WO2018123020A1 - Electromagnetic valve - Google Patents

Electromagnetic valve Download PDF

Info

Publication number
WO2018123020A1
WO2018123020A1 PCT/JP2016/089101 JP2016089101W WO2018123020A1 WO 2018123020 A1 WO2018123020 A1 WO 2018123020A1 JP 2016089101 W JP2016089101 W JP 2016089101W WO 2018123020 A1 WO2018123020 A1 WO 2018123020A1
Authority
WO
WIPO (PCT)
Prior art keywords
plunger
solenoid valve
inner diameter
core
main body
Prior art date
Application number
PCT/JP2016/089101
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 不二原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/089101 priority Critical patent/WO2018123020A1/en
Publication of WO2018123020A1 publication Critical patent/WO2018123020A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid

Definitions

  • This invention relates to a solenoid valve.
  • the solenoid valve is kept closed by the load of the spring and is opened by thrust using electromagnetic force.
  • An electromagnetic valve mounted on a vehicle like the electromagnetic valve according to Patent Document 1 is required to have high vibration resistance so as not to open due to vibration of the vehicle. Improvement of vibration resistance is achieved by increasing the load of the spring. On the other hand, since the valve opening performance must be maintained even when the load of the spring is increased, it is essential to improve the thrust for opening the valve.
  • the present invention has been made to solve the above-described problems, and it is an object of the present invention to improve the valve opening thrust without increasing the size and weight of the solenoid valve.
  • the solenoid valve according to the present invention includes a plunger that reciprocates in the axial direction, a main body portion positioned on one side of the plunger in the axial direction, and a cylindrical portion that protrudes from the main body portion toward the plunger side and can accommodate the plunger.
  • a coil that generates electromagnetic force that moves the plunger in the direction of the core, and a spring that moves the plunger in the direction opposite to the core, and the inner wall of the cylindrical portion has a large inner diameter on the tip side, It has a tapered portion with a small inner diameter on the main body side.
  • the inner wall of the cylindrical portion of the core is provided with the tapered portion having a large inner diameter on the front end side and a small inner diameter on the main body side, so that the amount of magnetic flux in the radial direction between the core and the plunger is reduced. And the amount of magnetic flux in the axial direction increases. As a result, the thrust of the valve opening can be improved without increasing the size and weight of the solenoid valve.
  • FIG. 1 It is sectional drawing which shows the structural example of the solenoid valve which concerns on Embodiment 1 of this invention. It is a figure which shows the structural example of the engine with a turbocharger to which the solenoid valve which concerns on Embodiment 1 of this invention is applied, and shows the state at the time of accelerator on. It is a figure which shows the structural example of the engine with a turbocharger to which the solenoid valve which concerns on Embodiment 1 of this invention is applied, and shows the state at the time of an accelerator-off. It is a figure explaining the operation
  • FIG. 8A is a diagram for explaining the relationship between the stroke and thrust of the solenoid valve according to the reference example
  • FIG. 8B is for explaining the relationship between the stroke and thrust of the solenoid valve according to Embodiment 1 of the present invention. It is a figure to do.
  • FIG. 1 is a cross-sectional view showing a configuration example of a solenoid valve 100 according to Embodiment 1 of the present invention.
  • Embodiment 1 will be described using an example in which electromagnetic valve 100 is mounted on a vehicle.
  • a core assembly hereinafter, "assembly” is referred to as "ASSY”
  • ASSY2 a coil assembly
  • the core assembly 1 is formed by welding a core 3 that is a magnetic body and a yoke 4 that is a magnetic body by welding.
  • the core 3 includes a columnar main body 30 and a cylindrical cylindrical portion 31 protruding from the main body 30.
  • the coil ASSY 2 includes a bobbin ASSY 6, a coil 7, a terminal 8, and a diode 9.
  • the resin and the magnetic plate 5 are integrated by insert molding to form the bobbin ASSY 6.
  • a coil 7 is wound around the bobbin ASSY 6. Thereafter, the coil 7 and the terminal 8 are joined by fusing, and the diode 9 is welded to the terminal 8.
  • the stator ASSY 11 is formed by integrating the core ASSY 1, the coil ASSY 2, and the bush 10 by insert molding.
  • the peripheral portion of the terminal 8 in the stator assembly 11 forms a connector connected to the power source on the vehicle side.
  • the non-magnetic pipe 12 is inserted into the plate 5 of the stator assembly 11. Subsequently, after the seal ring 13 is mounted on the holder 14, the holder 14 is press-fitted into the plate 5 side of the stator ASSY 11.
  • the valve assembly 16 includes a plunger 17, a spring 18, a valve 19, and a washer 20.
  • a spring 18, a valve 19 and a washer 20 are inserted in this order into the plunger 17 which is a magnetic body, and held by caulking.
  • a spring 15 is installed on the pipe 12 and a valve ASSY 16 is inserted into the stator ASSY 11. Finally, the O-ring 21 is mounted in the groove of the stator assembly 11.
  • the solenoid valve 100 is attached to the piping of the vehicle by screws 23 passed through the bush 10 as shown in FIGS. Further, the O-ring 21 closes a gap between the solenoid valve 100 and the pipe to which the solenoid valve 100 is attached, and the air tightness of the pipe is ensured. Further, the connector of the power source 109 on the vehicle side and the connector of the stator ASSY 11 are connected.
  • the usage example of the solenoid valve 100 which concerns on Embodiment 1 is demonstrated.
  • the electromagnetic valve 100 is used as an electrically controlled air bypass valve.
  • the solenoid valve 100 shown in FIG. 1 is attached to the air bypass passage 108 connecting the upstream side and the downstream side of the compressor 101 a of the turbocharger 101.
  • the throttle valve 104 of the intake passage 103 is opened. Therefore, the air compressed by the compressor 101 a of the turbocharger 101 (hereinafter referred to as supercharged air) flows through the intercooler 105 and is carried to the engine 102. At this time, the electromagnetic valve 100 is closed.
  • a turbine 101b is mounted on the same axis as the compressor 101a. When the exhaust gas of the engine 102 flows through the exhaust passage 106 and rotates the turbine 101b, the compressor 101a also rotates.
  • the exhaust passage 106 is provided with a waste gate valve 107 for adjusting the pressure of the exhaust gas.
  • the throttle valve 104 When the accelerator shown in FIG. 3 is off, the throttle valve 104 is closed. Therefore, the supercharged air is accumulated in the intake passage 103. If the supercharged air is accumulated, the piping of the intake passage 103, the turbocharger 101, the engine 102, and the like may be damaged. Therefore, when the accelerator is off, the electromagnetic valve 100 is opened to prevent damage. When the solenoid valve 100 is opened, the air bypass passage 108 is opened, so that the supercharged air can be released from the downstream side to the upstream side of the compressor 101a.
  • the solenoid valve 100 in FIG. 4 is in a fully closed state, and the solenoid valve 100 in FIG. 5 is in a fully open state.
  • the electromagnetic valve 100 is attached to the piping of the air bypass passage 108 on the vehicle side by screws 23.
  • a part of the piping of the air bypass passage 108 is a valve seat 108a.
  • the terminal 8 of the electromagnetic valve 100 and the power source 109 on the vehicle side are electrically connected.
  • the solenoid valve 100 When the power source 109 is off, the solenoid valve 100 is fully closed as shown in FIG. Specifically, the valve ASSY 16 is urged by the spring 15 and the valve 19 is kept pressed against the valve seat 108a, and the air bypass passage 108 is closed. At this time, the plunger 17 of the valve assembly 16 also moves in the direction opposite to the core 3 while being guided by the pipe 12. The supercharged air enters the valve assembly 16 through the valve communication hole 22 of the valve 19 and pushes the seal ring 13 to contact the outer peripheral surface of the valve 19. As a result, the gap between the valve 19 and the seal ring 13 is closed, and leakage of supercharged air is prevented.
  • the spring 18 is a member for holding the valve 19 in a pressed state against the washer 20 in order to prevent the plunger 17 and the valve 19 from rattling.
  • the diode 9 cuts a surge voltage generated when the power source 109 is turned off.
  • the solenoid valve 100 When the power source 109 is on, the solenoid valve 100 is fully opened as shown in FIG. Specifically, an electric current flows through the terminal 8 to the coil 7, and the coil 7, the core 3, the yoke 4, and the plate 5 serve as an electromagnet, and an electromagnetic force is generated.
  • the plunger 17 is attracted to the core 3 side by electromagnetic force and is accommodated in the cylindrical portion 31.
  • the valve ASSY 16 When the plunger 17 moves to the core 3 side while being guided by the pipe 12, the valve ASSY 16 is operated together with the plunger 17, the valve 19 is separated from the valve seat 108a, and the supercharged air is released to the upstream side of the compressor 101a.
  • the electromagnetic valve 100 when the electromagnetic valve 100 is opened and closed, the plunger 17 reciprocates in the axial direction.
  • FIG. 6 is an enlarged view of the cylindrical portion 31 and its peripheral portion of the electromagnetic valve 100 according to the first embodiment.
  • FIG. 6 shows the position of the plunger 17 when the electromagnetic valve 100 is at the intermediate opening.
  • the intermediate opening is an intermediate opening between the fully closed position and the fully opened position, as shown in FIGS. 8A and 8B described later.
  • the cylindrical portion 31 has a shape that protrudes from the main body portion 30 toward the plunger 17 and can accommodate at least a part of the plunger 17.
  • the inner wall of the cylindrical portion 31 includes a first straight portion 32 having a constant inner diameter on the distal end side and a second straight portion 33 having a constant inner diameter on the main body portion 30 side.
  • the inner diameter of the second straight portion 33 is smaller than the inner diameter of the first straight portion 32. Further, a tapered portion 34 is provided between the first straight portion 32 and the second straight portion 33.
  • the tapered portion 34 has a large inner diameter on the tip end side of the cylindrical portion 31, and the inner diameter becomes smaller toward the main body portion 30 side.
  • the maximum inner diameter of the taper portion 34 is the same as the inner diameter of the first straight portion 32, and the minimum inner diameter of the taper portion 34 is the same as the inner diameter of the second straight portion 33.
  • FIG. 7 is a diagram illustrating a reference example for helping understanding of the electromagnetic valve 100 according to the first embodiment.
  • the straight portion 35 having a constant inner diameter is provided on all the inner walls of the cylindrical portion 31, and the tapered portion 34 is not provided.
  • Thrust improvement In the case of the reference example shown in FIG. 7, the distance between the straight portion 35 of the cylindrical portion 31 and the plunger 17 is constant along the axial direction. The amount of magnetic flux in the direction is reduced.
  • the amount of magnetic flux in the axial direction includes not only magnetic flux strictly in the axial direction but also magnetic flux closer to the axial direction than in the radial direction.
  • the direction of the magnetic flux is indicated by an arrow. The thicker the arrow, the greater the amount of magnetic flux, and the thinner the arrow, the smaller the amount of magnetic flux.
  • the position where the tapered portion 34 is provided is within the range of the intermediate opening of the solenoid valve 100, so that the thrust at the intermediate opening is particularly improved.
  • the 1st straight part 32 is provided in the position near the plunger 17 when the solenoid valve 100 is a fully closed state.
  • the distance between the plunger 17 and the cylindrical portion 31 in the fully closed state is shorter than in the case where the tapered portion 34 is provided as it is to the tip of the cylindrical portion 31 without providing the first straight portion 32. . Therefore, the thrust when the plunger 17 starts moving in the valve opening direction is improved, and the initial movement of the plunger 17 becomes smooth.
  • the taper part 34 does not need to be provided on the inner wall side of the cylindrical part 31 on the main body part 30 side, and the second straight part 33 is formed.
  • the solenoid valve 100 maintains a closed state by the load of the spring 15. As described above, when the valve opening thrust is improved, the load of the spring 15 can be increased. That is, the vibration resistance of the solenoid valve 100 is improved.
  • FIG. 8A is a diagram illustrating the relationship between the stroke and the thrust of the solenoid valve 100 according to the reference example illustrated in FIG. 7.
  • FIG. 8B is a view for explaining the relationship between the stroke and the thrust of the solenoid valve 100 according to Embodiment 1 of the present invention.
  • 8A and 8B also show the load of the spring 15.
  • the solenoid valve 100 according to the reference example has a stroke position where the thrust drops at the intermediate opening.
  • the round frame in FIG. 8A indicates the stroke position where the thrust drops. At this stroke position, since the difference between the thrust and the load of the spring 15 is small, the responsiveness of the solenoid valve 100 is deteriorated.
  • Responsiveness is the performance represented by the time required for the solenoid valve 100 to change from the fully closed state to the fully open state.
  • the solenoid valve 100 according to Embodiment 1 improves the drop in thrust at the intermediate opening by improving the valve opening thrust as described above. By improving the drop of the thrust, the difference between the thrust and the load of the spring 15 is increased, and the responsiveness is improved.
  • the solenoid valve 100 includes the plunger 17 that reciprocates in the axial direction, the main body 30 that is positioned on one side of the plunger 17 in the axial direction, and the main body 30 that protrudes toward the plunger 17.
  • the core 3 having a cylindrical portion 31 that can accommodate the plunger 17, the coil 7 that generates an electromagnetic force that moves the plunger 17 in the direction of the core 3, and the plunger 17 in the direction opposite to the core 3.
  • the inner wall of the cylindrical portion 31 has a tapered portion 34 having a large inner diameter on the distal end side and a smaller inner diameter on the main body portion 30 side.
  • the inner wall of the cylindrical portion 31 according to the first embodiment has a first straight portion 32 having a constant inner diameter on the distal end side and a second straight portion 33 having a constant inner diameter on the main body portion 30 side, A configuration in which the inner diameter of the second straight portion 33 is smaller than the inner diameter of the first straight portion 32, and a tapered portion 34 is provided between the first straight portion 32 and the second straight portion 33. It is. With this configuration, it is possible to improve the valve opening thrust at the intermediate opening.
  • the tapered portion 34 has an inner diameter that decreases from the first straight portion 32 toward the main body portion 30. In this case, the tapered portion 34 continues from the end portion of the first straight portion 32 until it reaches the main body portion 30. Or when the 2nd straight part 33 with a constant internal diameter is provided in the main body part 30 side of the inner wall of the cylinder part 31, the internal diameter becomes large as the taper part 34 goes to the front end side from the 2nd straight part 33.
  • the tapered portion 34 continues from the end of the second straight portion 33 until it reaches the tip of the cylindrical portion 31.
  • the opening is made as described above. The thrust of the valve can be improved.
  • FIG. FIG. 9 is an enlarged view of the cylindrical portion 31 and its peripheral portion of the solenoid valve 100 according to Embodiment 2 of the present invention. 9, parts that are the same as or equivalent to those in FIGS. 1 to 8 of the first embodiment are given the same reference numerals, and descriptions thereof are omitted. As shown in FIG. 9, in the second embodiment, the entire inner wall of the cylindrical portion 31 is a tapered portion 34. With this configuration, the effects (1) to (5) can be obtained as in the first embodiment.
  • FIG. 10 is an enlarged view of the cylindrical portion 31 and its peripheral portion of the solenoid valve 100 according to Embodiment 3 of the present invention.
  • a plurality of tapered portions 34 are provided on the inner wall of the cylindrical portion 31.
  • five taper portions 34 a, 34 b, 34 c, 34 d, 34 e are provided between the first straight portion 32 and the second straight portion 33.
  • Each of the tapered portions 34a, 34b, 34c, 34d, and 34e has a minimum inner diameter on the main body portion 30 side, and a maximum inner diameter on the distal end side of the cylindrical portion 31.
  • the five tapered portions 34 a, 34 b, 34 c, 34 d, 34 e have a saw blade shape.
  • the number of taper portions may be arbitrary.
  • the taper angle of each taper part may be the same, and a taper angle may differ for every taper part.
  • only one of the first straight portion 32 and the second straight portion 33 may be provided, or the first straight portion 32 and the second straight portion 33 may not be provided. With this configuration, the effects (1) to (5) can be obtained as in the first embodiment.
  • FIG. 11 is an enlarged view of the cylindrical portion 31 and its peripheral portion of the solenoid valve 100 according to Embodiment 4 of the present invention.
  • the outer wall of the plunger 17 is provided with a tapered portion 40 that tapers toward the core 3 side.
  • the tapered portion 40 is a “second tapered portion”.
  • the taper part 40 is provided in the edge part by the side of the core 3 among the outer walls of the plunger 17, and the 3rd straight part 41 with a constant outer diameter is provided in the remaining part of the outer wall.
  • a corner of the end of the plunger 17 may be chamfered to provide a C surface or the like, but the tapered portion 40 is larger than the C surface.
  • the tapered portion 40 may be provided on all the outer walls of the plunger 17.
  • the case where the taper portion 40 is provided in the plunger 17 as in the fourth embodiment is also described in the first embodiment (1).
  • the effects (5) to (5) can be obtained.
  • the taper portion 34 may be provided on the core 3 and the taper portion 40 may be provided on the plunger 17. Also in this case, the effects (1) to (5) described in the first embodiment can be obtained.
  • FIGS. 1 to 8 of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • a fourth straight portion 42 having a constant outer diameter is provided on the outer wall of the plunger 17 on the core 3 side.
  • the outer diameter of the fourth straight portion 42 is smaller than the outer diameter of the third straight portion 41.
  • a tapered portion 40 is provided between the third straight portion 41 and the fourth straight portion 42. Also in this case, the effects (1) to (5) described in the first embodiment can be obtained.
  • the thrust at the intermediate opening is improved.
  • a plurality of taper portions 40 a, 40 b, and 40 c are provided on the outer wall of the taper portion 40.
  • the number of taper portions may be arbitrary.
  • the angle of each taper part may be the same, and a taper angle may differ for every taper part.
  • the 4th straight part 42 may be provided in the core 3 side of the taper part 40a. Also in this case, the effects (1) to (5) described in the first embodiment can be obtained.
  • the outer wall of the cylindrical portion 31 is provided with a tapered portion that tapers from the main body portion 30 side toward the distal end side.
  • the present invention is not limited to this.
  • the shape of the outer wall may be arbitrary,
  • the solenoid valve according to the present invention can increase the spring load and improve the vibration resistance by improving the thrust of the valve opening, the vibration resistance of an air bypass valve and an oil control valve mounted on the vehicle can be improved. Suitable for use in solenoid valves that require high performance.

Abstract

A core (3) has a main body part (30) positioned on one axial-direction side of a plunger (17), and a tube part (31) that is shaped so as to protrude toward the plunger (17) from the main body part (30) and is capable of accommodating the plunger (17). The inner wall of the tube part (31) has a tapered part (34) of which the distal-end side has a large inside diameter and the side near the main body part (30) has a small inside diameter.

Description

電磁弁solenoid valve
 この発明は、電磁弁に関するものである。 This invention relates to a solenoid valve.
 電磁弁は、スプリングの荷重により閉弁状態が維持され、電磁力を利用した推力で開弁する。特許文献1に係る電磁弁のように車両に搭載される電磁弁は、車両の振動を受けて開弁しないように高い耐振性が要求される。耐振性の向上は、スプリングの荷重を大きくすることで達成される。一方で、スプリングの荷重を大きくした場合でも開弁性能は維持しなければならないので、開弁のための推力向上が必要不可欠である。 The solenoid valve is kept closed by the load of the spring and is opened by thrust using electromagnetic force. An electromagnetic valve mounted on a vehicle like the electromagnetic valve according to Patent Document 1 is required to have high vibration resistance so as not to open due to vibration of the vehicle. Improvement of vibration resistance is achieved by increasing the load of the spring. On the other hand, since the valve opening performance must be maintained even when the load of the spring is increased, it is essential to improve the thrust for opening the valve.
特許第4304877号公報Japanese Patent No. 4304877
 開弁の推力を向上させる方法として、磁気回路の断面積を増大する方法またはコイルのサイズを拡大する方法がある。しかし、これらの方法は、電磁弁の大型化および重量増加をもたらすという課題があった。 There are a method of increasing the cross-sectional area of the magnetic circuit and a method of increasing the size of the coil as a method for improving the thrust of the valve opening. However, these methods have a problem of increasing the size and weight of the solenoid valve.
 この発明は、上記のような課題を解決するためになされたもので、電磁弁を大型化および重量増加することなしに、開弁の推力を向上させることを目的とする。 The present invention has been made to solve the above-described problems, and it is an object of the present invention to improve the valve opening thrust without increasing the size and weight of the solenoid valve.
 この発明に係る電磁弁は、軸方向に往復移動するプランジャと、プランジャの軸方向の一方に位置する本体部、および当該本体部からプランジャ側へ突出した形状であってプランジャを収容可能な筒部を有するコアと、プランジャをコアの方向へ移動させる電磁力を発生させるコイルと、プランジャをコアとは反対の方向へ移動させるスプリングとを備え、筒部の内壁は、先端側の内径が大きく、本体部側の内径が小さいテーパ部を有するものである。 The solenoid valve according to the present invention includes a plunger that reciprocates in the axial direction, a main body portion positioned on one side of the plunger in the axial direction, and a cylindrical portion that protrudes from the main body portion toward the plunger side and can accommodate the plunger. A coil that generates electromagnetic force that moves the plunger in the direction of the core, and a spring that moves the plunger in the direction opposite to the core, and the inner wall of the cylindrical portion has a large inner diameter on the tip side, It has a tapered portion with a small inner diameter on the main body side.
 この発明によれば、コアの筒部の内壁に、先端側の内径が大きく、本体部側の内径が小さいテーパ部を設けるようにしたので、コアとプランジャとの間の径方向の磁束量が低減し、軸方向の磁束量が増大する。これにより、電磁弁を大型化および重量増加することなしに、開弁の推力を向上させることができる。 According to this invention, the inner wall of the cylindrical portion of the core is provided with the tapered portion having a large inner diameter on the front end side and a small inner diameter on the main body side, so that the amount of magnetic flux in the radial direction between the core and the plunger is reduced. And the amount of magnetic flux in the axial direction increases. As a result, the thrust of the valve opening can be improved without increasing the size and weight of the solenoid valve.
この発明の実施の形態1に係る電磁弁の構成例を示す断面図である。It is sectional drawing which shows the structural example of the solenoid valve which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る電磁弁を適用したターボチャージャ付きエンジンの構成例を示す図であり、アクセルオン時の状態を示す。It is a figure which shows the structural example of the engine with a turbocharger to which the solenoid valve which concerns on Embodiment 1 of this invention is applied, and shows the state at the time of accelerator on. この発明の実施の形態1に係る電磁弁を適用したターボチャージャ付きエンジンの構成例を示す図であり、アクセルオフ時の状態を示す。It is a figure which shows the structural example of the engine with a turbocharger to which the solenoid valve which concerns on Embodiment 1 of this invention is applied, and shows the state at the time of an accelerator-off. この発明の実施の形態1に係る電磁弁の動作方法を説明する図であり、全閉状態を示す。It is a figure explaining the operation | movement method of the solenoid valve which concerns on Embodiment 1 of this invention, and shows a fully closed state. この発明の実施の形態1に係る電磁弁の動作方法を説明する図であり、全開状態を示す。It is a figure explaining the operation | movement method of the solenoid valve which concerns on Embodiment 1 of this invention, and shows a full open state. この発明の実施の形態1に係る電磁弁の筒部とその周辺部の拡大図である。It is an enlarged view of the cylinder part of the solenoid valve which concerns on Embodiment 1 of this invention, and its peripheral part. この発明の実施の形態1に係る電磁弁の理解を助けるための参考例を示す図である。It is a figure which shows the reference example for helping the understanding of the solenoid valve which concerns on Embodiment 1 of this invention. 図8Aは、参考例に係る電磁弁のストロークと推力との関係性を説明する図であり、図8Bは、この発明の実施の形態1に係る電磁弁のストロークと推力との関係性を説明する図である。FIG. 8A is a diagram for explaining the relationship between the stroke and thrust of the solenoid valve according to the reference example, and FIG. 8B is for explaining the relationship between the stroke and thrust of the solenoid valve according to Embodiment 1 of the present invention. It is a figure to do. この発明の実施の形態2に係る電磁弁の筒部とその周辺部の拡大図である。It is an enlarged view of the cylinder part of the solenoid valve which concerns on Embodiment 2 of this invention, and its peripheral part. この発明の実施の形態3に係る電磁弁の筒部とその周辺部の拡大図である。It is an enlarged view of the cylinder part and its peripheral part of a solenoid valve concerning Embodiment 3 of this invention. この発明の実施の形態4に係る電磁弁の筒部とその周辺部の拡大図である。It is an enlarged view of the cylinder part and its peripheral part of a solenoid valve concerning Embodiment 4 of this invention. この発明の実施の形態4に係る電磁弁の変形例であり、筒部とその周辺部の拡大図である。It is a modification of the solenoid valve concerning Embodiment 4 of this invention, and is an enlarged view of a cylinder part and its peripheral part. この発明の実施の形態4に係る電磁弁の変形例であり、筒部とその周辺部の拡大図である。It is a modification of the solenoid valve concerning Embodiment 4 of this invention, and is an enlarged view of a cylinder part and its peripheral part.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、この発明の実施の形態1に係る電磁弁100の構成例を示す断面図である。ここでは、電磁弁100を車両に搭載する例を用いて実施の形態1を説明する。
 電磁弁100において、コアアッセンブリ(以下、「アッセンブリ」を「ASSY」と称する)1とコイルASSY2とが接合されている。コアASSY1は、磁性体であるコア3と磁性体であるヨーク4とが溶接により接合されてなる。コア3は、柱状の本体部30と、この本体部30から突出した筒状の筒部31とを有する。
Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing a configuration example of a solenoid valve 100 according to Embodiment 1 of the present invention. Here, Embodiment 1 will be described using an example in which electromagnetic valve 100 is mounted on a vehicle.
In the solenoid valve 100, a core assembly (hereinafter, "assembly" is referred to as "ASSY") 1 and a coil ASSY2 are joined. The core assembly 1 is formed by welding a core 3 that is a magnetic body and a yoke 4 that is a magnetic body by welding. The core 3 includes a columnar main body 30 and a cylindrical cylindrical portion 31 protruding from the main body 30.
 コイルASSY2は、ボビンASSY6、コイル7、ターミナル8、およびダイオード9を含む。樹脂と磁性体のプレート5とがインサート成形により一体化されてボビンASSY6が形成される。そのボビンASSY6にコイル7が巻かれる。その後、コイル7とターミナル8とがヒュージングにより接合され、ターミナル8にダイオード9が溶接される。 The coil ASSY 2 includes a bobbin ASSY 6, a coil 7, a terminal 8, and a diode 9. The resin and the magnetic plate 5 are integrated by insert molding to form the bobbin ASSY 6. A coil 7 is wound around the bobbin ASSY 6. Thereafter, the coil 7 and the terminal 8 are joined by fusing, and the diode 9 is welded to the terminal 8.
 ステータASSY11は、コアASSY1、コイルASSY2、およびブッシュ10がインサート成形により一体化されてなる。このステータASSY11におけるターミナル8周辺部は、車両側の電源に接続されるコネクタを形成している。非磁性体のパイプ12は、ステータASSY11のプレート5内部に挿入される。続いて、シールリング13がホルダ14に装着された後、そのホルダ14がステータASSY11のプレート5側に圧入される。 The stator ASSY 11 is formed by integrating the core ASSY 1, the coil ASSY 2, and the bush 10 by insert molding. The peripheral portion of the terminal 8 in the stator assembly 11 forms a connector connected to the power source on the vehicle side. The non-magnetic pipe 12 is inserted into the plate 5 of the stator assembly 11. Subsequently, after the seal ring 13 is mounted on the holder 14, the holder 14 is press-fitted into the plate 5 side of the stator ASSY 11.
 バルブASSY16は、プランジャ17、スプリング18、バルブ19、およびワッシャ20を含む。磁性体であるプランジャ17に対して、スプリング18、バルブ19およびワッシャ20がこの順に挿入され、コーキングにより保持される。その後、パイプ12にスプリング15が設置され、ステータASSY11にバルブASSY16が挿入される。最後に、ステータASSY11の溝にOリング21が装着される。 The valve assembly 16 includes a plunger 17, a spring 18, a valve 19, and a washer 20. A spring 18, a valve 19 and a washer 20 are inserted in this order into the plunger 17 which is a magnetic body, and held by caulking. Thereafter, a spring 15 is installed on the pipe 12 and a valve ASSY 16 is inserted into the stator ASSY 11. Finally, the O-ring 21 is mounted in the groove of the stator assembly 11.
 すべての部品の組み立てが完成した電磁弁100は、後述する図4および図5のように、ブッシュ10に通したネジ23によって、車両の配管に取り付けられる。また、Oリング21により、電磁弁100と、この電磁弁100が取り付く配管との隙間がふさがれ、配管の気密性が確保される。さらに、車両側の電源109のコネクタと、ステータASSY11のコネクタとが接続される。 When the assembly of all parts is completed, the solenoid valve 100 is attached to the piping of the vehicle by screws 23 passed through the bush 10 as shown in FIGS. Further, the O-ring 21 closes a gap between the solenoid valve 100 and the pipe to which the solenoid valve 100 is attached, and the air tightness of the pipe is ensured. Further, the connector of the power source 109 on the vehicle side and the connector of the stator ASSY 11 are connected.
 次に、図2および図3を参照して、実施の形態1に係る電磁弁100の使用例を説明する。この例では、電磁弁100が、電制式エアバイパスバルブとして使用される。
 図2および図3に示すターボチャージャ付きエンジンにおいて、ターボチャージャ101のコンプレッサ101aの上流側と下流側とを接続するエアバイパス通路108に、図1で示した電磁弁100が取り付けられる。
Next, with reference to FIG. 2 and FIG. 3, the usage example of the solenoid valve 100 which concerns on Embodiment 1 is demonstrated. In this example, the electromagnetic valve 100 is used as an electrically controlled air bypass valve.
In the turbocharged engine shown in FIGS. 2 and 3, the solenoid valve 100 shown in FIG. 1 is attached to the air bypass passage 108 connecting the upstream side and the downstream side of the compressor 101 a of the turbocharger 101.
 図2に示すアクセルオン時は、吸気通路103のスロットルバルブ104が開く。そのため、ターボチャージャ101のコンプレッサ101aで圧縮された空気(以下、過給気と称する)は、インタクーラ105を流れてエンジン102に運ばれる。この際、電磁弁100は閉弁されている。
 このコンプレッサ101aの同軸上にタービン101bが取り付けられている。エンジン102の排気ガスが排気通路106を流れてタービン101bを回転させることにより、コンプレッサ101aも回転する。また、排気通路106には、排気ガスの圧力を調整するウェイストゲートバルブ107が設置されている。
When the accelerator is on as shown in FIG. 2, the throttle valve 104 of the intake passage 103 is opened. Therefore, the air compressed by the compressor 101 a of the turbocharger 101 (hereinafter referred to as supercharged air) flows through the intercooler 105 and is carried to the engine 102. At this time, the electromagnetic valve 100 is closed.
A turbine 101b is mounted on the same axis as the compressor 101a. When the exhaust gas of the engine 102 flows through the exhaust passage 106 and rotates the turbine 101b, the compressor 101a also rotates. The exhaust passage 106 is provided with a waste gate valve 107 for adjusting the pressure of the exhaust gas.
 図3に示すアクセルオフ時は、スロットルバルブ104が閉じる。そのため、過給気が吸気通路103に溜まる。過給気が溜まると、吸気通路103の配管、ターボチャージャ101、およびエンジン102などが破損する可能性がある。したがって、アクセルオフ時には、破損を防ぐために、電磁弁100が開弁される。電磁弁100が開弁されると、エアバイパス通路108が開放されるので、過給気をコンプレッサ101aの下流側から上流側へ逃がすことができる。 When the accelerator shown in FIG. 3 is off, the throttle valve 104 is closed. Therefore, the supercharged air is accumulated in the intake passage 103. If the supercharged air is accumulated, the piping of the intake passage 103, the turbocharger 101, the engine 102, and the like may be damaged. Therefore, when the accelerator is off, the electromagnetic valve 100 is opened to prevent damage. When the solenoid valve 100 is opened, the air bypass passage 108 is opened, so that the supercharged air can be released from the downstream side to the upstream side of the compressor 101a.
 次に、図4および図5を参照して、実施の形態1に係る電磁弁100の動作方法を説明する。図4における電磁弁100は全閉状態であり、図5における電磁弁100は全開状態である。
 図4および図5に示すように、電磁弁100は、車両側のエアバイパス通路108の配管に、ネジ23によって取り付けられている。エアバイパス通路108の配管の一部は、弁座108aになっている。また、電磁弁100のターミナル8と車両側の電源109とが電気的に接続されている。
Next, an operation method of the solenoid valve 100 according to the first embodiment will be described with reference to FIGS. 4 and 5. The solenoid valve 100 in FIG. 4 is in a fully closed state, and the solenoid valve 100 in FIG. 5 is in a fully open state.
As shown in FIGS. 4 and 5, the electromagnetic valve 100 is attached to the piping of the air bypass passage 108 on the vehicle side by screws 23. A part of the piping of the air bypass passage 108 is a valve seat 108a. Further, the terminal 8 of the electromagnetic valve 100 and the power source 109 on the vehicle side are electrically connected.
 電源109がオフのとき、図4に示すように、電磁弁100は全閉状態になる。具体的には、バルブASSY16がスプリング15に付勢されてバルブ19が弁座108aに押し付けられた状態に保持され、エアバイパス通路108が閉鎖される。このとき、バルブASSY16のプランジャ17も、パイプ12に案内されながらコア3とは反対の方向へ移動する。過給気は、バルブ19のバルブ連通穴22を通ってバルブASSY16内部へ入り、シールリング13を押してバルブ19の外周面に当接させる。これによって、バルブ19とシールリング13との隙間が塞がれ、過給気の洩れが防止される。
 ちなみに、スプリング18は、プランジャ17とバルブ19のがたつきを防止するために、バルブ19をワッシャ20に押し付けた状態に保持するための部材である。また、ダイオード9は、電源109がオンからオフになるときに生じるサージ電圧をカットするものである。
When the power source 109 is off, the solenoid valve 100 is fully closed as shown in FIG. Specifically, the valve ASSY 16 is urged by the spring 15 and the valve 19 is kept pressed against the valve seat 108a, and the air bypass passage 108 is closed. At this time, the plunger 17 of the valve assembly 16 also moves in the direction opposite to the core 3 while being guided by the pipe 12. The supercharged air enters the valve assembly 16 through the valve communication hole 22 of the valve 19 and pushes the seal ring 13 to contact the outer peripheral surface of the valve 19. As a result, the gap between the valve 19 and the seal ring 13 is closed, and leakage of supercharged air is prevented.
Incidentally, the spring 18 is a member for holding the valve 19 in a pressed state against the washer 20 in order to prevent the plunger 17 and the valve 19 from rattling. The diode 9 cuts a surge voltage generated when the power source 109 is turned off.
 電源109がオンのとき、図5に示すように、電磁弁100は全開状態になる。具体的には、ターミナル8を通じてコイル7に電流が流れ、このコイル7とコア3とヨーク4とプレート5とが電磁石となり、電磁力が生じる。プランジャ17は、電磁力によりコア3側へ吸引され、筒部31に収容された状態となる。パイプ12に案内されながらプランジャ17がコア3側へ移動することで、このプランジャ17とともにバルブASSY16が作動し、バルブ19が弁座108aから離れ、過給気をコンプレッサ101aの上流側へ逃がす。
 このように、電磁弁100の開閉時、プランジャ17がその軸方向に往復移動する。
When the power source 109 is on, the solenoid valve 100 is fully opened as shown in FIG. Specifically, an electric current flows through the terminal 8 to the coil 7, and the coil 7, the core 3, the yoke 4, and the plate 5 serve as an electromagnet, and an electromagnetic force is generated. The plunger 17 is attracted to the core 3 side by electromagnetic force and is accommodated in the cylindrical portion 31. When the plunger 17 moves to the core 3 side while being guided by the pipe 12, the valve ASSY 16 is operated together with the plunger 17, the valve 19 is separated from the valve seat 108a, and the supercharged air is released to the upstream side of the compressor 101a.
Thus, when the electromagnetic valve 100 is opened and closed, the plunger 17 reciprocates in the axial direction.
 次に、図6を参照して、実施の形態1に係る電磁弁100のコア3を説明する。
 図6は、実施の形態1に係る電磁弁100の筒部31とその周辺部を拡大した図である。図6では、電磁弁100が中間開度にあるときのプランジャ17の位置を示す。中間開度は、後述する図8Aおよび図8Bに示すように、全閉と全開との間にある中間的な開度である。筒部31は、本体部30からプランジャ17側へ突出した形状であって、プランジャ17の少なくとも一部を収容可能な形状である。筒部31の内壁は、先端側において内径が一定の第一のストレート部32と、本体部30側において内径が一定の第二のストレート部33とを有する。第一のストレート部32の内径に比べて、第二のストレート部33の内径の方が小さい。さらに、第一のストレート部32と第二のストレート部33との間に、テーパ部34が設けられている。テーパ部34は、筒部31の先端側の内径が大きく、本体部30側に向かうにつれて内径が小さくなっていく。テーパ部34の最大の内径は、第一のストレート部32の内径と同一であり、テーパ部34の最小の内径は、第二のストレート部33の内径と同一である。
Next, the core 3 of the electromagnetic valve 100 according to Embodiment 1 will be described with reference to FIG.
FIG. 6 is an enlarged view of the cylindrical portion 31 and its peripheral portion of the electromagnetic valve 100 according to the first embodiment. FIG. 6 shows the position of the plunger 17 when the electromagnetic valve 100 is at the intermediate opening. The intermediate opening is an intermediate opening between the fully closed position and the fully opened position, as shown in FIGS. 8A and 8B described later. The cylindrical portion 31 has a shape that protrudes from the main body portion 30 toward the plunger 17 and can accommodate at least a part of the plunger 17. The inner wall of the cylindrical portion 31 includes a first straight portion 32 having a constant inner diameter on the distal end side and a second straight portion 33 having a constant inner diameter on the main body portion 30 side. The inner diameter of the second straight portion 33 is smaller than the inner diameter of the first straight portion 32. Further, a tapered portion 34 is provided between the first straight portion 32 and the second straight portion 33. The tapered portion 34 has a large inner diameter on the tip end side of the cylindrical portion 31, and the inner diameter becomes smaller toward the main body portion 30 side. The maximum inner diameter of the taper portion 34 is the same as the inner diameter of the first straight portion 32, and the minimum inner diameter of the taper portion 34 is the same as the inner diameter of the second straight portion 33.
 次に、実施の形態1に係る電磁弁100が奏する効果(1)~(5)を説明する。
 図7は、実施の形態1に係る電磁弁100の理解を助けるための参考例を示す図である。参考例では、筒部31の内壁すべてに、内径が一定のストレート部35が設けられており、テーパ部34は設けられていない。
Next, effects (1) to (5) produced by the electromagnetic valve 100 according to Embodiment 1 will be described.
FIG. 7 is a diagram illustrating a reference example for helping understanding of the electromagnetic valve 100 according to the first embodiment. In the reference example, the straight portion 35 having a constant inner diameter is provided on all the inner walls of the cylindrical portion 31, and the tapered portion 34 is not provided.
(1)推力向上
 図7に示す参考例の場合、筒部31のストレート部35とプランジャ17との間隔が軸方向に沿って一定になっているため、径方向の磁束量が増大し、軸方向の磁束量が低減してしまう。軸方向の磁束量とは、厳密に軸方向を向いた磁束だけでなく、径方向よりも軸方向寄りの磁束も含むこととする。図では磁束の方向を矢印で示す。この矢印が太いほど磁束量が多く、矢印が細いほど磁束量が少ない。
 一方、図6に示す実施の形態1の場合、プランジャ17からテーパ部34に向かう、径方向よりも軸方向寄りの磁束が存在する。そのため、軸方向の磁束量が増大し、その分径方向の磁束量が低減する。軸方向の磁束量が増大することにより、プランジャ17をコア3側へ移動させる推力が向上する。
(1) Thrust improvement In the case of the reference example shown in FIG. 7, the distance between the straight portion 35 of the cylindrical portion 31 and the plunger 17 is constant along the axial direction. The amount of magnetic flux in the direction is reduced. The amount of magnetic flux in the axial direction includes not only magnetic flux strictly in the axial direction but also magnetic flux closer to the axial direction than in the radial direction. In the figure, the direction of the magnetic flux is indicated by an arrow. The thicker the arrow, the greater the amount of magnetic flux, and the thinner the arrow, the smaller the amount of magnetic flux.
On the other hand, in the case of the first embodiment shown in FIG. 6, there is a magnetic flux that is closer to the axial direction than the radial direction from the plunger 17 toward the tapered portion 34. Therefore, the amount of magnetic flux in the axial direction is increased, and the amount of magnetic flux in the radial direction is reduced. By increasing the amount of magnetic flux in the axial direction, the thrust for moving the plunger 17 toward the core 3 is improved.
 なお、図6では、テーパ部34を設ける位置を、電磁弁100の中間開度の範囲としているため、特に中間開度での推力が向上する。
 また、図6では、電磁弁100が全閉状態のときのプランジャ17に近い位置に、第一のストレート部32が設けられている。この構成の場合は、第一のストレート部32を設けずにテーパ部34をそのまま筒部31の先端まで設けた場合に比べて、全閉状態でのプランジャ17と筒部31との距離が近い。そのため、プランジャ17が開弁方向に移動を開始するときの推力が向上し、プランジャ17の初動がスムーズになる。
 その後、プランジャ17が本体部30側へ移動していき、プランジャ17と本体部30との距離が近づくと、軸方向の磁束量が増大する。そのため、筒部31の内壁における本体部30側にはテーパ部34が設けられていなくてもよく、第二のストレート部33になっている。
In FIG. 6, the position where the tapered portion 34 is provided is within the range of the intermediate opening of the solenoid valve 100, so that the thrust at the intermediate opening is particularly improved.
Moreover, in FIG. 6, the 1st straight part 32 is provided in the position near the plunger 17 when the solenoid valve 100 is a fully closed state. In the case of this configuration, the distance between the plunger 17 and the cylindrical portion 31 in the fully closed state is shorter than in the case where the tapered portion 34 is provided as it is to the tip of the cylindrical portion 31 without providing the first straight portion 32. . Therefore, the thrust when the plunger 17 starts moving in the valve opening direction is improved, and the initial movement of the plunger 17 becomes smooth.
Thereafter, when the plunger 17 moves toward the main body 30 and the distance between the plunger 17 and the main body 30 approaches, the amount of magnetic flux in the axial direction increases. Therefore, the taper part 34 does not need to be provided on the inner wall side of the cylindrical part 31 on the main body part 30 side, and the second straight part 33 is formed.
(2)耐振性向上
 電磁弁100は、スプリング15の荷重により閉弁状態を維持している。上述したように開弁の推力が向上することで、スプリング15の荷重を大きくすることが可能となる。すなわち、電磁弁100の耐振性が向上する。
(2) Improving vibration resistance The solenoid valve 100 maintains a closed state by the load of the spring 15. As described above, when the valve opening thrust is improved, the load of the spring 15 can be increased. That is, the vibration resistance of the solenoid valve 100 is improved.
(3)応答性向上
 図8Aは、図7に示した参考例に係る電磁弁100のストロークと推力との関係性を説明する図である。図8Bは、この発明の実施の形態1に係る電磁弁100のストロークと推力との関係性を説明する図である。また、図8Aおよび図8Bには、スプリング15の荷重も示す。
 図8Aに示すように、参考例に係る電磁弁100は、中間開度において推力が落ち込むストローク位置が存在していた。図8Aの丸枠は、推力が落ち込むストローク位置を示す。このストローク位置では、推力とスプリング15の荷重との差が小さいため、電磁弁100の応答性が悪化してしまう。応答性とは、電磁弁100が全閉状態から全開状態になるまでに要する時間で表される性能である。
 これに対し、図8Bに示すように、実施の形態1に係る電磁弁100は、上述したように開弁の推力が向上することで、中間開度における推力の落ち込みが改善される。推力の落ち込みが改善されたことにより、推力とスプリング15の荷重との差が増大し、応答性が向上する。
(3) Response improvement FIG. 8A is a diagram illustrating the relationship between the stroke and the thrust of the solenoid valve 100 according to the reference example illustrated in FIG. 7. FIG. 8B is a view for explaining the relationship between the stroke and the thrust of the solenoid valve 100 according to Embodiment 1 of the present invention. 8A and 8B also show the load of the spring 15.
As shown in FIG. 8A, the solenoid valve 100 according to the reference example has a stroke position where the thrust drops at the intermediate opening. The round frame in FIG. 8A indicates the stroke position where the thrust drops. At this stroke position, since the difference between the thrust and the load of the spring 15 is small, the responsiveness of the solenoid valve 100 is deteriorated. Responsiveness is the performance represented by the time required for the solenoid valve 100 to change from the fully closed state to the fully open state.
On the other hand, as shown in FIG. 8B, the solenoid valve 100 according to Embodiment 1 improves the drop in thrust at the intermediate opening by improving the valve opening thrust as described above. By improving the drop of the thrust, the difference between the thrust and the load of the spring 15 is increased, and the responsiveness is improved.
(4)レイアウト性維持
 従来は、開弁の推力を向上させるために、ヨーク4等の磁気回路の断面積を増大する方法、またはコイル7のサイズを拡大する方法があった。これらの方法は、電磁弁100の大型化および重量増加をもたらす。さらには、電磁弁100を車両に搭載する際のレイアウト性が悪化する。
 これに対し、実施の形態1に係る電磁弁100は、コア3の形状を変更するだけでよい。電磁弁100が大型化せず重量も増加しないので、レイアウト性を維持できる。
(4) Maintenance of layout In the past, there has been a method of increasing the sectional area of a magnetic circuit such as the yoke 4 or a method of increasing the size of the coil 7 in order to improve the thrust for valve opening. These methods lead to an increase in size and weight of the solenoid valve 100. Furthermore, the layout property when the electromagnetic valve 100 is mounted on a vehicle is deteriorated.
On the other hand, the solenoid valve 100 according to Embodiment 1 only needs to change the shape of the core 3. Since the solenoid valve 100 does not increase in size and does not increase in weight, the layout can be maintained.
(5)コストアップ防止
 上記(4)のようにヨーク4等の磁気回路の断面積を増大する、またはコイル7のサイズを拡大すると、電磁弁100のコストアップをもたらす。
 これに対し、実施の形態1に係る電磁弁100は、コア3の形状を変更するだけでよいので、コストアップを防止できる。
(5) Prevention of cost increase When the cross-sectional area of the magnetic circuit such as the yoke 4 is increased or the size of the coil 7 is increased as in (4) above, the cost of the solenoid valve 100 is increased.
On the other hand, since the solenoid valve 100 according to Embodiment 1 only needs to change the shape of the core 3, it is possible to prevent an increase in cost.
 以上のように、実施の形態1に係る電磁弁100は、軸方向に往復移動するプランジャ17と、プランジャ17の軸方向の一方に位置する本体部30および当該本体部30からプランジャ17側へ突出した形状であってプランジャ17を収容可能な筒部31を有するコア3と、プランジャ17をコア3の方向へ移動させる電磁力を発生させるコイル7と、プランジャ17をコア3とは反対の方向へ移動させるスプリング15とを備え、筒部31の内壁は、先端側の内径が大きく、本体部30側の内径が小さいテーパ部34を有する構成である。この構成により、コア3とプランジャ17との間の径方向の磁束量が低減し、軸方向の磁束量が増大する。よって、電磁弁100を大型化および重量増加することなしに、開弁の推力を向上させることができる。
 特に、実施の形態1に係る筒部31の内壁は、先端側において内径が一定の第一のストレート部32と、本体部30側において内径が一定の第二のストレート部33とを有し、第一のストレート部32の内径に比べて第二のストレート部33の内径の方が小さく、第一のストレート部32と第二のストレート部33との間にテーパ部34が設けられている構成である。この構成により、中間開度における開弁の推力を向上させることができる。
As described above, the solenoid valve 100 according to Embodiment 1 includes the plunger 17 that reciprocates in the axial direction, the main body 30 that is positioned on one side of the plunger 17 in the axial direction, and the main body 30 that protrudes toward the plunger 17. The core 3 having a cylindrical portion 31 that can accommodate the plunger 17, the coil 7 that generates an electromagnetic force that moves the plunger 17 in the direction of the core 3, and the plunger 17 in the direction opposite to the core 3. The inner wall of the cylindrical portion 31 has a tapered portion 34 having a large inner diameter on the distal end side and a smaller inner diameter on the main body portion 30 side. With this configuration, the amount of magnetic flux in the radial direction between the core 3 and the plunger 17 is reduced, and the amount of magnetic flux in the axial direction is increased. Therefore, the valve opening thrust can be improved without increasing the size and weight of the solenoid valve 100.
In particular, the inner wall of the cylindrical portion 31 according to the first embodiment has a first straight portion 32 having a constant inner diameter on the distal end side and a second straight portion 33 having a constant inner diameter on the main body portion 30 side, A configuration in which the inner diameter of the second straight portion 33 is smaller than the inner diameter of the first straight portion 32, and a tapered portion 34 is provided between the first straight portion 32 and the second straight portion 33. It is. With this configuration, it is possible to improve the valve opening thrust at the intermediate opening.
 なお、図6では、第一のストレート部32および第二のストレート部33を設けた構成を示したが、この構成に限定されるものではなく、いずれか一方のみを設けた構成であってもよい。
 筒部31の内壁の先端側に、内径が一定の第一のストレート部32を設けた場合、テーパ部34は、第一のストレート部32から本体部30側へ向かうにつれて内径が小さくなる。この場合、テーパ部34は、第一のストレート部32の端部から本体部30に達するまで続く。
 あるいは、筒部31の内壁の本体部30側に、内径が一定の第二のストレート部33を設けた場合、テーパ部34は、第二のストレート部33から先端側へ向かうにつれて内径が大きくなる。この場合、テーパ部34は、第二のストレート部33の端部から筒部31の先端に達するまで続く。
 このように、筒部31の内壁に第一のストレート部32または第二のストレート部33のいずれか一方を設け、内壁の残り部分にテーパ部34を設けた場合にも、上述のように開弁の推力を向上させることができる。
In addition, although the structure which provided the 1st straight part 32 and the 2nd straight part 33 was shown in FIG. 6, it is not limited to this structure, Even if it is the structure which provided only any one Good.
When the first straight portion 32 having a constant inner diameter is provided on the distal end side of the inner wall of the cylindrical portion 31, the tapered portion 34 has an inner diameter that decreases from the first straight portion 32 toward the main body portion 30. In this case, the tapered portion 34 continues from the end portion of the first straight portion 32 until it reaches the main body portion 30.
Or when the 2nd straight part 33 with a constant internal diameter is provided in the main body part 30 side of the inner wall of the cylinder part 31, the internal diameter becomes large as the taper part 34 goes to the front end side from the 2nd straight part 33. . In this case, the tapered portion 34 continues from the end of the second straight portion 33 until it reaches the tip of the cylindrical portion 31.
As described above, when either the first straight portion 32 or the second straight portion 33 is provided on the inner wall of the cylindrical portion 31 and the tapered portion 34 is provided on the remaining portion of the inner wall, the opening is made as described above. The thrust of the valve can be improved.
実施の形態2.
 図9は、この発明の実施の形態2に係る電磁弁100の筒部31とその周辺部を拡大した図である。図9において、実施の形態1の図1~図8と同一または相当する部分は、同一の符号を付し説明を省略する。
 図9に示すように、実施の形態2では、筒部31の内壁すべてがテーパ部34になっている。この構成により、実施の形態1と同様に、(1)~(5)の効果を得ることができる。
Embodiment 2. FIG.
FIG. 9 is an enlarged view of the cylindrical portion 31 and its peripheral portion of the solenoid valve 100 according to Embodiment 2 of the present invention. 9, parts that are the same as or equivalent to those in FIGS. 1 to 8 of the first embodiment are given the same reference numerals, and descriptions thereof are omitted.
As shown in FIG. 9, in the second embodiment, the entire inner wall of the cylindrical portion 31 is a tapered portion 34. With this configuration, the effects (1) to (5) can be obtained as in the first embodiment.
実施の形態3.
 図10は、この発明の実施の形態3に係る電磁弁100の筒部31とその周辺部を拡大した図である。図10において、実施の形態1の図1~図8と同一または相当する部分は、同一の符号を付し説明を省略する。
 図10に示すように、実施の形態3では、筒部31の内壁に複数のテーパ部34が設けられている。この例では、第一のストレート部32と第二のストレート部33との間に、5つのテーパ部34a,34b,34c,34d,34eが設けられている。各テーパ部34a,34b,34c,34d,34eは、本体部30側が最小の内径であり、筒部31の先端側が最大の内径である。図10のように筒部31の内壁をプランジャ17の径方向から見た場合に、5つのテーパ部34a,34b,34c,34d,34eが鋸刃状になる。テーパ部の数は、任意でよい。また、各テーパ部のテーパ角度が同一であってもよいし、テーパ部ごとにテーパ角度が異なっていてもよい。さらに、第一のストレート部32または第二のストレート部33のいずれか一方のみが設けられていてもよいし、第一のストレート部32および第二のストレート部33が無くてもよい。
 この構成により、実施の形態1と同様に、(1)~(5)の効果を得ることができる。
Embodiment 3 FIG.
FIG. 10 is an enlarged view of the cylindrical portion 31 and its peripheral portion of the solenoid valve 100 according to Embodiment 3 of the present invention. 10, parts that are the same as or equivalent to those in FIGS. 1 to 8 of the first embodiment are given the same reference numerals, and descriptions thereof are omitted.
As shown in FIG. 10, in the third embodiment, a plurality of tapered portions 34 are provided on the inner wall of the cylindrical portion 31. In this example, five taper portions 34 a, 34 b, 34 c, 34 d, 34 e are provided between the first straight portion 32 and the second straight portion 33. Each of the tapered portions 34a, 34b, 34c, 34d, and 34e has a minimum inner diameter on the main body portion 30 side, and a maximum inner diameter on the distal end side of the cylindrical portion 31. When the inner wall of the cylindrical portion 31 is viewed from the radial direction of the plunger 17 as shown in FIG. 10, the five tapered portions 34 a, 34 b, 34 c, 34 d, 34 e have a saw blade shape. The number of taper portions may be arbitrary. Moreover, the taper angle of each taper part may be the same, and a taper angle may differ for every taper part. Furthermore, only one of the first straight portion 32 and the second straight portion 33 may be provided, or the first straight portion 32 and the second straight portion 33 may not be provided.
With this configuration, the effects (1) to (5) can be obtained as in the first embodiment.
実施の形態4.
 図11は、この発明の実施の形態4に係る電磁弁100の筒部31とその周辺部を拡大した図である。図11において、実施の形態1の図1~図8と同一または相当する部分は、同一の符号を付し説明を省略する。
 図11に示すように、実施の形態4では、プランジャ17の外壁に、コア3側に向かって先細りするテーパ部40が設けられている。このテーパ部40は、「第二のテーパ部」である。この例では、プランジャ17の外壁のうち、コア3側の端部にテーパ部40が設けられており、外壁の残り部分には外径が一定の第三のストレート部41が設けられている。従来、プランジャ17の端部の角を面取りしてC面等を設ける場合があるが、テーパ部40はC面よりも大きいものとする。プランジャ17の外壁すべてにテーパ部40が設けられていてもよい。
 実施の形態1~3のようにコア3にテーパ部34を設ける代わりに、実施の形態4のようにプランジャ17にテーパ部40を設けた場合にも、実施の形態1で述べた(1)~(5)の効果を得ることができる。
 図示は省略するが、コア3にテーパ部34を設け、かつ、プランジャ17にテーパ部40を設けてもよい。この場合にも、実施の形態1で述べた(1)~(5)の効果を得ることができる。
Embodiment 4 FIG.
FIG. 11 is an enlarged view of the cylindrical portion 31 and its peripheral portion of the solenoid valve 100 according to Embodiment 4 of the present invention. In FIG. 11, parts that are the same as or correspond to those in FIGS. 1 to 8 of the first embodiment are given the same reference numerals, and descriptions thereof are omitted.
As shown in FIG. 11, in the fourth embodiment, the outer wall of the plunger 17 is provided with a tapered portion 40 that tapers toward the core 3 side. The tapered portion 40 is a “second tapered portion”. In this example, the taper part 40 is provided in the edge part by the side of the core 3 among the outer walls of the plunger 17, and the 3rd straight part 41 with a constant outer diameter is provided in the remaining part of the outer wall. Conventionally, a corner of the end of the plunger 17 may be chamfered to provide a C surface or the like, but the tapered portion 40 is larger than the C surface. The tapered portion 40 may be provided on all the outer walls of the plunger 17.
Instead of providing the taper portion 34 in the core 3 as in the first to third embodiments, the case where the taper portion 40 is provided in the plunger 17 as in the fourth embodiment is also described in the first embodiment (1). The effects (5) to (5) can be obtained.
Although illustration is omitted, the taper portion 34 may be provided on the core 3 and the taper portion 40 may be provided on the plunger 17. Also in this case, the effects (1) to (5) described in the first embodiment can be obtained.
 ここで、プランジャ17のテーパ部40について、変形例を説明する。
 図12および図13は、この発明の実施の形態4に係る電磁弁100の変形例であり、筒部31とその周辺部を拡大した図である。図12および図13において、実施の形態1の図1~図8と同一または相当する部分は、同一の符号を付し説明を省略する。
 図12の変形例において、プランジャ17の外壁には、コア3側おいて外径が一定の第四のストレート部42が設けられている。第四のストレート部42の外径は、第三のストレート部41の外径に比べて小さい。さらに、第三のストレート部41と第四のストレート部42との間に、テーパ部40が設けられている。
 この場合にも、実施の形態1で述べた(1)~(5)の効果を得ることができる。また、テーパ部40を設ける位置を、電磁弁100の中間開度の範囲とすることで、特に中間開度での推力が向上する。
Here, a modified example of the tapered portion 40 of the plunger 17 will be described.
12 and 13 are modifications of the solenoid valve 100 according to Embodiment 4 of the present invention, and are enlarged views of the cylindrical portion 31 and its peripheral portion. 12 and 13, the same or corresponding parts as those in FIGS. 1 to 8 of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
In the modification of FIG. 12, a fourth straight portion 42 having a constant outer diameter is provided on the outer wall of the plunger 17 on the core 3 side. The outer diameter of the fourth straight portion 42 is smaller than the outer diameter of the third straight portion 41. Further, a tapered portion 40 is provided between the third straight portion 41 and the fourth straight portion 42.
Also in this case, the effects (1) to (5) described in the first embodiment can be obtained. In addition, by setting the position where the tapered portion 40 is provided within the range of the intermediate opening of the solenoid valve 100, the thrust at the intermediate opening is improved.
 図13の変形例において、テーパ部40の外壁には、複数のテーパ部40a,40b,40cが設けられている。テーパ部の数は任意でよい。また、各テーパ部の角度が同一であってもよいし、テーパ部ごとにテーパ角度が異なっていてもよい。さらに、テーパ部40aのコア3側に、第四のストレート部42が設けられていてもよい。
 この場合にも、実施の形態1で述べた(1)~(5)の効果を得ることができる。
In the modification of FIG. 13, a plurality of taper portions 40 a, 40 b, and 40 c are provided on the outer wall of the taper portion 40. The number of taper portions may be arbitrary. Moreover, the angle of each taper part may be the same, and a taper angle may differ for every taper part. Furthermore, the 4th straight part 42 may be provided in the core 3 side of the taper part 40a.
Also in this case, the effects (1) to (5) described in the first embodiment can be obtained.
 実施の形態1~4において、筒部31の外壁には、本体部30側から先端側に向かうにつれて先細りするテーパ部が設けられているが、これに限定されるものではなく、筒部31の外壁の形状は任意でよい、 In the first to fourth embodiments, the outer wall of the cylindrical portion 31 is provided with a tapered portion that tapers from the main body portion 30 side toward the distal end side. However, the present invention is not limited to this. The shape of the outer wall may be arbitrary,
 なお、本発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、各実施の形態の任意の構成要素の変形、または各実施の形態の任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, free combinations of the respective embodiments, modification of arbitrary components of the respective embodiments, or omission of arbitrary components of the respective embodiments are possible.
 この発明に係る電磁弁は、開弁の推力を向上させることによって、スプリング荷重を大きくし耐振性を向上させることが可能であるため、車両に搭載されるエアバイパスバルブおよびオイルコントロールバルブなどの耐振性が要求される電磁弁に用いるのに適している。 Since the solenoid valve according to the present invention can increase the spring load and improve the vibration resistance by improving the thrust of the valve opening, the vibration resistance of an air bypass valve and an oil control valve mounted on the vehicle can be improved. Suitable for use in solenoid valves that require high performance.
 1 コアASSY、2 コイルASSY、3 コア、4 ヨーク、5 プレート、6 ボビンASSY、7 コイル、8 ターミナル、9 ダイオード、10 ブッシュ、11 ステータASSY、12 パイプ、13 シールリング、14 ホルダ、15 スプリング、16 バルブASSY、17 プランジャ、18 スプリング、19 バルブ、20 ワッシャ、21 Oリング、22 バルブ連通穴、23 ネジ、30 本体部、31 筒部、32 第一のストレート部、33 第二のストレート部、34,34a~34e,40,40a~40c テーパ部、35 ストレート部、41 第三のストレート部、42 第四のストレート部、100 電磁弁、101 ターボチャージャ、101a コンプレッサ、101b タービン、102 エンジン、103 吸気通路、104 スロットルバルブ、105 インタクーラ、106 排気通路、107 ウェイストゲートバルブ、108 エアバイパス通路、108a 弁座、109 電源。 1 core ASSY, 2 coil ASSY, 3 core, 4 yoke, 5 plate, 6 bobbin ASSY, 7 coil, 8 terminal, 9 diode, 10 bush, 11 stator ASSY, 12 pipe, 13 seal ring, 14 holder, 15 spring, 16 Valve ASSY, 17 Plunger, 18 Spring, 19 Valve, 20 Washer, 21 O-ring, 22 Valve communication hole, 23 Screw, 30 Body part, 31 Tube part, 32 First straight part, 33 Second straight part, 34, 34a to 34e, 40, 40a to 40c, taper portion, 35 straight portion, 41 third straight portion, 42 fourth straight portion, 100 solenoid valve, 101 turbocharger, 101a compressor, 101b tar Down, 102 engine, 103 an intake passage, 104 a throttle valve, 105 intercooler, 106 exhaust passage 107 waste gate valve, 108 an air bypass passage, 108a valve seat, 109 power supply.

Claims (8)

  1.  軸方向に往復移動するプランジャと、
     前記プランジャの前記軸方向の一方に位置する本体部、および当該本体部から前記プランジャ側へ突出した形状であって前記プランジャを収容可能な筒部を有するコアと、
     前記プランジャを前記コアの方向へ移動させる電磁力を発生させるコイルと、
     前記プランジャを前記コアとは反対の方向へ移動させるスプリングとを備え、
     前記筒部の内壁は、先端側の内径が大きく、前記本体部側の内径が小さいテーパ部を有することを特徴とする電磁弁。
    A plunger that reciprocates in the axial direction;
    A main body portion located on one side of the axial direction of the plunger, and a core having a cylindrical portion capable of accommodating the plunger in a shape protruding from the main body portion toward the plunger side;
    A coil for generating an electromagnetic force for moving the plunger toward the core;
    A spring that moves the plunger in a direction opposite to the core;
    The solenoid valve according to claim 1, wherein the inner wall of the cylindrical portion has a tapered portion having a large inner diameter on the tip side and a small inner diameter on the main body side.
  2.  前記筒部の内壁は、前記先端側において内径が一定の第一のストレート部と、前記本体部側において内径が一定の第二のストレート部とを有し、前記第一のストレート部の内径に比べて前記第二のストレート部の内径の方が小さく、前記第一のストレート部と前記第二のストレート部との間に前記テーパ部が設けられていることを特徴とする請求項1記載の電磁弁。 The inner wall of the cylindrical portion has a first straight portion having a constant inner diameter on the tip side and a second straight portion having a constant inner diameter on the main body portion side, and has an inner diameter of the first straight portion. The inner diameter of the second straight portion is smaller than that of the first straight portion, and the tapered portion is provided between the first straight portion and the second straight portion. solenoid valve.
  3.  前記筒部の内壁は、前記先端側において内径が一定の第一のストレート部を有し、前記テーパ部は、前記第一のストレート部から前記本体部側へ向かうにつれて内径が小さくなることを特徴とする請求項1記載の電磁弁。 The inner wall of the cylindrical portion has a first straight portion having a constant inner diameter on the tip side, and the tapered portion has an inner diameter that decreases from the first straight portion toward the main body portion. The solenoid valve according to claim 1.
  4.  前記筒部の内壁は、前記本体部側において内径が一定の第二のストレート部を有し、前記テーパ部は、前記第二のストレート部から前記先端側へ向かうにつれて内径が大きくなることを特徴とする請求項1記載の電磁弁。 The inner wall of the cylindrical portion has a second straight portion having a constant inner diameter on the main body portion side, and the tapered portion has an inner diameter that increases from the second straight portion toward the distal end side. The solenoid valve according to claim 1.
  5.  前記筒部の内壁は、前記テーパ部を複数有することを特徴とする請求項1記載の電磁弁。 The solenoid valve according to claim 1, wherein an inner wall of the cylindrical portion has a plurality of the tapered portions.
  6.  前記プランジャの外壁は、前記コア側に向かって先細りする第二のテーパ部を有することを特徴とする請求項1記載の電磁弁。 The solenoid valve according to claim 1, wherein the outer wall of the plunger has a second taper portion that tapers toward the core side.
  7.  ターボチャージャのコンプレッサの上流側と下流側とを接続するエアバイパス通路に設置され、前記コンプレッサの下流側の過給気を上流側に戻すエアバイパスバルブとして用いられることを特徴とする請求項1記載の電磁弁。 The turbocharger is installed in an air bypass passage connecting the upstream side and the downstream side of the compressor, and is used as an air bypass valve for returning the supercharged air on the downstream side of the compressor to the upstream side. Solenoid valve.
  8.  軸方向に往復移動するプランジャと、
     前記プランジャの前記軸方向の一方に位置する本体部、および当該本体部から前記プランジャ側へ突出した形状であって前記プランジャを収容可能な筒部を有するコアと、
     前記プランジャを前記コアの方向へ移動させる電磁力を発生させるコイルと、
     前記プランジャを前記コアとは反対の方向へ移動させるスプリングとを備え、
     前記プランジャの外壁は、前記コア側に向かって先細りするテーパ部を有することを特徴とする電磁弁。
    A plunger that reciprocates in the axial direction;
    A main body portion located on one side of the axial direction of the plunger, and a core having a cylindrical portion capable of accommodating the plunger in a shape protruding from the main body portion toward the plunger side;
    A coil for generating an electromagnetic force for moving the plunger toward the core;
    A spring that moves the plunger in a direction opposite to the core;
    The solenoid valve according to claim 1, wherein an outer wall of the plunger has a tapered portion that tapers toward the core side.
PCT/JP2016/089101 2016-12-28 2016-12-28 Electromagnetic valve WO2018123020A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/089101 WO2018123020A1 (en) 2016-12-28 2016-12-28 Electromagnetic valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/089101 WO2018123020A1 (en) 2016-12-28 2016-12-28 Electromagnetic valve

Publications (1)

Publication Number Publication Date
WO2018123020A1 true WO2018123020A1 (en) 2018-07-05

Family

ID=62707146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/089101 WO2018123020A1 (en) 2016-12-28 2016-12-28 Electromagnetic valve

Country Status (1)

Country Link
WO (1) WO2018123020A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0276206A (en) * 1988-09-12 1990-03-15 Mic Kogyo Kk Plunger-type electromagnet iron core
JP2001304447A (en) * 2000-04-25 2001-10-31 Aisin Seiki Co Ltd Electromagnetic actuator device
WO2014068765A1 (en) * 2012-11-02 2014-05-08 三菱電機株式会社 Valve
JP2016033394A (en) * 2014-07-31 2016-03-10 株式会社鷺宮製作所 solenoid valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0276206A (en) * 1988-09-12 1990-03-15 Mic Kogyo Kk Plunger-type electromagnet iron core
JP2001304447A (en) * 2000-04-25 2001-10-31 Aisin Seiki Co Ltd Electromagnetic actuator device
WO2014068765A1 (en) * 2012-11-02 2014-05-08 三菱電機株式会社 Valve
JP2016033394A (en) * 2014-07-31 2016-03-10 株式会社鷺宮製作所 solenoid valve

Similar Documents

Publication Publication Date Title
US10352471B2 (en) Solenoid valve
JP5710081B2 (en) valve
US8456262B2 (en) Electromagnetic solenoid
US20100288954A1 (en) Lift Lock Assembly Feature For Air Bypass Valve
WO2014068765A1 (en) Valve
WO2009084131A1 (en) Valve device
JP2021527187A (en) Blow-off valve with dual shaft internal seal ring
US20210278008A1 (en) Solenoid
US9068542B2 (en) Fuel injector
US10253739B2 (en) Fuel injection valve for an internal combustion engine
US11346307B2 (en) Fluid injector and needle for a fluid injector
US20170016417A1 (en) Fuel injection device
JP6207801B2 (en) solenoid valve
WO2018123020A1 (en) Electromagnetic valve
WO2017216957A1 (en) Air bypass valve
US9057446B2 (en) Pressure control apparatus
JP2004150441A (en) Additional control valve device arranged at suction passage of piston type internal combustion engine
US6786467B2 (en) Longer stroke control valve and actuator
CN114645804A (en) Gas injector for injecting gaseous fuel
KR102200067B1 (en) Solenoid device for vehicle
JP2005282564A (en) Fuel injection valve
WO2021201028A1 (en) Fuel injection valve
US11885430B2 (en) Electromechanical valve and method of assembly
US20200208753A1 (en) Tubular armature for a solenoid valve
WO2020129236A1 (en) Electromagnetic valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16924970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP