WO2018123920A1 - Tricyclic compound having sulfinyl and pharmaceutical composition containing said compound - Google Patents

Tricyclic compound having sulfinyl and pharmaceutical composition containing said compound Download PDF

Info

Publication number
WO2018123920A1
WO2018123920A1 PCT/JP2017/046283 JP2017046283W WO2018123920A1 WO 2018123920 A1 WO2018123920 A1 WO 2018123920A1 JP 2017046283 W JP2017046283 W JP 2017046283W WO 2018123920 A1 WO2018123920 A1 WO 2018123920A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
mmol
added
solution
synthesis
Prior art date
Application number
PCT/JP2017/046283
Other languages
French (fr)
Japanese (ja)
Inventor
健二 山脇
克己 横尾
佐藤 淳
Original Assignee
塩野義製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 塩野義製薬株式会社 filed Critical 塩野義製薬株式会社
Publication of WO2018123920A1 publication Critical patent/WO2018123920A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/542Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/545Compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins, cefaclor, or cephalexine
    • A61K31/546Compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins, cefaclor, or cephalexine containing further heterocyclic rings, e.g. cephalothin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D501/00Heterocyclic compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
    • C07D501/14Compounds having a nitrogen atom directly attached in position 7
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6561Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings

Definitions

  • the present invention relates to a novel tricyclic compound having antibacterial activity, an ester thereof or a pharmaceutically acceptable salt thereof, or a hydrate thereof, and a pharmaceutical composition containing them.
  • ⁇ -lactamases are broadly classified into four classes. Class A (TEM type, SHV type, CTX-M type, KPC type, etc.), Class B (NDM type, IMP type, VIM type, L-1 type, etc.), Class C (AmpC type, ADC type, etc.) Class D (such as OXA type).
  • Class A TEM type, SHV type, CTX-M type, KPC type, etc.
  • Class B NDM type, IMP type, VIM type, L-1 type, etc.
  • Class C AmpC type, ADC type, etc.
  • Class D such as OXA type
  • class A, C, and D types are broadly classified into serine- ⁇ -lactamases
  • class B types are broadly classified into metallo- ⁇ -lactamases, which are known to hydrolyze ⁇ -lactam drugs by different mechanisms. ing.
  • KPC Klebsiella pneumoniae Carbapeenase
  • class D class D with an extended substrate range
  • class B metallo- ⁇ -lactamases The existence of Gram-negative bacteria highly resistant to many ⁇ -lactam drugs including carbapenem and carbapenem has become a clinical problem.
  • Enterobacteriaceae bacteria that produce KPC and metallo- ⁇ -lactamase are known to exhibit high resistance to carbapenem antibacterial agents, which are important for the treatment of Gram-negative bacterial infections.
  • a ⁇ -lactam drug exhibits an antibacterial action by inhibiting a bacterial cell wall synthase having transpeptidase activity, commonly called penicillin binding protein (hereinafter referred to as PBP) (Non-patent Document 1).
  • PBP penicillin binding protein
  • Patent Documents 2 and 3 report ⁇ -lactam compounds having a novel skeleton, but do not describe antibacterial activity against the above-mentioned carbapenem-resistant bacteria and the like that have become problematic in recent years. Moreover, from the described antibacterial activity, it cannot be imagined at all that the compound group having this skeleton has an antibacterial activity in carbapenem-resistant bacteria.
  • the present invention provides a tricyclic compound containing a substituted or unsubstituted 5-oxotetrahydrofuran ring having a strong antibacterial spectrum and having sulfinyl against various bacteria including Gram-negative bacteria.
  • a carbapenem-resistant bacterium comprising a tricyclic compound having a substituted or unsubstituted 5-oxotetrahydrofuran ring and having sulfinyl, an ester thereof or a pharmaceutically acceptable salt thereof, or a hydrate thereof
  • a pharmaceutical composition having antibacterial activity is provided.
  • a compound showing strong antibacterial activity against ⁇ -lactamase-producing gram-negative bacteria, or a pharmaceutical composition containing the compound is provided.
  • a compound showing strong antibacterial activity against a KPC-type carbapenemase-producing bacterium, a class B-type metallo- ⁇ -lactamase (MBL) -producing gram-negative bacterium, or a pharmaceutical composition containing the compound is provided.
  • MBL metallo- ⁇ -lactamase
  • a pharmaceutical composition containing the compound is provided.
  • ESBL substrate-specific extended ⁇ -lactamase
  • Pharmaceutical compositions containing the compounds are provided.
  • This invention solves the said subject by having the following structural characteristics at least, and provides the pharmaceutical composition which has an antibacterial action with respect to a carbapenem resistant microbe. 1) It has a tricyclic mother nucleus containing a 6-membered ring having sulfinyl. 2) It has a tricyclic mother nucleus containing a substituted or unsubstituted 5-oxotetrahydrofuran ring. 3) An amide substituent (a carbonylamino group having a substituent) is present on the lactam ring in the tricyclic mother nucleus.
  • (Item 1) Formula: Or an ester thereof or a pharmaceutically acceptable salt thereof, or a hydrate thereof.
  • (Item 2) Formula: The compound according to item 1, which is any of the above, an ester thereof, or a pharmaceutically acceptable salt thereof, or a hydrate thereof.
  • (Item 3) A pharmaceutical composition comprising the compound according to item 1 or 2, its ester or pharmaceutically acceptable salt, or a hydrate thereof.
  • (Item 4) The pharmaceutical composition according to item 3, which has an antibacterial action.
  • An antibacterial agent comprising the compound according to item 1 or 2, an ester thereof, a pharmaceutically acceptable salt thereof, or a hydrate thereof.
  • a cell wall synthesis inhibitor comprising the compound according to item 1 or 2, an ester thereof or a pharmaceutically acceptable salt thereof, or a hydrate thereof.
  • a method for treating a disease associated with bacterial infection which comprises administering the compound according to item 1 or 2, an ester thereof, a pharmaceutically acceptable salt thereof, or a hydrate thereof. Its prevention method.
  • a pharmaceutical composition for oral administration comprising the compound according to item 1 or 2, an ester thereof or a pharmaceutically acceptable salt thereof, or a hydrate thereof.
  • (Item 11) Sugar-coated tablets, film-coated tablets, enteric-coated tablets, sustained-release tablets, troche tablets, sublingual tablets, buccal tablets, chewable tablets, orally disintegrating tablets, dry syrup, soft capsules, microcapsules or sustained-release capsules Item 11.
  • a pharmaceutical composition for parenteral administration comprising the compound according to item 1 or 2, an ester thereof or a pharmaceutically acceptable salt thereof, or a hydrate thereof.
  • a pharmaceutical composition for children or the elderly comprising the compound according to item 1 or 2, an ester thereof or a pharmaceutically acceptable salt thereof, or a hydrate thereof.
  • the compound of the present invention is useful as a pharmaceutical in that it has at least one of the following characteristics.
  • A) Exhibits a broad antibacterial spectrum against various gram-negative bacteria.
  • B) Exhibits a broad antibacterial spectrum against various gram-positive bacteria.
  • H Strong antibacterial activity against Enterobacteriaceae bacteria resistant to over-the-counter drugs.
  • I It exhibits strong antibacterial activity against carbapenem-resistant Enterobacteriaceae (CRE) producing carbapenemases such as Klebsiella pneumoniae Carbapenemase (KPC) and New Delhi metallo-beta-lactamase (NDM).
  • CRE carbapenem-resistant Enterobacteriaceae
  • KPC carbapenemases
  • NDM New Delhi metallo-beta-lactamase
  • J Does not show cross-resistance with existing cephem and / or carbapenem drugs.
  • K Does not show side effects such as fever after administration in vivo.
  • M It has excellent pharmacokinetic characteristics such as high blood concentration, high oral absorption, high membrane permeability, long duration of effect, and high tissue migration.
  • N The inhibitory action against CYP enzyme (for example, CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4, etc.) is weak.
  • O High metabolic stability.
  • P Does not cause gastrointestinal disorders (eg, diarrhea, hemorrhagic enteritis, gastrointestinal ulcer, gastrointestinal bleeding, etc.).
  • Q Does not cause nephrotoxicity, hepatotoxicity, cardiotoxicity (for example, QTc prolongation, etc.), convulsions or the like.
  • the compounds of the present invention are not limited to specific isomers except for the bonds described in the wedge notation, and all possible isomers (eg keto-enol isomer, imine-enamine isomer, diastereoisomer) Isomers, optical isomers, rotational isomers, geometric isomers, etc.), racemates or mixtures thereof.
  • a compound having an asymmetric atom eg, carbon atom, sulfur atom
  • a substituent on the asymmetric atom is indicated by a solid line
  • the configuration of the asymmetric atom cannot be specified. Is a single stereoisomer (R-form or S-form) or a mixture thereof.
  • each isomer has the following structure: (Where -W- is the formula: Or R 4A is a hydrogen atom; R 4B is a hydrogen atom or substituted or unsubstituted alkyl; R 10 is substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, or substituted or unsubstituted carbocycle A compound represented by the formula).
  • substituted or unsubstituted alkyl of R 4B and the substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl or substituted or unsubstituted carbocyclic group of R 10 are the same as those of the compound according to Item 1 or 2 Corresponding specific substituents shall be included.
  • the compound of the present invention preferably has, for example, the configuration represented by the following formula (Ia-1).
  • R 4A is a hydrogen atom
  • R 4B is a hydrogen atom or substituted or unsubstituted alkyl
  • R 10 is substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, or substituted or unsubstituted carbocycle Formula group
  • R 4A is a hydrogen atom
  • R 4B is a hydrogen atom or substituted or unsubstituted alkyl
  • R 10 is substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, or substituted or unsubstituted carbocycle Formula group
  • the substitution positions on the skeleton of the compound of the present invention are named as follows.
  • the A-position side chain and the B-position side chain represent groups bonded to the A-position and B-position of the following mother nucleus.
  • ester form in the compound of the present invention is, for example, described in the case where the compound of the present invention is represented by the above formula (Ia). In that case, the ester form is included.
  • carboxy is present on the B-position side chain
  • the ester form is obtained when carboxy is substituted at the terminal of the substituent on the “substituted alkyl, substituted alkenyl or substituted carbocyclic group” of R 10.
  • ester of carboxy include esters that are easily metabolized in the body to form a carboxy state.
  • Protecting groups such as carboxy described above include Protective Groups in Organic Synthesis, T. et al. W. By Greene, John Wiley & Sons Inc. (1991) and the like, and any group that can be protected and / or deprotected can be used.
  • alkyl eg, methyl, ethyl, t-butyl
  • alkylcarbonyloxymethyl eg, pivaloyl
  • substituted Arylalkyl eg: benzyl, benzhydryl, phenethyl, p-methoxybenzyl, p-nitrobenzyl
  • silyl group eg: t-butyldimethylsilyl, diphenyl t-butylsilyl
  • One or more hydrogen, carbon and / or other atoms of the compounds of the present invention may be replaced with hydrogen, carbon and / or isotopes of other atoms, respectively.
  • isotopes are 2 H, 3 H, 11 C, 13 C, 14 C, 15 N, 18 O, 17 O, 31 P, 32 P, 35 S and 18 F, respectively.
  • Hydrogen, carbon, nitrogen, oxygen, phosphorus, sulfur and fluorine are included.
  • the compounds of the present invention also include compounds substituted with such isotopes.
  • the compound substituted with the isotope is useful as a pharmaceutical and includes all radiolabeled compounds of the present invention.
  • a “radiolabeling method” for producing the “radiolabeled product” is also encompassed in the present invention, and is useful as a metabolic pharmacokinetic study, a study in a binding assay, and / or a diagnostic tool.
  • the radioactive label of the compound of the present invention can be prepared by a method well known in the art.
  • a tritium-labeled compound of the compound of the present invention can be prepared by introducing tritium into a specific compound of the present invention, for example, by a catalytic dehalogenation reaction using tritium.
  • This method involves reacting a compound in which the compound of the present invention is appropriately halogen-substituted with tritium gas in the presence of a suitable catalyst such as Pd / C, in the presence or absence of a base.
  • Suitable methods for preparing other tritium labeled compounds include the document Isotopes in the Physical and Biomedical Sciences, Vol. 1, Labeled Compounds (Part A), Chapter 6 (1987).
  • 14 C-labeled compounds can be prepared by using raw materials having 14 C carbon.
  • the salt of the compound of the present invention is a salt with an alkali metal, an alkaline earth metal, or the like when carboxy or phospho is present on the carboxy at the A position and / or B side chain. And those in which the amino group present in the B-position side chain forms a salt with an inorganic acid or organic acid.
  • Examples of the pharmaceutically acceptable salt of the compound of the present invention include, for example, the compound of the present invention, an alkali metal (for example, lithium, sodium, potassium, etc.), an alkaline earth metal (for example, calcium, barium, etc.), magnesium, and a transition metal.
  • an alkali metal for example, lithium, sodium, potassium, etc.
  • an alkaline earth metal for example, calcium, barium, etc.
  • magnesium for example, magnesium, and a transition metal.
  • organic bases eg, trimethylamine, triethylamine, dicyclohexylamine, ethanolamine, diethanolamine, triethanolamine, meglumine, diethanolamine, ethylenediamine, pyridine, picoline, quinoline, etc.
  • salts with amino acids Or inorganic acids eg, hydrochloric acid, sulfuric acid, nitric acid, carbonic acid, hydrobromic acid, phosphoric acid, hydroiodic acid, etc.
  • organic acids eg, formic acid, acetic acid, propionic acid, trifluoroacetic acid, citric acid, Lactic acid, tartaric acid, oxalic acid, male Phosphate, fumaric acid, mandelic acid, glutaric acid, malic acid, benzoic acid, phthalic acid, ascorbic acid, benzenesulfonic acid, p- toluenesulfonic acid, methanesul
  • organic bases eg, trimethylamine, trie
  • the compound of the present invention or a pharmaceutically acceptable salt thereof may form a solvate (for example, hydrate etc.) and / or a crystal polymorph, and the present invention includes such various solvates and crystals. Also includes polymorphs.
  • the “solvate” may be coordinated with any number of solvent molecules (for example, water molecules) with respect to the compound of the present invention.
  • solvent molecules for example, water molecules
  • the compound of the present invention or a pharmaceutically acceptable salt thereof When the compound of the present invention or a pharmaceutically acceptable salt thereof is left in the air, it may absorb moisture and adsorbed water may adhere or form a hydrate.
  • the crystalline polymorph may be formed by recrystallizing the compound of the present invention or a pharmaceutically acceptable salt thereof.
  • the compound of the present invention or a pharmaceutically acceptable salt thereof may form a prodrug, and the present invention includes such various prodrugs.
  • a prodrug is a derivative of a compound of the present invention having a group that can be chemically or metabolically degraded, and is a compound that becomes a pharmaceutically active compound of the present invention by solvolysis or under physiological conditions in vivo.
  • Prodrugs include compounds that are enzymatically oxidized, reduced, hydrolyzed and converted to the compounds of the present invention under physiological conditions in vivo, compounds that are hydrolyzed by gastric acid, etc. and converted to the compounds of the present invention, etc. Include. Methods for selecting and producing suitable prodrug derivatives are described, for example, in Design of Prodrugs, Elsevier, Amsterdam 1985. Prodrugs may themselves have activity.
  • the compound of the present invention or a pharmaceutically acceptable salt thereof has a hydroxy group
  • the compound having a hydroxy group and an appropriate acyl halide an appropriate acid anhydride, an appropriate sulfonyl chloride, an appropriate sulfonyl anhydride, and a mixed anion.
  • prodrugs such as acyloxy derivatives and sulfonyloxy derivatives produced by reacting with hydride or using a condensing agent.
  • CH 3 COO—, C 2 H 5 COO—, t-BuCOO—, C 15 H 31 COO—, PhCOO—, (m-NaOOCPh) COO—, NaOOCCH 2 CH 2 COO—, CH 3 CH (NH 2 ) COO—, CH 2 N (CH 3 ) 2 COO—, CH 3 SO 3 —, CH 3 CH 2 SO 3 —, CF 3 SO 3 —, CH 2 FSO 3 —, CF 3 CH 2 SO 3 —, p— CH 3 —O—PhSO 3 —, PhSO 3 —, and p—CH 3 PhSO 3 — can be mentioned.
  • the compound of the present invention can be obtained by bonding side chain sites to the A-position and B-position of the skeleton of the following intermediate, respectively.
  • the protecting group P include protecting groups described in the following general synthesis. Preferred examples include benzhydryl group, paramethoxybenzyl group, trityl group, 2,6-dimethoxybenzyl group, methoxymethyl group, benzyl group. Examples thereof include an oxymethyl group and a 2- (trimethylsilyl) ethoxymethyl group.
  • the leaving group include halogen (Cl, Br, I, F), methanesulfonyloxy, p-toluenesulfonyloxy, trifluoromethanesulfonyloxy and the like.
  • reaction solvent examples include ethers (eg, anisole, dioxane, tetrahydrofuran, diethyl ether, tert-butyl methyl ether, diisopropyl ether), esters (eg, ethyl formate, ethyl acetate, n-butyl acetate), halogenated carbonization Hydrogens (eg, dichloromethane, chloroform, carbon tetrachloride), hydrocarbons (eg, n-hexane, benzene, toluene), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone), ketones (eg acetone, methyl ethyl ketone), nitriles (eg acetonitrile, propionitrile), nitros (eg nitromethane, nitroethane, nitrobenzene), di
  • the reaction temperature is usually about ⁇ 100 to 100 ° C., preferably about ⁇ 20 to 40 ° C., more preferably about 10 to 30 ° C.
  • the reaction time varies depending on the solvent and reaction temperature, but is usually 0.5 to 48 hours.
  • Process 2 It subjected the compound protecting group P 3 of (IV) under acidic conditions deprotection reaction to obtain subsequently a compound by subjecting the intramolecular cyclization reaction under condensing agent present in the (V).
  • the reaction solvent include ethers (eg, anisole, dioxane, tetrahydrofuran, diethyl ether, tert-butyl methyl ether, diisopropyl ether), esters (eg, ethyl formate, ethyl acetate, n-butyl acetate), halogenated carbonization Hydrogens (eg, dichloromethane, chloroform, carbon tetrachloride), hydrocarbons (eg, n-hexane, benzene, toluene), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone), ketones (eg acetone
  • the reaction temperature is usually about ⁇ 100 to 100 ° C., preferably about ⁇ 20 to 40 ° C., more preferably about 0 to 20 ° C.
  • the reaction time varies depending on the solvent and reaction temperature, but is usually 0.5 to 48 hours.
  • Process 3 Compound (VI) is obtained by subjecting amino protecting group P 1 containing an acyl group of compound (V) to an alcoholysis reaction in the presence of a base or a deprotection reaction under acidic conditions.
  • the reaction solvent include ethers (eg, anisole, dioxane, tetrahydrofuran, diethyl ether, tert-butyl methyl ether, diisopropyl ether), esters (eg, ethyl formate, ethyl acetate, n-butyl acetate), halogenated carbonization Hydrogens (eg, dichloromethane, chloroform, carbon tetrachloride), hydrocarbons (eg, n-hexane, benzene, toluene), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone), ketones (eg acetone
  • the alcoholysis decomposition reaction can be activated by phosphorus pentachloride, phosphorus pentabromide, phosphorus oxychloride, thionyl chloride or the like. Preferably, it is phosphorus pentachloride.
  • the base include organic bases. For example, triethylamine, pyridine, diisopropylethylamine, N-methylimidazole, N-methylmorpholine, dimethylaniline and the like can be mentioned. Pyridine is preferred.
  • alcohol As the alcohol, methanol, ethanol, propanol or the like can be used. Ethanol is preferable.
  • Examples of the acid used in the deprotection reaction under acidic conditions include organic acids and inorganic acids. For example, trifluoroacetic acid, tosylic acid, hydrochloric acid, sulfuric acid, phosphoric acid and the like can be mentioned.
  • the reaction temperature is usually about ⁇ 100 to 100 ° C., preferably about ⁇ 70 to 20 ° C., more preferably about ⁇ 70 to ⁇ 30 ° C. for the alcoholysis reaction.
  • the deprotection reaction under acidic conditions is usually about ⁇ 100 to 100 ° C., preferably about ⁇ 20 to 40 ° C., more preferably about ⁇ 20 to 20 ° C.
  • the reaction time varies depending on the solvent and reaction temperature, but is usually 0.5 to 48 hours.
  • Process 4 Compound (VIII) is obtained by subjecting compound (VI) to a condensation reaction with compound (VII) in the presence of a base.
  • reaction solvent examples include ethers (eg, anisole, dioxane, tetrahydrofuran, diethyl ether, tert-butyl methyl ether, diisopropyl ether), esters (eg, ethyl formate, ethyl acetate, n-butyl acetate), halogenated carbonization Hydrogens (eg, dichloromethane, chloroform, carbon tetrachloride), hydrocarbons (eg, n-hexane, benzene, toluene), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone), ketones (eg, acetone, methyl ethyl ketone), nitriles (eg, MeCN, propionitrile), nitros (eg, nitromethane, nitroethane, nitrobenzene), dimethyl
  • t- butanol t- butanol
  • water exemplified.
  • these solvents may be used alone or in combination of two or more.
  • the condensing agent include 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, phosphorus oxychloride, methanesulfonyl chloride, dicyclohexylcarbodiimide, carbonyldiimidazole, and phenyl phosphate dichloride.
  • the base include triethylamine, pyridine, diisopropylethylamine, N-methylimidazole, N-methylmorpholine and the like.
  • the reaction temperature is usually about ⁇ 100 to 100 ° C., preferably about ⁇ 80 to 20 ° C., more preferably about ⁇ 20 to 20 ° C.
  • the reaction time varies depending on the reagent, solvent and reaction temperature used, but is usually 0.5 to 24 hours.
  • Process 5 Compound (IX) is obtained by oxidizing compound (VIII).
  • the reaction solvent include ethers (eg, anisole, dioxane, tetrahydrofuran, diethyl ether, tert-butyl methyl ether, diisopropyl ether), esters (eg, ethyl formate, ethyl acetate, n-butyl acetate), halogenated carbonization Hydrogens (eg, dichloromethane, chloroform, carbon tetrachloride), hydrocarbons (eg, n-hexane, benzene, toluene), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone), ketones (eg, acetone, methyl ethyl ketone), nitriles (eg, MeCN, propionitrile), nitros (eg,
  • t- butanol t- butanol
  • water exemplified.
  • solvents may be used alone or in combination of two or more.
  • the oxidizing agent include peracetic acid, m-chloroperbenzoic acid, hydrogen peroxide, sodium tungstate, and the like.
  • the reaction temperature is usually about ⁇ 100 to 100 ° C., preferably about ⁇ 80 to 20 ° C., more preferably about ⁇ 20 to 20 ° C.
  • the reaction time varies depending on the reagent, solvent and reaction temperature used, but is usually 0.5 to 24 hours.
  • Step 6 All protecting groups of compound (IX) are subjected to a deprotection reaction under acidic conditions to give compound (IC).
  • the acid an organic acid or an inorganic acid can be used. Examples thereof include trifluoroacetic acid, tosylic acid, hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, aluminum chloride, titanium chloride and the like.
  • reaction solvent examples include ethers (eg, anisole, dioxane, tetrahydrofuran, diethyl ether, tert-butyl methyl ether, diisopropyl ether), esters (eg, ethyl formate, ethyl acetate, n-butyl acetate), halogenated carbonization Hydrogens (eg, dichloromethane, chloroform, carbon tetrachloride), hydrocarbons (eg, n-hexane, benzene, toluene), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone), ketones (eg, acetone, methyl ethyl ketone), nitriles (eg, MeCN, propionitrile), nitros (eg, nitromethane, nitroethane, nitrobenzene), dimethyl
  • the reaction temperature is usually about ⁇ 100 to 100 ° C., preferably about ⁇ 80 to 20 ° C., more preferably about ⁇ 20 to 20 ° C.
  • the reaction time varies depending on the reagent, solvent and reaction temperature used, but is usually 0.5 to 24 hours.
  • the obtained compound (IC) can be further chemically modified to synthesize ester forms, or pharmaceutically acceptable salts or solvates thereof.
  • Process 1 Compound (XIX) is obtained by oxidizing compound (XVIII).
  • the oxidizing agent include selenium dioxide and oxon.
  • reaction solvent examples include ethers (eg, anisole, dioxane, tetrahydrofuran, diethyl ether, tert-butyl methyl ether, diisopropyl ether), esters (eg, ethyl formate, ethyl acetate, n-butyl acetate), halogenated carbonization Hydrogens (eg, dichloromethane, chloroform, carbon tetrachloride), hydrocarbons (eg, n-hexane, benzene, toluene), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone), ketones (eg acetone, methyl ethyl ketone), nitriles (eg acetonitrile, propionitrile), nitros (eg nitromethane, nitroethane, nitrobenzene), di
  • Process 2 Compound (XXI) is obtained by alkylation reaction of compound (II) and compound (XIX) and subsequent cyclization reaction.
  • Examples of the base include triethylamine, diisopropylethylamine, pyridine, morpholine, and lutidine. Triethylamine is preferable.
  • reaction solvent examples include ethers (eg, anisole, dioxane, tetrahydrofuran, diethyl ether, tert-butyl methyl ether, diisopropyl ether), esters (eg, ethyl formate, ethyl acetate, n-butyl acetate), halogenated carbonization Hydrogens (eg, dichloromethane, chloroform, carbon tetrachloride), hydrocarbons (eg, n-hexane, benzene, toluene), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone), ketones (eg acetone, methyl ethyl ketone), nitriles (eg acetonitrile, propionitrile), nitros (eg nitromethane, nitroethane, nitrobenzene), di
  • Process 3 Compound (XXII) is obtained by reacting compound (XXI) with ⁇ -haloacetic acid halide.
  • the base used include triethylamine, diisopropylethylamine, pyridine, morpholine, and lutidine. Triethylamine is preferable.
  • reaction solvent examples include ethers (eg, anisole, dioxane, tetrahydrofuran, diethyl ether, tert-butyl methyl ether, diisopropyl ether), esters (eg, ethyl formate, ethyl acetate, n-butyl acetate), halogenated carbonization Hydrogens (eg, dichloromethane, chloroform, carbon tetrachloride), hydrocarbons (eg, n-hexane, benzene, toluene), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone), ketones (eg, acetone, methyl ethyl ketone), nitriles (eg, acetonitrile, propionitrile), nitros (eg, nitromethane, nitroethane, nitrobenzen
  • Process 4 Compound (XXIII) is obtained by converting the halide of compound (XXII) into a phosphonium salt, followed by intramolecular cyclization in the presence of a base.
  • triphenylphosphine triethylphosphine, tributylphosphine and the like are used, and triphenylphosphine is preferable.
  • the base include sodium carbonate, sodium hydrogen carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, lithium hydroxide, triethylamine, diisopropylethylamine, sodium methoxide, sodium ethoxide, and potassium tert-butoxide.
  • Sodium bicarbonate is preferable.
  • reaction solvent examples include ethers (eg, anisole, dioxane, tetrahydrofuran, diethyl ether, tert-butyl methyl ether, diisopropyl ether), esters (eg, ethyl formate, ethyl acetate, n-butyl acetate), halogenated carbonization Hydrogens (eg, dichloromethane, chloroform, carbon tetrachloride), hydrocarbons (eg, n-hexane, benzene, toluene), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone), ketones (eg acetone, methyl ethyl ketone), nitriles (eg acetonitrile, propionitrile), nitros (eg nitromethane, nitroethane, nitrobenzene), di
  • Process 5 Compound (V ′) is obtained by reducing the double bond of compound (XXIII). The reduction is performed using catalytic hydrogenation or a reducing agent, and examples of the reducing agent include sodium borohydride, lithium borohydride, borohydride and the like.
  • reaction solvent examples include ethers (eg, anisole, dioxane, tetrahydrofuran, diethyl ether, tert-butyl methyl ether, diisopropyl ether), esters (eg, ethyl formate, ethyl acetate, n-butyl acetate), halogenated carbonization Hydrogens (eg, dichloromethane, chloroform, carbon tetrachloride), hydrocarbons (eg, n-hexane, benzene, toluene), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone), ketones (eg acetone, methyl ethyl ketone), nitriles (eg acetonitrile, propionitrile), nitros (eg nitromethane, nitroethane, nitrobenzene), di
  • the reaction temperature is usually about ⁇ 100 to 50 ° C., preferably about ⁇ 60 to 0 ° C., more preferably about ⁇ 50 to ⁇ 20 ° C.
  • the reaction time varies depending on the solvent and reaction temperature, but is usually 0.5 to 48 hours.
  • the compound of the present invention has a broad spectrum of antibacterial activity, and various diseases caused by pathogenic bacteria in various mammals including humans such as respiratory tract infections, urinary tract infections, respiratory infections, sepsis, nephritis, gallbladder It can be used for the prevention or treatment of inflammation, oral infection, endocarditis, pneumonia, osteomyelitis, otitis media, enteritis, empyema, wound infection, opportunistic infection and the like.
  • the compound of the present invention is a gram-negative bacterium, preferably a gram-negative bacterium of the family Enterobacteriaceae (E. coli, Klebsiella, Serratia, Enterobacter, Citrobacter, Morganella, Providencia, Proteus, etc.) (Hemophilus, Moraxella, etc.) and glucose non-fermenting Gram-negative bacteria (Pseudomonas other than Pseudomonas aeruginosa, Stenotrophomonas, Burkholderia, Acinetobacter, etc.).
  • Enterobacteriaceae E. coli, Klebsiella, Serratia, Enterobacter, Citrobacter, Morganella, Providencia, Proteus, etc.
  • Hemophilus, Moraxella, etc. Hemophilus, Moraxella, etc.
  • glucose non-fermenting Gram-negative bacteria Pseudomonas other than Pseudomonas a
  • ESBL-producing bacteria represented by TEM, SHV, KPC, etc.
  • it is extremely stable against metallo- ⁇ -lactamases belonging to class B including NDM type, IMP type, VIM type, L-1 type, etc. so various ⁇ -lactam drug resistant gram-negative bacteria including cephem and carbapenem
  • Further preferable compounds have characteristics such as high blood concentration, long duration of effect, and / or remarkable tissue transferability as pharmacokinetics.
  • Preferred compounds are safe in terms of side effects such as no fever and no nephrotoxicity.
  • preferred compounds have high water solubility and good pharmacokinetics, and are suitable as injections and oral drugs.
  • the compound of the present invention can be administered orally or parenterally.
  • the compound of the present invention is any of ordinary preparations, for example, solid preparations such as tablets, powders, granules and capsules, liquid preparations, oil suspensions, or liquid preparations such as syrups and elixirs. It can also be used as a dosage form.
  • the compound of the present invention can be used as an aqueous or oily suspension injection or nasal solution.
  • conventional excipients, binders, lubricants, aqueous solvents, oily solvents, emulsifiers, suspending agents, preservatives, stabilizers and the like can be arbitrarily used.
  • the formulations of the present invention are prepared by combining (eg, mixing) a therapeutically effective amount of a compound of the present invention with a pharmaceutically acceptable carrier or diluent.
  • the compound of the present invention can be administered parenterally or orally as an injection, capsule, tablet or granule, but is preferably administered as an injection.
  • the dose is usually about 0.1 to 100 mg / day, preferably about 0.5 to 50 mg / day per kg of the body weight of the patient or animal. Good.
  • the carrier is, for example, distilled water, physiological saline or the like, and a base for adjusting pH may be used.
  • Carriers when used as capsules, granules, tablets are known excipients (eg, starch, lactose, sucrose, calcium carbonate, calcium phosphate, etc.), binders (eg, starch, gum arabic, carboxymethyl cellulose) , Hydroxypropyl cellulose, crystalline cellulose, etc.), lubricants (eg, magnesium stearate, talc, etc.).
  • excipients eg, starch, lactose, sucrose, calcium carbonate, calcium phosphate, etc.
  • binders eg, starch, gum arabic, carboxymethyl cellulose) , Hydroxypropyl cellulose, crystalline cellulose, etc.
  • lubricants eg, magnesium stearate, talc, etc.
  • Boc tert-butoxycarbonyl BH or Bzh: benzohydryl DIAD: diisopropyl azodicarboxylate
  • DMF N, N-dimethylformamide
  • DMA N, N-dimethylacetamide
  • DMAP 4-dimethylaminopyridine
  • EDC 1- (3-dimethylaminopropyl ) -3-ethylcarbodiimide
  • HMPA hexamethylphosphoric triamide
  • HOBt 1-hydroxybenzotriazole
  • mCPBA m-chloroperbenzoic acid Me: methyl ODS: octadecylsilyl t-Bu: tert-butyl
  • TBS tert-butyldimethylsilyl
  • TFA Trifluoroacetic acid
  • Measurement condition B Column: Shim-pack XR-ODS (2.2 ⁇ m, id 50 ⁇ 3.0 mm) (Shimadzu) Flow rate: 1.6 mL / min PDA detection wavelength: 254 nm
  • Mobile phase [A] is a 0.1% formic acid-containing aqueous solution, [B] is a 0.1% formic acid-containing acetonitrile solution.
  • Gradient Linear gradient of 10% -100% solvent [B] is performed for 3 minutes. 100% solvent [B] was maintained for 5 minutes.
  • the powder X-ray diffraction measurement (XRPD) of the crystalline solid obtained in the examples is performed under the following measurement conditions 1 or 2 according to the powder X-ray diffraction measurement method described in the general test method of the Japanese Pharmacopoeia. It was. When measured under measurement condition 2, the peak where the 2-Theta (2 ⁇ ) value appears in the vicinity of 38 ° is an aluminum peak.
  • Step 2 Synthesis of Compound 1c
  • a solution of Compound 1b (104 g, 273 mmol) in dichloromethane (520 mL) was added N, N, N ′, N′-tetramethyldiaminomethane (149 mL, 1093 mmol).
  • acetic anhydride 129 mL, 1367 mL
  • acetic acid 109 mL, 1914 mmol
  • Step 3 Synthesis of Compound 1e
  • Compound 1c (10.0 g, 25.5 mmol) in acetone (100 mL)
  • Compound 1d (6.02 g, 25.5 mmol) and hexamethylphosphoric triamide (15.5 mL, 89 mmol) were added.
  • the mixture was further stirred at room temperature for 1 hour.
  • Water was added and extracted with ethyl acetate.
  • the organic layer was washed with water and saturated brine, and then dried over anhydrous magnesium sulfate.
  • the solvent was distilled off under reduced pressure, and the resulting residue was purified by column chromatography (hexane-ethyl acetate) to obtain Compound 1e (2.1 g, yield 13.1%).
  • Step 4 Synthesis of Compound 1f Under a nitrogen atmosphere, a solution of compound 1e (6.80 g, 10.8 mmol) in dichloromethane (34 mL) was cooled to ⁇ 10 ° C. A solution of TFA (34 mL, 441 mmol) in dichloromethane (34 mL) was added dropwise thereto, and the mixture was stirred at ⁇ 10 ° C. for 30 minutes. Water was added to the reaction mixture, and the mixture was extracted with dichloromethane. The organic layer was washed with water and saturated brine, and then dried over anhydrous magnesium sulfate.
  • Step 2 Synthesis of Compound 39g Phosphorus pentachloride (15.4 g, 73.7 mmol) was suspended in dichloromethane (200 mL) and cooled to 0 ° C. To this suspension were added pyridine (6.55 mL, 81.0 mmol) and compound 39f (20.0 g, 36.9 mmol), and the mixture was stirred at 0 ° C. for 30 minutes. The solution was cooled to ⁇ 78 ° C., ethanol (200 mL) was added, the temperature was raised to ⁇ 30 ° C., and the mixture was stirred for 2 hours. Purified water (33.2 mL, 1.84 mol) was added to this solution and stirred.
  • the reaction solution was further diluted with purified water, dichloromethane was distilled off, and the precipitated crystals were collected by filtration.
  • the obtained crystals were washed with purified water and ethyl acetate and dried to obtain 39 g of compound (14.1 g, yield 83%) as crystals.
  • Step 2 Synthesis of Compound 74c Phosphorus pentachloride (15.4 g, 73.7 mmol) was suspended in dichloromethane (200 mL) and cooled to 0 ° C. To this suspension were added pyridine (6.55 mL, 81.0 mmol) and compound 74b (20.0 g, 36.9 mmol), and the mixture was stirred at 0 ° C. for 30 minutes. The solution was cooled to ⁇ 78 ° C., ethanol (200 mL) was added, the temperature was raised to ⁇ 30 ° C., and the mixture was stirred for 2 hours. Purified water (33.2 mL, 1.84 mol) was added to this solution and stirred.
  • reaction solution was further diluted with purified water, dichloromethane was distilled off, and the precipitated crystals were collected by filtration. The obtained crystals were washed with purified water and ethyl acetate and dried to give compound 74c (14.1 g, yield 83%) as crystals.
  • Step 4 Synthesis of Compound 74g Under a nitrogen atmosphere, a solution of compound 74e (1.68 g, 6.10 mmol) in dichloromethane (34 mL) was cooled to 0 ° C. To this was added methylhydrazine (0.340 mL, 6.41 mmol), and the mixture was stirred at 0 ° C. for 1 hour. The resulting insoluble material was filtered. The filtrate was cooled to 0 ° C. Compound 74f (1.58 g, 5.80 mmol) and methanol (10 mL) were added thereto, and the mixture was stirred at 0 ° C. for 1 hour.
  • Step 2 Synthesis of Compound 75c-1
  • Compound 75b-1 (3.13 g, 9.8 mmol) in tetrahydrofuran (31 mL) was added to N-hydroxyphthalimide (1.91 g, 11.7 mmol), triphenylphosphine (3.07 g, 11.7 mmol) was added, and a 1.9 mol / L DIAD / toluene solution was added dropwise under ice cooling. After stirring at room temperature for 1 hour, the mixture was concentrated under reduced pressure, and methanol was added to the residue. The resulting solid was collected by filtration and dried under reduced pressure to obtain compound 75c-1 (3.07 g, yield 67%) as a white solid.
  • Step 8 Synthesis of Compound 75e
  • a solution of a mixture of compounds 75d and 75d-ii (25.9 g, 48 mmol) in dichloromethane (520 mL) was stirred at ⁇ 78 ° C. for 1 hour while bubbling ozone gas.
  • the system was replaced with nitrogen gas, dimethyl sulfide (10.7 mL, 145 mmol) was added, and the mixture was stirred at ⁇ 78 ° C. for 5 minutes.
  • 3-methyl-2-buten-1-ol (7.36 mL, 72.5 mmol) was added, and the mixture was stirred at ⁇ 78 ° C. for 2 hours.
  • the temperature of the reaction mixture was raised to about 0 ° C., 5% aqueous sodium carbonate solution was added, and the mixture was stirred at room temperature for 5 minutes.
  • Dichloromethane was distilled off under reduced pressure, followed by extraction with ethyl acetate, and the organic layer was washed successively with water and saturated brine, and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure.
  • the obtained crude product was purified by silica gel column chromatography (hexane-ethyl acetate) to obtain a mixture of compound 75e and 75e-ii (6.11 g, yield 36%) as a white foam.
  • Step 9, 10 Synthesis of Compound 75h
  • a solution of a mixture of Compound 75e and 75e-ii (6.11 g, 17.5 mmol) in dichloromethane (30 mL) was added N, N, N′N′-tetramethylmethanediamine under ice-cooling. (7.17 mL, 52.6 mmol) was added, and acetic anhydride (6.30 mL, 66.6 mmol) and acetic acid (5.32 mL, 93 mmol) were added dropwise in this order.
  • ice water was added to the reaction mixture, and the mixture was extracted with ethyl acetate.
  • the obtained compound 75i was used in the next reaction without purification.
  • EDC hydrochloride 933 mg, 4.87 mmol
  • water was added to the reaction mixture, and the mixture was extracted with ethyl acetate.
  • the organic layer was washed successively with water and saturated brine, and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure.
  • the resulting crude product was purified by silica gel column chromatography (hexane-ethyl acetate) to obtain Compound 75j (1.94 g, yield 96%) as a white foam.
  • Steps 13 and 14 A solution of compound 75l in 75 g-1 (484 mg, 0.7 mmol) in dimethylacetamide (1.6 mL) was cooled to ⁇ 20 ° C., and then triethylamine (0.019 mL, 0.14 mmol), methane chloride Sulfonyl (0.060 mL, 0.77 mmol) was added. Solution A was obtained by stirring at ⁇ 20 ° C. for 30 minutes. After cooling a suspension of phosphorus pentachloride (292 mg, 1.4 mmol) in dichloromethane (1.6 mL) to ⁇ 78 ° C., pyridine (0.124 mL, 1.5 mmol) was added, followed by compound 75j (321 mg, 0.
  • Step 15 To a solution of compound 75m in synthetic compound 75l (318 mg, 0.35 mmol) in dichloromethane (1.6 mL), 69% mCPBA (105 mg, 0.42 mmol) in dichloromethane (1.6 mL) was added dropwise at ⁇ 40 ° C. . After stirring at ⁇ 40 ° C. for 20 minutes, 15% aqueous sodium thiosulfate solution was added, and the mixture was extracted with ethyl acetate. The organic layer was washed in turn with an aqueous sodium bicarbonate solution and saturated brine, and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure.
  • Step 16 Synthesis of Compound I-075 After cooling a solution of Compound 75m (274 mg, 0.3 mmol) in dichloromethane (2.7 mL) to ⁇ 40 ° C., anisole (0.32 mL, 3.0 mmol), 2 mol / L aluminum chloride / Nitromethane solution (1.5 mL, 3.0 mmol) was sequentially added, and the mixture was stirred at ⁇ 30 ° C. for 30 minutes. Diisopropyl ether, ice water, and acetonitrile were added to the reaction solution and stirred to completely dissolve insoluble matters, and then the aqueous layer was separated.
  • Step 5 Synthesis of Compound 80f
  • Compound 80f 332.2 mg, 97.2%) was obtained as a white foam crude product using Compound 80e.
  • Step 6 Synthesis of Compound I-080
  • Compound I-080 155.8 mg, 71.2%) was obtained as a white solid using Compound 80f.
  • the extract was washed with water, dilute hydrochloric acid and saturated brine, and then dried over anhydrous magnesium sulfate. After filtration, the solvent was distilled off, and the obtained residue was purified by silica gel chromatography (n-hexane / ethyl acetate) to give 85b (12.2 g, yield 50%).
  • Step 3 Synthesis of Compound 85d
  • a solution of Compound 85c (6.4 g, 17.4 mmol) obtained in Step 2 in dichloromethane (64 mL) N, N, N ′, N′-tetramethyldiaminomethane (9.47 mL, 69.5 mmol) was added and cooled to 0 ° C., and acetic anhydride (11.5 mL, 122 mmol) was added slowly.
  • Acetic acid (4.97 mL, 87 mmol) was added thereto, and the mixture was stirred overnight at room temperature. Ethyl acetate was added to the reaction mixture, dichloromethane was distilled off under reduced pressure, and water was added.
  • Step 4 Synthesis of Compound 85f
  • Compound 85e (4.09 g, 17.3 mmol) and HMPA (60) synthesized by the method described in document EP253337 in a solution of the crude product of Compound 85d obtained in Step 3 in ethyl acetate (66 mL) 2 mL, 346 mmol) and stirred at room temperature overnight.
  • Water was added to the reaction solution, and the mixture was extracted with ethyl acetate.
  • the organic layer was washed with dilute hydrochloric acid, aqueous sodium hydrogen carbonate solution and saturated brine, and then dried over anhydrous magnesium sulfate.
  • Solution B A solution of compound 85h (663 mg, 1.65 mmol) in DMA (7 mL) is cooled to ⁇ 20 and triethylamine (0.267 mL, 1.93 mmol) and methanesulfonyl chloride (0.139 mL, 1.79 mmol) are added and stirred for 1 hour. This was designated as Solution B.
  • Solution A was cooled to 0 ° C., pyridine (0.333 mL, 4.13 mmol) and solution B were added and stirred for 1 hour. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate.
  • Step 4 Synthesis of Compound 46A
  • Compound 46A (1.19 g, 68.9%) was obtained as a white solid crude product using Compound 132d.
  • Step 5 Synthesis of Compound 132g
  • Compound 46A was used to obtain Compound 132g (1.2036 g, 66.2%) as a white foam.
  • Step 6 Synthesis of Compound 132h
  • Compound 132h (1.211 g, 99.7%) was obtained as a crude product of white foam using Compound 132g.
  • Step 7 Synthesis of Compound I-132
  • compound I-132 (581.3 mg, 81.8%) was obtained as a white solid using compound 132h.
  • Step 2 Synthesis of Compound 146c
  • Compound 146b (12.00 g, 24.71 mmol) was dissolved in dichloromethane (240 ml), cooled to ⁇ 78 ° C., and stirred while bubbling ozone gas until the raw material disappeared.
  • the system was replaced with nitrogen gas, dimethyl sulfide (5.48 ml, 74.1 mmol) was added, and the mixture was stirred at ⁇ 78 ° C. for 5 minutes.
  • allyl alcohol (2.52 ml, 37.1 mmol) was added and stirred at ⁇ 78 ° C. for 3 hours.
  • Step 3 Synthesis of Compound 146d
  • Compound 146c (4.62 g, 17.09 mmol) was dissolved in dichloromethane (20 ml), and N, N, N′N′-tetramethylmethanediamine (9.31 ml, 68.4 mmol) was added, and acetic anhydride (8.08 ml, 85 mmol) and acetic acid (6.84 ml, 120 mmol) were added dropwise in this order.
  • acetic anhydride (8.08 ml, 85 mmol) and acetic acid (6.84 ml, 120 mmol) were added dropwise in this order.
  • hexane was added and dichloromethane was distilled off under reduced pressure. Water was added to the residue and extracted with hexane.
  • Step 4 Synthesis of Compounds 146f-1 and 146f-2
  • Compound 146d (4.78 g, 16.93 mmol) was dissolved in DMF (50 ml), and compound 146e (5.20 g, 22.01 mmol) was added under nitrogen cooling under ice-cooling.
  • Triethylamine (0.469 ml, 3.39 mmol) was added sequentially.
  • diluted hydrochloric acid was added, and the mixture was extracted with ethyl acetate.
  • the organic layer was washed successively with water and saturated brine, and dried over anhydrous magnesium sulfate. Magnesium sulfate was filtered and concentrated under reduced pressure.
  • Step 8 Synthesis of Compound 146j
  • Compound 146i-1 (0.46 g, 0.634 mmol) was dissolved in tetrahydrofuran (5 ml), and aniline (69 ⁇ l, 0.761 mmol), Pd (PPh 3 ) 4 ( 37 mg, 0.032 mmol) was added in order.
  • diluted hydrochloric acid was added, and the mixture was extracted with ethyl acetate.
  • the organic layer was washed successively with water and saturated brine, and dried over anhydrous magnesium sulfate. Magnesium sulfate was filtered and then concentrated under reduced pressure to obtain Compound 146j (0.43 g, 99%).
  • Step 2 Synthesis of Compound 148d
  • Compound 148c (325 mg, 0.57 mmol) was dissolved in DMF (2 ml), and tert-butyldimethylchlorosilane (86 mg, 0.57 mmol) and imidazole (39 mg, 0.57 mmol) were added under ice cooling. Were sequentially added, followed by stirring at room temperature for 1 hour. Ethyl acetate and water were sequentially added to the reaction solution, and the ethyl acetate layer was separated. The obtained ethyl acetate solution was washed in turn with water and saturated brine, dried over magnesium sulfate, and the solvent was evaporated under reduced pressure to give compound 148d. Yield 381 mg (98%).
  • Step 4 Synthesis of Compound 148f
  • Compound 148e (8.25 g, 18.9 mmol) was dissolved in dichloromethane (83 ml), bis (dimethylamino) methane (10.31 ml, 76 mmol) was added under ice cooling, and anhydrous A solution of acetic acid (8.93 ml, 94 mmol) in dichloromethane (15 ml) was added dropwise over 1 hour.
  • a solution of acetic acid (7.56 ml, 132 mmol) in dichloromethane (10 ml) was further added dropwise to the reaction solution over 20 minutes, followed by stirring overnight at room temperature. Hexane was added to the reaction solution and concentrated under reduced pressure to remove dichloromethane.
  • Step 5 Synthesis of Compound 148h
  • Compound 148f (7.88 g, 17.56 mmol) was dissolved in DMF (79 ml), compound 148 g (5.40 g, 22.8 mmol) and then triethylamine (0.487 ml, 3.51 mmol) was added and stirred for 2 hours.
  • Ethyl acetate and dilute hydrochloric acid were added to the reaction solution, and the ethyl acetate layer was separated.
  • the obtained solution was washed with water and saturated brine in that order, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure.
  • Step 7 Synthesis of Compound 148j
  • Compound 148i 134 mg, 0.29 mmol
  • DMF 1.3 ml
  • imidazole 39 mg, 0.58 mmol
  • tert-butyldimethylchlorosilane 87 mg, 0
  • the reaction solution was stirred at room temperature for 30 minutes, and then ethyl acetate and water were added to separate the ethyl acetate layer.
  • the obtained ethyl acetate layer was washed with water and saturated brine in that order and dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure.
  • Step 8 Synthesis of Compound 148l Phosphorus pentachloride (72 mg, 0.35 mmol) was suspended in methylene chloride (1 ml), pyridine (31 mg, 0.38 mmol) was added under ice cooling, and the mixture was stirred for 15 minutes under ice cooling. did. Compound 148j (100 mg, 0.17 mmol) was added to the reaction mixture, and the mixture was stirred for 30 minutes under ice cooling, and then poured into methanol (3 ml) that had been ice-cooled in advance. The solution was stirred for 30 minutes under ice cooling, then diluted with dichloromethane and water, and the dichloromethane layer was separated.
  • dichloromethane layer was washed with water and saturated brine in that order, and dried over magnesium sulfate to obtain an amino form of a dichloromethane solution.
  • compound 148k (104 mg, 0.26 mmol) was dissolved in dimethylacetamide (1 ml), and triethylamine (46 ⁇ l, 0.33 mmol) and methanesulfonyl chloride (23 ⁇ l, 0.30 mmol) were sequentially added at ⁇ 20 ° C. The mixture was stirred at 15 ° C. for 20 minutes. This solution was added to the above-mentioned amino compound in dichloromethane under ice-cooling and stirred at the same temperature for 15 minutes.
  • reaction mixture was concentrated under reduced pressure, diluted hydrochloric acid was added, and the mixture was extracted with ethyl acetate.
  • the resulting solution was washed with water, aqueous sodium bicarbonate and saturated brine in that order, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure.
  • the residue was subjected to silica gel column chromatography and eluted with hexane / ethyl acetate. Fractions containing the desired compound were collected and the solvent was distilled off under reduced pressure to obtain compound 148l.
  • Step 9 Synthesis of Compound 148m
  • Compound 148l (114 mg, 0.14 mmol) was dissolved in dichloromethane (1.1 ml) and m-chloroperbenzoic acid (36 mg, 0.14 mmol) in dichloromethane (0.6 ml) at ⁇ 78 ° C. ) The solution was added. The reaction solution was stirred at ⁇ 78 ° C. for 20 minutes, ethyl acetate and an aqueous sodium thiosulfate solution were added, and the mixture was concentrated under reduced pressure, and the ethyl acetate layer was separated.
  • Step 10 Synthesis of Compound I-148
  • Compound 148m (95 mg, 0.11 mmol) was dissolved in methylene chloride (1.9 ml), anisole (121 ⁇ l, 1.11 mmol) at ⁇ 30 ° C., and then 2M / L-aluminum chloride.
  • -Nitromethane solution (554 ⁇ l, 1.11 mmol) was added and stirred at -20 ° C for 30 minutes. Isopropyl ether, ice water, and acetonitrile were added to the reaction solution, and the aqueous layer was separated.
  • Step 2 Synthesis of Compound 90c Using the compound 90b obtained in Step 1 (7.2 g, corresponding to 15 mmol), a crude product of Compound 90c was synthesized in the same manner as in Step 3 of Example 34. The crude product of compound 90c (8.7 g) was used in the next reaction without purification.
  • the obtained organic layer was washed with a 10% aqueous potassium carbonate solution three times, water and saturated brine in that order, dried over anhydrous magnesium sulfate, the inorganic matter was removed by filtration, and the filtrate was concentrated under reduced pressure.
  • the obtained crude product was purified by silica gel column chromatography (hexane-ethyl acetate) to obtain Compound 119d (6.28 g, 15.6%) as a white solid.
  • Step 3 Synthesis of Compound 120d
  • Compound 120d (436.4 mg, 11.2%) was obtained as a white solid using Compound 120c.
  • Step 4 Synthesis of Compound 34A
  • Compound 34A (437 mg, 65.4%) was obtained as a white solid crude product using Compound 120d.
  • Step 2 Synthesis of Compound 41A
  • Compound 41A (1.0695 g, 68.6%) was obtained as a white solid crude product using Compound 127b.
  • Step 1 Synthesis of Compound 142b
  • Compound 142a 5.23 g, 15.5 mmol
  • compound 142b 5.13 g, yield 69%) was obtained.
  • Step 2 Synthesis of Compound 153c
  • Compound 153b (4.18 g, 21.8 mmol) was suspended in dichloromethane, p-anisaldehyde dimethyl acetal (7.95 g, 43.6 mmol) and 10-camphorsulfonic acid (0.507 g, 2.18 mmol) was added, and the mixture was heated to reflux for 2 hours and 30 minutes.
  • the reaction solution was cooled to room temperature, and saturated aqueous sodium hydrogen carbonate was added.
  • Dichloromethane was distilled off, and the target product was extracted from the aqueous layer with ethyl acetate.
  • Step 3 Synthesis of Compound 153d
  • Compound 153c (4.48 g, 14.4 mmol) was dissolved in toluene (50.0 mL), phenoxydiphenylphosphine (8.03 g, 28.9 mmol) and N-hydroxyphthalimide (4.71 g, 28.9 mmol) was added, followed by dropwise addition of 40% diethyl azodicarboxylate in toluene (13.1 mL, 28.9 mmol).
  • Test example 1 In vitro antibacterial activity of the compound of the present invention was confirmed.
  • the minimum inhibitory concentration (MIC) was measured according to the method recommended by CLSI (Clinical and Laboratory Standards Institute), the inoculum was 5 ⁇ 10 5 CFU / mL, and the test medium was cation-adjusted Mueller Hinton broth. It was carried out by a micro liquid dilution method. The strains used are shown in the table below. (result) The test results are shown below. In the table, the unit of the numerical value of the inhibitory activity is ⁇ g / mL.
  • Test Example 1-1 The PBP (Penicillin Binding Protein) inhibitory activity of the compound of the present invention was confirmed.
  • Test method The affinity of E. coli NIHJ JC-2 for PBP was assessed by a competitive assay using fluorescently labeled penicillin.
  • the compound solution of the present invention was added to the E. coli NIHJ JC-2 membrane fraction, incubated at 30 ° C. for 10 minutes, fluorescently labeled penicillin was added to a final concentration of 15 ⁇ M, and further incubated at 30 ° C. for 30 minutes. The reaction was stopped by incubation at 30 ° C for 15 minutes after addition of 120 mg / mL-PCG / 10% -sarkosyl.
  • Test Example 1-2 The in vivo antibacterial activity of the compounds of the present invention was evaluated.
  • Animals used were Jcl: ICR male mice, 5 weeks old.
  • K. pneumoniae ATCC 13883 was used as an evaluation strain.
  • cyclophosphamide was administered intraperitoneally at doses of 150 mg / kg and 100 mg / kg to induce neutropenia.
  • infection is induced by nasal inoculation of the infected bacterial solution at about 1 ⁇ 10 6 CFU / mouse, and the compound of the present invention is 0.1, 0.3, 1 or Single or repeated subcutaneous administration at a dose of 3 mg / kg.
  • the number of viable bacteria in the lung after administration of the compound of the present invention was significantly reduced as compared with the start of treatment.
  • the compound of the present invention has a broad antibacterial spectrum, particularly shows a strong antibacterial spectrum against gram-negative bacteria, and / or produces multi-drug resistant bacteria, particularly class B type metallo- ⁇ -lactamases Strong antibacterial activity against gram negative bacteria and / or strong antibacterial activity against class A ⁇ -lactamase producing gram negative bacteria such as KPC. Furthermore, it also has strong antibacterial activity against class C ⁇ -lactamase-producing gram-negative bacteria. It is also effective against multidrug-resistant bacteria including carbapenem resistance, and has high stability against ⁇ -lactamase-producing gram-negative bacteria.
  • Test Example 2 O-deethylation of 7-ethoxyresorufin as a typical substrate metabolic reaction of human major CYP5 molecular species (CYP1A2, 2C9, 2C19, 2D6, 3A4) using commercially available pooled human liver microsomes (CYP1A2), methyl-hydroxylation of tolbutamide (CYP2C9), 4′-hydroxylation of mephenytoin (CYP2C19), O-demethylation of dextromethorphan (CYP2D6), and hydroxylation of terfenadine (CYP3A4), respectively.
  • the degree to which the amount of metabolite produced was inhibited by the compound of the present invention was evaluated.
  • reaction conditions were as follows: substrate, 0.5 ⁇ mol / L ethoxyresorufin (CYP1A2), 100 ⁇ mol / L tolbutamide (CYP2C9), 50 ⁇ mol / L S-mephenytoin (CYP2C19), 5 ⁇ mol / L dextromethorphan (CYP2D6), 1 ⁇ mol / L terfenadine (CYP3A4); reaction time, 15 minutes; reaction temperature, 37 ° C .; enzyme, pooled human liver microsome 0.2 mg protein / mL; compound concentration of the present invention 1, 5, 10, 20 ⁇ mol / L (4 points) .
  • resorufin CYP1A2 metabolite
  • CYP1A2 metabolite resorufin in the centrifugation supernatant was quantified with a fluorescent multi-label counter
  • tolbutamide hydroxide CYP2C9 metabolite
  • mephenytoin 4 ′ hydroxide CYP2C19 metabolite
  • Dextrorphan CYP2D6 metabolite
  • terfenadine alcohol CYP3A4 metabolite
  • the residual activity (%) at each concentration of the compound of the present invention added to the solvent was calculated by adding only DMSO, which is a solvent in which the compound of the present invention was dissolved, to the reaction system, and the concentration and inhibition rate were calculated.
  • the IC 50 was calculated by inverse estimation using a logistic model.
  • Intravenous administration was carried out from the tail vein using a syringe with an injection needle.
  • the bioavailability (BA) of the compound of the present invention was calculated from the AUC of the group.
  • Test Example 4 Metabolic stability test A commercially available pooled human liver microsome and the compound of the present invention are reacted for a certain period of time, and the residual ratio is calculated by comparing the reaction sample with the unreacted sample to evaluate the degree of metabolism of the compound of the present invention in the liver. did.
  • the compound of the present invention in the centrifugal supernatant was quantified by LC / MS / MS, and the residual amount of the compound of the present invention after the reaction was calculated with the compound amount at 0 minute reaction as 100%.
  • the hydrolysis reaction can be carried out in the absence of NADPH, the glucuronic acid conjugation reaction can be carried out in the presence of 5 mmol / L UDP-glucuronic acid instead of NADPH, and the same operation can be carried out thereafter.
  • Test Example 5 CYP3A4 fluorescence MBI test
  • the CYP3A4 fluorescence MBI test is a test for examining the enhancement of CYP3A4 inhibition of the compounds of the present invention by metabolic reaction.
  • 7-Benzyloxytrifluoromethylcoumarin (7-BFC) is debenzylated by CYP3A4 enzyme (E. coli-expressed enzyme) to produce a fluorescent metabolite 7-hydroxytrifluoromethylcoumarin (7-HFC).
  • CYP3A4 inhibition was evaluated using 7-HFC production reaction as an index.
  • reaction conditions are as follows: substrate, 5.6 ⁇ mol / L 7-BFC; pre-reaction time, 0 or 30 minutes; reaction time, 15 minutes; reaction temperature, 25 ° C. (room temperature); CYP3A4 content (E. coli expression enzyme), Pre-reaction 62.5 pmol / mL, reaction 6.25 pmol / mL (10-fold dilution); compound concentration of the present invention, 0.625, 1.25, 2.5, 5, 10, 20 ⁇ mol / L (6 points) ).
  • the enzyme and the compound solution of the present invention are added to the 96-well plate as a pre-reaction solution in K-Pi buffer (pH 7.4) in the above-mentioned pre-reaction composition, and the substrate and K-Pi buffer are added to another 96-well plate.
  • a part of the solution was transferred so as to be diluted by 1/10, and a reaction using NADPH as a coenzyme was started as an indicator (no pre-reaction).
  • NADPH is also added to the remaining pre-reaction solution to start the pre-reaction (pre-reaction is present), and after pre-reaction for a predetermined time, one plate is diluted to 1/10 with the substrate and K-Pi buffer.
  • a control (100%) was obtained by adding only DMSO, which is a solvent in which the compound of the present invention was dissolved, to the reaction system, and the residual activity (%) when each concentration of the compound of the present invention was added was calculated.
  • DMSO a solvent in which the compound of the present invention was dissolved
  • Test Example 6 Fluctuation Ames Test The mutagenicity of the compounds of the present invention was evaluated. Twenty microliters of Salmonella typhimurium TA98, TA100) cryopreserved was inoculated into 10 mL liquid nutrient medium (2.5% Oxoid nutritive broth No. 2) and cultured at 37 ° C. for 10 hours before shaking. For the TA98 strain, 9 mL of the bacterial solution was centrifuged (2000 ⁇ g, 10 minutes) to remove the culture solution.
  • Micro F buffer K 2 HPO 4 : 3.5 g / L, KH 2 PO 4 : 1 g / L, (NH 4 ) 2 SO 4 : 1 g / L, trisodium citrate dihydrate: 0.
  • MicroF containing 110 mL Exposure medium Biotin: 8 ⁇ g / mL, Histidine: 0.2 ⁇ g / mL, Glucose: 8 mg / mL) suspended in 25 g / L, MgSO 4 ⁇ 7H 2 0: 0.1 g / L) Buffer).
  • the TA100 strain was added to 120 mL of Exposure medium with respect to the 3.16 mL bacterial solution to prepare a test bacterial solution.
  • Compound DMSO solution of the present invention (maximum dose of 50 mg / mL to several-fold dilution at 2-3 times common ratio), DMSO as a negative control, and non-metabolic activation conditions as a positive control, 50 ⁇ g / mL 4-TA Nitroquinoline-1-oxide DMSO solution, 0.25 ⁇ g / mL 2- (2-furyl) -3- (5-nitro-2-furyl) acrylamide DMSO solution for TA100 strain, TA98 under metabolic activation conditions 40 ⁇ g / mL 2-aminoanthracene DMSO solution for the strain and 20 ⁇ g / mL 2-aminoanthracene DMSO solution for the TA100 strain, respectively, and 588 ⁇ L of the test bacterial solution (498 ⁇ L of the test bacterial solution and S9 under metabolic activation conditions).
  • Test Example 7 For the purpose of evaluating the risk of prolonging the electrocardiogram QT interval of the compound of the present invention, using HEK293 cells expressing human ether-a-go-related gene (hERG) channel, it is important for ventricular repolarization process The action of the compounds of the present invention on the delayed rectifier K + current (I Kr ), which plays an important role, was investigated. Using a fully automatic patch clamp system (PatchXpress 7000A, Axon Instruments Inc.) and holding the cells at a membrane potential of ⁇ 80 mV by whole cell patch clamp, a +40 mV depolarization stimulus was applied for 2 seconds, followed by a ⁇ 50 mV repolarization.
  • I Kr delayed rectifier K + current
  • the absolute value of the maximum tail current was measured based on the current value at the holding membrane potential using analysis software (DataXpress ver. 1, Molecular Devices Corporation). Furthermore, the inhibition rate with respect to the maximum tail current before application of the compound of the present invention was calculated, and compared with the vehicle application group (0.1% dimethyl sulfoxide solution), the effect of the compound of the present invention on I Kr was evaluated.
  • Test Example 9 Powder Solubility Test An appropriate amount of the compound of the present invention is put in an appropriate container, and JP-1 solution (2.0 g of sodium chloride, water is added to 7.0 mL of hydrochloric acid to 1000 mL), JP-2 solution (Add 500 mL of water to 500 mL of phosphate buffer solution at pH 6.8), 20 mmol / L sodium taurocholate (TCA) / JP-2 solution (JP-2 solution is added to 1.08 g of TCA to make 100 mL) 200 ⁇ L each Added. When the entire amount is dissolved after the addition of the test solution, the compound of the present invention is appropriately added. After sealing at 37 ° C.
  • the compound of the present invention is quantified using HPLC by the absolute calibration curve method.
  • Test Example 10 About 5 mg of visual solubility test compound is weighed into three microscopic test tubes, and each medium (water for injection, saline feed, 0.5% glucose solution) is added to a compound concentration of 20%. After stirring by vortex, visually check for dissolution. If so, the solubility in the medium is> 20%. Each medium (water for injection, raw food injection, glucose solution) is further added to these test solutions to prepare a test solution with a compound concentration of 10%. After stirring by vortexing, the presence or absence of dissolution is visually confirmed. If dissolved, the solubility in the medium should be 20% to 10%. Similarly, test to 5% concentration, 2.5% concentration, 1% concentration, and if not soluble at 1% concentration, the solubility in the medium should be ⁇ 1%. Measure and record the pH with 1% test solution.
  • Test Example 11 pKa measurement (capillary electrophoresis method (capillary electrophoresis method, CE method) measurement method)
  • This method is a separation method using free migration of each sample component in a buffer solution containing an electrolyte using a capillary zone electrophoresis technique. After injecting a compound solution into a fused silica capillary filled with a buffer adjusted to pH 2.5 to 11.5 and applying a high voltage (Inlet side +, Outlet side-) to the capillary, the compound is at the buffer pH. It moves at a speed that reflects the ionization state (+ charged compounds are fast, -charged compounds are slow).
  • the compound of the present invention has a broad antibacterial spectrum especially against gram-negative bacteria and is effective as an antibacterial agent having strong antibacterial activity against ⁇ -lactamase-producing gram-negative bacteria.
  • it since it has good pharmacokinetics and high water solubility, it is particularly effective as an injection or oral drug.

Abstract

Provided are: a compound that exhibits a broad antibacterial spectrum against various bacteria, including gram-negative bacteria; and a pharmaceutical composition that has antibacterial activity against carbapenem-resistant bacteria.

Description

スルフィニルを有する三環性化合物およびそれを含有する医薬組成物Tricyclic compound having sulfinyl and pharmaceutical composition containing the same
 本発明は抗菌作用を有する新規な三環性化合物、そのエステル体もしくはそれらの製薬上許容される塩、またはそれらの水和物、およびそれらを含有する医薬組成物に関する。 The present invention relates to a novel tricyclic compound having antibacterial activity, an ester thereof or a pharmaceutically acceptable salt thereof, or a hydrate thereof, and a pharmaceutical composition containing them.
 これまで、さまざまなβ-ラクタム薬の開発がなされており、β-ラクタム薬は臨床上非常に重要な抗菌薬となっている。しかし、β‐ラクタム薬を分解するβ-ラクタマーゼを産生することによりβ-ラクタム薬に対して耐性を獲得した菌種が増加している。
 アムブラー(Ambler)の分子分類法によると、β-ラクタマーゼは大きく4つのクラスに分類される。すなわち、クラスA(TEM型、SHV型、CTX-M型、KPC型など)、クラスB(NDM型、IMP型、VIM型、L-1型など)、クラスC(AmpC型、ADC型など)、クラスD(OXA型など)である。これらのうち、クラスA,C,D型はセリン-β-ラクタマーゼ、一方、クラスB型はメタロ-β-ラクタマーゼに大別され、それぞれ異なるメカニズムによってβ-ラクタム薬を加水分解することが知られている。
 近年、基質域を拡張したクラスA型(ESBL)やクラスD型に加えKlebsiella pneumoniae Carbapenemase(KPC)を含むセリン‐β-ラクタマーゼや、さらにはクラスB型のメタロ‐β-ラクタマーゼの産生により、セフェムやカルバペネムを含む多くのβ-ラクタム薬に高度耐性化したグラム陰性菌の存在が臨床上問題となっている。特に、KPCやメタロ‐β-ラクタマーゼを産生する腸内細菌科細菌は、グラム陰性菌感染症治療に対し重要な位置付けであるカルバペネム系抗菌薬に高度の耐性を示すことが知られている。
β-ラクタム薬は、トランスペプチダーゼ活性を有する細菌の細胞壁合成酵素、通称ペニシリン結合性タンパク(Penicillin Binding Protein;以下PBP)を阻害することによって抗菌作用を示す(非特許文献1)。一方、先に述べたように耐性菌が産生するβ-ラクタマーゼは、効率良くβ-ラクタム薬を認識し、分解することによってβ-ラクタム薬の抗菌活性を失活させる。このことから、β-ラクタマーゼに対する認識を避け、PBPに対する阻害活性を維持することができれば、耐性菌に対しても有効なβ-ラクタム薬を創出できると考えられる。しかしながら、両者の基質認識に対する類似性は非常に高く、構造的に区別することが困難を極め、耐性菌に効くβ-ラクタム薬の創出を阻んでいる。
メタロ‐β-ラクタマーゼ産生グラム陰性菌を含むグラム陰性菌に対して中程度の活性を示すセフェム化合物が公知である(例:特許文献1)が、さらに強い抗菌活性、特に各種β-ラクタマーゼ産生グラム陰性菌に対して有効なβ-ラクタム薬の開発が切望されている。
 特許文献2および3には、新規な骨格を有するβ-ラクタム系化合物が報告されているが、近年問題となっている上記カルバペネム耐性菌などに対する抗菌活性は記載されていない。また、記載された抗菌活性から、本骨格を持つ化合物群がカルバペネム耐性菌に抗菌活性を有することは到底想像できることではない。
Various β-lactam drugs have been developed so far, and β-lactam drugs have become clinically very important antibacterial drugs. However, an increasing number of bacterial strains have acquired resistance to β-lactam drugs by producing β-lactamase that degrades β-lactam drugs.
According to Ambler's molecular taxonomy, β-lactamases are broadly classified into four classes. Class A (TEM type, SHV type, CTX-M type, KPC type, etc.), Class B (NDM type, IMP type, VIM type, L-1 type, etc.), Class C (AmpC type, ADC type, etc.) Class D (such as OXA type). Of these, class A, C, and D types are broadly classified into serine-β-lactamases, while class B types are broadly classified into metallo-β-lactamases, which are known to hydrolyze β-lactam drugs by different mechanisms. ing.
In recent years, by the production of serine-β-lactamases including Klebsiella pneumoniae Carbapeenase (KPC) in addition to class A (ESBL) and class D with an extended substrate range, and further, class B metallo-β-lactamases, The existence of Gram-negative bacteria highly resistant to many β-lactam drugs including carbapenem and carbapenem has become a clinical problem. In particular, Enterobacteriaceae bacteria that produce KPC and metallo-β-lactamase are known to exhibit high resistance to carbapenem antibacterial agents, which are important for the treatment of Gram-negative bacterial infections.
A β-lactam drug exhibits an antibacterial action by inhibiting a bacterial cell wall synthase having transpeptidase activity, commonly called penicillin binding protein (hereinafter referred to as PBP) (Non-patent Document 1). On the other hand, as described above, β-lactamase produced by resistant bacteria efficiently recognizes and degrades β-lactam drugs, thereby inactivating the antibacterial activity of β-lactam drugs. From this, if it is possible to avoid recognition of β-lactamase and maintain inhibitory activity against PBP, it is considered that an effective β-lactam drug can be created even against resistant bacteria. However, their similarity to substrate recognition is very high, making it extremely difficult to distinguish structurally and preventing the creation of β-lactam drugs that are effective against resistant bacteria.
Cephem compounds that exhibit moderate activity against gram-negative bacteria, including metallo-β-lactamase-producing gram-negative bacteria are known (eg, Patent Document 1), but stronger antibacterial activity, especially various β-lactamase-producing gram The development of β-lactam drugs effective against negative bacteria is eagerly desired.
Patent Documents 2 and 3 report β-lactam compounds having a novel skeleton, but do not describe antibacterial activity against the above-mentioned carbapenem-resistant bacteria and the like that have become problematic in recent years. Moreover, from the described antibacterial activity, it cannot be imagined at all that the compound group having this skeleton has an antibacterial activity in carbapenem-resistant bacteria.
国際公開第2007/119511号International Publication No. 2007/119511 欧州特許出願公開0253337号European Patent Application Publication No. 0253337 欧州特許出願公開0249909号European Patent Application Publication No. 0249909
 本発明は、グラム陰性菌を含む種々の細菌に対して、強力な抗菌スペクトルを示す置換もしくは非置換の5-オキソテトラヒドロフラン環を含み、かつ、スルフィニルを有する三環性化合物を提供する。さらに、置換もしくは非置換の5-オキソテトラヒドロフラン環を含み、かつスルフィニルを有する三環性化合物、そのエステル体もしくはそれらの製薬上許容される塩、またはそれらの水和物を包含する、カルバペネム耐性菌に対して抗菌活性を有する医薬組成物を提供する。好ましくは、β-ラクタマーゼ産生グラム陰性菌に対し強い抗菌活性を示す化合物、またはその化合物を含有する医薬組成物を提供する。より好ましくは、KPC型カルバペネマーゼ(Klebsiella pneumoniae carbapenemase)産生菌、クラスB型メタロ-β-ラクタマーゼ(MBL)産生グラム陰性菌に対し強い抗菌活性を示す化合物、またはその化合物を含有する医薬組成物を提供する。さらに好ましくは、上記β-ラクタマーゼに加え基質特異性拡張型β-ラクタマーゼ(ESBL)および/またはクラスC型β-ラクタマーゼを産生するグラム陰性菌に対しても効果的な抗菌活性を示す化合物、またはその化合物を含有する医薬組成物を提供する。 The present invention provides a tricyclic compound containing a substituted or unsubstituted 5-oxotetrahydrofuran ring having a strong antibacterial spectrum and having sulfinyl against various bacteria including Gram-negative bacteria. Furthermore, a carbapenem-resistant bacterium comprising a tricyclic compound having a substituted or unsubstituted 5-oxotetrahydrofuran ring and having sulfinyl, an ester thereof or a pharmaceutically acceptable salt thereof, or a hydrate thereof A pharmaceutical composition having antibacterial activity is provided. Preferably, a compound showing strong antibacterial activity against β-lactamase-producing gram-negative bacteria, or a pharmaceutical composition containing the compound is provided. More preferably, a compound showing strong antibacterial activity against a KPC-type carbapenemase-producing bacterium, a class B-type metallo-β-lactamase (MBL) -producing gram-negative bacterium, or a pharmaceutical composition containing the compound is provided. To do. More preferably, in addition to the β-lactamase, a compound exhibiting effective antibacterial activity against Gram-negative bacteria that produce substrate-specific extended β-lactamase (ESBL) and / or class C β-lactamase, or Pharmaceutical compositions containing the compounds are provided.
 本発明は、少なくとも以下の構造的特徴を有することにより上記課題を解決し、カルバペネム耐性菌に対して抗菌作用を有する医薬組成物を提供する。
1)スルフィニルを有する6員環を含む三環性母核を有する。
2)置換もしくは非置換の5-オキソテトラヒドロフラン環を含む三環性母核を有する。
3)三環性母核内のラクタム環上にアミド置換基(置換基を有するカルボニルアミノ基)を有する。
This invention solves the said subject by having the following structural characteristics at least, and provides the pharmaceutical composition which has an antibacterial action with respect to a carbapenem resistant microbe.
1) It has a tricyclic mother nucleus containing a 6-membered ring having sulfinyl.
2) It has a tricyclic mother nucleus containing a substituted or unsubstituted 5-oxotetrahydrofuran ring.
3) An amide substituent (a carbonylamino group having a substituent) is present on the lactam ring in the tricyclic mother nucleus.
(項目1)式:
Figure JPOXMLDOC01-appb-C000005

Figure JPOXMLDOC01-appb-C000006

のいずれかである化合物、そのエステル体もしくはそれらの製薬上許容される塩、またはそれらの水和物。
(項目2)式:
Figure JPOXMLDOC01-appb-C000007

Figure JPOXMLDOC01-appb-C000008

のいずれかである、項目1記載の化合物、そのエステル体もしくはそれらの製薬上許容される塩、またはそれらの水和物。
(項目3)項目1または2記載の化合物、そのエステル体もしくはそれらの製薬上許容される塩、またはそれらの水和物を含有する医薬組成物。
(項目4)抗菌作用を有する、項目3記載の医薬組成物。
(項目5)項目1または2記載の化合物、そのエステル体もしくはそれらの製薬上許容される塩、またはそれらの水和物を含有する抗菌剤。
(項目6)項目1または2記載の化合物、そのエステル体もしくはそれらの製薬上許容される塩、またはそれらの水和物を含有する細胞壁合成阻害剤。
(項目7)項目1または2記載の化合物、そのエステル体もしくはそれらの製薬上許容される塩、またはそれらの水和物を投与することを特徴とする、菌感染に関連する疾患の治療法またはその予防法。
(項目8)菌感染に関連する疾患を治療または予防するための、項目1または2記載の化合物、そのエステル体もしくはそれらの製薬上許容される塩、またはそれらの水和物。
(Item 1) Formula:
Figure JPOXMLDOC01-appb-C000005

Figure JPOXMLDOC01-appb-C000006

Or an ester thereof or a pharmaceutically acceptable salt thereof, or a hydrate thereof.
(Item 2) Formula:
Figure JPOXMLDOC01-appb-C000007

Figure JPOXMLDOC01-appb-C000008

The compound according to item 1, which is any of the above, an ester thereof, or a pharmaceutically acceptable salt thereof, or a hydrate thereof.
(Item 3) A pharmaceutical composition comprising the compound according to item 1 or 2, its ester or pharmaceutically acceptable salt, or a hydrate thereof.
(Item 4) The pharmaceutical composition according to item 3, which has an antibacterial action.
(Item 5) An antibacterial agent comprising the compound according to item 1 or 2, an ester thereof, a pharmaceutically acceptable salt thereof, or a hydrate thereof.
(Item 6) A cell wall synthesis inhibitor comprising the compound according to item 1 or 2, an ester thereof or a pharmaceutically acceptable salt thereof, or a hydrate thereof.
(Item 7) A method for treating a disease associated with bacterial infection, which comprises administering the compound according to item 1 or 2, an ester thereof, a pharmaceutically acceptable salt thereof, or a hydrate thereof. Its prevention method.
(Item 8) The compound according to item 1 or 2, an ester thereof, a pharmaceutically acceptable salt thereof, or a hydrate thereof for treating or preventing a disease associated with bacterial infection.
(項目9)項目1または2記載の化合物、そのエステル体もしくはそれらの製薬上許容される塩、またはそれらの水和物を含有する、経口投与のための医薬組成物。 (Item 9) A pharmaceutical composition for oral administration comprising the compound according to item 1 or 2, an ester thereof or a pharmaceutically acceptable salt thereof, or a hydrate thereof.
(項目10)錠剤、散剤、顆粒剤、カプセル剤、丸剤、フィルム剤、懸濁剤、乳剤、エリキシル剤、シロップ剤、リモナーデ剤、酒精剤、芳香水剤、エキス剤、煎剤またはチンキ剤である、項目9記載の医薬組成物。 (Item 10) Tablets, powders, granules, capsules, pills, films, suspensions, emulsions, elixirs, syrups, limonades, spirits, aromatic liquids, extracts, decoctions or tinctures Item 10. A pharmaceutical composition according to Item 9.
(項目11)糖衣錠、フィルムコーティング錠、腸溶性コーティング錠、徐放錠、トローチ錠、舌下錠、バッカル錠、チュアブル錠、口腔内崩壊錠、ドライシロップ、ソフトカプセル剤、マイクロカプセル剤または徐放性カプセル剤である、項目10記載の医薬組成物。 (Item 11) Sugar-coated tablets, film-coated tablets, enteric-coated tablets, sustained-release tablets, troche tablets, sublingual tablets, buccal tablets, chewable tablets, orally disintegrating tablets, dry syrup, soft capsules, microcapsules or sustained-release capsules Item 11. A pharmaceutical composition according to Item 10, which is an agent.
(項目12)項目1または2記載の化合物、そのエステル体もしくはそれらの製薬上許容される塩、またはそれらの水和物を含有する、非経口投与のための医薬組成物。 (Item 12) A pharmaceutical composition for parenteral administration, comprising the compound according to item 1 or 2, an ester thereof or a pharmaceutically acceptable salt thereof, or a hydrate thereof.
(項目13)経皮、皮下、静脈内、動脈内、筋肉内、腹腔内、経粘膜、吸入、経鼻、点眼、点耳または膣内投与のための、項目12記載の医薬組成物。 (Item 13) The pharmaceutical composition according to item 12, for transdermal, subcutaneous, intravenous, intraarterial, intramuscular, intraperitoneal, transmucosal, inhalation, nasal, eye drop, ear drop or intravaginal administration.
(項目14)注射剤、点滴剤、点眼剤、点鼻剤、点耳剤、エアゾール剤、吸入剤、ローション剤、注入剤、塗布剤、含嗽剤、浣腸剤、軟膏剤、硬膏剤、ゼリー剤、クリーム剤、貼付剤、パップ剤、外用散剤または坐剤である、項目12または13記載の医薬組成物。 (Item 14) Injections, drops, eye drops, nasal drops, ear drops, aerosols, inhalants, lotions, injections, coatings, gargles, enemas, ointments, plasters, jellys 14. A pharmaceutical composition according to item 12 or 13, which is a cream, a patch, a poultice, a powder for external use or a suppository.
(項目15)項目1または2記載の化合物、そのエステル体もしくはそれらの製薬上許容される塩、またはそれらの水和物を含有する、小児用または高齢者用の医薬組成物。 (Item 15) A pharmaceutical composition for children or the elderly, comprising the compound according to item 1 or 2, an ester thereof or a pharmaceutically acceptable salt thereof, or a hydrate thereof.
(項目16)項目1または2記載の化合物、そのエステル体もしくはそれらの製薬上許容される塩、またはそれらの水和物と、β-ラクタマーゼ阻害剤、抗グラム陽性菌活性を有する抗菌剤および/または抗嫌気性菌活性を有する抗菌剤との組み合わせからなる医薬組成物。 (Item 16) The compound according to item 1 or 2, its ester form or a pharmaceutically acceptable salt thereof, or a hydrate thereof, a β-lactamase inhibitor, an antibacterial agent having anti-gram positive bacterial activity and / or Or a pharmaceutical composition comprising a combination with an antibacterial agent having anti-anaerobic activity.
(項目17)項目1または2記載の化合物、そのエステル体もしくはそれらの製薬上許容される塩、またはそれらの水和物と、β-ラクタマーゼ阻害剤、抗グラム陽性菌活性を有する抗菌剤および/または抗嫌気性菌活性を有する抗菌剤との併用療法のための医薬組成物。 (Item 17) The compound according to item 1 or 2, its ester form or a pharmaceutically acceptable salt thereof, or a hydrate thereof, a β-lactamase inhibitor, an antibacterial agent having anti-gram positive bacterial activity and / or Or a pharmaceutical composition for combination therapy with an antibacterial agent having anti-anaerobic activity.
 本発明化合物は、少なくとも以下のいずれかの特徴を有する点で医薬品として有用である。
A)グラム陰性菌の種々の細菌に対して、広範な抗菌スペクトルを示す。
B)グラム陽性菌の種々の細菌に対して、広範な抗菌スペクトルを示す。
C)β-ラクタマーゼ産生グラム陰性菌に対し強い抗菌活性を示す。
D)多剤耐性菌、特にクラスB型のメタロ-β-ラクタマーゼ産生グラム陰性菌に対し強い抗菌活性を示す。
E)基質特異性拡張型β-ラクタマーゼ(ESBL)産生菌に対し強い抗菌活性を示す。
F)クラスC型β-ラクタマーゼを産生するグラム陰性菌に対し強い抗菌活性を示す。
G)カルバペネム耐性菌に対し強い抗菌活性を示す。
H)市販薬に耐性のある腸内細菌科細菌に対し強い抗菌活性を示す。
I)Klebsiella pneumoniae Carbapenemase(KPC)やNew Delhi metallo-beta-lactamase(NDM)などのカルバペネマーゼを産生するカルバペネム耐性腸内細菌科細菌(CRE)に対し強い抗菌活性を示す。
J)既存のセフェム薬および/またはカルバペネム薬と交叉耐性を示さない。
K)生体内への投与後に、発熱などの副作用を示さない。
L)化合物の安定性(例えば、各種液性における溶液安定性、光安定性等)および/または水に対する溶解性が高い。
M)血中濃度が高い、経口吸収性が高い、膜透過性が高い、効果持続時間が長い、または組織移行性が高い等の薬物動態面での優れた特徴を有する。
N)CYP酵素(例えば、CYP1A2、CYP2C9、CYP2C19、CYP2D6、CYP3A4等)に対する阻害作用が弱い。
O)代謝安定性が高い。
P)消化管障害(例えば、下痢、出血性腸炎、消化管潰瘍、消化管出血等)を起こさない。
Q)腎毒性、肝毒性、心毒性(例えば、QTc延長等)、痙攣等を起こさない。
The compound of the present invention is useful as a pharmaceutical in that it has at least one of the following characteristics.
A) Exhibits a broad antibacterial spectrum against various gram-negative bacteria.
B) Exhibits a broad antibacterial spectrum against various gram-positive bacteria.
C) Strong antibacterial activity against β-lactamase-producing gram-negative bacteria.
D) Strong antibacterial activity against multidrug-resistant bacteria, particularly class B type metallo-β-lactamase-producing gram-negative bacteria.
E) Strong antibacterial activity against the substrate-specific extended β-lactamase (ESBL) -producing bacterium.
F) Strong antibacterial activity against gram-negative bacteria producing class C β-lactamase.
G) Strong antibacterial activity against carbapenem-resistant bacteria.
H) Strong antibacterial activity against Enterobacteriaceae bacteria resistant to over-the-counter drugs.
I) It exhibits strong antibacterial activity against carbapenem-resistant Enterobacteriaceae (CRE) producing carbapenemases such as Klebsiella pneumoniae Carbapenemase (KPC) and New Delhi metallo-beta-lactamase (NDM).
J) Does not show cross-resistance with existing cephem and / or carbapenem drugs.
K) Does not show side effects such as fever after administration in vivo.
L) The stability of the compound (for example, solution stability and light stability in various liquid properties) and / or solubility in water is high.
M) It has excellent pharmacokinetic characteristics such as high blood concentration, high oral absorption, high membrane permeability, long duration of effect, and high tissue migration.
N) The inhibitory action against CYP enzyme (for example, CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4, etc.) is weak.
O) High metabolic stability.
P) Does not cause gastrointestinal disorders (eg, diarrhea, hemorrhagic enteritis, gastrointestinal ulcer, gastrointestinal bleeding, etc.).
Q) Does not cause nephrotoxicity, hepatotoxicity, cardiotoxicity (for example, QTc prolongation, etc.), convulsions or the like.
 以下、本発明に関して、発明の実施の形態を説明する。本明細書の全体にわたり、単数形の表現(例えば、英語の場合は「a」、「an」、「the」など、他の言語における対応する冠詞、形容詞など)は特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限りは、本明細書中で使用されるすべての専門用語および化学技術用語は、本発明の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。以下に、本明細書において具体的に使用される用語について具体的な定義を記載する。
「からなる」という用語は、構成要件のみを有することを意味する。
「含む」という用語は、構成要件に限定されず、記載されていない要素を排除しないことを意味する。
Hereinafter, embodiments of the present invention will be described with respect to the present invention. Throughout this specification, expressions in the singular (eg, “a”, “an”, “the” in the case of English, corresponding articles, adjectives, etc. in other languages, etc.) It should be understood to include the concept of shape. In addition, it is to be understood that terms used in the specification are used in the meaning normally used in the art unless otherwise specified. Thus, unless defined otherwise, all technical and chemical technical terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In case of conflict, the present specification, including definitions, will control. Hereinafter, specific definitions of terms specifically used in the present specification will be described.
The term “consisting of” means having only the configuration requirements.
The term “comprising” is not limited to the constituent elements and means that elements not described are not excluded.
 本発明化合物は、くさび形表記で記載された結合以外は、特定の異性体に限定するものではなく、すべての可能な異性体(例えば、ケト-エノール異性体、イミン-エナミン異性体、ジアステレオ異性体、光学異性体、回転異性体、幾何異性体等)、ラセミ体またはそれらの混合物を含む。
本発明化合物のうち不斉原子(例:炭素原子、硫黄原子)を有する化合物で、不斉原子上の置換基を実線で記載している場合、該不斉原子の立体配置は特定できていないが単一の立体異性体(R体またはS体)であるか、それらの混合物であることを意味する。
The compounds of the present invention are not limited to specific isomers except for the bonds described in the wedge notation, and all possible isomers (eg keto-enol isomer, imine-enamine isomer, diastereoisomer) Isomers, optical isomers, rotational isomers, geometric isomers, etc.), racemates or mixtures thereof.
Among the compounds of the present invention, when a compound having an asymmetric atom (eg, carbon atom, sulfur atom) and a substituent on the asymmetric atom is indicated by a solid line, the configuration of the asymmetric atom cannot be specified. Is a single stereoisomer (R-form or S-form) or a mixture thereof.
 例えば、本発明化合物を以下の式(I-a)として示した場合、
Figure JPOXMLDOC01-appb-C000009

各異性体は、以下の構造
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011

(式中、-W-は式:
Figure JPOXMLDOC01-appb-C000012

または、
Figure JPOXMLDOC01-appb-C000013

であり;R4Aは水素原子であり;R4Bは水素原子または置換もしくは非置換のアルキルであり;R10は置換もしくは非置換のアルキル、置換もしくは非置換のアルケニルまたは置換もしくは非置換の炭素環式基である)で示される化合物等を包含する。
ここで、R4Bの置換もしくは非置換のアルキル、およびR10の置換もしくは非置換のアルキル、置換もしくは非置換のアルケニルまたは置換もしくは非置換の炭素環式基は、項目1または2記載の化合物の対応する具体的置換基を含むものとする。
本発明化合物は、例えば、以下の式(I-a-1)で示される立体配置が好ましい。
Figure JPOXMLDOC01-appb-C000014

(式中、-W-は式:
Figure JPOXMLDOC01-appb-C000015

であり;R4Aは水素原子であり;R4Bは水素原子または置換もしくは非置換のアルキルであり;R10は置換もしくは非置換のアルキル、置換もしくは非置換のアルケニルまたは置換もしくは非置換の炭素環式基である)
なお、下式の表記は、上記式(I-a-1)と同じ立体配置を意味する。
Figure JPOXMLDOC01-appb-C000016

(式中、-W-は式:
Figure JPOXMLDOC01-appb-C000017

であり;R4Aは水素原子であり;R4Bは水素原子または置換もしくは非置換のアルキルであり;R10は置換もしくは非置換のアルキル、置換もしくは非置換のアルケニルまたは置換もしくは非置換の炭素環式基である)
For example, when the compound of the present invention is represented by the following formula (Ia):
Figure JPOXMLDOC01-appb-C000009

Each isomer has the following structure:
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011

(Where -W- is the formula:
Figure JPOXMLDOC01-appb-C000012

Or
Figure JPOXMLDOC01-appb-C000013

R 4A is a hydrogen atom; R 4B is a hydrogen atom or substituted or unsubstituted alkyl; R 10 is substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, or substituted or unsubstituted carbocycle A compound represented by the formula).
Here, the substituted or unsubstituted alkyl of R 4B and the substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl or substituted or unsubstituted carbocyclic group of R 10 are the same as those of the compound according to Item 1 or 2 Corresponding specific substituents shall be included.
The compound of the present invention preferably has, for example, the configuration represented by the following formula (Ia-1).
Figure JPOXMLDOC01-appb-C000014

(Where -W- is the formula:
Figure JPOXMLDOC01-appb-C000015

R 4A is a hydrogen atom; R 4B is a hydrogen atom or substituted or unsubstituted alkyl; R 10 is substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, or substituted or unsubstituted carbocycle Formula group)
Note that the notation in the following formula means the same steric configuration as in the above formula (Ia-1).
Figure JPOXMLDOC01-appb-C000016

(Where -W- is the formula:
Figure JPOXMLDOC01-appb-C000017

R 4A is a hydrogen atom; R 4B is a hydrogen atom or substituted or unsubstituted alkyl; R 10 is substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, or substituted or unsubstituted carbocycle Formula group)
 例えば、本発明化合物を以下の式(I-a)とした場合、本発明化合物の骨格上の置換位置の命名は、以下のとおりとする。本明細書中におけるA位側鎖およびB位側鎖とは、下記母核のA位およびB位に結合している基を示す。 For example, when the compound of the present invention is represented by the following formula (Ia), the substitution positions on the skeleton of the compound of the present invention are named as follows. In this specification, the A-position side chain and the B-position side chain represent groups bonded to the A-position and B-position of the following mother nucleus.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
本発明化合物におけるエステル体とは、例えば、本発明化合物を上記式(I-a)で示した場合で説明すると、A位のカルボキシのエステル体、および/またはB位側鎖上にカルボキシが存在する場合は、そのエステル体を包含する。ここで、B位側鎖上にカルボキシが存在する場合におけるエステル体は、R10の「置換アルキル、置換アルケニルまたは置換炭素環式基」上の置換基の末端にカルボキシが置換している場合に、そのカルボキシのエステル体を挙げることができる。これらエステル体は、体内で容易に代謝されてカルボキシの状態になるエステルを包含する。 The ester form in the compound of the present invention is, for example, described in the case where the compound of the present invention is represented by the above formula (Ia). In that case, the ester form is included. Here, in the case where carboxy is present on the B-position side chain, the ester form is obtained when carboxy is substituted at the terminal of the substituent on the “substituted alkyl, substituted alkenyl or substituted carbocyclic group” of R 10. And the ester of carboxy. These ester forms include esters that are easily metabolized in the body to form a carboxy state.
 上記のカルボキシ等の保護基としては、Protective Groups in Organic Synthesis、T.W.Greene著、John Wiley & Sons Inc.(1991年)等に記載の方法で保護および/または脱保護できる基であればよく、例えば、アルキル(例:メチル、エチル、t-ブチル)、アルキルカルボニルオキシメチル(例:ピバロイル)、置換されていてもよいアリールアルキル(例:ベンジル、ベンズヒドリル、フェネチル、p-メトキシベンジル、p-ニトロベンジル)、シリル基(例:t-ブチルジメチルシリル、ジフェニルt-ブチルシリル)等が挙げられる。 Protecting groups such as carboxy described above include Protective Groups in Organic Synthesis, T. et al. W. By Greene, John Wiley & Sons Inc. (1991) and the like, and any group that can be protected and / or deprotected can be used. For example, alkyl (eg, methyl, ethyl, t-butyl), alkylcarbonyloxymethyl (eg, pivaloyl), substituted Arylalkyl (eg: benzyl, benzhydryl, phenethyl, p-methoxybenzyl, p-nitrobenzyl), silyl group (eg: t-butyldimethylsilyl, diphenyl t-butylsilyl) and the like.
 本発明化合物の一つ以上の水素、炭素および/または他の原子は、それぞれ水素、炭素および/または他の原子の同位体で置換され得る。そのような同位体の例としては、それぞれ2H、3H、11C、13C、14C、15N、18O、17O、31P、32P、35Sおよび18Fのように、水素、炭素、窒素、酸素、リン、硫黄およびフッ素が包含される。本発明化合物は、そのような同位体で置換された化合物も包含する。該同位体で置換された化合物は、医薬品としても有用であり、本発明化合物のすべての放射性標識体を包含する。また該「放射性標識体」を製造するための「放射性標識化方法」も本発明に包含され、代謝薬物動態研究、結合アッセイにおける研究および/または診断のツールとして有用である。 One or more hydrogen, carbon and / or other atoms of the compounds of the present invention may be replaced with hydrogen, carbon and / or isotopes of other atoms, respectively. Examples of such isotopes are 2 H, 3 H, 11 C, 13 C, 14 C, 15 N, 18 O, 17 O, 31 P, 32 P, 35 S and 18 F, respectively. Hydrogen, carbon, nitrogen, oxygen, phosphorus, sulfur and fluorine are included. The compounds of the present invention also include compounds substituted with such isotopes. The compound substituted with the isotope is useful as a pharmaceutical and includes all radiolabeled compounds of the present invention. A “radiolabeling method” for producing the “radiolabeled product” is also encompassed in the present invention, and is useful as a metabolic pharmacokinetic study, a study in a binding assay, and / or a diagnostic tool.
 本発明化合物の放射性標識体は、当該技術分野で周知の方法で調製できる。例えば、本発明化合物のトリチウム標識化合物は、例えば、トリチウムを用いた触媒的脱ハロゲン化反応によって、特定の本発明化合物にトリチウムを導入することで調製できる。この方法は、適切な触媒、例えばPd/Cの存在下、塩基の存在下または非存在下で、本発明化合物が適切にハロゲン置換された前駆体とトリチウムガスとを反応させることを包含する。他のトリチウム標識化合物を調製するための適切な方法としては、文書Isotopes in the Physical and Biomedical Sciences,Vol.1,Labeled Compounds (Part A),Chapter 6 (1987年)を参照にできる。14C-標識化合物は、14C炭素を有する原料を用いることによって調製できる。 The radioactive label of the compound of the present invention can be prepared by a method well known in the art. For example, a tritium-labeled compound of the compound of the present invention can be prepared by introducing tritium into a specific compound of the present invention, for example, by a catalytic dehalogenation reaction using tritium. This method involves reacting a compound in which the compound of the present invention is appropriately halogen-substituted with tritium gas in the presence of a suitable catalyst such as Pd / C, in the presence or absence of a base. Suitable methods for preparing other tritium labeled compounds include the document Isotopes in the Physical and Biomedical Sciences, Vol. 1, Labeled Compounds (Part A), Chapter 6 (1987). 14 C-labeled compounds can be prepared by using raw materials having 14 C carbon.
 本発明化合物の塩とは、A位のカルボキシおよび/またはB位側鎖上にカルボキシまたはホスホが存在する場合のカルボキシまたはホスホが、アルカリ金属、アルカリ土類金属などとの塩を形成しているものや、B位側鎖に存在するアミノが無機酸や有機酸と塩を形成しているものを包含する。 The salt of the compound of the present invention is a salt with an alkali metal, an alkaline earth metal, or the like when carboxy or phospho is present on the carboxy at the A position and / or B side chain. And those in which the amino group present in the B-position side chain forms a salt with an inorganic acid or organic acid.
 本発明化合物の製薬上許容される塩としては、例えば、本発明化合物と、アルカリ金属(例えば、リチウム、ナトリウム、カリウム等)、アルカリ土類金属(例えば、カルシウム、バリウム等)、マグネシウム、遷移金属(例えば、亜鉛、鉄等)、アンモニア、有機塩基(例えば、トリメチルアミン、トリエチルアミン、ジシクロヘキシルアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、メグルミン、ジエタノールアミン、エチレンジアミン、ピリジン、ピコリン、キノリン等)およびアミノ酸との塩、または無機酸(例えば、塩酸、硫酸、硝酸、炭酸、臭化水素酸、リン酸、ヨウ化水素酸等)、および有機酸(例えば、ギ酸、酢酸、プロピオン酸、トリフルオロ酢酸、クエン酸、乳酸、酒石酸、シュウ酸、マレイン酸、フマル酸、マンデル酸、グルタル酸、リンゴ酸、安息香酸、フタル酸、アスコルビン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、メタンスルホン酸、エタンスルホン酸等)との塩が挙げられる。これらの塩は、通常行われる方法によって形成させることができる。 Examples of the pharmaceutically acceptable salt of the compound of the present invention include, for example, the compound of the present invention, an alkali metal (for example, lithium, sodium, potassium, etc.), an alkaline earth metal (for example, calcium, barium, etc.), magnesium, and a transition metal. (Eg, zinc, iron, etc.), ammonia, organic bases (eg, trimethylamine, triethylamine, dicyclohexylamine, ethanolamine, diethanolamine, triethanolamine, meglumine, diethanolamine, ethylenediamine, pyridine, picoline, quinoline, etc.) and salts with amino acids Or inorganic acids (eg, hydrochloric acid, sulfuric acid, nitric acid, carbonic acid, hydrobromic acid, phosphoric acid, hydroiodic acid, etc.) and organic acids (eg, formic acid, acetic acid, propionic acid, trifluoroacetic acid, citric acid, Lactic acid, tartaric acid, oxalic acid, male Phosphate, fumaric acid, mandelic acid, glutaric acid, malic acid, benzoic acid, phthalic acid, ascorbic acid, benzenesulfonic acid, p- toluenesulfonic acid, methanesulfonic acid, and salts with ethanesulfonic acid, etc.). These salts can be formed by a commonly performed method.
 本発明化合物またはその製薬上許容される塩は、溶媒和物(例えば、水和物等)および/または結晶多形を形成する場合があり、本発明はそのような各種の溶媒和物および結晶多形も包含する。「溶媒和物」は、本発明化合物に対し、任意の数の溶媒分子(例えば、水分子等)と配位していてもよい。本発明化合物またはその製薬上許容される塩を、大気中に放置することにより、水分を吸収し、吸着水が付着する場合や、水和物を形成する場合がある。また、本発明化合物またはその製薬上許容される塩を、再結晶することでそれらの結晶多形を形成する場合がある。 The compound of the present invention or a pharmaceutically acceptable salt thereof may form a solvate (for example, hydrate etc.) and / or a crystal polymorph, and the present invention includes such various solvates and crystals. Also includes polymorphs. The “solvate” may be coordinated with any number of solvent molecules (for example, water molecules) with respect to the compound of the present invention. When the compound of the present invention or a pharmaceutically acceptable salt thereof is left in the air, it may absorb moisture and adsorbed water may adhere or form a hydrate. In addition, the crystalline polymorph may be formed by recrystallizing the compound of the present invention or a pharmaceutically acceptable salt thereof.
 本発明化合物またはその製薬上許容される塩は、プロドラッグを形成する場合があり、本発明はそのような各種のプロドラッグも包含する。プロドラッグは、化学的又は代謝的に分解できる基を有する本発明化合物の誘導体であり、加溶媒分解により又は生理学的条件下でインビボにおいて薬学的に活性な本発明化合物となる化合物である。プロドラッグは、生体内における生理条件下で酵素的に酸化、還元、加水分解などを受けて本発明化合物に変換される化合物、胃酸などにより加水分解されて本発明化合物に変換される化合物等を包含する。適当なプロドラッグ誘導体を選択する方法および製造する方法は、例えばDesign of Prodrugs, Elsevier, Amsterdam 1985に記載されている。プロドラッグは、それ自身が活性を有する場合がある。 The compound of the present invention or a pharmaceutically acceptable salt thereof may form a prodrug, and the present invention includes such various prodrugs. A prodrug is a derivative of a compound of the present invention having a group that can be chemically or metabolically degraded, and is a compound that becomes a pharmaceutically active compound of the present invention by solvolysis or under physiological conditions in vivo. Prodrugs include compounds that are enzymatically oxidized, reduced, hydrolyzed and converted to the compounds of the present invention under physiological conditions in vivo, compounds that are hydrolyzed by gastric acid, etc. and converted to the compounds of the present invention, etc. Include. Methods for selecting and producing suitable prodrug derivatives are described, for example, in Design of Prodrugs, Elsevier, Amsterdam 1985. Prodrugs may themselves have activity.
 本発明化合物またはその製薬上許容される塩がヒドロキシ基を有する場合は、例えばヒドロキシ基を有する化合物と適当なアシルハライド、適当な酸無水物、適当なスルホニルクロライド、適当なスルホニルアンハイドライドおよびミックスドアンハイドライドとを反応させることによりあるいは縮合剤を用いて反応させることにより製造されるアシルオキシ誘導体やスルホニルオキシ誘導体のようなプロドラッグが例示される。例えばCH3COO-、C25COO-、t-BuCOO-、C1531COO-、PhCOO-、(m-NaOOCPh)COO-、NaOOCCH2CH2COO-、CH3CH(NH2)COO-、CH2N(CH32COO-、CH3SO3-、CH3CH2SO3-、CF3SO3-、CH2FSO3-、CF3CH2SO3-、p-CH3-O-PhSO3-、PhSO3-、p-CH3PhSO3-が挙げられる。 When the compound of the present invention or a pharmaceutically acceptable salt thereof has a hydroxy group, for example, the compound having a hydroxy group and an appropriate acyl halide, an appropriate acid anhydride, an appropriate sulfonyl chloride, an appropriate sulfonyl anhydride, and a mixed anion. Examples thereof include prodrugs such as acyloxy derivatives and sulfonyloxy derivatives produced by reacting with hydride or using a condensing agent. For example, CH 3 COO—, C 2 H 5 COO—, t-BuCOO—, C 15 H 31 COO—, PhCOO—, (m-NaOOCPh) COO—, NaOOCCH 2 CH 2 COO—, CH 3 CH (NH 2 ) COO—, CH 2 N (CH 3 ) 2 COO—, CH 3 SO 3 —, CH 3 CH 2 SO 3 —, CF 3 SO 3 —, CH 2 FSO 3 —, CF 3 CH 2 SO 3 —, p— CH 3 —O—PhSO 3 —, PhSO 3 —, and p—CH 3 PhSO 3 — can be mentioned.
 下記の一般的合成法および実施例に記載するように、本発明化合物は、下記中間体の骨格のA位およびB位にそれぞれ側鎖部位を結合することにより得られる。保護基Pとしては、以下の一般的合成において記載する保護基が挙げられるが、好ましい例としては、ベンズヒドリル基、パラメトキシベンジル基、トリチル基、2,6-ジメトキシベンジル基、メトキシメチル基、ベンジルオキシメチル基または2-(トリメチルシリル)エトキシメチル基などが挙げられる。また、脱離基としては、ハロゲン(Cl、Br、I、F)、メタンスルホニルオキシ、p-トルエンスルホニルオキシ、トリフルオロメタンスルホニルオキシ等が例示される。 As described in the following general synthesis methods and examples, the compound of the present invention can be obtained by bonding side chain sites to the A-position and B-position of the skeleton of the following intermediate, respectively. Examples of the protecting group P include protecting groups described in the following general synthesis. Preferred examples include benzhydryl group, paramethoxybenzyl group, trityl group, 2,6-dimethoxybenzyl group, methoxymethyl group, benzyl group. Examples thereof include an oxymethyl group and a 2- (trimethylsilyl) ethoxymethyl group. Examples of the leaving group include halogen (Cl, Br, I, F), methanesulfonyloxy, p-toluenesulfonyloxy, trifluoromethanesulfonyloxy and the like.
(製法A)
Figure JPOXMLDOC01-appb-C000019

(式中、-T-は-CR4A4B-であり;
4Aは水素原子であり;R4Bは水素原子または置換もしくは非置換のアルキルであり;
は水素原子であり;
はアミノ基の保護基を示し、PおよびPはそれぞれ独立してカルボキシの保護基を示す。)
工程1
化合物(II)と化合物(III)を付加反応および分子内環化反応に付すことにより化合物(IV)を得る。反応溶媒としては、例えばエーテル類(例:アニソール、ジオキサン、テトラヒドロフラン、ジエチルエーテル、tert-ブチルメチルエーテル、ジイソプロピルエーテル)、エステル類(例:ギ酸エチル、酢酸エチル、酢酸n-ブチル)、ハロゲン化炭化水素類(例:ジクロロメタン、クロロホルム、四塩化炭素)、炭化水素類(例:n-ヘキサン、ベンゼン、トルエン)、アミド類(例:ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン)、ケトン類(例:アセトン、メチルエチルケトン)、ニトリル類(例:アセトニトリル、プロピオニトリル)、ニトロ類(例:ニトロメタン、ニトロエタン、ニトロベンゼン)、ジメチルスルホキシド、アルコール類(例、メタノール、エタノール、t-ブタノールなど)、水などが例示される。これらの溶媒は単独で使用しても、2種以上を混合して使用してもよい。
好ましくはアセトンとHMPAである。反応温度は通常、約-100~100℃、好ましくは約-20~40℃、より好ましくは約10~30℃である。反応時間は、溶媒や反応温度により異なるが、通常0.5~48時間である。
(Manufacturing method A)
Figure JPOXMLDOC01-appb-C000019

(Wherein, -T- is -CR 4A R 4B - a and;
R 4A is a hydrogen atom; R 4B is a hydrogen atom or substituted or unsubstituted alkyl;
R 3 is a hydrogen atom;
P 1 represents an amino-protecting group, and P 2 and P 3 each independently represent a carboxy-protecting group. )
Process 1
Compound (IV) is obtained by subjecting compound (II) and compound (III) to addition reaction and intramolecular cyclization reaction. Examples of the reaction solvent include ethers (eg, anisole, dioxane, tetrahydrofuran, diethyl ether, tert-butyl methyl ether, diisopropyl ether), esters (eg, ethyl formate, ethyl acetate, n-butyl acetate), halogenated carbonization Hydrogens (eg, dichloromethane, chloroform, carbon tetrachloride), hydrocarbons (eg, n-hexane, benzene, toluene), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone), ketones (eg acetone, methyl ethyl ketone), nitriles (eg acetonitrile, propionitrile), nitros (eg nitromethane, nitroethane, nitrobenzene), dimethyl sulfoxide, alcohols (eg methanol, Eta Lumpur, t-butanol, etc.), and water are exemplified. These solvents may be used alone or in combination of two or more.
Acetone and HMPA are preferred. The reaction temperature is usually about −100 to 100 ° C., preferably about −20 to 40 ° C., more preferably about 10 to 30 ° C. The reaction time varies depending on the solvent and reaction temperature, but is usually 0.5 to 48 hours.
工程2
化合物(IV)の保護基Pを酸性条件下脱保護反応に付し、続いて縮合剤存在下で分子内環化反応に付すことにより化合物(V)を得る。反応溶媒としては、例えばエーテル類(例:アニソール、ジオキサン、テトラヒドロフラン、ジエチルエーテル、tert-ブチルメチルエーテル、ジイソプロピルエーテル)、エステル類(例:ギ酸エチル、酢酸エチル、酢酸n-ブチル)、ハロゲン化炭化水素類(例:ジクロロメタン、クロロホルム、四塩化炭素)、炭化水素類(例:n-ヘキサン、ベンゼン、トルエン)、アミド類(例:ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン)、ケトン類(例:アセトン、メチルエチルケトン)、ニトリル類(例:アセトニトリル、プロピオニトリル)、ニトロ類(例:ニトロメタン、ニトロエタン、ニトロベンゼン)、ジメチルスルホキシド、アルコール類(例、メタノール、エタノール、t-ブタノールなど)、水などが例示される。これらの溶媒は単独で使用しても、2種以上を混合して使用してもよい。好ましくはジクロロメタンである。脱保護反応に用いる酸としては、有機酸または無機酸が挙げられる。例えば、トリフルオロ酢酸、トシル酸、塩酸、硫酸、リン酸等が挙げられる。好ましくはトリフルオロ酢酸である。縮合剤としては、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、ジシクロヘキシルカルボジイミド、カルボニルジイミダゾール等が挙げられる。反応温度は通常、約-100~100℃、好ましくは約-20~40℃、より好ましくは約0~20℃である。反応時間は、溶媒や反応温度により異なるが、通常0.5~48時間である。
Process 2
It subjected the compound protecting group P 3 of (IV) under acidic conditions deprotection reaction to obtain subsequently a compound by subjecting the intramolecular cyclization reaction under condensing agent present in the (V). Examples of the reaction solvent include ethers (eg, anisole, dioxane, tetrahydrofuran, diethyl ether, tert-butyl methyl ether, diisopropyl ether), esters (eg, ethyl formate, ethyl acetate, n-butyl acetate), halogenated carbonization Hydrogens (eg, dichloromethane, chloroform, carbon tetrachloride), hydrocarbons (eg, n-hexane, benzene, toluene), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone), ketones (eg acetone, methyl ethyl ketone), nitriles (eg acetonitrile, propionitrile), nitros (eg nitromethane, nitroethane, nitrobenzene), dimethyl sulfoxide, alcohols (eg methanol, Eta Lumpur, t-butanol, etc.), and water are exemplified. These solvents may be used alone or in combination of two or more. Preferred is dichloromethane. Examples of the acid used for the deprotection reaction include organic acids and inorganic acids. For example, trifluoroacetic acid, tosylic acid, hydrochloric acid, sulfuric acid, phosphoric acid and the like can be mentioned. Trifluoroacetic acid is preferred. Examples of the condensing agent include 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, dicyclohexylcarbodiimide, carbonyldiimidazole and the like. The reaction temperature is usually about −100 to 100 ° C., preferably about −20 to 40 ° C., more preferably about 0 to 20 ° C. The reaction time varies depending on the solvent and reaction temperature, but is usually 0.5 to 48 hours.
工程3
化合物(V)のアシル基を含むアミノ保護基Pを塩基存在下の加アルコール分解反応または酸性条件下での脱保護反応を行うことにより化合物(VI)を得る。反応溶媒としては、例えばエーテル類(例:アニソール、ジオキサン、テトラヒドロフラン、ジエチルエーテル、tert-ブチルメチルエーテル、ジイソプロピルエーテル)、エステル類(例:ギ酸エチル、酢酸エチル、酢酸n-ブチル)、ハロゲン化炭化水素類(例:ジクロロメタン、クロロホルム、四塩化炭素)、炭化水素類(例:n-ヘキサン、ベンゼン、トルエン)、アミド類(例:ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン)、ケトン類(例:アセトン、メチルエチルケトン)、ニトリル類(例:アセトニトリル、プロピオニトリル)、ニトロ類(例:ニトロメタン、ニトロエタン、ニトロベンゼン)、ジメチルスルホキシド、アルコール類(例、メタノール、エタノール、t-ブタノールなど)、水などが例示される。これらの溶媒は単独で使用しても、2種以上を混合して使用してもよい。好ましくはジクロロメタンである。加アルコール分解反応としては、五塩化リン、五臭化リン、オキシ塩化リン、チオニルクロライド等によって活性化することができる。好ましくは、五塩化リンである。塩基としては有機塩基等が挙げられる。例えば、トリエチルアミン、ピリジン、ジイソプロピルエチルアミン、N-メチルイミダゾール、N-メチルモルホリン、ジメチルアニリン等が挙げられる。好ましくはピリジンである。その後アルコールを加える。該アルコールとしては、メタノール、エタノール、プロパノール等を用いることができる。好ましくは、エタノールである。酸性条件下での脱保護反応の際に用いる酸としては、有機酸または無機酸が挙げられる。例えば、トリフルオロ酢酸、トシル酸、塩酸、硫酸、リン酸等が挙げられる。反応温度は通常、加アルコール分解反応としては約-100~100℃、好ましくは約-70~20℃であり、より好ましくは約-70~-30℃である。酸性条件下での脱保護反応としては、通常、約-100~100℃、好ましくは約-20~40℃、より好ましくは約-20~20℃である。反応時間は、溶媒や反応温度により異なるが、通常0.5~48時間である。
Process 3
Compound (VI) is obtained by subjecting amino protecting group P 1 containing an acyl group of compound (V) to an alcoholysis reaction in the presence of a base or a deprotection reaction under acidic conditions. Examples of the reaction solvent include ethers (eg, anisole, dioxane, tetrahydrofuran, diethyl ether, tert-butyl methyl ether, diisopropyl ether), esters (eg, ethyl formate, ethyl acetate, n-butyl acetate), halogenated carbonization Hydrogens (eg, dichloromethane, chloroform, carbon tetrachloride), hydrocarbons (eg, n-hexane, benzene, toluene), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone), ketones (eg acetone, methyl ethyl ketone), nitriles (eg acetonitrile, propionitrile), nitros (eg nitromethane, nitroethane, nitrobenzene), dimethyl sulfoxide, alcohols (eg methanol, Eta Lumpur, t-butanol, etc.), and water are exemplified. These solvents may be used alone or in combination of two or more. Preferred is dichloromethane. The alcoholysis decomposition reaction can be activated by phosphorus pentachloride, phosphorus pentabromide, phosphorus oxychloride, thionyl chloride or the like. Preferably, it is phosphorus pentachloride. Examples of the base include organic bases. For example, triethylamine, pyridine, diisopropylethylamine, N-methylimidazole, N-methylmorpholine, dimethylaniline and the like can be mentioned. Pyridine is preferred. Then add alcohol. As the alcohol, methanol, ethanol, propanol or the like can be used. Ethanol is preferable. Examples of the acid used in the deprotection reaction under acidic conditions include organic acids and inorganic acids. For example, trifluoroacetic acid, tosylic acid, hydrochloric acid, sulfuric acid, phosphoric acid and the like can be mentioned. The reaction temperature is usually about −100 to 100 ° C., preferably about −70 to 20 ° C., more preferably about −70 to −30 ° C. for the alcoholysis reaction. The deprotection reaction under acidic conditions is usually about −100 to 100 ° C., preferably about −20 to 40 ° C., more preferably about −20 to 20 ° C. The reaction time varies depending on the solvent and reaction temperature, but is usually 0.5 to 48 hours.
Figure JPOXMLDOC01-appb-C000020

(式中、R10は置換もしくは非置換のアルキル、置換もしくは非置換のアルケニルまたは置換もしくは非置換の炭素環式基であり;その他の記号は前記と同意義である)
工程4
化合物(VI)を、化合物(VII)と塩基存在下で縮合反応に付すことにより、化合物(VIII)を得る。反応溶媒としては、例えばエーテル類(例:アニソール、ジオキサン、テトラヒドロフラン、ジエチルエーテル、tert-ブチルメチルエーテル、ジイソプロピルエーテル)、エステル類(例:ギ酸エチル、酢酸エチル、酢酸n-ブチル)、ハロゲン化炭化水素類(例:ジクロロメタン、クロロホルム、四塩化炭素)、炭化水素類(例:n-ヘキサン、ベンゼン、トルエン)、アミド類(例:ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン)、ケトン類(例:アセトン、メチルエチルケトン)、ニトリル類(例:MeCN、プロピオニトリル)、ニトロ類(例:ニトロメタン、ニトロエタン、ニトロベンゼン)、ジメチルスルホキシド、アルコール類(例、メタノール、エタノール、t-ブタノールなど)、水などが例示される。これらの溶媒は単独で使用しても、2種以上を混合して使用してもよい。縮合剤としては、1-エチル―3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、オキシ塩化リン、メタンスルホニルクロライド、ジシクロヘキシルカルボジイミド、カルボニルジイミダゾール、フェニルリン酸ジクロライド等が挙げられる。塩基としては、トリエチルアミン、ピリジン、ジイソプロピルエチルアミン、N-メチルイミダゾール、N-メチルモルホリン等が挙げられる。反応温度は通常、約-100~100℃、好ましくは約-80~20℃、より好ましくは約-20~20℃である。反応時間は、用いる試薬や溶媒や反応温度により異なるが、通常0.5~24時間である。
Figure JPOXMLDOC01-appb-C000020

(Wherein R 10 is substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl or substituted or unsubstituted carbocyclic group; other symbols are as defined above)
Process 4
Compound (VIII) is obtained by subjecting compound (VI) to a condensation reaction with compound (VII) in the presence of a base. Examples of the reaction solvent include ethers (eg, anisole, dioxane, tetrahydrofuran, diethyl ether, tert-butyl methyl ether, diisopropyl ether), esters (eg, ethyl formate, ethyl acetate, n-butyl acetate), halogenated carbonization Hydrogens (eg, dichloromethane, chloroform, carbon tetrachloride), hydrocarbons (eg, n-hexane, benzene, toluene), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone), ketones (eg, acetone, methyl ethyl ketone), nitriles (eg, MeCN, propionitrile), nitros (eg, nitromethane, nitroethane, nitrobenzene), dimethyl sulfoxide, alcohols (eg, methanol, ethanol Etc. t- butanol), and water are exemplified. These solvents may be used alone or in combination of two or more. Examples of the condensing agent include 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, phosphorus oxychloride, methanesulfonyl chloride, dicyclohexylcarbodiimide, carbonyldiimidazole, and phenyl phosphate dichloride. Examples of the base include triethylamine, pyridine, diisopropylethylamine, N-methylimidazole, N-methylmorpholine and the like. The reaction temperature is usually about −100 to 100 ° C., preferably about −80 to 20 ° C., more preferably about −20 to 20 ° C. The reaction time varies depending on the reagent, solvent and reaction temperature used, but is usually 0.5 to 24 hours.
工程5
化合物(VIII)を酸化することにより、化合物(IX)を得る。反応溶媒としては、例えばエーテル類(例:アニソール、ジオキサン、テトラヒドロフラン、ジエチルエーテル、tert-ブチルメチルエーテル、ジイソプロピルエーテル)、エステル類(例:ギ酸エチル、酢酸エチル、酢酸n-ブチル)、ハロゲン化炭化水素類(例:ジクロロメタン、クロロホルム、四塩化炭素)、炭化水素類(例:n-ヘキサン、ベンゼン、トルエン)、アミド類(例:ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン)、ケトン類(例:アセトン、メチルエチルケトン)、ニトリル類(例:MeCN、プロピオニトリル)、ニトロ類(例:ニトロメタン、ニトロエタン、ニトロベンゼン)、ジメチルスルホキシド、アルコール類(例、メタノール、エタノール、t-ブタノールなど)、水などが例示される。これらの溶媒は単独で使用しても、2種以上を混合して使用してもよい。酸化剤としては、過酢酸、m-クロロ過安息香酸、過酸化水素、タングステン酸ナトリウム等が挙げられる。反応温度は通常、約-100~100℃、好ましくは約-80~20℃、より好ましくは約-20~20℃である。反応時間は、用いる試薬や溶媒や反応温度により異なるが、通常0.5~24時間である。
Process 5
Compound (IX) is obtained by oxidizing compound (VIII). Examples of the reaction solvent include ethers (eg, anisole, dioxane, tetrahydrofuran, diethyl ether, tert-butyl methyl ether, diisopropyl ether), esters (eg, ethyl formate, ethyl acetate, n-butyl acetate), halogenated carbonization Hydrogens (eg, dichloromethane, chloroform, carbon tetrachloride), hydrocarbons (eg, n-hexane, benzene, toluene), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone), ketones (eg, acetone, methyl ethyl ketone), nitriles (eg, MeCN, propionitrile), nitros (eg, nitromethane, nitroethane, nitrobenzene), dimethyl sulfoxide, alcohols (eg, methanol, ethanol Etc. t- butanol), and water are exemplified. These solvents may be used alone or in combination of two or more. Examples of the oxidizing agent include peracetic acid, m-chloroperbenzoic acid, hydrogen peroxide, sodium tungstate, and the like. The reaction temperature is usually about −100 to 100 ° C., preferably about −80 to 20 ° C., more preferably about −20 to 20 ° C. The reaction time varies depending on the reagent, solvent and reaction temperature used, but is usually 0.5 to 24 hours.
工程6
化合物(IX)の全ての保護基を酸性条件下脱保護反応に付し、化合物(IC)を得る。酸としては、有機酸または無機酸を用いることができる。例えば、トリフルオロ酢酸、トシル酸、塩酸、硫酸、リン酸、ギ酸、塩化アルミニウム、塩化チタニウム等が挙げられる。反応溶媒としては、例えばエーテル類(例:アニソール、ジオキサン、テトラヒドロフラン、ジエチルエーテル、tert-ブチルメチルエーテル、ジイソプロピルエーテル)、エステル類(例:ギ酸エチル、酢酸エチル、酢酸n-ブチル)、ハロゲン化炭化水素類(例:ジクロロメタン、クロロホルム、四塩化炭素)、炭化水素類(例:n-ヘキサン、ベンゼン、トルエン)、アミド類(例:ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン)、ケトン類(例:アセトン、メチルエチルケトン)、ニトリル類(例:MeCN、プロピオニトリル)、ニトロ類(例:ニトロメタン、ニトロエタン、ニトロベンゼン)、ジメチルスルホキシド、アルコール類(例、メタノール、エタノール、t-ブタノールなど)、水などが例示される。これらの溶媒は単独で使用しても、2種以上を混合して使用してもよい。好ましくはジクロロメタンである。反応温度は通常、約-100~100℃、好ましくは約-80~20℃、より好ましくは約-20~20℃である。反応時間は、用いる試薬や溶媒や反応温度により異なるが、通常0.5~24時間である。
Step 6
All protecting groups of compound (IX) are subjected to a deprotection reaction under acidic conditions to give compound (IC). As the acid, an organic acid or an inorganic acid can be used. Examples thereof include trifluoroacetic acid, tosylic acid, hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, aluminum chloride, titanium chloride and the like. Examples of the reaction solvent include ethers (eg, anisole, dioxane, tetrahydrofuran, diethyl ether, tert-butyl methyl ether, diisopropyl ether), esters (eg, ethyl formate, ethyl acetate, n-butyl acetate), halogenated carbonization Hydrogens (eg, dichloromethane, chloroform, carbon tetrachloride), hydrocarbons (eg, n-hexane, benzene, toluene), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone), ketones (eg, acetone, methyl ethyl ketone), nitriles (eg, MeCN, propionitrile), nitros (eg, nitromethane, nitroethane, nitrobenzene), dimethyl sulfoxide, alcohols (eg, methanol, ethanol Etc. t- butanol), and water are exemplified. These solvents may be used alone or in combination of two or more. Preferred is dichloromethane. The reaction temperature is usually about −100 to 100 ° C., preferably about −80 to 20 ° C., more preferably about −20 to 20 ° C. The reaction time varies depending on the reagent, solvent and reaction temperature used, but is usually 0.5 to 24 hours.
 なお、得られた化合物(IC)をさらに化学修飾してエステル体、またはそれらの製薬上許容される塩もしくは溶媒和物を合成することもできる。 The obtained compound (IC) can be further chemically modified to synthesize ester forms, or pharmaceutically acceptable salts or solvates thereof.
(製法C)
Figure JPOXMLDOC01-appb-C000021

(式中、Aはそれぞれ独立してハロゲンであり;その他の記号は前記と同意義である)
工程1
化合物(XVIII)を酸化することによって化合物(XIX)を得る。酸化剤としては、二酸化セレン、オクソンなどが挙げられる。反応溶媒としては、例えばエーテル類(例:アニソール、ジオキサン、テトラヒドロフラン、ジエチルエーテル、tert-ブチルメチルエーテル、ジイソプロピルエーテル)、エステル類(例:ギ酸エチル、酢酸エチル、酢酸n-ブチル)、ハロゲン化炭化水素類(例:ジクロロメタン、クロロホルム、四塩化炭素)、炭化水素類(例:n-ヘキサン、ベンゼン、トルエン)、アミド類(例:ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン)、ケトン類(例:アセトン、メチルエチルケトン)、ニトリル類(例:アセトニトリル、プロピオニトリル)、ニトロ類(例:ニトロメタン、ニトロエタン、ニトロベンゼン)、ジメチルスルホキシド、アルコール類(例、メタノール、エタノール、t-ブタノールなど)、水などが例示される。これらの溶媒は単独で使用しても、2種以上を混合して使用してもよい。好ましくはジクロロメタンである。反応温度は通常、約-50~150℃、好ましくは約20~120℃、より好ましくは約60~100℃である。反応時間は、用いる試薬や溶媒や反応温度により異なるが、通常0.5~24時間である。
工程2
化合物(II)と化合物(XIX)のアルキル化反応及び続く環化反応によって,化合物(XXI)を得る。塩基としてトリエチルアミン、ジイソプロピルエチルアミン、ピリジン、モルホリン、ルチジンが挙げられる。好ましくは、トリエチルアミンである。反応溶媒としては、例えばエーテル類(例:アニソール、ジオキサン、テトラヒドロフラン、ジエチルエーテル、tert-ブチルメチルエーテル、ジイソプロピルエーテル)、エステル類(例:ギ酸エチル、酢酸エチル、酢酸n-ブチル)、ハロゲン化炭化水素類(例:ジクロロメタン、クロロホルム、四塩化炭素)、炭化水素類(例:n-ヘキサン、ベンゼン、トルエン)、アミド類(例:ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン)、ケトン類(例:アセトン、メチルエチルケトン)、ニトリル類(例:アセトニトリル、プロピオニトリル)、ニトロ類(例:ニトロメタン、ニトロエタン、ニトロベンゼン)、ジメチルスルホキシド、アルコール類(例、メタノール、エタノール、t-ブタノールなど)、水などが例示される。これらの溶媒は単独で使用しても、2種以上を混合して使用してもよい。好ましくはアセトンとHMPAである。反応温度は通常、約-100~100℃、好ましくは約-20~40℃、より好ましくは約10~30℃である。反応時間は、溶媒や反応温度により異なるが、通常0.5~48時間である。
工程3
化合物(XXI)にα―ハロ酢酸ハライドを反応させることにより、化合物(XXII)を得る。用いる塩基として、トリエチルアミン、ジイソプロピルエチルアミン、ピリジン、モルホリン、ルチジンが挙げられる。好ましくは、トリエチルアミンである。反応溶媒としては、例えばエーテル類(例:アニソール、ジオキサン、テトラヒドロフラン、ジエチルエーテル、tert-ブチルメチルエーテル、ジイソプロピルエーテル)、エステル類(例:ギ酸エチル、酢酸エチル、酢酸n-ブチル)、ハロゲン化炭化水素類(例:ジクロロメタン、クロロホルム、四塩化炭素)、炭化水素類(例:n-ヘキサン、ベンゼン、トルエン)、アミド類(例:ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン)、ケトン類(例:アセトン、メチルエチルケトン)、ニトリル類(例:アセトニトリル、プロピオニトリル)、ニトロ類(例:ニトロメタン、ニトロエタン、ニトロベンゼン)、ジメチルスルホキシド、水などが例示される。これらの溶媒は単独で使用しても、2種以上を混合して使用してもよい。好ましくはジクロロメタンである。反応温度は通常、約-100~100℃、好ましくは約-20~40℃、より好ましくは約0~20℃である。反応時間は、溶媒や反応温度により異なるが、通常0.5~48時間である。
工程4
化合物(XXII)のハライドをホスホニウム塩に変換し、続いて塩基存在下分子内環化させることよって化合物(XXIII)を得る。ホスホニウム塩形成には、トリフェニルホスフィン、トリエチルホスフィン、トリブチルホスフィンなどが用いられ、好ましくはトリフェニルホスフィンである。塩基としては、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、トリエチルアミン、ジイソプロピルエチルアミン、ナトリウムメトキシド、ナトリウムエトキシド、カリウム-tert-ブトキシドが挙げられる。好ましくは炭酸水素ナトリウムである。反応溶媒としては、例えばエーテル類(例:アニソール、ジオキサン、テトラヒドロフラン、ジエチルエーテル、tert-ブチルメチルエーテル、ジイソプロピルエーテル)、エステル類(例:ギ酸エチル、酢酸エチル、酢酸n-ブチル)、ハロゲン化炭化水素類(例:ジクロロメタン、クロロホルム、四塩化炭素)、炭化水素類(例:n-ヘキサン、ベンゼン、トルエン)、アミド類(例:ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン)、ケトン類(例:アセトン、メチルエチルケトン)、ニトリル類(例:アセトニトリル、プロピオニトリル)、ニトロ類(例:ニトロメタン、ニトロエタン、ニトロベンゼン)、ジメチルスルホキシド、アルコール類(例、メタノール、エタノール、t-ブタノールなど)、水などが例示される。これらの溶媒は単独で使用しても、2種以上を混合して使用してもよい。好ましくはジメチルホルムアミドである。反応温度は通常、約-100~100℃、好ましくは約-20~40℃、より好ましくは約10~30℃である。反応時間は、溶媒や反応温度により異なるが、通常0.5~48時間である。
工程5
化合物(XXIII)の二重結合を還元することによって、化合物(V’)を得る。還元は接触水素化または還元剤を用いて行い、還元剤としては、例えば、水素化ホウ素ナトリウム、水素化ホウ素リチウム、水素化ホウ素等が挙げられる。反応溶媒としては、例えばエーテル類(例:アニソール、ジオキサン、テトラヒドロフラン、ジエチルエーテル、tert-ブチルメチルエーテル、ジイソプロピルエーテル)、エステル類(例:ギ酸エチル、酢酸エチル、酢酸n-ブチル)、ハロゲン化炭化水素類(例:ジクロロメタン、クロロホルム、四塩化炭素)、炭化水素類(例:n-ヘキサン、ベンゼン、トルエン)、アミド類(例:ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン)、ケトン類(例:アセトン、メチルエチルケトン)、ニトリル類(例:アセトニトリル、プロピオニトリル)、ニトロ類(例:ニトロメタン、ニトロエタン、ニトロベンゼン)、ジメチルスルホキシド、アルコール類(例、メタノール、エタノール、t-ブタノールなど)、水などが例示される。これらの溶媒は単独で使用しても、2種以上を混合して使用してもよい。好ましくはメタノール、イソプロパノール等である。反応温度は通常、約-100~50℃、好ましくは約-60~0℃、より好ましくは約-50~-20℃である。反応時間は、溶媒や反応温度により異なるが、通常0.5~48時間である。
(Manufacturing method C)
Figure JPOXMLDOC01-appb-C000021

(In the formula, each A is independently halogen; other symbols are as defined above)
Process 1
Compound (XIX) is obtained by oxidizing compound (XVIII). Examples of the oxidizing agent include selenium dioxide and oxon. Examples of the reaction solvent include ethers (eg, anisole, dioxane, tetrahydrofuran, diethyl ether, tert-butyl methyl ether, diisopropyl ether), esters (eg, ethyl formate, ethyl acetate, n-butyl acetate), halogenated carbonization Hydrogens (eg, dichloromethane, chloroform, carbon tetrachloride), hydrocarbons (eg, n-hexane, benzene, toluene), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone), ketones (eg acetone, methyl ethyl ketone), nitriles (eg acetonitrile, propionitrile), nitros (eg nitromethane, nitroethane, nitrobenzene), dimethyl sulfoxide, alcohols (eg methanol, Eta Lumpur, t-butanol, etc.), and water are exemplified. These solvents may be used alone or in combination of two or more. Preferred is dichloromethane. The reaction temperature is usually about −50 to 150 ° C., preferably about 20 to 120 ° C., more preferably about 60 to 100 ° C. The reaction time varies depending on the reagent, solvent and reaction temperature used, but is usually 0.5 to 24 hours.
Process 2
Compound (XXI) is obtained by alkylation reaction of compound (II) and compound (XIX) and subsequent cyclization reaction. Examples of the base include triethylamine, diisopropylethylamine, pyridine, morpholine, and lutidine. Triethylamine is preferable. Examples of the reaction solvent include ethers (eg, anisole, dioxane, tetrahydrofuran, diethyl ether, tert-butyl methyl ether, diisopropyl ether), esters (eg, ethyl formate, ethyl acetate, n-butyl acetate), halogenated carbonization Hydrogens (eg, dichloromethane, chloroform, carbon tetrachloride), hydrocarbons (eg, n-hexane, benzene, toluene), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone), ketones (eg acetone, methyl ethyl ketone), nitriles (eg acetonitrile, propionitrile), nitros (eg nitromethane, nitroethane, nitrobenzene), dimethyl sulfoxide, alcohols (eg methanol, Eta Lumpur, t-butanol, etc.), and water are exemplified. These solvents may be used alone or in combination of two or more. Acetone and HMPA are preferred. The reaction temperature is usually about −100 to 100 ° C., preferably about −20 to 40 ° C., more preferably about 10 to 30 ° C. The reaction time varies depending on the solvent and reaction temperature, but is usually 0.5 to 48 hours.
Process 3
Compound (XXII) is obtained by reacting compound (XXI) with α-haloacetic acid halide. Examples of the base used include triethylamine, diisopropylethylamine, pyridine, morpholine, and lutidine. Triethylamine is preferable. Examples of the reaction solvent include ethers (eg, anisole, dioxane, tetrahydrofuran, diethyl ether, tert-butyl methyl ether, diisopropyl ether), esters (eg, ethyl formate, ethyl acetate, n-butyl acetate), halogenated carbonization Hydrogens (eg, dichloromethane, chloroform, carbon tetrachloride), hydrocarbons (eg, n-hexane, benzene, toluene), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone), ketones (eg, acetone, methyl ethyl ketone), nitriles (eg, acetonitrile, propionitrile), nitros (eg, nitromethane, nitroethane, nitrobenzene), dimethyl sulfoxide, water and the like are exemplified. These solvents may be used alone or in combination of two or more. Preferred is dichloromethane. The reaction temperature is usually about −100 to 100 ° C., preferably about −20 to 40 ° C., more preferably about 0 to 20 ° C. The reaction time varies depending on the solvent and reaction temperature, but is usually 0.5 to 48 hours.
Process 4
Compound (XXIII) is obtained by converting the halide of compound (XXII) into a phosphonium salt, followed by intramolecular cyclization in the presence of a base. For forming the phosphonium salt, triphenylphosphine, triethylphosphine, tributylphosphine and the like are used, and triphenylphosphine is preferable. Examples of the base include sodium carbonate, sodium hydrogen carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, lithium hydroxide, triethylamine, diisopropylethylamine, sodium methoxide, sodium ethoxide, and potassium tert-butoxide. Sodium bicarbonate is preferable. Examples of the reaction solvent include ethers (eg, anisole, dioxane, tetrahydrofuran, diethyl ether, tert-butyl methyl ether, diisopropyl ether), esters (eg, ethyl formate, ethyl acetate, n-butyl acetate), halogenated carbonization Hydrogens (eg, dichloromethane, chloroform, carbon tetrachloride), hydrocarbons (eg, n-hexane, benzene, toluene), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone), ketones (eg acetone, methyl ethyl ketone), nitriles (eg acetonitrile, propionitrile), nitros (eg nitromethane, nitroethane, nitrobenzene), dimethyl sulfoxide, alcohols (eg methanol, Eta Lumpur, t-butanol, etc.), and water are exemplified. These solvents may be used alone or in combination of two or more. Preferred is dimethylformamide. The reaction temperature is usually about −100 to 100 ° C., preferably about −20 to 40 ° C., more preferably about 10 to 30 ° C. The reaction time varies depending on the solvent and reaction temperature, but is usually 0.5 to 48 hours.
Process 5
Compound (V ′) is obtained by reducing the double bond of compound (XXIII). The reduction is performed using catalytic hydrogenation or a reducing agent, and examples of the reducing agent include sodium borohydride, lithium borohydride, borohydride and the like. Examples of the reaction solvent include ethers (eg, anisole, dioxane, tetrahydrofuran, diethyl ether, tert-butyl methyl ether, diisopropyl ether), esters (eg, ethyl formate, ethyl acetate, n-butyl acetate), halogenated carbonization Hydrogens (eg, dichloromethane, chloroform, carbon tetrachloride), hydrocarbons (eg, n-hexane, benzene, toluene), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone), ketones (eg acetone, methyl ethyl ketone), nitriles (eg acetonitrile, propionitrile), nitros (eg nitromethane, nitroethane, nitrobenzene), dimethyl sulfoxide, alcohols (eg methanol, Eta Lumpur, t-butanol, etc.), and water are exemplified. These solvents may be used alone or in combination of two or more. Preferred are methanol, isopropanol and the like. The reaction temperature is usually about −100 to 50 ° C., preferably about −60 to 0 ° C., more preferably about −50 to −20 ° C. The reaction time varies depending on the solvent and reaction temperature, but is usually 0.5 to 48 hours.
 本発明化合物は、スペクトルの広い抗菌活性を有し、ヒトを含む各種哺乳動物における病原性細菌により生ずる種々の疾病、例えば気道感染症、尿路感染症、呼吸器感染症、敗血症、腎炎、胆嚢炎、口腔内感染症、心内膜炎、肺炎、骨髄膜炎、中耳炎、腸炎、蓄膿、創傷感染、日和見感染等の予防または治療のために使用され得る。 The compound of the present invention has a broad spectrum of antibacterial activity, and various diseases caused by pathogenic bacteria in various mammals including humans such as respiratory tract infections, urinary tract infections, respiratory infections, sepsis, nephritis, gallbladder It can be used for the prevention or treatment of inflammation, oral infection, endocarditis, pneumonia, osteomyelitis, otitis media, enteritis, empyema, wound infection, opportunistic infection and the like.
 本発明化合物は、特にグラム陰性菌、好ましくは、腸内細菌科のグラム陰性菌(大腸菌、クレブシエラ、セラチア、エンテロバクター、シトロバクター、モルガネラ、プロビデンシア、プロテウス等)、呼吸器に定着するグラム陰性菌(ヘモフィルス、モラキセラ等)およびブドウ糖非発酵のグラム陰性菌(緑膿菌以外のシュードモナス、ステノトロフォモナス、バークホルデリア、アシネトバクター等)に対して高い抗菌活性を示す。これらのグラム陰性菌が産生するクラスA,B,CおよびDに属するβ-ラクタマーゼに安定であり、TEM型、SHV型、KPC型などに代表されるESBL産生菌などの各種β-ラクタム薬耐性グラム陰性菌に高い抗菌活性を有する。特にNDM型、IMP型、VIM型、L-1型などを含むクラスBに属するメタロ-β-ラクタマーゼに対しても極めて安定であるので、セフェムやカルバペネムを含む各種β-ラクタム薬耐性グラム陰性菌に対しても有効である。さらに好ましい化合物は、体内動態として、血中濃度が高い、効果の持続時間が長い、および/または組織移行性が顕著である等の特徴も有している。また好ましい化合物は発熱を示さない、腎毒性を示さないなど副作用の点で安全である。また好ましい化合物は、水溶性が高く、体内動態が良好であり、注射薬および経口薬として好適である。 The compound of the present invention is a gram-negative bacterium, preferably a gram-negative bacterium of the family Enterobacteriaceae (E. coli, Klebsiella, Serratia, Enterobacter, Citrobacter, Morganella, Providencia, Proteus, etc.) (Hemophilus, Moraxella, etc.) and glucose non-fermenting Gram-negative bacteria (Pseudomonas other than Pseudomonas aeruginosa, Stenotrophomonas, Burkholderia, Acinetobacter, etc.). Stable to β-lactamases belonging to classes A, B, C and D produced by these gram-negative bacteria, and resistant to various β-lactam drugs such as ESBL-producing bacteria represented by TEM, SHV, KPC, etc. Has high antibacterial activity against gram-negative bacteria. In particular, it is extremely stable against metallo-β-lactamases belonging to class B including NDM type, IMP type, VIM type, L-1 type, etc., so various β-lactam drug resistant gram-negative bacteria including cephem and carbapenem It is also effective against Further preferable compounds have characteristics such as high blood concentration, long duration of effect, and / or remarkable tissue transferability as pharmacokinetics. Preferred compounds are safe in terms of side effects such as no fever and no nephrotoxicity. Further, preferred compounds have high water solubility and good pharmacokinetics, and are suitable as injections and oral drugs.
 本発明化合物は、経口的又は非経口的に投与することができる。経口投与による場合、本発明化合物は通常の製剤、例えば、錠剤、散剤、顆粒剤、カプセル剤等の固形剤、水剤、油性懸濁剤、又はシロップ剤もしくはエリキシル剤等の液剤のいずれかの剤形としても用いることができる。非経口投与による場合、本発明化合物は、水性又は油性懸濁注射剤、点鼻液として用いることができる。その調製に際しては、慣用の賦形剤、結合剤、滑沢剤、水性溶剤、油性溶剤、乳化剤、懸濁化剤、保存剤、安定剤等を任意に用いることができる。本発明の製剤は、治療有効量の本発明化合物を製薬上許容される担体又は希釈剤とともに組み合わせる(例えば混合する)ことによって製造される。 The compound of the present invention can be administered orally or parenterally. In the case of oral administration, the compound of the present invention is any of ordinary preparations, for example, solid preparations such as tablets, powders, granules and capsules, liquid preparations, oil suspensions, or liquid preparations such as syrups and elixirs. It can also be used as a dosage form. In the case of parenteral administration, the compound of the present invention can be used as an aqueous or oily suspension injection or nasal solution. In the preparation, conventional excipients, binders, lubricants, aqueous solvents, oily solvents, emulsifiers, suspending agents, preservatives, stabilizers and the like can be arbitrarily used. The formulations of the present invention are prepared by combining (eg, mixing) a therapeutically effective amount of a compound of the present invention with a pharmaceutically acceptable carrier or diluent.
 本発明化合物は、注射剤、カプセル剤、錠剤、顆粒剤として非経口または経口的に投与できるが、好ましくは注射剤として投与される。投与量は、通常、患者または動物の体重1kg当たり、約0.1~100mg/日、好ましくは約0.5~50mg/日を、所望により1日2~4回に分割して投与すればよい。注射剤として用いられる場合の担体は、たとえば蒸留水、生理食塩水などであり、またpH調節のための塩基等を使用してもよい。カプセル剤、顆粒剤、錠剤として用いられる場合の担体は、公知の賦形剤(例:デンプ
ン、乳糖、白糖、炭酸カルシウム、リン酸カルシウムなど)、結合剤(例:デンプン、アラビアゴム、カルボキシメチルセルロ-ス、ヒドロキシプロピルセルロ-ス、結晶セルロ-スなど)、滑沢剤(例:ステアリン酸マグネシウム、タルクなど)等である。
The compound of the present invention can be administered parenterally or orally as an injection, capsule, tablet or granule, but is preferably administered as an injection. The dose is usually about 0.1 to 100 mg / day, preferably about 0.5 to 50 mg / day per kg of the body weight of the patient or animal. Good. When used as an injection, the carrier is, for example, distilled water, physiological saline or the like, and a base for adjusting pH may be used. Carriers when used as capsules, granules, tablets are known excipients (eg, starch, lactose, sucrose, calcium carbonate, calcium phosphate, etc.), binders (eg, starch, gum arabic, carboxymethyl cellulose) , Hydroxypropyl cellulose, crystalline cellulose, etc.), lubricants (eg, magnesium stearate, talc, etc.).
 以下に、実施例、参考例、および試験例を挙げて本発明をさらに詳しく説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, Reference Examples, and Test Examples, but the present invention is not limited thereto.
 また、本明細書中で用いる略語は以下の意味を表す。
Boc:tert-ブトキシカルボニル
BHまたはBzh:ベンゾヒドリル
DIAD:アゾジカルボン酸ジイソプロピル
DMF:N,N-ジメチルホルムアミド
DMA:N,N-ジメチルアセトアミド
DMAP:4-ジメチルアミノピリジン
EDC:1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド
HMPA:ヘキサメチルリン酸トリアミド
HOBt:1-ヒドロキシベンゾトリアゾール
mCPBA:m-クロロ過安息香酸
Me:メチル
ODS:オクタデシルシリル
t-Bu:tert-ブチル
TBS:tert-ブチルジメチルシリル
TFA:トリフルオロ酢酸
TBAF:テトラブチルアンモニウムフルオリド
Tr:トリチル
PMB:パラメトキシベンジル
Ph:フェニル
Moreover, the abbreviation used in this specification represents the following meaning.
Boc: tert-butoxycarbonyl BH or Bzh: benzohydryl DIAD: diisopropyl azodicarboxylate DMF: N, N-dimethylformamide DMA: N, N-dimethylacetamide DMAP: 4-dimethylaminopyridine EDC: 1- (3-dimethylaminopropyl ) -3-ethylcarbodiimide HMPA: hexamethylphosphoric triamide HOBt: 1-hydroxybenzotriazole mCPBA: m-chloroperbenzoic acid Me: methyl ODS: octadecylsilyl t-Bu: tert-butyl TBS: tert-butyldimethylsilyl TFA : Trifluoroacetic acid TBAF: Tetrabutylammonium fluoride Tr: Trityl PMB: Paramethoxybenzyl Ph: Phenyl
実施例で得られたNMR分析は400MHzで行い、DMSO-d、CDCl等を用いて測定した。 The NMR analysis obtained in the examples was performed at 400 MHz and measured using DMSO-d 6 , CDCl 3 and the like.
実施例で得られたLCMS分析は、以下の条件下で測定した。
測定条件A:
カラム:ACQUITY UPLC(登録商標)BEH C18 (1.7μm i.d.2.1x50mm)(Waters)
流速:0.8 mL/分
PDA検出波長:254nm
移動相:[A]は0.1%ギ酸含有水溶液、[B]は0.1%ギ酸含有アセトニトリル溶液
グラジエント:3.5分間で5%-100%溶媒[B]のリニアグラジエントを行った後、0.5分間、100%溶媒[B]を維持した。
測定条件B:
カラム:Shim-pack XR-ODS (2.2μm、i.d.50x3.0mm) 
(Shimadzu)
流速:1.6 mL/分
PDA検出波長:254nm
移動相:[A]は0.1%ギ酸含有水溶液、[B]は0.1%ギ酸含有アセトニトリル溶液
グラジェント:3分間で10%-100%溶媒[B]のリニアグラジエントを行い、0.5分間、100%溶媒[B]を維持した。
The LCMS analysis obtained in the examples was measured under the following conditions.
Measurement condition A:
Column: ACQUITY UPLC® BEH C18 (1.7 μm id 2.1 × 50 mm) (Waters)
Flow rate: 0.8 mL / min PDA detection wavelength: 254 nm
Mobile phase: [A] is a 0.1% formic acid-containing aqueous solution, [B] is a 0.1% formic acid-containing acetonitrile solution gradient: After performing a linear gradient of 5% -100% solvent [B] in 3.5 minutes 100% solvent [B] was maintained for 0.5 min.
Measurement condition B:
Column: Shim-pack XR-ODS (2.2 μm, id 50 × 3.0 mm)
(Shimadzu)
Flow rate: 1.6 mL / min PDA detection wavelength: 254 nm
Mobile phase: [A] is a 0.1% formic acid-containing aqueous solution, [B] is a 0.1% formic acid-containing acetonitrile solution. Gradient: Linear gradient of 10% -100% solvent [B] is performed for 3 minutes. 100% solvent [B] was maintained for 5 minutes.
 実施例で得られた結晶性固体の粉末X線回折測定(XRPD)は、日本薬局方の一般試験法に記載された粉末X線回折測定法に従い、以下の測定条件1または2の条件で行った。なお、測定条件2で測定した場合、2-Theta (2θ)値が38°付近にあらわれているピークは、アルミのピークである。
(測定条件1):
Bruker社製D-8Discover
測定法:反射法
光源の種類:Cu管球
使用波長:CuKα線
管電流:40mA
管電圧:40kV
試料プレート:ガラス
X線の入射角:3°及び12°
(測定条件2):
Rigaku社製 MiniFlex600
光源の種類:Cu管球
使用波長:CuKα線
管電流:10mA
管電圧:30Kv
試料プレート:Al
測定範囲:3°―40°
ステップ幅:0.01deg
スキャンスピード:10deg/min
(実施例1) 
The powder X-ray diffraction measurement (XRPD) of the crystalline solid obtained in the examples is performed under the following measurement conditions 1 or 2 according to the powder X-ray diffraction measurement method described in the general test method of the Japanese Pharmacopoeia. It was. When measured under measurement condition 2, the peak where the 2-Theta (2θ) value appears in the vicinity of 38 ° is an aluminum peak.
(Measurement condition 1):
Bruker D-8 Discover
Measurement method: Reflection method Light source type: Cu tube Use wavelength: CuKα ray tube current: 40 mA
Tube voltage: 40 kV
Sample plate: Glass X-ray incident angles: 3 ° and 12 °
(Measurement condition 2):
MiniFlex600 made by Rigaku
Type of light source: Cu tube Use wavelength: CuKα tube current: 10 mA
Tube voltage: 30Kv
Sample plate: Al
Measuring range: 3 ° -40 °
Step width: 0.01 deg
Scan speed: 10 deg / min
Example 1
化合物1fの合成 
Figure JPOXMLDOC01-appb-C000022

工程1 化合物1bの合成
化合物1a(43.8g、300mmol)のDMF(307mL)溶液を60℃に昇温した。これに、ジシクロヘキシルアミン(59.6mL、300mmol)および、1-ブロモ-3-メチル-2-ブテン(38.1mL、300mmol)を加えた。60℃で1時間攪拌した後、析出した固体をろ過により除去した。濾液に水を加え、酢酸エチルで抽出した。有機層を水および、飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、得られた残渣のテトラヒドロフラン(321mL)溶液に、氷冷下、ジフェニルジアゾメタン(64.1g、330mmol)を加え、室温で7時間撹拌した。室温で2日間静置した後、溶媒を減圧留去した。得られた粗生成物はシリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル)により精製し、化合物1b(104g、収率91%)を得た。
1H-NMR (CDCl3) δ: 1.73 (3H, s), 1.76 (3H, s), 2.79 (2H, t, J = 6.2 Hz), 3.18 (2H, t, J = 6.2 Hz), 4.74 (2H, d, J = 7.3 Hz), 5.38 (1H, t, J = 7.3 Hz), 6.86 (1H, s), 7.26-7.36 (10H, m).
Synthesis of compound 1f
Figure JPOXMLDOC01-appb-C000022

Step 1 Synthesis of Compound 1b A DMF (307 mL) solution of Compound 1a (43.8 g, 300 mmol) was heated to 60 ° C. To this was added dicyclohexylamine (59.6 mL, 300 mmol) and 1-bromo-3-methyl-2-butene (38.1 mL, 300 mmol). After stirring at 60 ° C. for 1 hour, the precipitated solid was removed by filtration. Water was added to the filtrate and extracted with ethyl acetate. The organic layer was washed with water and saturated brine, and then dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and diphenyldiazomethane (64.1 g, 330 mmol) was added to a tetrahydrofuran (321 mL) solution of the obtained residue under ice cooling, followed by stirring at room temperature for 7 hours. After standing at room temperature for 2 days, the solvent was distilled off under reduced pressure. The resulting crude product was purified by silica gel column chromatography (hexane-ethyl acetate) to obtain Compound 1b (104 g, yield 91%).
1 H-NMR (CDCl 3 ) δ: 1.73 (3H, s), 1.76 (3H, s), 2.79 (2H, t, J = 6.2 Hz), 3.18 (2H, t, J = 6.2 Hz), 4.74 ( 2H, d, J = 7.3 Hz), 5.38 (1H, t, J = 7.3 Hz), 6.86 (1H, s), 7.26-7.36 (10H, m).
工程2 化合物1cの合成
化合物1b(104g、273mmol)のジクロロメタン(520mL)溶液に、N,N,N’,N’-テトラメチルジアミノメタン(149mL、1093mmol)を加えた。氷冷下で、無水酢酸(129mL、1367mL)、酢酸(109mL、1914mmol)を加え、室温下、1時間撹拌後、溶媒を減圧留去した後、水を加え、酢酸エチルで抽出した。有機層を水で洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、得られた残渣をカラムクロマトグラフィー(ヘキサン-酢酸エチル)により精製し、化合物1c(79g、74%)を得た。
1H-NMR (CDCl3) δ: 1.74 (3H, s), 1.77 (3H, s), 3.48 (2H, s), 4.78 (2H, d, J = 7.4 Hz), 5.39 (1H, t, J = 7.4 Hz), 6.25 (1H, s), 6.36 (1H, s), 6.86 (1H, s), 7.26-7.35 (10H, m).
Step 2 Synthesis of Compound 1c To a solution of Compound 1b (104 g, 273 mmol) in dichloromethane (520 mL) was added N, N, N ′, N′-tetramethyldiaminomethane (149 mL, 1093 mmol). Under ice-cooling, acetic anhydride (129 mL, 1367 mL) and acetic acid (109 mL, 1914 mmol) were added, and the mixture was stirred at room temperature for 1 hour. The solvent was evaporated under reduced pressure, water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and then dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the resulting residue was purified by column chromatography (hexane-ethyl acetate) to obtain Compound 1c (79 g, 74%).
1 H-NMR (CDCl 3 ) δ: 1.74 (3H, s), 1.77 (3H, s), 3.48 (2H, s), 4.78 (2H, d, J = 7.4 Hz), 5.39 (1H, t, J = 7.4 Hz), 6.25 (1H, s), 6.36 (1H, s), 6.86 (1H, s), 7.26-7.35 (10H, m).
工程3 化合物1eの合成
化合物1c(10.0g、25.5mmol)のアセトン(100mL)溶液に、化合物1d(6.02g、25.5mmol)およびヘキサメチルリン酸トリアミド(15.5mL、89mmol)を加え、室温で1時間撹拌した。水を加え、酢酸エチルで抽出した。有機層を水、および飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、得られた残渣をカラムクロマトグラフィー(ヘキサン-酢酸エチル)で精製することにより、化合物1e(2.1g、収率13.1%)を得た。
1H-NMR (CDCl3) δ: 1.65 (3H, s), 1.69 (3H, s), 2.34 (2H, t, J = 4.5 Hz), 2.69 (1H, dd, J = 13.6, 2.8 Hz), 2.81 (1H, br s), 2.91-2.98 (1H, m), 3.59 (1H, d, J = 16.1 Hz), 3.65 (1H, d, J = 16.1 Hz), 3.77 (1H, s), 4.67 (1H, dd, J = 12.0, 7.5 Hz), 4.88 (1H, dd, J = 12.0, 7.5 Hz), 5.08 (1H, d, J = 4.7 Hz), 5.33 (1H, t, J = 7.5 Hz), 5.51 (1H, dd, J = 9.5, 4.7 Hz), 6.09 (1H, d, J = 9.5 Hz), 6.86 (1H, s), 7.26-7.40 (17H, m).
Step 3 Synthesis of Compound 1e To a solution of Compound 1c (10.0 g, 25.5 mmol) in acetone (100 mL), Compound 1d (6.02 g, 25.5 mmol) and hexamethylphosphoric triamide (15.5 mL, 89 mmol) were added. The mixture was further stirred at room temperature for 1 hour. Water was added and extracted with ethyl acetate. The organic layer was washed with water and saturated brine, and then dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the resulting residue was purified by column chromatography (hexane-ethyl acetate) to obtain Compound 1e (2.1 g, yield 13.1%).
1 H-NMR (CDCl 3 ) δ: 1.65 (3H, s), 1.69 (3H, s), 2.34 (2H, t, J = 4.5 Hz), 2.69 (1H, dd, J = 13.6, 2.8 Hz), 2.81 (1H, br s), 2.91-2.98 (1H, m), 3.59 (1H, d, J = 16.1 Hz), 3.65 (1H, d, J = 16.1 Hz), 3.77 (1H, s), 4.67 ( 1H, dd, J = 12.0, 7.5 Hz), 4.88 (1H, dd, J = 12.0, 7.5 Hz), 5.08 (1H, d, J = 4.7 Hz), 5.33 (1H, t, J = 7.5 Hz), 5.51 (1H, dd, J = 9.5, 4.7 Hz), 6.09 (1H, d, J = 9.5 Hz), 6.86 (1H, s), 7.26-7.40 (17H, m).
工程4 化合物1fの合成
窒素雰囲気下、化合物1e(6.80g、10.8mmol)のジクロロメタン(34mL)溶液を-10℃に冷却した。これに、TFA(34mL、441mmol)のジクロロメタン(34mL)溶液を滴下し、-10℃で30分間撹拌した。反応液に水を加え、ジクロロメタンで抽出した。有機層を水および飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を留去し、得られた残渣のジクロロメタン(50mL)溶液を0℃に冷却した。これに、EDC塩酸塩(4.15g、21.6mmol)を加え、室温下1時間撹拌した。水を加え、ジクロロメタンで抽出した。有機層を希塩酸および飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた残渣をカラムクロマトグラフィー(ヘキサン-酢酸エチル)により精製して化合物1f(4.0g、83%)を得た。
1H-NMR (CDCl3) δ: 1.71 (3H, s), 1.77 (3H, s), 2.60-2.67 (2H, m), 2.75 (1H, dd, J = 18.1, 9.0 Hz), 2.94 (1H, dd, J = 14.4, 4.3 Hz), 3.19-3.25 (1H, m), 4.73-4.83 (2H, m), 4.96-4.98 (1H, m), 5.36 (1H, t, J = 6.8 Hz), 5.53 (1H, dd, J = 8.7, 4.7 Hz), 6.16 (1H, d, J = 8.6 Hz), 7.26-7.39 (6H, m).
(実施例4)
Step 4 Synthesis of Compound 1f Under a nitrogen atmosphere, a solution of compound 1e (6.80 g, 10.8 mmol) in dichloromethane (34 mL) was cooled to −10 ° C. A solution of TFA (34 mL, 441 mmol) in dichloromethane (34 mL) was added dropwise thereto, and the mixture was stirred at −10 ° C. for 30 minutes. Water was added to the reaction mixture, and the mixture was extracted with dichloromethane. The organic layer was washed with water and saturated brine, and then dried over anhydrous magnesium sulfate. The solvent was distilled off, and a solution of the obtained residue in dichloromethane (50 mL) was cooled to 0 ° C. To this, EDC hydrochloride (4.15 g, 21.6 mmol) was added and stirred at room temperature for 1 hour. Water was added and extracted with dichloromethane. The organic layer was washed with dilute hydrochloric acid and saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The obtained residue was purified by column chromatography (hexane-ethyl acetate) to obtain Compound 1f (4.0 g, 83%).
1 H-NMR (CDCl 3 ) δ: 1.71 (3H, s), 1.77 (3H, s), 2.60-2.67 (2H, m), 2.75 (1H, dd, J = 18.1, 9.0 Hz), 2.94 (1H , dd, J = 14.4, 4.3 Hz), 3.19-3.25 (1H, m), 4.73-4.83 (2H, m), 4.96-4.98 (1H, m), 5.36 (1H, t, J = 6.8 Hz), 5.53 (1H, dd, J = 8.7, 4.7 Hz), 6.16 (1H, d, J = 8.6 Hz), 7.26-7.39 (6H, m).
Example 4
化合物5aの合成
Figure JPOXMLDOC01-appb-C000023

工程1 化合物5aの合成
窒素雰囲気下、-78℃で五塩化リン(2.81g、13.5mmol)とピリジン(1.20ml、14.9mmol)をジクロロメタン(15ml)に懸濁させ、化合物1f(3.00g、6.75mmol)のジクロロメタン(15ml)溶液を加えた。氷冷下で1時間撹拌した後、-78℃に冷却しエタノール(15ml)を加えた。-25℃~-15℃で1時間撹拌した後、反応液に飽和重曹水を加えた。有機層を分離し硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ過した後、トシル酸一水和物(5.14g、27.0mmol)と酢酸エチル(50ml)を加えた後減圧濃縮しジクロロメタンを留去した。析出した結晶をろ取し化合物5a(1.64g、収率49%)を得た。
1H-NMR (DMSO-d6) δ: 8.64 (3.0H, br s), 7.47 (2.0H, d, J = 8.0 Hz), 7.11 (2.0H, d, J = 7.8 Hz), 5.37 (1.0H, t, J = 7.0 Hz), 5.16 (1.0H, d, J = 4.6 Hz), 4.83 (1.0H, d, J = 4.6 Hz), 4.76 (1.0H, dd, J = 12.0, 7.3 Hz), 4.66 (1.0H, dd, J = 12.3, 7.3 Hz), 3.00 (1.0H, dd, J = 18.2, 6.9 Hz), 2.87-2.77 (2.0H, m), 2.29 (3.0H, s), 1.74 (3.0H, s), 1.69 (3.0H, s).
XRPD(測定条件1):回折角度2θ(°): 8.0, 11.1, 13.1, 17.1, 21.6, 22.9, 25.0, 25.5, 27.1
(実施例7)
Synthesis of compound 5a
Figure JPOXMLDOC01-appb-C000023

Step 1 Synthesis of Compound 5a Under a nitrogen atmosphere, phosphorus pentachloride (2.81 g, 13.5 mmol) and pyridine (1.20 ml, 14.9 mmol) were suspended in dichloromethane (15 ml) at −78 ° C. to give compound 1f ( A solution of 3.00 g, 6.75 mmol) in dichloromethane (15 ml) was added. After stirring for 1 hour under ice cooling, the mixture was cooled to −78 ° C. and ethanol (15 ml) was added. After stirring at −25 ° C. to −15 ° C. for 1 hour, saturated aqueous sodium hydrogen carbonate was added to the reaction mixture. The organic layer was separated and dried over magnesium sulfate. After magnesium sulfate was filtered, tosyl acid monohydrate (5.14 g, 27.0 mmol) and ethyl acetate (50 ml) were added, and the mixture was concentrated under reduced pressure to distill off dichloromethane. The precipitated crystals were collected by filtration to obtain Compound 5a (1.64 g, yield 49%).
1H-NMR (DMSO-d6) δ: 8.64 (3.0H, br s), 7.47 (2.0H, d, J = 8.0 Hz), 7.11 (2.0H, d, J = 7.8 Hz), 5.37 (1.0H, t, J = 7.0 Hz), 5.16 (1.0H, d, J = 4.6 Hz), 4.83 (1.0H, d, J = 4.6 Hz), 4.76 (1.0H, dd, J = 12.0, 7.3 Hz), 4.66 (1.0H, dd, J = 12.3, 7.3 Hz), 3.00 (1.0H, dd, J = 18.2, 6.9 Hz), 2.87-2.77 (2.0H, m), 2.29 (3.0H, s), 1.74 (3.0 H, s), 1.69 (3.0H, s).
XRPD (measurement condition 1): diffraction angle 2θ (°): 8.0, 11.1, 13.1, 17.1, 21.6, 22.9, 25.0, 25.5, 27.1
(Example 7)
化合物39gの合成
Figure JPOXMLDOC01-appb-C000024
工程1 化合物39fの合成
 化合物39e(31.5g、70.9mmol)をテトラヒドロフラン(320mL)に溶解し、5%パラジウム炭素(15.1g、7.09mmol)を加え、水素雰囲気下室温で4時間30分間撹拌した。触媒をセライトろ過により除去し、再度、5%パラジウム炭素(15.1g、7.09mmol)を加え、水素雰囲気下室温で1時間撹拌した。触媒をセライトろ過により除去し、ジフェニルジアゾメタン(15.1g、78.0mmol)を加え、室温で1時間撹拌した。溶媒を留去し、酢酸エチルとジイソプロピルエーテルを加え、生じた固体をろ取し乾燥させることにより、化合物39f(27.5g、収率71%)を得た。
1H-NMR (CDCl3) δ: 7.40-7.30 (m, 14H), 6.94 (s, 1H), 6.02 (d, J = 8.8 Hz, 1H), 5.55 (dd, J = 8.8, 4.7 Hz, 1H), 4.99 (d, J = 4.7 Hz, 1H), 3.67 (d, J = 16.2 Hz, 1H), 3.61 (d, J = 16.2 Hz, 1H), 3.17-3.08 (m, 1H), 2.90 (dd, J = 14.6, 4.5 Hz, 1H), 2.62 (dd, J = 14.6, 9.7 Hz, 1H), 2.54-2.50 (m, 2H).
工程2 化合物39gの合成
 五塩化リン(15.4g、73.7mmol)をジクロロメタン(200mL)に懸濁させ0℃に冷却した。この懸濁液にピリジン(6.55mL、81.0mmol)と化合物39f(20.0g、36.9mmol)を加え、0℃で30分間撹拌した。この溶液を―78℃に冷却し、エタノール(200mL)を加え-30℃まで昇温し、2時間撹拌した。この溶液に精製水(33.2mL、1.84mol)を加え撹拌した。反応液をさらに精製水で希釈し、ジクロロメタンを留去し、析出した結晶をろ取した。得られた結晶を精製水と酢酸エチルで洗浄し乾燥させることにより、化合物39g(14.1g、収率83%)を結晶として得た。
1H-NMR (DMSO-D6) δ: 8.79 (br s, 2H), 7.47-7.27 (m, 10H), 6.91 (s, 1H), 5.18 (d, J = 4.6 Hz, 1H), 4.84 (d, J = 4.6 Hz, 1H), 3.46-3.27 (m, 2H), 3.06 (dd, J = 18.3, 7.1 Hz, 1H), 2.89 (dd, J = 14.3, 6.0 Hz, 1H), 2.74 (dd, J = 10.2, 20.0 Hz, 1H).
XRPD(測定条件2):回折角度2θ(°):4.2, 8.2, 10.0, 16.2, 17.7、 20.3, 21.4, 23.7, 23.9, 27.6, 28.4、 29.1, 29.5, 32.6
元素分析 C22H20N2O5SHCl(H2O)1.0
計算値:C,55.17; H,4.84; N,5.85; S,6.69; Cl,7.40 (%)
実測値:C,55.26; H,4.87; N,6.23; S,6.68; Cl,7.14 (%)
(実施例34)
Synthesis of compound 39g
Figure JPOXMLDOC01-appb-C000024
Step 1 Synthesis of Compound 39f Compound 39e (31.5 g, 70.9 mmol) was dissolved in tetrahydrofuran (320 mL), 5% palladium carbon (15.1 g, 7.09 mmol) was added, and the mixture was added for 4 hours 30 hours at room temperature in a hydrogen atmosphere. Stir for minutes. The catalyst was removed by Celite filtration, 5% palladium carbon (15.1 g, 7.09 mmol) was added again, and the mixture was stirred at room temperature for 1 hour in a hydrogen atmosphere. The catalyst was removed by Celite filtration, diphenyldiazomethane (15.1 g, 78.0 mmol) was added, and the mixture was stirred at room temperature for 1 hr. The solvent was distilled off, ethyl acetate and diisopropyl ether were added, and the resulting solid was collected by filtration and dried to obtain compound 39f (27.5 g, yield 71%).
1H-NMR (CDCl3) δ: 7.40-7.30 (m, 14H), 6.94 (s, 1H), 6.02 (d, J = 8.8 Hz, 1H), 5.55 (dd, J = 8.8, 4.7 Hz, 1H), 4.99 (d, J = 4.7 Hz, 1H), 3.67 (d, J = 16.2 Hz, 1H), 3.61 (d, J = 16.2 Hz, 1H), 3.17-3.08 (m, 1H), 2.90 (dd, J = 14.6, 4.5 Hz, 1H), 2.62 (dd, J = 14.6, 9.7 Hz, 1H), 2.54-2.50 (m, 2H).
Step 2 Synthesis of Compound 39g Phosphorus pentachloride (15.4 g, 73.7 mmol) was suspended in dichloromethane (200 mL) and cooled to 0 ° C. To this suspension were added pyridine (6.55 mL, 81.0 mmol) and compound 39f (20.0 g, 36.9 mmol), and the mixture was stirred at 0 ° C. for 30 minutes. The solution was cooled to −78 ° C., ethanol (200 mL) was added, the temperature was raised to −30 ° C., and the mixture was stirred for 2 hours. Purified water (33.2 mL, 1.84 mol) was added to this solution and stirred. The reaction solution was further diluted with purified water, dichloromethane was distilled off, and the precipitated crystals were collected by filtration. The obtained crystals were washed with purified water and ethyl acetate and dried to obtain 39 g of compound (14.1 g, yield 83%) as crystals.
1H-NMR (DMSO-D6) δ: 8.79 (br s, 2H), 7.47-7.27 (m, 10H), 6.91 (s, 1H), 5.18 (d, J = 4.6 Hz, 1H), 4.84 (d, J = 4.6 Hz, 1H), 3.46-3.27 (m, 2H), 3.06 (dd, J = 18.3, 7.1 Hz, 1H), 2.89 (dd, J = 14.3, 6.0 Hz, 1H), 2.74 (dd, J = 10.2, 20.0 Hz, 1H).
XRPD (measurement condition 2): diffraction angle 2θ (°): 4.2, 8.2, 10.0, 16.2, 17.7, 20.3, 21.4, 23.7, 23.9, 27.6, 28.4, 29.1, 29.5, 32.6
Elemental analysis C22H20N2O5SHCl (H2O) 1.0
Calculated value: C, 55.17; H, 4.84; N, 5.85; S, 6.69; Cl, 7.40 (%)
Found: C, 55.26; H, 4.87; N, 6.23; S, 6.68; Cl, 7.14 (%)
(Example 34)
化合物I-074の合成
Figure JPOXMLDOC01-appb-C000025

工程1 化合物74bの合成
特許WO2016175223Aに記載の方法で合成した化合物74a(31.5g、70.9mmol)をテトラヒドロフラン(320mL)に溶解し、5%パラジウム炭素(15.1g、7.09mmol)を加え、水素雰囲気下室温で4時間30分間撹拌した。触媒をセライトろ過により除去し、再度、5%パラジウム炭素(15.1g、7.09mmol)を加え、水素雰囲気下室温で1時間撹拌した。触媒をセライトろ過により除去し、ジフェニルジアゾメタン(15.1g、78.0mmol)を加え、室温で1時間撹拌した。溶媒を留去し、酢酸エチルとジイソプロピルエーテルを加え、生じた固体をろ取し乾燥させることにより、化合物74b(27.5g、収率71%)を得た。
1H-NMR (CDCl3) δ: 7.40-7.30 (m, 14H), 6.94 (s, 1H), 6.02 (d, J = 8.8 Hz, 1H), 5.55 (dd, J = 8.8, 4.7 Hz, 1H), 4.99 (d, J = 4.7 Hz, 1H), 3.67 (d, J = 16.2 Hz, 1H), 3.61 (d, J = 16.2 Hz, 1H), 3.17-3.08 (m, 1H), 2.90 (dd, J = 14.6, 4.5 Hz, 1H), 2.62 (dd, J = 14.6, 9.7 Hz, 1H), 2.54-2.50 (m, 2H).
工程2 化合物74cの合成
 五塩化リン(15.4g、73.7mmol)をジクロロメタン(200mL)に懸濁させ0℃に冷却した。この懸濁液にピリジン(6.55mL、81.0mmol)と化合物74b(20.0g、36.9mmol)を加え、0℃で30分間撹拌した。この溶液を―78℃に冷却し、エタノール(200mL)を加え-30℃まで昇温し、2時間撹拌した。この溶液に精製水(33.2mL、1.84mol)を加え撹拌した。反応液をさらに精製水で希釈し、ジクロロメタンを留去し、析出した結晶をろ取した。得られた結晶を精製水と酢酸エチルで洗浄し乾燥させることにより、化合物74c(14.1g、収率83%)を結晶として得た。
1H-NMR (DMSO-D6) δ: 8.79 (br s, 2H), 7.47-7.27 (m, 10H), 6.91 (s, 1H), 5.18 (d, J = 4.6 Hz, 1H), 4.84 (d, J = 4.6 Hz, 1H), 3.46-3.27 (m, 2H), 3.06 (dd, J = 18.3, 7.1 Hz, 1H), 2.89 (dd, J = 14.3, 6.0 Hz, 1H), 2.74 (dd, J = 10.2, 20.0 Hz, 1H).
XRPD(測定条件2):回折角度2θ(°):4.2, 8.2, 10.0, 16.2, 17.7、 20.3, 21.4, 23.7, 23.9, 27.6,28.4、 29.1, 29.5, 32.6
元素分析 C22H20N2O5SHCl(H2O)1.0
計算値:C,55.17; H,4.84; N,5.85; S,6.69; Cl,7.40 (%)
実測値:C,55.26; H,4.87; N,6.23; S,6.68; Cl,7.14 (%)
工程3 化合物74eの合成
化合物74d(1.3g、10.0mmol)のテトラヒドロフラン溶液に、トリフェニルホスフィン(2.62g、10.0mmol)を加え、0℃に冷却した。これにDIAD(1.94mL,10.0mmol)を加え、室温で1時間撹拌した。溶媒を減圧留去し、得られた残渣メタノールに注ぎ、生じた固体をろ取した。得られた固体をメタノールで洗浄し乾燥させることにより、化合物74e(1.67g、収率61%)を白色固体として得た。
1H-NMR (CDCl3) δ: 1.71-1.78 (1H, m), 2.17-2.27 (1H, m), 3.20-3.25 (1H, m), 3.82-3.95 (2H, m), 4.06 (1H, dd, J = 11.5, 3.6 Hz), 4.31 (1H, d, J = 11.5 Hz), 4.78 (1H, d, J = 3.4 Hz), 6.01 (1H, d, J = 4.9 Hz), 7.77-7.81 (2H, m), 7.85-7.88 (2H, m). 
工程4 化合物74gの合成
窒素雰囲気下、化合物74e(1.68g、6.10mmol)のジクロロメタン(34mL)溶液を0℃に冷却した。これに、メチルヒドラジン(0.340mL、6.41mmol)を加え、0℃で1時間撹拌した。生じた不溶物を濾過した。ろ液を0℃に冷却した。これに化合物74f(1.58g、5.80mmol)およびメタノール(10mL)を加え0℃で1時間撹拌した。ろ液を減圧留去し、水を加え酢酸エチルで抽出した。有機層を希塩酸および飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去することで化合物74gを含む粗生成物(2.54g)を得た。
MS (m+1) =400 測定条件A 1.23分
工程5 化合物74hの合成
 化合物74c(461mg、1.00mmol)を酢酸エチル(4.60mL)に懸濁させ、工程4で得られた化合物74gを含む粗生成物(439mg、)を加え、-30℃に冷却した。この懸濁液にジクロロリン酸フェニル(0.164mL、1.10mmol)とN-メチルモルホリン(0.44mL,4.00mmol)を加え、-30℃で1時間撹拌した。この溶液に精製水を加え、溶媒を留去し、酢酸エチルで抽出した。この有機層を精製水、次いで飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。ろ過後、溶媒を留去し、得られた残渣をシリカゲルクロマトグラフィーに付し、化合物74h(740mg、収率92%)を得た。
1H-NMR (CDCl3) δ: 1.54 (9H, s), 1.78-1.84 (1H, m), 2.18-2.29 (1H, m), 2.54-2.56 (2H, m), 2.69 (1H, dd, J = 14.6, 9.5 Hz), 3.02-3.18 (4H, m), 3.84-3.95 (2H, m), 4.01 (1H, dd, J = 11.2, 3.0 Hz), 4.22 (1H, d, J = 10.8 Hz), 4.62 (1H, d, J = 2.9 Hz), 5.12 (1H, d, J = 4.8 Hz), 5.70 (1H, dd, J = 8.7, 4.8 Hz), 5.87 (1H, d, J = 4.8 Hz), 6.99 (1H, s), 7.29-7.36 (10H, m), 8.09 (1H, s).
MS (m+1) =806、2.4分、測定条件A
工程6 化合物74iの合成
 化合物74hを含む粗生成物(740mg)をジクロロメタン(4.00mL)に溶解し、-40℃に冷却した。この溶液にメタクロロ過安息香酸(70%、249mg、1.01mmol)を加え-40℃で30分間撹拌した。反応液にチオ硫酸ナトリウム水溶液を加え、溶媒を留去し、酢酸エチルで抽出した。この有機層を精製水、飽和炭酸水素ナトリウム水、次いで飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。ろ過後、溶媒を留去し、化合物74iを含む残渣(670mg)を得た。
MS (m+1) =822、2.34分、測定条件A
工程7 化合物I―074の合成
化合物74iを含む粗生成物670mgのジクロロメタン(3.7mL)溶液を-30℃まで冷却した後、アニソール(0.445mL、4.08mmol)と2mol/L塩化アルミニウム/ニトロメタン溶液(2.04mL、4.08mmol)を順に加え、-30℃で30分間攪拌した。反応液にジイソプロピルエーテル、氷、アセトニトリルを順に加えて攪拌し、不溶物を完全に溶解させた後、水層を分取した。有機層を再度水で抽出した後、すべての水層を合せHP20-SS樹脂を加えアセトニトリルを減圧留去した。得られた混合液をODSカラムクロマトグラフィ(水-アセトニトリル)により精製した。所望の化合物を含む分画を集め、減圧濃縮した後、凍結乾燥することにより化合物I-074(240mg、収率53%)を白色粉末として得た。
1H-NMR (D2O) δ: 1.96 (1H, br s), 2.26-2.34 (1H, m), 2.56 (1H, d, J = 18.2 Hz), 2.78-2.86 (1H, m), 3.06 (1H, dd, J = 18.2, 7.5 Hz), 3.24 (1H, br s), 3.52-3.66 (2H, m), 3.88-3.96 (2H, m), 4.11-4.22 (2H, m), 4.94-5.00 (2H, m), 5.88-5.93 (2H, m), 7.18 (1H, s). 
MS (m+1) =556、0.53分、測定条件A
元素分析:C20H21N5O10S2(H2O)2.8
計算値C: 39.64%, H: 4.42%, N: 11.56%, S: 10.58%.
実測値C: 39.47%, H: 4.50%, N: 11.85%, S: 10.50%.
(実施例35)
Synthesis of Compound I-074
Figure JPOXMLDOC01-appb-C000025

Step 1 Synthesis of Compound 74b Compound 74a (31.5 g, 70.9 mmol) synthesized by the method described in Patent WO2016175223A was dissolved in tetrahydrofuran (320 mL), and 5% palladium carbon (15.1 g, 7.09 mmol) was added. The mixture was stirred at room temperature for 4 hours and 30 minutes in a hydrogen atmosphere. The catalyst was removed by Celite filtration, 5% palladium carbon (15.1 g, 7.09 mmol) was added again, and the mixture was stirred at room temperature for 1 hour in a hydrogen atmosphere. The catalyst was removed by Celite filtration, diphenyldiazomethane (15.1 g, 78.0 mmol) was added, and the mixture was stirred at room temperature for 1 hr. The solvent was distilled off, ethyl acetate and diisopropyl ether were added, and the resulting solid was collected by filtration and dried to obtain Compound 74b (27.5 g, yield 71%).
1H-NMR (CDCl3) δ: 7.40-7.30 (m, 14H), 6.94 (s, 1H), 6.02 (d, J = 8.8 Hz, 1H), 5.55 (dd, J = 8.8, 4.7 Hz, 1H), 4.99 (d, J = 4.7 Hz, 1H), 3.67 (d, J = 16.2 Hz, 1H), 3.61 (d, J = 16.2 Hz, 1H), 3.17-3.08 (m, 1H), 2.90 (dd, J = 14.6, 4.5 Hz, 1H), 2.62 (dd, J = 14.6, 9.7 Hz, 1H), 2.54-2.50 (m, 2H).
Step 2 Synthesis of Compound 74c Phosphorus pentachloride (15.4 g, 73.7 mmol) was suspended in dichloromethane (200 mL) and cooled to 0 ° C. To this suspension were added pyridine (6.55 mL, 81.0 mmol) and compound 74b (20.0 g, 36.9 mmol), and the mixture was stirred at 0 ° C. for 30 minutes. The solution was cooled to −78 ° C., ethanol (200 mL) was added, the temperature was raised to −30 ° C., and the mixture was stirred for 2 hours. Purified water (33.2 mL, 1.84 mol) was added to this solution and stirred. The reaction solution was further diluted with purified water, dichloromethane was distilled off, and the precipitated crystals were collected by filtration. The obtained crystals were washed with purified water and ethyl acetate and dried to give compound 74c (14.1 g, yield 83%) as crystals.
1H-NMR (DMSO-D6) δ: 8.79 (br s, 2H), 7.47-7.27 (m, 10H), 6.91 (s, 1H), 5.18 (d, J = 4.6 Hz, 1H), 4.84 (d, J = 4.6 Hz, 1H), 3.46-3.27 (m, 2H), 3.06 (dd, J = 18.3, 7.1 Hz, 1H), 2.89 (dd, J = 14.3, 6.0 Hz, 1H), 2.74 (dd, J = 10.2, 20.0 Hz, 1H).
XRPD (measurement condition 2): diffraction angle 2θ (°): 4.2, 8.2, 10.0, 16.2, 17.7, 20.3, 21.4, 23.7, 23.9, 27.6, 28.4, 29.1, 29.5, 32.6
Elemental analysis C22H20N2O5SHCl (H2O) 1.0
Calculated value: C, 55.17; H, 4.84; N, 5.85; S, 6.69; Cl, 7.40 (%)
Found: C, 55.26; H, 4.87; N, 6.23; S, 6.68; Cl, 7.14 (%)
Step 3 Synthesis of Compound 74e To a tetrahydrofuran solution of the compound 74d (1.3 g, 10.0 mmol), triphenylphosphine (2.62 g, 10.0 mmol) was added and cooled to 0 ° C. DIAD (1.94 mL, 10.0 mmol) was added thereto, and the mixture was stirred at room temperature for 1 hour. The solvent was distilled off under reduced pressure, and the resulting residue was poured into methanol, and the resulting solid was collected by filtration. The obtained solid was washed with methanol and dried to obtain compound 74e (1.67 g, yield 61%) as a white solid.
1 H-NMR (CDCl 3 ) δ: 1.71-1.78 (1H, m), 2.17-2.27 (1H, m), 3.20-3.25 (1H, m), 3.82-3.95 (2H, m), 4.06 (1H, dd, J = 11.5, 3.6 Hz), 4.31 (1H, d, J = 11.5 Hz), 4.78 (1H, d, J = 3.4 Hz), 6.01 (1H, d, J = 4.9 Hz), 7.77-7.81 ( 2H, m), 7.85-7.88 (2H, m).
Step 4 Synthesis of Compound 74g Under a nitrogen atmosphere, a solution of compound 74e (1.68 g, 6.10 mmol) in dichloromethane (34 mL) was cooled to 0 ° C. To this was added methylhydrazine (0.340 mL, 6.41 mmol), and the mixture was stirred at 0 ° C. for 1 hour. The resulting insoluble material was filtered. The filtrate was cooled to 0 ° C. Compound 74f (1.58 g, 5.80 mmol) and methanol (10 mL) were added thereto, and the mixture was stirred at 0 ° C. for 1 hour. The filtrate was evaporated under reduced pressure, water was added and the mixture was extracted with ethyl acetate. The organic layer was washed with dilute hydrochloric acid and saturated brine, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain a crude product (2.54 g) containing 74 g of the compound.
MS (m + 1) = 400 Measurement Condition A 1.23 minutes Step 5 Synthesis of Compound 74h Compound 74c (461 mg, 1.00 mmol) was suspended in ethyl acetate (4.60 mL), and the compound obtained in Step 4 Crude product (439 mg) containing 74 g was added and cooled to −30 ° C. To this suspension were added phenyl dichlorophosphate (0.164 mL, 1.10 mmol) and N-methylmorpholine (0.44 mL, 4.00 mmol), and the mixture was stirred at −30 ° C. for 1 hour. Purified water was added to this solution, the solvent was distilled off, and the mixture was extracted with ethyl acetate. This organic layer was washed with purified water and then with saturated brine, and dried over anhydrous magnesium sulfate. After filtration, the solvent was distilled off, and the resulting residue was subjected to silica gel chromatography to obtain compound 74h (740 mg, yield 92%).
1 H-NMR (CDCl 3 ) δ: 1.54 (9H, s), 1.78-1.84 (1H, m), 2.18-2.29 (1H, m), 2.54-2.56 (2H, m), 2.69 (1H, dd, J = 14.6, 9.5 Hz), 3.02-3.18 (4H, m), 3.84-3.95 (2H, m), 4.01 (1H, dd, J = 11.2, 3.0 Hz), 4.22 (1H, d, J = 10.8 Hz ), 4.62 (1H, d, J = 2.9 Hz), 5.12 (1H, d, J = 4.8 Hz), 5.70 (1H, dd, J = 8.7, 4.8 Hz), 5.87 (1H, d, J = 4.8 Hz) ), 6.99 (1H, s), 7.29-7.36 (10H, m), 8.09 (1H, s).
MS (m + 1) = 806, 2.4 minutes, measurement condition A
Step 6 Synthesis of Compound 74i The crude product (740 mg) containing Compound 74h was dissolved in dichloromethane (4.00 mL) and cooled to −40 ° C. To this solution was added metachloroperbenzoic acid (70%, 249 mg, 1.01 mmol) and stirred at −40 ° C. for 30 minutes. A sodium thiosulfate aqueous solution was added to the reaction solution, the solvent was distilled off, and the mixture was extracted with ethyl acetate. This organic layer was washed with purified water, saturated aqueous sodium hydrogen carbonate, and then saturated brine, and dried over anhydrous magnesium sulfate. After filtration, the solvent was distilled off to obtain a residue (670 mg) containing Compound 74i.
MS (m + 1) = 822, 2.34 minutes, measurement condition A
Step 7 A solution of 670 mg of the crude product containing Compound 74i in Compound I-074 in dichloromethane (3.7 mL) was cooled to −30 ° C., and then anisole (0.445 mL, 4.08 mmol) and 2 mol / L aluminum chloride / Nitromethane solution (2.04 mL, 4.08 mmol) was sequentially added, and the mixture was stirred at −30 ° C. for 30 minutes. Diisopropyl ether, ice, and acetonitrile were added to the reaction solution in this order and the mixture was stirred to completely dissolve insoluble matter, and then the aqueous layer was separated. The organic layer was extracted again with water, all the aqueous layers were combined, HP20-SS resin was added, and acetonitrile was distilled off under reduced pressure. The resulting mixture was purified by ODS column chromatography (water-acetonitrile). Fractions containing the desired compound were collected, concentrated under reduced pressure, and lyophilized to obtain Compound I-074 (240 mg, 53% yield) as a white powder.
1 H-NMR (D 2 O) δ: 1.96 (1H, br s), 2.26-2.34 (1H, m), 2.56 (1H, d, J = 18.2 Hz), 2.78-2.86 (1H, m), 3.06 (1H, dd, J = 18.2, 7.5 Hz), 3.24 (1H, br s), 3.52-3.66 (2H, m), 3.88-3.96 (2H, m), 4.11-4.22 (2H, m), 4.94- 5.00 (2H, m), 5.88-5.93 (2H, m), 7.18 (1H, s).
MS (m + 1) = 556, 0.53 minutes, measurement condition A
Elemental analysis: C20H21N5O10S2 (H2O) 2.8
Calculated C: 39.64%, H: 4.42%, N: 11.56%, S: 10.58%.
Found C: 39.47%, H: 4.50%, N: 11.85%, S: 10.50%.
(Example 35)
化合物I-075の合成
Figure JPOXMLDOC01-appb-C000026

工程1 化合物75b-1の合成
グリセリン(921mg、10mmol)のテトラヒドロフラン(9mL)溶液にイミダゾール(1.70g、25mmol)を加えた後、tert-ブチルジメチルシリルクロリド(3.17g、21mmol)のテトラヒドロフラン(18mL)溶液を氷冷下で滴下した。室温で終夜攪拌した後、水を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で順に洗浄し、無水硫酸マグネシウムにより乾燥した。ろ過後、ろ液を減圧濃縮した。得られた粗生成物はシリカゲルカラムクロマトグラフィ(ヘキサン-酢酸エチル)により精製し、化合物75b-1(3.13g、収率98%)を無色オイルとして得た。
1H-NMR (CDCl3) δ: 0.07 (12H, s), 0.90 (18H, s), 2.45 (1H, d, J = 5.1 Hz), 3.63 (1H, s), 3.64 (4H, s).
工程2 化合物75c-1の合成
化合物75b-1(3.13g、9.8mmol)のテトラヒドロフラン(31mL)溶液にN-ヒドロキシフタルイミド(1.91g、11.7mmol)、トリフェニルホスフィン(3.07g、11.7mmol)を加えた後、1.9mol/L DIAD/トルエン溶液を氷冷下で滴下した。室温で1時間攪拌した後、減圧濃縮し、残渣にメタノールを加えた。生じた固体をろ取し、減圧乾燥することにより、化合物75c-1(3.07g、収率67%)を白色固体として得た。
1H-NMR (CDCl3) δ: 0.00 (6H, s), 0.02 (6H, s), 0.82 (18H, s), 3.94 (4H, ddd, J = 14.5, 9.5, 3.2 Hz), 4.33-4.38 (1H, m), 7.72 (2H, dd, J = 5.5, 3.1 Hz), 7.82 (2H, dd, J = 5.5, 3.1 Hz).
工程3、4 化合物75f-1の合成
化合物75c-1(3.07g、6.6mmol)のジクロロメタン(30mL)溶液にメチルヒドラジン(0.383mL、7.2mmol)を-30℃で加えた。氷冷下で30分間攪拌した後、生じた不溶物をろ過により除き、ろ液に化合物75e-1(1.79g、6.6mmol)を加えた。室温で2時間攪拌した後、減圧濃縮し、残渣に希塩酸を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で順に洗浄し、無水硫酸マグネシウムにより乾燥した。ろ過後、ろ液を減圧濃縮した。残渣をジイソプロピルエーテルに溶解させた後、トリエチルアミン(1.1mL、7.9mmol)を加えた。生じた固体をろ取し、減圧乾燥することにより、化合物75f-1(1.79g、収率39%)を白色固体として得た。
1H-NMR (DMSO-D6) δ: 0.04 (6H, s), 0.04 (6H, s), 0.86 (18H, s), 1.13 (9H, t, J = 6.5 Hz), 1.47 (9H, s), 2.96 (6H, s), 3.70 (4H, d, J = 4.4 Hz), 3.96 (1H, t, J = 5.0 Hz), 7.10 (1H, s).
Figure JPOXMLDOC01-appb-C000027

工程5、6 化合物75cの合成
化合物75a(13.8g、104mmol)に無水トリフルオロ酢酸(17.7mL、125mmol)を氷冷下で加えた。氷冷下で3時間攪拌した後、減圧濃縮した。残渣にトルエンを加え、再び減圧濃縮することにより、化合物75bを得た。得られた化合物75bは精製せずにそのまま次の反応に用いた。
得られた化合物75b全量のテトラヒドロフラン(64mL)溶液にp-メトキシベンジルアルコール(23.2g、168mmol)、DMAP(1.37g、11.2mmol)を加え、6時間加熱還流した。反応混合物を減圧濃縮した後、残渣に炭酸水素ナトリウム水溶液と酢酸エチルを加え、水層を分取した。分取した水層に2mol/L塩酸をpH=2まで加えた後、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムにより乾燥した。ろ過後、ろ液を減圧濃縮することにより化合物75cおよび75c-iiの混合物(21g、収率74%)を無色オイルとして得た。
1H-NMR (DMSO-D6) δ: 1.09-1.12 (6H, m), 2.31-2.46 (2H, m), 2.53-2.63 (2H, m), 2.67-2.80 (2H, m), 3.75 (6H, s), 5.01 (4H, s), 6.92 (4H, d, J = 8.6 Hz), 7.29 (4H, d, J = 8.3 Hz).
工程7 化合物75dの合成
化合物75cおよび75c-iiの混合物(21g、83mmol)のジクロロメタン(300mL)溶液にトリフェニルホスホラニリデンアセトニトリル(26.3g、87mmol)、4-ジメチルアミノピリジン(1.02g、8.3mmol)、EDC塩酸塩(17.5g、92mmol)を順に加えた。室温で1時間半攪拌した後、減圧濃縮し、残渣に水を加え、酢酸エチルで抽出した。有機層を、水、飽和食塩水で順に洗浄し、無水硫酸マグネシウムにより乾燥した。ろ過後、ろ液を減圧濃縮した。得られた粗生成物はシリカゲルカラムクロマトグラフィ(ヘキサン-酢酸エチル)により精製し、化合物75dおよび75d-iiの混合物(25.88g、収率58%)を白色フォームとして得た。
1H-NMR (CDCl3) δ: 1.20 (3H, d, J = 6.8 Hz), 1.25 (3H, d, J = 7.1 Hz), 2.30 (1H, dd, J = 16.5, 4.7 Hz), 2.77-2.85 (2H, m), 3.02 (1H, dd, J = 13.9, 7.1 Hz), 3.22 (1H, dd, J = 16.0, 7.7 Hz), 3.63-3.68 (1H, m), 3.78 (6H, s), 4.98-5.06 (4H, m), 6.84 (4H, d, J = 8.1 Hz), 7.27 (4H, d, J = 14.9 Hz), 7.49-7.61 (30H, m).
工程8 化合物75eの合成
化合物75dおよび75d-iiの混合物(25.9g、48mmol)のジクロロメタン(520mL)溶液を、-78℃でオゾンガスをバブリングしながら1時間攪拌した。系内を窒素ガスで置換した後、ジメチルスルフィド(10.7mL、145mmol)を加え、-78℃で5分間攪拌した。次いで、3-メチル-2-ブテン-1-オール(7.36mL、72.5mmol)を加え、-78℃で2時間攪拌した。反応混合物を0℃程度まで昇温した後、5%炭酸ナトリウム水溶液を加え、室温で5分間攪拌した。ジクロロメタンを減圧留去した後、酢酸エチルで抽出し、有機層を、水、飽和食塩水で順に洗浄し、無水硫酸マグネシウムにより乾燥した。ろ過後、ろ液を減圧濃縮した。得られた粗生成物はシリカゲルカラムクロマトグラフィ(ヘキサン-酢酸エチル)により精製し、化合物75eおよび75e-iiの混合物(6.11g、収率36%)を白色フォームとして得た。
1H-NMR (CDCl3) δ: 1.19 (3H, d, J = 7.1 Hz), 1.23 (3H, d, J = 7.1 Hz), 1.74 (6H, s), 1.77 (6H, s), 2.49 (1H, dd, J = 16.9, 5.3 Hz), 2.82-2.91 (2H, m), 3.02 (1H, dd, J = 13.4, 7.1 Hz), 3.31 (1H, dd, J = 18.6, 7.7 Hz), 3.63-3.70 (1H, m), 3.81 (6H, s), 4.73-4.76 (4H, m), 5.04 (4H, d, J = 8.8 Hz), 5.39 (2H, s), 6.88 (4H, d, J = 8.1 Hz), 7.26 (4H, br s).
工程9、10 化合物75hの合成
化合物75eおよび75e-iiの混合物(6.11g、17.5mmol)のジクロロメタン(30mL)溶液に、氷冷下でN,N,N’N’-テトラメチルメタンジアミン(7.17mL、52.6mmol)を加えた後、無水酢酸(6.30mL、66.6mmol)、酢酸(5.32mL、93mmol)を順に滴下した。室温で終夜攪拌した後、反応混合物に氷水を加え、酢酸エチルで抽出した。有機層を、水、飽和食塩水で順に洗浄し、無水硫酸マグネシウムにより乾燥し、ろ過することにより化合物75fおよび75e-iiの混合物の酢酸エチル溶液を得た。
得られた化合物75fおよび75e-iiの混合物の酢酸エチル溶液に、化合物75g(2.49g、10.5mmol)、ヘキサメチルリン酸トリアミド(9.16mL、52.6mmol)を加えた。室温で終夜攪拌した後、反応混合物に水を加え、酢酸エチルで抽出した。有機層を、水、飽和食塩水で順に洗浄し、無水硫酸マグネシウムにより乾燥した。ろ過後、ろ液を減圧濃縮した。得られた粗生成物はシリカゲルカラムクロマトグラフィ(ヘキサン-酢酸エチル)により精製し、化合物75h(2.64g、収率42%)を白色フォームとして得た。
1H-NMR (CDCl3) δ: 1.13 (3H, d, J = 6.1 Hz), 1.70 (3H, s), 1.76 (3H, s), 2.50-2.54 (2H, m), 2.68 (1H, d, J = 14.7 Hz), 3.12 (1H, dd, J = 14.0, 11.5 Hz), 3.61 (2H, dd, J = 25.0, 15.9 Hz), 3.81 (3H, s), 4.04 (1H, s), 4.69 (1H, dd, J = 11.9, 7.6 Hz), 4.89 (1H, dd, J = 11.9, 7.6 Hz), 5.02 (2H, s), 5.07 (1H, d, J = 4.3 Hz), 5.37 (1H, t, J = 6.8 Hz), 5.46 (1H, dd, J = 9.1, 4.5 Hz), 6.09 (1H, d, J = 9.3 Hz), 6.88 (2H, d, J = 8.3 Hz), 7.24-7.39 (7H, m).
工程11、12 化合物75jの合成
化合物75h(2.64g、4.42mmol)のジクロロメタン(20mL)溶液に、トリフルオロ酢酸(10.2mL、133mmol)を-20℃で滴下した。-20℃で1時間攪拌した後、反応混合物を氷冷した炭酸水素ナトリウム水溶液とジクロロメタンの混合液に加えた。続いて、希塩酸をpH=2になるまで加えた後、ジクロロメタンで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムにより乾燥した。ろ過後、ろ液を減圧濃縮することにより化合物75iを得た。得られた化合物75iは精製せずにそのまま次の反応に用いた。
得られた化合物75i全量のジクロロメタン(26mL)溶液に、氷冷下でEDC塩酸塩(933mg、4.87mmol)を加えた。室温で1時間攪拌した後、反応混合物に水を加え、酢酸エチルで抽出した。有機層を、水、飽和食塩水で順に洗浄し、無水硫酸マグネシウムにより乾燥した。ろ過後、ろ液を減圧濃縮した。得られた粗生成物はシリカゲルカラムクロマトグラフィ(ヘキサン-酢酸エチル)により精製し、化合物75j(1.94g、収率96%)を白色フォームとして得た。
1H-NMR (CDCl3) δ: 1.20 (3H, d, J = 7.3 Hz), 1.71 (3H, s), 1.76 (3H, s), 2.53-2.88 (4H, m), 3.64 (2H, dd, J = 25.4, 16.0 Hz), 4.72-4.82 (2H, m), 4.99 (1H, d, J = 4.8 Hz), 5.36 (1H, t, J = 6.7 Hz), 5.63 (1H, dd, J = 8.8, 4.8 Hz), 6.06 (1H, d, J = 8.8 Hz), 7.27-7.39 (5H, m).
Figure JPOXMLDOC01-appb-C000028
工程13、14 化合物75lの合成
化合物75f-1(484mg、0.7mmol)のジメチルアセトアミド(1.6mL)溶液を-20℃まで冷却した後、トリエチルアミン(0.019mL、0.14mmol)、塩化メタンスルホニル(0.060mL、0.77mmol)を加えた。-20℃で30分間攪拌することで、溶液Aを得た。
五塩化リン(292mg、1.4mmol)のジクロロメタン(1.6mL)懸濁液を-78℃まで冷却した後、ピリジン(0.124mL、1.5mmol)を加え、次いで化合物75j(321mg、0.7mmol)のジクロロメタン(1.6mL)溶液を滴下した。-10℃で1時間攪拌した後、反応混合物を-78℃まで冷却し、冷却したエタノール(3.2mL)を加えた。-30℃で2時間攪拌した後、-50℃まで冷却し、水(0.63mL)を加えた。再び-30℃で30分間攪拌した後、反応混合物に炭酸水素ナトリウム水溶液を加え、ジクロロメタンで抽出した。有機層を無水硫酸マグネシウムにより乾燥した後、ろ過した。ろ液に酢酸エチルを加え、ジクロロメタン及びメタノールを減圧留去することにより化合物75kの酢酸エチル溶液を得た。
得られた化合物75kの酢酸エチル溶液に、氷冷下でピリジン(0.068mL、0.84mmol)、及び上記で得られた溶液Aを加えた。氷冷下で30分間攪拌した後、希塩酸を加え、酢酸エチルで抽出した。有機層を、水、炭酸水素ナトリウム水溶液、飽和食塩水で順に洗浄し、無水硫酸マグネシウムにより乾燥した。ろ過後、ろ液を減圧濃縮した。得られた粗生成物はシリカゲルカラムクロマトグラフィ(ヘキサン-酢酸エチル)により精製し、化合物75l(318mg、収率50%)を白色フォームとして得た。
1H-NMR (CDCl3) δ: 0.04 (3H, s), 0.05 (3H, s), 0.05 (3H, s), 0.06 (3H, s), 0.87 (9H, s), 0.88 (9H, s), 1.24 (3H, d, J = 7.2 Hz), 1.54 (9H, s), 1.72 (3H, s), 1.77 (3H, s), 2.62 (1H, dd, J = 14.4, 12.5 Hz), 2.84-2.94 (2H, m), 3.05-3.11 (1H, m), 3.81-3.89 (4H, m), 4.43-4.48 (1H, m), 4.75-4.86 (2H, m), 5.10 (1H, d, J = 4.8 Hz), 5.39 (1H, t, J = 7.5 Hz), 5.70 (1H, dd, J = 8.3, 4.8 Hz), 7.29 (1H, s), 7.62 (1H, d, J = 8.3 Hz), 8.12 (1H, s).
工程15 化合物75mの合成
化合物75l(318mg、0.35mmol)のジクロロメタン(1.6mL)溶液に、69%mCPBA(105mg、0.42mmol)のジクロロメタン(1.6mL)溶液を-40℃で滴下した。-40℃で20分間攪拌した後、15%チオ硫酸ナトリウム水溶液を加え、酢酸エチルで抽出した。有機層を炭酸水素ナトリウム水溶液、飽和食塩水で順に洗浄し、無水硫酸マグネシウムにより乾燥した。ろ過後、ろ液を減圧濃縮した。得られた粗生成物はシリカゲルカラムクロマトグラフィ(ヘキサン-酢酸エチル)により精製し、化合物75m(274mg、収率85%)を白色フォームとして得た。
1H-NMR (CDCl3) δ: 0.04 (3H, s), 0.04 (3H, s), 0.05 (6H, s), 0.87 (9H, s), 0.88 (9H, s), 1.23 (3H, d, J = 7.4 Hz), 1.54 (9H, s), 1.73 (3H, s), 1.77 (3H, s), 3.02-3.10 (1H, m), 3.39 (1H, dd, J = 14.4, 4.7 Hz), 3.77-3.79 (2H, m), 3.81-3.90 (4H, m), 4.37-4.43 (1H, m), 4.58 (1H, d, J = 5.0 Hz), 4.78-4.91 (2H, m), 5.38-5.42 (1H, m), 6.06 (1H, dd, J = 10.0, 5.0 Hz), 7.25 (1H, s), 7.65 (1H, d, J = 10.0 Hz), 8.24 (1H, s).
工程16 化合物I-075の合成
 化合物75m(274mg、0.3mmol)のジクロロメタン(2.7mL)溶液を-40℃まで冷却した後、アニソール(0.32mL、3.0mmol)、2mol/L 塩化アルミニウム/ニトロメタン溶液(1.5mL、3.0mmol)を順に加え、-30℃で30分間攪拌した。反応液にジイソプロピルエーテル、氷水、アセトニトリルを加えて攪拌し、不溶物を完全に溶解させた後、水層を分取した。有機層を再度水で抽出した後、すべての水層を合せHP20-SS樹脂を加えアセトニトリルを減圧留去し、2mol/L塩酸(1.0mL)を加えた。得られた混合液をODSカラムクロマトグラフィ(水-アセトニトリル)により精製した。所望の化合物を含む分画を集め、0.2mol/L水酸化ナトリウム水溶液pH=6まで加えた後、少量のドライアイスを加えた。得られた溶液を減圧濃縮した後、凍結乾燥することによりI-075(85mg、収率52%)を白色粉末として得た。
1H-NMR (D2O) δ: 1.19 (3H, d, J = 7.2 Hz), 2.69-2.78 (1H, m), 3.19-3.26 (1H, m), 3.54-3.64 (2H, m), 3.86 (4H, t, J = 5.1 Hz), 4.41-4.47 (1H, m), 4.99 (1H, d, J = 4.6 Hz), 5.89 (1H, d, J = 4.6 Hz), 7.05 (1H, s).
MS (m+1) = 532、保持時間:0.39min、(測定条件A)
元素分析:C18H20N5NaO10S2(H2O)3.7
計算値:C,34.86; H,4.45; N,11.29; Na,3.71; S,10.34 (%)
実測値:C,34.81; H,4.41; N,11.46; Na,3.65; S,10.18 (%)
(実施例36)
Synthesis of Compound I-075
Figure JPOXMLDOC01-appb-C000026

Step 1 Synthesis of Compound 75b-1 To a solution of glycerol (921 mg, 10 mmol) in tetrahydrofuran (9 mL) was added imidazole (1.70 g, 25 mmol), and then tert-butyldimethylsilyl chloride (3.17 g, 21 mmol) in tetrahydrofuran (3.17 g, 21 mmol). 18 mL) solution was added dropwise under ice cooling. After stirring overnight at room temperature, water was added and the mixture was extracted with ethyl acetate. The organic layer was washed successively with water and saturated brine, and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure. The obtained crude product was purified by silica gel column chromatography (hexane-ethyl acetate) to obtain compound 75b-1 (3.13 g, yield 98%) as a colorless oil.
1 H-NMR (CDCl 3 ) δ: 0.07 (12H, s), 0.90 (18H, s), 2.45 (1H, d, J = 5.1 Hz), 3.63 (1H, s), 3.64 (4H, s).
Step 2 Synthesis of Compound 75c-1 Compound 75b-1 (3.13 g, 9.8 mmol) in tetrahydrofuran (31 mL) was added to N-hydroxyphthalimide (1.91 g, 11.7 mmol), triphenylphosphine (3.07 g, 11.7 mmol) was added, and a 1.9 mol / L DIAD / toluene solution was added dropwise under ice cooling. After stirring at room temperature for 1 hour, the mixture was concentrated under reduced pressure, and methanol was added to the residue. The resulting solid was collected by filtration and dried under reduced pressure to obtain compound 75c-1 (3.07 g, yield 67%) as a white solid.
1 H-NMR (CDCl 3 ) δ: 0.00 (6H, s), 0.02 (6H, s), 0.82 (18H, s), 3.94 (4H, ddd, J = 14.5, 9.5, 3.2 Hz), 4.33-4.38 (1H, m), 7.72 (2H, dd, J = 5.5, 3.1 Hz), 7.82 (2H, dd, J = 5.5, 3.1 Hz).
Steps 3 and 4 Synthesis of Compound 75f-1 To a solution of Compound 75c-1 (3.07 g, 6.6 mmol) in dichloromethane (30 mL) was added methylhydrazine (0.383 mL, 7.2 mmol) at −30 ° C. After stirring for 30 minutes under ice cooling, the resulting insoluble material was removed by filtration, and Compound 75e-1 (1.79 g, 6.6 mmol) was added to the filtrate. After stirring at room temperature for 2 hours, the mixture was concentrated under reduced pressure, diluted hydrochloric acid was added to the residue, and the mixture was extracted with ethyl acetate. The organic layer was washed successively with water and saturated brine, and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure. After the residue was dissolved in diisopropyl ether, triethylamine (1.1 mL, 7.9 mmol) was added. The resulting solid was collected by filtration and dried under reduced pressure to obtain compound 75f-1 (1.79 g, yield 39%) as a white solid.
1 H-NMR (DMSO-D 6 ) δ: 0.04 (6H, s), 0.04 (6H, s), 0.86 (18H, s), 1.13 (9H, t, J = 6.5 Hz), 1.47 (9H, s ), 2.96 (6H, s), 3.70 (4H, d, J = 4.4 Hz), 3.96 (1H, t, J = 5.0 Hz), 7.10 (1H, s).
Figure JPOXMLDOC01-appb-C000027

Steps 5 and 6 Synthesis of Compound 75c To compound 75a (13.8 g, 104 mmol) was added trifluoroacetic anhydride (17.7 mL, 125 mmol) under ice cooling. The mixture was stirred for 3 hours under ice cooling and then concentrated under reduced pressure. Toluene was added to the residue, and the mixture was concentrated again under reduced pressure to obtain Compound 75b. The obtained compound 75b was directly used in the next reaction without purification.
To a solution of the total amount of Compound 75b in tetrahydrofuran (64 mL), p-methoxybenzyl alcohol (23.2 g, 168 mmol) and DMAP (1.37 g, 11.2 mmol) were added, and the mixture was heated to reflux for 6 hours. The reaction mixture was concentrated under reduced pressure, aqueous sodium hydrogen carbonate solution and ethyl acetate were added to the residue, and the aqueous layer was separated. 2 mol / L hydrochloric acid was added to the separated aqueous layer until pH = 2, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure to give a mixture of compound 75c and 75c-ii (21 g, yield 74%) as a colorless oil.
1 H-NMR (DMSO-D 6 ) δ: 1.09-1.12 (6H, m), 2.31-2.46 (2H, m), 2.53-2.63 (2H, m), 2.67-2.80 (2H, m), 3.75 ( 6H, s), 5.01 (4H, s), 6.92 (4H, d, J = 8.6 Hz), 7.29 (4H, d, J = 8.3 Hz).
Step 7 Synthesis of Compound 75d To a solution of a mixture of compound 75c and 75c-ii (21 g, 83 mmol) in dichloromethane (300 mL) was added triphenylphosphoranylideneacetonitrile (26.3 g, 87 mmol), 4-dimethylaminopyridine (1.02 g, 8.3 mmol) and EDC hydrochloride (17.5 g, 92 mmol) were added in order. After stirring at room temperature for 1.5 hours, the mixture was concentrated under reduced pressure, water was added to the residue, and the mixture was extracted with ethyl acetate. The organic layer was washed successively with water and saturated brine, and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure. The obtained crude product was purified by silica gel column chromatography (hexane-ethyl acetate) to obtain a mixture of compound 75d and 75d-ii (25.88 g, yield 58%) as a white foam.
1 H-NMR (CDCl 3 ) δ: 1.20 (3H, d, J = 6.8 Hz), 1.25 (3H, d, J = 7.1 Hz), 2.30 (1H, dd, J = 16.5, 4.7 Hz), 2.77- 2.85 (2H, m), 3.02 (1H, dd, J = 13.9, 7.1 Hz), 3.22 (1H, dd, J = 16.0, 7.7 Hz), 3.63-3.68 (1H, m), 3.78 (6H, s) , 4.98-5.06 (4H, m), 6.84 (4H, d, J = 8.1 Hz), 7.27 (4H, d, J = 14.9 Hz), 7.49-7.61 (30H, m).
Step 8 Synthesis of Compound 75e A solution of a mixture of compounds 75d and 75d-ii (25.9 g, 48 mmol) in dichloromethane (520 mL) was stirred at −78 ° C. for 1 hour while bubbling ozone gas. The system was replaced with nitrogen gas, dimethyl sulfide (10.7 mL, 145 mmol) was added, and the mixture was stirred at −78 ° C. for 5 minutes. Subsequently, 3-methyl-2-buten-1-ol (7.36 mL, 72.5 mmol) was added, and the mixture was stirred at −78 ° C. for 2 hours. The temperature of the reaction mixture was raised to about 0 ° C., 5% aqueous sodium carbonate solution was added, and the mixture was stirred at room temperature for 5 minutes. Dichloromethane was distilled off under reduced pressure, followed by extraction with ethyl acetate, and the organic layer was washed successively with water and saturated brine, and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure. The obtained crude product was purified by silica gel column chromatography (hexane-ethyl acetate) to obtain a mixture of compound 75e and 75e-ii (6.11 g, yield 36%) as a white foam.
1 H-NMR (CDCl 3 ) δ: 1.19 (3H, d, J = 7.1 Hz), 1.23 (3H, d, J = 7.1 Hz), 1.74 (6H, s), 1.77 (6H, s), 2.49 ( 1H, dd, J = 16.9, 5.3 Hz), 2.82-2.91 (2H, m), 3.02 (1H, dd, J = 13.4, 7.1 Hz), 3.31 (1H, dd, J = 18.6, 7.7 Hz), 3.63 -3.70 (1H, m), 3.81 (6H, s), 4.73-4.76 (4H, m), 5.04 (4H, d, J = 8.8 Hz), 5.39 (2H, s), 6.88 (4H, d, J = 8.1 Hz), 7.26 (4H, br s).
Step 9, 10 Synthesis of Compound 75h To a solution of a mixture of Compound 75e and 75e-ii (6.11 g, 17.5 mmol) in dichloromethane (30 mL) was added N, N, N′N′-tetramethylmethanediamine under ice-cooling. (7.17 mL, 52.6 mmol) was added, and acetic anhydride (6.30 mL, 66.6 mmol) and acetic acid (5.32 mL, 93 mmol) were added dropwise in this order. After stirring overnight at room temperature, ice water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed successively with water and saturated brine, dried over anhydrous magnesium sulfate, and filtered to obtain an ethyl acetate solution of a mixture of compounds 75f and 75e-ii.
To an ethyl acetate solution of a mixture of the obtained compounds 75f and 75e-ii, 75 g (2.49 g, 10.5 mmol) of compound and hexamethylphosphoric triamide (9.16 mL, 52.6 mmol) were added. After stirring at room temperature overnight, water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed successively with water and saturated brine, and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure. The obtained crude product was purified by silica gel column chromatography (hexane-ethyl acetate) to obtain Compound 75h (2.64 g, yield 42%) as a white foam.
1 H-NMR (CDCl 3 ) δ: 1.13 (3H, d, J = 6.1 Hz), 1.70 (3H, s), 1.76 (3H, s), 2.50-2.54 (2H, m), 2.68 (1H, d , J = 14.7 Hz), 3.12 (1H, dd, J = 14.0, 11.5 Hz), 3.61 (2H, dd, J = 25.0, 15.9 Hz), 3.81 (3H, s), 4.04 (1H, s), 4.69 (1H, dd, J = 11.9, 7.6 Hz), 4.89 (1H, dd, J = 11.9, 7.6 Hz), 5.02 (2H, s), 5.07 (1H, d, J = 4.3 Hz), 5.37 (1H, t, J = 6.8 Hz), 5.46 (1H, dd, J = 9.1, 4.5 Hz), 6.09 (1H, d, J = 9.3 Hz), 6.88 (2H, d, J = 8.3 Hz), 7.24-7.39 ( 7H, m).
Steps 11 and 12 Trifluoroacetic acid (10.2 mL, 133 mmol) was added dropwise at −20 ° C. to a dichloromethane (20 mL) solution of compound 75h (2.64 g, 4.42 mmol) of compound 75j. After stirring at −20 ° C. for 1 hour, the reaction mixture was added to an ice-cooled mixture of aqueous sodium bicarbonate and dichloromethane. Subsequently, dilute hydrochloric acid was added until pH = 2, followed by extraction with dichloromethane. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure to obtain Compound 75i. The obtained compound 75i was used in the next reaction without purification.
To a solution of the total amount of the obtained compound 75i in dichloromethane (26 mL), EDC hydrochloride (933 mg, 4.87 mmol) was added under ice cooling. After stirring at room temperature for 1 hour, water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed successively with water and saturated brine, and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure. The resulting crude product was purified by silica gel column chromatography (hexane-ethyl acetate) to obtain Compound 75j (1.94 g, yield 96%) as a white foam.
1 H-NMR (CDCl 3 ) δ: 1.20 (3H, d, J = 7.3 Hz), 1.71 (3H, s), 1.76 (3H, s), 2.53-2.88 (4H, m), 3.64 (2H, dd , J = 25.4, 16.0 Hz), 4.72-4.82 (2H, m), 4.99 (1H, d, J = 4.8 Hz), 5.36 (1H, t, J = 6.7 Hz), 5.63 (1H, dd, J = 8.8, 4.8 Hz), 6.06 (1H, d, J = 8.8 Hz), 7.27-7.39 (5H, m).
Figure JPOXMLDOC01-appb-C000028
Steps 13 and 14 A solution of compound 75l in 75 g-1 (484 mg, 0.7 mmol) in dimethylacetamide (1.6 mL) was cooled to −20 ° C., and then triethylamine (0.019 mL, 0.14 mmol), methane chloride Sulfonyl (0.060 mL, 0.77 mmol) was added. Solution A was obtained by stirring at −20 ° C. for 30 minutes.
After cooling a suspension of phosphorus pentachloride (292 mg, 1.4 mmol) in dichloromethane (1.6 mL) to −78 ° C., pyridine (0.124 mL, 1.5 mmol) was added, followed by compound 75j (321 mg, 0. 7 mmol) in dichloromethane (1.6 mL) was added dropwise. After stirring at −10 ° C. for 1 hour, the reaction mixture was cooled to −78 ° C. and cooled ethanol (3.2 mL) was added. After stirring at −30 ° C. for 2 hours, the mixture was cooled to −50 ° C. and water (0.63 mL) was added. After stirring again at −30 ° C. for 30 minutes, an aqueous sodium hydrogen carbonate solution was added to the reaction mixture, and the mixture was extracted with dichloromethane. The organic layer was dried over anhydrous magnesium sulfate and then filtered. Ethyl acetate was added to the filtrate, and dichloromethane and methanol were distilled off under reduced pressure to obtain an ethyl acetate solution of compound 75k.
To an ethyl acetate solution of the obtained compound 75k, pyridine (0.068 mL, 0.84 mmol) and the solution A obtained above were added under ice cooling. After stirring for 30 minutes under ice-cooling, diluted hydrochloric acid was added, and the mixture was extracted with ethyl acetate. The organic layer was washed in turn with water, aqueous sodium hydrogen carbonate solution and saturated brine, and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure. The resulting crude product was purified by silica gel column chromatography (hexane-ethyl acetate) to obtain Compound 75l (318 mg, yield 50%) as a white foam.
1 H-NMR (CDCl 3 ) δ: 0.04 (3H, s), 0.05 (3H, s), 0.05 (3H, s), 0.06 (3H, s), 0.87 (9H, s), 0.88 (9H, s ), 1.24 (3H, d, J = 7.2 Hz), 1.54 (9H, s), 1.72 (3H, s), 1.77 (3H, s), 2.62 (1H, dd, J = 14.4, 12.5 Hz), 2.84 -2.94 (2H, m), 3.05-3.11 (1H, m), 3.81-3.89 (4H, m), 4.43-4.48 (1H, m), 4.75-4.86 (2H, m), 5.10 (1H, d, J = 4.8 Hz), 5.39 (1H, t, J = 7.5 Hz), 5.70 (1H, dd, J = 8.3, 4.8 Hz), 7.29 (1H, s), 7.62 (1H, d, J = 8.3 Hz) , 8.12 (1H, s).
Step 15 To a solution of compound 75m in synthetic compound 75l (318 mg, 0.35 mmol) in dichloromethane (1.6 mL), 69% mCPBA (105 mg, 0.42 mmol) in dichloromethane (1.6 mL) was added dropwise at −40 ° C. . After stirring at −40 ° C. for 20 minutes, 15% aqueous sodium thiosulfate solution was added, and the mixture was extracted with ethyl acetate. The organic layer was washed in turn with an aqueous sodium bicarbonate solution and saturated brine, and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure. The resulting crude product was purified by silica gel column chromatography (hexane-ethyl acetate) to obtain Compound 75m (274 mg, yield 85%) as a white foam.
1 H-NMR (CDCl 3 ) δ: 0.04 (3H, s), 0.04 (3H, s), 0.05 (6H, s), 0.87 (9H, s), 0.88 (9H, s), 1.23 (3H, d , J = 7.4 Hz), 1.54 (9H, s), 1.73 (3H, s), 1.77 (3H, s), 3.02-3.10 (1H, m), 3.39 (1H, dd, J = 14.4, 4.7 Hz) , 3.77-3.79 (2H, m), 3.81-3.90 (4H, m), 4.37-4.43 (1H, m), 4.58 (1H, d, J = 5.0 Hz), 4.78-4.91 (2H, m), 5.38 -5.42 (1H, m), 6.06 (1H, dd, J = 10.0, 5.0 Hz), 7.25 (1H, s), 7.65 (1H, d, J = 10.0 Hz), 8.24 (1H, s).
Step 16 Synthesis of Compound I-075 After cooling a solution of Compound 75m (274 mg, 0.3 mmol) in dichloromethane (2.7 mL) to −40 ° C., anisole (0.32 mL, 3.0 mmol), 2 mol / L aluminum chloride / Nitromethane solution (1.5 mL, 3.0 mmol) was sequentially added, and the mixture was stirred at −30 ° C. for 30 minutes. Diisopropyl ether, ice water, and acetonitrile were added to the reaction solution and stirred to completely dissolve insoluble matters, and then the aqueous layer was separated. After the organic layer was extracted again with water, all aqueous layers were combined, HP20-SS resin was added, acetonitrile was distilled off under reduced pressure, and 2 mol / L hydrochloric acid (1.0 mL) was added. The resulting mixture was purified by ODS column chromatography (water-acetonitrile). Fractions containing the desired compound were collected and added to a 0.2 mol / L aqueous sodium hydroxide solution pH = 6, followed by a small amount of dry ice. The resulting solution was concentrated under reduced pressure and lyophilized to give I-075 (85 mg, 52% yield) as a white powder.
1 H-NMR (D 2 O) δ: 1.19 (3H, d, J = 7.2 Hz), 2.69-2.78 (1H, m), 3.19-3.26 (1H, m), 3.54-3.64 (2H, m), 3.86 (4H, t, J = 5.1 Hz), 4.41-4.47 (1H, m), 4.99 (1H, d, J = 4.6 Hz), 5.89 (1H, d, J = 4.6 Hz), 7.05 (1H, s ).
MS (m + 1) = 532, Retention time: 0.39 min, (Measurement condition A)
Elemental analysis: C18H20N5NaO10S2 (H2O) 3.7
Calculated values: C, 34.86; H, 4.45; N, 11.29; Na, 3.71; S, 10.34 (%)
Found: C, 34.81; H, 4.41; N, 11.46; Na, 3.65; S, 10.18 (%)
(Example 36)
化合物I-076の合成
Figure JPOXMLDOC01-appb-C000029

工程1 化合物76bの合成
化合物75k(238mg、0.7mmol)と化合物76a(459mg、0.7mmol)を用いて実施例35の工程14と同様の方法により、化合物76b(446mg、収率65%)を得た。
1H-NMR (CDCl3) δ: 0.01 (3H, s), 0.02 (3H, s), 0.83 (9H, s), 1.25 (3H, d, J = 7.0 Hz), 1.53 (9H, s), 1.70 (3H, s), 1.75 (2H, s), 2.53 (1H, dd, J = 14.6, 11.3 Hz), 2.81-2.89 (2H, m), 3.05-3.11 (1H, m), 3.75 (1H, s), 4.10-4.19 (3H, m), 4.67-4.82 (2H, m), 5.06 (1H, d, J = 4.8 Hz), 5.13 (1H, dd, J = 6.0, 3.5 Hz), 5.37 (1H, t, J = 7.5 Hz), 5.57 (1H, dd, J = 7.3, 4.8 Hz), 6.96 (1H, s), 7.28-7.31 (11H, m), 8.10 (1H, s), 8.19 (1H, d, J = 7.3 Hz).
工程2 化合物76cの合成
化合物76b(446mg、0.46mmol)を用いて実施例35の工程15と同様の方法により、化合物76c(392mg、収率87%)を得た。
1H-NMR (CDCl3) δ: 0.01 (3H, s), 0.02 (3H, s), 0.82 (9H, s), 1.21 (3H, d, J = 7.3 Hz), 1.54 (9H, s), 1.71 (3H, s), 1.75 (3H, s), 3.05 (1H, t, J = 7.2 Hz), 3.29 (1H, dd, J = 14.4, 4.8 Hz), 3.75-3.78 (3H, m), 4.13-4.21 (3H, m), 4.47 (1H, d, J = 5.0 Hz), 4.76-4.88 (2H, m), 5.04 (1H, t, J = 5.1 Hz), 5.39 (1H, s), 5.97 (1H, dd, J = 9.4, 5.0 Hz), 6.97 (1H, s), 7.21 (1H, s), 7.28-7.36 (10H, m), 7.90 (1H, d, J = 9.4 Hz), 8.18 (1H, s).
工程3 化合物I-076の合成
化合物76c(392mg、0.39mmol)を用いて実施例35の工程16と同様の方法により、化合物I-076(110mg、収率47%)を得た。
1H-NMR (D2O) δ: 1.19 (3H, d, J = 7.2 Hz), 2.70-2.77 (1H, m), 3.18-3.26 (1H, m), 3.55-3.65 (2H, m), 3.94-4.03 (2H, m), 4.74 (1H, dd, J = 6.5, 3.5 Hz), 5.00 (1H, d, J = 4.8 Hz), 5.90 (1H, d, J = 4.8 Hz), 7.06 (1H, s).
MS (m+1) = 546、保持時間:0.39min、(測定条件A)
元素分析:C18H17N5Na2O11S2(H2O)6.2
計算値:C,30.83; H,4.23; N,9.99; Na,6.56; S,9.14 (%)
実測値:C,30.95; H,4.45; N,9.99; Na,6.52; S,9.05 (%)
(実施例37)
Synthesis of Compound I-076
Figure JPOXMLDOC01-appb-C000029

Step 1 Synthesis of Compound 76b Compound 76b (446 mg, 65% yield) was prepared in the same manner as in Step 14 of Example 35 using Compound 75k (238 mg, 0.7 mmol) and Compound 76a (459 mg, 0.7 mmol). Got.
1 H-NMR (CDCl 3 ) δ: 0.01 (3H, s), 0.02 (3H, s), 0.83 (9H, s), 1.25 (3H, d, J = 7.0 Hz), 1.53 (9H, s), 1.70 (3H, s), 1.75 (2H, s), 2.53 (1H, dd, J = 14.6, 11.3 Hz), 2.81-2.89 (2H, m), 3.05-3.11 (1H, m), 3.75 (1H, s), 4.10-4.19 (3H, m), 4.67-4.82 (2H, m), 5.06 (1H, d, J = 4.8 Hz), 5.13 (1H, dd, J = 6.0, 3.5 Hz), 5.37 (1H , t, J = 7.5 Hz), 5.57 (1H, dd, J = 7.3, 4.8 Hz), 6.96 (1H, s), 7.28-7.31 (11H, m), 8.10 (1H, s), 8.19 (1H, d, J = 7.3 Hz).
Step 2 Synthesis of Compound 76c Compound 76c (392 mg, yield 87%) was obtained in the same manner as in Step 15 of Example 35 using Compound 76b (446 mg, 0.46 mmol).
1 H-NMR (CDCl 3 ) δ: 0.01 (3H, s), 0.02 (3H, s), 0.82 (9H, s), 1.21 (3H, d, J = 7.3 Hz), 1.54 (9H, s), 1.71 (3H, s), 1.75 (3H, s), 3.05 (1H, t, J = 7.2 Hz), 3.29 (1H, dd, J = 14.4, 4.8 Hz), 3.75-3.78 (3H, m), 4.13 -4.21 (3H, m), 4.47 (1H, d, J = 5.0 Hz), 4.76-4.88 (2H, m), 5.04 (1H, t, J = 5.1 Hz), 5.39 (1H, s), 5.97 ( 1H, dd, J = 9.4, 5.0 Hz), 6.97 (1H, s), 7.21 (1H, s), 7.28-7.36 (10H, m), 7.90 (1H, d, J = 9.4 Hz), 8.18 (1H , s).
Step 3 Synthesis of Compound I-076 Compound I-076 (110 mg, 47% yield) was obtained in the same manner as in Step 16 of Example 35 using Compound 76c (392 mg, 0.39 mmol).
1 H-NMR (D 2 O) δ: 1.19 (3H, d, J = 7.2 Hz), 2.70-2.77 (1H, m), 3.18-3.26 (1H, m), 3.55-3.65 (2H, m), 3.94-4.03 (2H, m), 4.74 (1H, dd, J = 6.5, 3.5 Hz), 5.00 (1H, d, J = 4.8 Hz), 5.90 (1H, d, J = 4.8 Hz), 7.06 (1H , s).
MS (m + 1) = 546, retention time: 0.39 min, (measurement condition A)
Elemental analysis: C18H17N5Na2O11S2 (H2O) 6.2
Calculated value: C, 30.83; H, 4.23; N, 9.99; Na, 6.56; S, 9.14 (%)
Found: C, 30.95; H, 4.45; N, 9.99; Na, 6.52; S, 9.05 (%)
(Example 37)
化合物I-077の合成
Figure JPOXMLDOC01-appb-C000030

工程1、2 化合物77cの合成
化合物75k(340mg、1.0mmol)のジクロロメタン(3.4mL)溶液に、氷冷下で化合物77a(364mg、1.1mmol)、EDC塩酸塩(230mg、1.2mmol)を加えた。氷冷下で1時間攪拌した後、反応混合物に希塩酸水を加え、酢酸エチルで抽出した。有機層を、水、炭酸水素ナトリウム水溶液、飽和食塩水で順に洗浄し、無水硫酸マグネシウムにより乾燥した。ろ過後、ろ液を減圧濃縮することにより、化合物77bを橙色フォームとして得た。得られた化合物77bは精製せずにそのまま次の反応に用いた。
得られた化合物77b全量を用いて実施例35の工程15と同様の方法により、化合物77c(401mg、収率60%)を得た。
1H-NMR (CDCl3) δ: 1.23 (3H, d, J = 7.3 Hz), 1.54 (9H, s), 1.73 (3H, s), 1.77 (3H, s), 3.01-3.08 (1H, m), 3.48 (1H, dd, J = 14.5, 4.7 Hz), 3.75-3.94 (5H, m), 4.36-4.47 (2H, m), 4.69 (1H, d, J = 4.8 Hz), 4.78-4.91 (2H, m), 3.70-3.94 (1H, m), 6.02 (1H, dd, J = 9.6, 4.8 Hz), 7.34 (1H, s), 7.91 (1H, d, J = 9.5 Hz), 8.29 (1H, s).
工程3 化合物I-077の合成
化合物77c(401mg、0.60mmol)を用いて実施例35の工程16と同様の方法により、化合物I-077(127mg、収率41%)を得た。
1H-NMR (D2O) δ: 1.19 (3H, d, J = 7.1 Hz), 2.73 (1H, t, J = 13.0 Hz), 3.19-3.26 (1H, m), 3.54-3.63 (2H, m), 3.90 (2H, t, J = 4.3 Hz), 4.35 (2H, t, J = 4.0 Hz), 4.98 (1H, d, J = 4.8 Hz), 5.88 (1H, d, J = 4.5 Hz), 7.04 (1H, s).
MS (m+1) = 502、保持時間:0.48min、(測定条件A)
(実施例38)
Synthesis of Compound I-077
Figure JPOXMLDOC01-appb-C000030

Step 1, Synthesis of Compound 77c To a solution of Compound 75k (340 mg, 1.0 mmol) in dichloromethane (3.4 mL), Compound 77a (364 mg, 1.1 mmol), EDC hydrochloride (230 mg, 1.2 mmol) were cooled with ice. ) Was added. After stirring for 1 hour under ice-cooling, diluted hydrochloric acid was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed in turn with water, aqueous sodium hydrogen carbonate solution and saturated brine, and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure to obtain Compound 77b as an orange foam. The obtained compound 77b was directly used in the next reaction without purification.
Compound 77c (401 mg, 60% yield) was obtained in the same manner as in Step 15 of Example 35 using the obtained total amount of compound 77b.
1 H-NMR (CDCl 3 ) δ: 1.23 (3H, d, J = 7.3 Hz), 1.54 (9H, s), 1.73 (3H, s), 1.77 (3H, s), 3.01-3.08 (1H, m ), 3.48 (1H, dd, J = 14.5, 4.7 Hz), 3.75-3.94 (5H, m), 4.36-4.47 (2H, m), 4.69 (1H, d, J = 4.8 Hz), 4.78-4.91 ( 2H, m), 3.70-3.94 (1H, m), 6.02 (1H, dd, J = 9.6, 4.8 Hz), 7.34 (1H, s), 7.91 (1H, d, J = 9.5 Hz), 8.29 (1H , s).
Step 3 Synthesis of Compound I-077 Compound I-077 (127 mg, 41% yield) was obtained in the same manner as in Step 16 of Example 35 using Compound 77c (401 mg, 0.60 mmol).
1 H-NMR (D 2 O) δ: 1.19 (3H, d, J = 7.1 Hz), 2.73 (1H, t, J = 13.0 Hz), 3.19-3.26 (1H, m), 3.54-3.63 (2H, m), 3.90 (2H, t, J = 4.3 Hz), 4.35 (2H, t, J = 4.0 Hz), 4.98 (1H, d, J = 4.8 Hz), 5.88 (1H, d, J = 4.5 Hz) , 7.04 (1H, s).
MS (m + 1) = 502, retention time: 0.48 min, (measurement condition A)
(Example 38)
化合物I-078の合成
Figure JPOXMLDOC01-appb-C000031

工程1、2 化合物78cの合成
化合物75k(340mg、1.0mmol)と化合物78a(631mg、1.2mmol)を用いて実施例35の工程14と同様の方法により、化合物78bを得た。得られた化合物78bは精製せずにそのまま次の反応に用いた。
得られた化合物78b全量を用いて実施例35の工程15と同様の方法により、化合物78c(578mg、収率67%)を得た。
1H-NMR (CDCl3) δ: 1.21 (3H, d, J = 7.3 Hz), 1.54 (9H, s), 1.63 (3H, d, J = 7.0 Hz), 1.71 (3H, s), 1.75 (3H, s), 3.01-3.08 (1H, m), 3.31 (1H, dd, J = 14.4, 4.7 Hz), 3.76-3.78 (2H, m), 4.42 (1H, d, J = 5.0 Hz), 4.76-4.89 (2H, m), 5.05-5.09 (1H, m), 5.38 (1H, t, J = 7.3 Hz), 6.05 (1H, dd, J = 9.9, 5.0 Hz), 6.94 (1H, s), 7.22 (1H, s), 7.28-7.35 (10H, m), 7.78 (1H, d, J = 9.9 Hz), 8.14 (1H, s). 
工程3 化合物I-078の合成
化合物78c(578mg、0.67mmol)を用いて実施例35の工程16と同様の方法により、化合物I-078(188mg、収率49%)を得た。
1H-NMR (D2O) δ: 1.18 (3H, d, J = 7.2 Hz), 1.48 (3H, d, J = 7.0 Hz), 2.68-2.76 (1H, m), 3.18-3.25 (1H, m), 3.54-3.62 (2H, m), 4.68 (1H, q, J = 7.0 Hz), 4.99 (1H, d, J = 4.9 Hz), 5.91 (1H, d, J = 4.9 Hz), 7.04 (1H, s).
MS (m+1) = 530、保持時間:0.53min、(測定条件A)
(実施例39)
Synthesis of Compound I-078
Figure JPOXMLDOC01-appb-C000031

Step 1, Synthesis of Compound 78c Compound 78b was obtained in the same manner as in Step 14 of Example 35 using Compound 75k (340 mg, 1.0 mmol) and Compound 78a (631 mg, 1.2 mmol). The obtained compound 78b was directly used in the next reaction without purification.
Compound 78c (578 mg, 67% yield) was obtained in the same manner as in Step 15 of Example 35 using the total amount of compound 78b obtained.
1 H-NMR (CDCl 3) δ: 1.21 (3H, d, J = 7.3 Hz), 1.54 (9H, s), 1.63 (3H, d, J = 7.0 Hz), 1.71 (3H, s), 1.75 ( 3H, s), 3.01-3.08 (1H, m), 3.31 (1H, dd, J = 14.4, 4.7 Hz), 3.76-3.78 (2H, m), 4.42 (1H, d, J = 5.0 Hz), 4.76 -4.89 (2H, m), 5.05-5.09 (1H, m), 5.38 (1H, t, J = 7.3 Hz), 6.05 (1H, dd, J = 9.9, 5.0 Hz), 6.94 (1H, s), 7.22 (1H, s), 7.28-7.35 (10H, m), 7.78 (1H, d, J = 9.9 Hz), 8.14 (1H, s).
Step 3 Synthesis of Compound I-078 Compound I-078 (188 mg, 49% yield) was obtained in the same manner as in Step 16 of Example 35 using Compound 78c (578 mg, 0.67 mmol).
1 H-NMR (D 2 O) δ: 1.18 (3H, d, J = 7.2 Hz), 1.48 (3H, d, J = 7.0 Hz), 2.68-2.76 (1H, m), 3.18-3.25 (1H, m), 3.54-3.62 (2H, m), 4.68 (1H, q, J = 7.0 Hz), 4.99 (1H, d, J = 4.9 Hz), 5.91 (1H, d, J = 4.9 Hz), 7.04 ( 1H, s).
MS (m + 1) = 530, retention time: 0.53 min, (measurement condition A)
(Example 39)
化合物I-079の合成
Figure JPOXMLDOC01-appb-C000032

工程1、2 化合物79cの合成
化合物75k(340mg、1.0mmol)と化合物79a(631mg、1.2mmol)を用いて実施例35の工程14と同様の方法により、化合物79bを得た。得られた化合物79bは精製せずにそのまま次の反応に用いた。
得られた化合物79b全量を用いて実施例35の工程15と同様の方法により、化合物79c(695mg、収率80%)を得た。
1H-NMR (CDCl3) δ: 1.21 (3H, d, J = 7.2 Hz), 1.54 (9H, s), 1.62 (3H, d, J = 7.3 Hz), 1.72 (3H, s), 1.75 (3H, s), 3.01-3.09 (1H, m), 3.30 (1H, dd, J = 14.5, 4.8 Hz), 3.74-3.77 (2H, m), 4.54 (1H, d, J = 5.0 Hz), 4.79-4.90 (2H, m), 5.04 (1H, q, J = 7.0 Hz), 5.39 (1H, t, J = 7.4 Hz), 6.03 (1H, dd, J = 10.0, 5.0 Hz), 6.94 (1H, s), 7.16 (1H, s), 7.27-7.32 (10H, m), 7.89 (1H, d, J = 10.0 Hz), 8.18 (1H, s).
工程3 化合物I-079の合成
化合物79c(695mg、0.80mmol)を用いて実施例35の工程16と同様の方法により、化合物I-079(214mg、収率46%)を得た。
1H-NMR (D2O) δ: 1.18 (3H, d, J = 7.3 Hz), 1.47 (3H, d, J = 7.0 Hz), 2.68-2.76 (1H, m), 3.18-3.25 (1H, m), 3.54-3.62 (2H, m), 4.63 (1H, q, J = 7.0 Hz), 4.98 (1H, d, J = 4.8 Hz), 5.88 (1H, d, J = 4.8 Hz), 7.05 (1H, s).
MS (m+1) = 530、保持時間:0.62min、(測定条件A)
元素分析:C18H17N5Na1.8O10S2(H2O)3.2
計算値:C,34.51; H,3.76; N,11.18; Na,6.61; S,10.23 (%)
実測値:C,34.50; H,3.80; N,11.42; Na,6.66; S,10.00 (%)
(実施例40)
Synthesis of Compound I-079
Figure JPOXMLDOC01-appb-C000032

Step 1, Synthesis of Compound 79c Compound 79b was obtained in the same manner as in Step 14 of Example 35 using Compound 75k (340 mg, 1.0 mmol) and Compound 79a (631 mg, 1.2 mmol). The obtained compound 79b was directly used in the next reaction without purification.
Compound 79c (695 mg, yield 80%) was obtained by the same method as in Step 15 of Example 35 using the obtained entire amount of Compound 79b.
1 H-NMR (CDCl 3 ) δ: 1.21 (3H, d, J = 7.2 Hz), 1.54 (9H, s), 1.62 (3H, d, J = 7.3 Hz), 1.72 (3H, s), 1.75 ( 3H, s), 3.01-3.09 (1H, m), 3.30 (1H, dd, J = 14.5, 4.8 Hz), 3.74-3.77 (2H, m), 4.54 (1H, d, J = 5.0 Hz), 4.79 -4.90 (2H, m), 5.04 (1H, q, J = 7.0 Hz), 5.39 (1H, t, J = 7.4 Hz), 6.03 (1H, dd, J = 10.0, 5.0 Hz), 6.94 (1H, s), 7.16 (1H, s), 7.27-7.32 (10H, m), 7.89 (1H, d, J = 10.0 Hz), 8.18 (1H, s).
Step 3 Synthesis of Compound I-079 Compound I-079 (214 mg, 46% yield) was obtained in the same manner as in Step 16 of Example 35 using Compound 79c (695 mg, 0.80 mmol).
1 H-NMR (D 2 O) δ: 1.18 (3H, d, J = 7.3 Hz), 1.47 (3H, d, J = 7.0 Hz), 2.68-2.76 (1H, m), 3.18-3.25 (1H, m), 3.54-3.62 (2H, m), 4.63 (1H, q, J = 7.0 Hz), 4.98 (1H, d, J = 4.8 Hz), 5.88 (1H, d, J = 4.8 Hz), 7.05 ( 1H, s).
MS (m + 1) = 530, retention time: 0.62 min, (measurement condition A)
Elemental analysis: C18H17N5Na1.8O10S2 (H2O) 3.2
Calculated values: C, 34.51; H, 3.76; N, 11.18; Na, 6.61; S, 10.23 (%)
Found: C, 34.50; H, 3.80; N, 11.42; Na, 6.66; S, 10.00 (%)
(Example 40)
化合物I-080の合成
Figure JPOXMLDOC01-appb-C000033

工程1 化合物80bの合成
メチルアミン(33%エタノール溶液、1.43mL、11.51mmol)のアセトン(44mL)溶液に、氷冷下でN,N-ジメチルアニリン(1.46mL、11.51mmol)を加え、化合物80a(1mL、11.51mmol)を滴下し、得られた溶液を室温で1時間撹拌した後、減圧乾燥し、10%クエン酸水溶液を加え、酢酸エチルで抽出した。得られた有機層を8.4%炭酸水素ナトリウム水溶液、飽和食塩水で順に洗浄し、無水硫酸マグネシウムにて乾燥し、無機物を濾過により除き、減圧濃縮して、化合物80b(409.5mg、23.4%)を黄色オイルの粗生成物として得た。
MS(M+1)=151、RT=0.41min、測定条件A

工程2 化合物80cの合成
ヒドロキシフタルイミド(440mg、2.69mmol)のアセトニトリル(3.3mL)溶液に、氷冷下でトリエチルアミン(373μL、2.69mmol)、化合物80b(409.5mg、2.69mmol)を加え、得られた溶液を室温で4時間撹拌した後、無機物を濾過して、減圧濃縮した。10%炭酸カリウム水溶液を加え、酢酸エチルで抽出する。得られた有機層を10%炭酸カリウム水溶液、水、飽和食塩水で順に洗浄し、無水硫酸マグネシウムにて乾燥し、無機物を濾過により除き、減圧濃縮した。得られた粗生成物はシリカゲルカラムクロマトグラフィー(ヘキサンー酢酸エチル)により精製し、化合物80c(160.5mg、25.4%)を白色固体として得た。
1H-NMR (CDCl3) δ: 2.93 (3H, d, J = 4.9 Hz), 4.72 (2H, s), 7.74-7.77 (1H, m), 7.80-7.83 (2H, m), 7.84-7.90 (2H, m). 

工程3 化合物80dの合成
実施例34の工程4と同様にして、化合物80cおよび化合物74fを用いて、化合物80d(235.9mg、96.1%)を黄色オイルの粗生成物として得た。
MS(M+1)=359、RT=1.02min、測定条件A

工程4 化合物80eの合成
実施例34の工程5と同様にして、化合物80dおよび化合物74cを用いて、化合物80e(334.9mg、79.9%)を白色フォームとして得た。
1H-NMR (CDCl3) δ: 1.51 (9H, s), 2.47-2.70 (3H, m), 2.73 (3H, d, J = 4.8 Hz), 3.12-3.24 (2H, m), 4.63 (1H, d, J = 15.9 Hz), 4.95 (1H, d, J = 15.9 Hz), 5.17 (1H, d, J = 4.5 Hz), 5.69 (1H, dd, J = 8.0, 4.6 Hz), 6.64-6.65 (1H, br m), 6.91 (1H, s), 7.03 (1H, s), 7.09-7.17 (3H, m), 7.26-7.35 (7H, m), 8.65 (1H, s), 9.23 (1H, s).

工程5 化合物80fの合成
実施例34の工程6と同様にして、化合物80eを用いて、化合物80f(332.2mg、97.2%)を白色フォームの粗生成物として得た。
MS(M+1)=781、RT=2.19min、測定条件A

工程6 化合物I-080の合成
実施例34の工程7と同様にして、化合物80fを用いて、化合物I-080(155.8mg、71.2%)を白色固体として得た。
1H-NMR (D2O) δ: 2.56 (1H, d, J = 18.3 Hz), 2.80 (3H, s), 2.83 (1H, d, J = 13.9 Hz), 3.06 (1H, dd, J = 18.3, 7.7 Hz), 3.51-3.57 (1H, m), 3.62 (1H, dd, J = 14.6, 5.3 Hz), 4.72-4.74 (2H, m), 5.00 (1H, d, J = 4.6 Hz), 5.87 (1H, d, J = 4.6 Hz), 7.12 (1H, s). 
MS(M+1)=515.06、RT=0.41min、測定条件A
(実施例43)
Synthesis of Compound I-080
Figure JPOXMLDOC01-appb-C000033

Step 1 Synthesis of Compound 80b To a solution of methylamine (33% ethanol solution, 1.43 mL, 11.51 mmol) in acetone (44 mL) was added N, N-dimethylaniline (1.46 mL, 11.51 mmol) under ice-cooling. In addition, Compound 80a (1 mL, 11.51 mmol) was added dropwise, and the resulting solution was stirred at room temperature for 1 hour, dried under reduced pressure, added with 10% aqueous citric acid solution, and extracted with ethyl acetate. The obtained organic layer was washed successively with an 8.4% aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, the inorganic matter was removed by filtration, and the filtrate was concentrated under reduced pressure to give compound 80b (409.5 mg, 23 .4%) was obtained as a crude product of a yellow oil.
MS (M + 1) = 151, RT = 0.41 min, measurement condition A

Step 2 Synthesis of Compound 80c To a solution of hydroxyphthalimide (440 mg, 2.69 mmol) in acetonitrile (3.3 mL), triethylamine (373 μL, 2.69 mmol) and compound 80b (409.5 mg, 2.69 mmol) were added under ice cooling. In addition, the resulting solution was stirred at room temperature for 4 hours, and then the inorganic substance was filtered and concentrated under reduced pressure. Add 10% aqueous potassium carbonate solution and extract with ethyl acetate. The obtained organic layer was washed successively with 10% aqueous potassium carbonate solution, water and saturated brine, dried over anhydrous magnesium sulfate, inorganic substances were removed by filtration, and the filtrate was concentrated under reduced pressure. The obtained crude product was purified by silica gel column chromatography (hexane-ethyl acetate) to obtain Compound 80c (160.5 mg, 25.4%) as a white solid.
1 H-NMR (CDCl 3 ) δ: 2.93 (3H, d, J = 4.9 Hz), 4.72 (2H, s), 7.74-7.77 (1H, m), 7.80-7.83 (2H, m), 7.84-7.90 (2H, m).

Step 3 Synthesis of Compound 80d In the same manner as in Step 4 of Example 34, Compound 80d and Compound 74f were used to obtain Compound 80d (235.9 mg, 96.1%) as a crude product of yellow oil.
MS (M + 1) = 359, RT = 1.02 min, measurement condition A

Step 4 Synthesis of Compound 80e In the same manner as in Step 5 of Example 34, Compound 80e (334.9 mg, 79.9%) was obtained as a white foam using Compound 80d and Compound 74c.
1 H-NMR (CDCl 3 ) δ: 1.51 (9H, s), 2.47-2.70 (3H, m), 2.73 (3H, d, J = 4.8 Hz), 3.12-3.24 (2H, m), 4.63 (1H , d, J = 15.9 Hz), 4.95 (1H, d, J = 15.9 Hz), 5.17 (1H, d, J = 4.5 Hz), 5.69 (1H, dd, J = 8.0, 4.6 Hz), 6.64-6.65 (1H, br m), 6.91 (1H, s), 7.03 (1H, s), 7.09-7.17 (3H, m), 7.26-7.35 (7H, m), 8.65 (1H, s), 9.23 (1H, s).

Step 5 Synthesis of Compound 80f In the same manner as in Step 6 of Example 34, Compound 80f (332.2 mg, 97.2%) was obtained as a white foam crude product using Compound 80e.
MS (M + 1) = 781, RT = 2.19 min, measurement condition A

Step 6 Synthesis of Compound I-080 In the same manner as in Step 7 of Example 34, Compound I-080 (155.8 mg, 71.2%) was obtained as a white solid using Compound 80f.
1 H-NMR (D 2 O) δ: 2.56 (1H, d, J = 18.3 Hz), 2.80 (3H, s), 2.83 (1H, d, J = 13.9 Hz), 3.06 (1H, dd, J = 18.3, 7.7 Hz), 3.51-3.57 (1H, m), 3.62 (1H, dd, J = 14.6, 5.3 Hz), 4.72-4.74 (2H, m), 5.00 (1H, d, J = 4.6 Hz), 5.87 (1H, d, J = 4.6 Hz), 7.12 (1H, s).
MS (M + 1) = 515.06, RT = 0.41 min, measurement condition A
(Example 43)
化合物I-083の合成
Figure JPOXMLDOC01-appb-C000034

工程1、2 化合物83cの合成
化合物75k(340mg、1.0mmol)と化合物83a(379mg、1.1mmol)を用いて実施例37の工程1と同様の方法により、化合物83bを得た。得られた化合物83bは精製せずにそのまま次の反応に用いた。
得られた化合物83b全量を用いて実施例35の工程15と同様の方法により、化合物83c(420mg、収率62%)を得た。
1H-NMR (CDCl3) δ: 1.21 (3H, d, J = 7.3 Hz), 1.54 (9H, s), 1.72 (3H, s), 1.76 (3H, s), 2.98-3.05 (1H, m), 3.42-3.46 (1H, m), 3.66-3.72 (1H, m), 3.76-3.79 (1H, m), 4.66 (2H, br s), 4.70 (1H, d, J = 4.6 Hz), 4.78-4.88 (2H, m), 5.38 (1H, t, J = 7.3 Hz), 5.97 (1H, s), 7.28 (1H, s), 8.38 (1H, s).
工程3 化合物I-083の合成
化合物83c(420mg、0.62mmol)を用いて実施例35の工程16と同様の方法により、化合物I-083(159mg、収率48%)を得た。
1H-NMR (D2O) δ: 1.19 (3H, d, J = 7.2 Hz), 2.69-2.77 (1H, m), 3.19-3.26 (1H, m), 3.54-3.62 (2H, m), 4.75 (2H, d, J = 6.1 Hz), 4.98 (1H, d, J = 4.8 Hz), 5.87 (1H, d, J = 4.8 Hz), 7.13 (1H, s).
MS (m+1) = 515、保持時間:0.43min、(測定条件A)
元素分析:C17H17N6NaO9S2(H2O)3.5
計算値:C,34.06; H,4.04; N,14.02; Na,3.83; S,10.70 (%)
実測値:C,34.16; H,4.11; N,14.01; Na,3.78; S,10.54 (%)
(実施例44)
Synthesis of Compound I-083
Figure JPOXMLDOC01-appb-C000034

Step 1, Synthesis of Compound 83c Compound 83b was obtained in the same manner as in Step 37 of Example 37 using Compound 75k (340 mg, 1.0 mmol) and Compound 83a (379 mg, 1.1 mmol). The obtained compound 83b was directly used in the next reaction without purification.
Compound 83c (420 mg, yield 62%) was obtained in the same manner as in Step 15 of Example 35 using the total amount of compound 83b obtained.
1 H-NMR (CDCl 3 ) δ: 1.21 (3H, d, J = 7.3 Hz), 1.54 (9H, s), 1.72 (3H, s), 1.76 (3H, s), 2.98-3.05 (1H, m ), 3.42-3.46 (1H, m), 3.66-3.72 (1H, m), 3.76-3.79 (1H, m), 4.66 (2H, br s), 4.70 (1H, d, J = 4.6 Hz), 4.78 -4.88 (2H, m), 5.38 (1H, t, J = 7.3 Hz), 5.97 (1H, s), 7.28 (1H, s), 8.38 (1H, s).
Step 3 Synthesis of Compound I-083 Compound I-083 (159 mg, 48% yield) was obtained in the same manner as in Step 16 of Example 35 using Compound 83c (420 mg, 0.62 mmol).
1 H-NMR (D 2 O) δ: 1.19 (3H, d, J = 7.2 Hz), 2.69-2.77 (1H, m), 3.19-3.26 (1H, m), 3.54-3.62 (2H, m), 4.75 (2H, d, J = 6.1 Hz), 4.98 (1H, d, J = 4.8 Hz), 5.87 (1H, d, J = 4.8 Hz), 7.13 (1H, s).
MS (m + 1) = 515, retention time: 0.43 min, (measurement condition A)
Elemental analysis: C17H17N6NaO9S2 (H2O) 3.5
Calculated values: C, 34.06; H, 4.04; N, 14.02; Na, 3.83; S, 10.70 (%)
Found: C, 34.16; H, 4.11; N, 14.01; Na, 3.78; S, 10.54 (%)
(Example 44)
化合物I-084の合成
Figure JPOXMLDOC01-appb-C000035

工程1、2 化合物84cの合成
化合物75k(340mg、1.0mmol)と化合物84a(631mg、1.2mmol)を用いて実施例35の工程14と同様の方法により、化合物84bを得た。得られた化合物84bは精製せずにそのまま次の反応に用いた。
得られた化合物84b全量を用いて実施例35の工程15と同様の方法により、化合物84c(672mg、収率77%)を得た。
1H-NMR (CDCl3) δ: 1.22 (3H, d, J = 7.2 Hz), 1.54 (9H, s), 1.72 (3H, s), 1.76 (3H, s), 3.02-3.09 (1H, m), 3.36 (1H, dd, J = 14.4, 4.7 Hz), 3.75-3.78 (2H, m), 4.56 (1H, d, J = 5.0 Hz), 4.79-4.90 (2H, m), 5.39 (1H, t, J = 7.3 Hz), 6.03 (1H, dd, J = 9.9, 5.0 Hz), 6.92 (1H, s), 7.23-7.33 (11H, m), 7.75 (1H, d, J = 9.9 Hz), 8.19 (1H, s).
工程3 化合物I-084の合成
化合物84c(672mg、0.77mmol)を用いて実施例35の工程16と同様の方法により、化合物I-084(242mg、収率54%)を得た。
1H-NMR (D2O) δ: 1.18 (3H, d, J = 7.2 Hz), 1.26-1.43 (4H, m), 2.68-2.76 (1H, m), 3.18-3.25 (1H, m), 3.54-3.62 (2H, m), 4.97 (1H, d, J = 4.8 Hz), 5.86 (1H, d, J = 4.8 Hz), 7.08 (1H, s).
MS (m+1) = 542、保持時間:0.65min、(測定条件A)
元素分析:C19H17N5Na1.8O10S2(H2O)4.9
計算値:C,34.10; H,4.04; N,10.47; Na,6.18; S,9.58 (%)
実測値:C,34.05; H,4.11; N,10.67; Na,6.16; S,9.41 (%)
(実施例45)
Synthesis of Compound I-084
Figure JPOXMLDOC01-appb-C000035

Step 1, Synthesis of Compound 84c Compound 84b was obtained in the same manner as in Step 14 of Example 35 using Compound 75k (340 mg, 1.0 mmol) and Compound 84a (631 mg, 1.2 mmol). The obtained compound 84b was directly used in the next reaction without purification.
Compound 84c (672 mg, yield 77%) was obtained in the same manner as in Step 15 of Example 35 using the obtained total amount of compound 84b.
1 H-NMR (CDCl 3 ) δ: 1.22 (3H, d, J = 7.2 Hz), 1.54 (9H, s), 1.72 (3H, s), 1.76 (3H, s), 3.02-3.09 (1H, m ), 3.36 (1H, dd, J = 14.4, 4.7 Hz), 3.75-3.78 (2H, m), 4.56 (1H, d, J = 5.0 Hz), 4.79-4.90 (2H, m), 5.39 (1H, t, J = 7.3 Hz), 6.03 (1H, dd, J = 9.9, 5.0 Hz), 6.92 (1H, s), 7.23-7.33 (11H, m), 7.75 (1H, d, J = 9.9 Hz), 8.19 (1H, s).
Step 3 Synthesis of Compound I-084 Compound I-084 (242 mg, 54% yield) was obtained in the same manner as in Step 16 of Example 35 using Compound 84c (672 mg, 0.77 mmol).
1 H-NMR (D 2 O) δ: 1.18 (3H, d, J = 7.2 Hz), 1.26-1.43 (4H, m), 2.68-2.76 (1H, m), 3.18-3.25 (1H, m), 3.54-3.62 (2H, m), 4.97 (1H, d, J = 4.8 Hz), 5.86 (1H, d, J = 4.8 Hz), 7.08 (1H, s).
MS (m + 1) = 542, retention time: 0.65 min, (measurement condition A)
Elemental analysis: C19H17N5Na1.8O10S2 (H2O) 4.9
Calculated values: C, 34.10; H, 4.04; N, 10.47; Na, 6.18; S, 9.58 (%)
Found: C, 34.05; H, 4.11; N, 10.67; Na, 6.16; S, 9.41 (%)
(Example 45)
化合物I-085の合成
Figure JPOXMLDOC01-appb-C000036

工程1 化合物85bの合成
化合物85a(15.1g、40mmol)および2-フェニルアクリル酸(7.11g、48.0mmol)にDMF(30mL)を加えた。70℃で4時間撹拌したのち、反応溶液を室温に冷却した。これに、炭酸カルシウム(7.19g、52.0mmol)を加えた。これにベンジルブロミド(6.18mL,52mmol)を少しずつ加え1時間室温で撹拌した。反応混合液に水を加え、酢酸エチルで抽出した。水、希塩酸、飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。ろ過後、溶媒を留去し、得られた残渣をシリカゲルクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することで85b(12.2g、収率50%)を得た。
1H-NMR (CDCl3) δ: 0.92 (9H, s), 2.26 (1H, ddd, J = 14.2, 14.0, 7.8 Hz), 2.75 (1H, ddd, J = 14.2, 14.0, 7.4 Hz), 4.53 (1H, dd, J = 7.8, 7.5 Hz), 4.90 (1H, d, J = 12.8 Hz), 5.05 (1H, d, J = 12.8 Hz), 7.11-7.51 (20H, m).

工程2 化合物85cの合成
工程1で得られた化合物85b(12.2g、19.9mmol)のジクロロメタン(183mL)溶液を-78℃に冷却し、オゾンを30分間通気した。反応終了後、酸素、窒素の順に通気し、ジメチルスルフィド(4.40mL、59.5mmol)を加え室温で1時間撹拌した。溶媒を減圧留去し得られた残渣をシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル)により精製し、化合物85c(6.4g、収率88%)で得た。
1H-NMR (CDCl3) δ: 1.53 (9H, s), 3.14 (1H, dd, J = 19.2, 4.3 Hz), 3.73 (1H, dd, J = 19.2, 10.1 Hz), 4.16 (1H, dd, J = 10.1, 4.3 Hz), 5.07 (1H, d, J = 12.6 Hz), 5.16 (1H, d, J = 12.6 Hz), 7.32-7.20 (10H, m). 

工程3 化合物85dの合成
工程2で得られた化合物85c(6.4g、17.4mmol)のジクロロメタン(64mL)溶液に、N,N,N’,N’-テトラメチルジアミノメタン(9.47mL、69.5mmol)を加え0℃に冷却し、無水酢酸(11.5mL、122mmol)をゆっくり加えた。これに酢酸(4.97mL、87mmol)を加え、室温で終夜撹拌した。反応混合物に酢酸エチルを加え、ジクロロメタンを減圧留去した後、水を加えた。水層を酢酸エチルで抽出し、水で洗浄した後、有機層を無水硫酸マグネシウムで乾燥した。ろ過後、溶媒を減圧留去することで化合物85dの粗生成物を得た。
1H-NMR (CDCl3) δ: 1.56 (9H, s), 4.92 (1H, s), 5.12 (1H, d, J = 12.4 Hz), 5.19 (1H, d, J = 12.4 Hz), 5.97 (1H, s), 6.35 (1H, s), 7.35-7.22 (10H, m). 

工程4 化合物85fの合成
工程3で得られた化合物85dの粗生成物の酢酸エチル(66mL)溶液に文献EP253337に記載の方法で合成した化合物85e(4.09g、17.3mmol)およびHMPA(60.2mL,346mmol)を加え、室温で終夜撹拌した。反応溶液に水を加え酢酸エチルで抽出した。有機層を希塩酸、炭酸水素ナトリウム水溶液、飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。ろ過後、減圧留去し得られた残渣をシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル)に付し、化合物85fを4種類の異性体の混合物の粗生成物(3.9g)として得た。
MS (m+1) =617、測定条件A、 2.39分
MS (m+1) =617、測定条件A、 2.42分
MS (m+1) =617、測定条件A、 2.52分
MS (m+1) =617、測定条件A、 2.62分

工程5 化合物85gの合成
工程4で得られた化合物85fの粗生成物(3.9g、6.2mmol相当)のメタノール(39mL)溶液に5%パラジウム炭素(1.3g、0.62mmol)を加え、4気圧の水素雰囲気下8時間撹拌した。不溶物をろ過した後、ろ液に5%パラジウム炭素(8.1g、3.8mmol)を加え、4気圧の水素雰囲気下終夜撹拌した。不溶物をろ過した後、溶媒を減圧留去した。残渣に水を加え、酢酸エチルで抽出後、有機層を希塩酸、飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。ろ過後、溶媒を留去し得られた残渣のジクロロメタン(10mL)を0℃に冷却した。これに、EDC塩酸塩(1.45g、7.58mmol)を加え0℃で終夜撹拌した。反応混合液に水を加え、酢酸エチルで抽出した後、有機層を希塩酸、炭酸水素ナトリウム水溶液、飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。ろ過後、溶媒を留去し、得られた残渣をシリカゲルクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することで化合物85gの複数の異性体の混合物の粗生成物(700mg)を得た。
MS (m+1) =509、 2.28分、測定条件A
MS (m+1) =509、 2.41分、測定条件A

工程6 化合物85iの合成
五塩化リン(573g、2.75mmol)をジクロロメタン(7.0mL)に懸濁させ0℃に冷却した。この懸濁液にピリジン(0.333mL、4.13mmol)と化合物85gを含む粗生成物(700mg、1.38mmol相当)を加え、0℃で30分間撹拌した。この溶液を―78℃に冷却し、エタノール(7mL)を加え-30℃まで昇温し、2時間撹拌した。この溶液に精製水(2.0mL)を加え30分撹拌した。反応液に炭酸水素ナトリウム水溶液を加え、水層をジクロロメタンで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。ろ過後、溶媒を約10mL程度まで濃縮し、これを溶液Aとした。
化合物85h(663mg、1.65mmol)のDMA(7mL)溶液を-20どに冷却しトリエチルアミン(0.267mL、1.93mmol)およびメタンスルホニルクロリド(0.139mL、1.79mmol)を加え1時間撹拌し、これを溶液Bとした。
溶液Aを0℃に冷却し、ピリジン(0.333mL、4.13mmol)および溶液Bを加え1時間撹拌した。反応液に水を加え酢酸エチルで抽出した。有機層を希塩酸、炭酸水素ナトリウム、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。ろ過後、溶媒を留去し、得られた残渣をシリカゲルクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することで化合物85iの複数の異性体の混合物の粗生成物(650mg)を得た。
MS (m+1) =774、 2.82分、測定条件A

工程7 化合物85jの合成
工程6で得られた化合物85iの粗生成物(650mg、0.84mmol相当)を用いて、実施例34の工程6と同様の手法で化合物85iを複数の異性体を含む粗生成物(540mg)として得た。
MS (m+1) =790、2.54分,測定条件A
MS (m+1) =790、2.65分、測定条件A

工程8 化合物I-085の合成
工程7で得られた化合物85jの粗生成物(540mg、0.68mmol相当)を用いて、実施例34の工程7と同様の手法で化合物I-085(126mg、収率32%)を4種類の異性体の混合物(約0.6:0.7:1:1.2の比率)として得た。
MS (m+1) =578、0.71分、測定条件A
MS (m+1) =578、0.76分、測定条件A
MS (m+1) =578、0.80分、測定条件A
1H-NMR (4種類の異性体比=約0.6:0.7:1:1.2, D2O) δ: 3.01-3.09 (1.4H, m), 3.22-3.48 (2.8H, m), 3.54-3.66 (2.8H, m), 3.70-3.80 (2.8H, m), 3.97-3.87 (0.7H, m), 4.19 (0.6H, s), 4.46 (1.2H, d, J = 11.4 Hz), 4.81-4.84 (7H, m), 4.90 (0.7H, d, J = 10.7 Hz), 5.07 (0.6H, d, J = 4.8 Hz), 5.24 (1.2H, d, J = 4.3 Hz), 5.32 (0.7H, d, J = 4.8 Hz), 5.44 (1.0H, d, J = 12.2 Hz), 5.46 (1.0H, d, J = 4.6 Hz), 5.57 (1.2H, d, J = 4.3 Hz), 5.62 (0.7H, d, J = 4.8 Hz), 5.89 (0.6H, d, J = 4.8 Hz), 6.06 (1.0H, d, J = 4.6 Hz), 7.16-7.24 (3.5H, m), 7.26-7.53 (17.5H, m).
(実施例50)
Synthesis of Compound I-085
Figure JPOXMLDOC01-appb-C000036

Step 1 Synthesis of Compound 85b DMF (30 mL) was added to Compound 85a (15.1 g, 40 mmol) and 2-phenylacrylic acid (7.11 g, 48.0 mmol). After stirring at 70 ° C. for 4 hours, the reaction solution was cooled to room temperature. To this was added calcium carbonate (7.19 g, 52.0 mmol). To this was added benzyl bromide (6.18 mL, 52 mmol) little by little and stirred for 1 hour at room temperature. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The extract was washed with water, dilute hydrochloric acid and saturated brine, and then dried over anhydrous magnesium sulfate. After filtration, the solvent was distilled off, and the obtained residue was purified by silica gel chromatography (n-hexane / ethyl acetate) to give 85b (12.2 g, yield 50%).
1 H-NMR (CDCl 3 ) δ: 0.92 (9H, s), 2.26 (1H, ddd, J = 14.2, 14.0, 7.8 Hz), 2.75 (1H, ddd, J = 14.2, 14.0, 7.4 Hz), 4.53 (1H, dd, J = 7.8, 7.5 Hz), 4.90 (1H, d, J = 12.8 Hz), 5.05 (1H, d, J = 12.8 Hz), 7.11-7.51 (20H, m).

Step 2 Synthesis of Compound 85c A solution of Compound 85b (12.2 g, 19.9 mmol) obtained in Step 1 in dichloromethane (183 mL) was cooled to −78 ° C., and ozone was bubbled through for 30 minutes. After completion of the reaction, oxygen and nitrogen were bubbled in this order, dimethyl sulfide (4.40 mL, 59.5 mmol) was added, and the mixture was stirred at room temperature for 1 hour. The residue obtained by evaporating the solvent under reduced pressure was purified by silica gel chromatography (hexane / ethyl acetate) to obtain Compound 85c (6.4 g, yield 88%).
1 H-NMR (CDCl 3 ) δ: 1.53 (9H, s), 3.14 (1H, dd, J = 19.2, 4.3 Hz), 3.73 (1H, dd, J = 19.2, 10.1 Hz), 4.16 (1H, dd , J = 10.1, 4.3 Hz), 5.07 (1H, d, J = 12.6 Hz), 5.16 (1H, d, J = 12.6 Hz), 7.32-7.20 (10H, m).

Step 3 Synthesis of Compound 85d To a solution of Compound 85c (6.4 g, 17.4 mmol) obtained in Step 2 in dichloromethane (64 mL), N, N, N ′, N′-tetramethyldiaminomethane (9.47 mL, 69.5 mmol) was added and cooled to 0 ° C., and acetic anhydride (11.5 mL, 122 mmol) was added slowly. Acetic acid (4.97 mL, 87 mmol) was added thereto, and the mixture was stirred overnight at room temperature. Ethyl acetate was added to the reaction mixture, dichloromethane was distilled off under reduced pressure, and water was added. The aqueous layer was extracted with ethyl acetate and washed with water, and then the organic layer was dried over anhydrous magnesium sulfate. After filtration, the solvent was distilled off under reduced pressure to obtain a crude product of compound 85d.
1 H-NMR (CDCl 3 ) δ: 1.56 (9H, s), 4.92 (1H, s), 5.12 (1H, d, J = 12.4 Hz), 5.19 (1H, d, J = 12.4 Hz), 5.97 ( 1H, s), 6.35 (1H, s), 7.35-7.22 (10H, m).

Step 4 Synthesis of Compound 85f Compound 85e (4.09 g, 17.3 mmol) and HMPA (60) synthesized by the method described in document EP253337 in a solution of the crude product of Compound 85d obtained in Step 3 in ethyl acetate (66 mL) 2 mL, 346 mmol) and stirred at room temperature overnight. Water was added to the reaction solution, and the mixture was extracted with ethyl acetate. The organic layer was washed with dilute hydrochloric acid, aqueous sodium hydrogen carbonate solution and saturated brine, and then dried over anhydrous magnesium sulfate. After filtration, the residue obtained by evaporation under reduced pressure was subjected to silica gel chromatography (hexane / ethyl acetate) to obtain Compound 85f as a crude product (3.9 g) of a mixture of four isomers.
MS (m + 1) = 617, measurement condition A, 2.39 minutes MS (m + 1) = 617, measurement condition A, 2.42 minutes MS (m + 1) = 617, measurement condition A, 2.52 minutes MS (m + 1) = 617, measurement condition A, 2.62 minutes

Step 5 Synthesis of 85 g of Compound To a solution of the crude product of Compound 85f obtained in Step 4 (3.9 g, corresponding to 6.2 mmol) in methanol (39 mL) was added 5% palladium carbon (1.3 g, 0.62 mmol). The mixture was stirred for 8 hours under a hydrogen atmosphere of 4 atm. After filtering insoluble matter, 5% palladium carbon (8.1 g, 3.8 mmol) was added to the filtrate, and the mixture was stirred overnight under a hydrogen atmosphere of 4 atm. After filtering insoluble matter, the solvent was distilled off under reduced pressure. Water was added to the residue, and the mixture was extracted with ethyl acetate. The organic layer was washed with diluted hydrochloric acid and saturated brine, and dried over anhydrous magnesium sulfate. After filtration, the solvent was distilled off and the resulting dichloromethane (10 mL) was cooled to 0 ° C. To this, EDC hydrochloride (1.45 g, 7.58 mmol) was added and stirred at 0 ° C. overnight. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with dilute hydrochloric acid, aqueous sodium hydrogen carbonate solution and saturated brine, and dried over anhydrous magnesium sulfate. After filtration, the solvent was distilled off, and the obtained residue was purified by silica gel chromatography (n-hexane / ethyl acetate) to obtain a crude product (700 mg) of a mixture of a plurality of isomers of compound 85 g.
MS (m + 1) = 509, 2.28 minutes, measurement condition A
MS (m + 1) = 509, 2.41 minutes, measurement condition A

Step 6 Synthesis of Compound 85i Phosphorus pentachloride (573 g, 2.75 mmol) was suspended in dichloromethane (7.0 mL) and cooled to 0 ° C. To this suspension was added a crude product (700 mg, corresponding to 1.38 mmol) containing pyridine (0.333 mL, 4.13 mmol) and 85 g of compound, and the mixture was stirred at 0 ° C. for 30 minutes. The solution was cooled to −78 ° C., ethanol (7 mL) was added, the temperature was raised to −30 ° C., and the mixture was stirred for 2 hours. Purified water (2.0 mL) was added to this solution and stirred for 30 minutes. An aqueous sodium hydrogen carbonate solution was added to the reaction solution, and the aqueous layer was extracted with dichloromethane. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. After filtration, the solvent was concentrated to about 10 mL, and this was designated as Solution A.
A solution of compound 85h (663 mg, 1.65 mmol) in DMA (7 mL) is cooled to −20 and triethylamine (0.267 mL, 1.93 mmol) and methanesulfonyl chloride (0.139 mL, 1.79 mmol) are added and stirred for 1 hour. This was designated as Solution B.
Solution A was cooled to 0 ° C., pyridine (0.333 mL, 4.13 mmol) and solution B were added and stirred for 1 hour. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with dilute hydrochloric acid, sodium bicarbonate and saturated brine, and then dried over anhydrous magnesium sulfate. After filtration, the solvent was distilled off, and the obtained residue was purified by silica gel chromatography (n-hexane / ethyl acetate) to obtain a crude product (650 mg) of a mixture of a plurality of isomers of Compound 85i.
MS (m + 1) = 774, 2.82 minutes, measurement condition A

Step 7 Synthesis of Compound 85j Using compound 85i crude product (650 mg, corresponding to 0.84 mmol) obtained in Step 6 of Compound 85j, Compound 85i contains a plurality of isomers in the same manner as in Step 6 of Example 34. Obtained as a crude product (540 mg).
MS (m + 1) = 790, 2.54 minutes, measurement condition A
MS (m + 1) = 790, 2.65 minutes, measurement condition A

Step 8 Synthesis of Compound I-085 Using the crude product of Compound 85j obtained in Step 7 (540 mg, corresponding to 0.68 mmol), Compound I-085 (126 mg, 126 mg, Yield 32%) was obtained as a mixture of four isomers (ratio of about 0.6: 0.7: 1: 1.2).
MS (m + 1) = 578, 0.71 minutes, measurement condition A
MS (m + 1) = 578, 0.76 minutes, measurement condition A
MS (m + 1) = 578, 0.80 minutes, measurement condition A
1 H-NMR (ratio of four isomers = about 0.6: 0.7: 1: 1.2, D 2 O) δ: 3.01-3.09 (1.4H, m), 3.22-3.48 (2.8H, m), 3.54-3.66 (2.8H, m), 3.70-3.80 (2.8H, m), 3.97-3.87 (0.7H, m), 4.19 (0.6H, s), 4.46 (1.2H, d, J = 11.4 Hz), 4.81- 4.84 (7H, m), 4.90 (0.7H, d, J = 10.7 Hz), 5.07 (0.6H, d, J = 4.8 Hz), 5.24 (1.2H, d, J = 4.3 Hz), 5.32 (0.7H , d, J = 4.8 Hz), 5.44 (1.0H, d, J = 12.2 Hz), 5.46 (1.0H, d, J = 4.6 Hz), 5.57 (1.2H, d, J = 4.3 Hz), 5.62 ( 0.7H, d, J = 4.8 Hz), 5.89 (0.6H, d, J = 4.8 Hz), 6.06 (1.0H, d, J = 4.6 Hz), 7.16-7.24 (3.5H, m), 7.26-7.53 (17.5H, m).
(Example 50)
化合物I-132の合成 
Figure JPOXMLDOC01-appb-C000037
工程1 化合物132bの合成
化合物132a(3.55g、21.01mmol、JP5909441B2に合成法記載)のアセトニトリル(35.5mL)溶液に、氷冷下でトリエチルアミン(18.2mL、131mmol)、トリフルオロメタンスルホン酸 tert-ブチルジメチルシリル(20.26mL、88mmol)を加えた。得られた溶液を氷冷で3.5時間撹拌した後、水(7.1mL)および酢酸(6.16mL,108mmol)を加え、氷冷でさらに2時間撹拌した。得られた溶液に水を加え、ジクロロメタンで抽出した。有機層を8.4%炭酸水素ナトリウム水溶液、2N塩酸水溶液、飽和食塩水で洗浄し、無水硫酸マグネシウムにより乾燥した。無機物を濾過により除き、減圧濃縮し、得られた粗生成物はシリカゲルカラムクロマトグラフィー(ヘキサンー酢酸エチル)により精製し、生成物を含む分画を集め減圧濃縮し、化合物132b(10.88g)を黄色オイルとして得た。
MS(M+1)=283、RT=2.39min、測定条件A
工程2 化合物132cの合成
中間体34Aの合成の工程2と同様にして、化合物132bを用いて、シリカゲルカラムクロマトグラフィー(ヘキサンー酢酸エチル)により精製し、化合物132c(4.59g)を白色フォームとして得た。
MS(M+1)=282、RT=2.11min、測定条件A
工程3 化合物132dの合成
ヒドロキシフタルイミド(2.87g、17.58mmol)のN,N-ジメチルホルムアミド(41mL)溶液に、炭酸カリウム(2.43g、17.58mmol)、化合物132c(4.136g、14.65mmol)を加え、得られた溶液を60℃で3時間撹拌した後、水を加え、酢酸エチルで抽出する。得られた有機層を水、飽和食塩水で順に洗浄し、無水硫酸マグネシウムにて乾燥し、無機物を濾過により除き、減圧濃縮した。得られた粗生成物はシリカゲルカラムクロマトグラフィー(ヘキサンー酢酸エチル)により精製し、化合物132d(1.288g、18.7%(化合物132aからの3工程収率))を白色固体として得た。
1H-NMR (CDCl3) δ: 0.07 (6H, s), 0.88 (9H, s), 4.20 (1H, dd, J = 11.8, 3.8 Hz), 4.31 (1H, dd, J = 11.8, 2.3 Hz), 4.73 (1H, dd, J = 3.7, 2.3 Hz), 5.62 (1H, br s), 7.70 (1H, br s), 7.78-7.81 (2H, m), 7.84-7.87 (2H, m). 
工程4 化合物46Aの合成
実施例34の工程4と同様にして、化合物132dを用いて、化合物46A(1.19g、68.9%)を白色固体の粗生成物として得た。
MS(M+1)=489、RT=1.83min、測定条件A
工程5 化合物132gの合成
実施例34の工程5と同様にして、化合物46Aを用いて、化合物132g(1.2036g、66.2%)を白色フォームとして得た。
1H-NMR (CDCl3) δ: 0.05 (3H, s), 0.05 (3H, s), 0.86 (9H, s), 1.54 (9H, s), 2.50-2.66 (3H, m), 3.06 (1H, dd, J = 14.6, 4.2 Hz), 3.14-3.18 (1H, m), 4.02 (2H, d, J = 5.1 Hz), 4.84 (1H, t, J = 5.0 Hz), 5.08 (1H, d, J = 4.8 Hz), 5.63 (1H, dd, J = 8.3, 4.7 Hz), 6.10 (1H, br s), 6.56 (1H, br s), 6.95 (1H, s), 7.29-7.35 (10H, m), 8.50-8.52 (1H, br m), 8.86 (1H, br s). 
工程6 化合物132hの合成
実施例34の工程6と同様にして、化合物132gを用いて、化合物132h(1.211g、99.7%)を白色フォームの粗生成物として得た。
MS(M+1)=911、RT=2.71min、測定条件A
工程7 化合物I-132の合成
実施例34の工程7と同様にして、化合物132hを用いて、化合物I-132(581.3mg、81.8%)を白色固体として得た。
1H-NMR (D2O) δ: 2.56 (1H, d, J = 18.2 Hz), 2.83 (1H, dd, J = 14.7, 12.7 Hz), 3.06 (1H, dd, J = 18.3, 7.8 Hz), 3.51-3.57 (1H, m), 3.65 (1H, dd, J = 14.8, 5.3 Hz), 4.01-4.09 (2H, m), 4.91 (1H, dd, J = 5.0, 3.5 Hz), 5.03 (1H, d, J = 4.8 Hz), 5.91 (1H, d, J = 4.8 Hz), 7.24 (1H, s).
MS(M+1)=531.05、RT=0.30min、測定条件A
元素分析:C17H18N6O10S2(H2O)2.5
計算値C: 35.48%, H: 4.03%, N: 14.60%, S: 11.14%.
実測値C: 35.42%, H: 4.17%, N: 14.84%, S: 10.89%.
(実施例51)
Synthesis of Compound I-132
Figure JPOXMLDOC01-appb-C000037
Step 1 Synthesis of Compound 132b To a solution of Compound 132a (3.55 g, 21.01 mmol, described in JP59909441B2 in the synthesis method) in acetonitrile (35.5 mL), triethylamine (18.2 mL, 131 mmol), trifluoromethanesulfonic acid under ice-cooling tert-Butyldimethylsilyl (20.26 mL, 88 mmol) was added. The resulting solution was stirred with ice cooling for 3.5 hours, water (7.1 mL) and acetic acid (6.16 mL, 108 mmol) were added, and the mixture was further stirred with ice cooling for 2 hours. Water was added to the resulting solution and extracted with dichloromethane. The organic layer was washed with 8.4% aqueous sodium hydrogen carbonate solution, 2N aqueous hydrochloric acid solution and saturated brine, and dried over anhydrous magnesium sulfate. Inorganic substances were removed by filtration, and the filtrate was concentrated under reduced pressure. The resulting crude product was purified by silica gel column chromatography (hexane-ethyl acetate), and fractions containing the product were collected and concentrated under reduced pressure to give Compound 132b (10.88 g). Obtained as a yellow oil.
MS (M + 1) = 283, RT = 2.39 min, measurement condition A
Step 2 In the same manner as in Step 2 of the synthesis of Compound 132c Synthesis Intermediate 34A, purification was performed by silica gel column chromatography (hexane-ethyl acetate) using Compound 132b to obtain Compound 132c (4.59 g) as a white foam. It was.
MS (M + 1) = 282, RT = 2.11 min, measurement condition A
Step 3 Synthesis of Compound 132d To a solution of hydroxyphthalimide (2.87 g, 17.58 mmol) in N, N-dimethylformamide (41 mL), potassium carbonate (2.43 g, 17.58 mmol), compound 132c (4.136 g, 14 .65 mmol) is added and the resulting solution is stirred at 60 ° C. for 3 hours, then water is added and extracted with ethyl acetate. The obtained organic layer was washed successively with water and saturated brine, dried over anhydrous magnesium sulfate, the inorganic matter was removed by filtration, and the filtrate was concentrated under reduced pressure. The obtained crude product was purified by silica gel column chromatography (hexane-ethyl acetate) to obtain Compound 132d (1.288 g, 18.7% (3 step yield from Compound 132a)) as a white solid.
1 H-NMR (CDCl 3 ) δ: 0.07 (6H, s), 0.88 (9H, s), 4.20 (1H, dd, J = 11.8, 3.8 Hz), 4.31 (1H, dd, J = 11.8, 2.3 Hz ), 4.73 (1H, dd, J = 3.7, 2.3 Hz), 5.62 (1H, br s), 7.70 (1H, br s), 7.78-7.81 (2H, m), 7.84-7.87 (2H, m).
Step 4 Synthesis of Compound 46A In the same manner as in Step 4 of Example 34, Compound 46A (1.19 g, 68.9%) was obtained as a white solid crude product using Compound 132d.
MS (M + 1) = 489, RT = 1.83 min, measurement condition A
Step 5 Synthesis of Compound 132g In the same manner as in Step 5 of Example 34, Compound 46A was used to obtain Compound 132g (1.2036 g, 66.2%) as a white foam.
1 H-NMR (CDCl 3 ) δ: 0.05 (3H, s), 0.05 (3H, s), 0.86 (9H, s), 1.54 (9H, s), 2.50-2.66 (3H, m), 3.06 (1H , dd, J = 14.6, 4.2 Hz), 3.14-3.18 (1H, m), 4.02 (2H, d, J = 5.1 Hz), 4.84 (1H, t, J = 5.0 Hz), 5.08 (1H, d, J = 4.8 Hz), 5.63 (1H, dd, J = 8.3, 4.7 Hz), 6.10 (1H, br s), 6.56 (1H, br s), 6.95 (1H, s), 7.29-7.35 (10H, m ), 8.50-8.52 (1H, br m), 8.86 (1H, br s).
Step 6 Synthesis of Compound 132h In the same manner as in Step 6 of Example 34, Compound 132h (1.211 g, 99.7%) was obtained as a crude product of white foam using Compound 132g.
MS (M + 1) = 911, RT = 2.71 min, measurement condition A
Step 7 Synthesis of Compound I-132 In the same manner as in Step 7 of Example 34, compound I-132 (581.3 mg, 81.8%) was obtained as a white solid using compound 132h.
1 H-NMR (D 2 O) δ: 2.56 (1H, d, J = 18.2 Hz), 2.83 (1H, dd, J = 14.7, 12.7 Hz), 3.06 (1H, dd, J = 18.3, 7.8 Hz) , 3.51-3.57 (1H, m), 3.65 (1H, dd, J = 14.8, 5.3 Hz), 4.01-4.09 (2H, m), 4.91 (1H, dd, J = 5.0, 3.5 Hz), 5.03 (1H , d, J = 4.8 Hz), 5.91 (1H, d, J = 4.8 Hz), 7.24 (1H, s).
MS (M + 1) = 531.05, RT = 0.30 min, measurement condition A
Elemental analysis: C17H18N6O10S2 (H2O) 2.5
Calculated C: 35.48%, H: 4.03%, N: 14.60%, S: 11.14%.
Found C: 35.42%, H: 4.17%, N: 14.84%, S: 10.89%.
(Example 51)
化合物I-146の合成 
Figure JPOXMLDOC01-appb-C000038

Figure JPOXMLDOC01-appb-C000039

Figure JPOXMLDOC01-appb-C000040

工程1 化合物146bの合成
化合物146a(10.91g、53.9mmol)、(トリフェニルホスホラニリデン)アセトニトリル(19.51g、64.7mmol)DMAP(0.66g、5.39mmol)をジクロロメタン(100ml)に溶解し、氷冷下窒素雰囲気下EDC塩酸塩(12.41g、64.7mmol)を加えた。室温で1時間撹拌した後、水を加え、ジクロロメタンで抽出した。有機層を、水、飽和食塩水で順に洗浄し、無水硫酸マグネシウムにより乾燥した。硫酸マグネシウムをろ過した後、減圧下濃縮した。残渣にジイソプロピルエーテルを加え、析出した固体をろ取することで化合物146b(22.81g、87%)を得た。
1H-NMR (CDCl3) δ: 7.63-7.46 (15H, m), 3.17 (1H, dd, J = 15.6, 8.7 Hz), 2.76-2.71 (2H, m), 1.65-1.60 (2H, m), 1.40 (9H, s), 0.93 (3H, t, J = 7.5 Hz).
工程2 化合物146cの合成
化合物146b(12.00g、24.71mmol)をジクロロメタン(240ml)に溶解し、-78℃に冷却し原料が消失するまでオゾンガスをバブリングしながら攪拌した。系内を窒素ガスで置換した後、ジメチルスルフィド(5.48ml、74.1mmol)を加え、-78℃で5分間攪拌した。次いで、アリルアルコール(2.52ml、37.1mmol)を加え、-78℃で3時間攪拌した。反応混合物を-20℃程度まで昇温した後、5%炭酸ナトリウム水溶液を加え、ジクロロメタンで抽出した。有機層を、飽和食塩水で洗浄し、無水硫酸マグネシウムにより乾燥した。硫酸マグネシウムをろ過した後、減圧下濃縮した。シリカゲルカラムクロマトグラフィーに付し、ヘキサン/酢酸エチルで溶離させた。所望の化合物を含むフラクションを減圧下濃縮し、化合物146c(4.62g、69%)を得た。
1H-NMR (CDCl3) δ: 5.98-5.94 (1H, m), 5.41 (1H, dd, J = 17.2, 1.2 Hz), 5.32 (1H, dd, J = 10.4, 1.2 Hz), 4.75 (2H, d, J = 6.0 Hz), 3.24 (1H, dd, J = 18.3, 9.5 Hz), 2.87-2.75 (2H, m), 1.69-1.58 (2H, m), 1.44 (9H, s), 0.94 (3H, t, J = 7.5 Hz).
工程3 化合物146dの合成
化合物146c(4.62g、17.09mmol)をジクロロメタン(20ml)に溶解し、氷冷下窒素雰囲気下N,N,N’N’-テトラメチルメタンジアミン(9.31ml、68.4mmol)を加えた後、無水酢酸(8.08ml、85mmol)、酢酸(6.84ml、120mmol)を順に滴下した。室温で10時間攪拌した後、ヘキサンを加え減圧下ジクロロメタンを留去した。残渣に水を加えヘキサンで抽出した。有機層を、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順に洗浄し、無水硫酸マグネシウムにより乾燥した。硫酸マグネシウムをろ過した後、減圧下濃縮し、化合物146d(4.78g、99%)を得た。
1H-NMR (CDCl3) δ: 6.33 (1H, s), 6.28 (1H, s), 6.03-5.93 (1H, m), 5.42 (1H, dd, J = 17.1, 1.2 Hz), 5.33 (1H, dd, J = 10.4, 1.2 Hz), 4.80 (2H, t, J = 2.9 Hz), 3.44 (1H, t, J = 7.4 Hz), 1.93-1.86 (1H, m), 1.68-1.58 (1H, m), 1.42 (9H, s), 0.93 (3H, t, J = 7.4 Hz).
工程4 化合物146f-1及び146f-2の合成
化合物146d(4.78g、16.93mmol)をDMF(50ml)に溶解し、氷冷下窒素雰囲気下化合物146e(5.20g、22.01mmol)とトリエチルアミン(0.469ml、3.39mmol)を順次加えた。氷冷下2時間撹拌した後、希塩酸を加え、酢酸エチルで抽出した。有機層を、水、飽和食塩水で順に洗浄し、無水硫酸マグネシウムにより乾燥した。硫酸マグネシウムをろ過した後、減圧下濃縮した。シリカゲルカラムクロマトグラフィーに付し、ヘキサン/酢酸エチルで溶離させた。所望の化合物を含むフラクションを減圧下濃縮し、化合物146f-1及び146f-2を混合物として得た。(2.04g、23%)
LC/MS(測定条件A):RT:2.47min、[M+H]=519
工程5 化合物146g-1及び146g-2の合成
化合物146f-1及び146f-2(2.03g、3.91mmol)をジクロロメタン(2ml)溶解し、-20℃に冷却しトリフルオロ酢酸(20ml、260mmol)を加えた。氷冷下4時間攪拌した後、減圧下濃縮した。残渣に水を加えジクロロメタンで抽出した。有機層を、水、飽和食塩水で順に洗浄し、無水硫酸マグネシウムにより乾燥した。硫酸マグネシウムをろ過した後、減圧下濃縮した。得られた残渣全量をジクロロメタン(20ml)に溶解し、氷冷下EDC塩酸塩(0.899g、4.69mmol)を加えた。室温で30分間撹拌した後、希塩酸を加え、ジクロロメタンで抽出した。有機層を、水、飽和食塩水で順に洗浄し、無水硫酸マグネシウムにより乾燥した。硫酸マグネシウムをろ過した後、減圧下濃縮した。シリカゲルカラムクロマトグラフィーに付し、ヘキサン/酢酸エチルで溶離させた。所望の化合物を含むフラクションを減圧下濃縮し、化合物146g-1及び146g-2を混合物として得た。(1.39g、80%)
LC/MS(測定条件A):RT:2.08min、[M+H]=445
工程6 化合物146h-1及び146h-2の合成
化合物146g-1及び146g-2(0.70g、1.58mmol)を用い実施例45の工程5と同様の方法により合成し化合物146h-1及び146h-2を混合物として得た。(0.96g、86%)
LC/MS(測定条件A):RT:2.57min、[M+H]=710
工程7 化合物146i-1及び146i-2の合成
化合物146h-1及び146h-2(0.96g、1.35mmol)を用い実施例34の工程6と同様の方法により合成し、シリカゲルカラムクロマトグラフィーにより精製し、化合物146i-1(0.46g、47%)および化合物146i-2(0.41g、42%)をそれぞれ得た。
化合物146i-1
1H-NMR (CDCl3) δ: 8.41 (1H, d, J = 9.3 Hz), 8.14 (1H, br s), 7.34 (1H, s), 6.03-5.93 (2H, m), 5.41 (1H, dd, J = 17.1, 1.1 Hz), 5.32 (1H, dd, J = 10.4, 1.1 Hz), 4.87 (1H, dd, J = 12.9, 6.1 Hz), 4.81 (1H, dd, J = 12.9, 6.1 Hz), 4.75 (1H, d, J = 16.6 Hz), 4.69 (1H, d, J = 16.6 Hz), 4.62 (1H, d, J = 4.8 Hz), 3.78-3.72 (1H, m), 3.37 (1H, dd, J = 14.4, 4.6 Hz), 2.78 (1H, dt, J = 11.8, 4.6 Hz), 2.32-2.25 (1H, m), 1.96-1.86 (1H, m), 1.54 (9H, s), 1.48-1.40 (10H, m), 1.07 (3H, t, J = 7.5 Hz).
化合物146i-2
1H-NMR (CDCl3) δ: 8.40 (1H, d, J = 9.0 Hz), 8.14 (1H, br s), 7.35 (1H, s), 6.01-5.92 (2H, m), 5.42 (1H, dd, J = 17.2, 1.1 Hz), 5.31 (1H, dd, J = 10.3, 1.1 Hz), 4.92-4.63 (5H, m), 3.56 (1H, dd, J = 12.6, 5.5 Hz), 3.44 (1H, dd, J = 14.5, 5.5 Hz), 2.47-2.34 (2H, m), 1.78-1.71 (1H, m), 1.54 (9H, s), 1.48-1.42 (10H, m), 1.05 (3H, t, J = 7.3 Hz).
工程8 化合物146jの合成
化合物146i-1(0.46g、0.634mmol)をテトラヒドロフラン(5ml)に溶解し、氷冷下窒素雰囲気下アニリン(69μl、0.761mmol)、Pd(PPh(37mg、0.032mmol)を順に加えた。氷冷下で1時間撹拌した後、希塩酸を加え、酢酸エチルで抽出した。有機層を、水、飽和食塩水で順に洗浄し、無水硫酸マグネシウムにより乾燥した。硫酸マグネシウムをろ過した後、減圧下濃縮し、化合物146j(0.43g、99%)を得た。化合物146jは精製することなく次の反応に用いた。
LC/MS(測定条件A):RT:1.72min、[M+H]=686
工程9 化合物I-146の合成
化合物146j(0.43g、0.627mmol)を用い実施例34の工程7と同様の方法により化合物I-146を得た。
化合物I-146:238.2mg(収率66%)
1H-NMR (D2O) δ: 7.23 (1H, s), 5.88 (1H, d, J = 4.8 Hz), 4.98 (1H, d, J = 4.8 Hz), 3.62-3.56 (2H, m), 3.01-2.96 (1H, m), 2.73 (1H, dd, J = 15.5, 14.1 Hz), 1.86-1.79 (1H, m), 1.49-1.41 (1H, m), 0.99 (3H, t, J = 7.5 Hz).
LC/MS(測定条件B):RT:0.74min、[M+H]=530
C18H19N5O10S2(H2O)2.4
計算値C:37.75%, H:4.19%, N:12.23%, S:11.20%
実測値C:37.58%, H:4.12%, N:12.46%, S:11.15%
(実施例52)
Synthesis of Compound I-146
Figure JPOXMLDOC01-appb-C000038

Figure JPOXMLDOC01-appb-C000039

Figure JPOXMLDOC01-appb-C000040

Step 1 Synthesis of Compound 146b Compound 146a (10.91 g, 53.9 mmol), (triphenylphosphoranylidene) acetonitrile (19.51 g, 64.7 mmol) DMAP (0.66 g, 5.39 mmol) in dichloromethane (100 ml) EDC hydrochloride (12.41 g, 64.7 mmol) was added under a nitrogen atmosphere under ice cooling. After stirring at room temperature for 1 hour, water was added and extracted with dichloromethane. The organic layer was washed successively with water and saturated brine, and dried over anhydrous magnesium sulfate. Magnesium sulfate was filtered and concentrated under reduced pressure. Diisopropyl ether was added to the residue, and the precipitated solid was collected by filtration to obtain Compound 146b (22.81 g, 87%).
1 H-NMR (CDCl 3 ) δ: 7.63-7.46 (15H, m), 3.17 (1H, dd, J = 15.6, 8.7 Hz), 2.76-2.71 (2H, m), 1.65-1.60 (2H, m) , 1.40 (9H, s), 0.93 (3H, t, J = 7.5 Hz).
Step 2 Synthesis of Compound 146c Compound 146b (12.00 g, 24.71 mmol) was dissolved in dichloromethane (240 ml), cooled to −78 ° C., and stirred while bubbling ozone gas until the raw material disappeared. The system was replaced with nitrogen gas, dimethyl sulfide (5.48 ml, 74.1 mmol) was added, and the mixture was stirred at −78 ° C. for 5 minutes. Then allyl alcohol (2.52 ml, 37.1 mmol) was added and stirred at −78 ° C. for 3 hours. The reaction mixture was heated to about −20 ° C., 5% aqueous sodium carbonate solution was added, and the mixture was extracted with dichloromethane. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. Magnesium sulfate was filtered and concentrated under reduced pressure. Silica gel column chromatography eluting with hexane / ethyl acetate. Fractions containing the desired compound were concentrated under reduced pressure to give compound 146c (4.62 g, 69%).
1 H-NMR (CDCl 3 ) δ: 5.98-5.94 (1H, m), 5.41 (1H, dd, J = 17.2, 1.2 Hz), 5.32 (1H, dd, J = 10.4, 1.2 Hz), 4.75 (2H , d, J = 6.0 Hz), 3.24 (1H, dd, J = 18.3, 9.5 Hz), 2.87-2.75 (2H, m), 1.69-1.58 (2H, m), 1.44 (9H, s), 0.94 ( (3H, t, J = 7.5 Hz).
Step 3 Synthesis of Compound 146d Compound 146c (4.62 g, 17.09 mmol) was dissolved in dichloromethane (20 ml), and N, N, N′N′-tetramethylmethanediamine (9.31 ml, 68.4 mmol) was added, and acetic anhydride (8.08 ml, 85 mmol) and acetic acid (6.84 ml, 120 mmol) were added dropwise in this order. After stirring at room temperature for 10 hours, hexane was added and dichloromethane was distilled off under reduced pressure. Water was added to the residue and extracted with hexane. The organic layer was washed successively with a saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over anhydrous magnesium sulfate. Magnesium sulfate was filtered and then concentrated under reduced pressure to obtain Compound 146d (4.78 g, 99%).
1 H-NMR (CDCl 3 ) δ: 6.33 (1H, s), 6.28 (1H, s), 6.03-5.93 (1H, m), 5.42 (1H, dd, J = 17.1, 1.2 Hz), 5.33 (1H , dd, J = 10.4, 1.2 Hz), 4.80 (2H, t, J = 2.9 Hz), 3.44 (1H, t, J = 7.4 Hz), 1.93-1.86 (1H, m), 1.68-1.58 (1H, m), 1.42 (9H, s), 0.93 (3H, t, J = 7.4 Hz).
Step 4 Synthesis of Compounds 146f-1 and 146f-2 Compound 146d (4.78 g, 16.93 mmol) was dissolved in DMF (50 ml), and compound 146e (5.20 g, 22.01 mmol) was added under nitrogen cooling under ice-cooling. Triethylamine (0.469 ml, 3.39 mmol) was added sequentially. After stirring for 2 hours under ice cooling, diluted hydrochloric acid was added, and the mixture was extracted with ethyl acetate. The organic layer was washed successively with water and saturated brine, and dried over anhydrous magnesium sulfate. Magnesium sulfate was filtered and concentrated under reduced pressure. Silica gel column chromatography eluting with hexane / ethyl acetate. Fractions containing the desired compound were concentrated under reduced pressure to obtain compounds 146f-1 and 146f-2 as a mixture. (2.04g, 23%)
LC / MS (measurement condition A): RT: 2.47 min, [M + H] = 519
Step 5 Synthesis of Compounds 146g-1 and 146g-2 Compounds 146f-1 and 146f-2 (2.03 g, 3.91 mmol) were dissolved in dichloromethane (2 ml), cooled to −20 ° C. and cooled to trifluoroacetic acid (20 ml, 260 mmol). ) Was added. The mixture was stirred for 4 hours under ice cooling and then concentrated under reduced pressure. Water was added to the residue and extracted with dichloromethane. The organic layer was washed successively with water and saturated brine, and dried over anhydrous magnesium sulfate. Magnesium sulfate was filtered and concentrated under reduced pressure. The total amount of the obtained residue was dissolved in dichloromethane (20 ml), and EDC hydrochloride (0.899 g, 4.69 mmol) was added under ice cooling. After stirring at room temperature for 30 minutes, dilute hydrochloric acid was added, and the mixture was extracted with dichloromethane. The organic layer was washed successively with water and saturated brine, and dried over anhydrous magnesium sulfate. Magnesium sulfate was filtered and concentrated under reduced pressure. Silica gel column chromatography eluting with hexane / ethyl acetate. Fractions containing the desired compound were concentrated under reduced pressure to obtain compounds 146g-1 and 146g-2 as a mixture. (1.39 g, 80%)
LC / MS (measurement condition A): RT: 2.08 min, [M + H] = 445
Step 6 Synthesis of Compounds 146h-1 and 146h-2 Compounds 146h-1 and 146h were synthesized in the same manner as in Step 5 of Example 45 using compounds 146g-1 and 146g-2 (0.70 g, 1.58 mmol). -2 was obtained as a mixture. (0.96g, 86%)
LC / MS (measurement condition A): RT: 2.57 min, [M + H] = 710
Step 7 Synthesis of Compounds 146i-1 and 146i-2 The compounds 146h-1 and 146h-2 (0.96 g, 1.35 mmol) were synthesized by the same method as in Step 6 of Example 34, and silica gel column chromatography was used. Purification gave compound 146i-1 (0.46 g, 47%) and compound 146i-2 (0.41 g, 42%), respectively.
Compound 146i-1
1 H-NMR (CDCl 3 ) δ: 8.41 (1H, d, J = 9.3 Hz), 8.14 (1H, br s), 7.34 (1H, s), 6.03-5.93 (2H, m), 5.41 (1H, dd, J = 17.1, 1.1 Hz), 5.32 (1H, dd, J = 10.4, 1.1 Hz), 4.87 (1H, dd, J = 12.9, 6.1 Hz), 4.81 (1H, dd, J = 12.9, 6.1 Hz) ), 4.75 (1H, d, J = 16.6 Hz), 4.69 (1H, d, J = 16.6 Hz), 4.62 (1H, d, J = 4.8 Hz), 3.78-3.72 (1H, m), 3.37 (1H , dd, J = 14.4, 4.6 Hz), 2.78 (1H, dt, J = 11.8, 4.6 Hz), 2.32-2.25 (1H, m), 1.96-1.86 (1H, m), 1.54 (9H, s), 1.48-1.40 (10H, m), 1.07 (3H, t, J = 7.5 Hz).
Compound 146i-2
1 H-NMR (CDCl 3 ) δ: 8.40 (1H, d, J = 9.0 Hz), 8.14 (1H, br s), 7.35 (1H, s), 6.01-5.92 (2H, m), 5.42 (1H, dd, J = 17.2, 1.1 Hz), 5.31 (1H, dd, J = 10.3, 1.1 Hz), 4.92-4.63 (5H, m), 3.56 (1H, dd, J = 12.6, 5.5 Hz), 3.44 (1H , dd, J = 14.5, 5.5 Hz), 2.47-2.34 (2H, m), 1.78-1.71 (1H, m), 1.54 (9H, s), 1.48-1.42 (10H, m), 1.05 (3H, t , J = 7.3 Hz).
Step 8 Synthesis of Compound 146j Compound 146i-1 (0.46 g, 0.634 mmol) was dissolved in tetrahydrofuran (5 ml), and aniline (69 μl, 0.761 mmol), Pd (PPh 3 ) 4 ( 37 mg, 0.032 mmol) was added in order. After stirring for 1 hour under ice-cooling, diluted hydrochloric acid was added, and the mixture was extracted with ethyl acetate. The organic layer was washed successively with water and saturated brine, and dried over anhydrous magnesium sulfate. Magnesium sulfate was filtered and then concentrated under reduced pressure to obtain Compound 146j (0.43 g, 99%). Compound 146j was used in the next reaction without purification.
LC / MS (measurement condition A): RT: 1.72 min, [M + H] = 686
Step 9 Synthesis of Compound I-146 Compound I-146 was obtained in the same manner as in Step 7 of Example 34 using Compound 146j (0.43 g, 0.627 mmol).
Compound I-146: 238.2 mg (yield 66%)
1 H-NMR (D 2 O) δ: 7.23 (1H, s), 5.88 (1H, d, J = 4.8 Hz), 4.98 (1H, d, J = 4.8 Hz), 3.62-3.56 (2H, m) , 3.01-2.96 (1H, m), 2.73 (1H, dd, J = 15.5, 14.1 Hz), 1.86-1.79 (1H, m), 1.49-1.41 (1H, m), 0.99 (3H, t, J = 7.5 Hz).
LC / MS (measurement condition B): RT: 0.74 min, [M + H] = 530
C18H19N5O10S2 (H2O) 2.4
Calculated C: 37.75%, H: 4.19%, N: 12.23%, S: 11.20%
Measured value C: 37.58%, H: 4.12%, N: 12.46%, S: 11.15%
(Example 52)
化合物I-148の合成 
Figure JPOXMLDOC01-appb-C000041

工程1 化合物148cの合成
化合物148a(3.49g, 18.2mmol)をDMF(7ml)に溶解させ、化合物148b(6.83g, 18.16mmol)を加えた後、60℃にて一晩攪拌した.反応液に酢酸エチル、水を順次加え、酢酸エチル層を分取した.得られた酢酸エチル溶液を水、飽和食塩水の順に洗浄し、硫酸マグネシウムにて乾燥した後、減圧下にて溶媒を留去した.得られた残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン/酢酸エチルにて溶出させ、所望の化合物を含む画分を集め、減圧下にて溶媒を留去する事により化合物148cを得た.収量6.56g(64%).
1H-NMR (CDCl3) δ: 0.94 (9H, s), 1.86-1.90 (1H, m), 1.97-1.99 (1H, m), 2.86-2.95 (1H, m), 3.93-4.01 (2H, m), 4.94 (2H, s), 5.46-5.49 (1H, m), 7.19-7.70 (20H, m).
工程2 化合物148dの合成
化合物148c(325mg, 0.57mmol)をDMF(2ml)に溶解させ、氷冷下にてtert-ブチルジメチルクロロシラン(86mg, 0.57mmol)、イミダゾール(39mg, 0.57mmol)を順次加えた後室温にて1時間攪拌した.反応液に酢酸エチル、水を順次加え、酢酸エチル層を分取した.得られた酢酸エチル溶液を水、飽和食塩水の順に洗浄し、硫酸マグネシウムにて乾燥した後、減圧下にて溶媒を留去する事により化合物148dを得た.収量381mg(98%).
1H-NMR (CDCl3) δ: 0.10 (6H, s), 0.79 (9H, s), 1.43-1.45 (2H, m), 1.61 (9H, s), 2.84-2.85 (1H, m), 3.67-3.68 (2H, m), 4.93-4.95 (2H, m), 7.30-7.70 (20H, m).
工程3 化合物148eの合成
化合物148d(29.63g, 39mmol)をジクロロメタン(444ml)に溶解させ、-78℃にてオゾンガスを溶液が青色に着色するまで通じた.次いで反応液にジメチルスルフィド(8.66ml, 117mmol)を加え、室温まで徐々に昇温させながら攪拌した.反応液は減圧下にて溶媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン/酢酸エチルにて溶出させ、所望の化合物を含む画分を集め、減圧下にて溶媒を留去する事により化合物148eを得た.収量10.83g(64%).
1H-NMR (CDCl3) δ: -0.09 (6H, t, J = 4.0 Hz), 0.75 (9H, d, J = 2.8 Hz), 1.44 (9H, s), 2.92 (1H, dd, J = 18.8, 5.3 Hz), 3.05 (1H, ddd, J = 11.7, 6.7, 3.8 Hz), 3.25 (1H, dd, J = 18.8, 8.0 Hz), 3.71 (1H, dd, J = 9.9, 4.6 Hz), 3.79 (1H, dd, J = 9.9, 5.8 Hz), 5.03 (2H, s), 7.22-7.25 (5H, m).
工程4 化合物148fの合成
化合物148e(8.25g, 18.9mmol)をジクロロメタン(83ml)に溶解させ、氷冷下にてビス(ジメチルアミノ)メタン(10.31ml, 76mmol)を加えた後、無水酢酸(8.93ml, 94mmol)のジクロロメタン(15ml)溶液を1時間かけて滴下した.反応液にさらに酢酸(7.56ml, 132mmol)のジクロロメタン(10ml)溶液を20分かけて滴下した後に室温にて一晩攪拌した.反応液にヘキサンを加え減圧下濃縮しジクロロメタンを除去した。得られた溶液に水を加え、ヘキサン層を分取した.ヘキサン層を水、重曹水、飽和食塩水の順に洗浄し、硫酸マグネシウムにて乾燥した後、減圧下にて溶媒を留去する事により化合物148fを得た.収量7.9g(93%).
1H-NMR (CDCl3) δ: -0.09 (6H, s), 0.74 (10H, s), 1.46 (9H, s), 3.75-3.85 (3H, m), 5.02, 5.05 (2H, ABq, J = 12.4 Hz), 6.21 (1H, s), 6.36 (1H, s), 7.20-7.27 (5H, m).
工程5 化合物148hの合成
化合物148f(7.88g, 17.56mmol)をDMF(79ml)に溶解させ、氷冷下にて化合物148g(5.40g, 22.8mmol)、次いでトリエチルアミン(0.487ml, 3.51mmol)を加えた後、2時間攪拌した.反応液に酢酸エチル、及び希塩酸を加え、酢酸エチル層を分取した.得られた溶液をを水、飽和食塩水の順に洗浄し、硫酸マグネシウムにて乾燥した後、減圧下にて溶媒を留去した.得られた残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン/酢酸エチルにて溶出させ、所望の化合物を含む画分を集め、減圧下にて溶媒を留去する事により化合物148hを数種の異性体の混合物として得た.7.35g(61%).
LC/MS(測定条件A):RT:3.19min、[M+H]=685
工程6 化合物148iの合成
 工程5で得られた化合物148h(2.74g, 4mmol)の異性体混合物をメタノール(27ml)に溶解させ、10%-パラジウム炭素(2.13g, 2mmol)を加えた後、5気圧の水素雰囲気下にて一晩攪拌した.不溶物をセライトろ過し、得られた溶液にトルエンを加えた後、減圧下にて溶媒を留去した.得られた残渣をジクロロメタン(19ml)に溶解させ、氷冷下、EDC塩酸塩を加えた後、室温にて1時間攪拌した。反応液は減圧下にて溶媒を留去し、酢酸エチルと水を加え、酢酸エチル層を分取した.得られた酢酸エチル層を水、飽和食塩水の順に洗浄し、硫酸マグネシウムにて乾燥した後、減圧下にて溶媒を留去した.得られた残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン/酢酸エチルにて溶出させ、所望の化合物を含む画分を集め、減圧下にて溶媒を留去する事により化合物148iを得た.収量136g(7%).
1H-NMR (CDCl3) δ: 1.51 (9H, s), 1.56 (9H, s), 2.13 (1H, dd, J = 6.8, 5.1 Hz), 2.75 (1H, dd, J = 14.5, 12.1 Hz), 2.92-2.98 (2H, m), 3.10-3.16 (1H, m), 3.63, 3.67 (2H, ABq, J = 16.4 Hz), 3.85-4.02 (2H, m), 4.99 (1H, d, J = 4.9 Hz), 5.60 (1H, dd, J = 9.0, 4.8 Hz), 6.04 (1H, d, J = 9.2 Hz), 7.30-7.36 (9H, m).
工程7 化合物148jの合成
 化合物148i(134mg, 0.29mmol)をDMF(1.3ml)に溶解させ、氷冷下にてイミダゾール(39mg,0.58mmol)、及びtert-ブチルジメチルクロロシラン(87mg, 0.58mmol)を順次加えた.反応液は室温にて30分間攪拌した後、酢酸エチルと水を加え、酢酸エチル層を分取した.得られた酢酸エチル層を水、飽和食塩水の順に洗浄し、硫酸マグネシウムにて乾燥した後、減圧下にて溶媒を留去した.得られた残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン/酢酸エチルにて溶出させ、所望の化合物を含む画分を集め、減圧下にて溶媒を留去する事により化合物148jを得た.収量153mg(92%)
1H-NMR (CDCl3) δ: 0.09 (6H, s), 0.88 (9H, s), 1.51 (9H, s), 1.56 (9H, s), 2.72 (1H, dd, J = 14.0, 12.0 Hz), 2.95-3.06 (3H, m), 3.63, 3.67 (2H, ABq, J = 16.2 Hz), 3.81 (1H, t, J = 10.2 Hz), 4.00 (1H, dd, J = 11.1, 4.8 Hz), 4.98 (1H, d, J = 4.5 Hz), 5.58 (1H, dd, J = 8.8, 4.8 Hz), 6.05 (1H, d, J = 8.3 Hz), 7.32-7.40 (5H, m).
工程8 化合物148lの合成
 五塩化リン(72mg, 0.35mmol)を塩化メチレン(1ml)に懸濁させ、氷冷下にてピリジン(31mg,0.38mmol)を加え、氷冷にて15分間攪拌した.反応液に化合物148j(100mg, 0.17mmol)を加え、氷冷にて30分間攪拌した後、予め氷冷したメタノール(3ml)中に注加した.溶液は氷冷下30分間攪拌した後、ジクロロメタンと水にて希釈し、ジクロロメタン層を分取した.得られたジクロロメタン層を水、飽和食塩水の順に洗浄し、硫酸マグネシウムにて乾燥し、アミノ体のジクロロメタン 溶液を得た.
一方、化合物148k(104mg, 0.26mmol)をジメチルアセトアミド(1ml)に溶解させ、-20℃にてトリエチルアミン(46μl, 0.33mmol)、及び塩化メタンスルフォニル(23μl, 0.30mmol)を順次加え-15℃にて20分間攪拌した.この溶液を上述のアミノ体のジクロロメタン溶液に氷冷下にて加え、同温にて15分間攪拌した.反応液は減圧下濃縮し希塩酸を加えた後酢酸エチルにて抽出した.得られた溶液は水、重曹水、飽和食塩水の順に洗浄し、硫酸マグネシウムにて乾燥した後、減圧下にて溶媒を留去した.残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン/酢酸エチルにて溶出させ、所望の化合物を含む画分を集め、減圧下にて溶媒を留去する事により化合物148lを得た.収量117mg(80%)
1H-NMR (CDCl3) δ: 0.08 (6H, s), 0.88 (9H, s), 1.51-1.61 (27H, m), 2.77 (1H, dd, J = 15.4, 12.6 Hz), 2.99-3.06 (3H, m), 3.82 (1H, t, J = 10.5 Hz), 4.03 (1H, dd, J = 11.0, 4.9 Hz), 4.68-4.77 (3H, m), 5.10 (1H, d, J = 4.8 Hz), 5.72 (1H, dd, J = 8.5, 4.9 Hz), 7.37 (1H, s), 8.10 (1H, br s), 8.65 (1H, d, J = 8.3 Hz).
工程9 化合物148mの合成
 化合物148l(114mg, 0.14mmol)をジクロロメタン(1.1ml)に溶解させ、-78℃にてm-クロロ過安息香酸(36mg,0.14mmol)のジクロロメタン(0.6ml)溶液を加えた.反応液は-78℃にて20分間攪拌した後、酢酸エチルとチオ硫酸ナトリウム水溶液を加え減圧下濃縮後、酢酸エチル層を分取した.得られた酢酸エチル層を重曹水、飽和食塩水の順に洗浄し、硫酸マグネシウムにて乾燥した後、減圧下にて溶媒を留去した.得られた残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン/酢酸エチルにて溶出させ、所望の化合物を含む画分を集め、減圧下にて溶媒を留去する事により化合物148mを得た.収量97mg(84%)
1H-NMR (CDCl3) δ: 0.09 (6H, s), 0.87-0.90 (9H, m), 1.38-1.60 (27H, m), 2.46 (1H, dd, J = 14.2, 13.1 Hz), 3.09 (1H, td, J = 7.7, 4.3 Hz), 3.56 (1H, dd, J = 14.6, 4.8 Hz), 3.72-3.79 (1H, m), 3.86 (1H, dd, J = 11.5, 8.2 Hz), 3.96-4.02 (1H, m), 4.56 (1H, d, J = 4.9 Hz), 4.72, 4.73 (2H, ABq, J = 11.0 Hz), 5.94 (1H, dd, J = 9.3, 5.0 Hz), 7.35 (1H, s), 8.33 (1H, d, J = 9.4 Hz).
工程10 化合物I-148の合成
化合物148m(95mg, 0.11mmol)を塩化メチレン(1.9ml)に溶解させ、-30℃にてアニソール(121μl, 1.11mmol)、次いで2M/L-塩化アルミニウム-ニトロメタン溶液(554μl, 1.11mmol)を加え、-20℃にて30分間攪拌した.反応液にイソプロピルエーテル、氷水、及びアセトニトリルを加え、水層を分取した.得られた水溶液にHP20SS樹脂3mlを加え、減圧下濃縮した後、HP20SS、ODSの順に連結させたカラムにてクロマトグラフィーに付した.水/アセトニトリルにて溶出させ、所望の化合物を含む画分を集め、減圧下にて溶媒を濃縮後、凍結乾燥する事により化合物I-148を得た.収量26mg(38%)
1H-NMR (D2O) δ: 2.90 (1H, t, J = 13.1 Hz), 3.34 (1H, d, J = 4.8 Hz), 3.67 (2H, dt, J = 18.2, 7.2 Hz), 3.84 (1H, dd, J = 12.0, 7.8 Hz), 3.97 (1H, dd, J = 12.0, 5.0 Hz), 5.00 (1H, d, J = 4.8 Hz), 5.88 (1H, d, J = 4.8 Hz), 7.23 (1H, s).
LC/MS(測定条件A):RT:0.36min、[M+H]=532
元素分析:C17H17N5O11S2(H2O)3.4
計算値C: 34.35%, H: 4.05%, N: 11.82%, S: 10.82%.
実測値C: 34.23%, H: 3.89%, N: 11.93%, S: 11.16%.
(実施例54)
Synthesis of Compound I-148
Figure JPOXMLDOC01-appb-C000041

Step 1 Synthesis of Compound 148c Compound 148a (3.49 g, 18.2 mmol) was dissolved in DMF (7 ml), Compound 148b (6.83 g, 18.16 mmol) was added, and the mixture was stirred at 60 ° C. overnight. . Ethyl acetate and water were sequentially added to the reaction solution, and the ethyl acetate layer was separated. The obtained ethyl acetate solution was washed in turn with water and saturated brine, dried over magnesium sulfate, and the solvent was distilled off under reduced pressure. The obtained residue was subjected to silica gel column chromatography and eluted with hexane / ethyl acetate. The fractions containing the desired compound were collected and the solvent was distilled off under reduced pressure to give compound 148c. Yield 6.56 g (64%).
1 H-NMR (CDCl 3 ) δ: 0.94 (9H, s), 1.86-1.90 (1H, m), 1.97-1.99 (1H, m), 2.86-2.95 (1H, m), 3.93-4.01 (2H, m), 4.94 (2H, s), 5.46-5.49 (1H, m), 7.19-7.70 (20H, m).
Step 2 Synthesis of Compound 148d Compound 148c (325 mg, 0.57 mmol) was dissolved in DMF (2 ml), and tert-butyldimethylchlorosilane (86 mg, 0.57 mmol) and imidazole (39 mg, 0.57 mmol) were added under ice cooling. Were sequentially added, followed by stirring at room temperature for 1 hour. Ethyl acetate and water were sequentially added to the reaction solution, and the ethyl acetate layer was separated. The obtained ethyl acetate solution was washed in turn with water and saturated brine, dried over magnesium sulfate, and the solvent was evaporated under reduced pressure to give compound 148d. Yield 381 mg (98%).
1 H-NMR (CDCl 3 ) δ: 0.10 (6H, s), 0.79 (9H, s), 1.43-1.45 (2H, m), 1.61 (9H, s), 2.84-2.85 (1H, m), 3.67 -3.68 (2H, m), 4.93-4.95 (2H, m), 7.30-7.70 (20H, m).
Step 3 Synthesis of Compound 148e Compound 148d (29.63 g, 39 mmol) was dissolved in dichloromethane (444 ml), and ozone gas was passed at −78 ° C. until the solution colored blue. Next, dimethyl sulfide (8.66 ml, 117 mmol) was added to the reaction solution, followed by stirring while gradually raising the temperature to room temperature. The reaction solution was evaporated under reduced pressure, the resulting residue was subjected to silica gel column chromatography, eluted with hexane / ethyl acetate, and the fractions containing the desired compound were collected, and the solvent was removed under reduced pressure. Was distilled off to obtain Compound 148e. Yield 10.83 g (64%).
1 H-NMR (CDCl 3 ) δ: -0.09 (6H, t, J = 4.0 Hz), 0.75 (9H, d, J = 2.8 Hz), 1.44 (9H, s), 2.92 (1H, dd, J = 18.8, 5.3 Hz), 3.05 (1H, ddd, J = 11.7, 6.7, 3.8 Hz), 3.25 (1H, dd, J = 18.8, 8.0 Hz), 3.71 (1H, dd, J = 9.9, 4.6 Hz), 3.79 (1H, dd, J = 9.9, 5.8 Hz), 5.03 (2H, s), 7.22-7.25 (5H, m).
Step 4 Synthesis of Compound 148f Compound 148e (8.25 g, 18.9 mmol) was dissolved in dichloromethane (83 ml), bis (dimethylamino) methane (10.31 ml, 76 mmol) was added under ice cooling, and anhydrous A solution of acetic acid (8.93 ml, 94 mmol) in dichloromethane (15 ml) was added dropwise over 1 hour. A solution of acetic acid (7.56 ml, 132 mmol) in dichloromethane (10 ml) was further added dropwise to the reaction solution over 20 minutes, followed by stirring overnight at room temperature. Hexane was added to the reaction solution and concentrated under reduced pressure to remove dichloromethane. Water was added to the resulting solution to separate the hexane layer. The hexane layer was washed with water, sodium bicarbonate water and saturated brine in that order, dried over magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain Compound 148f. Yield 7.9 g (93%).
1 H-NMR (CDCl 3 ) δ: -0.09 (6H, s), 0.74 (10H, s), 1.46 (9H, s), 3.75-3.85 (3H, m), 5.02, 5.05 (2H, ABq, J = 12.4 Hz), 6.21 (1H, s), 6.36 (1H, s), 7.20-7.27 (5H, m).
Step 5 Synthesis of Compound 148h Compound 148f (7.88 g, 17.56 mmol) was dissolved in DMF (79 ml), compound 148 g (5.40 g, 22.8 mmol) and then triethylamine (0.487 ml, 3.51 mmol) was added and stirred for 2 hours. Ethyl acetate and dilute hydrochloric acid were added to the reaction solution, and the ethyl acetate layer was separated. The obtained solution was washed with water and saturated brine in that order, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure. The obtained residue was subjected to silica gel column chromatography and eluted with hexane / ethyl acetate. Fractions containing the desired compound were collected, and the solvent was distilled off under reduced pressure to convert compound 148h into several isomers. Obtained as a mixture of bodies. 7.35 g (61%).
LC / MS (measurement condition A): RT: 3.19 min, [M + H] = 685
Step 6 Synthesis of Compound 148i The isomer mixture of Compound 148h (2.74 g, 4 mmol) obtained in Step 5 was dissolved in methanol (27 ml), and 10% -palladium carbon (2.13 g, 2 mmol) was added. The mixture was stirred overnight under a hydrogen atmosphere of 5 atm. The insoluble material was filtered through Celite, and toluene was added to the resulting solution, and then the solvent was distilled off under reduced pressure. The obtained residue was dissolved in dichloromethane (19 ml), and EDC hydrochloride was added under ice cooling, followed by stirring at room temperature for 1 hour. The reaction solution was evaporated under reduced pressure, ethyl acetate and water were added, and the ethyl acetate layer was separated. The obtained ethyl acetate layer was washed with water and saturated brine in that order and dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure. The obtained residue was subjected to silica gel column chromatography and eluted with hexane / ethyl acetate. Fractions containing the desired compound were collected and the solvent was distilled off under reduced pressure to obtain Compound 148i. Yield 136 g (7%).
1 H-NMR (CDCl 3 ) δ: 1.51 (9H, s), 1.56 (9H, s), 2.13 (1H, dd, J = 6.8, 5.1 Hz), 2.75 (1H, dd, J = 14.5, 12.1 Hz ), 2.92-2.98 (2H, m), 3.10-3.16 (1H, m), 3.63, 3.67 (2H, ABq, J = 16.4 Hz), 3.85-4.02 (2H, m), 4.99 (1H, d, J = 4.9 Hz), 5.60 (1H, dd, J = 9.0, 4.8 Hz), 6.04 (1H, d, J = 9.2 Hz), 7.30-7.36 (9H, m).
Step 7 Synthesis of Compound 148j Compound 148i (134 mg, 0.29 mmol) was dissolved in DMF (1.3 ml), imidazole (39 mg, 0.58 mmol), and tert-butyldimethylchlorosilane (87 mg, 0) under ice cooling. .58 mmol) was added sequentially. The reaction solution was stirred at room temperature for 30 minutes, and then ethyl acetate and water were added to separate the ethyl acetate layer. The obtained ethyl acetate layer was washed with water and saturated brine in that order and dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure. The obtained residue was subjected to silica gel column chromatography and eluted with hexane / ethyl acetate. The fractions containing the desired compound were collected and the solvent was distilled off under reduced pressure to obtain Compound 148j. Yield 153 mg (92%)
1 H-NMR (CDCl 3 ) δ: 0.09 (6H, s), 0.88 (9H, s), 1.51 (9H, s), 1.56 (9H, s), 2.72 (1H, dd, J = 14.0, 12.0 Hz ), 2.95-3.06 (3H, m), 3.63, 3.67 (2H, ABq, J = 16.2 Hz), 3.81 (1H, t, J = 10.2 Hz), 4.00 (1H, dd, J = 11.1, 4.8 Hz) , 4.98 (1H, d, J = 4.5 Hz), 5.58 (1H, dd, J = 8.8, 4.8 Hz), 6.05 (1H, d, J = 8.3 Hz), 7.32-7.40 (5H, m).
Step 8 Synthesis of Compound 148l Phosphorus pentachloride (72 mg, 0.35 mmol) was suspended in methylene chloride (1 ml), pyridine (31 mg, 0.38 mmol) was added under ice cooling, and the mixture was stirred for 15 minutes under ice cooling. did. Compound 148j (100 mg, 0.17 mmol) was added to the reaction mixture, and the mixture was stirred for 30 minutes under ice cooling, and then poured into methanol (3 ml) that had been ice-cooled in advance. The solution was stirred for 30 minutes under ice cooling, then diluted with dichloromethane and water, and the dichloromethane layer was separated. The obtained dichloromethane layer was washed with water and saturated brine in that order, and dried over magnesium sulfate to obtain an amino form of a dichloromethane solution.
Meanwhile, compound 148k (104 mg, 0.26 mmol) was dissolved in dimethylacetamide (1 ml), and triethylamine (46 μl, 0.33 mmol) and methanesulfonyl chloride (23 μl, 0.30 mmol) were sequentially added at −20 ° C. The mixture was stirred at 15 ° C. for 20 minutes. This solution was added to the above-mentioned amino compound in dichloromethane under ice-cooling and stirred at the same temperature for 15 minutes. The reaction mixture was concentrated under reduced pressure, diluted hydrochloric acid was added, and the mixture was extracted with ethyl acetate. The resulting solution was washed with water, aqueous sodium bicarbonate and saturated brine in that order, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography and eluted with hexane / ethyl acetate. Fractions containing the desired compound were collected and the solvent was distilled off under reduced pressure to obtain compound 148l. Yield 117 mg (80%)
1 H-NMR (CDCl 3 ) δ: 0.08 (6H, s), 0.88 (9H, s), 1.51-1.61 (27H, m), 2.77 (1H, dd, J = 15.4, 12.6 Hz), 2.99-3.06 (3H, m), 3.82 (1H, t, J = 10.5 Hz), 4.03 (1H, dd, J = 11.0, 4.9 Hz), 4.68-4.77 (3H, m), 5.10 (1H, d, J = 4.8 Hz), 5.72 (1H, dd, J = 8.5, 4.9 Hz), 7.37 (1H, s), 8.10 (1H, br s), 8.65 (1H, d, J = 8.3 Hz).
Step 9 Synthesis of Compound 148m Compound 148l (114 mg, 0.14 mmol) was dissolved in dichloromethane (1.1 ml) and m-chloroperbenzoic acid (36 mg, 0.14 mmol) in dichloromethane (0.6 ml) at −78 ° C. ) The solution was added. The reaction solution was stirred at −78 ° C. for 20 minutes, ethyl acetate and an aqueous sodium thiosulfate solution were added, and the mixture was concentrated under reduced pressure, and the ethyl acetate layer was separated. The obtained ethyl acetate layer was washed with sodium bicarbonate water and saturated brine in that order and dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure. The obtained residue was subjected to silica gel column chromatography and eluted with hexane / ethyl acetate. Fractions containing the desired compound were collected and the solvent was distilled off under reduced pressure to obtain compound 148m. Yield 97 mg (84%)
1 H-NMR (CDCl 3 ) δ: 0.09 (6H, s), 0.87-0.90 (9H, m), 1.38-1.60 (27H, m), 2.46 (1H, dd, J = 14.2, 13.1 Hz), 3.09 (1H, td, J = 7.7, 4.3 Hz), 3.56 (1H, dd, J = 14.6, 4.8 Hz), 3.72-3.79 (1H, m), 3.86 (1H, dd, J = 11.5, 8.2 Hz), 3.96-4.02 (1H, m), 4.56 (1H, d, J = 4.9 Hz), 4.72, 4.73 (2H, ABq, J = 11.0 Hz), 5.94 (1H, dd, J = 9.3, 5.0 Hz), 7.35 (1H, s), 8.33 (1H, d, J = 9.4 Hz).
Step 10 Synthesis of Compound I-148 Compound 148m (95 mg, 0.11 mmol) was dissolved in methylene chloride (1.9 ml), anisole (121 μl, 1.11 mmol) at −30 ° C., and then 2M / L-aluminum chloride. -Nitromethane solution (554 μl, 1.11 mmol) was added and stirred at -20 ° C for 30 minutes. Isopropyl ether, ice water, and acetonitrile were added to the reaction solution, and the aqueous layer was separated. After adding 3 ml of HP20SS resin to the obtained aqueous solution and concentrating under reduced pressure, it was chromatographed on a column connected in the order of HP20SS and ODS. Eluting with water / acetonitrile, the fractions containing the desired compound were collected, and the solvent was concentrated under reduced pressure, followed by lyophilization to obtain Compound I-148. Yield 26 mg (38%)
1 H-NMR (D 2 O) δ: 2.90 (1H, t, J = 13.1 Hz), 3.34 (1H, d, J = 4.8 Hz), 3.67 (2H, dt, J = 18.2, 7.2 Hz), 3.84 (1H, dd, J = 12.0, 7.8 Hz), 3.97 (1H, dd, J = 12.0, 5.0 Hz), 5.00 (1H, d, J = 4.8 Hz), 5.88 (1H, d, J = 4.8 Hz) , 7.23 (1H, s).
LC / MS (measurement condition A): RT: 0.36 min, [M + H] = 532
Elemental analysis: C17H17N5O11S2 (H2O) 3.4
Calculated C: 34.35%, H: 4.05%, N: 11.82%, S: 10.82%.
Found C: 34.23%, H: 3.89%, N: 11.93%, S: 11.16%.
(Example 54)
以下に中間体である化合物1B,4A,5A,9A,10A,33A,34A,41A,53A,および59Aの合成法を示す。
(化合物1Bの合成)
Figure JPOXMLDOC01-appb-C000042

工程1 化合物87bの合成
US20140086846に記載の方法で合成した化合物87a(3.15g、14mmol)を用いて、実施例34の工程3と同様の手法で87bを合成した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル)に付し、化合物87bを含む粗生成物(2.1g)を得た。
MS (m+1) =370、1.96分、測定条件A
工程2 化合物1Bの合成
 工程1で得られた化合物87bを含む粗生成物(2.1g、5.70mmol相当)を用いて、実施例34の工程4と同様の手法で化合物1Bの粗生成物を合成した。化合物1Bの粗生成物(2.8g)は精製することなく次の反応に用いた。
MS (m+1) =494、1.82分、測定条件A
(化合物4Aの合成)
Figure JPOXMLDOC01-appb-C000043

工程1 化合物89bの合成
Tetrahedron、61(7)、1827‐1833;2005に記載の方法で合成した化合物89a(5.2g、15.5mmol)を用いて、実施例34の工程3と同様の手法で、化合物89bの粗生成物を得た。化合物89bの粗生成物(8.7g)は精製することなく次の反応に用いた。
MS (m+1) =480、3.68分、測定条件A
工程2 化合物4Aの合成
 工程1で得られた化合物89b(7.2g、15mmol相当)を用いて、実施例34の工程4と同様の手法で化合物4Aの粗生成物を合成した。化合物4Aの粗生成物(8.7g)は精製することなく次の反応に用いた。
MS (m+1) =604、3.49分、測定条件A
(化合物5Aの合成)
Figure JPOXMLDOC01-appb-C000044

工程1 化合物90bの合成
Tetrahedron,61(7),1827-1833;2005に記載の方法で合成した化合物90aを原料として化合物90b(6.9g、収率91%)を合成した。
1H-NMR (CDCl3) δ: 0.07 (12H, s), 0.90 (18H, s), 1.61-1.74 (2H, m), 3.02 (1H, d, J = 3.0 Hz), 3.51 (1H, dd, J = 10.0, 6.5 Hz), 3.59 (1H, dd, J = 10.0, 4.9 Hz), 3.87-3.76 (3H, m).
工程2 化合物90cの合成
 工程1で得られた化合物90b(7.2g、15mmol相当)を用いて、実施例34の工程3と同様の手法で化合物90cの粗生成物を合成した。化合物90cの粗生成物(8.7g)は精製することなく次の反応に用いた。
MS (m+1) =480、3.68分、測定条件A
工程3 化合物5Aの合成
 工程2で得られた化合物90c(10.1g、21mmol相当)を用いて、実施例34の工程4と同様の方法で化合物5Aの粗生成物を合成した。化合物5Aの粗生成物(11.2g)は精製することなく次の反応に用いた。
MS (m+1) =604、3.49分、測定条件A

(化合物9Aの合成)
Figure JPOXMLDOC01-appb-C000045

工程1 化合物9Aの合成
WO2012059041に記載の方法で合成した化合物95a(3.35g、10mmol)を用いて、実施例34の工程4と同様の手法で化合物9Aの粗生成物を合成した。得られた化合物9Aの粗生成物(4.1g)は精製することなく次の反応に用いた。
MS(M+1)=460、2.68分、測定条件A
(化合物10Aの合成)
Figure JPOXMLDOC01-appb-C000046

工程1 化合物10Aの合成
WO2012059041に記載の方法で合成した化合物96a(3.35g、10mmol)を用いて、実施例34の工程4と同様の方法で化合物10Aの粗生成物を合成した。得られた化合物10Aの粗生成物は精製することなく次の反応に用いた。
MS(M+1)=460、RT=2.68分、測定条件A
(化合物33Aの合成)
Figure JPOXMLDOC01-appb-C000047

工程1 化合物119bの合成
D-スレオニン(15g、126mmol)の水(222mL)溶液に、臭化カリウム(45g、378mmol)、9M硫酸水溶液(56mL、504mmol)を加え、-20℃にて亜硝酸ナトリウム(13.03g、189mmol)を発泡に留意して少しずつ投入する。試薬を投入後、得られた溶液を室温で終夜撹拌した後、氷冷下で尿素(22.69g、378mmol)を加え、5分間撹拌し、飽和食塩水を加え、酢酸エチルで7回抽出する。得られた有機層を無水硫酸マグネシウムにて乾燥し、無機物を濾過により除き、減圧濃縮して、化合物119b(20.8g、90.3%)を黄色オイルの粗生成物として得た。
1H-NMR (CDCl3) δ: 1.36 (3H, d, J = 6.1 Hz), 4.14-4.18 (1H, m), 4.29 (1H, d, J = 4.4 Hz).
工程2 化合物119cの合成
化合物119b(20.8g、114mmol)のテトラヒドロフラン(125mL)溶液に、氷冷下でジフェニルジアゾメタン(22.08g、114mmol)のテトラヒドロフラン(83mL)溶液を1時間かけて滴下する。試薬を投入後、得られた溶液を室温で終夜撹拌した後、減圧濃縮した。得られた粗生成物はシリカゲルカラムクロマトグラフィー(ヘキサンー酢酸エチル)により精製し、化合物119c(32.57g、82.1%)を黄色オイルとして得た。
1H-NMR (CDCl3) δ: 1.23-1.28 (3H, m), 2.79 (1H, d, J = 4.0 Hz), 4.12-4.15 (1H, m), 4.33 (1H, d, J = 4.9 Hz), 6.91 (1H, s), 7.29-7.38 (10H, m).
工程3 化合物119dの合成
ヒドロキシフタルイミド(15.47g、112mmol)の酢酸エチル(163mL)および水(98mL)溶液に、炭酸カリウム(15.47g、112mmol)、テトラブチルアンモニウムブロミド(3.01g、9.33mmol)、化合物119c(32.57g、93mmol)を加え、得られた溶液を室温で終夜激しく撹拌した後、氷冷した水を加え、酢酸エチルで抽出する。得られた有機層を10%炭酸カリウム水溶液で3回、水、飽和食塩水で順に洗浄し、無水硫酸マグネシウムにて乾燥し、無機物を濾過により除き、減圧濃縮した。得られた粗生成物はシリカゲルカラムクロマトグラフィー(ヘキサンー酢酸エチル)により精製し、化合物119d(6.28g、15.6%)を白色固体として得た。
1H-NMR (CDCl3) δ: 1.28 (3H, d, J = 6.7 Hz), 3.46 (1H, br s), 4.28 (1H, br s), 4.76 (1H, d, J = 3.5 Hz), 7.02 (1H, s), 7.20-7.46 (10H, m), 7.75-7.77 (2H, m), 7.80-7.84 (2H, m).
工程4 化合物33Aの合成
実施例35の工程4と同様にして、化合物119dを用いて、化合物33A(8.7mg、100%)を白色フォームとして得た。
MS(M+1)=556、RT=2.14min、測定条件A
(化合物34Aの合成)
Figure JPOXMLDOC01-appb-C000048

工程1 化合物120bの合成
化合物33Aの合成の工程1と同様にして、化合物120aを用いて、化合物120b(8.6g、67.5%)を黄色オイルの粗生成物として得た。
1H-NMR (CDCl3) δ: 1.85 (3H, d, J = 7.0 Hz), 4.41 (1H, q, J = 6.9 Hz).
工程2 化合物120cの合成
化合物120b(8.6g、56.2mmol)の1,4-ジオキサン(86mL)溶液に、二炭酸ジ-tert-ブチル(17mL、73.1mmol)、炭酸アンモニウム(6.75g、70.3mmol)、ピリジン(2.27mL、28.1mmol)を加え、得られた溶液を室温で5日間撹拌した後、減圧乾燥し、水を加え、酢酸エチルで抽出する。得られた有機層を水、飽和食塩水で順に洗浄し、無水硫酸マグネシウムにて乾燥し、無機物を濾過により除き、減圧濃縮して、得られた白色固体にジイソプロピルエーテルを加えて、白色サスペンジョンとして、室温で15分間撹拌して、析出した白色固体を濾取し化合物120c(2.53g、29.7%)を白色固体として得た。
1H-NMR (CDCl3) δ: 1.89 (3H, d, J = 7.0 Hz), 4.41 (1H, q, J = 7.1 Hz), 5.88 (1H, br s), 6.32 (1H, br s). 
工程3 化合物120dの合成
化合物33Aの合成の工程3と同様にして、化合物120cを用いて、化合物120d(436.4mg、11.2%)を白色固体として得た。
1H-NMR (CDCl3) δ: 1.72 (3H, d, J = 7.0 Hz), 4.77 (1H, q, J = 7.0 Hz), 5.52 (1H, br s), 7.69 (1H, br s), 7.79-7.81 (2H, m), 7.86-7.88 (2H, m). 
工程4 化合物34Aの合成
実施例34の工程4と同様にして、化合物120dを用いて、化合物34A(437mg、65.4%)を白色固体の粗生成物として得た。
MS(M+1)=359、RT=1.01min、測定条件A
(化合物41Aの合成)
Figure JPOXMLDOC01-appb-C000049

工程1 化合物127bの合成
化合物38Aの合成の工程1と同様にして、化合物127aを用いて、化合物127b(998.9mg、38.0%)を白色固体として得た。
1H-NMR (CDCl3) δ: 1.45 (3H, d, J = 6.5 Hz), 3.56-3.58 (2H, m), 3.72-3.74 (1H, m), 4.32-4.38 (1H, m), 7.79-7.81 (2H, m), 7.85-7.87 (2H, m). 
工程2 化合物41Aの合成
実施例34の工程4と同様にして、化合物127bを用いて、化合物41A(1.0695g、68.6%)を白色固体の粗生成物として得た。
MS(M+1)=346、RT=1.15min、測定条件A
(化合物53Aの合成)
Figure JPOXMLDOC01-appb-C000050

工程1 化合物142bの合成
文献Bioorganic & Medicinal Chemistry, 19(7), 2114-2124; 2011に記載の方法で得た化合物142a(5.23g、15.5mmol)を用い実施例34の工程3と同様の方法で化合物142b(5.13g、収率69%)を得た。
1H-NMR (CDCl3) δ: 7.85-7.80 (m, 2H), 7.77-7.74 (m, 2H), 7.41 (d, J = 11.7 Hz, 6H), 7.35-7.18 (m, 9H), 4.87-4.63 (m, 2H), 4.50-4.42 (m, 1H), 3.61 (dd, J = 10.8, 5.1 Hz, 1H), 3.56-3.47 (m, 1H).
工程2 化合物53Aの合成
化合物142b(2.41g、5.00mmol)を用い、実施例34の工程4の方法を用い、得られた粗精製物に酢酸エチルを加え、得られた固体をろ取することにより化合物53A(1.11g、収率37%)を得た。
1H-NMR (CDCl3) δ: 7.41 (d, J = 7.0 Hz, 6H), 7.28-7.17 (m, 10H), 4.73-4.62 (m, 2H), 4.61-4.54 (m, 1H), 3.45-3.33 (m, 2H), 1.52 (s, 9H).
(中間体59Aの合成)
Figure JPOXMLDOC01-appb-C000051

工程1 化合物153bの合成
Journal of Organic Chemistry, 78(14), 7281-7287; 2013の方法で得た化合物153a(7.91g、50.0mmol)をアセトン(80.0mL)と精製水(20.0mL)に溶解し、オスミウム酸(IV)カリウム二水和物(0.184g、0.500mol)とN-メチルモルホリン N-オキシド(11.7g、100mmol)を加え、室温で1時間撹拌した。チオ硫酸ナトリウム(37.2g、150mmol)水溶液を加え、アセトンを留去した。水層より酢酸エチルとテトラヒドロフランの混合液で6回目的物を抽出し、集めた有機層を無水硫酸マグネシウムで乾燥し、乾燥材をろ過により除去し、溶媒を減圧下留去し、化合物153b(7.5g、39.1mmol)を得た。
1H-NMR (DMSO-D6) δ: 4.64 (s, 1H), 4.60 (dd, J = 6.7, 5.4 Hz, 2H), 3.50 (dd, J = 6.7, 11.0 Hz, 2H), 3.39 (dd, J = 5.4, 11.0 Hz, 2H), 1.40 (s, 9H).
工程2 化合物153cの合成
化合物153b(4.18g、21.8mmol)をジクロロメタンに懸濁させ、p-アニスアルデヒドジメチルアセタール(7.95g、43.6mmol)と10-カンファースルホン酸(0.507g、2.18mmol)を加え、2時間30分間加熱還流した。反応液を室温に冷却し、飽和重曹水を加えた。ジクロロメタンを留去し、水層から目的物を酢酸エチルで抽出した。集めた有機層を精製水および飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、乾燥剤をろ過により除去し、溶媒を減圧下留去した。得られた残渣をシリカゲルクロマトグラフィーに付し、分離不可能な混合物として化合物153c(4.48g、収率66%)を得た。
MS(M+1):311.15;1.95min (測定条件A)
工程3 化合物153dの合成
化合物153c(4.48g、14.4mmol)をトルエン(50.0mL)に溶解し、フェノキシジフェニルホスフィン(8.03g、28.9mmol)とN-ヒドロキシフタルイミド(4.71g、28.9mmol)を加え、次いで40%アゾジカルボン酸ジエチル トルエン溶液(13.1mL、28.9mmol)を滴下した。室温で一昼夜撹拌し、不溶物を除去し、溶媒を留去し、得られた残渣をシリカゲルクロマトグラフィーに付し、化合物153d(4.68g、収率71%)を得た。
MS(M+1):456.16;2.58(測定条件A)
工程4 化合物59Aの合成
化合物153d(4.68g、10.3mmol)を用い、実施例34の工程4の方法と同様の方法で反応を行い、得られた残渣をシリカゲルクロマトグラフィーに付し、5%トリエチルアミン 酢酸エチル溶液とメタノールで溶出し、目的物を含む分画を濃縮し、化合物59A(2.82g、収率40%)を得た。
(実施例55)
The synthesis method of compounds 1B, 4A, 5A, 9A, 10A, 33A, 34A, 41A, 53A, and 59A, which are intermediates, is shown below.
(Synthesis of Compound 1B)
Figure JPOXMLDOC01-appb-C000042

Step 1 Synthesis of Compound 87b
Using compound 87a (3.15 g, 14 mmol) synthesized by the method described in US20140086846, 87b was synthesized in the same manner as in Step 3 of Example 34. The obtained crude product was subjected to silica gel column chromatography (hexane-ethyl acetate) to obtain a crude product (2.1 g) containing compound 87b.
MS (m + 1) = 370, 1.96 minutes, measurement condition A
Step 2 Synthesis of Compound 1B Using the crude product (2.1 g, equivalent to 5.70 mmol) containing Compound 87b obtained in Step 1, the crude product of Compound 1B was prepared in the same manner as in Step 4 of Example 34. Was synthesized. The crude product of compound 1B (2.8 g) was used in the next reaction without purification.
MS (m + 1) = 494, 1.82 minutes, measurement condition A
(Synthesis of Compound 4A)
Figure JPOXMLDOC01-appb-C000043

Step 1 Synthesis of Compound 89b The same method as in Step 3 of Example 34 using Compound 89a (5.2 g, 15.5 mmol) synthesized by the method described in Tetrahedron, 61 (7), 1827-1833; 2005 Gave a crude product of compound 89b. The crude product of compound 89b (8.7 g) was used in the next reaction without purification.
MS (m + 1) = 480, 3.68 minutes, measurement condition A
Step 2 Synthesis of Compound 4A A crude product of Compound 4A was synthesized in the same manner as in Step 4 of Example 34 using Compound 89b (7.2 g, corresponding to 15 mmol) obtained in Step 1. The crude product of compound 4A (8.7 g) was used in the next reaction without purification.
MS (m + 1) = 604, 3.49 minutes, measurement condition A
(Synthesis of Compound 5A)
Figure JPOXMLDOC01-appb-C000044

Step 1 Synthesis of Compound 90b Compound 90b (6.9 g, yield 91%) was synthesized from compound 90a synthesized by the method described in Tetrahedron, 61 (7), 1827-1833; 2005.
1 H-NMR (CDCl 3 ) δ: 0.07 (12H, s), 0.90 (18H, s), 1.61-1.74 (2H, m), 3.02 (1H, d, J = 3.0 Hz), 3.51 (1H, dd , J = 10.0, 6.5 Hz), 3.59 (1H, dd, J = 10.0, 4.9 Hz), 3.87-3.76 (3H, m).
Step 2 Synthesis of Compound 90c Using the compound 90b obtained in Step 1 (7.2 g, corresponding to 15 mmol), a crude product of Compound 90c was synthesized in the same manner as in Step 3 of Example 34. The crude product of compound 90c (8.7 g) was used in the next reaction without purification.
MS (m + 1) = 480, 3.68 minutes, measurement condition A
Step 3 Synthesis of Compound 5A Using the compound 90c (10.1 g, equivalent to 21 mmol) obtained in Step 2, a crude product of Compound 5A was synthesized in the same manner as in Step 4 of Example 34. The crude product of compound 5A (11.2 g) was used in the next reaction without purification.
MS (m + 1) = 604, 3.49 minutes, measurement condition A

(Synthesis of Compound 9A)
Figure JPOXMLDOC01-appb-C000045

Step 1 Synthesis of Compound 9A A crude product of Compound 9A was synthesized in the same manner as in Step 4 of Example 34 using Compound 95a (3.35 g, 10 mmol) synthesized by the method described in WO2012059041. The obtained crude product of compound 9A (4.1 g) was used in the next reaction without purification.
MS (M + 1) = 460, 2.68 minutes, measurement condition A
(Synthesis of Compound 10A)
Figure JPOXMLDOC01-appb-C000046

Step 1 Synthesis of Compound 10A A crude product of Compound 10A was synthesized in the same manner as in Step 4 of Example 34 using Compound 96a (3.35 g, 10 mmol) synthesized by the method described in WO2011059041. The obtained crude product of compound 10A was used in the next reaction without purification.
MS (M + 1) = 460, RT = 2.68 minutes, measurement condition A
(Synthesis of Compound 33A)
Figure JPOXMLDOC01-appb-C000047

Step 1 Synthesis of Compound 119b To a solution of D-threonine (15 g, 126 mmol) in water (222 mL) was added potassium bromide (45 g, 378 mmol), 9M aqueous sulfuric acid (56 mL, 504 mmol), and sodium nitrite at −20 ° C. (13.03 g, 189 mmol) are added little by little while paying attention to foaming. After the reagent was added, the resulting solution was stirred overnight at room temperature, then urea (22.69 g, 378 mmol) was added under ice cooling, the mixture was stirred for 5 minutes, saturated brine was added, and the mixture was extracted 7 times with ethyl acetate. . The obtained organic layer was dried over anhydrous magnesium sulfate, the inorganic substance was removed by filtration, and the filtrate was concentrated under reduced pressure to obtain Compound 119b (20.8 g, 90.3%) as a crude product of yellow oil.
1 H-NMR (CDCl 3 ) δ: 1.36 (3H, d, J = 6.1 Hz), 4.14-4.18 (1H, m), 4.29 (1H, d, J = 4.4 Hz).
Step 2 Synthesis of Compound 119c To a solution of Compound 119b (20.8 g, 114 mmol) in tetrahydrofuran (125 mL) is added dropwise a solution of diphenyldiazomethane (22.08 g, 114 mmol) in tetrahydrofuran (83 mL) over 1 hour under ice cooling. After adding the reagents, the resulting solution was stirred at room temperature overnight and then concentrated under reduced pressure. The obtained crude product was purified by silica gel column chromatography (hexane-ethyl acetate) to obtain Compound 119c (32.57 g, 82.1%) as a yellow oil.
1 H-NMR (CDCl 3 ) δ: 1.23-1.28 (3H, m), 2.79 (1H, d, J = 4.0 Hz), 4.12-4.15 (1H, m), 4.33 (1H, d, J = 4.9 Hz ), 6.91 (1H, s), 7.29-7.38 (10H, m).
Step 3 Synthesis of Compound 119d To a solution of hydroxyphthalimide (15.47 g, 112 mmol) in ethyl acetate (163 mL) and water (98 mL), potassium carbonate (15.47 g, 112 mmol), tetrabutylammonium bromide (3.01 g, 9. 33 mmol), compound 119c (32.57 g, 93 mmol) is added and the resulting solution is vigorously stirred overnight at room temperature, followed by addition of ice-cold water and extraction with ethyl acetate. The obtained organic layer was washed with a 10% aqueous potassium carbonate solution three times, water and saturated brine in that order, dried over anhydrous magnesium sulfate, the inorganic matter was removed by filtration, and the filtrate was concentrated under reduced pressure. The obtained crude product was purified by silica gel column chromatography (hexane-ethyl acetate) to obtain Compound 119d (6.28 g, 15.6%) as a white solid.
1 H-NMR (CDCl 3 ) δ: 1.28 (3H, d, J = 6.7 Hz), 3.46 (1H, br s), 4.28 (1H, br s), 4.76 (1H, d, J = 3.5 Hz), 7.02 (1H, s), 7.20-7.46 (10H, m), 7.75-7.77 (2H, m), 7.80-7.84 (2H, m).
Step 4 Synthesis of Compound 33A In the same manner as in Step 4 of Example 35, compound 33A (8.7 mg, 100%) was obtained as a white foam using compound 119d.
MS (M + 1) = 556, RT = 2.14 min, measurement condition A
(Synthesis of Compound 34A)
Figure JPOXMLDOC01-appb-C000048

Step 1 Synthesis of Compound 120b In the same manner as in Step 1 of the synthesis of Compound 33A, Compound 120b was used to obtain Compound 120b (8.6 g, 67.5%) as a crude product of yellow oil.
1 H-NMR (CDCl 3 ) δ: 1.85 (3H, d, J = 7.0 Hz), 4.41 (1H, q, J = 6.9 Hz).
Step 2 Synthesis of Compound 120c To a solution of Compound 120b (8.6 g, 56.2 mmol) in 1,4-dioxane (86 mL) was added di-tert-butyl dicarbonate (17 mL, 73.1 mmol), ammonium carbonate (6.75 g). 70.3 mmol), pyridine (2.27 mL, 28.1 mmol) are added, and the resulting solution is stirred at room temperature for 5 days, then dried under reduced pressure, water is added, and the mixture is extracted with ethyl acetate. The obtained organic layer was washed successively with water and saturated brine, dried over anhydrous magnesium sulfate, the inorganic matter was removed by filtration, concentrated under reduced pressure, and diisopropyl ether was added to the obtained white solid to obtain a white suspension. The mixture was stirred at room temperature for 15 minutes, and the precipitated white solid was collected by filtration to obtain Compound 120c (2.53 g, 29.7%) as a white solid.
1 H-NMR (CDCl 3 ) δ: 1.89 (3H, d, J = 7.0 Hz), 4.41 (1H, q, J = 7.1 Hz), 5.88 (1H, br s), 6.32 (1H, br s).
Step 3 Synthesis of Compound 120d In the same manner as in Step 3 of the synthesis of Compound 33A, Compound 120d (436.4 mg, 11.2%) was obtained as a white solid using Compound 120c.
1 H-NMR (CDCl 3 ) δ: 1.72 (3H, d, J = 7.0 Hz), 4.77 (1H, q, J = 7.0 Hz), 5.52 (1H, br s), 7.69 (1H, br s), 7.79-7.81 (2H, m), 7.86-7.88 (2H, m).
Step 4 Synthesis of Compound 34A In the same manner as in Step 4 of Example 34, Compound 34A (437 mg, 65.4%) was obtained as a white solid crude product using Compound 120d.
MS (M + 1) = 359, RT = 1.01 min, measurement condition A
(Synthesis of Compound 41A)
Figure JPOXMLDOC01-appb-C000049

Step 1 Synthesis of Compound 127b In the same manner as in Step 1 of the synthesis of Compound 38A, Compound 127b (998.9 mg, 38.0%) was obtained as a white solid using Compound 127a.
1 H-NMR (CDCl 3 ) δ: 1.45 (3H, d, J = 6.5 Hz), 3.56-3.58 (2H, m), 3.72-3.74 (1H, m), 4.32-4.38 (1H, m), 7.79 -7.81 (2H, m), 7.85-7.87 (2H, m).
Step 2 Synthesis of Compound 41A In the same manner as in Step 4 of Example 34, Compound 41A (1.0695 g, 68.6%) was obtained as a white solid crude product using Compound 127b.
MS (M + 1) = 346, RT = 1.15 min, measurement condition A
(Synthesis of Compound 53A)
Figure JPOXMLDOC01-appb-C000050

Step 1 Synthesis of Compound 142b As in Step 3 of Example 34, using Compound 142a (5.23 g, 15.5 mmol) obtained by the method described in Bioorganic & Medicinal Chemistry, 19 (7), 2114-2124; 2011 Thus, compound 142b (5.13 g, yield 69%) was obtained.
1 H-NMR (CDCl 3 ) δ: 7.85-7.80 (m, 2H), 7.77-7.74 (m, 2H), 7.41 (d, J = 11.7 Hz, 6H), 7.35-7.18 (m, 9H), 4.87 -4.63 (m, 2H), 4.50-4.42 (m, 1H), 3.61 (dd, J = 10.8, 5.1 Hz, 1H), 3.56-3.47 (m, 1H).
Step 2 Using compound 142b (2.41 g, 5.00 mmol) of compound 53A, using the method of Step 4 of Example 34, ethyl acetate was added to the obtained crude product, and the resulting solid was collected by filtration. This gave compound 53A (1.11 g, 37% yield).
1 H-NMR (CDCl 3 ) δ: 7.41 (d, J = 7.0 Hz, 6H), 7.28-7.17 (m, 10H), 4.73-4.62 (m, 2H), 4.61-4.54 (m, 1H), 3.45 -3.33 (m, 2H), 1.52 (s, 9H).
(Synthesis of Intermediate 59A)
Figure JPOXMLDOC01-appb-C000051

Step 1 Synthesis of Compound 153b
Journal of Organic Chemistry, 78 (14), 7281-7287; Compound 153a (7.91 g, 50.0 mmol) obtained by the method of 2013 was dissolved in acetone (80.0 mL) and purified water (20.0 mL), Potassium osmate (IV) dihydrate (0.184 g, 0.500 mol) and N-methylmorpholine N-oxide (11.7 g, 100 mmol) were added, and the mixture was stirred at room temperature for 1 hour. A sodium thiosulfate (37.2 g, 150 mmol) aqueous solution was added, and acetone was distilled off. The target product was extracted from the aqueous layer 6 times with a mixture of ethyl acetate and tetrahydrofuran, the collected organic layer was dried over anhydrous magnesium sulfate, the desiccant was removed by filtration, the solvent was evaporated under reduced pressure, and compound 153b ( 7.5 g, 39.1 mmol).
1 H-NMR (DMSO-D 6 ) δ: 4.64 (s, 1H), 4.60 (dd, J = 6.7, 5.4 Hz, 2H), 3.50 (dd, J = 6.7, 11.0 Hz, 2H), 3.39 (dd , J = 5.4, 11.0 Hz, 2H), 1.40 (s, 9H).
Step 2 Synthesis of Compound 153c Compound 153b (4.18 g, 21.8 mmol) was suspended in dichloromethane, p-anisaldehyde dimethyl acetal (7.95 g, 43.6 mmol) and 10-camphorsulfonic acid (0.507 g, 2.18 mmol) was added, and the mixture was heated to reflux for 2 hours and 30 minutes. The reaction solution was cooled to room temperature, and saturated aqueous sodium hydrogen carbonate was added. Dichloromethane was distilled off, and the target product was extracted from the aqueous layer with ethyl acetate. The collected organic layer was washed with purified water and saturated brine, dried over anhydrous magnesium sulfate, the desiccant was removed by filtration, and the solvent was evaporated under reduced pressure. The obtained residue was subjected to silica gel chromatography to obtain Compound 153c (4.48 g, yield: 66%) as an inseparable mixture.
MS (M + 1): 311.15; 1.95 min (measurement condition A)
Step 3 Synthesis of Compound 153d Compound 153c (4.48 g, 14.4 mmol) was dissolved in toluene (50.0 mL), phenoxydiphenylphosphine (8.03 g, 28.9 mmol) and N-hydroxyphthalimide (4.71 g, 28.9 mmol) was added, followed by dropwise addition of 40% diethyl azodicarboxylate in toluene (13.1 mL, 28.9 mmol). The mixture was stirred at room temperature for a whole day and night, the insoluble matter was removed, the solvent was distilled off, and the obtained residue was subjected to silica gel chromatography to obtain Compound 153d (4.68 g, yield 71%).
MS (M + 1): 456.16; 2.58 (measurement condition A)
Step 4 Using compound 153d (4.68 g, 10.3 mmol) of compound 59A, the reaction was carried out in the same manner as in Step 4 of Example 34, and the resulting residue was subjected to silica gel chromatography. Elution with% triethylamine ethyl acetate solution and methanol was performed, and the fraction containing the desired product was concentrated to obtain Compound 59A (2.82 g, yield 40%).
(Example 55)
化合物I-158の合成
Figure JPOXMLDOC01-appb-C000052

工程1、2 化合物158bの合成
化合物75k(340mg、1.0mmol)の酢酸エチル(5mL)溶液を-40℃まで冷却し、化合物46A(537mg、1.1mmol)、ジクロロリン酸フェニル(0.224mL、1.5mmol)、N-メチルモルホリン(0.220mL、2.0mmol)を順にゆっくりと加えた。-40℃で1時間攪拌した後、反応混合物に希塩酸水を加え、酢酸エチルで抽出した。有機層を、水、炭酸水素ナトリウム水溶液、飽和食塩水で順に洗浄し、無水硫酸マグネシウムにより乾燥した。ろ過後、ろ液を減圧濃縮することにより、化合物158aを黄色フォームとして得た。得られた化合物158aは精製せずにそのまま次の反応に用いた。
得られた化合物158a全量を用いて実施例35の工程15と同様の方法により、化合物158b(521mg、収率63%)を得た。
1H-NMR (CDCl3) δ: 0.04 (6H, s), 0.86 (9H, s), 1.23 (3H, d, J = 7.2 Hz), 1.54 (9H, s), 1.73 (3H, s), 1.78 (3H, s), 2.29 (1H, t, J = 13.8 Hz), 3.05 (1H, dd, J = 14.2, 7.0 Hz), 3.38-3.45 (1H, m), 3.70-3.73 (1H, m), 3.76-3.79 (2H, m), 4.09 (2H, d, J = 3.9 Hz), 4.63 (1H, q, J = 4.9 Hz), 4.82-4.89 (3H, m), 5.37-5.41 (1H, m), 6.04 (1H, dd, J = 9.7, 5.1 Hz), 7.31 (1H, s), 8.01 (1H, s), 8.75 (1H, s).
工程3 化合物I-158の合成
化合物158b(521mg、0.63mmol)を用いて実施例35の工程16と同様の方法により、化合物I-158(112mg、収率31%)を得た。
1H-NMR (D2O) δ: 1.19 (3H, d, J = 7.3 Hz), 2.74 (1H, t, J = 12.9 Hz), 3.19-3.26 (1H, m), 3.54-3.65 (2H, m), 4.01-4.10 (2H, m), 4.88 (1H, t, J = 4.1 Hz), 5.00 (1H, d, J = 4.8 Hz), 5.91 (1H, d, J = 4.8 Hz), 7.13 (1H, s).
MS (m+1) = 545、保持時間:0.27min、(測定条件A)
元素分析:C18H19N6NaO10S2(H2O)3.8
計算値:C,34.05; H,4.22; N,13.24; Na,3.62; S,10.10 (%)
実測値:C,34.10; H,4.13; N,13.18; Na,3.79; S,9.94 (%)
Synthesis of Compound I-158
Figure JPOXMLDOC01-appb-C000052

Step 1, Synthesis of Compound 158b Compound 75k (340 mg, 1.0 mmol) in ethyl acetate (5 mL) was cooled to −40 ° C., Compound 46A (537 mg, 1.1 mmol), phenyl dichlorophosphate (0.224 mL) 1.5 mmol) and N-methylmorpholine (0.220 mL, 2.0 mmol) were added slowly in order. After stirring at −40 ° C. for 1 hour, dilute aqueous hydrochloric acid was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed in turn with water, aqueous sodium hydrogen carbonate solution and saturated brine, and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure to obtain Compound 158a as a yellow foam. The obtained compound 158a was directly used in the next reaction without purification.
Compound 158b (521 mg, 63% yield) was obtained by the same method as in Step 15 of Example 35 using the total amount of compound 158a obtained.
1 H-NMR (CDCl 3 ) δ: 0.04 (6H, s), 0.86 (9H, s), 1.23 (3H, d, J = 7.2 Hz), 1.54 (9H, s), 1.73 (3H, s), 1.78 (3H, s), 2.29 (1H, t, J = 13.8 Hz), 3.05 (1H, dd, J = 14.2, 7.0 Hz), 3.38-3.45 (1H, m), 3.70-3.73 (1H, m) , 3.76-3.79 (2H, m), 4.09 (2H, d, J = 3.9 Hz), 4.63 (1H, q, J = 4.9 Hz), 4.82-4.89 (3H, m), 5.37-5.41 (1H, m ), 6.04 (1H, dd, J = 9.7, 5.1 Hz), 7.31 (1H, s), 8.01 (1H, s), 8.75 (1H, s).
Step 3 Synthesis of Compound I-158 Compound I-158 (112 mg, 31% yield) was obtained in the same manner as in Step 16 of Example 35 using Compound 158b (521 mg, 0.63 mmol).
1 H-NMR (D 2 O) δ: 1.19 (3H, d, J = 7.3 Hz), 2.74 (1H, t, J = 12.9 Hz), 3.19-3.26 (1H, m), 3.54-3.65 (2H, m), 4.01-4.10 (2H, m), 4.88 (1H, t, J = 4.1 Hz), 5.00 (1H, d, J = 4.8 Hz), 5.91 (1H, d, J = 4.8 Hz), 7.13 ( 1H, s).
MS (m + 1) = 545, Retention time: 0.27 min, (Measurement condition A)
Elemental analysis: C18H19N6NaO10S2 (H2O) 3.8
Calculated values: C, 34.05; H, 4.22; N, 13.24; Na, 3.62; S, 10.10 (%)
Found: C, 34.10; H, 4.13; N, 13.18; Na, 3.79; S, 9.94 (%)
上記の中間体を用いて、上記と同様の方法により、以下の化合物を合成した。
Figure JPOXMLDOC01-appb-T000053

Figure JPOXMLDOC01-appb-T000054

Figure JPOXMLDOC01-appb-T000055

Figure JPOXMLDOC01-appb-T000056
The following compounds were synthesized by the same method as above using the above intermediate.
Figure JPOXMLDOC01-appb-T000053

Figure JPOXMLDOC01-appb-T000054

Figure JPOXMLDOC01-appb-T000055

Figure JPOXMLDOC01-appb-T000056
上記と同様の方法により、以下の化合物を合成することができる。
Figure JPOXMLDOC01-appb-C000057
The following compounds can be synthesized by the same method as described above.
Figure JPOXMLDOC01-appb-C000057
試験例1
 本発明化合物のIn Vitro抗菌活性を確認した。
(試験方法)
最小発育阻止濃度 (MIC) の測定は、CLSI (Clinical and Laboratory Standards Institute) が推奨する方法に準じ、接種菌量は5×10 CFU/mL、試験培地はカチオン調整ミューラーヒントンブロスを用いて、微量液体希釈法により実施した。
使用した菌株は以下の表のとおりである。
Figure JPOXMLDOC01-appb-T000058

(結果)
試験結果を以下に示す。表中、阻害活性の数値の単位はμg/mLである。
Figure JPOXMLDOC01-appb-T000059
Test example 1
In vitro antibacterial activity of the compound of the present invention was confirmed.
(Test method)
The minimum inhibitory concentration (MIC) was measured according to the method recommended by CLSI (Clinical and Laboratory Standards Institute), the inoculum was 5 × 10 5 CFU / mL, and the test medium was cation-adjusted Mueller Hinton broth. It was carried out by a micro liquid dilution method.
The strains used are shown in the table below.
Figure JPOXMLDOC01-appb-T000058

(result)
The test results are shown below. In the table, the unit of the numerical value of the inhibitory activity is μg / mL.
Figure JPOXMLDOC01-appb-T000059
試験例1-1
本発明化合物のPBP(Penicillin Binding Protein)阻害活性を確認した。
(試験方法)
E. coli NIHJ JC-2のPBPに対する親和性を、蛍光標識ペニシリンを用いた競合アッセイにより評価した。E. coli NIHJ JC-2膜画分に本発明化合物溶液を添加し、30℃で10分間インキュベートし、蛍光標識ペニシリンを最終濃度15μMになるように添加し、更に30℃で30分間インキュベートした。反応は、120mg/mL-PCG/10%-sarkosyl 添加後,30℃15分間インキュベートにより停止させた。8℃、14600rpmで30分間遠心し、外膜成分を除去後、SDS緩衝液及び2-メルカプトエタノールを添加し、沸騰湯浴内で3分間加熱する事で、タンパクを変性させた。その一部を、7.5% SDS-PAGEゲルにアプライし、290V/30mAで電気泳動後、LAS3000(BIO-RAD)で解析した。
(結果)
本発明化合物はPBP3親和性を示すことが示唆された。
Test Example 1-1
The PBP (Penicillin Binding Protein) inhibitory activity of the compound of the present invention was confirmed.
(Test method)
The affinity of E. coli NIHJ JC-2 for PBP was assessed by a competitive assay using fluorescently labeled penicillin. The compound solution of the present invention was added to the E. coli NIHJ JC-2 membrane fraction, incubated at 30 ° C. for 10 minutes, fluorescently labeled penicillin was added to a final concentration of 15 μM, and further incubated at 30 ° C. for 30 minutes. The reaction was stopped by incubation at 30 ° C for 15 minutes after addition of 120 mg / mL-PCG / 10% -sarkosyl. After removing the outer membrane components by centrifugation at 8600C and 14600 rpm for 30 minutes, SDS buffer and 2-mercaptoethanol were added, and the protein was denatured by heating in a boiling water bath for 3 minutes. A part of the gel was applied to a 7.5% SDS-PAGE gel, electrophoresed at 290 V / 30 mA, and analyzed with LAS3000 (BIO-RAD).
(result)
It was suggested that the compound of the present invention exhibits PBP3 affinity.
試験例1-2
 本発明化合物のin vivo抗菌活性を評価した。
(試験方法)
 動物は、Jcl:ICR雄性マウス、5週齢を使用した。評価菌株は、K.pneumoniae ATCC13883を使用した。感染4日及び1日前に、シクロホスファミドを150mg/kg及び100mg/kgの用量で腹腔内投与し、好中球減少症を惹起させた。麻酔下、感染菌液を約1×10 CFU/mouseで経鼻接種する事で感染を惹起し、感染2, 5, 8時間後に、本発明化合物を0.1, 0.3, 1 もしくは 3 mg/kgの用量で単回もしくは反復皮下投与した。感染10時間に安楽死処置後、肺を採取し、肺homogenateを作成する事で肺内生菌数を測定した。
(結果)
本発明化合物投与後の肺内生菌数は、治療開始時と比較して有意に減少した。
Test Example 1-2
The in vivo antibacterial activity of the compounds of the present invention was evaluated.
(Test method)
Animals used were Jcl: ICR male mice, 5 weeks old. K. pneumoniae ATCC 13883 was used as an evaluation strain. Four and one day before infection, cyclophosphamide was administered intraperitoneally at doses of 150 mg / kg and 100 mg / kg to induce neutropenia. Under anesthesia, infection is induced by nasal inoculation of the infected bacterial solution at about 1 × 10 6 CFU / mouse, and the compound of the present invention is 0.1, 0.3, 1 or Single or repeated subcutaneous administration at a dose of 3 mg / kg. After euthanasia treatment at 10 hours after infection, the lungs were collected and the number of viable bacteria in the lungs was measured by preparing lung homogenates.
(result)
The number of viable bacteria in the lung after administration of the compound of the present invention was significantly reduced as compared with the start of treatment.
 以上の結果から、本発明化合物が広範な抗菌スペクトルを有し、特にグラム陰性菌に対して強力な抗菌スペクトルを示し、および/または多剤耐性菌、特にクラスB型のメタロ-β-ラクタマーゼ産生グラム陰性菌に対し強い抗菌活性を示し、および/またはKPCのようなクラスA型のβ-ラクタマーゼ産生グラム陰性菌に対し強い抗菌活性を示す。さらに、クラスC型のβ-ラクタマーゼ産生グラム陰性菌に対しても強い抗菌活性を有する。また、カルバペネム耐性を含む多剤耐性菌に対しても有効であり、β-ラクタマーゼ産生グラム陰性菌に対しても高い安定性を有していることが示される。 From the above results, the compound of the present invention has a broad antibacterial spectrum, particularly shows a strong antibacterial spectrum against gram-negative bacteria, and / or produces multi-drug resistant bacteria, particularly class B type metallo-β-lactamases Strong antibacterial activity against gram negative bacteria and / or strong antibacterial activity against class A β-lactamase producing gram negative bacteria such as KPC. Furthermore, it also has strong antibacterial activity against class C β-lactamase-producing gram-negative bacteria. It is also effective against multidrug-resistant bacteria including carbapenem resistance, and has high stability against β-lactamase-producing gram-negative bacteria.
試験例2:CYP阻害試験
 市販のプールドヒト肝ミクロソームを用いて、ヒト主要CYP5分子種(CYP1A2、2C9、2C19、2D6、3A4)の典型的基質代謝反応として7-エトキシレゾルフィンのO-脱エチル化(CYP1A2)、トルブタミドのメチル-水酸化(CYP2C9)、メフェニトインの4’-水酸化(CYP2C19)、デキストロメトルファンのO脱メチル化(CYP2D6)、テルフェナジンの水酸化(CYP3A4)を指標とし、それぞれの代謝物生成量が本発明化合物によって阻害される程度を評価した。
Test Example 2: CYP Inhibition Test O-deethylation of 7-ethoxyresorufin as a typical substrate metabolic reaction of human major CYP5 molecular species (CYP1A2, 2C9, 2C19, 2D6, 3A4) using commercially available pooled human liver microsomes (CYP1A2), methyl-hydroxylation of tolbutamide (CYP2C9), 4′-hydroxylation of mephenytoin (CYP2C19), O-demethylation of dextromethorphan (CYP2D6), and hydroxylation of terfenadine (CYP3A4), respectively. The degree to which the amount of metabolite produced was inhibited by the compound of the present invention was evaluated.
 反応条件は以下のとおり:基質、0.5μmol/L エトキシレゾルフィン(CYP1A2)、100μmol/L トルブタミド(CYP2C9)、50μmol/L S-メフェニトイン(CYP2C19)、5μmol/L デキストロメトルファン(CYP2D6)、1μmol/L テルフェナジン(CYP3A4);反応時間、15分;反応温度、37℃;酵素、プールドヒト肝ミクロソーム0.2mg タンパク質/mL;本発明化合物濃度、1、5、10、20μmol/L(4点)。 The reaction conditions were as follows: substrate, 0.5 μmol / L ethoxyresorufin (CYP1A2), 100 μmol / L tolbutamide (CYP2C9), 50 μmol / L S-mephenytoin (CYP2C19), 5 μmol / L dextromethorphan (CYP2D6), 1 μmol / L terfenadine (CYP3A4); reaction time, 15 minutes; reaction temperature, 37 ° C .; enzyme, pooled human liver microsome 0.2 mg protein / mL; compound concentration of the present invention 1, 5, 10, 20 μmol / L (4 points) .
 96穴プレートに反応溶液として、50mmol/L Hepes緩衝液中に各5種の基質、ヒト肝ミクロソーム、本発明化合物を上記組成で加え、補酵素であるNADPHを添加して、指標とする代謝反応を開始した。37℃、15分間反応した後、メタノール/アセトニトリル=1/1(V/V)溶液を添加することで反応を停止した。3000rpm、15分間の遠心後、遠心上清中のレゾルフィン(CYP1A2代謝物)を蛍光マルチラベルカウンタで定量し、トルブタミド水酸化体(CYP2C9代謝物)、メフェニトイン4’水酸化体(CYP2C19代謝物)、デキストロルファン(CYP2D6代謝物)、テルフェナジンアルコール体(CYP3A4代謝物)をLC/MS/MSで定量した。 As a reaction solution in a 96-well plate, each of 5 types of substrate, human liver microsome, and the compound of the present invention are added in the above composition in a 50 mmol / L Hepes buffer solution, and NADPH, a coenzyme, is added as an indicator for metabolic reaction. Started. After reacting at 37 ° C. for 15 minutes, the reaction was stopped by adding a methanol / acetonitrile = 1/1 (V / V) solution. After centrifuging at 3000 rpm for 15 minutes, resorufin (CYP1A2 metabolite) in the centrifugation supernatant was quantified with a fluorescent multi-label counter, tolbutamide hydroxide (CYP2C9 metabolite), mephenytoin 4 ′ hydroxide (CYP2C19 metabolite) Dextrorphan (CYP2D6 metabolite) and terfenadine alcohol (CYP3A4 metabolite) were quantified by LC / MS / MS.
 本発明化合物を溶解した溶媒であるDMSOのみを反応系に添加したものをコントロール(100%)とし、溶媒に加えた本発明化合物の各濃度における残存活性(%)を算出し、濃度と抑制率を用いて、ロジスティックモデルによる逆推定によりIC50を算出した。 The residual activity (%) at each concentration of the compound of the present invention added to the solvent was calculated by adding only DMSO, which is a solvent in which the compound of the present invention was dissolved, to the reaction system, and the concentration and inhibition rate were calculated. The IC 50 was calculated by inverse estimation using a logistic model.
試験例3:BA試験
経口吸収性の検討実験材料と方法
(1)使用動物:マウスあるいはSDラットを使用した。
(2)飼育条件:マウスあるいはSDラットは、固形飼料および滅菌水道水を自由摂取させた。
(3)投与量、群分けの設定:経口投与、静脈内投与を所定の投与量により投与した。以下のように群を設定した。(化合物ごとで投与量は変更有)
 経口投与 1~30mg/kg(n=2~3)
 静脈内投与 0.5~10mg/kg(n=2~3)
(4)投与液の調製:経口投与は溶液または懸濁液として投与した。静脈内投与は可溶化して投与した。
(5)投与方法:経口投与は、経口ゾンデにより強制的に胃内に投与した。静脈内投与は、注射針を付けたシリンジにより尾静脈から投与した。
(6)評価項目:経時的に採血し、血漿中本発明化合物濃度をLC/MS/MSを用いて測定した。
(7)統計解析:血漿中本発明化合物濃度推移について、非線形最小二乗法プログラムWinNonlin(登録商標)を用いて血漿中濃度‐時間曲線下面積(AUC)を算出し、経口投与群と静脈内投与群のAUCから本発明化合物のバイオアベイラビリティ(BA)を算出した。
Test Example 3: Examination of BA test oral absorbability Experimental materials and methods (1) Animals used: Mice or SD rats were used.
(2) Breeding conditions: Mice or SD rats were allowed to freely take solid feed and sterilized tap water.
(3) Setting of dose and grouping: Oral administration and intravenous administration were administered at a predetermined dose. Groups were set up as follows. (Dose may vary for each compound)
Oral administration 1-30 mg / kg (n = 2-3)
Intravenous administration 0.5-10 mg / kg (n = 2-3)
(4) Preparation of administration solution: Oral administration was administered as a solution or suspension. Intravenous administration was solubilized.
(5) Administration method: Oral administration was forcibly administered into the stomach with an oral sonde. Intravenous administration was carried out from the tail vein using a syringe with an injection needle.
(6) Evaluation items: Blood was collected over time, and the concentration of the compound of the present invention in plasma was measured using LC / MS / MS.
(7) Statistical analysis: The plasma concentration-time curve area (AUC) is calculated using the non-linear least squares program WinNonlin (Registered Trademark) for plasma compound concentration transition, and the oral administration group and intravenous administration The bioavailability (BA) of the compound of the present invention was calculated from the AUC of the group.
試験例4:代謝安定性試験
 市販のプールドヒト肝ミクロソームと本発明化合物を一定時間反応させ、反応サンプルと未反応サンプルの比較により残存率を算出し、本発明化合物が肝で代謝される程度を評価した。
Test Example 4: Metabolic stability test A commercially available pooled human liver microsome and the compound of the present invention are reacted for a certain period of time, and the residual ratio is calculated by comparing the reaction sample with the unreacted sample to evaluate the degree of metabolism of the compound of the present invention in the liver. did.
 ヒト肝ミクロソーム0.5mgタンパク質/mLを含む0.2mLの緩衝液(50mmol/L Tris-HCl pH7.4、150mmol/L 塩化カリウム、10mmol/L 塩化マグネシウム)中で、1mmol/L NADPH存在下で37℃、0分あるいは30分間反応させた(酸化的反応)。反応後、メタノール/アセトニトリル=1/1(v/v)溶液の100μLに反応液50μLを添加、混合し、3000rpmで15分間遠心した。その遠心上清中の本発明化合物をLC/MS/MSにて定量し、反応後の本発明化合物の残存量を0分反応時の化合物量を100%として計算した。なお、加水分解反応はNADPH非存在下で、グルクロン酸抱合反応はNADPHに換えて5mmol/L UDP-グルクロン酸の存在下で反応を行い、以後同じ操作を実施することができる。 In 0.2 mL buffer (50 mmol / L Tris-HCl pH 7.4, 150 mmol / L potassium chloride, 10 mmol / L magnesium chloride) containing 0.5 mg protein / mL human liver microsomes in the presence of 1 mmol / L NADPH The reaction was carried out at 37 ° C. for 0 or 30 minutes (oxidative reaction). After the reaction, 50 μL of the reaction solution was added to 100 μL of a methanol / acetonitrile = 1/1 (v / v) solution, mixed, and centrifuged at 3000 rpm for 15 minutes. The compound of the present invention in the centrifugal supernatant was quantified by LC / MS / MS, and the residual amount of the compound of the present invention after the reaction was calculated with the compound amount at 0 minute reaction as 100%. The hydrolysis reaction can be carried out in the absence of NADPH, the glucuronic acid conjugation reaction can be carried out in the presence of 5 mmol / L UDP-glucuronic acid instead of NADPH, and the same operation can be carried out thereafter.
試験例5:CYP3A4蛍光MBI試験
 CYP3A4蛍光MBI試験は、代謝反応による本発明化合物のCYP3A4阻害の増強を調べる試験である。CYP3A4酵素(大腸菌発現酵素)により7-ベンジルオキシトリフルオロメチルクマリン(7-BFC)が脱ベンジル化されて、蛍光を発する代謝物7-ハイドロキシトリフルオロメチルクマリン(7-HFC)が生じる。7-HFC生成反応を指標としてCYP3A4阻害を評価した。
Test Example 5: CYP3A4 fluorescence MBI test The CYP3A4 fluorescence MBI test is a test for examining the enhancement of CYP3A4 inhibition of the compounds of the present invention by metabolic reaction. 7-Benzyloxytrifluoromethylcoumarin (7-BFC) is debenzylated by CYP3A4 enzyme (E. coli-expressed enzyme) to produce a fluorescent metabolite 7-hydroxytrifluoromethylcoumarin (7-HFC). CYP3A4 inhibition was evaluated using 7-HFC production reaction as an index.
 反応条件は以下のとおり:基質、5.6μmol/L 7-BFC;プレ反応時間、0または30分;反応時間、15分;反応温度、25℃(室温);CYP3A4含量(大腸菌発現酵素)、プレ反応時62.5pmol/mL、反応時6.25pmol/mL(10倍希釈時);本発明化合物濃度、0.625、1.25、2.5、5、10、20μmol/L(6点)。 The reaction conditions are as follows: substrate, 5.6 μmol / L 7-BFC; pre-reaction time, 0 or 30 minutes; reaction time, 15 minutes; reaction temperature, 25 ° C. (room temperature); CYP3A4 content (E. coli expression enzyme), Pre-reaction 62.5 pmol / mL, reaction 6.25 pmol / mL (10-fold dilution); compound concentration of the present invention, 0.625, 1.25, 2.5, 5, 10, 20 μmol / L (6 points) ).
 96穴プレートにプレ反応液としてK-Pi緩衝液(pH7.4)中に酵素、本発明化合物溶液を上記のプレ反応の組成で加え、別の96穴プレートに基質とK-Pi緩衝液で1/10希釈されるようにその一部を移行し、補酵素であるNADPHを添加して指標とする反応を開始し(プレ反応無)、所定の時間反応後、アセトニトリル/0.5mol/L Tris(トリスヒドロキシアミノメタン)=4/1(V/V)を加えることによって反応を停止した。また残りのプレ反応液にもNADPHを添加しプレ反応を開始し(プレ反応有)、所定時間プレ反応後、別のプレートに基質とK-Pi緩衝液で1/10希釈されるように一部を移行し指標とする反応を開始した。所定の時間反応後、アセトニトリル/0.5mol/L Tris(トリスヒドロキシアミノメタン)=4/1(V/V)を加えることによって反応を停止した。それぞれの指標反応を行ったプレートを蛍光プレートリーダーで代謝物である7-HFCの蛍光値を測定した。(Ex=420nm、Em=535nm) The enzyme and the compound solution of the present invention are added to the 96-well plate as a pre-reaction solution in K-Pi buffer (pH 7.4) in the above-mentioned pre-reaction composition, and the substrate and K-Pi buffer are added to another 96-well plate. A part of the solution was transferred so as to be diluted by 1/10, and a reaction using NADPH as a coenzyme was started as an indicator (no pre-reaction). After reaction for a predetermined time, acetonitrile / 0.5 mol / L The reaction was stopped by adding Tris (trishydroxyaminomethane) = 4/1 (V / V). In addition, NADPH is also added to the remaining pre-reaction solution to start the pre-reaction (pre-reaction is present), and after pre-reaction for a predetermined time, one plate is diluted to 1/10 with the substrate and K-Pi buffer. The reaction was started by shifting the part. After the reaction for a predetermined time, the reaction was stopped by adding acetonitrile / 0.5 mol / L Tris (trishydroxyaminomethane) = 4/1 (V / V). The fluorescence value of 7-HFC, which is a metabolite, was measured using a fluorescent plate reader on the plate on which each index reaction was performed. (Ex = 420nm, Em = 535nm)
 本発明化合物を溶解した溶媒であるDMSOのみを反応系に添加したものをコントロール(100%)とし、本発明化合物をそれぞれの濃度添加したときの残存活性(%)を算出し、濃度と抑制率を用いて、ロジスティックモデルによる逆推定によりIC50を算出した。IC50値の差が5μmol/L以上の場合を(+)とし、3μmol/L以下の場合を(-)とした。 A control (100%) was obtained by adding only DMSO, which is a solvent in which the compound of the present invention was dissolved, to the reaction system, and the residual activity (%) when each concentration of the compound of the present invention was added was calculated. Was used to calculate IC 50 by inverse estimation using a logistic model. The case where the difference in IC 50 values was 5 μmol / L or more was designated as (+), and the case where it was 3 μmol / L or less was designated as (−).
試験例6:Fluctuation Ames Test
 本発明化合物の変異原性を評価した。
 凍結保存しているネズミチフス菌(Salmonella typhimurium TA98株、TA100株)20μLを10mL液体栄養培地(2.5% Oxoid nutrient broth No.2)に接種し37℃にて10時間、振盪前培養した。TA98株は9mLの菌液を遠心(2000×g、10分間)して培養液を除去した。9mLのMicro F緩衝液(KHPO:3.5g/L、KHPO:1g/L、(NHSO:1g/L、クエン酸三ナトリウム二水和物:0.25g/L、MgSO・7H0:0.1g/L)に菌を懸濁し、110mLのExposure培地(ビオチン:8μg/mL、ヒスチジン:0.2μg/mL、グルコース:8mg/mLを含むMicroF緩衝液)に添加した。TA100株は3.16mL菌液に対しExposure培地120mLに添加し試験菌液を調製した。本発明化合物DMSO溶液(最高用量50mg/mLから2~3倍公比で数段階希釈)、陰性対照としてDMSO、陽性対照として非代謝活性化条件ではTA98株に対しては50μg/mLの4-ニトロキノリン-1-オキシドDMSO溶液、TA100株に対しては0.25μg/mLの2-(2-フリル)-3-(5-ニトロ-2-フリル)アクリルアミドDMSO溶液、代謝活性化条件ではTA98株に対して40μg/mLの2-アミノアントラセンDMSO溶液、TA100株に対しては20μg/mLの2-アミノアントラセンDMSO溶液それぞれ12μLと試験菌液588μL(代謝活性化条件では試験菌液498μLとS9 mix 90μLの混合液)を混和し、37℃にて90分間、振盪培養した。本発明化合物を暴露した菌液460μLを、Indicator培地(ビオチン:8μg/mL、ヒスチジン:0.2μg/mL、グルコース:8mg/mL、ブロモクレゾールパープル:37.5μg/mLを含むMicroF緩衝液)2300μLに混和し50μLずつマイクロプレート48ウェル/用量に分注し、37℃にて3日間、静置培養した。アミノ酸(ヒスチジン)合成酵素遺伝子の突然変異によって増殖能を獲得した菌を含むウェルは、pH変化により紫色から黄色に変色するため、1用量あたり48ウェル中の黄色に変色した菌増殖ウェルを計数し、陰性対照群と比較して評価した。変異原性が陰性のものを(-)、陽性のものを(+)として示す。
Test Example 6: Fluctuation Ames Test
The mutagenicity of the compounds of the present invention was evaluated.
Twenty microliters of Salmonella typhimurium TA98, TA100) cryopreserved was inoculated into 10 mL liquid nutrient medium (2.5% Oxoid nutritive broth No. 2) and cultured at 37 ° C. for 10 hours before shaking. For the TA98 strain, 9 mL of the bacterial solution was centrifuged (2000 × g, 10 minutes) to remove the culture solution. 9 mL of Micro F buffer (K 2 HPO 4 : 3.5 g / L, KH 2 PO 4 : 1 g / L, (NH 4 ) 2 SO 4 : 1 g / L, trisodium citrate dihydrate: 0. MicroF containing 110 mL Exposure medium (Biotin: 8 μg / mL, Histidine: 0.2 μg / mL, Glucose: 8 mg / mL) suspended in 25 g / L, MgSO 4 · 7H 2 0: 0.1 g / L) Buffer). The TA100 strain was added to 120 mL of Exposure medium with respect to the 3.16 mL bacterial solution to prepare a test bacterial solution. Compound DMSO solution of the present invention (maximum dose of 50 mg / mL to several-fold dilution at 2-3 times common ratio), DMSO as a negative control, and non-metabolic activation conditions as a positive control, 50 μg / mL 4-TA Nitroquinoline-1-oxide DMSO solution, 0.25 μg / mL 2- (2-furyl) -3- (5-nitro-2-furyl) acrylamide DMSO solution for TA100 strain, TA98 under metabolic activation conditions 40 μg / mL 2-aminoanthracene DMSO solution for the strain and 20 μg / mL 2-aminoanthracene DMSO solution for the TA100 strain, respectively, and 588 μL of the test bacterial solution (498 μL of the test bacterial solution and S9 under metabolic activation conditions). (mixture of 90 μL of mix) was mixed and incubated at 37 ° C. for 90 minutes with shaking. 460 μL of the bacterial solution exposed to the compound of the present invention was added 2300 μL of Indicator medium (MicroF buffer solution containing biotin: 8 μg / mL, histidine: 0.2 μg / mL, glucose: 8 mg / mL, bromocresol purple: 37.5 μg / mL). 50 μL each, and dispensed into 48 wells / dose of the microplate, and statically cultured at 37 ° C. for 3 days. Since wells containing bacteria that have acquired growth ability by mutation of the amino acid (histidine) synthase gene change from purple to yellow due to pH change, the number of bacteria growth wells that changed to yellow in 48 wells per dose was counted. Evaluation was made in comparison with the negative control group. A negative mutagenicity is indicated as (−), and a positive mutagenicity is indicated as (+).
試験例7:hERG試験
 本発明化合物の心電図QT間隔延長リスク評価を目的として、human ether-a-go-go related gene (hERG)チャンネルを発現させたHEK293細胞を用いて、心室再分極過程に重要な役割を果たす遅延整流K電流(IKr)への本発明化合物の作用を検討した。
 全自動パッチクランプシステム(PatchXpress 7000A、AxonInstruments Inc.)を用い、ホールセルパッチクランプ法により、細胞を-80mVの膜電位に保持した後、+40mVの脱分極刺激を2秒間、さらに-50mVの再分極刺激を2秒間与えた際に誘発されるIKrを記録した。発生する電流が安定した後、本発明化合物を目的の濃度で溶解させた細胞外液(NaCl:135 mmol/L、KCl:5.4 mmol/L、NaHPO:0.3mmol/L、CaCl・2HO:1.8mmol/L、MgCl・6HO:1mmol/L、グルコース:10mmol/L、HEPES(4-(2-ヒドロキシエチル)-1-ピペラジンエタンスルホン酸):10mmol/L、pH=7.4)を室温で、10分間細胞に適用させた。得られたIKrから、解析ソフト(DataXpress ver.1、Molecular Devices Corporation)を使用して、保持膜電位における電流値を基準に最大テール電流の絶対値を計測した。さらに、本発明化合物適用前の最大テール電流に対する阻害率を算出し、媒体適用群(0.1%ジメチルスルホキシド溶液)と比較して、本発明化合物のIKrへの影響を評価した。
Test Example 7: hERG Test For the purpose of evaluating the risk of prolonging the electrocardiogram QT interval of the compound of the present invention, using HEK293 cells expressing human ether-a-go-related gene (hERG) channel, it is important for ventricular repolarization process The action of the compounds of the present invention on the delayed rectifier K + current (I Kr ), which plays an important role, was investigated.
Using a fully automatic patch clamp system (PatchXpress 7000A, Axon Instruments Inc.) and holding the cells at a membrane potential of −80 mV by whole cell patch clamp, a +40 mV depolarization stimulus was applied for 2 seconds, followed by a −50 mV repolarization. The I Kr elicited when the stimulus was applied for 2 seconds was recorded. After the generated current is stabilized, an extracellular fluid (NaCl: 135 mmol / L, KCl: 5.4 mmol / L, NaH 2 PO 4 : 0.3 mmol / L, in which the compound of the present invention is dissolved at a target concentration, CaCl 2 · 2H 2 O: 1.8 mmol / L, MgCl 2 · 6H 2 O: 1 mmol / L, glucose: 10 mmol / L, HEPES (4- (2-hydroxyethyl) -1-piperazineethanesulfonic acid): 10 mmol / L, pH = 7.4) was applied to the cells for 10 minutes at room temperature. From the obtained I Kr , the absolute value of the maximum tail current was measured based on the current value at the holding membrane potential using analysis software (DataXpress ver. 1, Molecular Devices Corporation). Furthermore, the inhibition rate with respect to the maximum tail current before application of the compound of the present invention was calculated, and compared with the vehicle application group (0.1% dimethyl sulfoxide solution), the effect of the compound of the present invention on I Kr was evaluated.
試験例8:溶解性試験
 本発明化合物の溶解度は、1%DMSO添加条件下で決定した。DMSOにて10mmol/L化合物溶液を調製し、本発明化合物溶液6 μLをpH6.8人工腸液(0.2mol/L リン酸二水素カリウム試液 250mLに0.2mol/L NaOH試液118mL、水を加えて1000mLとした)594μLに添加した。25℃で16時間静置させた後、混液を吸引濾過した。濾液をメタノール/水=1/1(V/V)にて2倍希釈し、絶対検量線法によりHPLCまたはLC/MS/MSを用いて濾液中濃度を測定した。
Test Example 8: Solubility test The solubility of the compound of the present invention was determined under the condition of addition of 1% DMSO. Prepare a 10 mmol / L compound solution in DMSO, add 6 μL of the compound solution of the present invention to pH 6.8 artificial intestinal fluid (0.2 mol / L potassium dihydrogen phosphate test solution 250 mL, add 0.2 mol / L NaOH test solution 118 mL, water) Was added to 594 μL. After allowing to stand at 25 ° C. for 16 hours, the mixed solution was subjected to suction filtration. The filtrate was diluted 2-fold with methanol / water = 1/1 (V / V), and the concentration in the filtrate was measured by HPLC or LC / MS / MS using the absolute calibration curve method.
試験例9:粉末溶解度試験
 適当な容器に本発明化合物を適量入れ、各容器にJP-1液(塩化ナトリウム2.0g、塩酸7.0mLに水を加えて1000mLとする)、JP-2液(pH6.8のリン酸塩緩衝液500mLに水500mLを加える)、20mmol/L タウロコール酸ナトリウム(TCA)/JP-2液(TCA1.08gにJP-2液を加え100mLとする)を200μLずつ添加する。試験液添加後に全量溶解した場合には、適宜、本発明化合物を追加する。密閉して37℃で1時間振とう後に濾過し、各濾液100μLにメタノール100μLを添加して2倍希釈を行う。希釈倍率は、必要に応じて変更する。気泡および析出物がないことを確認し、密閉して振とうする。絶対検量線法によりHPLCを用いて本発明化合物を定量する。
Test Example 9: Powder Solubility Test An appropriate amount of the compound of the present invention is put in an appropriate container, and JP-1 solution (2.0 g of sodium chloride, water is added to 7.0 mL of hydrochloric acid to 1000 mL), JP-2 solution (Add 500 mL of water to 500 mL of phosphate buffer solution at pH 6.8), 20 mmol / L sodium taurocholate (TCA) / JP-2 solution (JP-2 solution is added to 1.08 g of TCA to make 100 mL) 200 μL each Added. When the entire amount is dissolved after the addition of the test solution, the compound of the present invention is appropriately added. After sealing at 37 ° C. for 1 hour, the mixture is filtered, and 100 μL of methanol is added to 100 μL of each filtrate to perform 2-fold dilution. Change the dilution factor as necessary. Make sure there are no bubbles and deposits, seal and shake. The compound of the present invention is quantified using HPLC by the absolute calibration curve method.
試験例10:目視溶解性試験
化合物約5mgを微量試験管3本に秤量し、各媒体(注射用水、生食注、0.5%ブドウ糖液)を化合物濃度20%になるように添加する。ボルテックスにて撹拌後、目視にて溶解の有無を確認する。溶解していればその媒体での溶解度を>20%とする。それら試験液に各媒体(注射用水、生食注、ブドウ糖液)を更に加えて化合物濃度10%の試験液を調製し、ボルテックスにて撹拌後、目視にて溶解の有無を確認する。溶解していればその媒体での溶解度を20%~10%とする。同様に5%濃度、2.5%濃度、1%濃度まで試験をし、1%濃度で溶解しない場合はその媒体での溶解度を<1%とする。1%濃度の試験液でのpHを測定し、記録する。 
Test Example 10: About 5 mg of visual solubility test compound is weighed into three microscopic test tubes, and each medium (water for injection, saline feed, 0.5% glucose solution) is added to a compound concentration of 20%. After stirring by vortex, visually check for dissolution. If so, the solubility in the medium is> 20%. Each medium (water for injection, raw food injection, glucose solution) is further added to these test solutions to prepare a test solution with a compound concentration of 10%. After stirring by vortexing, the presence or absence of dissolution is visually confirmed. If dissolved, the solubility in the medium should be 20% to 10%. Similarly, test to 5% concentration, 2.5% concentration, 1% concentration, and if not soluble at 1% concentration, the solubility in the medium should be <1%. Measure and record the pH with 1% test solution.
試験例11:pKa測定(キャピラリー電気泳動法 (capillary electrophoresis法,CE法)の測定方法)
この手法は、キャピラリーゾーン電気泳動技術を用いて,電解質を含む緩衝液中での各試料成分の自由泳動を利用した分離方法である。
pH2.5~11.5に調整した緩衝液が充填されたフューズドシリカキャピラリーに、化合物溶液を注入した後、キャピラリーに高電圧 (Inlet側+,Outlet側-) をかけると、化合物は緩衝液pHにおけるイオン化状態を反映した速度 (+チャージした化合物は速く、-チャージした化合物は遅く) で移動する。この化合物の移動時間と中性分子 (DMSO) の移動時間との差をpHに対してプロットし、フィッティングをかけてpKaを算出した。測定条件を以下に示す。
使用装置:Beckman P/ACEシステムMDQ PDA
泳動液:pH2.5~11.5 Buffer (10vol% MeOH含有)
サンプル溶液:Blank DMSO 10μL+注用水90μL混合
Sample 10mM DMSO stock solution 4μL + DMSO 6μL + 注用水 90μL
(メソッド)
キャピラリー:Fused silica capillary (BECKMAN COULTER,内径50μm,全長30.2cm,有効長20.0 cm)
印加電圧:10kV (331 V/cm)
印加空気圧:0.7 psi
キャピラリー温度:25℃
電気浸透流マーカー:DMSO
検出:紫外部多波長吸光検出 (測定波長;215 nm,238 nm)
試料注入:加圧法 (0.5 psi,5 sec)
Test Example 11: pKa measurement (capillary electrophoresis method (capillary electrophoresis method, CE method) measurement method)
This method is a separation method using free migration of each sample component in a buffer solution containing an electrolyte using a capillary zone electrophoresis technique.
After injecting a compound solution into a fused silica capillary filled with a buffer adjusted to pH 2.5 to 11.5 and applying a high voltage (Inlet side +, Outlet side-) to the capillary, the compound is at the buffer pH. It moves at a speed that reflects the ionization state (+ charged compounds are fast, -charged compounds are slow). The difference between the migration time of this compound and the migration time of neutral molecule (DMSO) was plotted against pH, and pKa was calculated by fitting. The measurement conditions are shown below.
Equipment used: Beckman P / ACE system MDQ PDA
Electrophoresis: pH2.5 to 11.5 Buffer (containing 10vol% MeOH)
Sample solution: Blank DMSO 10 μL + Injection water 90 μL
Sample 10 mM DMSO stock solution 4 μL + DMSO 6 μL + Injection water 90 μL
(Method)
Capillary: Fused silica capillary (BECKMAN COULTER, inner diameter 50μm, overall length 30.2cm, effective length 20.0cm)
Applied voltage: 10 kV (331 V / cm)
Applied air pressure: 0.7 psi
Capillary temperature: 25 ° C
Electroosmotic flow marker: DMSO
Detection: UV multi-wavelength absorption detection (measurement wavelength: 215 nm, 238 nm)
Sample injection: pressurized method (0.5 psi, 5 sec)
 本発明化合物は、特にグラム陰性菌に対する広範な抗菌スペクトルを有し、β-ラクタマーゼ産生グラム陰性菌に対して強い抗菌活性を有している抗菌薬として有効である。また、体内動態もよく、水溶性も高いため、特に注射薬または経口薬として有効である。 The compound of the present invention has a broad antibacterial spectrum especially against gram-negative bacteria and is effective as an antibacterial agent having strong antibacterial activity against β-lactamase-producing gram-negative bacteria. In addition, since it has good pharmacokinetics and high water solubility, it is particularly effective as an injection or oral drug.

Claims (8)

  1. 式:
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002

    のいずれかである化合物、そのエステル体もしくはそれらの製薬上許容される塩、またはそれらの水和物。
    formula:
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002

    Or an ester thereof or a pharmaceutically acceptable salt thereof, or a hydrate thereof.
  2. 式:
    Figure JPOXMLDOC01-appb-C000003

    Figure JPOXMLDOC01-appb-C000004

    のいずれかである、請求項1記載の化合物、そのエステル体もしくはそれらの製薬上許容される塩、またはそれらの水和物。
    formula:
    Figure JPOXMLDOC01-appb-C000003

    Figure JPOXMLDOC01-appb-C000004

    The compound according to claim 1, an ester form thereof, or a pharmaceutically acceptable salt thereof, or a hydrate thereof.
  3. 請求項1または2記載の化合物、そのエステル体もしくはそれらの製薬上許容される塩、またはそれらの水和物を含有する医薬組成物。
    A pharmaceutical composition comprising the compound according to claim 1 or 2, an ester thereof or a pharmaceutically acceptable salt thereof, or a hydrate thereof.
  4. 抗菌作用を有する、請求項3記載の医薬組成物。
    The pharmaceutical composition according to claim 3, which has an antibacterial action.
  5. 請求項1または2記載の化合物、そのエステル体もしくはそれらの製薬上許容される塩、またはそれらの水和物を含有する抗菌剤。
    The antibacterial agent containing the compound of Claim 1 or 2, its ester body, those pharmaceutically acceptable salts, or those hydrates.
  6. 請求項1または2記載の化合物、そのエステル体もしくはそれらの製薬上許容される塩、またはそれらの水和物を含有する細胞壁合成阻害剤。
    A cell wall synthesis inhibitor comprising the compound according to claim 1 or 2, an ester thereof, or a pharmaceutically acceptable salt thereof, or a hydrate thereof.
  7. 請求項1または2記載の化合物、そのエステル体もしくはそれらの製薬上許容される塩、またはそれらの水和物を投与することを特徴とする、菌感染に関連する疾患の治療法またはその予防法。
    A method for treating or preventing a disease associated with bacterial infection, which comprises administering the compound according to claim 1 or 2, an ester thereof, a pharmaceutically acceptable salt thereof, or a hydrate thereof. .
  8. 菌感染に関連する疾患を治療または予防するための、請求項1または2記載の化合物、そのエステル体もしくはそれらの製薬上許容される塩、またはそれらの水和物。 The compound according to claim 1 or 2, an ester thereof, or a pharmaceutically acceptable salt thereof, or a hydrate thereof for treating or preventing a disease associated with bacterial infection.
PCT/JP2017/046283 2016-12-26 2017-12-25 Tricyclic compound having sulfinyl and pharmaceutical composition containing said compound WO2018123920A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-251861 2016-12-26
JP2016251861 2016-12-26

Publications (1)

Publication Number Publication Date
WO2018123920A1 true WO2018123920A1 (en) 2018-07-05

Family

ID=62707667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046283 WO2018123920A1 (en) 2016-12-26 2017-12-25 Tricyclic compound having sulfinyl and pharmaceutical composition containing said compound

Country Status (4)

Country Link
JP (1) JP2018104420A (en)
AR (1) AR110451A1 (en)
TW (1) TW201833119A (en)
WO (1) WO2018123920A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02289584A (en) * 1989-02-17 1990-11-29 Takeda Chem Ind Ltd Cephalosporin gamma-lactone compound
WO2003078440A1 (en) * 2002-03-18 2003-09-25 Shionogi & Co., Ltd. Broad-spectrum cephem compounds
JP2004507481A (en) * 2000-08-29 2004-03-11 エッセンシャル・セラピューティクス・インコーポレイテッド Cephalosporin antibiotics and their prodrugs
WO2012147773A1 (en) * 2011-04-28 2012-11-01 塩野義製薬株式会社 Novel cephem compound having catechol or pseudo-catechol structure
WO2016175223A1 (en) * 2015-04-28 2016-11-03 塩野義製薬株式会社 Tricyclic compounds and uses thereof
WO2017002903A1 (en) * 2015-06-30 2017-01-05 塩野義製薬株式会社 Tricyclic compound having sulfinyl or sulfonyl

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02289584A (en) * 1989-02-17 1990-11-29 Takeda Chem Ind Ltd Cephalosporin gamma-lactone compound
JP2004507481A (en) * 2000-08-29 2004-03-11 エッセンシャル・セラピューティクス・インコーポレイテッド Cephalosporin antibiotics and their prodrugs
WO2003078440A1 (en) * 2002-03-18 2003-09-25 Shionogi & Co., Ltd. Broad-spectrum cephem compounds
WO2012147773A1 (en) * 2011-04-28 2012-11-01 塩野義製薬株式会社 Novel cephem compound having catechol or pseudo-catechol structure
WO2016175223A1 (en) * 2015-04-28 2016-11-03 塩野義製薬株式会社 Tricyclic compounds and uses thereof
WO2017002903A1 (en) * 2015-06-30 2017-01-05 塩野義製薬株式会社 Tricyclic compound having sulfinyl or sulfonyl

Also Published As

Publication number Publication date
TW201833119A (en) 2018-09-16
AR110451A1 (en) 2019-03-27
JP2018104420A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
AU604868B2 (en) 3-(substituted-(pyrazolo/s-triazolo)(1,5-a) pyrimidinylthiomethyl)-7-acyl-cephalosporin derivatives
CA1340493C (en) Pyridone carboxylic acid derivatives and salts thereof, process for producing the same and antibacterial agents comprising the same
FI60870C (en) PROCEDURE FOR THE PREPARATION OF PHARMACOLOGICAL PROPERTIES OF O-SUBSTITUTES 7BETA-AMINO-3-CEFEM-3-OL-4-CARBONSYRAFOERENINGAR
JP6824256B2 (en) Hydroxyalkylthiadiazole derivative
BG98723A (en) Cephalosporines
WO2019093450A1 (en) Diazabicyclooctane derivative
WO2016175223A1 (en) Tricyclic compounds and uses thereof
EP0264091B1 (en) 3-propenylcephem derivative, preparation thereof, chemical intermediates therein, pharmaceutical composition and use
US11078188B2 (en) Dihydroquinoxaline bromodomain recognition protein inhibitor, preparation method and use thereof
EP0137442A2 (en) Cephalosporin derivatives and process for their preparation
WO2021195260A1 (en) Lpxc inhibitor and methods of making
JP2019512547A (en) Carbapenem compounds
NO302417B1 (en) Analogous Process for Preparation of Therapeutically Active 7-Acyl-3- (Substituted Carbamoyloxy) Cephem Compounds
JP6231107B2 (en) Macrolide derivatives, their production and their therapeutic use
WO2018123920A1 (en) Tricyclic compound having sulfinyl and pharmaceutical composition containing said compound
WO2017002903A1 (en) Tricyclic compound having sulfinyl or sulfonyl
US20210300926A1 (en) New beta-lactamase inhibitors targeting gram negative bacteria
US4325951A (en) 1-Oxadethiacephalosporin derivatives and antibacterial use thereof
JPH05508625A (en) Novel cephalosporin compounds and their production method
JPH0358992A (en) New isothiazolo-naphthylidine, isothiazoloquinoline derivative and salt thereof
TW201930314A (en) Tricyclic compounds having sulfinyl and pharmaceutical compositions containing them
JPH07224069A (en) New cephalosporin antibiotic and its production
WO2014104148A1 (en) Cephem compound
GB2271564A (en) 3-thiosubstituted carbacephalosporins
US4238608A (en) 7-[2-(2-Aminothiazol-4-yl)-2-substituted thio-acetamido] cephalosporins

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP