WO2018123710A1 - Communication system, communication method, transfer device, and transfer method - Google Patents

Communication system, communication method, transfer device, and transfer method Download PDF

Info

Publication number
WO2018123710A1
WO2018123710A1 PCT/JP2017/045454 JP2017045454W WO2018123710A1 WO 2018123710 A1 WO2018123710 A1 WO 2018123710A1 JP 2017045454 W JP2017045454 W JP 2017045454W WO 2018123710 A1 WO2018123710 A1 WO 2018123710A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
buffer
information
band
communication device
Prior art date
Application number
PCT/JP2017/045454
Other languages
French (fr)
Japanese (ja)
Inventor
優宇 青木
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2018123710A1 publication Critical patent/WO2018123710A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]

Definitions

  • the present invention relates to a communication system, a communication method, a transfer device, and a transfer method, and more particularly, to a communication system, a communication method, a transfer device, and a transfer method for notifying an upstream device of a communication band allowed with a downstream device.
  • the transfer device that receives data from the upstream device and transmits the received data to the downstream device needs to be controlled so as to transmit the data in a communication band allowed in the communication path with the downstream device. If data is transmitted from the upstream device at a rate larger than the communication band allowed on the communication path with the downstream device, there is a possibility that the transfer device will discard the packet.
  • a communication method for notifying an upstream device of a communication band allowed on a communication path with a downstream device is defined in the ITU-T standard or the like.
  • ITU-T G. 8013 / Y. 1731 defines a band notification called ETH-BN (Ethernet Bandwidth Notification) as one function of ETH-OAM (Ethernet (registered trademark) Operation. Administration and Maintenance).
  • ETH-BN Ethernet Bandwidth Notification
  • ETH-OAM Ethernet (registered trademark) Operation. Administration and Maintenance).
  • This function transmits a message notifying a band called BNM (Bandwidth Notification Message) to another L2 switch that performs network QoS (Quality of Service) control from a device with a narrow band.
  • BNM Bandwidth Notification Message
  • QoS Quality of Service
  • the transfer device with a narrow bandwidth transmits BNM or the like indicating an allowable communication bandwidth to another device that performs QoS control of the upstream network.
  • the bandwidth control unit of the other upstream device performs rate control with the data transfer amount per time based on the communication bandwidth notified by BNM or the like, and transmits data to the transfer device that notifies the bandwidth information.
  • Patent Documents 1 and 2 disclose an apparatus for controlling the amount of transmission data so as not to exceed the limit value of the communication band allowed on the wireless path.
  • an allowable bandwidth is set for the data transmission request unit, and the transmission data from the data transmission request unit does not exceed the allowable bandwidth through the buffer means. Sent by.
  • the buffer means holds data corresponding to the difference between the data amount input from the data transmission request unit and the data amount output.
  • the amount of data stored in the buffer means is compared with the allowable data amount. When the allowable data amount is exceeded, transmission from the data transmission request unit is stopped, and then the data stored in the buffer means If the amount becomes smaller than the allowable bandwidth, transmission is enabled.
  • Patent Document 2 discloses an in-vehicle wireless communication device that transmits a transmission rate and a band to a base station when information is downloaded from the base station.
  • the in-vehicle wireless communication device of Patent Literature 2 determines a transmission rate to be applied from estimated terminal position information and speed information at the time of receiving the next frame.
  • the in-vehicle wireless communication device calculates the amount of data required to be received and the reception time limit from the data accumulation amount of the reception buffer, the increase / decrease state of the data accumulation amount, the allowable data delay and the transmission rate, and sets the bandwidth allocated for data communication. decide.
  • the in-vehicle wireless communication device continues to download at a low rate, the amount of data stored in the reception buffer is small, the bandwidth of map information with a small allowable delay is expanded, and the amount of data stored in the reception buffer is large.
  • the bandwidth of music information having a large allowable delay is set to “no allocation”.
  • the physical bandwidth of a traffic transfer path from another device to a device with a narrow bandwidth is, for example, 1 Gbps.
  • the usable communication bandwidth in a device with a narrow bandwidth is, for example, 10 Mbps, and the physical bandwidth of the traffic transfer path is larger than the usable communication bandwidth in a device with a narrow bandwidth. For this reason, when looking at the rate in a short time, there is a case where transmission is performed at a rate larger than the control rate of 10 Mbps notified from a device with a narrow band. This phenomenon is called instantaneous burst.
  • the ATM multiplexing device disclosed in Patent Document 1 stops data transmission from the data transmission request unit in the ATM multiplexing device when the amount of data stored in the buffer means is larger than the allowable data amount. is there.
  • the in-vehicle wireless communication device disclosed in Patent Document 2 if downloading at a low rate continues when downloading information from a base station, the bandwidth of music information with a large amount of data stored in the reception buffer is set to “no allocation”. In any case, when there is a lot of data in the buffer, data transmission from the upstream device is stopped. Any of the techniques in the literature stops data transfer from the upstream.
  • a communication system, a communication method, a transfer device, and a transfer method are provided.
  • a transfer device is used in a communication path between a buffer that temporarily stores data received from a first communication device and transmitted to a second communication device, and the second communication device.
  • a notification bandwidth determining unit that determines bandwidth information based on first information relating to a possible bandwidth and second information relating to a bandwidth corresponding to the free capacity of the buffer; and a bandwidth for transmitting the bandwidth information to the first communication device.
  • a transfer method in which data received from a first communication device and transmitted to a second communication device is temporarily stored in a buffer, and a communication path between the second communication device and the second communication device. Obtaining first information on available bandwidth, calculating second information on bandwidth corresponding to the free capacity of the buffer, determining bandwidth information based on the first and second information, and determining the determined Band information is transmitted to the first communication device.
  • a communication system includes a first communication device that transmits data at a rate based on notified bandwidth information, and the transfer device.
  • a communication method transmits data from a first communication device to a transfer device at a rate based on notified bandwidth information, temporarily stores the data in a buffer of the transfer device, First information relating to a bandwidth that can be used in a communication path between two communication devices is acquired, and data stored in the buffer is transmitted to the second communication device at a rate according to the first information.
  • the second information related to the bandwidth corresponding to the free space of the buffer is acquired, the bandwidth information is determined based on the first and second information, and the determined bandwidth information is transmitted to the first communication device.
  • the transfer device that notifies the upstream device of the bandwidth information based on the bandwidth available on the communication path with the downstream device can transfer the data from the upstream device to the downstream device without stopping the data transfer. It is possible to provide a communication system, a communication method, a transfer device, and a transfer method that can prevent discarding.
  • FIG. 1 is a block diagram showing a schematic configuration of the first embodiment.
  • FIG. 2 is a diagram illustrating a change in the amount of transmission data from the first communication apparatus in FIG.
  • FIG. 3 is a flowchart showing the band information determination operation of FIG.
  • FIG. 4 is a block diagram showing the configuration of the second exemplary embodiment of the present invention.
  • FIG. 5 is a flowchart showing a buffer free space notification operation.
  • FIG. 6 is a diagram illustrating a first change in the free space of the buffer when the buffer notifies the free space.
  • FIG. 7 is a diagram illustrating a second change in the free space of the buffer when the buffer notifies the free space.
  • FIG. 8 is a diagram illustrating a third change in the free space of the buffer when the buffer notifies the free space.
  • FIG. 6 is a diagram illustrating a first change in the free space of the buffer when the buffer notifies the free space.
  • FIG. 7 is a diagram illustrating a second change in the free space of
  • FIG. 9 is a diagram illustrating a setting example of bandwidth information corresponding to the free space of the buffer.
  • FIG. 10 is a flowchart showing an example of an operation for setting bandwidth information corresponding to the free space of the buffer.
  • FIG. 11 is a flowchart showing another example of the operation for setting the bandwidth information corresponding to the free space of the buffer.
  • FIG. 12 is a diagram showing another setting example of the shaper rate corresponding to the free space of the buffer by the operation of FIG.
  • FIG. 13 is a diagram showing still another setting example of the shaper rate corresponding to the free space of the buffer.
  • FIG. 14 is a diagram illustrating still another setting example of the shaper rate corresponding to the free space of the buffer.
  • FIG. 15 is a flowchart showing the band information determination operation of FIG.
  • FIG. 16 is a block diagram showing a configuration of the third exemplary embodiment of the present invention.
  • FIG. 1 is a block diagram showing the configuration of the first exemplary embodiment of the present invention.
  • the transfer device 10 receives data from the upstream first communication device 20 via the traffic transfer path (communication path) 30, and sends the received data to the downstream second communication device 40.
  • the data is transmitted via a traffic transfer path (communication path) 50.
  • the traffic transfer path 50 may be a wireless communication path.
  • the transfer device 10 acquires first information regarding a bandwidth that can be used on a traffic transfer path (communication path) 50 between the transfer apparatus 10 and the second communication apparatus 40.
  • the first communication device 20 is notified of the band information from the transfer device 10 and restricts the data transmission band with the notified band information when transmitting data to the transfer device 10.
  • the transfer device 10 is not limited to the transfer device, and may be a communication device similar to the first communication device 20 and the second communication device 40.
  • the transfer device 10 of the present invention includes a buffer 11, a notification band determination unit 12, and a band notification transmission unit 13 as shown in FIG.
  • the buffer 11 temporarily stores data to be transmitted to the second communication device 40.
  • the notification bandwidth determination unit 12 monitors the dynamically usable bandwidth of the traffic transfer path 50 and the free capacity of the buffer 11, and performs the first communication based on the available bandwidth of the traffic transfer path 50 or the free capacity of the buffer 11. Band information to be notified to the device 20 is determined.
  • the notification bandwidth determination unit 12 includes first information related to a bandwidth that can be used on a traffic transfer path (communication path) 50 between the second communication device 40 and a second bandwidth related to the free space of the buffer 11. Based on the information, band information to be notified to the first communication device 20 is determined.
  • FIG. 2 is a diagram illustrating a change in the amount of transmission data from the first communication apparatus in FIG.
  • the control band R may be, for example, a shaper rate or a policer rate.
  • a shaper rate it is described as a shaper rate in this specification. Assume that an instantaneous burst occurs at this time, and the data is transmitted from the first communication device 20 at the burst transmission rate Rb exceeding the shaper rate R when viewed in a short time ⁇ t.
  • the first communication device 20 transmits data larger than the data capacity assumed at the shaper rate R during ⁇ t by the capacity (Rb ⁇ R) ⁇ ⁇ t to the transfer apparatus 10. Therefore, if the free capacity Q of the buffer 11 of the transfer apparatus 10 is smaller than (Rb ⁇ R) ⁇ ⁇ t, the buffer 11 cannot receive the transmission data and data is discarded. As the shaper rate R increases, transmission data due to instantaneous bursts increases, and the required free space Q increases.
  • the notification bandwidth determination unit 12 includes a buffer free space Q that allows the transfer device 10 to receive transmission data even when an instantaneous burst occurs while the first communication device 20 is transmitting data at the shaper rate R, and its shaper. Correspondence with rate R is set. Specifically, the free capacity Q equal to or greater than the increment of the transmission data capacity when an instantaneous burst occurs while the first communication apparatus 20 is controlling at the shaper rate R is made to correspond to the shaper rate R. From the relationship between the free capacity Q and the shaper rate R set in this way, the notification bandwidth determination unit 12 obtains the shaper rate R for the free capacity Q of the buffer 11 at which data discard due to an instantaneous burst does not occur. The shaper rate obtained from the free capacity of the buffer 11 is the second information regarding the bandwidth corresponding to the free capacity of the buffer.
  • the notification band determination unit 12 determines the relationship between the shaper rate of the first communication device 20 and the increase in transmission data capacity when an instantaneous burst occurs while the first communication device 20 is controlling at the shaper rate. keeping.
  • the notification band determination unit 12 calculates the shaper rate R corresponding to the free capacity Q of the buffer 11 from the relationship between the shaper rate and the increase in transmission data capacity when an instantaneous burst occurs.
  • the notification bandwidth determination unit 12 determines the available bandwidth of the traffic transfer path 50 as the first communication device. 20 is determined as bandwidth information to be notified to the network 20.
  • the notification bandwidth determination unit 12 determines the shaper rate R corresponding to the free capacity Q of the buffer 11. 1 is determined as bandwidth information to be notified to the first communication device 20.
  • the bandwidth notification transmission unit 13 transmits the bandwidth information determined as the bandwidth information to be notified to the first communication device 20.
  • FIG. 3 is a flowchart showing the band information determination operation of FIG.
  • the operation of FIG. 3 may be started when at least one of the available bandwidth of the traffic transfer path 50 and the free capacity of the buffer 11 changes, but is not limited thereto.
  • the transfer device 10 temporarily stores the data received from the first communication device 20 and transmitted to the second communication device 40 in the buffer 11 (step S1).
  • the transfer device 10 acquires first information related to a bandwidth that can be used on the traffic transfer path 50 between the transfer device 10 and the second communication device 40 (step S2).
  • the transfer apparatus 10 calculates second information related to the bandwidth corresponding to the free capacity of the buffer 11 (step S3). As described above, the transfer device 10 receives the shaper rate R of the first communication device 20 and the buffer 11 when an instantaneous burst occurs while the first communication device 20 is controlling at the shaper rate R. The relationship with the necessary free space Q is maintained. From the relationship between the shaper rate R and the free capacity Q required to be received by the buffer 11 when an instantaneous burst occurs during transmission at that shaper rate, the notification bandwidth determination unit 12 uses the shaper rate R corresponding to the free capacity Q. (Second information) is calculated.
  • the notification bandwidth determination unit 12 of the transfer device 10 determines bandwidth information based on the first and second information (step S4). Specifically, when the calculated shaper rate R is equal to or higher than the bandwidth that can be used in the traffic transfer path 50, the notification band determination unit 12 of the transfer device 10 determines the available bandwidth of the traffic transfer path 50 as the first communication. The bandwidth information to be notified to the device 20 is determined. On the other hand, when the calculated shaper rate R is smaller than the available bandwidth of the traffic transfer path 50, the notification bandwidth determination unit 12 of the transfer device 10 notifies the first communication device 20 of the calculated shaper rate R. Determine as information.
  • the transfer device 10 transmits the determined bandwidth information to the first communication device 20 (step S5).
  • the first communication device 20 controls the transmission rate of data to be transmitted to the transfer device 10 at the notified shaper rate.
  • the notification bandwidth determination unit of the transfer device 10 12 determines the shaper rate R corresponding to the free capacity Q of the buffer 11 as band information to be notified to the first communication device 20.
  • FIG. 4 is a block diagram showing the configuration of the second exemplary embodiment of the present invention.
  • the packet transfer device 60 receives packet data via the traffic transfer path 30 from the upstream packet transfer device 70 which is the first communication device in the first embodiment. Further, the packet transfer device 60 transmits the received packet data to the second communication device 40 via the traffic transfer path 50.
  • the packet transfer device 60 includes a buffer 11, a notification bandwidth determination unit 12, a bandwidth notification transmission unit 13, a buffer free space notification unit 61, a radio bandwidth determination unit 62, and a bandwidth control unit 63. ing.
  • the upstream packet transfer apparatus 70 includes a band notification receiving unit 71 and a band control unit 72.
  • the buffer free space notification unit 61 notifies the notification bandwidth determination unit 12 of the free space. Note that the buffer free space notifying unit 61 does not always have to continuously notify the notification bandwidth determining unit 12 of the buffer free space change.
  • the buffer free space notification unit 61 sets a plurality of thresholds, and notifies the free space when the detected free space exceeds or falls below any of the plurality of thresholds.
  • FIG. 5 is a flowchart showing the free space notification operation of the buffer free space notification unit 61.
  • the buffer free space notification unit 61 detects free space (step S11).
  • step S14 it is determined whether or not the free space is larger than the i-th threshold i when the previous free space is detected (step S14), and if the free space is larger than the i-th threshold i when the previous free space is detected,
  • the buffer free space notification unit 61 notifies the notification bandwidth determination unit 12 of the free space corresponding to the threshold value i (step S15). If the free space is not less than or equal to the i-th threshold i in step S13, it is determined whether or not the free space is smaller than the i-th threshold i when the previous free space was detected (step S16).
  • the buffer free space notification unit 61 notifies the notification bandwidth determination unit 12 of the free space corresponding to the threshold i (step S15). Then, it is determined whether i is equal to the number of thresholds, that is, whether the determination for the last threshold is completed (step S17). If i is not equal to the number of thresholds, 1 is added to i (step S18), and step S13 is performed. Return to. That is, the buffer free space notifying unit 61 proceeds to a determination on the next threshold value i + 1.
  • the buffer free space notification unit 61 does not notify the free space and proceeds to step S17. If the free space is not smaller than the i-th threshold i at the time of the previous free space detection in step S16, the buffer free space notification unit 61 does not notify the free space and proceeds to step S17. When i is equal to the number of thresholds in step S17, that is, when the determination about the last threshold is completed, the buffer free space notification unit 61 ends the free space notification operation.
  • FIG. 5 in a specific change state will be described.
  • threshold A is the first threshold
  • threshold E is the fifth threshold in ascending order of free space.
  • FIG. 6 is a diagram illustrating a first change in the free space when the buffer free space notification unit 61 notifies the free space.
  • FIG. 6 shows a change in which the free space is larger than the threshold A at the previous detection, but the free space is smaller than the threshold A at the current detection.
  • FIG. 7 is a diagram showing a second change in the free space of the buffer when the buffer free space notification unit 61 notifies the free space.
  • FIG. 7 shows a change in which the free space is larger than the threshold C at the previous detection, but the free space is smaller than the threshold C at the current detection.
  • the buffer free capacity notifying unit 61 notifies the notification bandwidth determining unit 12 of the free capacity corresponding to the threshold C.
  • FIG. 8 is a diagram showing a third change in the free space of the buffer when the buffer free space notification unit 61 notifies the free space.
  • the radio bandwidth determination unit 62 determines the ETH bandwidth (the maximum bandwidth of the traffic transfer path 50).
  • the bandwidth control unit 63 sets the shaper rate of the traffic transfer path 50 based on the ETH bandwidth determined and notified by the wireless bandwidth determination unit 62.
  • the bandwidth control unit 63 sets the transfer rate according to the shaper rate when transmitting the data temporarily stored in the buffer 11 from the packet transfer device 60 to the second communication device 40 via the traffic transfer path 50. Control.
  • the notification bandwidth determination unit 12 acquires the ETH bandwidth determined by the wireless bandwidth determination unit 62, acquires information on the free space from the buffer free space notification unit 61, and based on the acquired ETH bandwidth and the free space of the buffer 11, Band information to be notified to the packet transfer apparatus 70 on the opposite side is determined. Similar to the first embodiment, the notification bandwidth determination unit 12 uses the buffer 11 when an instantaneous burst occurs while the packet transfer device 70 is controlling at the shaper rate R and the shaper rate R of the upstream packet transfer device 70. The relationship with the free space Q necessary to receive the data is held.
  • the notification bandwidth determination unit 12 may set a free capacity corresponding to each threshold and a shaper rate corresponding to the free capacity in association with a plurality of thresholds.
  • FIG. 9 is a diagram showing an example of setting the shaper rate corresponding to the free space of the buffer.
  • the notification bandwidth determination unit 12 corresponds to the threshold value notified from the buffer free space notification unit 61 and the actual free space of the buffer 11 and the packet transfer device 70 at a constant shaper rate.
  • a shaper rate is set to suppress data discard even if an instantaneous burst occurs during transmission.
  • the free space of the buffer 11 is 10 kbytes, and the shaper rate is set to 100 Mbps for this free space.
  • the threshold A is a threshold indicating that the buffer usage is Full, but in this case as well, the free space of the buffer is not 0 bytes, and the shaper rate is not 0 but 100 MBbps.
  • the bandwidth may be set larger than 0 when the buffer free space is 0 bytes. In this way, there is an effect that communication can be continued within a possible range even if there is no free space in the buffer. It is also possible to set the data transfer to be stopped (the shaper rate is 0 Mbps) with respect to a threshold with a small buffer free space.
  • the free space of the buffer 11 is 100 kbytes, and 300 Mbps is set for this free space.
  • the free space is notified from the buffer free space notification unit 61 as “threshold C”
  • the free space is notified from the buffer free space notification unit 61 as “threshold C”
  • the packet transfer device 70 transmits a packet at 300 Mbps, data discard occurs.
  • FIG. 10 is a flowchart showing an example of an operation for setting the shaper rate corresponding to the free space of the buffer.
  • the notification bandwidth determination unit 12 acquires information on the capacity transferred when an instantaneous burst occurs during packet transmission from the packet transfer device 70 at the set shaper rate (step S23). Then, the notification bandwidth determination unit 12 sets the free capacity of the buffer with the threshold value i based on the capacity transferred by the instantaneous burst (step S24).
  • the notification bandwidth determination unit 12 determines whether i is equal to the number of thresholds set, that is, whether the setting for the last threshold has been completed (step S25).
  • step S26 the notification bandwidth determination unit 12 moves to setting for the next threshold value i + 1.
  • i is equal to the number of threshold values in step S25, that is, when the setting for the last threshold value is completed, the notification bandwidth determination unit 12 ends the shaper rate setting operation corresponding to the free space.
  • a setting value may be determined by actually performing the following measurement in advance and the above setting may be performed.
  • the packet transfer apparatus 70 actually transmits a packet at a plurality of shaper rates, for example, 100 Mbps, 200 Mbps, 300 Mbps, 400 Mbps, and 500 Mbps in the example of FIG. 9 within a range where data transfer from the packet transfer apparatus 70 is not stopped.
  • the transfer capacity at time ⁇ t is measured for each shaper rate, and the maximum value of the transfer capacity at time ⁇ t is measured. The maximum value is recorded as the difference capacity from the transfer capacity at the shaper rate.
  • the notification band determination unit 12 sets each shaper rate.
  • step S24 the notification band determination unit 12 is transferred when an instantaneous burst is generated from recorded information on a plurality of shaper rates measured in advance.
  • the buffer free capacity of the threshold value i is set. For example, it is assumed that measurement is performed at a shaper rate of 100 Mbps, 200 Mbps, 300 Mbps, 400 Mbps, and 500 Mbps.
  • 100 Mbps, 200 Mbps, 300 Mbps, 400 Mbps, and 500 Mbps are set as the shaper rates corresponding to the threshold values A, B, C, D, and E.
  • step S24 10 Kbytes, 50 Kbytes, 100 Kbytes, 200 Kbytes, and 400 Kbytes are set as the free capacities corresponding to the threshold values A, B, C, D, and E.
  • FIG. 11 is a flowchart showing another example of the operation for setting the shaper rate corresponding to the free space of the buffer.
  • FIG. 12 is a diagram showing another setting example of the shaper rate corresponding to the free space of the buffer by the operation of FIG.
  • the notification bandwidth determination unit 12 first sets a ratio between the transfer capacity at the time ⁇ t when an instantaneous burst occurs and the transfer capacity at which the data is transferred at the shaper rate during the time ⁇ t (step S31). ). For example, the notification bandwidth determination unit 12 sets 70% when the transfer capacity at the shaper rate is 70% of the maximum transfer capacity when an instantaneous burst occurs.
  • the notification band determination unit 12 sets the free space of the buffer with the threshold value i (step S32). That is, the notification bandwidth determination unit 12 sets a capacity (ratio of 70% as a ratio) corresponding to (100 ⁇ (set ratio))% of the transfer capacity in which data is transferred at a shaper rate for a short time ⁇ t as the buffer free capacity. If set, 30%) is set. Thereafter, as in the example of FIG.
  • the notification bandwidth determination unit 12 determines whether i is equal to the number of thresholds set, that is, whether the setting for the last threshold has been completed (step S25). If it is not equal to the number, 1 is added to i (step S26), and the process returns to step S22. That is, the notification bandwidth determination unit 12 moves to setting for the next threshold value i + 1. When i is equal to the number of thresholds in step S25, that is, when the setting for the last threshold is completed, the setting operation of the shaper rate corresponding to the free space is terminated.
  • the packet transfer apparatus 70 actually transmits a packet for a plurality of shaper rates set within a range where data transfer from the packet transfer apparatus 70 is not stopped. Then, the transfer capacity in a short time when an instantaneous burst occurs is measured, and the maximum value of the transfer capacity in a short time is obtained. The ratio between the maximum value and the transfer capacity at the shaper rate is recorded. In step S31, the notification band determination unit 12 sets the minimum ratio among the ratios at all the shaper rates from the recording information measured for the plurality of shaper rates.
  • the notification band determination unit 12 sets each shaper rate. For example, as shown in FIG. 12, shaper rates of 100 Mbps, 200 Mbps, 300 Mbps, 400 Mbps, and 500 Mbps are set.
  • the notification bandwidth determination unit 12 has a capacity (30% when 70% is set as the ratio) corresponding to (100 ⁇ (the set ratio))% of the transfer capacity in a short time ⁇ t at each shaper rate. Is set as the buffer free space. For example, as shown in FIG. 12, assuming that the transfer capacity of each shaper rate in a short time ⁇ t is 200 Kbytes, 400 Kbytes, 600 Kbytes, 800 Kbytes, and 1000 Kbytes, when the ratio setting is 70%, the transfer capacity is 30%. 60 Mbytes, 120 Mbytes, 180 Mbytes, 240 Mbytes, and 300 Mbytes are set. By operating in this way, it is possible to collectively set a plurality of shaper rates by inputting one ratio from the user.
  • FIG. 13 is a diagram showing still another setting example of the shaper rate corresponding to the free space of the buffer.
  • the actual free space of the buffer 11 and the margin for the available bandwidth may be held in correspondence with the threshold value notified from the buffer free space notification unit 61.
  • the shaper rate corresponding to the buffer free capacity thresholds A to E is set to 300 Mbps, 350 Mbps, 400 Mbps, 450 Mbps, and 500 Mbps for the buffer free capacity thresholds A to E.
  • FIG. 13 is a diagram showing still another setting example of the shaper rate corresponding to the free space of the buffer.
  • the actual free space of the buffer 11 and the margin for the available bandwidth may be held in correspondence with the threshold value notified from the buffer free space notification unit 61.
  • the shaper rate corresponding to the buffer free capacity thresholds A to E is set to 300 Mbps, 350 Mbps, 400 Mbps, 450 Mbps, and 500 Mbps for the buffer free capacity thresholds A to E.
  • the margin for the available bandwidth may be set to 200 Mbps, 150 Mbps, 100 Mbps, 50 Mbps, and 0 Mbps with respect to the thresholds A to E of the free space of the buffer.
  • the margin for the available bandwidth may be a negative value.
  • a shaper rate larger than the available bandwidth is notified.
  • the thresholds A to E may be set to 100 Mbps, 50 Mbps, 0 Mbps, ⁇ 50 Mbps, ⁇ 100 Mbps, and the like.
  • FIG. 14 is a diagram illustrating still another setting example of the shaper rate corresponding to the free space of the buffer. As shown in FIG. 14, the actual free space of the buffer 11 and the ratio to the available bandwidth may be held in correspondence with the threshold value notified from the buffer free space notification unit 61.
  • the bandwidth available on the transfer path 50 is 500 Mbps
  • the shaper rate instead of setting the shaper rate to 250 Mbps, 350 Mbps, 400 Mbps, 450 Mbps, and 500 Mbps for the buffer free space thresholds A to E, as shown in FIG.
  • the ratio to the available bandwidth may be set to 50%, 70%, 80%, 90%, and 100%. In this case, when the buffer free space is large, the ratio to the available bandwidth may exceed 100%.
  • the thresholds A to E may be set to 50%, 80%, 100%, 110%, and 120%.
  • the shaper rates corresponding to the buffer free capacity with respect to the thresholds A to E are 250 Mbps, 400 Mbps, 500 Mbps, 550 Mbps, and 600 Mbps.
  • the notification bandwidth determination unit 12 obtains a shaper rate corresponding to the free space from the free space notified from the buffer free space notification unit 61, that is, a shaper rate at which data discard due to an instantaneous burst does not occur.
  • the notification bandwidth determination unit 12 compares the shaper rate corresponding to the free space with the shaper rate determined by the wireless bandwidth determination unit 62, and if the shaper rate exceeds the shaper rate corresponding to the free space, it corresponds to the free space.
  • the shaper rate to be determined is determined as bandwidth information to be notified to the packet transfer apparatus 70.
  • the bandwidth notification transmission unit 13 transmits the bandwidth information determined by the notification bandwidth determination unit 12 to the packet transfer device 70 in a prescribed frame format.
  • the bandwidth notification receiving unit 71 that has received the notification of the bandwidth information sets the shaper rate in the bandwidth control unit 72 of the packet transfer device 70 based on the bandwidth information.
  • the bandwidth control unit 72 controls the bandwidth based on the set shaper rate when the packet is transferred from the packet transfer device 70 to the packet transfer device 60.
  • FIG. 15 is a flowchart showing the band information determination operation of FIG.
  • the notification bandwidth determination unit 12 of the packet transfer device 60 acquires first information regarding a bandwidth that can be used on the traffic transfer path 50 with the second communication device 40 (step S41), and a buffer free space notification unit The free capacity of the buffer 11 is acquired from 61 (step S42).
  • the notification bandwidth determination unit 12 obtains a shaper rate corresponding to the free space of the buffer 11, that is, a shaper rate at which data discard due to an instantaneous burst does not occur with respect to the current free space, and the available bandwidth of the traffic transfer path 50 Are compared (step S43).
  • the notification bandwidth determination unit 12 determines whether the buffer is insufficient, that is, whether the bandwidth corresponding to the free capacity of the buffer 11 is smaller than the available bandwidth of the traffic transfer path 50 (step S44).
  • the notification bandwidth determination unit 12 sets the bandwidth information notified to the packet transfer device 70 as the available bandwidth of the traffic transfer path 50 (step S45), and the bandwidth notification transmission unit 13 of the packet transfer device 60 The determined bandwidth information is transmitted to the upstream packet transfer device 70.
  • the notification bandwidth determination unit 12 sets the bandwidth information notified to the packet transfer device 70 as the shaper rate corresponding to the free capacity of the buffer 11 (step S46), and the packet transfer device 60
  • the bandwidth notification transmission unit 13 transmits the determined bandwidth information to the upstream packet transfer device 70.
  • the first communication device 20 transmits data by controlling the transmission rate in the notified band.
  • FIG. 12 in a specific change state will be described. Similar to FIGS. 6 to 8, in the following example, five levels of thresholds are set from “threshold A” to “threshold E”. For example, it is assumed that “threshold A” is the first threshold and “threshold E” is the fifth threshold in ascending order of free space. It is assumed that the shaper rate corresponding to the threshold is set as shown in FIG.
  • the available bandwidth of the traffic transfer path 50 increases and the free capacity of the buffer does not change.
  • the free capacity of the buffer 11 is in the “threshold A” state shown in FIG. 6, and the available bandwidth of the traffic transfer path 50 is 100 Mbps. It is assumed that a bandwidth of 100 Mbps corresponding to “threshold A” is obtained from the free capacity, compared with the available bandwidth of 100 Mbps of the traffic transfer path 50, and bandwidth information of 100 Mbps is transmitted to the packet transfer apparatus 70.
  • the bandwidth 100 Mbps corresponding to the “threshold A” obtained from the correspondence relationship shown in FIG. 9 in step S43 and the traffic transfer path 50 can be used. Compared with a new bandwidth of 500 Mbps.
  • step S44 since the bandwidth 100 Mbps corresponding to the free capacity of the buffer 11 is smaller than the available bandwidth 500 Mbps of the traffic transfer path 50, it is determined that the buffer is insufficient.
  • step S46 the bandwidth information notified to the packet transfer device 70 is set to a bandwidth of 100 Mbps corresponding to the “threshold A”, and the packet transfer device 60 transmits the bandwidth information 100 Mbps to the upstream packet transfer device 70.
  • the free capacity of the buffer 11 is the free capacity corresponding to the state of “threshold C” shown in FIG. 7, and the available bandwidth of the traffic transfer path 50 is 100 Mbps.
  • a bandwidth of 300 Mbps corresponding to “threshold C” is obtained, compared with the available bandwidth of 100 Mbps on the traffic transfer path 50, and bandwidth information of 100 Mbps is transmitted to the packet transfer apparatus 70.
  • the bandwidth 300 Mbps corresponding to the free capacity of the buffer 11 is smaller than the available bandwidth 500 Mbps of the traffic transfer path 50, it is determined that the buffer is insufficient.
  • the notified bandwidth information is a bandwidth of 300 Mbps corresponding to the free capacity of the buffer 11, and the packet transfer device 60 transmits the bandwidth information of 300 Mbps to the upstream packet transfer device.
  • the free capacity of the buffer 11 is the free capacity corresponding to the “threshold E” shown in FIG. 8, and the available bandwidth of the traffic transfer path 50 is 100 Mbps. It is assumed that a bandwidth of 500 Mbps corresponding to “threshold E” is obtained, compared with the available bandwidth of 100 Mbps of the traffic transfer path 50, and bandwidth information of 100 Mbps is transmitted to the packet transfer apparatus.
  • the available bandwidth is compared with 500 Mbps, and it is determined in step S44 that there is no buffer shortage.
  • the notified bandwidth information is set to a usable bandwidth 500 Mbps of the traffic transfer path 50, and the packet transfer device 60 transmits the bandwidth information 500 Mbps to the upstream packet transfer device 70.
  • the available bandwidth of the traffic transfer path 50 decreases and the buffer free space does not change.
  • the free capacity of the buffer 11 is the free capacity corresponding to the “threshold A” shown in FIG. 6 and the available bandwidth of the traffic transfer path 50 is 500 Mbps.
  • bandwidth information 100 Mbps corresponding to the free capacity of the buffer is obtained, the available bandwidth of the traffic transfer path 50 is compared with 500 Mbps, and 100 Mbps is transmitted to the packet transfer apparatus 70.
  • the bandwidth information 100 Mbps corresponding to the free capacity of the buffer obtained from the correspondence relationship as shown in FIG. 9 in step S43 and the use of the traffic transfer path 50 The possible bandwidth is compared with 100 Mbps.
  • step S44 since the bandwidth information 100 Mbps corresponding to the free capacity of the buffer 11 is equal to or larger than the available bandwidth 100 Mbps of the traffic transfer path 50, it is determined that there is no buffer shortage.
  • step S45 the notified bandwidth information is set to 100 Mbps usable in the traffic transfer path 50, and the packet transfer device 60 transmits 100 Mbps to the upstream packet transfer device 70.
  • the free capacity of the buffer 11 is the free capacity corresponding to the “threshold C” shown in FIG. 7, and the available bandwidth of the traffic transfer path 50 is 500 Mbps.
  • bandwidth information 300 Mbps corresponding to the free capacity of the buffer is obtained, the available bandwidth of the traffic transfer path 50 is compared with 500 Mbps, and 300 Mbps is transmitted to the packet transfer apparatus 70.
  • the bandwidth information 300 Mbps corresponding to the free capacity of the buffer obtained from the correspondence relationship as shown in FIG. 9 and the use of the traffic transfer path 50 in step S43.
  • the possible bandwidth is compared with 100 Mbps.
  • step S44 since the bandwidth information 300 Mbps corresponding to the free capacity of the buffer 11 is the available bandwidth 100 Mbps or more of the traffic transfer path 50, it is determined that there is no buffer shortage.
  • step S45 the notified bandwidth information is set to 100 Mbps usable in the traffic transfer path 50, and the packet transfer device 60 transmits 100 Mbps to the upstream packet transfer device 70.
  • the free capacity of the buffer 11 is the free capacity corresponding to the “threshold E” shown in FIG. 8, and the available bandwidth of the traffic transfer path 50 is 500 Mbps.
  • bandwidth information 500 Mbps corresponding to the free capacity of the buffer is obtained, the available bandwidth of the traffic transfer path 50 is compared with 500 Mbps, and 500 Mbps is transmitted to the packet transfer device 70.
  • the bandwidth information 500 Mbps corresponding to the free capacity of the buffer obtained from the correspondence relationship as shown in FIG. 9 in step S43 and the use of the traffic transfer path 50 The possible bandwidth is compared with 100 Mbps.
  • step S44 since the bandwidth information 500 Mbps corresponding to the free capacity of the buffer 11 is equal to or greater than the available bandwidth 100 Mbps of the traffic transfer path 50, it is determined that there is no buffer shortage.
  • step S45 the notified bandwidth information is set to 100 Mbps usable in the traffic transfer path 50, and the packet transfer device 60 transmits 100 Mbps to the upstream packet transfer device 70.
  • the available bandwidth of the traffic transfer path 50 is not changed and the free capacity of the buffer is increased.
  • the free capacity of the buffer 11 is the free capacity corresponding to the “threshold A” shown in FIG. 6 and the available bandwidth of the traffic transfer path 50 is 500 Mbps. It is assumed that a bandwidth of 100 Mbps corresponding to the free capacity of the buffer is obtained, the available bandwidth of the traffic transfer path 50 is compared with 500 Mbps, and bandwidth information 100 Mbps is transmitted to the packet transfer device 70.
  • the bandwidth 300 Mbps corresponding to “threshold C” obtained from the correspondence as shown in FIG. 50 available bandwidths, 500 Mbps, are compared.
  • the bandwidth 300 Mbps corresponding to the free capacity of the buffer 11 is smaller than the available bandwidth 500 Mbps of the traffic transfer path 50, it is determined that the buffer is insufficient.
  • the notified bandwidth information is the bandwidth information 300 Mbps corresponding to the free capacity of the buffer 11, and the packet transfer device 60 transmits the bandwidth information 300 Mbps to the upstream packet transfer device 70.
  • the available bandwidth of the traffic transfer path 50 is compared with 500 Mbps.
  • step S44 since the bandwidth 500 Mbps corresponding to the free capacity of the buffer 11 is equal to the available bandwidth 500 Mbps of the traffic transfer path 50, it is determined that there is no buffer shortage.
  • step S46 the bandwidth information to be notified is set to a usable bandwidth 500 Mbps of the traffic transfer path 50, and the packet transfer device 60 transmits the bandwidth information 500 Mbps to the upstream packet transfer device 70.
  • the available bandwidth of the traffic transfer path 50 is not changed and the buffer free space is reduced.
  • the free capacity of the buffer 11 is in the “threshold E” state shown in FIG. 8 and the available bandwidth of the traffic transfer path 50 is 500 Mbps. It is assumed that a bandwidth of 500 Mbps corresponding to the free capacity of the buffer 11 is obtained, the available bandwidth of the traffic transfer path 50 is compared with 500 Mbps, and 500 Mbps is transmitted to the packet transfer apparatus 70.
  • the available bandwidth of the transfer path 50 is compared with 500 Mbps.
  • the bandwidth information 100 Mbps corresponding to the free capacity of the buffer 11 is smaller than the available bandwidth 500 Mbps of the traffic transfer path 50, it is determined that the buffer is insufficient.
  • the notified bandwidth information is the bandwidth information 100 Mbps corresponding to the free capacity of the buffer 11, and the packet transfer device 60 transmits the bandwidth information 100 Mbps to the upstream packet transfer device 70.
  • the bandwidth information 300 Mbps corresponding to “threshold C” obtained from the correspondence as shown in FIG. 9 in step S43. And the available bandwidth 500 Mbps of the traffic transfer path 50 are compared.
  • the bandwidth information to be notified is the bandwidth information 300 Mbps corresponding to the free capacity of the buffer 11, and the packet transfer device 60 transmits the bandwidth information 300 Mbps to the upstream packet transfer device 70.
  • the packet transfer device 60 compares the bandwidth in which data discard due to the instantaneous burst does not occur with the available capacity of the buffer 11 with the available bandwidth of the downstream traffic transfer path 50.
  • the packet transfer apparatus 60 sets the bandwidth information notified to the packet transfer apparatus 70 as the bandwidth for the free capacity of the buffer 11.
  • FIG. 16 is a block diagram showing a configuration of the third exemplary embodiment of the present invention.
  • the traffic transfer path between the packet transfer apparatus and the downstream second communication apparatus is a radio traffic transfer path, and adaptive modulation is performed.
  • the second communication device 100 transmits an SNR (Signal to Noise Ratio) in the received radio wave and a BER (Bit Error Rate) in the data based on the received radio wave to the wireless traffic transfer.
  • the packet transfer device 90 is notified via the path 80.
  • the transmission / reception unit 91 of the packet transfer device 90 changes the modulation method of the radio wave to be transmitted according to the notified SNR, BER, etc., and transmits the packet to the second communication device 100 via the wireless traffic transfer path 80.
  • the transmission / reception unit 91 changes the modulation method of the radio wave to be transmitted according to the SNR, BER, etc.
  • the transmission / reception unit 91 notifies the radio band determination unit 62 of the changed modulation method.
  • the radio band determining unit 62 determines the ETH band.
  • the band control unit 63 sets the shaper rate for the second communication apparatus 100 based on the ETH band determined by the radio band determination unit 62.
  • the notification bandwidth determination unit 12 determines the notification bandwidth by looking at the free space of the buffer and related information as in the first and second embodiments described above. If the communication apparatus that performs adaptive modulation in this way is configured as the transfer apparatus 10 of the first embodiment or the packet transfer apparatus 60 of the second embodiment, the bandwidth of the traffic transfer path 50 is greatly varied and frequent. Therefore, it is possible to suitably control the amount of communication from the upstream device according to the fluctuation of the downstream bandwidth.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

In order that, in a system for notifying an upstream device of a communication band permitted for a communication path to a downstream device, a data transfer from the upstream device is transferred to the downstream device without being stopped and disposal of the data is prevented, a transfer device 10 has a buffer 11 for temporarily storing the data received from a first communication device 20 and transmitted to a second communication device 40, a notification band determination unit 12 for determining band information to be notified to the first communication device 20 on the basis of first information relating to a band usable in a traffic transfer path 50 to the second communication device 40 and second information relating to a band that corresponds to a free space of the buffer 11, and a band notification transmission unit 13 for transmitting the band information to the first communication device 20.

Description

通信システム、通信方法、転送装置及び転送方法COMMUNICATION SYSTEM, COMMUNICATION METHOD, TRANSFER DEVICE, AND TRANSFER METHOD
 本発明は、通信システム、通信方法、転送装置及び転送方法に関し、特に、下流装置との間で許容される通信帯域を上流装置に通知する通信システム、通信方法、転送装置及び転送方法に関する。 The present invention relates to a communication system, a communication method, a transfer device, and a transfer method, and more particularly, to a communication system, a communication method, a transfer device, and a transfer method for notifying an upstream device of a communication band allowed with a downstream device.
 上流装置からデータを受信し、受信したデータを下流装置に送信する転送装置は、下流装置との間の通信路で許容される通信帯域でデータを送信するよう制御する必要がある。下流装置との間の通信路で許容される通信帯域より大きなレートで上流装置からデータが送信されると、転送装置でパケット廃棄が発生する可能性がある。下流装置との間の通信路で許容される通信帯域を上流装置に通知する通信方式が、ITU-T標準等に規定されている。 The transfer device that receives data from the upstream device and transmits the received data to the downstream device needs to be controlled so as to transmit the data in a communication band allowed in the communication path with the downstream device. If data is transmitted from the upstream device at a rate larger than the communication band allowed on the communication path with the downstream device, there is a possibility that the transfer device will discard the packet. A communication method for notifying an upstream device of a communication band allowed on a communication path with a downstream device is defined in the ITU-T standard or the like.
 例えば、ITU-T G.8013/Y.1731では、ETH-OAM(Ethernet(登録商標) Operation. Administration and Maintenance)のひとつの機能として、ETH-BN(Ethernet Bandwidth Notification)という帯域通知が定義されている。 For example, ITU-T G. 8013 / Y. 1731 defines a band notification called ETH-BN (Ethernet Bandwidth Notification) as one function of ETH-OAM (Ethernet (registered trademark) Operation. Administration and Maintenance).
 本機能は、帯域が細い装置から、ネットワークのQoS(Quality of Service)制御を行う別のL2スイッチに対しBNM(Bandwidth Notification Message)と呼ばれる帯域を通知するメッセージを送信する。このことにより、L2スイッチにてネットワーク全体を考慮したQoS制御を行う事を目的としている。勧告上、送信周期は1s、10s、1minが定義されており、この周期で帯域変化に応じて通知がされる。 This function transmits a message notifying a band called BNM (Bandwidth Notification Message) to another L2 switch that performs network QoS (Quality of Service) control from a device with a narrow band. This aims at performing QoS control in consideration of the entire network by the L2 switch. According to the recommendation, 1s, 10s, and 1min are defined as the transmission cycle, and notification is made according to the band change in this cycle.
 帯域が細い転送装置は、許容される通信帯域を示すBNM等を上流のネットワークのQoS制御を行う他装置に対して送信する。上流の他装置の帯域制御部は、BNM等により通知された通信帯域に基づき時間当たりのデータ転送量でレート制御を行い、帯域情報を通知する転送装置にデータを送信する。 The transfer device with a narrow bandwidth transmits BNM or the like indicating an allowable communication bandwidth to another device that performs QoS control of the upstream network. The bandwidth control unit of the other upstream device performs rate control with the data transfer amount per time based on the communication bandwidth notified by BNM or the like, and transmits data to the transfer device that notifies the bandwidth information.
 他に関連する技術として例えば特許文献1、2に、無線路で許容される通信帯域の制限値を越えないよう送信データ量を制御する装置が開示されている。 As another related technique, for example, Patent Documents 1 and 2 disclose an apparatus for controlling the amount of transmission data so as not to exceed the limit value of the communication band allowed on the wireless path.
 特許文献1のATM多重化装置では、データ送信依頼部に対して許容される帯域量が設定され、データ送信依頼部からの送信データは、バッファ手段を介して許容された帯域量を越えない速度で送信される。バッファ手段には、データ送信依頼部から入力されるデータ量と出力されるデータ量の差に応じたデータが保持される。バッファ手段に溜っているデータ量が許容されるデータ量と比べられ、許容されるデータ量を越えた場合には、データ送信依頼部からの送信が中止され、その後、バッファ手段に溜っているデータ量が許容帯域量より少なくなると、送信が可能とされる。 In the ATM multiplexing apparatus of Patent Document 1, an allowable bandwidth is set for the data transmission request unit, and the transmission data from the data transmission request unit does not exceed the allowable bandwidth through the buffer means. Sent by. The buffer means holds data corresponding to the difference between the data amount input from the data transmission request unit and the data amount output. The amount of data stored in the buffer means is compared with the allowable data amount. When the allowable data amount is exceeded, transmission from the data transmission request unit is stopped, and then the data stored in the buffer means If the amount becomes smaller than the allowable bandwidth, transmission is enabled.
 特許文献2には、基地局から情報をダウンロードする際に伝送レートおよび帯域を基地局に送る車載無線通信装置が開示されている。特許文献2の車載無線通信装置は、次フレーム受信時の推測端末位置情報および速度情報から適用する伝送レートを決定する。また車載無線通信装置は、受信バッファのデータ蓄積量、データ蓄積量の増減状態、データ許容遅延および送出レートから、受信する必要があるデータ量および受信時間期限を算出し、データ通信に割当てる帯域を決定する。車載無線通信装置は、例えば、低速レートでのダウンロードが続く場合、受信バッファへのデータ蓄積量が少なく、許容遅延の小さい地図情報の帯域幅を拡大し、受信バッファへのデータ蓄積量が多く、許容遅延の大きい楽曲情報の帯域幅を「割当てなし」とする。 Patent Document 2 discloses an in-vehicle wireless communication device that transmits a transmission rate and a band to a base station when information is downloaded from the base station. The in-vehicle wireless communication device of Patent Literature 2 determines a transmission rate to be applied from estimated terminal position information and speed information at the time of receiving the next frame. The in-vehicle wireless communication device calculates the amount of data required to be received and the reception time limit from the data accumulation amount of the reception buffer, the increase / decrease state of the data accumulation amount, the allowable data delay and the transmission rate, and sets the bandwidth allocated for data communication. decide. For example, if the in-vehicle wireless communication device continues to download at a low rate, the amount of data stored in the reception buffer is small, the bandwidth of map information with a small allowable delay is expanded, and the amount of data stored in the reception buffer is large. The bandwidth of music information having a large allowable delay is set to “no allocation”.
特開平07-123099号公報Japanese Patent Laid-Open No. 07-123099 国際公開第2011/045828号International Publication No. 2011/045828
 帯域が細い装置からネットワークのQoS制御を行う他の装置にBNM等の帯域情報を通知する構成では、他の装置から帯域が細い装置へのトラフィック転送路の物理帯域は例えば1Gbpsなどであり、帯域が細い装置における利用可能な通信帯域は、例えば10Mbpsなどであり、トラフィック転送路の物理帯域は帯域が細い装置における利用可能な通信帯域より大きい。このことから、短い時間におけるレートを見ると帯域が細い装置から通知された制御レート10Mbpsより大きなレートで送信される場合がある。この現象は瞬時バーストという。帯域が細い装置がBNM等により通信帯域を通知した他の装置から送信されるデータの量が瞬時バーストにより帯域が細い装置のバッファで受け止め可能な量を超えた場合、データの廃棄が発生する。 In a configuration in which bandwidth information such as BNM is notified from a device with a narrow bandwidth to another device that performs network QoS control, the physical bandwidth of a traffic transfer path from another device to a device with a narrow bandwidth is, for example, 1 Gbps. The usable communication bandwidth in a device with a narrow bandwidth is, for example, 10 Mbps, and the physical bandwidth of the traffic transfer path is larger than the usable communication bandwidth in a device with a narrow bandwidth. For this reason, when looking at the rate in a short time, there is a case where transmission is performed at a rate larger than the control rate of 10 Mbps notified from a device with a narrow band. This phenomenon is called instantaneous burst. When the amount of data transmitted from another device that has notified the communication band by a device with a narrow bandwidth by BNM or the like exceeds the amount that can be received by the buffer of the device with a narrow bandwidth due to an instantaneous burst, the data is discarded.
 特許文献1に開示のATM多重化装置は、バッファ手段に溜っているデータ量が許容されるデータ量より多い場合、ATM多重化装置内のデータ送信依頼部からのデータの送信を中止するものである。特許文献2に開示の車載無線通信装置は、基地局から情報をダウンロードする際に低速レートでのダウンロードが続く場合、受信バッファへのデータ蓄積量が多い楽曲情報の帯域幅を「割当てなし」とするものであり、バッファのデータが多い場合いずれも上流装置からのデータ送信が停止される。いずれの文献の技術も、上流からのデータ転送を止めてしまう。 The ATM multiplexing device disclosed in Patent Document 1 stops data transmission from the data transmission request unit in the ATM multiplexing device when the amount of data stored in the buffer means is larger than the allowable data amount. is there. In the in-vehicle wireless communication device disclosed in Patent Document 2, if downloading at a low rate continues when downloading information from a base station, the bandwidth of music information with a large amount of data stored in the reception buffer is set to “no allocation”. In any case, when there is a lot of data in the buffer, data transmission from the upstream device is stopped. Any of the techniques in the literature stops data transfer from the upstream.
 本発明の目的は、下流装置との間で許容される通信帯域を上流装置に通知するシステムにおいて、上流装置からのデータ転送を止めずに下流装置に転送できるとともにデータの廃棄を抑えることが可能な通信システム、通信方法、転送装置及び転送方法を提供することにある。 It is an object of the present invention to transfer data to the downstream device without stopping the data transfer from the upstream device in a system that notifies the upstream device of the communication bandwidth allowed with the downstream device, and to suppress data discarding. A communication system, a communication method, a transfer device, and a transfer method are provided.
 本発明の一側面による転送装置は、第1の通信装置から受信し第2の通信装置に送信するデータを一時的に記憶するバッファと、前記第2の通信装置との間の通信路で利用可能な帯域に関する第1の情報と前記バッファの空き容量に対応する帯域に関する第2の情報に基づき帯域情報を決定する通知帯域決定部と、前記帯域情報を前記第1の通信装置に送信する帯域通知送信部と、を有している。 A transfer device according to one aspect of the present invention is used in a communication path between a buffer that temporarily stores data received from a first communication device and transmitted to a second communication device, and the second communication device. A notification bandwidth determining unit that determines bandwidth information based on first information relating to a possible bandwidth and second information relating to a bandwidth corresponding to the free capacity of the buffer; and a bandwidth for transmitting the bandwidth information to the first communication device. A notification transmission unit.
 本発明の他の側面による転送方法は、第1の通信装置から受信し第2の通信装置に送信するデータをバッファに一時的に記憶し、前記第2の通信装置との間の通信路で利用可能な帯域に関する第1の情報を取得し、前記バッファの空き容量に対応する帯域に関する第2の情報を算出し、前記第1及び第2の情報に基づき帯域情報を決定し、決定した前記帯域情報を前記第1の通信装置に送信する。 According to another aspect of the present invention, there is provided a transfer method in which data received from a first communication device and transmitted to a second communication device is temporarily stored in a buffer, and a communication path between the second communication device and the second communication device. Obtaining first information on available bandwidth, calculating second information on bandwidth corresponding to the free capacity of the buffer, determining bandwidth information based on the first and second information, and determining the determined Band information is transmitted to the first communication device.
 本発明の他の側面による通信システムは、通知された帯域情報に基づくレートでデータを送信する第1の通信装置と、上記転送装置と、を有している。 A communication system according to another aspect of the present invention includes a first communication device that transmits data at a rate based on notified bandwidth information, and the transfer device.
 本発明の他の側面による通信方法は、通知された帯域情報に基づくレートで第1の通信装置から転送装置にデータを送信し、前記データを前記転送装置のバッファに一時的に記憶し、第2の通信装置との間の通信路で利用可能な帯域に関する第1の情報を取得し、前記バッファに記憶したデータを前記第1の情報に応じたレートで前記第2の通信装置に送信し、前記バッファの空き容量に対応する帯域に関する第2の情報を取得し、前記第1及び第2の情報に基づき前記帯域情報を決定し、決定した前記帯域情報を前記第1の通信装置に送信する。 A communication method according to another aspect of the present invention transmits data from a first communication device to a transfer device at a rate based on notified bandwidth information, temporarily stores the data in a buffer of the transfer device, First information relating to a bandwidth that can be used in a communication path between two communication devices is acquired, and data stored in the buffer is transmitted to the second communication device at a rate according to the first information. The second information related to the bandwidth corresponding to the free space of the buffer is acquired, the bandwidth information is determined based on the first and second information, and the determined bandwidth information is transmitted to the first communication device. To do.
 本発明によれば、下流装置との間の通信路で利用可能な帯域に基づき上流装置に帯域情報を通知する転送装置において上流装置からのデータ転送を止めずに下流装置に転送できるとともにデータの廃棄を防ぐことが可能な通信システム、通信方法、転送装置及び転送方法を提供することができる。 According to the present invention, the transfer device that notifies the upstream device of the bandwidth information based on the bandwidth available on the communication path with the downstream device can transfer the data from the upstream device to the downstream device without stopping the data transfer. It is possible to provide a communication system, a communication method, a transfer device, and a transfer method that can prevent discarding.
図1は、第1の実施形態の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of the first embodiment. 図2は、図1の第1の通信装置からの送信データ量の変化を示す図である。FIG. 2 is a diagram illustrating a change in the amount of transmission data from the first communication apparatus in FIG. 図3は、図1の帯域情報決定の動作を示すフローチャートである。FIG. 3 is a flowchart showing the band information determination operation of FIG. 図4は、本発明の第2の実施形態の構成を示すブロック図である。FIG. 4 is a block diagram showing the configuration of the second exemplary embodiment of the present invention. 図5は、バッファの空き容量通知動作を示すフローチャートである。FIG. 5 is a flowchart showing a buffer free space notification operation. 図6は、バッファが空き容量を通知するときのバッファの空き容量の第1の変化を示す図である。FIG. 6 is a diagram illustrating a first change in the free space of the buffer when the buffer notifies the free space. 図7は、バッファが空き容量を通知するときのバッファの空き容量の第2の変化を示す図である。FIG. 7 is a diagram illustrating a second change in the free space of the buffer when the buffer notifies the free space. 図8は、バッファが空き容量を通知するときのバッファの空き容量の第3の変化を示す図である。FIG. 8 is a diagram illustrating a third change in the free space of the buffer when the buffer notifies the free space. 図9は、バッファの空き容量と対応する帯域情報の設定例を示す図である。FIG. 9 is a diagram illustrating a setting example of bandwidth information corresponding to the free space of the buffer. 図10は、バッファの空き容量と対応する帯域情報を設定する動作の1例を示すフローチャートである。FIG. 10 is a flowchart showing an example of an operation for setting bandwidth information corresponding to the free space of the buffer. 図11は、バッファの空き容量と対応する帯域情報を設定する動作の他の例を示すフローチャートであるFIG. 11 is a flowchart showing another example of the operation for setting the bandwidth information corresponding to the free space of the buffer. 図12は、図11の動作によるバッファの空き容量と対応するシェーパーレートの他の設定例を示す図である。FIG. 12 is a diagram showing another setting example of the shaper rate corresponding to the free space of the buffer by the operation of FIG. 図13は、バッファの空き容量と対応するシェーパーレートのさらに他の設定例を示す図である。FIG. 13 is a diagram showing still another setting example of the shaper rate corresponding to the free space of the buffer. 図14は、バッファの空き容量と対応するシェーパーレートのさらに他の設定例を示す図である。FIG. 14 is a diagram illustrating still another setting example of the shaper rate corresponding to the free space of the buffer. 図15は、図4の帯域情報決定の動作を示すフローチャートである。FIG. 15 is a flowchart showing the band information determination operation of FIG. 図16は、本発明の第3の実施形態の構成を示すブロック図である。FIG. 16 is a block diagram showing a configuration of the third exemplary embodiment of the present invention.
 以下、本発明の構成について図面を参照して説明する。図1は、本発明の第1の実施形態の構成を示すブロック図である。図1に示すように転送装置10は上流の第1の通信装置20からトラフィック転送路(通信路)30を経由してデータを受信し、受信したデータを、下流の第2の通信装置40に対してトラフィック転送路(通信路)50を経由して送信する。ここでトラフィック転送路50は無線通信路であってもよい。転送装置10は第2の通信装置40との間のトラフィック転送路(通信路)50で利用可能な帯域に関する第1の情報を取得する。第1の通信装置20は、転送装置10から帯域情報を通知され、転送装置10へのデータ送信の際、通知された帯域情報でデータの送信帯域を制限する。なお転送装置10は、転送装置に限らず、第1の通信装置20及び第2の通信装置40と同様の通信装置でもよい。 Hereinafter, the configuration of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration of the first exemplary embodiment of the present invention. As shown in FIG. 1, the transfer device 10 receives data from the upstream first communication device 20 via the traffic transfer path (communication path) 30, and sends the received data to the downstream second communication device 40. On the other hand, the data is transmitted via a traffic transfer path (communication path) 50. Here, the traffic transfer path 50 may be a wireless communication path. The transfer device 10 acquires first information regarding a bandwidth that can be used on a traffic transfer path (communication path) 50 between the transfer apparatus 10 and the second communication apparatus 40. The first communication device 20 is notified of the band information from the transfer device 10 and restricts the data transmission band with the notified band information when transmitting data to the transfer device 10. The transfer device 10 is not limited to the transfer device, and may be a communication device similar to the first communication device 20 and the second communication device 40.
 本発明の転送装置10は、図1に示すようにバッファ11と、通知帯域決定部12と、帯域通知送信部13を備えている。 The transfer device 10 of the present invention includes a buffer 11, a notification band determination unit 12, and a band notification transmission unit 13 as shown in FIG.
 バッファ11は、第2の通信装置40に送信するデータを一時的に記憶する。 The buffer 11 temporarily stores data to be transmitted to the second communication device 40.
 通知帯域決定部12は、動的に変化するトラフィック転送路50の利用可能帯域及びバッファ11の空き容量を監視し、トラフィック転送路50の利用可能帯域又はバッファ11の空き容量に基づき第1の通信装置20に通知する帯域情報を決定する。通知帯域決定部12は、第2の通信装置40との間のトラフィック転送路(通信路)50で利用可能な帯域に関する第1の情報と、バッファ11の空き容量に対応する帯域に関する第2の情報とに基づき、第1の通信装置20に通知する帯域情報を決定する。 The notification bandwidth determination unit 12 monitors the dynamically usable bandwidth of the traffic transfer path 50 and the free capacity of the buffer 11, and performs the first communication based on the available bandwidth of the traffic transfer path 50 or the free capacity of the buffer 11. Band information to be notified to the device 20 is determined. The notification bandwidth determination unit 12 includes first information related to a bandwidth that can be used on a traffic transfer path (communication path) 50 between the second communication device 40 and a second bandwidth related to the free space of the buffer 11. Based on the information, band information to be notified to the first communication device 20 is determined.
 バッファ11の空き容量に対応する帯域に関する第2の情報の例について説明する。図2は、図1の第1の通信装置からの送信データ量の変化を示す図である。図2に示すように第1の通信装置20が制御帯域Rでデータの送信帯域を制御しているとする。制御帯域Rは、例えば、シェーパーレートやポリサーレートであってもよい。以下、本明細書ではシェーパーレートと記載する。このときに瞬時バーストが発生し、短い時間Δtでみると、シェーパーレートRを超え、バースト送信レートRbで第1の通信装置20からデータが送信されるとする。この場合、第1の通信装置20からは、Δtの間にシェーパーレートRで想定されるデータ容量より、容量(Rb-R)×Δtだけ多いデータが転送装置10に送信される。したがって転送装置10のバッファ11の空き容量Qが(Rb-R)×Δtより少ないと、バッファ11は送信データを受け止めることができず、データ廃棄が発生する。シェーパーレートRが大きいほど、瞬時バーストによる送信データが増加し、必要な空き容量Qは大きくなる。 An example of the second information regarding the bandwidth corresponding to the free capacity of the buffer 11 will be described. FIG. 2 is a diagram illustrating a change in the amount of transmission data from the first communication apparatus in FIG. As shown in FIG. 2, it is assumed that the first communication device 20 controls the data transmission band with the control band R. The control band R may be, for example, a shaper rate or a policer rate. Hereinafter, it is described as a shaper rate in this specification. Assume that an instantaneous burst occurs at this time, and the data is transmitted from the first communication device 20 at the burst transmission rate Rb exceeding the shaper rate R when viewed in a short time Δt. In this case, the first communication device 20 transmits data larger than the data capacity assumed at the shaper rate R during Δt by the capacity (Rb−R) × Δt to the transfer apparatus 10. Therefore, if the free capacity Q of the buffer 11 of the transfer apparatus 10 is smaller than (Rb−R) × Δt, the buffer 11 cannot receive the transmission data and data is discarded. As the shaper rate R increases, transmission data due to instantaneous bursts increases, and the required free space Q increases.
 通知帯域決定部12は、第1の通信装置20がデータをシェーパーレートRで送信中に瞬時バーストが発生した場合でも転送装置10で送信データを受け止めることができるバッファの空き容量Qと、そのシェーパーレートRとの対応関係を設定する。具体的には、第1の通信装置20がシェーパーレートRで制御中に瞬時バーストが発生した場合の送信データ容量の増分以上の空き容量Qを、シェーパーレートRと対応させる。このように設定された空き容量QとシェーパーレートRとの関係から、通知帯域決定部12は、バッファ11の空き容量Qに対し、瞬時バーストによるデータ廃棄が発生しないシェーパーレートRを求める。バッファ11の空き容量から求められるシェーパーレートが、バッファの空き容量に対応する帯域に関する第2の情報である。 The notification bandwidth determination unit 12 includes a buffer free space Q that allows the transfer device 10 to receive transmission data even when an instantaneous burst occurs while the first communication device 20 is transmitting data at the shaper rate R, and its shaper. Correspondence with rate R is set. Specifically, the free capacity Q equal to or greater than the increment of the transmission data capacity when an instantaneous burst occurs while the first communication apparatus 20 is controlling at the shaper rate R is made to correspond to the shaper rate R. From the relationship between the free capacity Q and the shaper rate R set in this way, the notification bandwidth determination unit 12 obtains the shaper rate R for the free capacity Q of the buffer 11 at which data discard due to an instantaneous burst does not occur. The shaper rate obtained from the free capacity of the buffer 11 is the second information regarding the bandwidth corresponding to the free capacity of the buffer.
 通知帯域決定部12は、例えば、第1の通信装置20のシェーパーレートと、第1の通信装置20がそのシェーパーレートで制御中に瞬時バーストが発生した場合の送信データ容量の増分との関係を保持している。通知帯域決定部12は、シェーパーレートと瞬時バーストが発生した場合の送信データ容量の増分との関係から、バッファ11の空き容量Qに対応するシェーパーレートRを算出する。通知帯域決定部12は、バッファ11の空き容量Qに対応するシェーパーレートRがトラフィック転送路50で利用可能な帯域以上の場合は、トラフィック転送路50の利用可能な帯域を、第1の通信装置20に通知する帯域情報として決定する。また通知帯域決定部12は、バッファ11の空き容量Qに対応するシェーパーレートRが、トラフィック転送路50の利用可能な帯域より小さい場合は、バッファ11の空き容量Qに対応するシェーパーレートRを第1の通信装置20に通知する帯域情報として決定する。 For example, the notification band determination unit 12 determines the relationship between the shaper rate of the first communication device 20 and the increase in transmission data capacity when an instantaneous burst occurs while the first communication device 20 is controlling at the shaper rate. keeping. The notification band determination unit 12 calculates the shaper rate R corresponding to the free capacity Q of the buffer 11 from the relationship between the shaper rate and the increase in transmission data capacity when an instantaneous burst occurs. When the shaper rate R corresponding to the free capacity Q of the buffer 11 is equal to or higher than the bandwidth that can be used in the traffic transfer path 50, the notification bandwidth determination unit 12 determines the available bandwidth of the traffic transfer path 50 as the first communication device. 20 is determined as bandwidth information to be notified to the network 20. In addition, when the shaper rate R corresponding to the free capacity Q of the buffer 11 is smaller than the available bandwidth of the traffic transfer path 50, the notification bandwidth determination unit 12 determines the shaper rate R corresponding to the free capacity Q of the buffer 11. 1 is determined as bandwidth information to be notified to the first communication device 20.
 帯域通知送信部13は、第1の通信装置20に通知する帯域情報として決定された帯域情報を送信する。 The bandwidth notification transmission unit 13 transmits the bandwidth information determined as the bandwidth information to be notified to the first communication device 20.
 次に第1の実施形態の動作について説明する。図3は、図1の帯域情報決定の動作を示すフローチャートである。図3の動作は、例えば、トラフィック転送路50の利用可能帯域とバッファ11の空き容量の少なくとも1つが変化すると開始されるとしてもよいが、これに限らない。 Next, the operation of the first embodiment will be described. FIG. 3 is a flowchart showing the band information determination operation of FIG. The operation of FIG. 3 may be started when at least one of the available bandwidth of the traffic transfer path 50 and the free capacity of the buffer 11 changes, but is not limited thereto.
 まず転送装置10は、第1の通信装置20から受信し第2の通信装置40に送信するデータをバッファ11に一時的に記憶する(ステップS1)。次に、転送装置10は、第2の通信装置40との間のトラフィック転送路50で利用可能な帯域に関する第1の情報を取得する(ステップS2)。 First, the transfer device 10 temporarily stores the data received from the first communication device 20 and transmitted to the second communication device 40 in the buffer 11 (step S1). Next, the transfer device 10 acquires first information related to a bandwidth that can be used on the traffic transfer path 50 between the transfer device 10 and the second communication device 40 (step S2).
 転送装置10は、バッファ11の空き容量に対応する帯域に関する第2の情報を算出する(ステップS3)。転送装置10は、上述のように、第1の通信装置20のシェーパーレートRと、第1の通信装置20がシェーパーレートRで制御中に瞬時バーストが発生したときに、バッファ11で受け止めるのに必要な空き容量Qとの関係を保持している。シェーパーレートRと、そのシェーパーレートで送信中に瞬時バーストが発生したときにバッファ11で受け止めるのに必要な空き容量Qとの関係から、通知帯域決定部12が空き容量Qに対応するシェーパーレートR(第2の情報)を算出する。 The transfer apparatus 10 calculates second information related to the bandwidth corresponding to the free capacity of the buffer 11 (step S3). As described above, the transfer device 10 receives the shaper rate R of the first communication device 20 and the buffer 11 when an instantaneous burst occurs while the first communication device 20 is controlling at the shaper rate R. The relationship with the necessary free space Q is maintained. From the relationship between the shaper rate R and the free capacity Q required to be received by the buffer 11 when an instantaneous burst occurs during transmission at that shaper rate, the notification bandwidth determination unit 12 uses the shaper rate R corresponding to the free capacity Q. (Second information) is calculated.
 転送装置10の通知帯域決定部12は、第1及び第2の情報に基づき帯域情報を決定する(ステップS4)。具体的には算出したシェーパーレートRがトラフィック転送路50で利用可能な帯域以上の場合は、転送装置10の通知帯域決定部12は、トラフィック転送路50の利用可能な帯域を、第1の通信装置20に通知する帯域情報として決定する。一方、算出したシェーパーレートRが、トラフィック転送路50の利用可能な帯域より小さい場合は、転送装置10の通知帯域決定部12は、算出したシェーパーレートRを第1の通信装置20に通知する帯域情報として決定する。 The notification bandwidth determination unit 12 of the transfer device 10 determines bandwidth information based on the first and second information (step S4). Specifically, when the calculated shaper rate R is equal to or higher than the bandwidth that can be used in the traffic transfer path 50, the notification band determination unit 12 of the transfer device 10 determines the available bandwidth of the traffic transfer path 50 as the first communication. The bandwidth information to be notified to the device 20 is determined. On the other hand, when the calculated shaper rate R is smaller than the available bandwidth of the traffic transfer path 50, the notification bandwidth determination unit 12 of the transfer device 10 notifies the first communication device 20 of the calculated shaper rate R. Determine as information.
 転送装置10は、決定した帯域情報を第1の通信装置20に送信する(ステップS5)。第1の通信装置20は、通知されたシェーパーレートで転送装置10に送信するデータの送信レートを制御する。 The transfer device 10 transmits the determined bandwidth information to the first communication device 20 (step S5). The first communication device 20 controls the transmission rate of data to be transmitted to the transfer device 10 at the notified shaper rate.
 このように第1の実施形態によれば、バッファ11の空き容量Qに対応するシェーパーレートRが、下流のトラフィック転送路50の利用可能な帯域より小さい場合は、転送装置10の通知帯域決定部12は、バッファ11の空き容量Qに対応するシェーパーレートRを第1の通信装置20に通知する帯域情報として決定する。この構成によって、下流のトラフィック転送路50で利用可能な帯域に基づき上流の通信装置20に帯域情報を通知する転送装置10において、上流の通信装置からのデータ転送を止めずに下流のトラフィック転送路50に転送できるとともに、バッファ11におけるデータの廃棄を防ぐことができる。 As described above, according to the first embodiment, when the shaper rate R corresponding to the free capacity Q of the buffer 11 is smaller than the available bandwidth of the downstream traffic transfer path 50, the notification bandwidth determination unit of the transfer device 10 12 determines the shaper rate R corresponding to the free capacity Q of the buffer 11 as band information to be notified to the first communication device 20. With this configuration, in the transfer device 10 that notifies the upstream communication device 20 of the bandwidth information based on the bandwidth available on the downstream traffic transfer route 50, the downstream traffic transfer route without stopping the data transfer from the upstream communication device. 50, and discarding of data in the buffer 11 can be prevented.
 次に第2の実施形態について説明する。図4は本発明の第2の実施形態の構成を示すブロック図である。パケット転送装置60は第1の実施形態における第1の通信装置である上流のパケット転送装置70からトラフィック転送路30を経由してパケットデータを受信する。また、パケット転送装置60は受信したパケットデータを第2の通信装置40にトラフィック転送路50を経由して送信する。 Next, a second embodiment will be described. FIG. 4 is a block diagram showing the configuration of the second exemplary embodiment of the present invention. The packet transfer device 60 receives packet data via the traffic transfer path 30 from the upstream packet transfer device 70 which is the first communication device in the first embodiment. Further, the packet transfer device 60 transmits the received packet data to the second communication device 40 via the traffic transfer path 50.
 本実施形態のパケット転送装置60は、バッファ11と、通知帯域決定部12と、帯域通知送信部13と、バッファ空き容量通知部61と、無線帯域決定部62と、帯域制御部63とを備えている。また上流のパケット転送装置70は、帯域通知受信部71と帯域制御部72を備えている。 The packet transfer device 60 according to the present embodiment includes a buffer 11, a notification bandwidth determination unit 12, a bandwidth notification transmission unit 13, a buffer free space notification unit 61, a radio bandwidth determination unit 62, and a bandwidth control unit 63. ing. The upstream packet transfer apparatus 70 includes a band notification receiving unit 71 and a band control unit 72.
 バッファ空き容量通知部61は、空き容量を通知帯域決定部12に通知する。なおバッファ空き容量通知部61は、バッファの空き容量変化を通知帯域決定部12に常に通知し続ける必要は無い。バッファ空き容量通知部61は、複数の閾値を設定し、検出した空き容量が複数の閾値のいずれかを超えた際及び下回った際に空き容量の通知を行う。 The buffer free space notification unit 61 notifies the notification bandwidth determination unit 12 of the free space. Note that the buffer free space notifying unit 61 does not always have to continuously notify the notification bandwidth determining unit 12 of the buffer free space change. The buffer free space notification unit 61 sets a plurality of thresholds, and notifies the free space when the detected free space exceeds or falls below any of the plurality of thresholds.
 図5はバッファ空き容量通知部61の空き容量通知動作を示すフローチャートである。図5に示すようにまず、バッファ空き容量通知部61は、空き容量を検出する(ステップS11)。最初はi=1とし(ステップS12)、検出した空き容量が複数の閾値のi番目の閾値i以下か判断する(ステップS13)。閾値i以下であれば前回の空き容量検出時に空き容量がi番目の閾値iより多かったか判断し(ステップS14)、前回の空き容量検出時に空き容量がi番目の閾値iより多かった場合は、バッファ空き容量通知部61は閾値iに対応する空き容量を通知帯域決定部12に通知する(ステップS15)。ステップS13において空き容量がi番目の閾値i以下ではなかった場合は、前回の空き容量検出時に空き容量がi番目の閾値iより少なかったか判断する(ステップS16)。前回の空き容量検出時に空き容量がi番目の閾値iより少なかった場合は、バッファ空き容量通知部61は閾値iに対応する空き容量を通知帯域決定部12に通知する(ステップS15)。そしてiが閾値の数と等しい、すなわち最後の閾値についての判断が完了したか判断し(ステップS17)、iが閾値の数と等しくなければ、iに1を加えて(ステップS18)、ステップS13に戻る。すなわちバッファ空き容量通知部61は次の閾値i+1についての判断に移る。ステップS14において前回の空き容量検出時に空き容量がi番目の閾値iより多くなかった場合、バッファ空き容量通知部61は空き容量を通知せずステップS17に進む。またステップS16において前回の空き容量検出時にも空き容量がi番目の閾値iより少なくなかった場合も、バッファ空き容量通知部61は空き容量を通知せずステップS17に進む。ステップS17においてiが閾値の数と等しい、すなわち最後の閾値についての判断が完了した場合、バッファ空き容量通知部61は空き容量通知動作を終了する。 FIG. 5 is a flowchart showing the free space notification operation of the buffer free space notification unit 61. As shown in FIG. 5, first, the buffer free space notification unit 61 detects free space (step S11). Initially, i = 1 is set (step S12), and it is determined whether the detected free space is equal to or smaller than the i-th threshold i of a plurality of thresholds (step S13). If it is equal to or less than the threshold value i, it is determined whether or not the free space is larger than the i-th threshold i when the previous free space is detected (step S14), and if the free space is larger than the i-th threshold i when the previous free space is detected, The buffer free space notification unit 61 notifies the notification bandwidth determination unit 12 of the free space corresponding to the threshold value i (step S15). If the free space is not less than or equal to the i-th threshold i in step S13, it is determined whether or not the free space is smaller than the i-th threshold i when the previous free space was detected (step S16). If the free space is smaller than the i-th threshold i at the previous detection of the free space, the buffer free space notification unit 61 notifies the notification bandwidth determination unit 12 of the free space corresponding to the threshold i (step S15). Then, it is determined whether i is equal to the number of thresholds, that is, whether the determination for the last threshold is completed (step S17). If i is not equal to the number of thresholds, 1 is added to i (step S18), and step S13 is performed. Return to. That is, the buffer free space notifying unit 61 proceeds to a determination on the next threshold value i + 1. If the free space is not greater than the i-th threshold value i at the previous detection of free space in step S14, the buffer free space notification unit 61 does not notify the free space and proceeds to step S17. If the free space is not smaller than the i-th threshold i at the time of the previous free space detection in step S16, the buffer free space notification unit 61 does not notify the free space and proceeds to step S17. When i is equal to the number of thresholds in step S17, that is, when the determination about the last threshold is completed, the buffer free space notification unit 61 ends the free space notification operation.
 具体的な変化状態における図5の動作について説明する。以下の例では閾値Aから閾値Eまで、5段階の閾値が設定されているとする。例えば空き容量が少ない順に閾値Aが1番目の閾値で、閾値Eが5番目の閾値であるとする。 The operation of FIG. 5 in a specific change state will be described. In the following example, it is assumed that five levels of threshold values from threshold value A to threshold value E are set. For example, it is assumed that the threshold A is the first threshold and the threshold E is the fifth threshold in ascending order of free space.
 図6は、バッファ空き容量通知部61が空き容量を通知するときの空き容量の第1の変化を示す図である。図6は、前回の検出時に閾値Aより空き容量が多かったが、今回の検出時は閾値Aより空き容量が少なくなった変化を示している。この場合、i=1のときのステップS13ではYesとなり、ステップS14ではYESとなるのでステップS15により、バッファ空き容量通知部61は閾値Aに対応する空き容量を通知帯域決定部12に通知する。 FIG. 6 is a diagram illustrating a first change in the free space when the buffer free space notification unit 61 notifies the free space. FIG. 6 shows a change in which the free space is larger than the threshold A at the previous detection, but the free space is smaller than the threshold A at the current detection. In this case, Yes in step S13 when i = 1, and YES in step S14, so that the buffer free space notification unit 61 notifies the notification bandwidth determination unit 12 of the free space corresponding to the threshold value A in step S15.
 また図7は、バッファ空き容量通知部61が空き容量を通知するときのバッファの空き容量の第2の変化を示す図である。図7は、前回の検出時に閾値Cより空き容量が多かったが、今回の検出時は閾値Cより空き容量が少なくなった変化を示している。この場合、i=3のときのステップS13ではYESとなり、ステップS14ではYESとなるのでステップS15により、バッファ空き容量通知部61は閾値Cに対応する空き容量を通知帯域決定部12に通知する。 FIG. 7 is a diagram showing a second change in the free space of the buffer when the buffer free space notification unit 61 notifies the free space. FIG. 7 shows a change in which the free space is larger than the threshold C at the previous detection, but the free space is smaller than the threshold C at the current detection. In this case, YES is obtained in step S13 when i = 3, and YES is obtained in step S14. Accordingly, in step S15, the buffer free capacity notifying unit 61 notifies the notification bandwidth determining unit 12 of the free capacity corresponding to the threshold C.
 また図8は、バッファ空き容量通知部61が空き容量を通知するときのバッファの空き容量の第3の変化を示す図である。図8は、前回の検出時に閾値Eより空き容量が少なかったが、今回の検出時は閾値Eより空き容量が少なくなった変化を示している。この場合、i=5のときのステップS13ではNOとなり、ステップS16ではYESとなるのでステップS15により、バッファ空き容量通知部61は閾値Eに対応する空き容量を通知帯域決定部12に通知する。 FIG. 8 is a diagram showing a third change in the free space of the buffer when the buffer free space notification unit 61 notifies the free space. FIG. 8 shows a change in which the free space is smaller than the threshold E during the previous detection, but the free space is smaller than the threshold E during the current detection. In this case, NO is obtained in step S13 when i = 5, and YES is obtained in step S16. Therefore, in step S15, the buffer free space notification unit 61 notifies the notification bandwidth determination unit 12 of the free space corresponding to the threshold value E.
 図4にもどり、引き続き第2の実施形態の構成について説明する。 Returning to FIG. 4, the configuration of the second embodiment will be described.
 無線帯域決定部62は、ETH帯域(トラフィック転送路50の最大帯域)を決定する。 The radio bandwidth determination unit 62 determines the ETH bandwidth (the maximum bandwidth of the traffic transfer path 50).
 帯域制御部63は、無線帯域決定部62で決定し通知されたETH帯域に基づきトラフィック転送路50のシェーパーレートを設定する。帯域制御部63は、パケット転送装置60からバッファ11に一時的に記憶されているデータを、トラフィック転送路50を経由して第2の通信装置40に送信する際に、シェーパーレートに従って転送レートを制御する。 The bandwidth control unit 63 sets the shaper rate of the traffic transfer path 50 based on the ETH bandwidth determined and notified by the wireless bandwidth determination unit 62. The bandwidth control unit 63 sets the transfer rate according to the shaper rate when transmitting the data temporarily stored in the buffer 11 from the packet transfer device 60 to the second communication device 40 via the traffic transfer path 50. Control.
 通知帯域決定部12は、無線帯域決定部62で決定したETH帯域を取得し、バッファ空き容量通知部61から空き容量の情報を取得し、取得したETH帯域とバッファ11の空き容量に基づいて、対向側のパケット転送装置70に通知する帯域情報を決定する。通知帯域決定部12は、第1の実施形態と同様に、上流のパケット転送装置70のシェーパーレートRと、パケット転送装置70がシェーパーレートRで制御中に瞬時バーストが発生したときに、バッファ11で受け止めるのに必要な空き容量Qとの関係を保持している。通知帯域決定部12は、複数の閾値に対応させて、各閾値に対応する空き容量と、その空き容量に対応するシェーパーレートを設定しておいてよい。 The notification bandwidth determination unit 12 acquires the ETH bandwidth determined by the wireless bandwidth determination unit 62, acquires information on the free space from the buffer free space notification unit 61, and based on the acquired ETH bandwidth and the free space of the buffer 11, Band information to be notified to the packet transfer apparatus 70 on the opposite side is determined. Similar to the first embodiment, the notification bandwidth determination unit 12 uses the buffer 11 when an instantaneous burst occurs while the packet transfer device 70 is controlling at the shaper rate R and the shaper rate R of the upstream packet transfer device 70. The relationship with the free space Q necessary to receive the data is held. The notification bandwidth determination unit 12 may set a free capacity corresponding to each threshold and a shaper rate corresponding to the free capacity in association with a plurality of thresholds.
 図9は、バッファの空き容量と対応するシェーパーレートの設定例を示す図である。図9に示すように、通知帯域決定部12には、バッファ空き容量通知部61から通知される閾値に対応させて、バッファ11の実際の空き容量と、パケット転送装置70が一定のシェーパーレートで送信しているとき瞬時バーストが発生してもデータ廃棄が抑えられるシェーパーレートが設定されている。 FIG. 9 is a diagram showing an example of setting the shaper rate corresponding to the free space of the buffer. As shown in FIG. 9, the notification bandwidth determination unit 12 corresponds to the threshold value notified from the buffer free space notification unit 61 and the actual free space of the buffer 11 and the packet transfer device 70 at a constant shaper rate. A shaper rate is set to suppress data discard even if an instantaneous burst occurs during transmission.
 例えばバッファ空き容量通知部61から空き容量が「閾値A」と通知された場合、そのバッファ11の空き容量は10kbyteであり、この空き容量に対してシェーパーレートが100Mbpsと設定されている。このことは、バッファ空き容量通知部61から空き容量が「閾値A」と通知された場合、パケット転送装置70が100Mbpsでパケットを送信しているとき瞬時バーストが発生しても、データ廃棄は発生しないことを示している。閾値Aは、バッファ使用量がFullであることを示す閾値であるが、この場合でもバッファの空き容量は0byteではなく、シェーパーレートは0ではなく100MBbpsに設定されている。このような構成にすることで上流のパケット転送装置70における送信バッファの空き容量が急激に減ることを防止できる効果がある。
バッファの空き容量0byteの時に帯域を0より大きく設定してもよい。このようにするとバッファの空き容量がなくても可能な範囲で通信を継続することができるという効果がある。なおバッファ空き容量が少ない閾値に対しデータ転送を止める(シェーパーレートを0Mbps)ように設定することも可能である。
For example, when the free space is notified from the buffer free space notification unit 61 as “threshold A”, the free space of the buffer 11 is 10 kbytes, and the shaper rate is set to 100 Mbps for this free space. This means that when the free space is notified from the buffer free space notification unit 61 as “threshold A”, even if an instantaneous burst occurs when the packet transfer device 70 transmits a packet at 100 Mbps, data discard occurs. Indicates that no. The threshold A is a threshold indicating that the buffer usage is Full, but in this case as well, the free space of the buffer is not 0 bytes, and the shaper rate is not 0 but 100 MBbps. With such a configuration, there is an effect that it is possible to prevent the free capacity of the transmission buffer in the upstream packet transfer apparatus 70 from rapidly decreasing.
The bandwidth may be set larger than 0 when the buffer free space is 0 bytes. In this way, there is an effect that communication can be continued within a possible range even if there is no free space in the buffer. It is also possible to set the data transfer to be stopped (the shaper rate is 0 Mbps) with respect to a threshold with a small buffer free space.
 同様に例えばバッファ空き容量通知部61から空き容量が「閾値C」と通知された場合、そのバッファ11の空き容量は100kbyteであり、この空き容量に対して300Mbpsが設定されている。このことは、バッファ空き容量通知部61から空き容量が「閾値C」と通知された場合、パケット転送装置70が300Mbpsでパケットを送信しているとき瞬時バーストが発生しても、データ廃棄は発生しないことを示している。 Similarly, for example, when the free space is notified from the buffer free space notification unit 61 as “threshold C”, the free space of the buffer 11 is 100 kbytes, and 300 Mbps is set for this free space. This means that when the free space is notified from the buffer free space notification unit 61 as “threshold C”, even if an instantaneous burst occurs when the packet transfer device 70 transmits a packet at 300 Mbps, data discard occurs. Indicates that no.
 図10は、バッファの空き容量と対応するシェーパーレートを設定する動作の1例を示すフローチャートである。 FIG. 10 is a flowchart showing an example of an operation for setting the shaper rate corresponding to the free space of the buffer.
 最初はi=1とし(ステップS21)、i番目の閾値iについてパケット転送装置70からのデータ転送を止めない範囲内で、通知帯域決定部12はシェーパーレートを設定する(ステップS22)。通知帯域決定部12は設定したシェーパーレートでパケット転送装置70からパケット送信中に瞬時バーストが発生した場合に転送される容量の情報を取得する(ステップS23)。そして通知帯域決定部12は瞬時バーストにより転送される容量に基づき閾値iのバッファの空き容量を設定する(ステップS24)。そして通知帯域決定部12はiが設定する閾値の数と等しい、すなわち最後の閾値についての設定が完了したか判断し(ステップS25)、iが設定する閾値の数と等しくなければ、iに1を加えて(ステップS26)、ステップS22に戻る。すなわち通知帯域決定部12は次の閾値i+1についての設定に移る。ステップS25においてiが閾値の数と等しい、すなわち最後の閾値についての設定が完了した場合、通知帯域決定部12は空き容量と対応するシェーパーレートの設定動作を終了する。 First, i = 1 is set (step S21), and the notification bandwidth determination unit 12 sets the shaper rate within a range where the data transfer from the packet transfer device 70 is not stopped for the i-th threshold i (step S22). The notification bandwidth determination unit 12 acquires information on the capacity transferred when an instantaneous burst occurs during packet transmission from the packet transfer device 70 at the set shaper rate (step S23). Then, the notification bandwidth determination unit 12 sets the free capacity of the buffer with the threshold value i based on the capacity transferred by the instantaneous burst (step S24). The notification bandwidth determination unit 12 determines whether i is equal to the number of thresholds set, that is, whether the setting for the last threshold has been completed (step S25). Is added (step S26), and the process returns to step S22. That is, the notification bandwidth determination unit 12 moves to setting for the next threshold value i + 1. When i is equal to the number of threshold values in step S25, that is, when the setting for the last threshold value is completed, the notification bandwidth determination unit 12 ends the shaper rate setting operation corresponding to the free space.
 この設定のために例えば予め実際に以下のような測定を行うことにより設定値が決定され上記の設定が実施されてもよい。まずパケット転送装置70からのデータ転送を止めない範囲内で複数のシェーパーレート、例えば図9の例では100Mbps、200Mbps、300Mbps、400Mbps、500Mbpsで、実際にパケット転送装置70がパケット送信する。瞬時バーストが発生した場合の時間Δtでの転送容量が各シェーパーレートについて測定され、時間Δtでの転送容量の最大値が測定される。その最大値がシェーパーレートでの転送容量との差の容量として記録される。そしてステップS22において、通知帯域決定部12は各シェーパーレートを設定し、ステップS24において、通知帯域決定部12は予め測定した複数のシェーパーレートについての記録情報から、瞬時バーストが発生した場合に転送された転送容量の最大値に基づき閾値iのバッファの空き容量を設定する。例えばシェーパーレート100Mbps、200Mbps、300Mbps、400Mbps、500Mbpsで測定したとする。この場合には、ステップS22で、閾値A、B、C、D、Eに対応するシェーパーレートとして、図9に示すように、100Mbps、200Mbps、300Mbps、400Mbps、500Mbpsを設定する。そしてこれらのシェーパーレートでの測定結果として、時間Δtでの転送容量の最大値と通常の転送容量との差が、それぞれ10Kbyte、50Kbyte、100Kbyte、200Kbyte、400Kbyteとなった場合には、ステップS24で、閾値A、B、C、D、Eに対応する空き容量として、図9に示すように、10Kbyte、50Kbyte、100Kbyte、200Kbyte、400Kbyteを設定する。 For this setting, for example, a setting value may be determined by actually performing the following measurement in advance and the above setting may be performed. First, the packet transfer apparatus 70 actually transmits a packet at a plurality of shaper rates, for example, 100 Mbps, 200 Mbps, 300 Mbps, 400 Mbps, and 500 Mbps in the example of FIG. 9 within a range where data transfer from the packet transfer apparatus 70 is not stopped. When an instantaneous burst occurs, the transfer capacity at time Δt is measured for each shaper rate, and the maximum value of the transfer capacity at time Δt is measured. The maximum value is recorded as the difference capacity from the transfer capacity at the shaper rate. In step S22, the notification band determination unit 12 sets each shaper rate. In step S24, the notification band determination unit 12 is transferred when an instantaneous burst is generated from recorded information on a plurality of shaper rates measured in advance. Based on the maximum transfer capacity, the buffer free capacity of the threshold value i is set. For example, it is assumed that measurement is performed at a shaper rate of 100 Mbps, 200 Mbps, 300 Mbps, 400 Mbps, and 500 Mbps. In this case, in step S22, as shown in FIG. 9, 100 Mbps, 200 Mbps, 300 Mbps, 400 Mbps, and 500 Mbps are set as the shaper rates corresponding to the threshold values A, B, C, D, and E. If the difference between the maximum transfer capacity at time Δt and the normal transfer capacity is 10 Kbytes, 50 Kbytes, 100 Kbytes, 200 Kbytes, and 400 Kbytes as the measurement results at these shaper rates, respectively, in step S24 As shown in FIG. 9, 10 Kbytes, 50 Kbytes, 100 Kbytes, 200 Kbytes, and 400 Kbytes are set as the free capacities corresponding to the threshold values A, B, C, D, and E.
 なおバッファの空き容量と対応するシェーパーレートを設定する動作は上記に限られない。図11は、バッファの空き容量と対応するシェーパーレートを設定する動作の他の例を示すフローチャートである。また図12は、図11の動作によるバッファの空き容量と対応するシェーパーレートの他の設定例を示す図である。この例では、通知帯域決定部12はまず瞬時バーストが発生した場合の時間Δtでの転送容量と、シェーパーレートでデータが時間Δtの間、転送される転送容量との比率を設定する(ステップS31)。例えば通知帯域決定部12はシェーパーレートでの転送容量が、瞬時バーストが発生した場合の最大の転送容量の70%である場合、70%を設定する。そして最初はi=1とし(ステップS21)、i番目の閾値iについて、パケット転送装置70からのデータ転送を止めない範囲内でシェーパーレートを設定する(ステップS22)。次に、設定されたシェーパーレートについて上記比率に基づき通知帯域決定部12は閾値iのバッファの空き容量を設定する(ステップS32)。すなわち通知帯域決定部12はバッファの空き容量として、シェーパーレートでデータが短時間Δtの間、転送される転送容量の(100-(設定した比率))%に相当する容量(比率として70%を設定した場合は30%)を設定する。その後は図10の例と同様に、通知帯域決定部12はiが設定する閾値の数と等しい、すなわち最後の閾値についての設定が完了したか判断し(ステップS25)、iが設定する閾値の数と等しくなければ、iに1を加えて(ステップS26)、ステップS22に戻る。すなわち通知帯域決定部12は次の閾値i+1についての設定に移る。ステップS25においてiが閾値の数と等しい、すなわち最後の閾値についての設定が完了した場合、空き容量と対応するシェーパーレートの設定動作を終了する。 Note that the operation for setting the shaper rate corresponding to the free space of the buffer is not limited to the above. FIG. 11 is a flowchart showing another example of the operation for setting the shaper rate corresponding to the free space of the buffer. FIG. 12 is a diagram showing another setting example of the shaper rate corresponding to the free space of the buffer by the operation of FIG. In this example, the notification bandwidth determination unit 12 first sets a ratio between the transfer capacity at the time Δt when an instantaneous burst occurs and the transfer capacity at which the data is transferred at the shaper rate during the time Δt (step S31). ). For example, the notification bandwidth determination unit 12 sets 70% when the transfer capacity at the shaper rate is 70% of the maximum transfer capacity when an instantaneous burst occurs. First, i = 1 is set (step S21), and the shaper rate is set for the i-th threshold i within a range where data transfer from the packet transfer apparatus 70 is not stopped (step S22). Next, based on the above ratio for the set shaper rate, the notification band determination unit 12 sets the free space of the buffer with the threshold value i (step S32). That is, the notification bandwidth determination unit 12 sets a capacity (ratio of 70% as a ratio) corresponding to (100− (set ratio))% of the transfer capacity in which data is transferred at a shaper rate for a short time Δt as the buffer free capacity. If set, 30%) is set. Thereafter, as in the example of FIG. 10, the notification bandwidth determination unit 12 determines whether i is equal to the number of thresholds set, that is, whether the setting for the last threshold has been completed (step S25). If it is not equal to the number, 1 is added to i (step S26), and the process returns to step S22. That is, the notification bandwidth determination unit 12 moves to setting for the next threshold value i + 1. When i is equal to the number of thresholds in step S25, that is, when the setting for the last threshold is completed, the setting operation of the shaper rate corresponding to the free space is terminated.
 この設定のためにも例えば予め実際に以下のような測定が行われ設定値が決定され上記の設定が実施されてもよい。まずパケット転送装置70からのデータ転送を止めない範囲内で設定する複数のシェーパーレートについて、実際に、パケット転送装置70がパケット送信する。そして瞬時バーストが発生した場合の短時間での転送容量が測定され、短時間での転送容量の最大値が求められる。その最大値とシェーパーレートでの転送容量との比率が記録される。そしてステップS31において、通知帯域決定部12は複数のシェーパーレートについて測定した記録情報から、すべてのシェーパーレートでの比率の中で最小の比率を設定する。
 例えばシェーパーレート100Mbps、200Mbps、300Mbps、400Mbps、500Mbpsで瞬時バーストが発生した場合の短時間での転送容量を測定した結果、短時間での転送容量の最大値とシェーパーレートでの転送容量との比率はすべて70以上であったとすると、ステップS31において、70%と設定する。またステップS22において、通知帯域決定部12は各シェーパーレートを設定する。例えば図12に示すように、シェーパーレート100Mbps、200Mbps、300Mbps、400Mbps、500Mbpsを設定する。
 ステップS32において、通知帯域決定部12は各シェーパーレートでの短時間Δtでの転送容量の(100-(設定した比率))%に相当する容量(比率として70%を設定した場合は30%)をバッファの空き容量として設定する。例えば図12に示すように、短時間Δtでの各シェーパーレートの転送容量が200Kbyte、400Kbyte、600Kbyte、800Kbyte、1000Kbyteであるとすると、比率の設定が70%の場合、転送容量の30%である60Mbyte、120Mbyte、180Mbyte、240Mbyte、300Mbyteを設定する。このように動作することによりユーザから1つの比率を入力することで複数のシェーパーレートに対して一括で設定することができる。
 図13は、バッファの空き容量と対応するシェーパーレートの更に他の設定例を示す図である。図13に示すようにバッファ空き容量通知部61から通知される閾値に対応させて、バッファ11の実際の空き容量と、利用可能な帯域に対するマージンとを対応させて保持しても良い。例えば転送路50で利用可能な帯域が500Mbpsの時、バッファの空き容量の閾値AからEに対して、バッファの空き容量と対応するシェーパーレートを300Mbps、350Mbps、400Mbps、450Mbps、500Mbpsと設定する代わりに、図13に示すようにバッファの空き容量の閾値AからEに対して、利用可能な帯域に対するマージンを200Mbps、150Mbps、100Mbps、50Mbps、0Mbpsと設定してもよい。
 なおこの場合、バッファの空き容量が大きい場合に、利用可能な帯域に対するマージンを負の値にしてもよい。この場合には、利用可能な帯域より大きいシェーパーレートを通知することになる。例えば閾値AからEに対して100Mbps、50Mbps、0Mbps、-50Mbps、-100Mbps、などと設定してもよい。この場合、転送路50で利用可能な帯域が500Mbpsの時、閾値AからEに対してバッファの空き容量と対応するシェーパーレートを400Mbps、450Mbps、500Mbps、550Mbps、600Mbpsとすることになる。
 図14は、バッファの空き容量と対応するシェーパーレートの更に他の設定例を示す図である。図14に示すように、バッファ空き容量通知部61から通知される閾値に対応させて、バッファ11の実際の空き容量と、利用可能な帯域に対する割合とを対応させて保持しても良い。たとえば転送路50で利用可能な帯域が500Mbpsの時、バッファの空き容量の閾値AからEに対してシェーパーレートを250Mbps、350Mbps、400Mbps、450Mbps、500Mbpsと設定する代わりに、図14に示すように利用可能な帯域に対する割合を50%、70%、80%、90%、100%と設定してもよい。
 なおこの場合バッファの空き容量が大きい場合に、利用可能な帯域に対する割合が100%を越えるようにしてもよい。例えば閾値AからEに対して、50%、80%、100%、110%、120%と設定してもよい。この場合、転送路50で利用可能な帯域が500Mbpsの時、閾値AからEに対してバッファの空き容量と対応するシェーパーレートを250Mbps、400Mbps、500Mbps、550Mbps、600Mbpsとすることになる。
For this setting, for example, the following measurement may be actually performed in advance to determine the set value, and the above setting may be performed. First, the packet transfer apparatus 70 actually transmits a packet for a plurality of shaper rates set within a range where data transfer from the packet transfer apparatus 70 is not stopped. Then, the transfer capacity in a short time when an instantaneous burst occurs is measured, and the maximum value of the transfer capacity in a short time is obtained. The ratio between the maximum value and the transfer capacity at the shaper rate is recorded. In step S31, the notification band determination unit 12 sets the minimum ratio among the ratios at all the shaper rates from the recording information measured for the plurality of shaper rates.
For example, as a result of measuring the transfer capacity in a short time when an instantaneous burst occurs at a shaper rate of 100 Mbps, 200 Mbps, 300 Mbps, 400 Mbps, or 500 Mbps, the ratio between the maximum transfer capacity in the short time and the transfer capacity at the shaper rate Is 70 or more, in step S31, 70% is set. In step S22, the notification band determination unit 12 sets each shaper rate. For example, as shown in FIG. 12, shaper rates of 100 Mbps, 200 Mbps, 300 Mbps, 400 Mbps, and 500 Mbps are set.
In step S32, the notification bandwidth determination unit 12 has a capacity (30% when 70% is set as the ratio) corresponding to (100− (the set ratio))% of the transfer capacity in a short time Δt at each shaper rate. Is set as the buffer free space. For example, as shown in FIG. 12, assuming that the transfer capacity of each shaper rate in a short time Δt is 200 Kbytes, 400 Kbytes, 600 Kbytes, 800 Kbytes, and 1000 Kbytes, when the ratio setting is 70%, the transfer capacity is 30%. 60 Mbytes, 120 Mbytes, 180 Mbytes, 240 Mbytes, and 300 Mbytes are set. By operating in this way, it is possible to collectively set a plurality of shaper rates by inputting one ratio from the user.
FIG. 13 is a diagram showing still another setting example of the shaper rate corresponding to the free space of the buffer. As shown in FIG. 13, the actual free space of the buffer 11 and the margin for the available bandwidth may be held in correspondence with the threshold value notified from the buffer free space notification unit 61. For example, when the bandwidth available on the transfer path 50 is 500 Mbps, the shaper rate corresponding to the buffer free capacity thresholds A to E is set to 300 Mbps, 350 Mbps, 400 Mbps, 450 Mbps, and 500 Mbps for the buffer free capacity thresholds A to E. Furthermore, as shown in FIG. 13, the margin for the available bandwidth may be set to 200 Mbps, 150 Mbps, 100 Mbps, 50 Mbps, and 0 Mbps with respect to the thresholds A to E of the free space of the buffer.
In this case, when the free space of the buffer is large, the margin for the available bandwidth may be a negative value. In this case, a shaper rate larger than the available bandwidth is notified. For example, the thresholds A to E may be set to 100 Mbps, 50 Mbps, 0 Mbps, −50 Mbps, −100 Mbps, and the like. In this case, when the bandwidth available on the transfer path 50 is 500 Mbps, the shaper rates corresponding to the free capacity of the buffer with respect to the thresholds A to E are 400 Mbps, 450 Mbps, 500 Mbps, 550 Mbps, and 600 Mbps.
FIG. 14 is a diagram illustrating still another setting example of the shaper rate corresponding to the free space of the buffer. As shown in FIG. 14, the actual free space of the buffer 11 and the ratio to the available bandwidth may be held in correspondence with the threshold value notified from the buffer free space notification unit 61. For example, when the bandwidth available on the transfer path 50 is 500 Mbps, instead of setting the shaper rate to 250 Mbps, 350 Mbps, 400 Mbps, 450 Mbps, and 500 Mbps for the buffer free space thresholds A to E, as shown in FIG. The ratio to the available bandwidth may be set to 50%, 70%, 80%, 90%, and 100%.
In this case, when the buffer free space is large, the ratio to the available bandwidth may exceed 100%. For example, the thresholds A to E may be set to 50%, 80%, 100%, 110%, and 120%. In this case, when the bandwidth that can be used on the transfer path 50 is 500 Mbps, the shaper rates corresponding to the buffer free capacity with respect to the thresholds A to E are 250 Mbps, 400 Mbps, 500 Mbps, 550 Mbps, and 600 Mbps.
 このように通知帯域決定部12は、バッファ空き容量通知部61から通知された空き容量から空き容量に対応するシェーパーレート、すなわち瞬時バーストによるデータ廃棄が発生しないシェーパーレートを求める。 As described above, the notification bandwidth determination unit 12 obtains a shaper rate corresponding to the free space from the free space notified from the buffer free space notification unit 61, that is, a shaper rate at which data discard due to an instantaneous burst does not occur.
 通知帯域決定部12は、空き容量に対応するシェーパーレートと、無線帯域決定部62で決定したシェーパーレートとを比較し、シェーパーレートが空き容量に対応するシェーパーレートを超える場合は、空き容量に対応するシェーパーレートをパケット転送装置70に通知する帯域情報として決定する。 The notification bandwidth determination unit 12 compares the shaper rate corresponding to the free space with the shaper rate determined by the wireless bandwidth determination unit 62, and if the shaper rate exceeds the shaper rate corresponding to the free space, it corresponds to the free space. The shaper rate to be determined is determined as bandwidth information to be notified to the packet transfer apparatus 70.
 帯域通知送信部13は、通知帯域決定部12によって決定された帯域情報を規定のフレームフォーマットでパケット転送装置70に送信する。 The bandwidth notification transmission unit 13 transmits the bandwidth information determined by the notification bandwidth determination unit 12 to the packet transfer device 70 in a prescribed frame format.
 帯域情報の通知を受信した帯域通知受信部71は、帯域情報に基づいてパケット転送装置70の帯域制御部72にシェーパーレートを設定する。 The bandwidth notification receiving unit 71 that has received the notification of the bandwidth information sets the shaper rate in the bandwidth control unit 72 of the packet transfer device 70 based on the bandwidth information.
 帯域制御部72は、パケット転送装置70からパケット転送装置60にパケットを転送する際に、設定されたシェーパーレートに基づき帯域を制御する。 The bandwidth control unit 72 controls the bandwidth based on the set shaper rate when the packet is transferred from the packet transfer device 70 to the packet transfer device 60.
 次に第2の実施形態の動作について説明する。図15は、図4の帯域情報決定の動作を示すフローチャートである。 Next, the operation of the second embodiment will be described. FIG. 15 is a flowchart showing the band information determination operation of FIG.
 まずパケット転送装置60の通知帯域決定部12は、第2の通信装置40との間のトラフィック転送路50で利用可能な帯域に関する第1の情報を取得し(ステップS41)、バッファ空き容量通知部61からバッファ11の空き容量を取得する(ステップS42)。 First, the notification bandwidth determination unit 12 of the packet transfer device 60 acquires first information regarding a bandwidth that can be used on the traffic transfer path 50 with the second communication device 40 (step S41), and a buffer free space notification unit The free capacity of the buffer 11 is acquired from 61 (step S42).
 通知帯域決定部12は、バッファ11の空き容量に対応するシェーパーレート、すなわち現状の空き容量に対し瞬時バーストによるデータ廃棄が発生しないシェーパーレートを求め、これとトラフィック転送路50の利用可能な帯域とを比較する(ステップS43)。そして通知帯域決定部12は、バッファ不足か、すなわちバッファ11の空き容量に対応する帯域が、トラフィック転送路50の利用可能な帯域より小さいか、判断する(ステップS44)。 The notification bandwidth determination unit 12 obtains a shaper rate corresponding to the free space of the buffer 11, that is, a shaper rate at which data discard due to an instantaneous burst does not occur with respect to the current free space, and the available bandwidth of the traffic transfer path 50 Are compared (step S43). The notification bandwidth determination unit 12 determines whether the buffer is insufficient, that is, whether the bandwidth corresponding to the free capacity of the buffer 11 is smaller than the available bandwidth of the traffic transfer path 50 (step S44).
 バッファ不足ではない場合、通知帯域決定部12は、パケット転送装置70に通知する帯域情報を、トラフィック転送路50の利用可能な帯域とし(ステップS45)、パケット転送装置60の帯域通知送信部13は決定した帯域情報を、上流のパケット転送装置70に送信する。 When the buffer is not insufficient, the notification bandwidth determination unit 12 sets the bandwidth information notified to the packet transfer device 70 as the available bandwidth of the traffic transfer path 50 (step S45), and the bandwidth notification transmission unit 13 of the packet transfer device 60 The determined bandwidth information is transmitted to the upstream packet transfer device 70.
 ステップS44において、バッファ不足と判断した場合、通知帯域決定部12は、パケット転送装置70に通知する帯域情報を、バッファ11の空き容量に対応するシェーパーレートとし(ステップS46)、パケット転送装置60の帯域通知送信部13は、決定した帯域情報を、上流のパケット転送装置70に送信する。 If it is determined in step S44 that the buffer is insufficient, the notification bandwidth determination unit 12 sets the bandwidth information notified to the packet transfer device 70 as the shaper rate corresponding to the free capacity of the buffer 11 (step S46), and the packet transfer device 60 The bandwidth notification transmission unit 13 transmits the determined bandwidth information to the upstream packet transfer device 70.
 第1の通信装置20は通知された帯域で送信レートを制御してデータを送信する。 The first communication device 20 transmits data by controlling the transmission rate in the notified band.
 具体的な変化状態における図12の動作について説明する。図6から8と同様に、以下の例では「閾値A」から「閾値E」まで、5段階の閾値が設定されている。例えば空き容量が少ない順に「閾値A」が1番目の閾値で、「閾値E」が5番目の閾値であるとする。また閾値に対応するシェーパーレートは図9のように設定されているものとする。 The operation of FIG. 12 in a specific change state will be described. Similar to FIGS. 6 to 8, in the following example, five levels of thresholds are set from “threshold A” to “threshold E”. For example, it is assumed that “threshold A” is the first threshold and “threshold E” is the fifth threshold in ascending order of free space. It is assumed that the shaper rate corresponding to the threshold is set as shown in FIG.
 まずトラフィック転送路50の利用可能な帯域が増加し、バッファの空き容量が変わらない場合の例について説明する。例えば、初期状態として、バッファ11の空き容量が、図6に示す「閾値A」の状態であり、トラフィック転送路50の利用可能な帯域が100Mbpsとする。空き容量から「閾値A」に対応する帯域100Mbpsが求められ、トラフィック転送路50の利用可能な帯域100Mbpsと比較され、パケット転送装置70には帯域情報100Mbpsを送信しているとする。 First, an example in which the available bandwidth of the traffic transfer path 50 increases and the free capacity of the buffer does not change will be described. For example, as an initial state, the free capacity of the buffer 11 is in the “threshold A” state shown in FIG. 6, and the available bandwidth of the traffic transfer path 50 is 100 Mbps. It is assumed that a bandwidth of 100 Mbps corresponding to “threshold A” is obtained from the free capacity, compared with the available bandwidth of 100 Mbps of the traffic transfer path 50, and bandwidth information of 100 Mbps is transmitted to the packet transfer apparatus 70.
 この状態からトラフィック転送路50の利用可能な帯域が500Mbpsに変化した場合、ステップS43で図9のような対応関係から求められた「閾値A」に対応する帯域100Mbpsとトラフィック転送路50の利用可能な帯域500Mbpsとが比較される。ステップS44では、バッファ11の空き容量に対応する帯域100Mbpsが、トラフィック転送路50の利用可能な帯域500Mbpsより小さいため、バッファ不足と判断する。ステップS46では、パケット転送装置70に通知する帯域情報を、「閾値A」に対応する帯域100Mbpsとし、パケット転送装置60は、上流のパケット転送装置70に帯域情報100Mbpsを送信する。 When the available bandwidth of the traffic transfer path 50 is changed to 500 Mbps from this state, the bandwidth 100 Mbps corresponding to the “threshold A” obtained from the correspondence relationship shown in FIG. 9 in step S43 and the traffic transfer path 50 can be used. Compared with a new bandwidth of 500 Mbps. In step S44, since the bandwidth 100 Mbps corresponding to the free capacity of the buffer 11 is smaller than the available bandwidth 500 Mbps of the traffic transfer path 50, it is determined that the buffer is insufficient. In step S46, the bandwidth information notified to the packet transfer device 70 is set to a bandwidth of 100 Mbps corresponding to the “threshold A”, and the packet transfer device 60 transmits the bandwidth information 100 Mbps to the upstream packet transfer device 70.
 次に例えば、初期状態として、バッファ11の空き容量が、図7に示す「閾値C」の状態に対応する空き容量であり、トラフィック転送路50の利用可能な帯域が100Mbpsとする。「閾値C」に対応する帯域300Mbpsが求められ、トラフィック転送路50の利用可能な帯域100Mbpsと比較され、パケット転送装置70に帯域情報100Mbpsを送信しているとする。 Next, for example, as an initial state, it is assumed that the free capacity of the buffer 11 is the free capacity corresponding to the state of “threshold C” shown in FIG. 7, and the available bandwidth of the traffic transfer path 50 is 100 Mbps. Assume that a bandwidth of 300 Mbps corresponding to “threshold C” is obtained, compared with the available bandwidth of 100 Mbps on the traffic transfer path 50, and bandwidth information of 100 Mbps is transmitted to the packet transfer apparatus 70.
 この状態からトラフィック転送路50の利用可能な帯域が500Mbpsに変化した場合、ステップS43で、図9のような対応関係から求められた「閾値C」に対応する帯域300Mbpsとトラフィック転送路50の利用可能な帯域500Mbpsとが比較される。ステップS44では、バッファ11の空き容量に対応する帯域300Mbpsが、トラフィック転送路50の利用可能な帯域500Mbpsより小さいため、バッファ不足と判断する。ステップS46では、通知する帯域情報を、バッファ11の空き容量に対応する帯域300Mbpsとし、パケット転送装置60は、上流のパケット転送装置70に帯域情報300Mbpsを送信する。 When the available bandwidth of the traffic transfer path 50 changes from this state to 500 Mbps, the bandwidth 300 Mbps corresponding to the “threshold C” obtained from the correspondence relationship as shown in FIG. The possible bandwidth is compared with 500 Mbps. In step S44, since the bandwidth 300 Mbps corresponding to the free capacity of the buffer 11 is smaller than the available bandwidth 500 Mbps of the traffic transfer path 50, it is determined that the buffer is insufficient. In step S46, the notified bandwidth information is a bandwidth of 300 Mbps corresponding to the free capacity of the buffer 11, and the packet transfer device 60 transmits the bandwidth information of 300 Mbps to the upstream packet transfer device.
 さらに例えば、初期状態として、バッファ11の空き容量が、図8に示す「閾値E」に対応する空き容量であり、トラフィック転送路50の利用可能な帯域が100Mbpsとする。「閾値E」に対応する帯域500Mbpsが求められ、トラフィック転送路50の利用可能な帯域100Mbpsと比較され、パケット転送装置70に帯域情報100Mbpsを送信しているとする。 Further, for example, as an initial state, the free capacity of the buffer 11 is the free capacity corresponding to the “threshold E” shown in FIG. 8, and the available bandwidth of the traffic transfer path 50 is 100 Mbps. It is assumed that a bandwidth of 500 Mbps corresponding to “threshold E” is obtained, compared with the available bandwidth of 100 Mbps of the traffic transfer path 50, and bandwidth information of 100 Mbps is transmitted to the packet transfer apparatus.
 この状態からトラフィック転送路50の利用可能な帯域が500Mbpsに変化した場合、ステップS43で図9のような対応関係から求められた「閾値E」に対応する帯域情報500Mbpsと、トラフィック転送路50の利用可能な帯域500Mbpsとが比較され、ステップS44では、バッファ不足ではないと判断する。ステップS45では、通知する帯域情報を、トラフィック転送路50の利用可能な帯域500Mbpsとし、パケット転送装置60は、上流のパケット転送装置70に帯域情報500Mbpsを送信する。 If the available bandwidth of the traffic transfer path 50 changes from this state to 500 Mbps, the bandwidth information 500 Mbps corresponding to the “threshold value E” obtained from the correspondence relationship as shown in FIG. The available bandwidth is compared with 500 Mbps, and it is determined in step S44 that there is no buffer shortage. In step S45, the notified bandwidth information is set to a usable bandwidth 500 Mbps of the traffic transfer path 50, and the packet transfer device 60 transmits the bandwidth information 500 Mbps to the upstream packet transfer device 70.
 次にトラフィック転送路50の利用可能な帯域が減少し、バッファの空き容量が変わらない場合の例について説明する。例えば、初期状態として、バッファ11の空き容量が、図6に示す「閾値A」に対応する空き容量であり、トラフィック転送路50の利用可能な帯域が500Mbpsとする。バッファの空き容量に対応する帯域情報100Mbpsが求められ、トラフィック転送路50の利用可能な帯域が500Mbpsと比較され、パケット転送装置70に100Mbpsを送信しているとする。 Next, an example in which the available bandwidth of the traffic transfer path 50 decreases and the buffer free space does not change will be described. For example, as an initial state, the free capacity of the buffer 11 is the free capacity corresponding to the “threshold A” shown in FIG. 6 and the available bandwidth of the traffic transfer path 50 is 500 Mbps. Assume that bandwidth information 100 Mbps corresponding to the free capacity of the buffer is obtained, the available bandwidth of the traffic transfer path 50 is compared with 500 Mbps, and 100 Mbps is transmitted to the packet transfer apparatus 70.
 この状態からトラフィック転送路50の利用可能な帯域が100Mbpsに変化した場合、ステップS43で図9のような対応関係から求められたバッファの空き容量に対応する帯域情報100Mbpsとトラフィック転送路50の利用可能な帯域100Mbpsとが比較される。ステップS44では、バッファ11の空き容量に対応する帯域情報100Mbpsが、トラフィック転送路50の利用可能な帯域100Mbps以上であるため、バッファ不足ではないと判断する。ステップS45では、通知する帯域情報を、トラフィック転送路50の利用可能な100Mbpsとし、パケット転送装置60は、100Mbpsを、上流のパケット転送装置70に送信する。 When the available bandwidth of the traffic transfer path 50 changes from this state to 100 Mbps, the bandwidth information 100 Mbps corresponding to the free capacity of the buffer obtained from the correspondence relationship as shown in FIG. 9 in step S43 and the use of the traffic transfer path 50 The possible bandwidth is compared with 100 Mbps. In step S44, since the bandwidth information 100 Mbps corresponding to the free capacity of the buffer 11 is equal to or larger than the available bandwidth 100 Mbps of the traffic transfer path 50, it is determined that there is no buffer shortage. In step S45, the notified bandwidth information is set to 100 Mbps usable in the traffic transfer path 50, and the packet transfer device 60 transmits 100 Mbps to the upstream packet transfer device 70.
 また例えば、初期状態として、バッファ11の空き容量が、図7に示す「閾値C」に対応する空き容量であり、トラフィック転送路50の利用可能な帯域が500Mbpsとする。バッファの空き容量に対応する帯域情報300Mbpsが求められ、トラフィック転送路50の利用可能な帯域が500Mbpsと比較され、パケット転送装置70に300Mbpsを送信しているとする。 Further, for example, as an initial state, the free capacity of the buffer 11 is the free capacity corresponding to the “threshold C” shown in FIG. 7, and the available bandwidth of the traffic transfer path 50 is 500 Mbps. Assume that bandwidth information 300 Mbps corresponding to the free capacity of the buffer is obtained, the available bandwidth of the traffic transfer path 50 is compared with 500 Mbps, and 300 Mbps is transmitted to the packet transfer apparatus 70.
 この状態からトラフィック転送路50の利用可能な帯域が100Mbpsに変化した場合、ステップS43で図9のような対応関係から求められたバッファの空き容量に対応する帯域情報300Mbpsとトラフィック転送路50の利用可能な帯域100Mbpsとが比較される。ステップS44では、バッファ11の空き容量に対応する帯域情報300Mbpsが、トラフィック転送路50の利用可能な帯域100Mbps以上であるため、バッファ不足ではないと判断する。ステップS45では、通知する帯域情報を、トラフィック転送路50の利用可能な100Mbpsとし、パケット転送装置60は、100Mbpsを、上流のパケット転送装置70に送信する。 If the available bandwidth of the traffic transfer path 50 changes from this state to 100 Mbps, the bandwidth information 300 Mbps corresponding to the free capacity of the buffer obtained from the correspondence relationship as shown in FIG. 9 and the use of the traffic transfer path 50 in step S43. The possible bandwidth is compared with 100 Mbps. In step S44, since the bandwidth information 300 Mbps corresponding to the free capacity of the buffer 11 is the available bandwidth 100 Mbps or more of the traffic transfer path 50, it is determined that there is no buffer shortage. In step S45, the notified bandwidth information is set to 100 Mbps usable in the traffic transfer path 50, and the packet transfer device 60 transmits 100 Mbps to the upstream packet transfer device 70.
 さらに例えば、初期状態として、バッファ11の空き容量が図8に示す「閾値E」に対応する空き容量であり、トラフィック転送路50の利用可能な帯域が500Mbpsとする。バッファの空き容量に対応する帯域情報500Mbpsが求められ、トラフィック転送路50の利用可能な帯域が500Mbpsと比較され、パケット転送装置70に500Mbpsを送信しているとする。 Further, for example, as an initial state, the free capacity of the buffer 11 is the free capacity corresponding to the “threshold E” shown in FIG. 8, and the available bandwidth of the traffic transfer path 50 is 500 Mbps. Assume that bandwidth information 500 Mbps corresponding to the free capacity of the buffer is obtained, the available bandwidth of the traffic transfer path 50 is compared with 500 Mbps, and 500 Mbps is transmitted to the packet transfer device 70.
 この状態からトラフィック転送路50の利用可能な帯域が100Mbpsに変化した場合、ステップS43で図9のような対応関係から求められたバッファの空き容量に対応する帯域情報500Mbpsとトラフィック転送路50の利用可能な帯域100Mbpsとが比較される。ステップS44では、バッファ11の空き容量に対応する帯域情報500Mbpsが、トラフィック転送路50の利用可能な帯域100Mbps以上であるため、バッファ不足ではないと判断する。ステップS45では、通知する帯域情報を、トラフィック転送路50の利用可能な100Mbpsとし、パケット転送装置60は、100Mbpsを、上流のパケット転送装置70に送信する。 If the available bandwidth of the traffic transfer path 50 is changed to 100 Mbps from this state, the bandwidth information 500 Mbps corresponding to the free capacity of the buffer obtained from the correspondence relationship as shown in FIG. 9 in step S43 and the use of the traffic transfer path 50 The possible bandwidth is compared with 100 Mbps. In step S44, since the bandwidth information 500 Mbps corresponding to the free capacity of the buffer 11 is equal to or greater than the available bandwidth 100 Mbps of the traffic transfer path 50, it is determined that there is no buffer shortage. In step S45, the notified bandwidth information is set to 100 Mbps usable in the traffic transfer path 50, and the packet transfer device 60 transmits 100 Mbps to the upstream packet transfer device 70.
 さらにトラフィック転送路50の利用可能な帯域は変わらず、バッファの空き容量が増加した場合の例について説明する。例えば、初期状態として、バッファ11の空き容量が、図6に示す「閾値A」に対応する空き容量であり、トラフィック転送路50の利用可能な帯域が500Mbpsとする。バッファの空き容量に対応する帯域100Mbpsが求められ、トラフィック転送路50の利用可能な帯域が500Mbpsと比較され、パケット転送装置70に帯域情報100Mbpsを送信しているとする。 Further, an example in which the available bandwidth of the traffic transfer path 50 is not changed and the free capacity of the buffer is increased will be described. For example, as an initial state, the free capacity of the buffer 11 is the free capacity corresponding to the “threshold A” shown in FIG. 6 and the available bandwidth of the traffic transfer path 50 is 500 Mbps. It is assumed that a bandwidth of 100 Mbps corresponding to the free capacity of the buffer is obtained, the available bandwidth of the traffic transfer path 50 is compared with 500 Mbps, and bandwidth information 100 Mbps is transmitted to the packet transfer device 70.
 この状態からバッファの空き容量が図7に示す「閾値C」の状態に変化した場合、ステップS43で図9のような対応関係から求められた「閾値C」に対応する帯域300Mbpsとトラフィック転送路50の利用可能な帯域500Mbpsとが比較される。ステップS44では、バッファ11の空き容量に対応する帯域300Mbpsが、トラフィック転送路50の利用可能な帯域500Mbpsより小さいため、バッファ不足と判断する。ステップS46では、通知する帯域情報を、バッファ11の空き容量に対応する帯域情報300Mbpsとし、パケット転送装置60は、上流のパケット転送装置70に帯域情報300Mbpsを送信する When the free capacity of the buffer changes from this state to the state of “threshold C” shown in FIG. 7, the bandwidth 300 Mbps corresponding to “threshold C” obtained from the correspondence as shown in FIG. 50 available bandwidths, 500 Mbps, are compared. In step S44, since the bandwidth 300 Mbps corresponding to the free capacity of the buffer 11 is smaller than the available bandwidth 500 Mbps of the traffic transfer path 50, it is determined that the buffer is insufficient. In step S46, the notified bandwidth information is the bandwidth information 300 Mbps corresponding to the free capacity of the buffer 11, and the packet transfer device 60 transmits the bandwidth information 300 Mbps to the upstream packet transfer device 70.
 また同じ初期状態からバッファの空き容量が図8に示す「閾値E」の状態に変化した場合、ステップS43で、図9のような対応関係から求められた「閾値E」に対応する帯域500Mbpsとトラフィック転送路50の利用可能な帯域500Mbpsとが比較される。ステップS44では、バッファ11の空き容量に対応する帯域500Mbpsが、トラフィック転送路50の利用可能な帯域500Mbpsと等しいため、バッファ不足ではないと判断する。ステップS46により、通知する帯域情報を、トラフィック転送路50の利用可能な帯域500Mbpsとし、パケット転送装置60は、上流のパケット転送装置70に帯域情報500Mbpsを送信する。 If the buffer free capacity changes from the same initial state to the “threshold E” state shown in FIG. 8, the bandwidth corresponding to “threshold E” obtained from the correspondence as shown in FIG. The available bandwidth of the traffic transfer path 50 is compared with 500 Mbps. In step S44, since the bandwidth 500 Mbps corresponding to the free capacity of the buffer 11 is equal to the available bandwidth 500 Mbps of the traffic transfer path 50, it is determined that there is no buffer shortage. In step S46, the bandwidth information to be notified is set to a usable bandwidth 500 Mbps of the traffic transfer path 50, and the packet transfer device 60 transmits the bandwidth information 500 Mbps to the upstream packet transfer device 70.
 さらにトラフィック転送路50の利用可能な帯域は変わらず、バッファの空き容量が減少した場合の例について説明する。例えば、初期状態として、バッファ11の空き容量が、図8に示す「閾値E」の状態であり、トラフィック転送路50の利用可能な帯域が500Mbpsとする。バッファ11の空き容量に対応する帯域500Mbpsが求められ、トラフィック転送路50の利用可能な帯域が500Mbpsと比較され、パケット転送装置70に500Mbpsを送信しているとする。 Further, an example in which the available bandwidth of the traffic transfer path 50 is not changed and the buffer free space is reduced will be described. For example, as an initial state, the free capacity of the buffer 11 is in the “threshold E” state shown in FIG. 8 and the available bandwidth of the traffic transfer path 50 is 500 Mbps. It is assumed that a bandwidth of 500 Mbps corresponding to the free capacity of the buffer 11 is obtained, the available bandwidth of the traffic transfer path 50 is compared with 500 Mbps, and 500 Mbps is transmitted to the packet transfer apparatus 70.
 この状態からバッファの空き容量が図6に示す「閾値A」の状態に変化した場合、ステップS43で、図9のような対応関係から求められた「閾値A」に対応する帯域情報100Mbpsとトラフィック転送路50の利用可能な帯域500Mbpsとが比較される。ステップS44では、バッファ11の空き容量に対応する帯域情報100Mbpsが、トラフィック転送路50の利用可能な帯域500Mbpsより小さいため、バッファ不足と判断する。ステップS46により、通知する帯域情報を、バッファ11の空き容量に対応する帯域情報100Mbpsとし、パケット転送装置60は、上流のパケット転送装置70に帯域情報100Mbpsを送信する。 When the free space of the buffer changes from this state to the “threshold A” state shown in FIG. 6, the bandwidth information 100 Mbps and traffic corresponding to “threshold A” obtained from the correspondence as shown in FIG. The available bandwidth of the transfer path 50 is compared with 500 Mbps. In step S44, since the bandwidth information 100 Mbps corresponding to the free capacity of the buffer 11 is smaller than the available bandwidth 500 Mbps of the traffic transfer path 50, it is determined that the buffer is insufficient. In step S46, the notified bandwidth information is the bandwidth information 100 Mbps corresponding to the free capacity of the buffer 11, and the packet transfer device 60 transmits the bandwidth information 100 Mbps to the upstream packet transfer device 70.
 また同じ初期状態からバッファの空き容量が図7に示す「閾値C」の状態に変化した場合、ステップS43で、図9のような対応関係から求められた「閾値C」に対応する帯域情報300Mbpsとトラフィック転送路50の利用可能な帯域500Mbpsとが比較される。ステップS44では、バッファ11の空き容量に対応する帯域情報300Mbpsが、トラフィック転送路50の利用可能な帯域500Mbpsより小さいため、バッファ不足と判断する。ステップS46により、通知する帯域情報を、バッファ11の空き容量に対応する帯域情報300Mbpsとし、パケット転送装置60は、上流のパケット転送装置70に帯域情報300Mbpsを送信する。 If the buffer free capacity changes from the same initial state to the “threshold C” state shown in FIG. 7, the bandwidth information 300 Mbps corresponding to “threshold C” obtained from the correspondence as shown in FIG. 9 in step S43. And the available bandwidth 500 Mbps of the traffic transfer path 50 are compared. In step S44, since the bandwidth information 300 Mbps corresponding to the free capacity of the buffer 11 is smaller than the available bandwidth 500 Mbps of the traffic transfer path 50, it is determined that the buffer is insufficient. In step S46, the bandwidth information to be notified is the bandwidth information 300 Mbps corresponding to the free capacity of the buffer 11, and the packet transfer device 60 transmits the bandwidth information 300 Mbps to the upstream packet transfer device 70.
 以上説明したように第2の実施形態によれば、第1の実施形態と同様な効果が得られる。すなわちパケット転送装置60は、バッファ11の空き容量に対し瞬時バーストによるデータ廃棄が発生しない帯域と、下流のトラフィック転送路50の利用可能な帯域とを比較する。そして、パケット転送装置60は、バッファ11の空き容量に対応する帯域が小さい場合には、パケット転送装置70に通知する帯域情報を、バッファ11の空き容量に対する帯域とする。この構成により、下流のトラフィック転送路50で利用可能な帯域に基づき上流のパケット転送装置70に帯域情報を通知するパケット転送装置60において、上流のパケット転送装置70からのデータ転送を止めずに下流のトラフィック転送路50に転送できるとともに、バッファ11におけるデータの廃棄を防ぐことができる。 As described above, according to the second embodiment, the same effects as those of the first embodiment can be obtained. That is, the packet transfer device 60 compares the bandwidth in which data discard due to the instantaneous burst does not occur with the available capacity of the buffer 11 with the available bandwidth of the downstream traffic transfer path 50. When the bandwidth corresponding to the free capacity of the buffer 11 is small, the packet transfer apparatus 60 sets the bandwidth information notified to the packet transfer apparatus 70 as the bandwidth for the free capacity of the buffer 11. With this configuration, in the packet transfer device 60 that notifies the upstream packet transfer device 70 of the bandwidth information based on the bandwidth available on the downstream traffic transfer path 50, the data transfer from the upstream packet transfer device 70 is stopped without stopping. Can be transferred to the traffic transfer path 50, and discarding of data in the buffer 11 can be prevented.
 次に第3の実施形態について説明する。図16は本発明の第3の実施形態の構成を示すブロック図である。本実施形態は、パケット転送装置と下流の第2の通信装置との間のトラフィック転送路が無線トラフィック転送路であり、適応変調が行われる実施形態である。例えば第2の通信装置100は、受信した電波におけるSNR(Signal to Noise Ratio:信号対雑音比)や、受信した電波に基づくデータにおけるBER(B it Error Rate:符号誤り率)を、無線トラフィック転送路80を介してパケット転送装置90に通知する。パケット転送装置90の送受信部91は通知されたSNRやBER等に応じて送信する電波の変調方式を変化させ無線トラフィック転送路80を介して第2の通信装置100にパケットを送信する。送受信部91は、SNRやBER等に応じて、送信する電波の変調方式を変化させると、無線帯域決定部62に、変化後の変調方式を通知する。次に通知された変調方式に基づき、無線帯域決定部62は、ETH帯域を決定する。また帯域制御部63は、無線帯域決定部62によって決定されたETH帯域に基づき第2の通信装置100へのシェーパーレートを設定する。通知帯域決定部12は、上述の第1、第2の実施形態と同様に、バッファの空き容量や関連する情報も見て通知帯域を決定する。
 このように適応変調を行う通信装置を第1の実施形態の転送装置10や第2の実施形態のパケット転送装置60として構成すると、トラフィック転送路50の帯域の変動が大きく、頻繁であることから、下流の帯域幅の変動に応じて上流装置からの通信量を好適に制御することができる。
Next, a third embodiment will be described. FIG. 16 is a block diagram showing a configuration of the third exemplary embodiment of the present invention. In this embodiment, the traffic transfer path between the packet transfer apparatus and the downstream second communication apparatus is a radio traffic transfer path, and adaptive modulation is performed. For example, the second communication device 100 transmits an SNR (Signal to Noise Ratio) in the received radio wave and a BER (Bit Error Rate) in the data based on the received radio wave to the wireless traffic transfer. The packet transfer device 90 is notified via the path 80. The transmission / reception unit 91 of the packet transfer device 90 changes the modulation method of the radio wave to be transmitted according to the notified SNR, BER, etc., and transmits the packet to the second communication device 100 via the wireless traffic transfer path 80. When the transmission / reception unit 91 changes the modulation method of the radio wave to be transmitted according to the SNR, BER, etc., the transmission / reception unit 91 notifies the radio band determination unit 62 of the changed modulation method. Next, based on the notified modulation method, the radio band determining unit 62 determines the ETH band. The band control unit 63 sets the shaper rate for the second communication apparatus 100 based on the ETH band determined by the radio band determination unit 62. The notification bandwidth determination unit 12 determines the notification bandwidth by looking at the free space of the buffer and related information as in the first and second embodiments described above.
If the communication apparatus that performs adaptive modulation in this way is configured as the transfer apparatus 10 of the first embodiment or the packet transfer apparatus 60 of the second embodiment, the bandwidth of the traffic transfer path 50 is greatly varied and frequent. Therefore, it is possible to suitably control the amount of communication from the upstream device according to the fluctuation of the downstream bandwidth.
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2016年12月28日に出願された日本出願特願2016-255369を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2016-255369 filed on Dec. 28, 2016, the entire disclosure of which is incorporated herein.
 10  転送装置
 11  バッファ
 12  通知帯域決定部
 13  帯域通知送信部
 20  第1の通信装置
 30、50  トラフィック転送路
 40  第2の通信装置
 60、70  パケット転送装置
 61  バッファ空き容量通知部
 62  無線帯域決定部
 63、72  帯域制御部
 71  帯域通知受信部
DESCRIPTION OF SYMBOLS 10 Transfer apparatus 11 Buffer 12 Notification band determination part 13 Band notification transmission part 20 1st communication apparatus 30, 50 Traffic transfer path 40 2nd communication apparatus 60, 70 Packet transfer apparatus 61 Buffer free capacity notification part 62 Wireless band determination part 63, 72 Band control unit 71 Band notification receiving unit

Claims (10)

  1.  第1の通信装置から受信し第2の通信装置に送信するデータを一時的に記憶するバッファと、
     前記第2の通信装置との間の通信路で利用可能な帯域に関する第1の情報と前記バッファの空き容量に対応する帯域に関する第2の情報に基づき前記第1の通信装置に通知する帯域情報を決定する通知帯域決定手段と、
     前記帯域情報を前記第1の通信装置に送信する帯域通知送信手段と、
     を有する転送装置。
    A buffer for temporarily storing data received from the first communication device and transmitted to the second communication device;
    Band information to be notified to the first communication device based on the first information on the bandwidth available on the communication path with the second communication device and the second information on the bandwidth corresponding to the free capacity of the buffer. Notification bandwidth determining means for determining
    Bandwidth notification transmission means for transmitting the bandwidth information to the first communication device;
    A transfer device.
  2.  前記通知帯域決定手段は、前記第2の情報の帯域が前記第1の情報の帯域より小さい場合は、前記第2の情報を前記帯域情報として決定する請求項1に記載の転送装置。 2. The transfer device according to claim 1, wherein the notification band determining unit determines the second information as the band information when the band of the second information is smaller than the band of the first information.
  3.  前記通知帯域決定手段は、前記第1の通信装置が前記帯域情報に基づく制御帯域で送信制御中に瞬時バーストが発生した場合の送信データ容量の増分以上の空き容量に、前記制御帯域を対応させた対応関係を保持する、請求項1又は2に記載の転送装置。 The notification band determining means associates the control band with a free capacity equal to or larger than an increase in transmission data capacity when an instantaneous burst occurs during transmission control in the control band based on the band information by the first communication device. The transfer device according to claim 1, wherein the transfer device retains the corresponding relationship.
  4.  前記バッファは、複数の閾値を設定し、検出した空き容量が前記複数の閾値のいずれかを超えた際及び下回った際に前記空き容量の通知を行う請求項1から3のいずれか1項に記載の転送装置。 4. The buffer according to any one of claims 1 to 3, wherein the buffer sets a plurality of threshold values, and notifies the free space when the detected free space exceeds or falls below any of the plurality of thresholds. The transfer device described.
  5.  前記通知帯域決定手段は、前記複数の閾値に対応させて、前記第1の通信装置が前記帯域情報に基づく制御帯域で送信制御中に瞬時バーストが発生した場合の送信データ容量の増分以上の空き容量と、前記制御帯域とを対応させた対応関係を保持する、請求項4に記載の転送装置。 The notification bandwidth determination means is a space corresponding to the plurality of thresholds, and a free space equal to or greater than an increase in transmission data capacity when an instantaneous burst occurs during transmission control of the first communication device in a control bandwidth based on the bandwidth information. The transfer device according to claim 4, wherein a correspondence relationship in which a capacity is associated with the control band is maintained.
  6.  前記第2の通信装置との間の通信路で利用可能な帯域を決定する無線帯域決定手段と、
     前記無線帯域決定手段で決定された帯域に基づいて前記第2の通信装置との間の通信路の制御帯域を設定する帯域制御手段と、
     を有する請求項1から5のいずれか1項に記載の転送装置。
    A wireless bandwidth determining means for determining a bandwidth that can be used in a communication path with the second communication device;
    Bandwidth control means for setting a control bandwidth of a communication path with the second communication device based on the bandwidth determined by the wireless bandwidth determination means;
    The transfer device according to claim 1, comprising:
  7.  第1の通信装置から受信し第2の通信装置に送信するデータをバッファに一時的に記憶し、
     前記第2の通信装置との間の通信路で利用可能な帯域に関する第1の情報を取得し、
     前記バッファの空き容量に対応する帯域に関する第2の情報を算出し、
     前記第1及び第2の情報に基づき前記第1の通信装置に通知する帯域情報を決定し、
     決定した前記帯域情報を前記第1の通信装置に送信する、転送方法。
    Temporarily storing data received from the first communication device and transmitted to the second communication device in a buffer;
    Obtaining first information relating to a bandwidth available on a communication path with the second communication device;
    Calculating second information relating to the bandwidth corresponding to the free capacity of the buffer;
    Determining bandwidth information to be notified to the first communication device based on the first and second information;
    A transfer method of transmitting the determined band information to the first communication device.
  8.  請求項1から6のいずれか1項に記載の転送装置と、
     通知された前記帯域情報に基づくレートでデータを送信する前記第1の通信装置と、を有する通信システム。
    The transfer device according to any one of claims 1 to 6,
    And a first communication device that transmits data at a rate based on the notified band information.
  9.  第1の通信装置から転送装置に送信されたデータを第2の通信装置との間の通信路で利用可能な帯域で前記第2の通信装置に送信する通信システムの通信方法において、
     前記データを前記転送装置のバッファに一時的に記憶し、
     前記第2の通信装置との間の通信路で利用可能な帯域に関する第1の情報を取得し、
     前記バッファの空き容量に対応する帯域に関する第2の情報を算出し、
     前記第1及び第2の情報に基づき前記第1の通信装置に通知する帯域情報を決定し、
     決定した前記帯域情報を前記転送装置から前記第1の通信装置に帯域情報を通知する、通信方法。
    In a communication method of a communication system, wherein data transmitted from a first communication device to a transfer device is transmitted to the second communication device in a band that can be used in a communication path with the second communication device.
    Temporarily storing the data in a buffer of the transfer device;
    Obtaining first information relating to a bandwidth available on a communication path with the second communication device;
    Calculating second information relating to the bandwidth corresponding to the free capacity of the buffer;
    Determining bandwidth information to be notified to the first communication device based on the first and second information;
    A communication method for notifying the determined bandwidth information from the transfer device to the first communication device.
  10. 受信したデータを記憶するバッファと、
    他の装置と通信する帯域に関する帯域情報を取得し
    前記バッファの状態と前記帯域情報とにもとづいて
    データを受信する帯域を決定する処理手段とを備える通信装置
    A buffer for storing received data;
    A communication apparatus comprising: processing means for acquiring band information related to a band for communication with another apparatus and determining a band for receiving data based on the state of the buffer and the band information
PCT/JP2017/045454 2016-12-28 2017-12-19 Communication system, communication method, transfer device, and transfer method WO2018123710A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-255369 2016-12-28
JP2016255369 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018123710A1 true WO2018123710A1 (en) 2018-07-05

Family

ID=62707364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045454 WO2018123710A1 (en) 2016-12-28 2017-12-19 Communication system, communication method, transfer device, and transfer method

Country Status (1)

Country Link
WO (1) WO2018123710A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10200582A (en) * 1998-02-16 1998-07-31 Toshiba Corp Communication-band limiting method, communication-band reserving method and network node device
JP2008236308A (en) * 2007-03-20 2008-10-02 Fujitsu Ltd Flow control method and receiver
JP2011019040A (en) * 2009-07-08 2011-01-27 Nippon Telegr & Teleph Corp <Ntt> Communication device and flow control method for the communication device, and program therefor
JP2013502779A (en) * 2009-08-21 2013-01-24 華為技術有限公司 Bandwidth information notification method, service processing method, network node, and communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10200582A (en) * 1998-02-16 1998-07-31 Toshiba Corp Communication-band limiting method, communication-band reserving method and network node device
JP2008236308A (en) * 2007-03-20 2008-10-02 Fujitsu Ltd Flow control method and receiver
JP2011019040A (en) * 2009-07-08 2011-01-27 Nippon Telegr & Teleph Corp <Ntt> Communication device and flow control method for the communication device, and program therefor
JP2013502779A (en) * 2009-08-21 2013-01-24 華為技術有限公司 Bandwidth information notification method, service processing method, network node, and communication system

Similar Documents

Publication Publication Date Title
CN108141443B (en) User equipment, media stream transmission network auxiliary node and media stream transmission method
AU2010308477B2 (en) Methods and apparatus for controlling congestion in a communication network
EP1417808A2 (en) Method for supporting non-linear, highly scalable increase-decrease congestion control scheme
US7603475B2 (en) Method for flow control in a communication system
JP2008507204A (en) How to manage inter-zone bandwidth in a two-way messaging network
US20150327113A1 (en) Communication device and traffic control method
KR101992750B1 (en) Router device and congestion controlling method of the same
US11588736B2 (en) Communication apparatus, communication method, and program
US20160323421A1 (en) Wireless communication system, serve and base station
CN104980818A (en) Enhanced media quality management
JP2004297565A (en) Data communication system, device and method for processing information, and program
WO2007026557A1 (en) Communication system, communication terminal, relay node, communication method used therein, and program thereof
US8923119B2 (en) Communication apparatus and communication control method
US10819582B2 (en) Traffic optimization device and traffic optimization method
JP2002325095A (en) Data communication system, data transmitter, and data communication method
CN116233002B (en) Data packet sending method, receiving method, message sending method and product
WO2018123710A1 (en) Communication system, communication method, transfer device, and transfer method
KR101671254B1 (en) Apparatus and method for detecting voice period in mobile communication system
JP2009278532A (en) Transmission apparatus and congestion control method
CN112787919B (en) Message transmission method and device and readable medium
US8159995B2 (en) Method and facility for selecting satellite channels
JP4014533B2 (en) Wireless access system and wireless access method
US20040158765A1 (en) Device and method for controlling data traffic in a tcp/ip data transmission network
JP6897769B2 (en) Data transmitters, methods and programs
JP4921245B2 (en) Frame distribution method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP