WO2018122718A1 - Knitted non-woven textile with expanded microspheres and method for the production thereof - Google Patents

Knitted non-woven textile with expanded microspheres and method for the production thereof Download PDF

Info

Publication number
WO2018122718A1
WO2018122718A1 PCT/IB2017/058370 IB2017058370W WO2018122718A1 WO 2018122718 A1 WO2018122718 A1 WO 2018122718A1 IB 2017058370 W IB2017058370 W IB 2017058370W WO 2018122718 A1 WO2018122718 A1 WO 2018122718A1
Authority
WO
WIPO (PCT)
Prior art keywords
knitted
nonwoven fabric
textile
nonwoven
fibers
Prior art date
Application number
PCT/IB2017/058370
Other languages
Spanish (es)
French (fr)
Inventor
Enrique Alejandro MORENO MUÑETONES
Original Assignee
Moreno Munetones Enrique Alejandro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moreno Munetones Enrique Alejandro filed Critical Moreno Munetones Enrique Alejandro
Publication of WO2018122718A1 publication Critical patent/WO2018122718A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/02Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising combinations of reinforcements, e.g. non-specified reinforcements, fibrous reinforcing inserts and fillers, e.g. particulate fillers, incorporated in matrix material, forming one or more layers and with or without non-reinforced or non-filled layers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/14Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/14Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes
    • D04B21/16Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes incorporating synthetic threads
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/002Inorganic yarns or filaments
    • D04H3/004Glass yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating

Definitions

  • the present invention pertains to the field of laminated composite materials, specifically that of core or reinforcing materials with expandable microspheres. Description of the state of the art
  • the prior art discloses core or reinforcement materials such as those disclosed in US4818583 and US6607997B1.
  • Document US4818583 discloses a nonwoven fibrous network with microspheres which are similarly arranged in "islands", separated from each other by channels containing less than 5% by volume of microspheres.
  • the document discloses that the non-woven fibrous web can have holes of approximately 1.5mm apart from each other between 5mm and 15mm.
  • the document discloses a punctured fibrous network (needle punched, in English) between 2.5mm and 4.2mm thick.
  • the fibrous web is made up of 85% by weight of 5.0Tex / 50mm polyester fibers and 15% of meltable fibers.
  • a foamed composition is applied to the punched web.
  • the fibrous network can be impregnated with a foam binder.
  • document US6607997B 1 discloses a core material for use in the production of fiber reinforced plastic materials, particularly for application in closed mold systems.
  • the document discloses a core type material with expandable microspheres arranged in the laminar element with spongy structure.
  • the sheet element has at least 20% by weight of fibers and up to 80% by weight of binder material and expandable microspheres.
  • the sheet element can be formed of glass fibers, polyester, polyester-polyethylene bi-components, and combinations thereof.
  • the binder may include acidic groups, carboxylating agents, water, surfactants, stabilizers, fillers and thickeners.
  • the core or reinforcing materials disclosed in the previous documents provide a greater thickness and therefore a greater moment of inertia of the final laminates, said materials do not provide mechanical properties that increase the tensile, flexural and compression resistance of the final product. .
  • Another disadvantage of these developments is in the manufacture of products with curved regions, as their fibers break when bent, for this reason it is difficult to produce cylindrical, spherical or narrow curved parts.
  • FIG. l corresponds to a detailed view of a modality of knitted nonwoven textile.
  • FIG. 2 corresponds to a modality of an expandable sphere before and after the expansion.
  • FIG. 3 corresponds to a plate of laminated material with layers of a knitted non-woven textile pattern oriented quasi-isotopically.
  • FIG. 4 represents a cross-section of a pipe constructed with a knitted nonwoven fabric embodiment.
  • FIG. 5 illustrates the process of manufacturing a pipe with a modality of knitted nonwoven textile.
  • FIG. 6 is a schematic of a method by which a nonwoven textile is manufactured.
  • FIG. 7 is a schematic of an embodiment of the method by which knitted nonwoven fabric is manufactured.
  • the present invention corresponds to a knitted nonwoven textile and a method for manufacturing it.
  • Knitted nonwoven fabric comprises between 60% w / w and 80% w / w of a nonwoven textile made of synthetic fibers, and between 3% w / w and 6% w / w of synthetic filaments knitted in the nonwoven fabric.
  • knitted nonwoven textile includes between 1% w / w and 30% w / w of expandable microspheres; and it has perforations arranged along the nonwoven textile.
  • Knitted nonwoven textile has a density between 100g / m 2 ; and 200g / m 2 ; and a thickness between 2mm and 5mm.
  • the method for manufacturing said knitted nonwoven textile comprises a first stage where a nonwoven textile with synthetic filaments is knitted; a second stage, where the nonwoven textile of the first stage is impregnated with a solution containing expandable microspheres; a third stage where the nonwoven textile of the stage is subjected to heating and a final stage where the nonwoven textile of the previous stage is perforated.
  • the core or reinforcement materials are used to provide thickness to the fiber laminates, in order to reduce the weight, increase the moment of inertia and therefore the stiffness of the final product.
  • the core or reinforcement materials on the market have limitations in the manufacture of spherical and cylindrical parts, and large surface flat parts. This is because they have low mechanical properties, such as flexural strength.
  • the knitted nonwoven fabric of the present invention offers greater mechanical strength, stiffness and durability compared to traditional core or reinforcement materials, such as balsa wood, flexible materials with expandable microspheres (3) (such as mentioned in the description of the state of the art) and polyurethane foams; This development allows greater maneuverability during the rolling process due to the inherent flexibility of the material.
  • the knitted nonwoven fabric of the present invention can be used in the manufacture of wind turbines, these elements support loads, produced by the wind, which generate torsional and bending stresses in the material. It is also ideal for the manufacture of pipes, tanks, pressure vessels, panels, cylindrical and spherical parts, and as a core or reinforcing material for acoustic and thermal insulation.
  • the knitted nonwoven fabric of the present invention can be used in combination with plastic resins such as polyester, vinyl ester, epoxy or acrylic reinforced with natural, glass, ceramic, metal, or synthetic fibers such as acrylic, polyethylene , polyester, aramid, carbon or polypropylene.
  • the present invention relates to a knitted and expanded nonwoven and a method for manufacturing it.
  • the knitted nonwoven fabric of the present invention comprises between 60% w / w and 80% w / w of a nonwoven textile (1) made of synthetic fibers; between 3% w / w and 6% w / w synthetic filaments (2) knitted in the nonwoven fabric (1); between 1% w / w and 30% w / w of expandable microspheres (3); and perforations (4) arranged along the nonwoven textile (1).
  • Knitted nonwoven textile has a density between 70g / m 2 and 450g / m 2 ; and a thickness between lmm and 10mm.
  • a non-woven fabric (non-woven fabric in English) consists of fibers that have been joined together by mechanical, chemical or physical means, regardless of the traditional method of producing textiles, where the fibers are spun and woven to form the fabric. This represents an advantage in the production of nonwoven fabrics, since the production speed of the final nonwoven fabric is much higher than that of a woven fabric. All the yarn preparation steps are eliminated, and the production of the fabric itself is faster than conventional methods. For example, to produce 500,000 meters of woven textile requires two months of yarn preparation, three months of knitting on 50 looms and one month for finishing and inspection; On the other hand, for the same amount of a nonwoven textile, the term is two months.
  • Nonwoven textiles are characterized by their versatility, since their characteristics can be established according to need, therefore, it is possible to obtain absorbent or waterproof, elastic or rigid, soft or rough, fire resistant, sterilized, non-woven fabrics. high thickness for cushioning or thin for clothing. Each of its properties are adapted and combined for specific uses, balancing according to the cost and the shelf life of the product.
  • synthetic fibers will be defined as those textile fibers manufactured from natural raw material or chemical synthesis product raw material.
  • An example of this are cellulosic regenerated fibers, such as rayon, acetate and triacetate; polymer fibers such as polyamide, aramid, spandex, polyester, polypropylene, or acrylics, protein, rubber, metal or mineral fibers such as fiberglass.
  • the synthetic fibers that make up the nonwoven textile can be selected from the group consisting of mineral, glass, ceramic, metallic, or synthetic fibers such as acrylic, polyethylene, polyester, aramid, carbon, polypropylene or combinations of the above.
  • synthetic fibers are selected from glass fibers, polyester fibers, bicomponent polyester fibers, polyethylene and combinations of the foregoing.
  • Synthetic fibers have great advantages over other types of mineral and natural fibers.
  • synthetic fibers offer high resistance to moisture, UV and UVA, greater resistance to stress and acid and alkaline media, high durability, dimensional stability and the possibility of designing features such as, cross section, diameter and length according to the desired final product.
  • bicomponent fibers new possibilities have been added when manufacturing nonwovens with synthetic fibers.
  • An example of this is the "cover-core" or "side-side” type fibers where two polymers are combined with different melting points, in order to join the fibers thermally without resorting to mechanical actions.
  • polyester cover (melting point: 250 ° C) with copolyester core (melting point: between 110 ° C to 220 ° C)
  • polyester cover (melting point: 250 ° C ) with polyethylene core (melting point: 130 ° C)
  • polypropylene shell (melting point: 175 ° C) with polyethylene core (melting point: 130 ° C).
  • the synthetic fibers of the nonwoven textile are polyester fibers. These represent a better option compared to other fibers such as polyamides and aramids that are rarely used in the reinforced plastics industry because because these materials are poorly compatible with polyester resins (adhesion), they shear themselves and have low resistance to UV rays and somehow absorb water; if compared with polyester. Similarly, polyester fibers have greater advantages than polypropylene fibers that have a very low melting point, or polyethylene fibers that on the other hand have a melting point that is too high and are more rigid.
  • glass fibers are more abrasive than polyester fibers and this results in greater wear on the machinery that processes it. In addition to presenting risks to the health of the people involved in their processing.
  • Knitted nonwoven fabric comprises between 60% w / w and 80% w / w of a nonwoven textile (1) made of synthetic fibers. If this interval is exceeded and the knitted nonwoven fabric includes more fiber, there will be less amount of expandable microspheres (3) and the expansion will not be significant, therefore, volume is lost and more resin will have to be used, in this way Knitted non-woven textile would lose mechanical properties as stiffener, as it will be more brittle, fragile and heavy.
  • synthetic filaments will be defined as those textile filaments manufactured from natural raw material or chemical synthesis product raw material. Examples of this are filaments made of regenerated cellulosic fibers, such as rayon, acetate and triacetate; polymer fibers such as polyamide, spandex, polyester, or acrylics, protein, rubber, metal or mineral fibers such as glass fiber.
  • Knitted or sewn filaments in a textile can have different functional purposes. Knitting a nonwoven textile with filaments improves its properties mechanical, for example, a greater tensile strength in the direction of the filaments, a more uniform surface is achieved and the possibility of the textile falling apart during handling is reduced.
  • the present invention achieves greater mechanical strength compared to that of traditional core or reinforcement materials thanks to the inclusion of synthetic filaments (2) sewn along the knitted nonwoven fabric.
  • the tensile strength of knitted nonwoven textile is about seven times greater than nonwoven nonwoven textile, it also has greater resistance to bending and stiffness of the final product, even in elements such as flat plates of large surfaces.
  • the knitted nonwoven fabric comprises between 3% w / w and 6% w / w synthetic filaments (2) knitted in the nonwoven fabric (1); in case this interval is exceeded, the flexibility of knitted nonwoven textile would decrease, the material would become more expensive and the probability that, during the perforation process, in which the perforations (4) are generated, the filaments will be broken synthetic (2), because they could not move laterally when the needles touch them.
  • the mechanical strength would decrease and knitted non-woven textile would have the same properties as the non-knitted textile.
  • the synthetic filaments (2) have a diameter between 60tex and 220tex and a distance between 3mm and 4mm is separated from each other within the nonwoven fabric.
  • the synthetic filaments (2) have an approximate diameter of 150tex and reach between 3% w / w and 5% w / w of the knitted nonwoven textile; the filaments are separated from each other within the nonwoven textile by a distance of 3.62mm; This distance corresponds to a number seven gauge (gauge 7) of a knitting machine.
  • the synthetic filaments (2) can be polymeric (eg polyester, polyethylene, ethylene polytetrafluoride (PTFE), polyolefins), glass, carbon, aramid, and combinations of the above.
  • polymeric eg polyester, polyethylene, ethylene polytetrafluoride (PTFE), polyolefins
  • PTFE ethylene polytetrafluoride
  • polyolefins glass, carbon, aramid, and combinations of the above.
  • the synthetic filaments (2) are glass filaments coated with ethylene polytetrafluoride.
  • the PTFE coating protects the needles used to knit the filament, and the needles used to generate the perforations (4), from abrasion that would generate direct contact of the needles with the glass filament.
  • the synthetic filaments (2) are polyester.
  • the advantages of using this material are among others: total compatibility between the materials of the invention (non-woven textile (1) made of synthetic fibers, synthetic filaments (2), formulation with expandable microspheres (3) and resin used for manufacture the compound), which ensures good adhesion, and approximately 5% w / w reduction in the amount of resin needed to form a composite.
  • polyester resins eg isophthalic, terephthalic, orthophthalic
  • these two parts that is, the knitted nonwoven textile and the resin become a single element.
  • the above prevents the formation of defects in the final laminate, such as bubbles and areas of low impregnation, which ensures optimum adhesion of the compound.
  • Polyester has a specific gravity of 1.38gr / cm 3 , lower than polyparaphenylene terephthalamide (1.44gr / cm 3 ), carbon (1.58gr / cm 3 ) and glass fiber (2.2gr / cm 3 ). Raft wood having a lower specific weight than polyester, is only useful for manufacturing flat pieces and with minimum degrees of curvature.
  • the fiberglass mantle in addition to being up to four times heavier than the knitted nonwoven fabric of the present invention, presents dangers for human health during handling.
  • the effects of fiberglass exposure are varied and depend on the size of the fibers in question. There may be irritation of the throat, eyes and skin, irritation of sweat glands, pulmonary and neurological disorders. It is also possible that glass wool has carcinogenic effects.
  • class E glass alumino-borosilicate glass with less than 1% w / w alkaline oxides, mainly for glass fiber reinforced plastic.
  • class A glass calcium glass with little or no boron oxide
  • glass E-CR class with alumino-calcium silicate, with less than 1% w / w alkaline oxides, has high resistance to acids
  • class C glass sodium-calcium glass with high boron oxide content, which is used, for example, for staple fiberglass
  • class D glass borosilicate glass with high dielectric constant
  • class R glass aluminosilicate glass without MgO and CaO for high mechanical requirements
  • class S glass aluminosilicate glass without CaO, but with high MgO content for high strength.
  • Carbon fiber has little impact resistance and it is for this reason that it is used in combination with fiberglass mantles. Again, the problem of an increase arises substantial of the final weight of the compound. Carbon fiber has very low resistance to friction and is therefore not used as a coating material. Loose and floating carbon fibers in the air are also dangerous for human health. Aramid or carbon fiber fabrics are flexible, but should not be folded. This generates friction that deteriorates the fibers of the fabric and as a consequence the material loses resistance. In this way molding problems occur, specifically in the mold joints. Portal motif requires an extra reinforcement material such as a fiberglass mantle that causes the compound to increase in weight.
  • polyester fibers can be matt white, semi matt and glossy, it is also in an almost transparent tone, which makes it an ideal material for the manufacture of translucent and transparent parts.
  • the aramid yellow and carbon fiber black color limits its applications because they are not translucent materials when impregnated with the resin, which reduces its versatility.
  • the polyester being white radiates UV rays and is highly resistant to them, unlike aramids that are sensitive to sunlight and to environments with high UV dissipation.
  • Polyester has excellent resistance to acids (sulfuric acid, acid hydrochloric, etc.); oxidants (chromic acid and nitric acid, etc.) and in special presentations it has resistance to the bases.
  • Aramids have little resistance to strong acids, bases and some oxidants such as sodium hypochlorite.
  • Polyester is an inert material, does not rot, does not give fungi and is not attacked by bacteria or algae when in contact with fresh water or seawater. It is a material that is easy to handle, easy to cut, mold and handle especially at the time of molding.
  • aramids are difficult to cut both in their state of reinforcement material and in the final laminate, and the tools for cutting or polishing are limited, such as those composed of silicon carbide.
  • fiber and Aramid laminates cannot be sanded as the fabric tends to produce lint, this due to its high degree of abrasiveness.
  • aramid is widespread in applications where high impact resistance is required, such as ballistic armor elements, skate boarding boards, aeronautical and naval construction, and fire protection.
  • carbon fiber is especially used in applications that require a significant decrease in product weight as in the automotive, aeronautical, bicycle construction, etc.
  • the knitted nonwoven fabric is impregnated in a formulation that includes the following components listed below:
  • the final knitted nonwoven fabric has a minimum amount of water (less than 0.05% by weight), since water is a harmful component for the quality of resin laminates. This is because, during the resin curing process, an exothermic reaction is generated that produces enough heat to evaporate the water present in the laminate; When the water evaporates, defects are generated, mainly bubbles.
  • the resin gives the knitted nonwoven fabric greater stiffness and adhesion between the fibers, allowing the textile not to be undone easily and its transport and handling is easier.
  • Said resin can be selected from the group consisting of water-based acrylic resins and styrene acrylic resins.
  • water-based acrylic resin is used, because it is highly compatible with polyester fibers.
  • the nonwoven textile is impregnated with the previous formulation with the main objective of introducing expandable microspheres (3) into the nonwoven textile.
  • the expandable microspheres (3) play an important role because they increase the volume of knitted nonwoven fabric. This increase in volume represents a low increase in weight.
  • the low density (from 25 kg / m 3 ) of the expandable microspheres (3) makes it possible to manufacture large pieces saving up to 35% in weight; without the composite material losing mechanical or chemical resistance.
  • the expandable microspheres (3) are resilient and for this reason have a high elasticity index. When expanded they withstand high pressures, but if the pressure is removed, the expandable microspheres (3) return to their original size. When the expandable microspheres (3) are saturated with resin, they acquire greater mechanical strength by gaining rigidity.
  • the expandable microspheres (3) when using the expandable microspheres (3), there is a significant reduction of resin used because the expandable microspheres (3) occupy the space that the resin would occupy in a composite material. Another advantage is that when the microspheres are incorporated in the knitted nonwoven fabric, they have good resistance to high temperatures ( ⁇ 230 ° C). After expansion, the expandable microspheres (3) reach a density of 25kg / m 3 , 0, 1 ⁇ thick and 40 ⁇ in diameter, in their unexpanded state their typical density value is 1000kg / m 3 , 2 ⁇ thick and 12 ⁇ in diameter.
  • the expandable microspheres (3) usually consist of a composite external structure that can be made of glass, ceramic or polymer.
  • the formulation used in the present invention is comprised of between 5% w / w and 40% w / w of expandable microspheres (3).
  • the expandable microspheres (3) have a synthetic resin surface (5) such as polystyrene, styrene copolymers, polyvinyl chloride, vinyl chloride copolymers, chloride copolymers Vinylidene and the like.
  • the expandable microspheres (3) incorporate a chemical or physical expansion agent (6) that can be azodicarbonamide, isobutane, or refrigerants composed of chlorofluorocarbons. After the expansion, its expanded surface (7) decreases its thickness and increases its area, and the expansion agent (6) reacts, increasing the pressure and constituting the interior (8) of the expandable microsphere (3).
  • the expandable microspheres (3) are thermoplastic, they have a copolymer exterior of: vinylidene or acrylonitrile chloride and methyl methacrylate; and an isobutane interior.
  • the percentage of expandable microspheres (3) varies between 5% w / w and 30% w / w because a smaller percentage would not achieve the desired volume increase and a larger percentage of said expandable microspheres (3) it would not be able to contain itself in the non-woven textile (1)
  • Various chemical reactions that are generated in aqueous solutions require that the pH of the system be kept constant, to prevent other unwanted reactions from occurring.
  • a ph balancer is added to the formulation that is selected from the group consisting of ammonia, monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), sodium carbonate, sodium bicarbonate, calcium and combinations thereof.
  • the group consisting of sodium carbonate, sodium bicarbonate and calcium must be diluted in water.
  • a catalyst is added, which can be, for example, ammonium sulfate.
  • a thickener is added which can be, for example, polymers in aqueous dispersion of acrylic esters.
  • a dispersing additive is added thereto which can be, for example , a mixture of special non-ionic alcohols.
  • an antifoam is added to said formulation which can be, for example, a non-ionic material based on modified silicone.
  • Some fibers used for the manufacture of the nonwoven textile (1) have low absorption, for this reason a wetting agent is used so that the resin adheres to the fibers, said wetting agent can be, for example, sodium xylenesulfonate or an alkylphenol .
  • the knitted nonwoven fabric impregnated with the formulation described above passes through the middle of two or more foulard rollers where the excess formulation is removed and engraved on one or both sides a pattern formed by interlocking reliefs and channels. This pattern favors the flow of resin on the surface of the knitted nonwoven fabric during the manufacture of the laminate and increases the adhesion between layers thereof.
  • the knitted nonwoven fabric is brought to a heating process where the expandable microspheres (3) expand and the acrylic resin is cured.
  • the knitted nonwoven fabric goes through a perforation process where, by means of preheated needles at a temperature between 138 ° C and 148 ° C, perforations (4) are made in the knitted nonwoven textile. Said perforations (4) are created when the needle moves the material sideways through the knitted nonwoven fabric from one side to the other. These perforations (4) increase the adhesion between the layers of a laminate made with the knitted nonwoven fabric of the present invention. Because "I" shaped connections are created between the resin zones, both in flat elements and in cylindrical or spherical elements.
  • the number of perforations (4) is between 6298 and 6554 perforations / m 2 . In one embodiment of the invention the number of perforations (4) is approximately 6426 perforations / m 2 .
  • the knitted nonwoven fabric is ready to be used as a core material of a laminate which can be made using resins selected from the group consisting of orthophthalic polyester resin, isophthalic polyester resin, terephthalic polyester resin, chlorenic polyester resin, brominated vinyl ester epoxy resin based on bisphenol-A, vinyl ester-based Novolac epoxy resin, amine-cured bisphenol-A epoxy resin, anhydrous cured bisphenol-A epoxy resin, bisphenol resin -A brominated fumarate, divinylene oxide resin, phenolic resins, polyethylene resin, PA 66 saturated water resin, PA 66 Dry resin, and combinations thereof.
  • resins selected from the group consisting of orthophthalic polyester resin, isophthalic polyester resin, terephthalic polyester resin, chlorenic polyester resin, brominated vinyl ester epoxy resin based on bisphenol-A, vinyl ester-based Novolac epoxy resin, amine-cured bisphenol-A epoxy resin, anhydrous cured bisphenol-A epoxy resin, bisphenol resin -A brominated
  • knitted nonwoven textile is used in combination with polyester resins, because this increases component compatibility, increasing adhesion and final product quality.
  • FIG. 3 several layers, quasi-isotopically oriented, of the knitted nonwoven fabric of the present invention are used for the manufacture of a composite material.
  • the orientation is given by the direction of the synthetic filaments (2) in the knitted nonwoven fabric.
  • the first layer (12) has a 0 or orientation
  • the second layer (11) has a 45 ° orientation
  • the third layer (10) has a 90 ° orientation
  • the fourth layer (9) has an orientation to 135 °.
  • a quasi isotopic compound made with the knitted nonwoven fabric of the invention, of lm2 can have a weight between 9000g / m 2 and 11000g / m 2 . Where approximately 5% w / w of the compound is the knitted nonwoven fabric and the remaining 95% w / w is the resin. This means that with only 5% knitted nonwoven textile, the compound is no longer brittle and on the contrary acquires unique mechanical and chemical properties at very low weight.
  • a pipe is made of knitted nonwoven fabric.
  • a release agent (13) is applied on a mandrel where the pipe will be manufactured, said release agent (13) allows the pipe to easily exit the mandrel at the end of its conformation.
  • This release agent is selected from the group consisting of vegetable oils such as coconut oil, mineral oils, long chain saturated hydrocarbons, polyvinyl alcohol and combinations thereof.
  • an inner layer of resin (14) is applied, and a knitted nonwoven textile belt (15) is wound, forming a random arrangement that ensures that the layers of the pipe have a different direction and that their perforations (4 ) I dont know face. This creates joints in the form of "I" (16) where the resin (14) is inserted, ensuring excellent adhesion between layers and greater rigidity.
  • the present invention includes a method for manufacturing a knitted nonwoven fabric comprising the following steps:
  • stage (b) heat the nonwoven fabric (1) of stage (b) to a temperature between 120 ° C and 140 ° C and d) perforate the nonwoven fabric of stage c).
  • a nonwoven fabric In an embodiment of the present invention and prior to the process described above, a nonwoven fabric must be available.
  • a manufacturing process of a non-woven textile is indicated in FIG. 6 and after the opening of a pressed fiber (bale), the fiber passes through an opener (17) to individualize the fibers.
  • the fibers then pass through a loader in order to transport the loose fibers in a controlled manner by means of a photo cell to a card (18) that guides and combs the fibers forming a veil.
  • This veil passes through a machine where the direction of the veil is changed to 90 ° and the thickness is given to the fabric (machine called in English Cross lapper).
  • the thickness can vary between lmm and 10mm. In one embodiment of the invention said thickness can be 2mm, 2.5mm, 3mm, 3.5mm, 4mm, 5mm, 6mm, 7mm, 8mm, 9mm or 10mm. In one embodiment of the invention the thickness is between 2mm and 4mm. In one embodiment of the invention the thickness is 2.5mm.
  • a napa (19) that is to say several layers of veils (according to the thickness of the fabric) that passes through a cold calender (20) in order to lower the thickness.
  • the resulting napa passes through a pre punching machine (not illustrated) and then through a punching machine (21) that confers mechanical strength to the nappa. This is achieved through a series of needles that reorient the fibers vertically. After this the raw cloth is rolled in a cylinder forming the raw roll of nonwoven textile (22).
  • the raw nonwoven textile roll (22) goes through the knitting process (23), where synthetic filaments (2) are sewn, in the longitudinal direction of the raw roll of nonwoven textile (22).
  • knitting is performed with equipment using a seven gauge (gauge 7, in English) which sews the filaments with a distance of 3.62mm between them.
  • the knitted nonwoven roll is unwound to pass through the impregnation process (24) where it is impregnated with the formulation consisting of water , acrylic resin, expandable microspheres (3) and additives.
  • the excess formulation is removed by means of two Foulard-type cylinders located in parallel that rotate in opposite directions and generate pressure on the knitted nonwoven fabric, removing the excess formulation contained in the knitted nonwoven textile.
  • the knitted nonwoven fabric is heated within a temperature range of 120 ° C to 140 ° C.
  • the temperature varies between 120 ° C and 130 ° C. This heating process can be carried out in an oven (25) or in a dryer of steam-heated cylinders, where the resin of the formulation is cured and the expandable microspheres (3) expand, thus the fabric comes out dry and is rolled again in a winder (26).
  • the knitted non-woven textile must have a thickness of less than 10mm, since a thicker thickness would not allow the expandable microspheres (3) inside the textile to react. Said thickness is controlled by the pressure applied to the foulard cylinders to remove excess formulation.
  • the cylinders that remove the excess formulation apply a pressure between 137.9kPa (20psi) and 344.7kPa (50psi) on the knitted nonwoven fabric.
  • cylinders that remove excess formulation apply a pressure of 275.8kPa (40psi) on knitted nonwoven fabric
  • the last step of the method of the present invention carried out with knitted nonwoven fabric is perforation (27).
  • the fabric is unwound again to pass through a perforator (28), this in order to make perforations (4) to the fabric, which provide the final product with greater resistance and adhesion between the layers of the laminate, due to to that the resin of the compound penetrates through these perforations (4) and creates a type of connection between the layers of resin that ensures the union.
  • the perforations (4) are generated by means of hot needles that seal the holes preventing them from closing.
  • said needles are blunt tip which allows both the nonwoven and the filaments therein to move instead of breaking.
  • the hot needles that pierce the knitted nonwoven fabric have a temperature of 140 ° C.
  • a knitted nonwoven textile of the following characteristics was manufactured: • 80% w / w of nonwoven textile (1) made of polyester fibers, these fibers have between 1.5 and 15.0 denier; 3cm and 10cm long, and 70g / m 2 and 150g / m 2 density,
  • a laminated lm 2 panel was designed and constructed with the knitted nonwoven fabric of Example 1; orthophthalic polyester resin, and glass fiber mat 450g / m 2 polyester resin unsaturated.
  • the ratio between resin and fiberglass is 1: 1 (for every kilogram of fiberglass one kilogram of resin is added).
  • a mold was taken from the panel which was previously waxed and eight layers of wax were applied and allowed to dry between each layer application.
  • the waxed mold was painted with gel coat and allowed to dry until it was tactose.
  • the thickness of the gel coat was 12mills.
  • a lm 2 panel with four layers of the knitted nonwoven fabric of Example 1 was manufactured by means of the hand lay-up method, where the first layer (12) has an orientation of 0 or , the second layer (11) has an orientation at 45 °, the third layer (10) has an orientation at 90 ° and the fourth layer (9) has an orientation at 135 °. 5 layers of orthodoxic polyester resin were applied.
  • Knitted non-woven textile has a weight of 122g / m 2 which means a weight of 488g / m 2 per four layers.
  • the resin has a weight of 1800g / m 2 which means a weight of 9000g / m 2 .
  • the total weight of the panel is 9488 g / m 2 .
  • Example 4 Knitted nonwoven textile pipe Referring to FIG. 4 and FIG. 5, a pipe was manufactured by the following process:
  • a release agent layer (13) was applied on a mandrel like coconut oil, then a resin layer (14) was applied and a ribbon (15) of the knitted nonwoven fabric of example 1 was wound around the mandrel, on the textile a resin layer (14) was applied again and the tape (15) was returned on said layer creating a new sheet.
  • Said pipe was composed of polyester resin and knitted nonwoven textile tape of the present invention, with the following characteristics:
  • MEK catalyst 2.5% w / w resin (porlOOgr resin 2.5gr catalyst).

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

The invention relates to a knitted non-woven textile, and to a method for producing said textile. Said knitted non-woven textile comprises a non-woven textile made of synthetic fibres and synthetic filaments knitted into said non-woven textile. It also comprises expandable microspheres integrated into said non-woven textile and holes arranged over the entire surface of the non-woven textile. The method comprises four main steps in which: the non-woven textile is knitted with the synthetic filaments, the knitted non-woven textile is then impregnated in a solution, it is subjected to heating in order to cure the formulation and expand the microspheres, and finally holes are made in the knitted non-woven textile.

Description

TEXTIL NO TEJIDO TRICOTADO CON MICRO-ESFERAS EXPANDIDAS Y MÉTODO DE FABRICACIÓN DEL MISMO  NON-FABRICED TEXTILE WITH WOVEN EXPANDED MICRO-SPHERES AND MANUFACTURING METHOD
Campo de la invención Field of the Invention
La presente invención pertenece al campo de los materiales compuestos laminados, específicamente al de los materiales tipo núcleo o de refuerzo con microesferas expandibles. Descripción del estado de la técnica The present invention pertains to the field of laminated composite materials, specifically that of core or reinforcing materials with expandable microspheres. Description of the state of the art
El estado de la técnica divulga materiales tipo núcleo o de refuerzo como los divulgados en los documentos US4818583 y US6607997B1. El documento US4818583, divulga una red fibrosa no tejida con microesferas las cuales se disponen en "islas" de forma similar, separadas entre sí por canales que contienen menos del 5% en volumen de microesferas. También, el documento divulga que la red fibrosa no tejida puede tener agujeros de aproximadamente l,5mm separados entre sí entre 5mm y 15mm. Por otro lado, el documento divulga una red fibrosa punzonada (needle punched, en inglés) de entre 2,5mm y 4,2mm de espesor. En una modalidad de la invención, la red fibrosa se conforma de 85% en peso de fibras polyester de 5,0Tex/50mm y 15% de fibras fundibles. A la red punzonada se le aplica una composición espumada. El documento divulga que la red fibrosa puede impregnarse con un aglomerante de espuma (foam binder, en inglés). The prior art discloses core or reinforcement materials such as those disclosed in US4818583 and US6607997B1. Document US4818583 discloses a nonwoven fibrous network with microspheres which are similarly arranged in "islands", separated from each other by channels containing less than 5% by volume of microspheres. Also, the document discloses that the non-woven fibrous web can have holes of approximately 1.5mm apart from each other between 5mm and 15mm. On the other hand, the document discloses a punctured fibrous network (needle punched, in English) between 2.5mm and 4.2mm thick. In one embodiment of the invention, the fibrous web is made up of 85% by weight of 5.0Tex / 50mm polyester fibers and 15% of meltable fibers. A foamed composition is applied to the punched web. The document discloses that the fibrous network can be impregnated with a foam binder.
Por otra parte, el documento US6607997B 1 divulga un material de núcleo para su utilización en la producción de materiales plásticos reforzados con fibras, particularmente para su aplicación en sistemas de molde cerrado. El documento divulga un material tipo núcleo con microesferas expandibles dispuestas en el elemento laminar con estructura esponjosa. El elemento laminar tiene como mínimo 20% en peso de fibras y hasta 80% en peso de material aglomerante y microesferas expandibles. El elemento laminar puede conformarse de fibras de vidrio, poliéster, bi-componentes poliéster-polietileno, y combinaciones de las mismas. El aglomerante puede incluir grupos ácidos, agentes carboxilantes, agua, tensoactivos, estabilizantes, cargas y espesantes. On the other hand, document US6607997B 1 discloses a core material for use in the production of fiber reinforced plastic materials, particularly for application in closed mold systems. The document discloses a core type material with expandable microspheres arranged in the laminar element with spongy structure. The sheet element has at least 20% by weight of fibers and up to 80% by weight of binder material and expandable microspheres. The sheet element can be formed of glass fibers, polyester, polyester-polyethylene bi-components, and combinations thereof. The binder may include acidic groups, carboxylating agents, water, surfactants, stabilizers, fillers and thickeners.
Si bien los materiales tipo núcleo o reforzantes divulgados en los anteriores documentos aportan un mayor espesor y por tanto un mayor momento de inercia de los laminados finales, dichos materiales no aportan propiedades mecánicas que aumenten la resistencia a la tracción, flexión y compresión del producto final. Otra desventaja de estos desarrollos se presenta en la fabricación de productos con regiones curvas, pues sus fibras se rompen al ser dobladas, por tal motivo se dificulta la elaboración de piezas cilindricas, esféricas o con curvas estrechas. Although the core or reinforcing materials disclosed in the previous documents provide a greater thickness and therefore a greater moment of inertia of the final laminates, said materials do not provide mechanical properties that increase the tensile, flexural and compression resistance of the final product. . Another disadvantage of these developments is in the manufacture of products with curved regions, as their fibers break when bent, for this reason it is difficult to produce cylindrical, spherical or narrow curved parts.
También es frecuente encontrar en productos fabricados mediante los métodos de Spray- Up y Hand Lay-Up zonas del laminado con menor resistencia mecánica y rigidez. Esto es debido a que el material núcleo tiende a deshacerse en zonas impregnadas con exceso de resina, como bordes y cavidades, cuando se aplica presión con el rodillo durante el asentamiento de la superficie. It is also common to find in areas manufactured by the Spray-Up and Hand Lay-Up methods areas of the laminate with less mechanical strength and rigidity. This is because the core material tends to break down in areas impregnated with excess resin, such as edges and cavities, when pressure is applied with the roller during surface settlement.
Breve descripción de las figuras La FIG. l corresponde a una vista en detalle de una modalidad del textil no tejido tricotado. Brief description of the figures FIG. l corresponds to a detailed view of a modality of knitted nonwoven textile.
La FIG.2 corresponde a una modalidad de una esfera expandible antes y después de la expansión. FIG. 2 corresponds to a modality of an expandable sphere before and after the expansion.
La FIG.3 corresponde a una placa de material laminado con capas de una modalidad del textil no tejido tricotado orientadas quasi isotópicamente. FIG. 3 corresponds to a plate of laminated material with layers of a knitted non-woven textile pattern oriented quasi-isotopically.
La FIG.4 representa un corte transversal de una tubería construida con una modalidad del textil no tejido tricotado. FIG. 4 represents a cross-section of a pipe constructed with a knitted nonwoven fabric embodiment.
La FIG.5 ilustra el proceso de fabricación de una tubería con una modalidad del textil no tejido tricotado. La FIG.6 es un esquema de un método por medio del cual se fabrica un textil no tejido. FIG. 5 illustrates the process of manufacturing a pipe with a modality of knitted nonwoven textile. FIG. 6 is a schematic of a method by which a nonwoven textile is manufactured.
La FIG.7 es un esquema de una modalidad del método por medio del cual se fabrica el textil no tejido tricotado. FIG. 7 is a schematic of an embodiment of the method by which knitted nonwoven fabric is manufactured.
Breve descripción de la invención Brief Description of the Invention
La presente invención corresponde a un textil no tejido tricotado y a un método para la fabricación del mismo. The present invention corresponds to a knitted nonwoven textile and a method for manufacturing it.
El textil no tejido tricotado comprende entre 60%p/p y 80%p/p de un textil no tejido hecho de fibras sintéticas, y entre 3%p/p y 6%p/p de filamentos sintéticos tricotados en el textil no tejido. Además, el textil no tejido tricotado incluye entre l%p/p y 30%p/p de microesferas expandibles; y posee perforaciones dispuestas a lo largo del textil no tejido. El textil no tejido tricotado tiene una densidad entre 100g/m2; y 200g/m2; y un espesor entre 2mm y 5mm. Knitted nonwoven fabric comprises between 60% w / w and 80% w / w of a nonwoven textile made of synthetic fibers, and between 3% w / w and 6% w / w of synthetic filaments knitted in the nonwoven fabric. In addition, knitted nonwoven textile includes between 1% w / w and 30% w / w of expandable microspheres; and it has perforations arranged along the nonwoven textile. Knitted nonwoven textile has a density between 100g / m 2 ; and 200g / m 2 ; and a thickness between 2mm and 5mm.
El método para la fabricación de dicho textil no tejido tricotado, comprende una primera etapa donde se tricota un textil no tejido con filamentos sintéticos; una segunda etapa, donde el textil no tejido de la primera etapa es impregnado con una solución que contenga microesferas expandibles; una tercera etapa donde se somete a calentamiento el textil no tejido de la etapa y una etapa final donde se perfora el textil no tejido de la etapa anterior. Descripción detallada de la invención The method for manufacturing said knitted nonwoven textile comprises a first stage where a nonwoven textile with synthetic filaments is knitted; a second stage, where the nonwoven textile of the first stage is impregnated with a solution containing expandable microspheres; a third stage where the nonwoven textile of the stage is subjected to heating and a final stage where the nonwoven textile of the previous stage is perforated. Detailed description of the invention
El uso de materiales compuestos es ampliamente difundido en sectores como el automotriz, electrónico, energético, la industria del agua o la construcción por mencionar solo algunos. The use of composite materials is widespread in sectors such as automotive, electronics, energy, the water industry or construction to name just a few.
Los materiales tipo núcleo o de refuerzo son usados para proporcionar espesor a los laminados de fibras, con el fin de disminuir el peso, aumentar el momento de inercia y por lo tanto la rigidez del producto final. Actualmente, los materiales tipo núcleo o de refuerzo existentes en el mercado tienen limitaciones en la fabricación de piezas de forma esférica y cilindrica, y piezas planas de gran superficie. Esto debido a que presentan bajas propiedades mecánicas, como la resistencia a la flexión. The core or reinforcement materials are used to provide thickness to the fiber laminates, in order to reduce the weight, increase the moment of inertia and therefore the stiffness of the final product. Currently, the core or reinforcement materials on the market have limitations in the manufacture of spherical and cylindrical parts, and large surface flat parts. This is because they have low mechanical properties, such as flexural strength.
Por el contrario, el textil no tejido tricotado de la presente invención ofrece una mayor resistencia mecánica, rigidez y durabilidad frente a los materiales tipo núcleo o de refuerzo tradicionales, tales como la madera balsa, materiales flexibles con microesferas expandibles (3) (como los mencionados en la descripción del estado de la técnica) y las espumas de poliuretano; este desarrollo permite mayor maniobrabilidad durante el proceso de laminado debido a la flexibilidad inherente del material. On the contrary, the knitted nonwoven fabric of the present invention offers greater mechanical strength, stiffness and durability compared to traditional core or reinforcement materials, such as balsa wood, flexible materials with expandable microspheres (3) (such as mentioned in the description of the state of the art) and polyurethane foams; This development allows greater maneuverability during the rolling process due to the inherent flexibility of the material.
El textil no tejido tricotado de la presente invención puede ser utilizado en la fabricación de turbinas eólicas, estos elementos soportan cargas, producidas por el viento, que generan esfuerzos de torsión y flexión en el material. También es ideal para la fabricación de tuberías, tanques, recipientes a presión, paneles, piezas cilindricas y esféricas, y como material tipo núcleo o reforzante para aislamiento acústico y térmico. Por otro lado, el textil no tejido tricotado de la presente invención se puede usar en combinación con resinas plásticas como poliéster, vinil éster, epóxicas o acrílicas reforzadas con fibras naturales, de vidrio, cerámicas, metálicas, o sintéticas como las acrílicas, de polietileno, poliéster, aramida, carbono o polipropileno. La presente invención se refiere a un no tejido tricotado y expandido y a un método para la fabricación del mismo. The knitted nonwoven fabric of the present invention can be used in the manufacture of wind turbines, these elements support loads, produced by the wind, which generate torsional and bending stresses in the material. It is also ideal for the manufacture of pipes, tanks, pressure vessels, panels, cylindrical and spherical parts, and as a core or reinforcing material for acoustic and thermal insulation. On the other hand, the knitted nonwoven fabric of the present invention can be used in combination with plastic resins such as polyester, vinyl ester, epoxy or acrylic reinforced with natural, glass, ceramic, metal, or synthetic fibers such as acrylic, polyethylene , polyester, aramid, carbon or polypropylene. The present invention relates to a knitted and expanded nonwoven and a method for manufacturing it.
Haciendo referencia a la FIG. l, el textil no tejido tricotado de la presente invención comprende entre 60%p/p y 80%p/p de un textil no tejido (1) hecho de fibras sintéticas; entre 3%p/p y 6%p/p de filamentos sintéticos (2) tricotados en el textil no tejido (1); entre l%p/p y 30%p/p de microesferas expandibles (3); y perforaciones (4) dispuestas a lo largo del textil no tejido (1). El textil no tejido tricotado tiene una densidad entre 70g/m2 y 450g/m2; y un espesor entre lmm y 10mm. Un textil no tejido (non-woven fabric en inglés) se conforma de fibras que han sido unidas entre sí por medios mecánicos, químicos o físicos, prescindiendo del método tradicional para producir textiles, donde las fibras son hiladas y tejidas para conformar la tela. Esto representa una ventaja en la elaboración de las telas no tejidas, ya que la velocidad de producción del tejido no tejido final es muy superior a la de un textil tejido. Todos los pasos de preparación de hilo son eliminados, y la producción de la tela en sí es más rápida que los métodos convencionales. Por ejemplo, para producir 500.000 metros de textil tejido se requiere de dos meses de preparación de hilados, tres meses de tejer en 50 telares y un mes para el acabado y la inspección; en cambio para la misma cantidad de un textil no tejido el plazo es de dos meses. Referring to FIG. l, the knitted nonwoven fabric of the present invention comprises between 60% w / w and 80% w / w of a nonwoven textile (1) made of synthetic fibers; between 3% w / w and 6% w / w synthetic filaments (2) knitted in the nonwoven fabric (1); between 1% w / w and 30% w / w of expandable microspheres (3); and perforations (4) arranged along the nonwoven textile (1). Knitted nonwoven textile has a density between 70g / m 2 and 450g / m 2 ; and a thickness between lmm and 10mm. A non-woven fabric (non-woven fabric in English) consists of fibers that have been joined together by mechanical, chemical or physical means, regardless of the traditional method of producing textiles, where the fibers are spun and woven to form the fabric. This represents an advantage in the production of nonwoven fabrics, since the production speed of the final nonwoven fabric is much higher than that of a woven fabric. All the yarn preparation steps are eliminated, and the production of the fabric itself is faster than conventional methods. For example, to produce 500,000 meters of woven textile requires two months of yarn preparation, three months of knitting on 50 looms and one month for finishing and inspection; On the other hand, for the same amount of a nonwoven textile, the term is two months.
Figure imgf000007_0001
Figure imgf000007_0001
No solamente la tasa de producción de textil no tejido es mayor en comparación con los otros, también es bien sabido que el proceso requiere menos mano de obra a diferencia de los tejidos. Los textiles no tejidos se caracterizan por su versatilidad, pues, sus características pueden ser establecidas según la necesidad, por lo tanto, es posible obtener textiles no tejidos absorbentes o impermeables, elásticos o rígidos, suaves o ásperos, resistentes al fuego, esterilizados, de alto grosor para amortiguación o delgados para indumentaria. Cada una de sus propiedades se adaptan y combinan para usos específicos, equilibrándose según el coste y la vida útil del producto. Not only is the nonwoven textile production rate higher compared to the others, it is also well known that the process requires less labor as opposed to fabrics. Nonwoven textiles are characterized by their versatility, since their characteristics can be established according to need, therefore, it is possible to obtain absorbent or waterproof, elastic or rigid, soft or rough, fire resistant, sterilized, non-woven fabrics. high thickness for cushioning or thin for clothing. Each of its properties are adapted and combined for specific uses, balancing according to the cost and the shelf life of the product.
Para la comprensión de la presente invención se definirá "fibras sintéticas" como aquellas fibras textiles manufacturadas a partir de materia prima natural o materia prima producto de síntesis química. Ejemplo de esto son las fibras regeneradas celulósicas, como el rayón, acetato y triacetato; las fibras de polímero como la poliamida, aramida, el spandex, el poliéster, polipropileno, o los acrílicos, las fibras de proteína, de caucho, metálicas o las fibras minerales como la fibra de vidrio. Las fibras sintéticas que componen el textil no tejido pueden seleccionarse del grupo compuesto por fibras minerales, de vidrio, cerámicas, metálicas, o sintéticas como las acrílicas, de polietileno, poliéster, aramida, carbono, polipropileno o combinaciones de las anteriores. En una modalidad de la invención, las fibras sintéticas se seleccionan entre fibras de vidrio, fibras de poliéster, fibras bicomponente de poliéster, polietileno y combinaciones de las anteriores. For the understanding of the present invention, "synthetic fibers" will be defined as those textile fibers manufactured from natural raw material or chemical synthesis product raw material. An example of this are cellulosic regenerated fibers, such as rayon, acetate and triacetate; polymer fibers such as polyamide, aramid, spandex, polyester, polypropylene, or acrylics, protein, rubber, metal or mineral fibers such as fiberglass. The synthetic fibers that make up the nonwoven textile can be selected from the group consisting of mineral, glass, ceramic, metallic, or synthetic fibers such as acrylic, polyethylene, polyester, aramid, carbon, polypropylene or combinations of the above. In one embodiment of the invention, synthetic fibers are selected from glass fibers, polyester fibers, bicomponent polyester fibers, polyethylene and combinations of the foregoing.
Las fibras sintéticas presentan grandes ventajas frente a otro tipo de fibras de tipo mineral y natural. Por ejemplo, las fibras sintéticas ofrecen alta resistencia a la humedad, a los rayos UV y UVA, mayor resistencia a la tensión y a medios ácidos y alcalinos, alta durabilidad, estabilidad dimensional y la posibilidad de diseñar características como, sección transversal, diámetro y longitud según el producto final deseado. Adicionalmente, con el desarrollo de las fibras bicomponente se han añadido nuevas posibilidades a la hora de fabricar textiles no tejidos con fibras sintéticas. Ejemplo de esto son las fibras tipo "cubierta-núcleo" o "lado-lado" donde se combinan dos polímeros con diferentes puntos de fusión, con el fin de unir las fibras térmicamente sin necesidad de acudir a acciones mecánicas. Algunas combinaciones de polímeros usadas comúnmente son: cubierta de poliéster (punto de fusión: 250 °C) con núcleo de copoliéster (punto de fusión: entre 110 °C a 220 °C), cubierta de poliéster (punto de fusión: 250 °C) con núcleo de polietileno (punto de fusión: 130°C), cubierta de polipropileno (punto de fusión: 175 °C) con núcleo de polietileno (punto de fusión: 130°C). Synthetic fibers have great advantages over other types of mineral and natural fibers. For example, synthetic fibers offer high resistance to moisture, UV and UVA, greater resistance to stress and acid and alkaline media, high durability, dimensional stability and the possibility of designing features such as, cross section, diameter and length according to the desired final product. Additionally, with the development of bicomponent fibers, new possibilities have been added when manufacturing nonwovens with synthetic fibers. An example of this is the "cover-core" or "side-side" type fibers where two polymers are combined with different melting points, in order to join the fibers thermally without resorting to mechanical actions. Some commonly used polymer combinations are: polyester cover (melting point: 250 ° C) with copolyester core (melting point: between 110 ° C to 220 ° C), polyester cover (melting point: 250 ° C ) with polyethylene core (melting point: 130 ° C), polypropylene shell (melting point: 175 ° C) with polyethylene core (melting point: 130 ° C).
En una modalidad preferida de la invención, las fibras sintéticas del textil no tejido son fibras de poliéster. Estas representan una mejor opción frente a otras fibras como las poliamidas y aramidas que son poco usadas en la industria del plástico reforzado debido a que estos materiales son poco compatibles con las resinas de poliéster (adhesión), se cizallan a sí mismos y tienen baja resistencia a los rayos UV y de cierta manera absorben agua; si se comparan con el poliéster. Del mismo modo, las fibras de poliéster presentan mayores ventajas que las fibras de polipropileno que presentan un punto de fusión muy bajo, o las fibras de polietileno que por el contrario tienen un punto de fusión demasiado alto y son más rígidas. In a preferred embodiment of the invention, the synthetic fibers of the nonwoven textile are polyester fibers. These represent a better option compared to other fibers such as polyamides and aramids that are rarely used in the reinforced plastics industry because because these materials are poorly compatible with polyester resins (adhesion), they shear themselves and have low resistance to UV rays and somehow absorb water; if compared with polyester. Similarly, polyester fibers have greater advantages than polypropylene fibers that have a very low melting point, or polyethylene fibers that on the other hand have a melting point that is too high and are more rigid.
Finalmente, las fibras de vidrio son más abrasivas que las fibras de poliéster y esto se traduce en mayor desgaste de la maquinaria que la procesa. Además de presentar riesgos para la salud de las personas involucradas en su procesamiento. Finally, glass fibers are more abrasive than polyester fibers and this results in greater wear on the machinery that processes it. In addition to presenting risks to the health of the people involved in their processing.
El textil no tejido tricotado comprende entre 60%p/p y 80%p/p de un textil no tejido (1) hecho de fibras sintéticas. En caso que este intervalo se sobrepase y el textil no tejido tricotado incluya más fibra, habrá menor cantidad de microesferas expandibles (3) y la expansión no será significativa, por lo tanto, se pierde volumen y tendrá que usarse más resina, de esta forma el textil no tejido tricotado perdería propiedades mecánicas como rigidizante, pues será más quebradizo, frágil y pesado. Knitted nonwoven fabric comprises between 60% w / w and 80% w / w of a nonwoven textile (1) made of synthetic fibers. If this interval is exceeded and the knitted nonwoven fabric includes more fiber, there will be less amount of expandable microspheres (3) and the expansion will not be significant, therefore, volume is lost and more resin will have to be used, in this way Knitted non-woven textile would lose mechanical properties as stiffener, as it will be more brittle, fragile and heavy.
Dado el caso contrario, donde el textil no tejido tricotado no alcanza a tener el 60%p/p de textil no tejido (1) hecho de fibras sintéticas, las propiedades mecánicas se verían afectadas debido a que no habrá suficiente material base para alojar los componentes restantes del textil no tejido tricotado, disminuyendo el volumen, aumentando la densidad y el peso, y por lo tanto incrementando la demanda de resina. Para la comprensión de la presente invención se definirá "filamentos sintéticos" como aquellos filamentos textiles manufacturados a partir de materia prima natural o materia prima producto de síntesis química. Ejemplo de esto son los filamentos hechos de fibras regeneradas celulósicas, como el rayón, acetato y triacetato; las fibras de polímero como la poliamida, el spandex, el poliéster, o los acrílicos, las fibras de proteína, de caucho, metálicas o las fibras minerales como la fibra de vidrio. In the opposite case, where knitted nonwoven textile does not reach 60% w / w of nonwoven textile (1) made of synthetic fibers, the mechanical properties would be affected because there will not be enough base material to house the remaining components of knitted nonwoven textile, decreasing volume, increasing density and weight, and therefore increasing the demand for resin. For the understanding of the present invention, "synthetic filaments" will be defined as those textile filaments manufactured from natural raw material or chemical synthesis product raw material. Examples of this are filaments made of regenerated cellulosic fibers, such as rayon, acetate and triacetate; polymer fibers such as polyamide, spandex, polyester, or acrylics, protein, rubber, metal or mineral fibers such as glass fiber.
Los filamentos tricotados o cosidos en un textil pueden tener diferentes propósitos funcionales. Tricotar un textil no tejido con filamentos mejora sus propiedades mecánicas, por ejemplo, se logra una mayor resistencia a la tensión en la dirección de los filamentos, una superficie más uniforme y se disminuye la posibilidad que se deshaga el textil durante su manipulación. La presente invención alcanza una mayor resistencia mecánica en comparación con la de los materiales tipo núcleo o de refuerzo tradicionales gracias a la inclusión de filamentos sintéticos (2) cosidos a lo largo del textil no tejido tricotado. La resistencia a la tracción del textil no tejido tricotado es alrededor de siete veces mayor que el textil no tejido sin tricotar, también presenta mayor resistencia a la flexión y rigidez del producto final, aún en elementos como placas planas de grandes superficies. Knitted or sewn filaments in a textile can have different functional purposes. Knitting a nonwoven textile with filaments improves its properties mechanical, for example, a greater tensile strength in the direction of the filaments, a more uniform surface is achieved and the possibility of the textile falling apart during handling is reduced. The present invention achieves greater mechanical strength compared to that of traditional core or reinforcement materials thanks to the inclusion of synthetic filaments (2) sewn along the knitted nonwoven fabric. The tensile strength of knitted nonwoven textile is about seven times greater than nonwoven nonwoven textile, it also has greater resistance to bending and stiffness of the final product, even in elements such as flat plates of large surfaces.
La inclusión de filamentos sintéticos (2) hace posible la fabricación de productos con regiones curvas, debido a que el textil tiene alta resistencia a la flexión, y no se rompe o deshace al ser doblado y presionado. Esta propiedad permite construir piezas como tanques para gas, tuberías y todo tipo de elementos esféricos y curvos, gracias a que el textil no tejido no se deshace durante la fabricación del laminado, y así el producto final conserva en toda su superficie propiedades similares. Esto representa una gran ventaja frente a materiales tipo núcleo o de refuerzos tradicionales como la madera balsa, con la cual es imposible fabricar piezas cilindricas o esféricas, pues sus fibras se rompen al ser dobladas The inclusion of synthetic filaments (2) makes it possible to manufacture products with curved regions, because the textile has high flexural strength, and does not break or undo when folded and pressed. This property allows the construction of parts such as gas tanks, pipes and all kinds of spherical and curved elements, thanks to the fact that the non-woven textile does not melt during the manufacture of the laminate, and thus the final product retains similar properties throughout its surface. This represents a great advantage over core type materials or traditional reinforcements such as balsa wood, with which it is impossible to manufacture cylindrical or spherical pieces, as their fibers break when bent
El textil no tejido tricotado comprende entre 3%p/p y 6%p/p de filamentos sintéticos (2) tricotados en el textil no tejido (1); en caso de que este intervalo se sobrepasase, la flexibilidad del textil no tejido tricotado disminuiría, se encarecería el material y aumentaría la probabilidad de que, durante el proceso de perforado, en el cual se generan las perforaciones (4), se rompan los filamentos sintéticos (2), pues no podrían desplazarse lateralmente cuando las agujas los toquen. Dado el caso contrario, donde no se alcanza el 3%p/p de filamentos sintéticos (2), la resistencia mecánica disminuiría y textil no tejido tricotado tendría las mismas propiedades que el textil sin tricotar. The knitted nonwoven fabric comprises between 3% w / w and 6% w / w synthetic filaments (2) knitted in the nonwoven fabric (1); in case this interval is exceeded, the flexibility of knitted nonwoven textile would decrease, the material would become more expensive and the probability that, during the perforation process, in which the perforations (4) are generated, the filaments will be broken synthetic (2), because they could not move laterally when the needles touch them. In the opposite case, where 3% w / w of synthetic filaments is not reached (2), the mechanical strength would decrease and knitted non-woven textile would have the same properties as the non-knitted textile.
En una modalidad de la invención los filamentos sintéticos (2) tienen un diámetro entre 60tex y 220tex y se separan entre sí dentro del textil no tejido una distancia entre 3mm y 4mm. En una modalidad preferida de la invención, los filamentos sintéticos (2) tienen un diámetro aproximado de 150tex y alcanzan a comprender entre el 3%p/p y 5%p/p del textil no tejido tricotado; los filamentos se separan entre sí dentro del textil no tejido por una distancia de 3,62mm; esta distancia corresponde a una galga número siete (gauge 7) de una máquina de tricotado. In one embodiment of the invention, the synthetic filaments (2) have a diameter between 60tex and 220tex and a distance between 3mm and 4mm is separated from each other within the nonwoven fabric. In a preferred embodiment of the invention, the synthetic filaments (2) have an approximate diameter of 150tex and reach between 3% w / w and 5% w / w of the knitted nonwoven textile; the filaments are separated from each other within the nonwoven textile by a distance of 3.62mm; This distance corresponds to a number seven gauge (gauge 7) of a knitting machine.
En una modalidad de la invención, los filamentos sintéticos (2) pueden ser poliméricos (v.g. de poliéster, polietileno, politetrafluoruro de etileno (PTFE, por sus siglas en inglés), poliolefinas), de vidrio, de carbono, de aramida, y combinaciones de los anteriores. In one embodiment of the invention, the synthetic filaments (2) can be polymeric (eg polyester, polyethylene, ethylene polytetrafluoride (PTFE), polyolefins), glass, carbon, aramid, and combinations of the above.
En una modalidad de la invención, los filamentos sintéticos (2) son filamentos de vidrio recubiertos con politetrafluoruro de etileno. El recubrimiento de PTFE protege las agujas usadas para tricotar el filamento, y las agujas usadas para generar las perforaciones (4), de la abrasión que generaría el contacto directo de las agujas con el filamento de vidrio. In one embodiment of the invention, the synthetic filaments (2) are glass filaments coated with ethylene polytetrafluoride. The PTFE coating protects the needles used to knit the filament, and the needles used to generate the perforations (4), from abrasion that would generate direct contact of the needles with the glass filament.
En una modalidad preferida de la invención, los filamentos sintéticos (2) son de poliéster. Las ventajas que presenta el uso de este material son entre otras: total compatibilidad entre los materiales de la invención (textil no tejido (1) hecho de fibras sintéticas, filamentos sintéticos (2), formulación con microesferas expandibles (3) y resina utilizada para fabricar el compuesto), lo cual asegura una buena adhesión, y reducción de aproximadamente 5%p/p de la cantidad de resina necesaria para conformar un material compuesto. Además, al utilizarse un textil no tejido tricotado compuesto de fibras sintéticas de poliéster, y filamentos sintéticos (2) de poliéster, como material tipo núcleo o de refuerzo en laminados que incluyen resinas poliéster (v.g. isoftálicas, tereftálicas, ortoftálicas), se promueve la adhesión química entre la resina y el textil no tejido tricotado por ser los tres elementos de poliéster (el no tejido, el filamento y la resina de poliéster). In a preferred embodiment of the invention, the synthetic filaments (2) are polyester. The advantages of using this material are among others: total compatibility between the materials of the invention (non-woven textile (1) made of synthetic fibers, synthetic filaments (2), formulation with expandable microspheres (3) and resin used for manufacture the compound), which ensures good adhesion, and approximately 5% w / w reduction in the amount of resin needed to form a composite. In addition, when using a knitted nonwoven fabric composed of synthetic polyester fibers, and synthetic filaments (2) of polyester, as a core or reinforcement material in laminates that include polyester resins (eg isophthalic, terephthalic, orthophthalic), the Chemical adhesion between the resin and the knitted nonwoven textile for being the three polyester elements (the nonwoven, the filament and the polyester resin).
Durante el proceso de fabricación del material compuesto, estas dos partes, es decir, el textil no tejido tricotado y la resina se convierten en un solo elemento. Lo anterior previene la formación de defectos en el laminado final, como burbujas y zonas de baja impregnación, lo cual asegura una óptima adhesión del compuesto. During the manufacturing process of the composite material, these two parts, that is, the knitted nonwoven textile and the resin become a single element. The above prevents the formation of defects in the final laminate, such as bubbles and areas of low impregnation, which ensures optimum adhesion of the compound.
En comparación con la buena adhesión del poliéster, la aramida presenta problemas de adhesión entre capas del mismo material. Una solución común al problema, es la adición de un manto de fibra de vidrio entre capas de aramida. Debido a que ambos materiales tienen un índice de elongación a la tensión similar (3%), esto los hace compatibles, sin embargo, el laminado aumenta considerablemente de peso. El poliéster tiene un peso específico de 1.38gr/cm3, menor que el poliparafenileno tereftalamida (1.44gr/cm3), carbono (1.58gr/cm3) y la fibra de vidrio (2.2gr/cm3). La madera balsa teniendo un menor peso específico que el poliéster, solo es útil para fabricar piezas planas y con grados mínimos de curvatura. Por otro lado, el manto de fibra de vidrio además de ser hasta cuatro veces más pesado que el textil no tejido tricotado de la presente invención, presenta peligros para la salud humana durante su manipulación. Los efectos de la exposición a la fibra de vidrio son variados y dependen del tamaño de las fibras en cuestión. Puede presentarse irritación de garganta, ojos y piel, irritación de glándulas sudoríparas, alteraciones pulmonares y neurológicas. También es posible que la lana de vidrio tenga efectos cancerígenos. Compared to the good adhesion of polyester, aramid presents problems of adhesion between layers of the same material. A common solution to the problem is the addition of a fiberglass mantle between aramid layers. Because both materials have a similar strain elongation rate (3%), this makes them compatible, however, the laminate increases considerably in weight. Polyester has a specific gravity of 1.38gr / cm 3 , lower than polyparaphenylene terephthalamide (1.44gr / cm 3 ), carbon (1.58gr / cm 3 ) and glass fiber (2.2gr / cm 3 ). Raft wood having a lower specific weight than polyester, is only useful for manufacturing flat pieces and with minimum degrees of curvature. On the other hand, the fiberglass mantle, in addition to being up to four times heavier than the knitted nonwoven fabric of the present invention, presents dangers for human health during handling. The effects of fiberglass exposure are varied and depend on the size of the fibers in question. There may be irritation of the throat, eyes and skin, irritation of sweat glands, pulmonary and neurological disorders. It is also possible that glass wool has carcinogenic effects.
Los tipos de fibra de vidrio más comúnmente utilizados son principalmente de vidrio clase E (vidrio de alumino-borosilicato con menos del 1% p/p de óxidos alcalinos, principalmente para plástico reforzado con fibra de vidrio). También se utilizan: vidrio clase A (vidrio cálcico con un poco o nada de óxido de boro), vidrio clase E-CR (con silicato alumino-cálcico, con menos del 1% p/p de óxidos alcalinos, tiene alta resistencia a los ácidos), vidrio clase C (vidrio sódico-cálcico con alto contenido de óxido de boro, que se utiliza, por ejemplo, para fibra de vidrio de primera necesidad), vidrio clase D (vidrio borosilicato con alta constante dieléctrica), vidrio clase R (vidrio aluminosilicato sin MgO y CaO para altos requerimientos mecánicos), y vidrio clase S (vidrio aluminosilicato sin CaO, pero con alto contenido de MgO para alta resistencia). The most commonly used types of fiberglass are mainly class E glass (alumino-borosilicate glass with less than 1% w / w alkaline oxides, mainly for glass fiber reinforced plastic). Also used: class A glass (calcium glass with little or no boron oxide), glass E-CR class (with alumino-calcium silicate, with less than 1% w / w alkaline oxides, has high resistance to acids), class C glass (sodium-calcium glass with high boron oxide content, which is used, for example, for staple fiberglass), class D glass (borosilicate glass with high dielectric constant), class R glass (aluminosilicate glass without MgO and CaO for high mechanical requirements), and class S glass (aluminosilicate glass without CaO, but with high MgO content for high strength).
La fibra de carbono tiene poca resistencia al impacto y es por esta razón que se usa en combinación con mantos de fibra de vidrio. De nuevo, surge el problema de un aumento sustancial del peso final del compuesto. La fibra de carbono tiene muy baja resistencia a la fricción y por eso no se usa como material de revestimiento. Las fibras de carbono sueltas y que flotan en el aire son también peligrosas para la salud humana. Las telas de fibra de aramida o carbono son flexibles, pero no se deben doblar. Esto genera fricción que deteriora las fibras de la tela y como consecuencia el material pierde resistencia. De esta forma se producen problemas de moldeo, específicamente en las juntas de los moldes. Portal motivo se requiere de un material de refuerzo extra como un manto de fibra de vidrio que hace que el compuesto aumente en peso. Carbon fiber has little impact resistance and it is for this reason that it is used in combination with fiberglass mantles. Again, the problem of an increase arises substantial of the final weight of the compound. Carbon fiber has very low resistance to friction and is therefore not used as a coating material. Loose and floating carbon fibers in the air are also dangerous for human health. Aramid or carbon fiber fabrics are flexible, but should not be folded. This generates friction that deteriorates the fibers of the fabric and as a consequence the material loses resistance. In this way molding problems occur, specifically in the mold joints. Portal motif requires an extra reinforcement material such as a fiberglass mantle that causes the compound to increase in weight.
Otra ventaja del uso del poliéster es su color, las fibras de poliéster puede ser blanco mate, semi mate y brillante, también se encuentra en un tono casi trasparente, lo que lo hace un material ideal para la fabricación de piezas translúcidas y trasparentes. El color amarillo de la aramida y negro de la fibra de carbono, limita sus aplicaciones por no ser materiales traslucidos cuando son impregnados con la resina, lo que reduce su versatilidad. El poliéster al ser de color blanco irradia los rayos UV y es altamente resistente a estos, al contrario de las aramidas que son sensibles a los rayos solares y a los ambientes con alta disipación UV El poliéster tiene excelente resistencia a los ácidos (ácido sulfúrico, ácido clorhídrico, etc.); oxidantes (ácido crómico y ácido nítrico, etc.) y en presentaciones especiales tiene resistencia a las bases. Las aramidas tienen poca resistencia a los ácidos fuertes, bases y algunos oxidantes como el hipoclorito de sodio. El poliéster es un material inerte, no se pudre, no le dan hongos y no es atacado por bacterias ni algas cuando está en contacto con agua dulce o agua de mar. Es un material de fácil manejo, fácil de cortar, de moldear y manipular especialmente en el momento del moldeo. Por el contrario, las aramidas son difíciles de cortar tanto en su estado de material de refuerzo como en el laminado final, y las herramientas para su corte o pulido son limitadas, como aquellas compuestas de carburo de silicio. Por otro lado, la fibra y los laminados de aramida no se pueden lijar pues el tejido tiende a producir pelusa, esto debido a su alto grado de abrasividad. Another advantage of the use of polyester is its color, the polyester fibers can be matt white, semi matt and glossy, it is also in an almost transparent tone, which makes it an ideal material for the manufacture of translucent and transparent parts. The aramid yellow and carbon fiber black color limits its applications because they are not translucent materials when impregnated with the resin, which reduces its versatility. The polyester being white radiates UV rays and is highly resistant to them, unlike aramids that are sensitive to sunlight and to environments with high UV dissipation. Polyester has excellent resistance to acids (sulfuric acid, acid hydrochloric, etc.); oxidants (chromic acid and nitric acid, etc.) and in special presentations it has resistance to the bases. Aramids have little resistance to strong acids, bases and some oxidants such as sodium hypochlorite. Polyester is an inert material, does not rot, does not give fungi and is not attacked by bacteria or algae when in contact with fresh water or seawater. It is a material that is easy to handle, easy to cut, mold and handle especially at the time of molding. On the contrary, aramids are difficult to cut both in their state of reinforcement material and in the final laminate, and the tools for cutting or polishing are limited, such as those composed of silicon carbide. On the other hand, fiber and Aramid laminates cannot be sanded as the fabric tends to produce lint, this due to its high degree of abrasiveness.
El uso de las aramidas es ampliamente difundido en aplicaciones donde se requiere alta resistencia al impacto como en elementos de blindaje balístico, tablas de skate boarding, construcción aeronáutica y naval, y protección contra incendios. The use of aramid is widespread in applications where high impact resistance is required, such as ballistic armor elements, skate boarding boards, aeronautical and naval construction, and fire protection.
Por otro lado, la fibra de carbono se utiliza especialmente en aplicaciones que exijan una disminución importante en el peso de producto como en el sector automotriz, aeronáutico, en construcción de bicicletas, etc. On the other hand, carbon fiber is especially used in applications that require a significant decrease in product weight as in the automotive, aeronautical, bicycle construction, etc.
Se busca que los materiales tipo núcleo o reforzantes aporten un mayor volumen al compuesto sin incrementar el peso del compuesto. Para esto, y para aumentar la cohesión entre las fibras no tejidas, en la presente invención, el textil no tejido tricotado se impregna en una formulación que incluye los siguientes componentes que se listan a continuación: It is sought that the core or reinforcing materials contribute a greater volume to the compound without increasing the weight of the compound. For this, and to increase the cohesion between the non-woven fibers, in the present invention, the knitted nonwoven fabric is impregnated in a formulation that includes the following components listed below:
Tabla 1. Composición de la formulación Table 1. Composition of the formulation
Figure imgf000014_0001
Figure imgf000014_0001
El agua compone la mayor parte de la formulación y se utiliza como vehículo para los demás componentes. Sin embargo, el textil no tejido tricotado final tiene una cantidad mínima de agua (menor al 0,05% en peso), pues, el agua es un componente perjudicial para la calidad de los laminados con resina. Esto se debe a que, durante el proceso de curado de resinas, se genera una reacción exotérmica que produce calor suficiente para evaporar el agua presente en el laminado; al evaporarse el agua se generan defectos, principalmente burbujas. Water makes up most of the formulation and is used as a vehicle for the other components. However, the final knitted nonwoven fabric has a minimum amount of water (less than 0.05% by weight), since water is a harmful component for the quality of resin laminates. This is because, during the resin curing process, an exothermic reaction is generated that produces enough heat to evaporate the water present in the laminate; When the water evaporates, defects are generated, mainly bubbles.
La resina le otorga al textil no tejido tricotado mayor rigidez y adherencia entre las fibras, permitiendo que el textil no se deshaga fácilmente y su transporte y manipulación sea más fácil. Dicha resina puede seleccionarse del grupo compuesto por resinas acrílicas base agua y resinas acrílicas estirenadas. The resin gives the knitted nonwoven fabric greater stiffness and adhesion between the fibers, allowing the textile not to be undone easily and its transport and handling is easier. Said resin can be selected from the group consisting of water-based acrylic resins and styrene acrylic resins.
En una modalidad preferida de la invención se utiliza resina acrílica a base de agua, debido que es altamente compatible con las fibras de poliéster. In a preferred embodiment of the invention, water-based acrylic resin is used, because it is highly compatible with polyester fibers.
El textil no tejido es impregnado con la formulación anterior con el objetivo principal de introducir microesferas expandibles (3) en el textil no tejido. Las microesferas expandibles (3) desempeñan un papel importante debido a que incrementan el volumen del textil no tejido tricotado. Este aumento de volumen representa un bajo incremento peso. La baja densidad (desde 25 kg/m3) de las microesferas expandibles (3) hace posible la fabricación de piezas de gran tamaño ahorrando hasta un 35% de peso; sin que el material compuesto pierda resistencia mecánica o química. The nonwoven textile is impregnated with the previous formulation with the main objective of introducing expandable microspheres (3) into the nonwoven textile. The expandable microspheres (3) play an important role because they increase the volume of knitted nonwoven fabric. This increase in volume represents a low increase in weight. The low density (from 25 kg / m 3 ) of the expandable microspheres (3) makes it possible to manufacture large pieces saving up to 35% in weight; without the composite material losing mechanical or chemical resistance.
Además, las microesferas expandibles (3) son resilientes y por esta razón poseen un alto índice de elasticidad. Cuando están expandidas soportan altas presiones, pero si la presión es removida, las microesferas expandibles (3) vuelven a su tamaño original. Cuando las microesferas expandibles (3) son saturadas con resina, estas adquieren mayor resistencia mecánica al ganar rigidez. In addition, the expandable microspheres (3) are resilient and for this reason have a high elasticity index. When expanded they withstand high pressures, but if the pressure is removed, the expandable microspheres (3) return to their original size. When the expandable microspheres (3) are saturated with resin, they acquire greater mechanical strength by gaining rigidity.
Por otro lado, al utilizar las microesferas expandibles (3), hay una significante reducción de resina utilizada debido a que las microesferas expandibles (3) ocupan el espacio que ocuparía la resina en un material compuesto. Otra ventaja es que cuando las microesferas están incorporadas en el textil no tejido tricotado, estas presentan buena resistencia a altas temperaturas (< 230°C). Luego de la expansión las microesferas expandibles (3) alcanzan una densidad de 25kg/m3, 0, 1 μιη de espesor y 40μιη de diámetro, en su estado no expandido su valor típico de densidad es de 1000kg/m3, 2μιη de espesor y 12μιη de diámetro. Las microesferas expandibles (3) consisten habitualmente de una estructura externa compuesta que puede ser de vidrio, cerámica o polímero. On the other hand, when using the expandable microspheres (3), there is a significant reduction of resin used because the expandable microspheres (3) occupy the space that the resin would occupy in a composite material. Another advantage is that when the microspheres are incorporated in the knitted nonwoven fabric, they have good resistance to high temperatures (<230 ° C). After expansion, the expandable microspheres (3) reach a density of 25kg / m 3 , 0, 1 μιη thick and 40μιη in diameter, in their unexpanded state their typical density value is 1000kg / m 3 , 2μιη thick and 12μιη in diameter. The expandable microspheres (3) usually consist of a composite external structure that can be made of glass, ceramic or polymer.
La formulación utilizada en la presente invención, está conformada por entre 5%p/p y 40%p/p de microesferas expandibles (3). The formulation used in the present invention is comprised of between 5% w / w and 40% w / w of expandable microspheres (3).
Haciendo referencia a la FIG.2, en una modalidad de la invención las microesferas expandibles (3) tienen una superficie (5) de resina sintética como poliestireno, copolimeros de estireno, cloruro de polivinilo, copolimeros de cloruro de vinilo, copolimeros de cloruro de vinilideno y similares. También, las microesferas expandibles (3) incorporan un agente de expansión (6) químico o físico que puede ser azodicarbonamida, isobutano, o refrigerantes compuestos por clorofluorocarbonos. Posterior a la expansión, su superficie expandida (7) disminuye su grosor y aumenta su área, y el agente de expansión (6) reacciona, aumentando la presión y constituyendo el interior (8) de la microesfera expandible (3). Referring to FIG. 2, in one embodiment of the invention the expandable microspheres (3) have a synthetic resin surface (5) such as polystyrene, styrene copolymers, polyvinyl chloride, vinyl chloride copolymers, chloride copolymers Vinylidene and the like. Also, the expandable microspheres (3) incorporate a chemical or physical expansion agent (6) that can be azodicarbonamide, isobutane, or refrigerants composed of chlorofluorocarbons. After the expansion, its expanded surface (7) decreases its thickness and increases its area, and the expansion agent (6) reacts, increasing the pressure and constituting the interior (8) of the expandable microsphere (3).
En una modalidad preferida las microesferas expandibles (3) son termoplásticas, cuentan con un exterior de copolimero de: cloruro de vinilideno o acrilonitrilo y metilmetacrilato; y un interior de isobutano. En una modalidad de la invención el porcentaje de microesferas expandibles (3) varía entre 5%p/p y 30%p/p debido a que un porcentaje menor no lograría el aumento de volumen deseado y un porcentaje mayor de dichas microesferas expandibles (3) no lograría contenerse en el textil no tejido (1) Diversas reacciones químicas que se generan en disoluciones acuosas necesitan que el pH del sistema se mantenga constante, para evitar que ocurran otras reacciones no deseadas. Por tal motivo se agrega un balanceador de ph a la formulación que se selecciona del grupo compuesto por amoniaco, monoetanolamina (MEA), dietanolamina (DEA), trietanolamina (TEA), carbonato de sodio, bicarbonato de sodio, calcio y combinaciones de los mismos. El grupo compuesto por el carbonato de sodio, el bicarbonato de sodio y el calcio deben ser diluidos en agua. Para aumentar la velocidad de la reacción química que sufre la formulación se agrega un catalizador, que puede ser, por ejemplo, sulfato de amonio. In a preferred embodiment the expandable microspheres (3) are thermoplastic, they have a copolymer exterior of: vinylidene or acrylonitrile chloride and methyl methacrylate; and an isobutane interior. In one embodiment of the invention the percentage of expandable microspheres (3) varies between 5% w / w and 30% w / w because a smaller percentage would not achieve the desired volume increase and a larger percentage of said expandable microspheres (3) it would not be able to contain itself in the non-woven textile (1) Various chemical reactions that are generated in aqueous solutions require that the pH of the system be kept constant, to prevent other unwanted reactions from occurring. For this reason a ph balancer is added to the formulation that is selected from the group consisting of ammonia, monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), sodium carbonate, sodium bicarbonate, calcium and combinations thereof. The group consisting of sodium carbonate, sodium bicarbonate and calcium must be diluted in water. To increase the speed of the chemical reaction undergone by the formulation, a catalyst is added, which can be, for example, ammonium sulfate.
Para incrementar la viscosidad y la estabilidad de la formulación y facilitar la formación de suspensiones sin alterar sus propiedades se añade un espesante que puede ser, por ejemplo, polímeros en dispersión acuosa de ésteres acrílicos. To increase the viscosity and stability of the formulation and facilitate the formation of suspensions without altering its properties, a thickener is added which can be, for example, polymers in aqueous dispersion of acrylic esters.
Para que las microesferas expandibles (3) y otras partículas de la formulación estén distribuidas de manera homogénea y se dispongan de igual manera en el textil cuando este sea impregnado en la formulación, se le agrega a esta un aditivo dispersante que puede ser, por ejemplo, una mezcla de alcoholes especiales no iónicos. So that the expandable microspheres (3) and other particles of the formulation are distributed in a homogeneous manner and are arranged equally in the textile when it is impregnated in the formulation, a dispersing additive is added thereto which can be, for example , a mixture of special non-ionic alcohols.
Durante la elaboración de la formulación y su aplicación en el textil no tejido tricotado la presencia de burbujas o espuma es indeseable. Puesto que se pueden ocasionar problemas de impregnación principalmente debido a que donde hay burbujas hay aire atrapado y una vez la burbuj a estalla la tela no tejida tricotada no quedara impregnada por la formulación. Además, las burbujas pueden ocasionar pérdidas por concepto de derrame, reducir la capacidad de los sistemas abiertos, alterar las condiciones de protección e higiene del trabajo, etc. Por tal motivo se añade un antiespumante a dicha formulación que puede ser, por ejemplo, un material no iónico a base de silicona modificada. During the preparation of the formulation and its application in knitted non-woven textile the presence of bubbles or foam is undesirable. Since impregnation problems can be caused mainly because where there are bubbles there is trapped air and once the bubble bursts the knitted non-woven fabric will not be impregnated by the formulation. In addition, bubbles can cause spillage losses, reduce the capacity of open systems, alter the protection and hygiene conditions of work, etc. For this reason, an antifoam is added to said formulation which can be, for example, a non-ionic material based on modified silicone.
Algunas fibras utilizadas para la fabricación del textil no tejido (1) tienen baja absorción, por tal motivo se utiliza un agente humectante para que la resina se adhiera a las fibras, dicho agente humectante puede ser, por ejemplo, xilenosulfonato de sodio o un alquilfenol. Some fibers used for the manufacture of the nonwoven textile (1) have low absorption, for this reason a wetting agent is used so that the resin adheres to the fibers, said wetting agent can be, for example, sodium xylenesulfonate or an alkylphenol .
En una modalidad de la invención (no ilustrada), el textil no tejido tricotado impregnado con la formulación anteriormente descrita, pasa por el medio de dos o más rodillos tipo foulard donde se retira el exceso de formulación y se graba sobre una o ambas caras un patrón formado por relieves y canales entrecruzados. Este patrón favorece el flujo de resina sobre la superficie del textil no tejido tricotado durante la fabricación del laminado e incrementa la adhesión entre capas de este. Luego de la impregnación con la formulación descrita anteriormente, el textil no tejido tricotado se lleva a un proceso de calentamiento donde se expanden las microesferas expandibles (3) y se cura la resina acrílica. Posteriormente el textil no tejido tricotado pasa por un proceso de perforado donde por medio de agujas precalentadas a una temperatura entre 138°C y 148°C se realizan perforaciones (4) en el textil no tejido tricotado. Dichas perforaciones (4) se crean cuando la aguja desplaza el material hacia los lados al atravesar el textil no tejido tricotado de un lado al otro. Estas perforaciones (4) incrementan la adhesión entre las capas de un laminado realizado con el textil no tejido tricotado de la presente invención. Debido a que se crean conexiones en forma de "I" entre las zonas de resina, tanto en elementos planos como en elementos cilindricos o esféricos. In one embodiment of the invention (not illustrated), the knitted nonwoven fabric impregnated with the formulation described above passes through the middle of two or more foulard rollers where the excess formulation is removed and engraved on one or both sides a pattern formed by interlocking reliefs and channels. This pattern favors the flow of resin on the surface of the knitted nonwoven fabric during the manufacture of the laminate and increases the adhesion between layers thereof. After impregnation with the formulation described above, the knitted nonwoven fabric is brought to a heating process where the expandable microspheres (3) expand and the acrylic resin is cured. Subsequently, the knitted nonwoven fabric goes through a perforation process where, by means of preheated needles at a temperature between 138 ° C and 148 ° C, perforations (4) are made in the knitted nonwoven textile. Said perforations (4) are created when the needle moves the material sideways through the knitted nonwoven fabric from one side to the other. These perforations (4) increase the adhesion between the layers of a laminate made with the knitted nonwoven fabric of the present invention. Because "I" shaped connections are created between the resin zones, both in flat elements and in cylindrical or spherical elements.
En una modalidad de la invención el número de perforaciones (4) son entre 6298 y 6554 perforaciones/m2. En una modalidad de la invención el número de perforaciones (4) son aproximadamente 6426 perforaciones/m2. In one embodiment of the invention the number of perforations (4) is between 6298 and 6554 perforations / m 2 . In one embodiment of the invention the number of perforations (4) is approximately 6426 perforations / m 2 .
Posterior al proceso de perforado, el textil no tejido tricotado está listo para ser utilizado como material tipo núcleo de un laminado el cual puede ser elaborado utilizando resinas seleccionadas del grupo compuesto por resina de poliéster ortoftálicas, resina de poliéster isoftálicas, resina de poliéster tereftálicas, resina de poliéster clorendicas, resina epoxi vinil éster bromada en base bisfenol-A, resina epoxi Novolac basada en vinil éster, resina epoxi a base de bisfenol-A curada con aminas, resina epoxi a base de bisfenol-A curada con anhídridos, resina bisfenol-A fumarato bromada, resina de óxido de divinileno, resinas fenólicas, resina de polietileno, resina PA 66 agua saturada, resina PA 66 Seco, y combinaciones de las mismas. En una modalidad preferida, el textil no tejido tricotado se usa en combinación con resinas de poliéster, debido a que esto incrementa la compatibilidad de componentes, aumentando la adhesión y la calidad final del producto. Haciendo referencia a la FIG.3 se utilizan varias capas, orientadas quasi isotópicamente, del textil no tejido tricotado de la presente invención para la fabricación de un material compuesto. Para la comprensión de la presente invención se determina que la orientación está dada por la dirección de los filamentos sintéticos (2) en el textil no tejido tricotado. Donde la primera capa (12) tiene una orientación a 0o, la segunda capa (11) tiene una orientación a 45 °, la tercera capa (10) tiene una orientación a 90° y la cuarta capa (9) tiene una orientación a 135°. Un compuesto quasi isotópico fabricado con el textil no tejido tricotado de la invención, de lm2 puede tener un peso entre 9000g/m2 y 11000g/m2. Donde aproximadamente un 5%p/p del compuesto lo constituye el textil no tejido tricotado y el 95%p/p restante lo constituye la resina. Esto significa que con solo un 5% de textil no tejido tricotado, el compuesto deja de ser quebradizo y por el contrario adquiere unas propiedades mecánicas y químicas únicas a muy bajo peso. After the perforation process, the knitted nonwoven fabric is ready to be used as a core material of a laminate which can be made using resins selected from the group consisting of orthophthalic polyester resin, isophthalic polyester resin, terephthalic polyester resin, chlorenic polyester resin, brominated vinyl ester epoxy resin based on bisphenol-A, vinyl ester-based Novolac epoxy resin, amine-cured bisphenol-A epoxy resin, anhydrous cured bisphenol-A epoxy resin, bisphenol resin -A brominated fumarate, divinylene oxide resin, phenolic resins, polyethylene resin, PA 66 saturated water resin, PA 66 Dry resin, and combinations thereof. In a preferred embodiment, knitted nonwoven textile is used in combination with polyester resins, because this increases component compatibility, increasing adhesion and final product quality. Referring to FIG. 3, several layers, quasi-isotopically oriented, of the knitted nonwoven fabric of the present invention are used for the manufacture of a composite material. For the understanding of the present invention it is determined that the orientation is given by the direction of the synthetic filaments (2) in the knitted nonwoven fabric. Where the first layer (12) has a 0 or orientation, the second layer (11) has a 45 ° orientation, the third layer (10) has a 90 ° orientation and the fourth layer (9) has an orientation to 135 °. A quasi isotopic compound made with the knitted nonwoven fabric of the invention, of lm2, can have a weight between 9000g / m 2 and 11000g / m 2 . Where approximately 5% w / w of the compound is the knitted nonwoven fabric and the remaining 95% w / w is the resin. This means that with only 5% knitted nonwoven textile, the compound is no longer brittle and on the contrary acquires unique mechanical and chemical properties at very low weight.
Esto aumenta la rigidez y la resistencia a la flexión y la tensión del producto final, posibilitándose la fabricación de piezas planas con superficies amplias que resisten la flexión y elementos cilindricos como tanques o tuberías capaces de resistir altas presiones. This increases the stiffness and resistance to bending and tension of the final product, making it possible to manufacture flat pieces with large surfaces that resist bending and cylindrical elements such as tanks or pipes capable of withstanding high pressures.
Haciendo referencia a las FIG.4 y FIG.5, en una modalidad de la invención, se fabrica una tubería con el textil no tejido tricotado. Inicialmente se aplica un desmoldante (13) sobre un mandril donde se fabricará la tubería, dicho desmoldante (13) permite que la tubería pueda salir fácilmente del mandril al finalizar su conformación. Este desmoldante se selecciona del grupo compuesto por aceites vegetales como aceite de coco, aceites minerales, hidrocarburos saturados de cadena larga, alcohol poli vinílico y combinaciones de los mismos. Posteriormente se aplica una capa interior de resina (14), y se procede a entorchar una cinta (15) de textil no tejido tricotado, formando un arreglo aleatorio que asegura que las capas de la tubería tengan una dirección diferente y que sus perforaciones (4) no se enfrenten. Así se crean juntas en forma de "I" (16) por donde se inserta la resina (14), garantizando una excelente adherencia entre capas y una mayor rigidez. Referring to FIG. 4 and FIG. 5, in one embodiment of the invention, a pipe is made of knitted nonwoven fabric. Initially a release agent (13) is applied on a mandrel where the pipe will be manufactured, said release agent (13) allows the pipe to easily exit the mandrel at the end of its conformation. This release agent is selected from the group consisting of vegetable oils such as coconut oil, mineral oils, long chain saturated hydrocarbons, polyvinyl alcohol and combinations thereof. Subsequently, an inner layer of resin (14) is applied, and a knitted nonwoven textile belt (15) is wound, forming a random arrangement that ensures that the layers of the pipe have a different direction and that their perforations (4 ) I dont know face. This creates joints in the form of "I" (16) where the resin (14) is inserted, ensuring excellent adhesion between layers and greater rigidity.
De este modo es factible fabricar diferentes tipos de tubería donde se utilice el textil no tejido tricotado de la invención en combinación con otros materiales, por ejemplo: fibra de vidrio, fibra de carbono, aramidas, resina epóxicas, resina de poliéster saturada, etc, según su uso y proceso de fabricación. In this way it is feasible to manufacture different types of pipes where the knitted nonwoven fabric of the invention is used in combination with other materials, for example: glass fiber, carbon fiber, aramid, epoxy resin, saturated polyester resin, etc, according to its use and manufacturing process.
La presente invención incluye un método para la fabricación de un textil no tejido tricotado que comprende las siguientes etapas: The present invention includes a method for manufacturing a knitted nonwoven fabric comprising the following steps:
a) tricotar un textil no tejido (1) con filamentos sintéticos (2);  a) knit a non-woven textile (1) with synthetic filaments (2);
b) impregnar el textil no tejido (1) con la formulación (anteriormente descrita)que contiene microesferas expandibles (3); y,  b) impregnate the nonwoven fabric (1) with the formulation (described above) containing expandable microspheres (3); Y,
c) someter a calentamiento el textil no tejido (1) de la etapa (b) a una temperatura entre 120°C y 140°C y d) perforar el textil no tejido de la etapa c).  c) heat the nonwoven fabric (1) of stage (b) to a temperature between 120 ° C and 140 ° C and d) perforate the nonwoven fabric of stage c).
En una modalidad de la presente invención y previo al proceso anteriormente descrito se debe contar con un textil no tejido. Un proceso de fabricación de un textil no tejido, es el indicado en la FIG.6 y posterior a la apertura de una fibra prensada (paca), la fibra pasa por una abridora (17) para individualizar las fibras. Luego las fibras pasan por un cargador con el fin de transportar las fibras sueltas de manera controlada por medio de una foto celda a una carda (18) que orienta y peina las fibras formando un velo. Dicho velo pasa por una maquina donde se le cambia la dirección al velo a 90° y se le da el espesor a la tela (maquina llamada en ingles Cross lapper). In an embodiment of the present invention and prior to the process described above, a nonwoven fabric must be available. A manufacturing process of a non-woven textile is indicated in FIG. 6 and after the opening of a pressed fiber (bale), the fiber passes through an opener (17) to individualize the fibers. The fibers then pass through a loader in order to transport the loose fibers in a controlled manner by means of a photo cell to a card (18) that guides and combs the fibers forming a veil. This veil passes through a machine where the direction of the veil is changed to 90 ° and the thickness is given to the fabric (machine called in English Cross lapper).
El espesor puede variar entre lmm y 10mm. En una modalidad de la invención dicho espesor puede ser de 2mm, 2,5mm, 3mm, 3,5mm, 4mm, 5mm, 6mm, 7mm, 8mm, 9mm o 10mm. En una modalidad de la invención el espesor es entre 2mm y 4mm. En una modalidad de la invención el espesor es 2,5mm Del cross-lapper sale una napa (19), es decir varias capas de velos (de acuerdo al espesor de la tela) que pasa por una calandra (20) fría con el fin de bajarle el espesor. La napa resultante pasa por una pre punzonadora (no ilustrada) y después por una punzonadora (21) que le confiere resistencia mecánica a la napa. Lo anterior se logra mediante una serie de agujas que re orientan las fibras en sentido vertical. Luego de esto la tela cruda se enrolla en un cilindro formando el rollo crudo de textil no tejido (22). The thickness can vary between lmm and 10mm. In one embodiment of the invention said thickness can be 2mm, 2.5mm, 3mm, 3.5mm, 4mm, 5mm, 6mm, 7mm, 8mm, 9mm or 10mm. In one embodiment of the invention the thickness is between 2mm and 4mm. In one embodiment of the invention the thickness is 2.5mm. From the cross-lapper comes a napa (19), that is to say several layers of veils (according to the thickness of the fabric) that passes through a cold calender (20) in order to lower the thickness. The resulting napa passes through a pre punching machine (not illustrated) and then through a punching machine (21) that confers mechanical strength to the nappa. This is achieved through a series of needles that reorient the fibers vertically. After this the raw cloth is rolled in a cylinder forming the raw roll of nonwoven textile (22).
Haciendo referencia a la FIG.7, en una modalidad de la presente invención, el rollo crudo de textil no tejido (22) pasa por el proceso de tricotado (23), donde se cosen filamentos sintéticos (2), en la dirección longitudinal del rollo crudo de textil no tejido (22). En una modalidad preferida de la invención el tricotado se realiza con un equipo que usa una galga siete (gauge 7, en inglés) el cual cose los filamentos con una distancia de 3,62mm entre ellos. Haciendo referencia a la FIG.7 en una modalidad de la presente invención y finalizado el proceso de tricotado, el rollo del textil no tejido tricotado se desenrolla para pasar por el proceso de impregnación (24) donde se impregna con la formulación que consta de agua, resina acrílica, microesferas expandibles (3) y aditivos. Posteriormente se retira el exceso de formulación por medio de dos cilindros tipo Foulard ubicados en paralelo que giran en direcciones opuestas y generan presión sobre el textil no tejido tricotado, retirando el excedente de formulación contenido en el textil no tejido tricotado. De esta forma y con el textil no tejido tricotado aun húmedo se procede a calentar el textil no tejido tricotado dentro de un rango de temperatura de 120°C a 140°C. En una modalidad preferida de la invención la temperatura varía entre 120°C y 130°C. Este proceso de calentamiento puede realizarse en un horno (25) o en una secadora de cilindros calentados por vapor, donde la resina de la formulación se cura y la microesferas expandibles (3) se expanden, así la tela sale seca y se enrolla de nuevo en una enrolladora (26). Referring to FIG. 7, in one embodiment of the present invention, the raw nonwoven textile roll (22) goes through the knitting process (23), where synthetic filaments (2) are sewn, in the longitudinal direction of the raw roll of nonwoven textile (22). In a preferred embodiment of the invention, knitting is performed with equipment using a seven gauge (gauge 7, in English) which sews the filaments with a distance of 3.62mm between them. Referring to FIG. 7 in an embodiment of the present invention and after the knitting process is finished, the knitted nonwoven roll is unwound to pass through the impregnation process (24) where it is impregnated with the formulation consisting of water , acrylic resin, expandable microspheres (3) and additives. Subsequently, the excess formulation is removed by means of two Foulard-type cylinders located in parallel that rotate in opposite directions and generate pressure on the knitted nonwoven fabric, removing the excess formulation contained in the knitted nonwoven textile. In this way and with the knitted nonwoven fabric still wet, the knitted nonwoven fabric is heated within a temperature range of 120 ° C to 140 ° C. In a preferred embodiment of the invention the temperature varies between 120 ° C and 130 ° C. This heating process can be carried out in an oven (25) or in a dryer of steam-heated cylinders, where the resin of the formulation is cured and the expandable microspheres (3) expand, thus the fabric comes out dry and is rolled again in a winder (26).
El textil no tejido tricotado debe contar con un espesor menor a 10mm, ya que un espesor mayor no permitiría que las microesferas expandibles (3) al interior del textil reaccionaran. Dicho espesor es controlado por la presión que se les aplica a los cilindros del foulard para retirar el exceso de formulación. En una modalidad de la invención los cilindros que retiran el exceso de formulación aplican una presión entre 137,9kPa(20psi) y 344,7kPa (50psi) sobre el textil no tejido tricotado. En una modalidad preferida de la invención los cilindros que retiran el exceso de formulación aplican una presión de 275,8kPa (40psi) sobre el textil no tejido tricotado The knitted non-woven textile must have a thickness of less than 10mm, since a thicker thickness would not allow the expandable microspheres (3) inside the textile to react. Said thickness is controlled by the pressure applied to the foulard cylinders to remove excess formulation. In one embodiment of the invention the cylinders that remove the excess formulation apply a pressure between 137.9kPa (20psi) and 344.7kPa (50psi) on the knitted nonwoven fabric. In a preferred embodiment of the invention cylinders that remove excess formulation apply a pressure of 275.8kPa (40psi) on knitted nonwoven fabric
Haciendo referencia a la FIG.7, el último paso del método de la presente invención que se lleva a cabo con el textil no tejido tricotado es el perforado (27). Posterior al proceso de curado la tela se desenrolla nuevamente para pasar por una perforadora (28), esto con el fin de hacerle perforaciones (4) a la tela, las cuales proporcionan al producto final mayor resistencia y adherencia entre las capas del laminado, debido a que la resina del compuesto penetra por estas perforaciones (4) y se crea un tipo de conexión entre las capas de resina que asegura la unión. Referring to FIG. 7, the last step of the method of the present invention carried out with knitted nonwoven fabric is perforation (27). After the curing process the fabric is unwound again to pass through a perforator (28), this in order to make perforations (4) to the fabric, which provide the final product with greater resistance and adhesion between the layers of the laminate, due to to that the resin of the compound penetrates through these perforations (4) and creates a type of connection between the layers of resin that ensures the union.
Las perforaciones (4) se generan por medio de agujas calientes que sellan los orificios impidiendo que estos se cierren. Preferiblemente, dichas agujas son de punta roma lo cual permite que tanto el no tejido como los filamentos en este se desplacen en lugar de romperse. The perforations (4) are generated by means of hot needles that seal the holes preventing them from closing. Preferably, said needles are blunt tip which allows both the nonwoven and the filaments therein to move instead of breaking.
Es importante considerar que el número de perforaciones (4) y la distancia entre ellas en el textil no tejido tricotado, también depende de la tensión del textil no tejido tricotado con el cual se alimenta la perforadora (28), a mayor tensión más perforaciones (4) y a menor tensión menos perforaciones (4). It is important to consider that the number of perforations (4) and the distance between them in the knitted nonwoven fabric, also depends on the tension of the knitted nonwoven fabric with which the perforator (28) is fed, at higher tension plus perforations ( 4) and less stress less perforations (4).
En una modalidad preferida de la invención las agujas calientes que perforan el textil no tejido tricotado presentan una temperatura de 140°C. In a preferred embodiment of the invention, the hot needles that pierce the knitted nonwoven fabric have a temperature of 140 ° C.
Ejemplo 1: Textil no tejido tricotado Example 1: Knitted nonwoven textile
Se fabricó un textil no tejido tricotado de las siguientes características: • 80%p/p de textil no tejido (1) fabricado con fibras de poliéster, dichas fibras tienen entre 1,5 y 15,0 denier; 3cm y 10cm de largo, y 70g/m2 y 150g/m2 de densidad,A knitted nonwoven textile of the following characteristics was manufactured: • 80% w / w of nonwoven textile (1) made of polyester fibers, these fibers have between 1.5 and 15.0 denier; 3cm and 10cm long, and 70g / m 2 and 150g / m 2 density,
• 19%p/p de formulación con agua, resina acrílica base agua, microesferas expandibles (3) ,amoniaco como balanceador de pH ,sulfato de amonio como catalizador, un polímero en dispersión acuosa de ésteres acrílicos como espesante, una mezcla de alcoholes especiales no iónicos como dispersante, un material no iónico a base de silicona modificada como antiespumante y xilenosulfonato como humectante, • 19% w / w formulation with water, water-based acrylic resin, expandable microspheres (3), ammonia as a pH balancer, ammonium sulfate as a catalyst, an aqueous dispersion polymer of acrylic esters as a thickener, a mixture of special alcohols non-ionic as dispersant, a non-ionic silicone-based material modified as antifoam and xylenesulfonate as a humectant,
• l%p/p de filamentos de poliéster de 150 tex; y distancia nominal entre los filamentos de 3,62mm,  • l% w / w polyester filaments of 150 tex; and nominal distance between the 3.62mm filaments,
• espesor de 2,5mm, y  • thickness of 2.5mm, and
• un promedio de 6426 perforaciones/m2. • an average of 6426 perforations / m 2.
Ejemplo 2: Panel Example 2: Panel
Se diseñó y construyó un panel de lm2 laminado con el textil no tejido tricotado del ejemplo 1; con resina poliéster ortoftálicas, y con mat de fibra de vidrio de 450g/m2 con resina de poliéster no saturado. La proporción entre resina y fibra de vidrio es 1: 1 (por cada kilogramo de fibra de vidrio se añade un kilogramo de resina). A laminated lm 2 panel was designed and constructed with the knitted nonwoven fabric of Example 1; orthophthalic polyester resin, and glass fiber mat 450g / m 2 polyester resin unsaturated. The ratio between resin and fiberglass is 1: 1 (for every kilogram of fiberglass one kilogram of resin is added).
Se tomó un molde del panel el cual se enceró previamente con cera y se aplicaron ocho capas de cera y se dejaron secar entre cada aplicación de capas. A mold was taken from the panel which was previously waxed and eight layers of wax were applied and allowed to dry between each layer application.
Se pintó el molde encerado con gel coat y se dejó secar hasta que estuvo tactoso. El espesor del gel coat fue de 12mills. The waxed mold was painted with gel coat and allowed to dry until it was tactose. The thickness of the gel coat was 12mills.
Luego se aplicaron dos capas de mat de fibra de vidrio, posteriormente una capa del textil no tejido tricotado del ejemplo 1, y luego otras dos capas de mat de fibra de vidrio. El proceso fue mediante Hand-lay up, y se asentaron cada una de las capas de mat con rodillos manuales. Entre cada capa se aplicó mediante aspersión la resina ortoñálica, la cual se cataliza al momento de la aspersión con peróxido de metil etil cetona (MEKP). Then two layers of fiberglass mat were applied, then a layer of knitted nonwoven fabric of Example 1, and then two other layers of fiberglass mat. The process was by hand-lay up, and each of the mat layers with manual rollers were seated. Between each layer, the ortho-resin resin was applied by spraying, which is catalyzed at the time of spraying with methyl ethyl ketone peroxide (MEKP).
Luego de asentar la última capa se esperó 12horas para desmoldar el panel. After setting the last layer, 12 hours were expected to unmold the panel.
Ejemplo 3: Panel quasi isotrópico Example 3: Quasi Isotropic Panel
Haciendo referencia a la FIG.3, se fabricó por medio del método de hand lay-up un panel de lm2 con cuatro capas del textil no tejido tricotado del ejemplo 1, donde la primera capa (12) tiene una orientación a 0o, la segunda capa (11) tiene una orientación a 45°, la tercera capa (10) tiene una orientación a 90° y la cuarta capa (9) tiene una orientación a 135°. Se aplicaron 5 capas de resina de poliéster ortoñálica. Referring to FIG. 3, a lm 2 panel with four layers of the knitted nonwoven fabric of Example 1 was manufactured by means of the hand lay-up method, where the first layer (12) has an orientation of 0 or , the second layer (11) has an orientation at 45 °, the third layer (10) has an orientation at 90 ° and the fourth layer (9) has an orientation at 135 °. 5 layers of orthodoxic polyester resin were applied.
El textil no tejido tricotado tiene un peso de 122g/m2 lo que significa un peso de 488g/m2 por las cuatro capas. La resina tiene un peso de 1800g/m2 lo que significa un peso de 9000g/m2. El peso total del panel es 9488 g/m2. Knitted non-woven textile has a weight of 122g / m 2 which means a weight of 488g / m 2 per four layers. The resin has a weight of 1800g / m 2 which means a weight of 9000g / m 2 . The total weight of the panel is 9488 g / m 2 .
Ejemplo 4: Tubería de textil no tejido tricotado Haciendo referencia la FIG.4 y FIG.5 se fabricó una tubería mediante el siguiente proceso: Example 4: Knitted nonwoven textile pipe Referring to FIG. 4 and FIG. 5, a pipe was manufactured by the following process:
Sobre un mandril se aplicó una capa de desmoldante (13) como aceite de coco, posteriormente se aplicó una capa de resina (14) y se entorchó una cinta (15) del textil no tejido tricotado del ejemplo 1 alrededor del mandril, sobre el textil entorchado se aplicó nuevamente una capa de resina (14) y se devolvió la cinta (15) sobre dicha capa creando una nueva lamina. A release agent layer (13) was applied on a mandrel like coconut oil, then a resin layer (14) was applied and a ribbon (15) of the knitted nonwoven fabric of example 1 was wound around the mandrel, on the textile a resin layer (14) was applied again and the tape (15) was returned on said layer creating a new sheet.
Dicha tubería se compuso de resina de poliéster y cinta del textil no tejido tricotado de la presente invención, con las siguientes características: Said pipe was composed of polyester resin and knitted nonwoven textile tape of the present invention, with the following characteristics:
• ángulo del he licoide: 15°  • angle of the lycopene: 15 °
• dos capas con un espesor de: 2,5mm  • two layers with a thickness of: 2.5mm
• ancho de la cinta: 13cm • resina impregnada con brocha y con manguera • tape width: 13cm • resin impregnated with brush and hose
• diámetro: 2"3/4  • diameter: 2 "3/4
• espesor final de la tubería 7mm  • final thickness of the pipe 7mm
• resina poliéster isoftálica sin saturar  • unsaturated isophthalic polyester resin
catalizador MEK 2,5%p/p de resina (porlOOgr resina 2,5gr de catalizador).  MEK catalyst 2.5% w / w resin (porlOOgr resin 2.5gr catalyst).

Claims

REIVINDICACIONES
Un textil no tejido tricotado que comprende: A knitted nonwoven textile comprising:
un textil no tejido (1) entre 60% p/p y 80% p/p, el textil no tejido (1) hecho de fibras sintéticas;  a nonwoven textile (1) between 60% w / w and 80% w / w, the nonwoven textile (1) made of synthetic fibers;
filamentos sintéticos (2) tricotados entre 3% p/p y 6% p/p, los filamentos sintéticos (2) están tricotados en el textil no tejido (1);  synthetic filaments (2) knitted between 3% w / w and 6% w / w, synthetic filaments (2) are knitted in nonwoven textile (1);
microesferas expandibles (3) entre 1% p/p y 30% p/p, las microesferas expandibles (3) están dispuestas en el textil no tejido (1); y  expandable microspheres (3) between 1% w / w and 30% w / w, the expandable microspheres (3) are arranged in the nonwoven fabric (1); Y
perforaciones (4) dispuestas a lo largo del textil no tejido (1);  perforations (4) arranged along the nonwoven textile (1);
donde, el textil no tejido tricotado tiene una densidad entre 70g/m2 ywhere, knitted nonwoven textile has a density between 70g / m 2 and
450g/m2; y un espesor entre lmm y 10mm. 450g / m 2 ; and a thickness between lmm and 10mm.
El textil no tejido tricotado de la Reivindicación 1, caracterizado porque el número de perforaciones (4) son entre 6298 y 6554 perforaciones/m2. The nonwoven knitted fabric of claim 1, wherein the number of perforations (4) are between 6298 and 6554 perforations / m 2.
El textil no tejido tricotado de la Reivindicación 1, caracterizado porque los filamentos sintéticos (2) tienen entre 60tex y 220tex, los filamentos sintéticos (2) están separados entre sí dentro del textil no tejido (1) por una distancia de entre 3mm y 4mm. The knitted nonwoven fabric of Claim 1, characterized in that the synthetic filaments (2) are between 60tex and 220tex, the synthetic filaments (2) are separated from each other within the nonwoven textile (1) by a distance between 3mm and 4mm .
El textil no tejido tricotado de la Reivindicación 3, caracterizado porque los filamentos sintéticos (2) tienen 150tex; la distancia nominal entre los filamentos sintéticos (2) es 3,62mm. The knitted nonwoven fabric of Claim 3, characterized in that the synthetic filaments (2) have 150tex; The nominal distance between the synthetic filaments (2) is 3.62mm.
El textil no tejido tricotado de la Reivindicación 1, caracterizado porque los filamentos sintéticos (2) se seleccionan del grupo conformado por filamentos poliméricos (v.g. de poliéster, polietileno, politetrafluoruro de etileno (PTFE, por sus siglas en inglés), poliolefinas), filamentos de vidrio, filamentos de carbono, filamentos de aramida, y combinaciones de los anteriores. The knitted nonwoven fabric of Claim 1, characterized in that the synthetic filaments (2) are selected from the group consisting of polymeric filaments (eg polyester, polyethylene, ethylene polytetrafluoride (PTFE), polyolefins), filaments of glass, carbon filaments, aramid filaments, and combinations of the above.
El textil no tejido tricotado de la Reivindicación 1, caracterizado porque las fibras sintéticas del textil no tejido (1) se seleccionan del grupo compuesto por fibras de vidrio, fibras de poliéster, fibras bicomponente de poliéster y polietileno, y combinaciones de las anteriores. The knitted nonwoven fabric of Claim 1, characterized in that the synthetic fibers of the nonwoven fabric (1) are selected from the group consisting of fibers of glass, polyester fibers, bicomponent polyester and polyethylene fibers, and combinations of the above.
El textil no tejido tricotado de la Reivindicación 1, caracterizado porque las fibras sintéticas del textil no tejido (1) y los filamentos sintéticos (2) son de poliéster. The knitted nonwoven fabric of Claim 1, characterized in that the synthetic fibers of the nonwoven fabric (1) and the synthetic filaments (2) are polyester.
El textil no tejido tricotado de la Reivindicación 1, caracterizado porque las fibras sintéticas del textil no tejido (1) tienen entre 1,5 y 15,0 denier; 3cm y 10cm de largo, y 70g/m2 y 150g/m2 de densidad. The knitted nonwoven fabric of Claim 1, characterized in that the synthetic fibers of the nonwoven fabric (1) have between 1.5 and 15.0 denier; 3cm and 10cm long, and 70g / m 2 and 150g / m 2 density.
El textil no tejido tricotado de la Reivindicación 1, comprende un patrón formado por relieves y canales entrecruzados. The knitted nonwoven fabric of Claim 1 comprises a pattern formed by interlocking reliefs and channels.
Un método para la fabricación de un textil no tejido tricotado que comprende las etapas: A method for manufacturing a knitted nonwoven fabric comprising the steps:
a) tricotar un textil no tejido (1) con filamentos sintéticos (2);  a) knit a non-woven textile (1) with synthetic filaments (2);
b) impregnar el textil no tejido (1) de la etapa (a) en una formulación compuesta por:  b) impregnate the non-woven textile (1) of step (a) in a formulation composed of:
Figure imgf000027_0001
c) someter a calentamiento el textil no tejido (1) de la etapa (b) a una temperatura entre 120°C y 140°C; y,
Figure imgf000027_0001
c) heating the nonwoven fabric (1) of step (b) to a temperature between 120 ° C and 140 ° C; Y,
d) perforar el textil no tejido de la etapa (c)  d) perforate the non-woven textile of stage (c)
11. El proceso de la Reivindicación 10 caracterizado porque en la etapa b) la formulación está compuesta por: 11. The process of Claim 10 characterized in that in step b) the formulation is composed of:
Figure imgf000027_0002
Microesferas expandibles Entre 5% y 40%
Figure imgf000027_0002
Expandable microspheres Between 5% and 40%
Balanceador de pH Entre 0,5% y 2%  PH balancer Between 0.5% and 2%
Catalizador Entre 0,5% y 2%  Catalyst Between 0.5% and 2%
Espesante Entre 0, 1% y 2%  Thickener Between 0, 1% and 2%
Dispersante Entre 0, 1% y 2%  Dispersant Between 0, 1% and 2%
Antiespumante Entre 0, 1% y 2%  Antifoam Between 0, 1% and 2%
Humectante Entre 0, 1% y 2%  Moisturizer Between 0, 1% and 2%
12. El proceso de la Reivindicación 10, caracterizado porque entre la etapa b) y la etapa c) hay una etapa b') en la cual se retira el exceso de formulación del textil no tejido (1) por medio de cilindros tipo Foulard. 12. The process of Claim 10, characterized in that between stage b) and stage c) there is a stage b ') in which the excess formulation of the nonwoven fabric (1) is removed by means of Foulard-type cylinders.
13. El proceso de la Reivindicación 10 caracterizado porque en la etapa c) el textil no tejido de a etapa b) pasa a través de cilindros calientes. 13. The process of Claim 10 characterized in that in step c) the nonwoven textile of a stage b) passes through hot cylinders.
14. El proceso de la Reivindicación 10 caracterizado porque en la etapa d) la perforación se hace por medio de agujas calientes precalentadas a una temperatura entre 138°C y 148°C. 14. The process of Claim 10 characterized in that in step d) the drilling is done by means of preheated hot needles at a temperature between 138 ° C and 148 ° C.
PCT/IB2017/058370 2016-12-26 2017-12-22 Knitted non-woven textile with expanded microspheres and method for the production thereof WO2018122718A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CONC2016/0005772 2016-12-26
CONC2016/0005772A CO2016005772A1 (en) 2016-12-26 2016-12-26 Knitted non-woven textile with expanded micro-spheres and manufacturing method

Publications (1)

Publication Number Publication Date
WO2018122718A1 true WO2018122718A1 (en) 2018-07-05

Family

ID=62707044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2017/058370 WO2018122718A1 (en) 2016-12-26 2017-12-22 Knitted non-woven textile with expanded microspheres and method for the production thereof

Country Status (2)

Country Link
CO (1) CO2016005772A1 (en)
WO (1) WO2018122718A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3088700A1 (en) * 2018-11-20 2020-05-22 Arianegroup Sas Composite material for thermal protection of a structural part

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3316139A (en) * 1964-12-31 1967-04-25 Standard Oil Co Plastic structure containing fibrous layers and hollow glass spheres
ES8500730A1 (en) * 1982-08-27 1984-11-01 Schaefer Helmut Shoe insole and method of making the same.
ES8800380A1 (en) * 1985-01-29 1987-11-16 Firet Bv Process for making a non woven web provided with expanded micro-spheres.
ES2000118T3 (en) * 1986-03-15 1992-05-16 J. H. Benecke Ag NUBUK TYPE SUBSTRATE OR VELVET LEATHER OR TEXTILE VELVET AS WELL AS A MANUFACTURING PROCEDURE.
ES2222932T3 (en) * 1999-12-24 2005-02-16 Morbern Inc. EXPANDED AND EXTRUDED POLYMER TEXTILE.
ES2275668T3 (en) * 2000-04-03 2007-06-16 Lantor B.V. CABLE TAPE AND PROCEDURE FOR THE MANUFACTURE OF A CABLE TAPE.
ES2297873T3 (en) * 1998-12-16 2008-05-01 Lantor B.V. NUCLEO MATERIAL FOR CLOSED MOLD SYSTEMS.
ES2393554T3 (en) * 2003-10-10 2012-12-26 Frenzelit Werke Gmbh Material for flat joints in the form of a reinforced composite sheet (composite film)

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3316139A (en) * 1964-12-31 1967-04-25 Standard Oil Co Plastic structure containing fibrous layers and hollow glass spheres
ES8500730A1 (en) * 1982-08-27 1984-11-01 Schaefer Helmut Shoe insole and method of making the same.
ES8800380A1 (en) * 1985-01-29 1987-11-16 Firet Bv Process for making a non woven web provided with expanded micro-spheres.
ES2000118T3 (en) * 1986-03-15 1992-05-16 J. H. Benecke Ag NUBUK TYPE SUBSTRATE OR VELVET LEATHER OR TEXTILE VELVET AS WELL AS A MANUFACTURING PROCEDURE.
ES2297873T3 (en) * 1998-12-16 2008-05-01 Lantor B.V. NUCLEO MATERIAL FOR CLOSED MOLD SYSTEMS.
ES2222932T3 (en) * 1999-12-24 2005-02-16 Morbern Inc. EXPANDED AND EXTRUDED POLYMER TEXTILE.
ES2275668T3 (en) * 2000-04-03 2007-06-16 Lantor B.V. CABLE TAPE AND PROCEDURE FOR THE MANUFACTURE OF A CABLE TAPE.
ES2393554T3 (en) * 2003-10-10 2012-12-26 Frenzelit Werke Gmbh Material for flat joints in the form of a reinforced composite sheet (composite film)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3088700A1 (en) * 2018-11-20 2020-05-22 Arianegroup Sas Composite material for thermal protection of a structural part

Also Published As

Publication number Publication date
CO2016005772A1 (en) 2018-07-19

Similar Documents

Publication Publication Date Title
US20210268764A1 (en) Inherently secured aerogel composites
ES2900802T3 (en) Segmented gel composite materials and rigid panels made therefrom
ES2318720T3 (en) PROCEDURE FOR THE MANUFACTURE OF A SEMI-FINISHED PRODUCT REINFORCED WITH FIBERS AND THERMOPLASTICALLY COMFORTABLE.
ES2336902T3 (en) MOLDING AND METHOD MATERIALS TO FORM SUCH MATERIALS.
US20070154698A1 (en) Highly flexible aerogel insulated textile-like blankets
US8230527B2 (en) Lightweight helmet shell and method for manufacturing the same
US5262230A (en) Lightweight composite material with a thermoset matrix
ES2753630T3 (en) Sheet material and die cutting tape containing the same
WO2005115739A1 (en) Easily moldable acoustic material
JP2010528893A (en) Flame-retardant and heat-insulating flexible material provided with an expansion protection plate, and method for producing the same
KR101170930B1 (en) Preparation method for synthetic leather with pattern
JP6453095B2 (en) Seat skin material and method for manufacturing seat skin material
CN107099905A (en) Fabric and its manufacture method with the gas piece for being formed with multiple independent air bags
WO2018122718A1 (en) Knitted non-woven textile with expanded microspheres and method for the production thereof
US20100108439A1 (en) Laminated acoustic absorption sheet with flame retardant
ES2240939T3 (en) FIBROSA STRUCTURE FOR THE MANUFACTURE OF COMPOSITE MATERIALS.
WO2021246040A1 (en) Skin material, method for producing same, and interior material
JP2008238461A (en) Coating fabric
CN110337352B (en) Fiber-reinforced foamed particle molded article and method for producing same
CN208274851U (en) A kind of fireman&#39;s protective clothing for proximity fire fighting
JP2012193482A (en) Fiber reinforced composite material and molded product thereof
EP1308271A1 (en) Insulating web
JP4316077B2 (en) Porous fiber composite laminate and method for producing the same
JP2020069392A (en) Engagement assembling kit and engagement assembly
KR101321241B1 (en) A nonwoven fabric with maximum heat insulation effect and manufacturing method of it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886898

Country of ref document: EP

Kind code of ref document: A1