obtaining the sum of the currents flowing from other than the photoconductor 20K. .
 取得手段でもある制御部110は、製膜電流検知部131、絞り電流検知部130、クリーニング電流検知部132で検知した電流、及び、算出した現像ローラ54Kと感光体20Kとの間の電流のうち、1ないし複数の電流を取得可能である。CPU111は、このように取得した1ないし複数の電流に応じて、現像クリーニングコントラストを制御する。具体的には、回収電圧を変更するように回収用電源14Kを制御する。 The control unit 110 that is also an acquisition unit includes the current detected by the film forming current detection unit 131, the aperture current detection unit 130, and the cleaning current detection unit 132, and the calculated current between the developing roller 54K and the photoconductor 20K. One or more currents can be acquired. The CPU 111 controls the development cleaning contrast in accordance with one or more currents acquired in this way. Specifically, the recovery power source 14K is controlled so as to change the recovery voltage.
 ここで、現像ローラ54Kと製膜電極51K及び絞りローラ52Kとの間は、トナーが現像ローラ54Kに向かう方向の電界が付与されているため、電流が大きいほど、現像ローラ54K上のトナー層が圧縮され易くなる。また、現像ローラ54Kと感光体20Kとの間は、上述した様に、感光体20Kの現像されないエリアでは、トナーに対して、現像ローラ54Kに向かう方向の電界がかかっている。したがって、この間の電流が大きいほど、現像ローラ54K上のトナー層は、より圧縮される。 Here, since an electric field in the direction toward the developing roller 54K is applied between the developing roller 54K, the film forming electrode 51K, and the squeezing roller 52K, the toner layer on the developing roller 54K increases as the current increases. It becomes easy to be compressed. Further, as described above, an electric field in the direction toward the developing roller 54K is applied to the toner between the developing roller 54K and the photoconductor 20K in the area where the photoconductor 20K is not developed. Therefore, the larger the current during this period, the more the toner layer on the developing roller 54K is compressed.
 したがって、これら3つの電流のうち、1ないし複数を取得して現像クリーニングコントラストの制御を行う場合、検知或いは算出した電流が大きいほど、トナー層が圧縮されるため、現像クリーニングコントラストが大きくなるようにする。これら3つの電流のうち、複数の電流を用いて制御する場合には、それぞれ足し合わせた電流の値、或いは、一部の電流に対して重みづけをして足し合わせた電流の値、或いは、平均値を用いることができる。 Therefore, when one or more of these three currents are acquired to control the development cleaning contrast, the larger the detected or calculated current, the more the toner layer is compressed, so that the development cleaning contrast is increased. To do. Of these three currents, when controlling using a plurality of currents, the current values added together, or the current values added by weighting part of the currents, or An average value can be used.
 一方、現像ローラ54Kと現像クリーニングローラ58Kとの間は、トナーが現像クリーニングローラ58Kに向かう方向の電界が付与されている。したがって、この間の電流を現像クリーニングコントラストの制御に用いる場合、上述の3つの電流の1ないし複数を用いて求めた現像クリーニングコントラストを補正するようにする。 On the other hand, an electric field is applied between the developing roller 54K and the developing cleaning roller 58K in the direction in which the toner moves toward the developing cleaning roller 58K. Therefore, when the current during this period is used for controlling the development cleaning contrast, the development cleaning contrast obtained by using one or more of the above three currents is corrected.
 例えば、上述の3つの電流の1ないし複数を用いて求めた現像クリーニングコントラストを印加した場合に、現像ローラ54Kと現像クリーニングローラ58Kとの間に流れる電流をクリーニング電流検知部132により検知する。この場合に、例えば、3つの電流の1ないし複数を用いて求めた現像クリーニングコントラストから予想される電流よりも多くの電流が流れていた場合、求めた現像クリーニングコントラストを下げるように制御する。一方、3つの電流の1ないし複数を用いて求めた現像クリーニングコントラストから予想される電流よりも少ない電流が流れていた場合、求めた現像クリーニングコントラストを上げるように制御する。すなわち、クリーニング電流検知部132で検知される電流があらかじめ設定された電流値なるように現像クリーニングコントラストを制御する。 For example, when the development cleaning contrast obtained by using one or more of the three currents described above is applied, the cleaning current detection unit 132 detects the current flowing between the development roller 54K and the development cleaning roller 58K. In this case, for example, when more current flows than expected from the development cleaning contrast obtained using one or more of the three currents, control is performed to lower the obtained development cleaning contrast. On the other hand, when a current smaller than the current expected from the development cleaning contrast obtained using one or more of the three currents flows, control is performed to increase the obtained development cleaning contrast. That is, the development cleaning contrast is controlled so that the current detected by the cleaning current detection unit 132 has a preset current value.
 本実施形態の場合も、上述のような制御を行うことで、絞りローラ52Kと現像ローラ54Kとの間を通過した現像ローラ54K上のトナー層の圧縮状態に関わらず、適切に現像ローラ54Kに残ったトナーを回収できる。即ち、上述した現像CLN残効率がNGになったり、現像CLNブレード残効率がNGになったりすることを抑制できる。
<他の実施形態>
Also in the present embodiment, by performing the control as described above, the developing roller 54K is appropriately set regardless of the compression state of the toner layer on the developing roller 54K that has passed between the squeezing roller 52K and the developing roller 54K. The remaining toner can be collected. That is, it is possible to prevent the development CLN remaining efficiency from becoming NG or the development CLN blade remaining efficiency from becoming NG.
<Other embodiments>
 上述の各実施形態は、適宜組み合わせて実施可能である。例えば、第1の実施形態の構成を、第2ないし第3の何れか1つの実施形態の構成と組み合わせる場合、何れか一方の構成で求めた現像クリーニングコントラストを他方の構成により補正するようにする。 The embodiments described above can be implemented in combination as appropriate. For example, when the configuration of the first embodiment is combined with the configuration of any one of the second to third embodiments, the development cleaning contrast obtained with one of the configurations is corrected with the other configuration. .
 上述の各実施形態では、圧縮部材として絞りローラを用いた構成について説明したが、圧縮部材は、例えば、ブレードなどの回転しないものであっても良い。但し、現像ローラの寿命を考慮した場合、圧縮部材は、現像ローラと同じ周速で回転する回転体とすることが好ましい。 In the above-described embodiments, the configuration using the squeezing roller as the compression member has been described. However, the compression member may be a non-rotating member such as a blade. However, considering the life of the developing roller, the compression member is preferably a rotating body that rotates at the same peripheral speed as the developing roller.
 上述の各実施形態では、回収部材として現像クリーニングローラを用いた構成について説明したが、電位差により現像ローラ上のトナーを回収できれば、ローラ以外の例えばブレードなどの回転しないものであっても良い。但し、現像ローラの寿命を考慮した場合、回収部材は、現像ローラと同じ周速で回転する回転体とすることが好ましい。また、中間転写体は、中間転写ベルト以外に、例えば、中間転写ドラムであっても良い。 In each of the above-described embodiments, the configuration using the developing cleaning roller as the collecting member has been described. However, as long as the toner on the developing roller can be collected by a potential difference, other than the roller, for example, a blade that does not rotate may be used. However, in consideration of the life of the developing roller, the collecting member is preferably a rotating body that rotates at the same peripheral speed as the developing roller. In addition to the intermediate transfer belt, the intermediate transfer member may be, for example, an intermediate transfer drum.
 本発明によれば、トナーとキャリア液を含む液体現像剤を用いて画像形成を行う画像形成装置であって、クリーニングローラによるクリーニング性の低下を低減することができる画像形成装置が提供される。
[符号の説明]
11K・・・現像用電源(第3電源)/12K・・・製膜用電源(第1電源)/13K・・・絞り用電源(第2電源、圧縮用電源)/14K・・・回収用電源(電位差印加手段)/20Y、20M、20C、20K・・・感光体(像担持体)/51Y、51M、51C、51K・・・製膜電極/52Y、52M、52C、52K・・・絞りローラ(圧縮部材、圧縮回転体)/53Y、53M、53C、53K・・・現像剤槽/54Y、54M、54C、54K・・・現像ローラ(現像剤担持体)/58Y、58M、58C、58K・・・現像クリーニングローラ(回収部材、回収回転体)/59Y、59M、59C、59K・・・クリーニングブレード(クリーニング手段)/100・・・画像形成装置/110・・・制御部(制御手段、取得手段)/130・・・絞り電流検知部(電流検知手段)/201K・・・導電率センサ(取得手段、導電率検知手段)
According to the present invention, there is provided an image forming apparatus that forms an image using a liquid developer containing toner and a carrier liquid, and that can reduce a decrease in cleaning performance due to a cleaning roller.
[Explanation of symbols]
11K: Development power source (third power source) / 12K ... Film forming power source (first power source) / 13K ... Power source for diaphragm (second power source, compression power source) / 14K ... For recovery Power source (potential difference applying means) / 20Y, 20M, 20C, 20K... Photoconductor (image carrier) / 51Y, 51M, 51C, 51K .. Film forming electrode / 52Y, 52M, 52C, 52K. Roller (compression member, compression rotating body) / 53Y, 53M, 53C, 53K... Developer tank / 54Y, 54M, 54C, 54K... Development roller (developer carrier) / 58Y, 58M, 58C, 58K ... Developing cleaning roller (collecting member, collecting rotating body) / 59Y, 59M, 59C, 59K ... Cleaning blade (cleaning means) / 100 ... Image forming apparatus / 110 ... Control section (control means, Take Means) / 130 ... stop current detector (current detection means) / 201K ... conductivity sensor (acquisition means, the conductivity sensing means)

Claims (13)

  1.  トナーとキャリア液を含む液体現像剤を担持して回転し、像担持体に担持された静電潜像を現像する現像剤担持体と、
     前記現像剤担持体と接触し、前記現像剤担持体との間に電位差が形成されることで前記現像剤担持体上に残ったトナーを回収する回収ローラと、
     前記現像剤担持体と前記回収ローラ間に電位差を形成する電位差形成手段と、
     画像形成動作中における前記現像剤担持体と前記回収ローラ間の電位差の設定値を切り換える切り換え手段と、を備えた現像装置。
    A developer carrying member that carries and rotates a liquid developer containing toner and a carrier liquid and develops an electrostatic latent image carried on the image carrier;
    A collecting roller that contacts the developer carrying member and collects toner remaining on the developer carrying member by forming a potential difference with the developer carrying member;
    A potential difference forming means for forming a potential difference between the developer carrying member and the collecting roller;
    A developing device comprising switching means for switching a set value of a potential difference between the developer carrying member and the collecting roller during an image forming operation.
  2.  前記電位差形成手段は前記回収ローラに電圧を印加する電源を有し、前記切り換え手段は前記回収ローラに印加する電圧値を切り換える請求項1に記載の画像形成装置。 2. The image forming apparatus according to claim 1, wherein the potential difference forming unit has a power source for applying a voltage to the collecting roller, and the switching unit switches a voltage value to be applied to the collecting roller.
  3.  前記回収ローラに回収されたトナーを前記回収ローラから除去するブレードを有する請求項1または請求項2に記載の画像形成装置。 The image forming apparatus according to claim 1, further comprising a blade that removes toner collected by the collecting roller from the collecting roller.
  4.  前記現像剤担持体と前記回収ローラには、トナーの正規の帯電極と同極の電圧が印加されており、前記現像剤担持体に印加される電圧値の絶対値は前記回収ローラに印加される電圧値の絶対値よりも大きい請求項1から請求項3のいずれかに記載の画像形成装置。 A voltage having the same polarity as a normal belt electrode of toner is applied to the developer carrying member and the collecting roller, and an absolute value of a voltage value applied to the developer carrying member is applied to the collecting roller. The image forming apparatus according to claim 1, wherein the image forming apparatus is larger than an absolute value of the voltage value.
  5.  前記現像剤担持体は導電性の弾性層を有する請求項1から請求項4のいずれかに記載の画像形成装置。 5. The image forming apparatus according to claim 1, wherein the developer carrying member has a conductive elastic layer.
  6.  前記回収ローラは金属ローラである請求項1から請求項5のいずれかに記載の画像形成装置。 6. The image forming apparatus according to claim 1, wherein the collection roller is a metal roller.
  7.  前記現像剤担持体の回転方向において、前記回収ローラよりも下流側で、現像位置よりも上流側に配置され、前記現像剤担持体に押圧する規制ローラを有する請求項1から請求項6のいずれかに記載の画像形成装置。 7. The apparatus according to claim 1, further comprising a regulating roller disposed downstream of the collection roller and upstream of the developing position in the rotation direction of the developer carrier and pressing the developer carrier. An image forming apparatus according to claim 1.
  8.  前記規制ローラにトナーの正規の帯電極と同極の電圧が印加され、前記現像剤担持体に印加される電圧値の絶対値は前記規制ローラに印加される電圧値の絶対値よりも小さい請求項7に記載の画像形成装置。 A voltage having the same polarity as a normal belt electrode of toner is applied to the regulating roller, and an absolute value of a voltage value applied to the developer carrying member is smaller than an absolute value of a voltage value applied to the regulating roller. Item 8. The image forming apparatus according to Item 7.
  9.  前記現像剤担持体の回転方向において、前記回収ローラよりも下流側で、前記規制ローラよりも上流側に配置される電極部を有し、前記電極部には正規の帯電極と同極の電圧が印加され、前記現像剤担持体に印加される電圧値の絶対値が前記電極部に印加される電圧値の絶対値よりも小さい請求項1から請求項8のいずれかに記載の画像形成装置。 In the rotation direction of the developer carrier, an electrode portion is disposed downstream of the collecting roller and upstream of the regulating roller, and the electrode portion has a voltage having the same polarity as a normal band electrode. The image forming apparatus according to claim 1, wherein an absolute value of a voltage value applied to the developer carrying member is smaller than an absolute value of a voltage value applied to the electrode unit. .
  10.  前記現像剤担持体に供給する液体現像剤を貯蔵する現像剤槽と、
     前記現像剤槽に貯蔵されている現像剤の導電率を検知する導電率検知手段と、を有し、
    前記切り換え手段は、前記導電率検知手段により検知した導電率が第1導電率の場合には前記電位差が第1電位差とし、前記導電率検知手段により検知した導電率が前記第1導電率よりも高い第2導電率の場合には前記電位差が前記第1電位差よりも大きい高い第2電位差となるように電位差が設定される請求項1から請求項9のいずれかに記載の現像装置。
    A developer tank for storing a liquid developer to be supplied to the developer carrier;
    Conductivity detecting means for detecting the conductivity of the developer stored in the developer tank,
    The switching means is configured such that when the conductivity detected by the conductivity detection means is the first conductivity, the potential difference is the first potential difference, and the conductivity detected by the conductivity detection means is more than the first conductivity. 10. The developing device according to claim 1, wherein the potential difference is set so that the potential difference becomes a high second potential difference larger than the first potential difference when the second conductivity is high. 11.
  11.  前記規制ローラに電圧を印加する電圧印加手段を有し、
     前記切り換え手段は、前記規制ローラと前記現像剤担持体間の電位差が第1規制ローラ電位差の場合には電位差が第1電位差とし、前記規制ローラと前記現像剤担持体間の電位差が前記第1規制ローラ電位差よりも大きい第2規制ローラ電位差の場合には前記電位差が前記第1電位差よりも大きい第2電位差となるように電位差が設定される請求項7に記載の画像形成装置。
    Voltage application means for applying a voltage to the regulating roller;
    When the potential difference between the regulating roller and the developer carrying member is a first regulating roller potential difference, the switching means sets the potential difference to the first potential difference, and the potential difference between the regulating roller and the developer carrying member is the first potential difference. The image forming apparatus according to claim 7, wherein the potential difference is set so that the potential difference becomes a second potential difference larger than the first potential difference in the case of a second regulation roller potential difference larger than the regulation roller potential difference.
  12.  前記回収ローラと前記現像剤担持体間の電流値を検知する電流検知部を有し、前記切り換え手段は、前記電流検知部の出力に基づいて画像形成動作中における前記現像剤担持体と前記回収ローラ間の電位差を切り換える請求項1から請求項9のいずれかに記載の現像装置。 A current detector configured to detect a current value between the recovery roller and the developer carrier, and the switching unit is configured to detect the developer carrier and the recovery during an image forming operation based on an output of the current detector. The developing device according to claim 1, wherein the potential difference between the rollers is switched.
  13.  前記電流検知部の出力があらかじめ設定された値となるように、画像形成動作中における前記現像剤担持体と前記回収ローラ間の電位差が設定される請求項12に記載の現像装置。 13. The developing device according to claim 12, wherein a potential difference between the developer carrying member and the collecting roller during an image forming operation is set so that an output of the current detection unit becomes a preset value.
PCT/JP2017/047419 2016-12-26 2017-12-26 Image formation device WO2018124310A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-251518 2016-12-26
JP2016251518A JP2018105985A (en) 2016-12-26 2016-12-26 Image forming apparatus

Publications (1)

Publication Number Publication Date
WO2018124310A1 true WO2018124310A1 (en) 2018-07-05

Family

ID=62709516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/047419 WO2018124310A1 (en) 2016-12-26 2017-12-26 Image formation device

Country Status (2)

Country Link
JP (1) JP2018105985A (en)
WO (1) WO2018124310A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020131022A1 (en) 2018-12-18 2020-06-25 Hewlett-Packard Development Company, L.P. Binary ink developers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1165297A (en) * 1997-08-15 1999-03-05 Minolta Co Ltd Electric conductivity detector and liquid developing device
JP2003295619A (en) * 2002-03-28 2003-10-15 Samsung Electronics Co Ltd Developing unit and ink concentration adjustment method
JP2005315944A (en) * 2004-04-27 2005-11-10 Kyocera Mita Corp Liquid image forming apparatus
JP2007225893A (en) * 2006-02-23 2007-09-06 Kyocera Mita Corp Liquid developing apparatus and image forming apparatus
US20100209156A1 (en) * 2007-10-12 2010-08-19 Hewlett-Packard Development Co., L.P. Electrophotographic printing and cleaning of the developer ink bearing surface
JP2013148799A (en) * 2012-01-23 2013-08-01 Kyocera Document Solutions Inc Developing device and image forming device including the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1165297A (en) * 1997-08-15 1999-03-05 Minolta Co Ltd Electric conductivity detector and liquid developing device
JP2003295619A (en) * 2002-03-28 2003-10-15 Samsung Electronics Co Ltd Developing unit and ink concentration adjustment method
JP2005315944A (en) * 2004-04-27 2005-11-10 Kyocera Mita Corp Liquid image forming apparatus
JP2007225893A (en) * 2006-02-23 2007-09-06 Kyocera Mita Corp Liquid developing apparatus and image forming apparatus
US20100209156A1 (en) * 2007-10-12 2010-08-19 Hewlett-Packard Development Co., L.P. Electrophotographic printing and cleaning of the developer ink bearing surface
JP2013148799A (en) * 2012-01-23 2013-08-01 Kyocera Document Solutions Inc Developing device and image forming device including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020131022A1 (en) 2018-12-18 2020-06-25 Hewlett-Packard Development Company, L.P. Binary ink developers
EP3853710A4 (en) * 2018-12-18 2022-04-27 Hewlett-Packard Development Company, L.P. Binary ink developers
US11334003B2 (en) 2018-12-18 2022-05-17 Hewlett-Packard Development Company, L.P. Binary ink developers

Also Published As

Publication number Publication date
JP2018105985A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
US7403729B2 (en) Image forming apparatus featuring first and second cleaning members wherein a voltage applied to the second cleaning member is changeable
JP6598457B2 (en) Image forming apparatus
JP5791350B2 (en) Image forming apparatus
JP2008107787A (en) Image development apparatus, image forming apparatus using the same, image development method and image forming method using the same
JPH11311906A (en) Image forming device
WO2018124310A1 (en) Image formation device
US10915038B2 (en) Image forming apparatus
US10606200B2 (en) Image forming apparatus having toner concentration detection
JP5084229B2 (en) Image forming apparatus and cleaning method
US10578995B2 (en) Image forming apparatus
US10732537B2 (en) Image forming apparatus
JP2010243553A (en) Transfer device and image forming apparatus
WO2018155725A1 (en) Developing device
JP4379722B2 (en) Image forming apparatus
WO2018101483A1 (en) Image-forming device
JP2006195133A (en) Image forming apparatus
JP2004361859A (en) Image forming apparatus
JP2001005237A (en) Image forming device
JP7023777B2 (en) Image forming device
JP2018116246A (en) Developing device, image forming apparatus, and liquid developer
JP2010096837A (en) Image forming apparatus
WO2018216703A1 (en) Image-forming device
JP2022063650A (en) Image forming apparatus
JP2022063845A (en) Image forming apparatus
JP2008083348A (en) Image forming apparatus using liquid toner, and image forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17885602

Country of ref document: EP

Kind code of ref document: A1