WO2018121540A1 - 一种下行波束调整的方法及装置 - Google Patents

一种下行波束调整的方法及装置 Download PDF

Info

Publication number
WO2018121540A1
WO2018121540A1 PCT/CN2017/118681 CN2017118681W WO2018121540A1 WO 2018121540 A1 WO2018121540 A1 WO 2018121540A1 CN 2017118681 W CN2017118681 W CN 2017118681W WO 2018121540 A1 WO2018121540 A1 WO 2018121540A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
broadcast
downlink
network device
information
Prior art date
Application number
PCT/CN2017/118681
Other languages
English (en)
French (fr)
Inventor
李赛楠
黄煌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17887749.4A priority Critical patent/EP3541108B1/en
Priority to BR112019013231A priority patent/BR112019013231A2/pt
Publication of WO2018121540A1 publication Critical patent/WO2018121540A1/zh
Priority to US16/455,786 priority patent/US11070264B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method and apparatus for downlink beam adjustment.
  • the present invention provides a method and an apparatus for downlink beam adjustment, specifically, determining a scanning beam in a beam adjustment process to reduce signaling overhead in a beam adjustment process.
  • a method for downlink beam adjustment including:
  • the network device Receiving, by the network device, information about a downlink beam that is sent by the terminal device to perform data communication with the terminal device; the network device determining, according to the information about the downlink beam, the broadcast beam related to the downlink beam, and correlating the downlink beam Notifying the terminal device of the information of the broadcast beam;
  • the network device receives a detection result of the broadcast beam detection according to the information of the broadcast beam reported by the terminal device, and the network device determines, according to the detection result, a downlink beam for data communication that needs to be scanned during downlink beam adjustment.
  • a method for downlink beam adjustment including:
  • the terminal device notifies the network device of the downlink beam information of the data communication between the network device and the terminal device; the terminal device receives the downlink beam-related broadcast beam information sent by the network device; and the terminal device is configured according to the downlink beam
  • the information of the broadcast beam is subjected to broadcast beam detection, and the detection result is reported to the network device, where the detection result is used by the network device to determine a downlink beam for data communication that needs to be scanned; and the terminal device detects the network device scan for the The downlink beam of data communication.
  • the network device may be a Or a plurality of base stations, which may also be other types of network devices, such as a TRP (transmission reception point), or a device with a central control function, for controlling multiple base stations or TRPs.
  • TRP transmission reception point
  • a method for downlink beam adjustment including:
  • the terminal device notifies the base station of the narrowest beam with the strongest signal aligned by the base station and the terminal device; the base station notifies the terminal device of the wide beam where the narrowest beam of the signal is strong; and the terminal device determines the wide beam of the signal with the strongest surrounding signal of the wide beam And notifying the base station; the base station scans a plurality of narrow beams of the wide beam around the strongest narrow beam and close to the signal strongest for the terminal device to detect and report the narrow beam conforming to the signal quality.
  • the base station after the base station learns the narrowest beam with the strongest signal, the base station notifies the terminal device of the information of the wide beam covering the narrow beam, and the terminal device detects the two strongest wide beams and notifies the base station, and the base station can scan the two. Between the wide beams, the signal has the narrowest beam around the narrowest beam; thus reducing the number of beam scans and reducing overhead.
  • a method of downlink beam adjustment includes:
  • the terminal device notifies the base station of the narrowest beam with the strongest signal aligned by the base station and the terminal device; the base station notifies the terminal device of the wide beam where the narrowest beam of the signal is strong; and the terminal device detects the signal strength of each downlink wide beam, if If the wide beam signal outside the wide beam where the narrowest beam of the signal is located is the strongest, the base station with the strongest signal is notified to the base station; the base station uses the wide beam with the strongest signal as the current service wide beam.
  • the narrow beam is a downlink beam for data communication
  • the wide beam is a broadcast beam, such as a synchronization beam.
  • the downlink beam that is in data communication with the terminal device is the downlink beam with the strongest signal or the downlink beam with the signal quality higher than the preset threshold, and may be multiple than the preset threshold, which may come from One or more base stations.
  • the downlink beam-related broadcast beam that is in data communication with the terminal device may include at least one of the following: a broadcast beam where the downlink beam is located, and a broadcast beam space where the downlink beam is located Adjacent broadcast beams.
  • the detection result of the broadcast beam detection includes at least one of the following: a detection result of a broadcast beam whose signal quality is higher than a set threshold, a detection result of a broadcast beam having the strongest signal quality, and a signal quality is the second strongest.
  • the detection result of the broadcast beam for example, the detection result of the broadcast beam having the strongest signal quality and the detection result of the broadcast beam having the second strongest signal quality.
  • the detection result of the broadcast beam includes at least one of the following: information of a broadcast beam, and a signal quality of a broadcast beam.
  • the information about the downlink beam includes at least one of the following: a beam identifier, an OFDM (orthogonal frequency division multiplexing) symbol sequence number, a frame number, a subframe number, and a resource location of the beam. , antenna port number.
  • the information of the broadcast beam includes at least one of the following: a beam identifier, an OFDM symbol sequence number, a frame number, a subframe number, an antenna port number, a resource position of the beam, and an antenna port number.
  • a network device including:
  • a receiving module configured to receive information about a downlink beam that is sent by the terminal device to perform data communication with the terminal device; and a determining module, configured to determine, according to information about the downlink beam, a broadcast beam related to the downlink beam; Notifying the terminal device of the information about the downlink beam-related broadcast beam; the receiving module is further configured to receive, by the terminal device, the detection result of performing broadcast beam detection according to the information of the broadcast beam;
  • the determining module is further configured to determine, according to the detection result, a downlink beam for data communication that needs to be scanned during downlink beam adjustment.
  • the network device can be a base station, a TRP or other type of network device.
  • a terminal device including:
  • a sending module configured to: notify the network device of information about a downlink beam that performs data communication between the network device and the terminal device; and receive, by the receiving module, information for receiving the downlink beam-related broadcast beam sent by the network device; And the transmitting module is configured to report the detection result of the broadcast beam to the network device, where the detection result is used by the network device, where the terminal performs broadcast beam detection according to the information about the downlink beam-related broadcast beam. Determining a downlink beam for data communication that needs to be scanned; the detecting module is further configured to detect, by the terminal device, the downlink beam for data communication scanned by the network device.
  • the broadcast beam may be a synchronous beam, or may be other periodically transmitted beams.
  • the foregoing network device and the terminal device are respectively based on the foregoing method, and the corresponding steps in the method may be implemented by a network device or a corresponding module of the terminal, and the steps mentioned in the other methods may also be performed by the corresponding module, and the specific reference method is described. , no longer detailed one by one.
  • the receiving module may be implemented by a receiver
  • the sending module may be implemented by a transmitter
  • other corresponding functional modules such as a determining module, a detecting module, etc.
  • the specific functions can refer to the corresponding descriptions in the method, and will not be detailed one by one.
  • the network device reduces the signaling overhead because the network device receives the detection result reported by the terminal device and determines the downlink beam for data communication that needs to be scanned.
  • 1 is a schematic diagram of beam communication between a base station and a terminal device.
  • 2(a)-(b) are schematic diagrams of beams of a method for adjusting a downlink beam according to an embodiment of the present invention.
  • 3(a)-(d) are schematic diagrams of beams of a method for adjusting a downlink beam according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for adjusting a downlink beam according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a network device according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a network device and a terminal device according to another embodiment of the present invention.
  • Embodiments of the present invention can be used in wireless networks of various technologies.
  • a wireless access network may include different network devices in different systems.
  • the network elements of the radio access network in LTE (Long Term Evolution), LTE-A (LTE Advanced), and NR (New Radio) include an eNB (eNodeB, evolved base station), and a TRP (transmission reception point).
  • the WLAN (wireless local area network)/Wi-Fi network element includes an access point (AP) and the like.
  • Other wireless networks may also use a solution similar to the embodiment of the present invention, except that the name of the network device may be different, and the embodiment of the present invention is not limited.
  • the terminal device includes but is not limited to a user equipment (UE, User Station), a mobile station (MS, Mobile Station), a mobile terminal (Mobile Terminal), a mobile phone (Mobile Telephone), a mobile phone. (handset) and portable equipment, etc.
  • the terminal device can communicate with one or more core networks via a Radio Access Network (RAN), for example, the terminal device can be a mobile phone (or "Cellular" telephones, computers with wireless communication functions, etc., and the terminal devices can also be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices.
  • RAN Radio Access Network
  • a narrow beam is required in a high-frequency communication process to ensure a propagation distance and a high beam gain, and beam alignment is performed to ensure communication quality, and thus network devices and different user equipment terminal devices are in the process of transmission.
  • Different beam pairs are performed, so the network device and the terminal device first need to perform beam scanning, alignment, and downlink synchronization.
  • One or more OFDM symbols are usually fixedly configured for downlink synchronous beam scanning in one or more frames, and each OFDM symbol can be periodically transmitted by the network device through one or more downlink beams, and the terminal device detects the corresponding Synchronization signal.
  • a high-frequency base station uses a wider beam for beam traversal to transmit a synchronization signal
  • a terminal device accesses a high-frequency base station to also use a wider beam detection synchronization signal
  • the high-frequency base station traverses each downlink beam to transmit a synchronization signal
  • the terminal device detects After the strongest synchronization signal, the beam identifier of the synchronization beam where the synchronization signal is located is reported, such as Beam id, so that the base station and the terminal device establish a transmit/receive (TX/RX) beam pair, and the terminal device and the base station complete wide beam alignment; Subsequent wide beam adjustments can also be performed in the manner described above.
  • TX/RX transmit/receive
  • Wide beams can be used for control channel transmission, while data transmission needs to be performed in narrower beams (compared to wide beams), so further narrow beam alignment (also known as beam refinement) is required.
  • the base station traverses the narrow beam in the wide beam coverage, that is, the base station scans each narrow beam in the wide beam space coverage.
  • the terminal device detects the reference signal sent by each narrow beam, and if one of the narrow beams is detected as the strongest beam of the signal, the narrow beam can be used for data communication; for example, the terminal device is in the wide beam coverage Detecting the signal strength of each narrow beam sent by the base station to obtain one or more narrow beams whose signal quality meets the requirements (for example, the signal strength reaches a certain threshold) for data transmission; if subsequent transmission due to terminal equipment or other reasons, need to be performed Beam adjustment, it is necessary to traverse the narrow beam and the narrow beam around the narrow beam . For example, in FIG.
  • the terminal device when performing wide beam alignment, the terminal device detects that the strongest wide beam is the beam 10 (current service wide beam), and when narrow beam alignment is performed, nine narrow beams in the beam 10 are scanned ( The candidate beam of the gray part in Fig. a) determines the narrow beam in which the signal is strongest; in another example, if the narrow beam is aligned as shown in Fig. 2(b), if the terminal device detects the strongest narrow beam as the wide beam 10
  • the beam a (currently serving a narrow beam) scans the beam a and the eight narrow beams around the beam a (the gray part candidate beam in Figure b) for subsequent narrow beam adjustment.
  • the foregoing base station may be one or more, or may be other network devices such as TRP.
  • the wide beam or narrow beam detected or scanned by the terminal device may be from one or more network devices, such as a base station or a TPR.
  • a narrow beam is needed to ensure the propagation distance and high beam gain, and beam alignment is performed to ensure communication quality.
  • subsequent possibilities may be Beam adjustment is required, for example, due to factors such as the movement of the terminal device or the change of the environment, the beam pair between the terminal device and the base station may change, so the process of beam adjustment, beam alignment and beam adjustment needs to be performed periodically or irregularly.
  • the terminal device and the base station need to traverse the respective multiple beams separately, which brings a large overhead.
  • the wide beam referred to in this embodiment is a synchronous beam, and is used for downlink synchronization, such as a downlink beam carrying a synchronization signal, generally used for control channel transmission;
  • a narrow beam is a beam for data communication, generally used
  • the identifier corresponding to each wide beam may be pre-defined, such as using at least one of a beam ID, an OFDM symbol sequence number, a frame number, a subframe number, a slot number, a beam resource location, and an antenna port number.
  • the terminal device notifies the network device of the downlink beam information that the network device performs data communication with the terminal device; the network device determines, according to the downlink beam information, the downlink beam-related broadcast beam, and the downlink beam-related broadcast The information of the beam is used to notify the terminal device; the terminal device performs broadcast beam detection according to the information about the broadcast beam related to the downlink beam, and reports the detection result to the network device.
  • the network device determines, according to the detection result, that the downlink beam adjustment needs to be scanned.
  • the downlink beam used for data communication, so that the corresponding downlink beam scanning is performed, facilitates the terminal device to perform beam detection. Further, the network device can receive the detection result reported by the terminal device, and perform related operations such as beam adjustment according to the detection result.
  • the above-mentioned broadcast beam may be the above-mentioned synchronous beam, or may be other types of periodically transmitted beams.
  • a network device broadcasts a beam transmitted by different terminals, which may be transmitted by means of beam scanning, or may be sent each time. The beams in the direction are not covered by the terminal devices in different positions.
  • the broadcast beam is a synchronous beam as an example.
  • the beam adjustment mentioned in the above process is the adjustment of the downlink narrow beam, that is, the adjustment of the downlink beam used for data communication.
  • the downlink beam for data communication is a narrow beam
  • the synchronization beam is a wide beam
  • the network device can be one or more base stations, or other network devices such as TRP.
  • the network device determines the narrow beam to be scanned according to the detection result reported by the terminal device, the terminal device and the base station do not need to traverse the respective multiple beams separately, thereby reducing the system overhead.
  • the most strong narrow beam related synchronization beam may be a synchronization beam covering the strongest narrow beam (the The synchronization beam is also the strongest signal, and may further include a spatially adjacent synchronization beam covering the synchronization beam of the strongest narrow beam; if the terminal device performs synchronous beam detection according to the information of the synchronization beam related to the downlink beam, if found The strongest synchronization beam does not change, that is, the synchronization beam covering the strongest narrow beam is still reported, and the signal strong synchronization beam can be reported to the base station, and the base station can determine that the terminal device is moving toward the signal strong synchronization beam direction, then The base station scans around the narrowest beam and is close to the narrow beam of the second strong sync beam. It is not necessary to scan all narrow beams around the strongest narrow beam.
  • the terminal device when performing wide beam scanning, the terminal device obtains the strongest synchronous beam (wide beam) as the beam 7 by detecting, and the base station traverses the coverage of the beam 7 when performing narrow beam scanning.
  • the narrow beam is used by the terminal device to determine the strongest narrow beam as the beam b (currently serving the narrow beam); in the subsequent synchronization signal scanning process, the terminal device determines that the strongest wide beam is still the beam 7, and further scans the periphery of the beam 7.
  • the beam with the second strongest signal is the beam 10
  • the terminal device is moving from the direction of the beam 7 to the direction of the beam 10 or the terminal device is in the beam 7 and
  • the beams 10 in the subsequent narrow beam scanning only the narrow beams a to f near the beam 10 around the beams b and b can be scanned, and the best beams of the two signals are determined, and then the scanning is in two.
  • the narrow beam around the beam and the strongest narrow beam this way saves the system overhead in the beam adjustment process.
  • the beam diagram 3(a) is only an embodiment.
  • the strongest synchronization beam of the terminal device for synchronous beam detection does not change, and there may be other situations; for example, the signal with the strongest narrow beam is the beam (b)
  • FIG. 3(b) and FIG. 3(c) can scan the six narrow beams a to f close to the secondary strong beam 10
  • the strongest narrow beam of the signal is Beam (b)
  • the second strong sync beam is beam 11
  • the four narrow beams a to d around the beam 11 around the beam (b) may be scanned.
  • the terminal device detects that the strongest synchronization beam has changed, it is no longer the synchronization beam covering the strongest narrow beam. At this time, the detected strongest synchronization beam is used as the current service wide beam, and then the service wide beam spatial coverage is scanned. Each narrow beam in the range determines the strongest narrow beam.
  • the terminal device determines that the strongest narrow beam is the beam b by detecting, but the terminal device determines that the strongest wide beam is not the wide beam 7 where the narrow beam b is located in the subsequent synchronization signal scanning process, For example, if the strongest narrow beam is beam 11 (other broad beams such as 12 or 13), beam 11 (other broad beams such as 12 or 13) can be used as the current service wide beam, and then follow the above mentioned method. Each narrow beam within the spatial coverage of the wide beam 11 is detected to determine the strongest narrow beam.
  • beam 11 other broad beams such as 12 or 13
  • the network device can determine the scanning range according to the detection result of the terminal device, reduce the number of beam scanning in the beam adjustment process, and reduce the signaling overhead.
  • the following network device is a base station, and the beam adjustment method is further described with reference to the accompanying drawings. Referring to FIG. 4:
  • the terminal device notifies the base station of the information of the downlink narrow beam that the base station performs data communication with itself;
  • the terminal device may notify the corresponding base station of the information of the narrow beam whose detected signal quality is higher than the set threshold, and the narrow beam is a beam for data communication, which may be one or more; if it is one, the signal is the strongest The narrow beam, if multiple, the signal quality is better than the set threshold, which may be multiple narrow beams of one base station or narrow beams from multiple base stations; the detection process may be through the beam scanning described above or The adjustment process is implemented; the content of the notification may be one or more of the following: the detected OFDM symbol sequence number of the narrow beam, the frame number, the subframe number, the resource position of the narrow beam detected, or the antenna port number, etc., notified The mode may be carried by an uplink control channel or RRC (radio resource control) signaling.
  • RRC radio resource control
  • Step 102 The base station determines, according to the received information of the narrow beam, the wide beam related to the narrow beam, and notifies the terminal device of the information of the wide beam.
  • the narrow beam-related wide beam may be a wide beam in which the narrow beam is located, that is, a wide beam covering the narrow beam, or may further notify the terminal device of the wide beam around the wide beam space; the base station may also determine the terminal. The device needs to scan the wide beam and notify the terminal device;
  • the current base station is aligned with the strongest narrow beam b of the terminal device in the wide beam 7, and the information of the wide beam 7 can be notified to the base station, and the wide beam around 7 can be further extended (1-3). , 6, 8-11) notifying the terminal;
  • the notified beam information may be any one or more of the following: such as a wide beam beam ID, an OFDM symbol index, an antenna port number, a slot number, a subframe number, a radio frame number, etc.
  • the embodiment is not limited, and is used by the terminal device to determine a wide beam adjacent to the wide beam space that needs to be scanned;
  • the base station can directly notify each of the wide beams that the terminal device needs to scan, and the base station can also scan the wide beam 7 that the terminal device needs to scan and the wide beam 1-3, 6-11 that is spatially adjacent to the wide beam 7.
  • the beam information is sent to the terminal device, and may further include other wide beams, such as beams 4, 5, 12-16. That is, the base station can determine the wide beam that the terminal device needs to scan, and notify the terminal device.
  • the base station and the terminal device can maintain a pair of transmit/receive (TX/RX) synchronous beam pairs, if the current base station receives the wide beam 7 in which the narrow beam reported by the terminal device is located, it is still the maintained TX.
  • the synchronization beam can not transmit the beam information of the wide beam 7 to the terminal device, because the terminal device itself knows the beam information of the wide beam 7; if the current base station receives the wide beam 7 where the narrow beam reported by the terminal device is not the same
  • the maintained TX synchronization beam the base station transmits the information of the beam 7 to the terminal device, and can use the beam 7 as the service wide beam of the terminal device.
  • the notification message may be carried by the downlink control channel, or sent by using RRC signaling, and the like is not limited in this embodiment;
  • the terminal device detects a signal strength of each downlink wide beam.
  • the terminal device performs synchronous beam detection to detect each synchronous beam (downlink wide beam) sent by the base station; when detecting the synchronous beam, the time-frequency resources of the synchronous beams are measured.
  • the terminal device notifies the base station of the detection result of the wide beam whose signal quality meets the preset threshold;
  • the terminal device detects the intensity of each synchronous beam signal, and the terminal can compare the synchronous beams 1-3, 6-11 beams around the beam 7, if the strongest The beam is also the beam 7.
  • the terminal device simultaneously detects the wide beam 1-3 in the vicinity of the beam 7 and the second strongest beam in the 6-11 is the beam 10. Then, the strongest beam 7 and the sub-strong beam around the beam 7 are reported.
  • the content of the report may be beam information (such as beam ID, etc.), or the beam information and the quality of the corresponding beam, the manner of reporting may be sent through the uplink control channel, or RRC and other signaling, this embodiment is not limited; Since the strongest beam is unchanged, it is also possible to report only the information of the secondary strong beam.
  • the UE detects the strongest synchronization signal beam or the beam 7, and simultaneously detects the wide beam 1-3 in the vicinity of the beam 7 and the second strongest beam in the 6-11 is the beam 11. Then, the most powerful beam 7 and the sub-strong beam 11 around the beam 7 are reported, and the reported content may be beam information (such as beam ID), or beam information and quality of the corresponding beam, and the reporting manner may be sent through the uplink control channel.
  • the signaling of the RRC or the like is not limited in this embodiment; of course, since the strongest beam is unchanged, only the information of the secondary strong beam may be reported.
  • the terminal device can detect the information and signal quality of the synchronized beam that meets the signal quality threshold in the strongest beam 7 and the surrounding synchronization beams 1-3, 6-11 of the detected signal quality threshold.
  • the base station determines, based on the information, the beam to adjust the narrow beam to be scanned.
  • the content of the report may be beam information (such as the beam ID), or the beam information and the quality of the corresponding beam.
  • the manner of reporting may be sent through the uplink control channel, or the RRC or the like, which is not limited in this embodiment;
  • the base station may determine, according to the detection result, a narrow beam that needs to be scanned by the downlink beam adjustment, and the following is an example:
  • the detection result shows that the strongest wide beam has not changed, it can be determined to scan each narrow beam near the narrow beam and near the second strong wide beam.
  • the base station determines 6 beams af closest to the distance beam b between the scan beam 7 and the beam 10 during the beam adjustment process, so that The terminal device detects and reports a narrow beam that conforms to the signal quality;
  • the base station determines four beams a-d that need to scan the closest distance beam b between the beam 7 and the beam 11 during the beam adjustment process, so that the terminal device detects and reports a narrow beam that conforms to the signal quality.
  • the base station determines which narrow beams to be scanned during the beam adjustment process according to the information of the synchronization beam reported by the terminal, which is an internal implementation process of the base station, FIG. 3(a), FIG. 3(b), and FIG. 3(c).
  • FIG. 3(d) shows an example in which some base stations decide to scan some narrow beams around the current service narrow beam b.
  • the actual operation process is not limited to FIG. 3(a), FIG. 3(b), FIG. 3(c).
  • other adjustment methods are also possible.
  • the step is optional, and may also occur before 104; if the base station triggers, no signaling indication is needed, and if the terminal device triggers, the terminal device needs to send uplink signaling.
  • the uplink signaling may be sent through an uplink control channel or an RRC signaling, which is not limited in this embodiment;
  • the base station sends the signaling of the downlink beam adjustment indication to the terminal device, and may carry the resource location of the downlink narrow beam to be detected, or carry the resource indication of other modes, and the signaling is sent by using a downlink control channel or an RRC signaling.
  • the example is not limited.
  • the base station can perform narrow beam scanning for downlink beam adjustment, so that the terminal device detects and reports the detection result on the corresponding time-frequency resource; after the terminal device reports the narrow beam information conforming to the signal quality to the base station, the base station can perform narrowing. Beam adjustment.
  • the terminal device detects that the strongest synchronization beam has not changed in step 104, and is still the wide beam 7 covering the strongest narrow beam; in another embodiment, if the terminal device detects in step 104 The strongest sync beam has changed and is no longer the wide beam 7 covering the strongest narrow beam.
  • the new strongest beam is reported, and the reported content may be beam information or beam information and corresponding beam quality, and the reporting manner may be sent through an uplink control channel or RRC signaling; Update the new strongest beam reported by the terminal device to the current service wide beam, and then scan all the narrow beams in the new service wide beam coverage in the next beam adjustment.
  • the base station can determine the downlink narrow beam to be scanned according to the wide beam detection result reported by the terminal device, thereby reducing the overhead of the system.
  • the embodiment further discloses a network device, including:
  • the receiving module 501 is configured to receive information about a downlink beam that is sent by the terminal device and performs data communication with the terminal device.
  • a determining module 502 configured to determine, according to information about the downlink beam, a downlink beam related broadcast beam
  • the sending module 503 is configured to notify the terminal device of the information about the downlink beam related broadcast beam.
  • the receiving module is further configured to receive, by the terminal device, a detection result of performing broadcast beam detection according to the information of the broadcast beam;
  • the determining module is further configured to determine, according to the detection result, a downlink beam for data communication that needs to be scanned during downlink beam adjustment.
  • the foregoing network device is not limited to a base station, and may also be a TRP, or other type of network device.
  • the embodiment further discloses a terminal device, including:
  • the sending module 603 notifying the network device of information about a downlink beam for performing data communication between the network device and the terminal device;
  • the receiving module 601 is configured to receive information about the downlink beam related broadcast beam sent by the network device.
  • the detecting module 602 is configured to: perform, by the terminal, broadcast beam detection according to information about a broadcast beam related to the downlink beam;
  • the sending module is further configured to report the detection result of the broadcast beam to the network device, where the detection result is used by the network device to determine a downlink beam for data communication that needs to be scanned;
  • the detecting module is further configured to detect, by the terminal device, the downlink beam for data communication scanned by the network device.
  • the receiving module may be implemented by a receiver
  • the sending module may be implemented by a transmitter
  • other corresponding functional modules such as a determining module, a detecting module, etc.
  • Other corresponding steps may refer to method embodiments, which are not described in detail herein.
  • the network device receives the downlink narrow beam that needs to be scanned, and reduces the number of beam scanning, thereby reducing signaling overhead.
  • the various components of the device of Figure 7 may be coupled together by a bus system, wherein the bus system includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the bus system includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the processor may be a central processing unit (“CPU"), and the processor may also be other general-purpose processors, digital signal processors (DSPs), dedicated Integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory can include read only memory and random access memory and provides instructions and data to the processor.
  • a portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • the bus system may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • a power bus may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the various buses are labeled as bus systems in the figure.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种下行波束检测的方法及装置,该方法包括网络设备将广播波束的信息通知终端设备;所述网络设备接收终端设备上报的根据所述广播波束的信息进行广播波束检测的检测结果;网络设备根据所述检测结果确定下行波束调整时需要扫描的用于数据通信的下行波束,降低了信令开销。

Description

一种下行波束调整的方法及装置 技术领域
本发明涉及无线通信领域,更具体地,涉及一种下行波束调整的方法及装置。
背景技术
为了满足移动通信系统的大容量及高速率的传输需求,引入大于6GHz的高频频段进行通信,以利用其大带宽、高速率的传输特性,是5G通信系统的热点研究技术之一。由于高频通信的高路损,需采用窄波束来保证传播距离和高波束增益,然而窄波束覆盖范围有限,为了保证通信质量,要求高频基站和终端之间进行窄波束对准,波束对准的过程中可能需要遍历发送端和接收端所有的定向波束组合,并且由于终端移动或环境改变等因素,终端和基站之间的波束对可能发生改变,因此需定期或不定期的做波束调整。波束调整的过程也需遍历发送端和接收端一定范围内的定向波束组合,如果收发端均采用定向波束,则上述波束组合的数量非常巨大,导致系统开销的急剧增加。
发明内容
本发明提供一种下行波束调整的方法及装置,具体的是波束调整过程中扫描波束的确定,以减小波束调整过程中的信令开销。
第一方面,公开了一种下行波束调整的方法,包括:
网络设备接收终端设备发送的与该终端设备进行数据通信的下行波束的信息;所述网络设备根据所述下行波束的信息,确定所述下行波束相关的广播波束,并将所述下行波束相关的广播波束的信息通知终端设备;
所述网络设备接收终端设备上报的根据所述广播波束的信息进行广播波束检测的检测结果;所述网络设备根据所述检测结果确定下行波束调整时需要扫描的用于数据通信的下行波束。
又一方面,公开一种下行波束调整的方法,包括:
终端设备将网络设备与该终端设备进行数据通信的下行波束的信息通知该网络设备;终端设备接收所述网络设备发送的所述下行波束相关的广播波束的信息;终端设备根据所述下行波束相关的广播波束的信息进行广播波束检测,并将检测结果上报给网络设备,所述检测结果用于网络设备确定需要扫描的用于数据通信的下行波束;终端设备检测网络设备扫描的所述用于数据通信的下行波束。
上述两个方面的技术方面分别从网络设备及终端设备执行的步骤对下行波束调整的方法进行了说明,下次波束的调整指的是用于数据通信的下行波束的调整,网络设备可以为一个或多个基站,也可以为其它类型网络设备,如TRP(transmission reception point,传输接收点),也可以为具有中央控制功能的设备,用于控制多个基站或TRP。
又一方面,还公开了一种下行波束调整的方法,包括:
终端设备将基站与该终端设备对准的信号最强的窄波束通知基站;基站通知终端设 备该信号最强的窄波束所处的宽波束;终端设备确定该宽波束周边信号次强的宽波束,并通知基站;基站扫描该最强的窄波束周边且靠近信号次强的宽波束的多个窄波束以便终端设备检测并上报符合信号质量的窄波束。
上面的方案中,基站获知信号最强的窄波束后,将覆盖该窄波束的宽波束的信息通知终端设备,终端设备检测后确定两个最强的宽波束并通知基站,基站便可以扫描两个宽波束之间,所述信号最强窄波束周围的窄波束;从而减少了波束扫描数量,降低开销。
又一方面,一种下行波束调整的方法,包括:
终端设备将基站与该终端设备对准的信号最强的窄波束通知基站;基站通知终端设备该信号最强的窄波束所处的宽波束;终端设备检测各个下行宽波束的信号强度,若除了所述信号最强的窄波束所处的宽波束之外的宽波束信号最强,则将该信号最强的宽波束通知基站;基站将该信号最强的宽波束作为当前服务宽波束。
上述各个方面的方案中,窄波束为用于数据通信的下行波束,宽波束为广播波束,例如同步波束。
基于上述各个方面,其中:所述与终端设备进行数据通信的下行波束为信号最强的下行波束或信号质量高于预设门限的下行波束,高于预设门限的可以为多个,可以来自一个或多个基站。
基于上述各个方面,其中:所述与终端设备进行数据通信的下行波束相关的广播波束可以包括以下至少一种:所述下行波束所处的广播波束、与所述下行波束所处的广播波束空间相邻的广播波束。
基于上述各个方面,其中,所述广播波束检测的检测结果包括以下至少一种:信号质量高于设定门限的广播波束的检测结果,信号质量最强的广播波束的检测结果,信号质量次强的广播波束的检测结果;例如可以为信号质量最强的广播波束的检测结果和信号质量次强的广播波束的检测结果。
基于上述各个方面,其中,所述广播波束的检测结果包括以下至少一种:广播波束的信息,广播波束的信号质量。
基于上述各个方面,其中,所述下行波束的信息包括以下至少一种:波束标识,OFDM(orthogonal frequency division multiplexing,正交频分复用)符号序号,帧号,子帧号,波束的资源位置,天线端口号。
广播波束的信息包括以下至少一种:波束标识,OFDM符号序号,帧号,子帧号,天线端口号,波束的资源位置,天线端口号。
基于第一方面的方法,还公开了一种网络设备,包括:
接收模块:用于接收终端设备发送的与该终端设备进行数据通信的下行波束的信息;确定模块:用于根据所述下行波束的信息,确定所述下行波束相关的广播波束;发送模块:用于将所述下行波束相关的广播波束的信息通知终端设备;所述接收模块还用于接收终端设备上报的根据所述广播波束的信息进行广播波束检测的检测结果;
结合上述方面,所述确定模块还用于根据所述检测结果确定下行波束调整时需要扫描的用于数据通信的下行波束。
所述网络设备可以为基站,TRP或其它类型的网络设备。
基于第二方面的方法,还公开了一种终端设备,包括:
发送模块:用于将网络设备与该终端设备进行数据通信的下行波束的信息通知该网 络设备;接收模块:用于接收所述网络设备发送的所述下行波束相关的广播波束的信息;检测模块:用于终端根据所述下行波束相关的广播波束的信息进行广播波束检测;所述发送模块还用于将广播波束的检测结果上报给所述网络设备,所述检测结果用于所述网络设备确定需要扫描的用于数据通信的下行波束;所述检测模块还用于终端设备检测所述网络设备扫描的所述用于数据通信的下行波束。
结合上述各个方面的技术方案,所述广播波束可以为同步波束,也可以是其它周期性发送的波束。
上述网络设备及终端设备分别基于上述方法,方法中相应的步骤可以由网络设备或终端相应的模块来实现,其它方法中提到的步骤也均可以由相应的模块来执行,具体参考方法的描述,不再一一详述。
在另一种形式的装置中,上述网络设备或终端设备中,接收模块可以由接收机实现,发送模块可以由发射机实现,其它相应功能模块,如确定模块,检测模块等可以由处理器实现,具体的功能可以参考方法中相应的描述,不再一一详述。
本发明上述各个方面的技术方案中,由于网络设备接收终端设备上报的检测结果确定需要扫描的用于数据通信下行波束,降低了信令开销。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是基站与终端设备波束通信示意图。
图2(a)-(b)是本发明实施例下行波束调整的方法的波束示意图。
图3(a)-(d)是本发明实施例下行波束调整的方法的波束示意图。
图4是本发明实施例下行波束调整方法流程图。
图5是本发明实施例网络设备示意图。
图6是本发明实施例终端设备示意图。
图7是本发明另一实施例网络设备及终端设备示意图。
具体实施方式
本发明实施例可以用于各种技术的的无线网络。无线接入网络在不同的系统中可包括不同的网络设备。例如,LTE(Long Term Evolution)、LTE-A(LTE Advanced)和NR(New Radio)中无线接入网络的网元包括eNB(eNodeB,演进型基站)、TRP(transmission reception point,传输接收点)等,WLAN(wireless local area network)/Wi-Fi的网元包括接入点(Access Point,AP)等。其它无线网络也可以使用与本发明实施例类似的方案,只是网络设备的名称可能有所不同,本发明实施例并不限定。
还应理解,在本发明实施例中,终端设备包括但不限于用户设备(UE,User Equipment)、移动台(MS,Mobile Station)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该终端设备 可以经无线接入网(RAN,Radio Access Network)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
参考图1,在高频通信过程中需采用窄波束来保证传播距离和高波束增益,并进行波束对准来保证通信质量,因而网络设备与不同用户设备终端设备在传输的过程中,会在不同的波束对上进行,因此网络设备和终端设备首先需要进行波束扫描、对准及下行同步。一个或多个帧中的通常会固定配置一个或多个OFDM符号用来做下行同步波束扫描,每个OFDM符号可由网络设备通过一个或多个下行波束进行周期性的发送,由终端设备检测相应的同步信号。
例如:高频基站采用较宽的波束进行波束遍历以发送同步信号,终端设备接入高频基站同样使用较宽的波束检测同步信号,高频基站遍历各个下行波束发送同步信号,终端设备检测到信号最强的同步信号后则上报该同步信号所在同步波束的波束标识,如Beam id,从而基站与终端设备建立发送/接收(TX/RX)波束对,终端设备与基站完成宽波束对准;后续的宽波束调整也可采用上述同步的方式进行。宽波束可用作控制信道的传输,而数据的传输则需要在更窄的波束(相比宽波束)进行,因此需要进一步的进行窄波束对准(也称为beam refinement,波束精对准),以进行数据信道的传输;宽波束对建立的情况下做窄波束对准,则基站将宽波束覆盖范围中的窄波束进行遍历,即,基站扫描宽波束空间覆盖范围内的各个窄波束以发送参考信号,终端设备检测该各个窄波束发送的参考信号,若检测到其中一个窄波束为信号最强波束,则可使用该窄波束进行数据通信;例如:终端设备在所述宽波束覆盖范围内检测基站发送的各个窄波束的信号强度,获得一个或多个信号质量符合要求(例如信号强度达到一定门限)的窄波束,用于数据传输;如果后续由于终端设备移动或其它原因,需要进行波束调整(beam adjustment),则需要遍历扫描该窄波束及窄波束周边的各个窄波束。例如图2(a)中,进行宽波束对准时,终端设备检测到最强宽波束为波束10(当前服务宽波束),则在做窄波束对准时,扫描波束10中的9个窄波束(图a中的灰色部分的候选波束),确定其中信号最强的窄波束;另一个例子中,如图2(b)中窄波束对准时假如终端设备检测到最强窄波束为宽波束10中的波束a(当前服务窄波束),则在做后续的窄波束调整时,扫描波束a及波束a周围的8个窄波束(图b中的灰色部分候选波束)。上述基站可以为一个或多个,也可以为TRP等其它网络设备,终端设备检测或扫描的宽波束或窄波束,可以来自一个或多个网络设备,如基站或TPR等。
在高频数据通信的过程中需采用窄波束来保证传播距离和高波束增益,并进行波束对准来保证通信质量,终端设备与基站之间完成了宽波束及窄波束对准后,后续可能需要进行波束调整,例如由于终端设备的移动或环境的改变等因素,终端设备和基站之间的波束对可能发生改变,因此需定期或不定期的做波束调整,波束对准及波束调整的过程中终端设备和基站需分别遍历各自的多个波束,带来较大的开销。
为了方便描述,本实施例中所指的宽波束都为同步波束,用于下行同步,如携带同步信号的下行波束,一般用于控制信道的传输;窄波束则为数据通信的波束,一般用于数据信道的传输,可以预先定义好各个宽波束对应的标识,如用beam ID,OFDM符号序号,帧号,子帧号,slot号,波束的资源位置,天线端口号中的至少一个来标识相应的波束,并预先定义好各个宽波束之间的空间关系,每一个宽波束相邻的宽波束有哪些,并基站和 终端设备都知晓。
本发明实施例的下行波束调整的方法包括:
终端设备将网络设备与该终端设备进行数据通信的下行波束的信息通知网络设备;网络设备根据所述下行波束的信息,确定所述下行波束相关的广播波束,并将所述下行波束相关的广播波束的信息通知终端设备;终端设备根据所述下行波束相关的广播波束的信息进行广播波束检测,并将检测结果上报给网络设备;网络设备根据所述检测结果确定确定下行波束调整时需要扫描的用于数据通信的下行波束,从而进行相应的下行波束扫描便于终端设备进行波束检测,进一步的,网络设备可以接收终端设备上报的检测结果,并根据检测结果进行波束调整等相关操作。
上述广播波束可以为上面提到的同步波束,也可以为其它类型周期性发送的波束,如网络设备对不同的终端广播发送的波束,可以以波束扫描的方式进行发送,也可以每次发送几个方向的波束直到覆盖不同位置的终端设备。
本发明实施例中以广播波束是同步波束为例进行说明;上述过程中提到的波束调整为下行窄波束的调整,即用于数据通信的下行波束的调整。进行数据通信的下行波束为窄波束,同步波束为宽波束,网络设备可以为一个或多个基站,也可以TRP等其它网络设备。
由于网络设备根据终端设备上报的检测结果确定需要扫描的窄波束,终端设备和基站不需要分别遍历各自的多个波束,减小了系统开销。
在一个实施例中,与该终端设备进行数据通信的窄波束如果为一个,通常为信号最强窄波束,该最强窄波束相关的同步波束可以为覆盖该最强窄波束的同步波束(该同步波束通常也信号最强),还可以进一步包括覆盖该最强窄波束的同步波束的空间相邻同步波束;终端设备根据所述下行波束相关的同步波束的信息进行同步波束检测时,如果发现最强的同步波束没有变,即,仍然是覆盖该最强窄波束的同步波束,则可以上报信号次强同步波束给基站,则基站可以确定终端设备正在向信号次强同步波束方向移动,则基站扫描最强窄波束周围,并且靠近次强同步波束的窄波束即可。不需要扫描最强窄波束周围所有的窄波束。
例如图3(a)所示,在进行宽波束扫描时,终端设备通过检测获得最强的同步波束(宽波束)为波束7,在进行窄波束扫描时,基站遍历波束7覆盖范围内的9个窄波束,终端设备通过检测确定最强的窄波束为波束b(当前服务窄波束);后续的同步信号扫描过程中终端设备确定最强宽波束仍然为波束7,并进一步扫描了波束7周边的波束中(波束1~3,6,8~11)信号次强的波束为波束10,则可以确定终端设备正由波束7的方向往波束10的方向移动,或者终端设备处在波束7和波束10之间,则在后续的窄波束扫描中只需扫描波束b及b周边的靠近波束10的6个窄波束a~f即可,通过确定两个信号最好的波束,然后扫描处于两个波束之间,且最强窄波束周围的窄波束,这种方式节省了波束调整过程中的系统开销。
上述例子中,波束示意图3(a)只是一个实施例,终端设备做同步波束检测的最强同步波束没有发生改变的情况,还可以有其它情况;例如:信号最强窄波束为波束(b),次强同步波束为10时,图3(b)和图3(c)扫描靠近次强波束10的6个窄波束a~f即可,图3(d)中,信号最强窄波束为波束(b),假如次强同步波束为波束11,则扫描波束(b)周围靠近波束11的4个窄波束a~d即可。
如果终端设备检测发现最强的同步波束已经改变,不再是覆盖该最强窄波束的同步波束,此时将检测到的最强同步波束作为当前服务宽波束,然后扫描该服务宽波束空间覆盖范围内的各个窄波束,确定最强窄波束。
例如上述图3(a)中,如果终端设备通过检测确定最强的窄波束为波束b,但后续的同步信号扫描过程中终端设备确定最强宽波束不在是窄波束b所在的宽波束7,比如最强窄波束为波束11(也可以12或13等其它宽波束),则将波束11(也可以12或13等其它宽波束)作为当前服务宽波束,后续再按上面提到的方法,检测宽波束11空间覆盖范围内的各个窄波束,确定最强窄波束。
上述实施例中,网络设备可以根据终端设备的检测结果确定扫描范围,减少了波束调整过程中波束扫描的数量,降低了信令开销。
以下网络设备是基站为例,结合附图对上述波束调整方法做进一步说明,参考图4:
101:终端设备将基站与自身进行数据通信的下行窄波束的信息通知基站;
终端设备可以将检测到的信号质量高于设定门限的窄波束的信息通知相应的基站,窄波束为用于数据通信的波束,可以是一个或多个;如果是一个,则为信号最强窄波束,如果是多个,则信号质量均好于设定门限,可以是一个基站的多个窄波束,也可能是来自多个基站的窄波束;检测的过程可以通过上述描述的波束扫描或调整的过程来实现;通知的内容可以是以下一种或多种:检测到的窄波束的OFDM符号序号,帧号,子帧号,检测到窄波束的资源位置或天线端口号等,通知的方式可以是通过上行控制信道,或RRC(radio resource control,无线资源控制)信令携带。总之通知的过程可按照多种的方式进行,本实施例不限定;
102:基站根据收到的窄波束的信息,确定所述窄波束相关的宽波束,并将宽波束的信息通知终端设备;
所述窄波束相关的宽波束可以所述窄波束所处的宽波束,即覆盖所述窄波束的宽波束,也可以进一步将该宽波束空间周围的宽波束通知终端设备;基站也可以确定终端设备需要扫描的宽波束,并通知终端设备;
例如,参考图3(a),当前基站对准终端设备的最强窄波束b处于宽波束7中,可以将宽波束7的信息通知基站,也可以进一步将7周围的宽波束(1-3,6,8-11)通知终端;通知的波束信息可以是以下任意一种或多种:如宽波束的波束ID,OFDM symbol index,天线端口号,slot号,子帧号,无线帧号等,本实施例不做限定,用于终端设备确定需要扫描的该宽波束空间相邻的宽波束;
在另一个例子中,基站可以直接通知终端设备需要扫描的各个宽波束,基站也可以将终端设备需要扫描的该宽波束7以及该宽波束7空间相邻的宽波束1-3,6-11的波束信息均发送给终端设备,当然也可以进一步包括其它的宽波束,如波束4,5,12-16。也就是基站可以确定终端设备需要扫描的宽波束,并通知终端设备。
在又一个例子中,由于基站和终端设备可以维护一对发送/接收(TX/RX)同步波束对,若当前基站收到终端设备上报的窄波束所处的宽波束7仍然为所维护的TX同步波束,则可以不把宽波束7的波束信息发送给终端设备,因为终端设备本身知道宽波束7的波束信息;若当前基站收到终端设备上报的窄波束所处的宽波束7不是为所维护的TX同步波束,则基站将波束7的信息发送给终端设备,并可以把该波束7作为终端设备的服务宽波束。
该通知的消息可通过下行控制信道携带,或通过RRC信令发送等,本实施例不限定;
103:终端设备检测各个下行宽波束的信号强度;
例如:终端设备进行同步波束检测,检测基站发送的各个同步波束(下行宽波束);检测同步波束时,对这些同步波束的时频资源进行测量。
104:终端设备将信号质量满足预设门限的宽波束的检测结果通知基站;
在一个例子中,如图2(a),图2(b)所示:终端设备检测各个同步波束信号强度,终端可以比较波束7周边的同步波束1-3,6-11波束,若最强波束还是波束7,终端设备同时检测到波束7周边相邻位置的宽波束1-3,6-11中次强的波束为波束10,则上报最强的波束7与波束7周边的次强波束10,上报的内容可以是波束信息(如波束ID等),或者波束信息和相应波束的质量,上报的方式可以是通过上行控制信道发送,或RRC等信令发送,本实施例不限定;当然由于最强波束不变,也可以只上报次强波束的信息。
或者如图3(d)所示,UE检测到最强同步信号波束还是波束7,同时检测到波束7周边相邻位置的宽波束1-3,6-11中次强的波束为波束11,则上报最强的波束7与波束7周边的次强波束11,上报的内容可以是波束信息(如波束ID),或者波束信息和相应波束的质量,上报的方式可以是通过上行控制信道发送,或RRC等信令发送,本实施例不限定;当然由于最强波束不变,也可以只上报次强波束的信息。
在另一个例子中,终端设备可以把检测到的满足一定信号质量门限的最强波束7及周边的同步波束1-3,6-11波束中符合信号质量门限的同步波束的信息及信号质量都上报至基站,由基站根据这些信息判断波束调整需要扫描的窄波束。上报的内容可以是波束信息(如波束ID),或者波束信息和相应波束的质量,上报的方式可以是通过上行控制信道发送,或RRC等信令发送,本实施例不限定;
基站接收到上述宽波束的检测结果后,便可根据该检测结果确定下行波束调整需要扫描的窄波束,以下举例进行说明:
如果检测结果显示最强宽波束没有变,可以确定扫描窄波束周边、靠近次强宽波束的各个窄波束。
例如,如图3(a),图3(b)和图3(c)所示,基站确定在beam adjustment过程中需要扫描7与波束10之间的距离波束b最近的6个波束a-f,以便终端设备检测并上报符合信号质量的窄波束;
或者如图3(d)所示基站确定在beam adjustment过程中需要扫描7与波束11之间的距离波束b最近的4个波束a-d,以便终端设备检测并上报符合信号质量的窄波束。
需要说明的是:基站根据终端上报的同步波束的信息决定波束调整过程中需扫描哪些窄波束,是基站的内部实现的过程,图3(a),图3(b),图3(c)及图3(d)是给出一些基站决定扫描当前服务窄波束b周边的一些窄波束的例子,实际的操作过程并不限于图3(a),图3(b),图3(c)及图3(d)的实施方式,也可以有其它调整方式。
105:波束调整(Beam adjustment)过程的触发,该步骤为可选,也可以发生在104之前;若是基站触发,则不需要信令指示,若是终端设备触发,则终端设备需发送上行信令,以触发Beam adjustment过程,该上行信令可以通过上行控制信道或RRC等信令发送,本实施例不限定;
106:基站向终端设备发送下行波束调整指示的信令,可以携带需要检测的下行窄波束的资源位置,或者携带其它方式的资源指示,信令通过下行控制信道或RRC等信令发 送,本实施例不进行限定。
然后基站便可以为下行波束调整进行窄波束扫描,以便于终端设备在相应的时频资源上检测并上报检测结果;终端设备上报符合信号质量的窄波束的信息给基站后,基站便可进行窄波束的调整。
上述波束调整的实施例中,步骤104中终端设备检测到最强的同步波束没有改变,仍然是覆盖最强窄波束的宽波束7;在另一个实施例中,如果步骤104中终端设备检测到最强的同步波束已经改变,不再是覆盖最强窄波束的宽波束7,例如:若波束10的信号强度已经大于波束7,或者有除同步波束1-3,6-11以外的波束成为最强波束,则上报新的最强波束,上报的内容可以是波束的信息或者波束信息和相应的波束质量,上报的方式可以是通过上行控制信道发送,或RRC信令等方式发送;则基站将终端设备上报的新的最强波束更新为当前服务宽波束,则在下一次的beam adjustment中扫描该新的服务宽波束覆盖范围中的所有窄波束。
上述波束调整的实施例中,由于基站可以根据终端设备上报的宽波束检测结果,确定需要扫描的下行窄波束,从而减小的系统的开销。
针对上述方法实施例中的基站,参考图5,本实施例还公开了一种网络设备,包括:
接收模块501:用于接收终端设备发送的与该终端设备进行数据通信的下行波束的信息;
确定模块502:用于根据所述下行波束的信息,确定所述下行波束相关的广播波束;
发送模块503:用于将所述下行波束相关的广播波束的信息通知终端设备;
所述接收模块还用于接收终端设备上报的根据所述广播波束的信息进行广播波束检测的检测结果;
所述确定模块还用于根据所述检测结果确定下行波束调整时需要扫描的用于数据通信的下行波束。
上述网络设备不限于基站,也可以为TRP,或其它类型网络设备。
针对上述方法实施例中的终端设备,参考图6,本实施例还公开了一种终端设备,包括:
发送模块603:用于将网络设备与该终端设备进行数据通信的下行波束的信息通知该网络设备;
接收模块601:用于接收所述网络设备发送的所述下行波束相关的广播波束的信息;
检测模块602:用于终端根据所述下行波束相关的广播波束的信息进行广播波束检测;
所述发送模块还用于将广播波束的检测结果上报给所述网络设备,所述检测结果用于所述网络设备确定需要扫描的用于数据通信的下行波束;
所述检测模块还用于终端设备检测所述网络设备扫描的所述用于数据通信的下行波束。
上述各个装置实施例中由相应的功能模块来执行方法实施例中的相应步骤,具体步骤可以参考相应的方法,其它相应的步骤也可以由对应的模块来实现,可以参考方法实施例的描述,这里不再一一描述。
在另一种形式的装置实施例中,接收模块可以由接收机实现,发送模块可以由发射机实现,其它相应功能模块,如确定模块,检测模块等可以由处理器实现,具体可以参考 图7,其它相应的步骤可以参考方法实施例,这里不在详细描述。
本发明上述各个实施例的技术方案中,由于网络设备接收终端设备上报的检测结果确定需要扫描的下行窄波束,减小了波束扫描的数量,从而降低了信令开销。
可选地,图7中的设备的各个组件可以通过总线系统耦合在一起,其中总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
应理解,在本发明实施例中,该处理器可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器还可以是其它通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。
该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种波束检测的方法,包括:
    网络设备将广播波束的信息通知终端设备;
    所述网络设备接收终端设备上报的根据所述广播波束的信息进行广播波束检测的检测结果。
  2. 如权利要求1所述的方法,该方法之前进一步包括:
    网络设备接收所述终端设备发送的与该终端设备进行数据通信的下行波束的信息;
    所述网络设备根据所述下行波束的信息,确定所述下行波束相关的广播波束。
  3. 如权利要求2所述的方法,所述与终端设备进行数据通信的下行波束为信号最强的下行波束或信号质量高于预设门限的下行波束。
  4. 如权利要求2所述的方法,其中,所述与终端设备进行数据通信的下行波束相关的广播波束包括以下至少一种:所述下行波束所处的广播波束,与所述下行波束所处的广播波束空间相邻的广播波束。
  5. 如权利要求1所述的方法,其中,所述广播波束检测的检测结果包括以下至少一种:
    信号质量高于设定门限的广播波束的检测结果,信号质量最强的广播波束的检测结果,信号质量次强的广播波束的检测结果。
  6. 如权利要求5所述的方法,其中,所述广播波束的检测结果包括广播波束的信息和/或广播波束的信号质量。
  7. 如权利要求1-6任意一项所述的方法,其中:
    广播波束的信息包括以下至少一种:波束标识,正交频分复用OFDM符号序号,帧号,子帧号,天线端口号,波束的资源位置,天线端口号。
  8. 如权利要求1-7任意一项所述的方法,其中,所述广播波束为用于发送同步信号的广播波束。
  9. 如权利要求1-8任意一项所述的方法,其中,所述网络设备根据所述检测结果确定用于数据通信的下行波束。
  10. 一种波束检测的方法,包括:
    终端设备接收网络设备发送的广播波束的信息;
    终端设备根据所述广播波束的信息进行广播波束检测,并将广播波束的检测结果上报给所述网络设备。
  11. 如权利要求10所述的方法,其中,所述检测结果用于所述网络设备确定用于数据通信的下行波束;
    该方法进一步包括:
    终端设备检测所述网络设备发送的用于数据通信的下行波束。
  12. 如权利要求11所述的方法,该方法进一步包括:终端设备将检测的用于数据通信的下行波束的检测结果通知网络设备。
  13. 如权利要求10-12任意一项所述的方法,其中,所述广播波束为用于发送同步信号的广播波束。
  14. 一种装置,该装置为网络设备或集成在网络设备中的功能单元,包括:
    发送模块:用于将广播波束的信息通知终端设备;
    接收模块:用于接收终端设备上报的根据所述广播波束的信息进行广播波束检测的检测结果。
  15. 如权利要求14所述的装置,进一步包括:
    确定模块:用于根据所述检测结果确定用于数据通信的下行波束。
  16. 如权利要求15所述的装置,其中:
    所述接收模块还用于接收终端设备发送的与该终端设备进行数据通信的下行波束的信息;
    所述确定模块还用于根据所述下行波束的信息,确定所述下行波束相关的广播波束。
  17. 如权利要求14-16任意一项所述的装置,其中,所述广播波束为用于发送同步信号的广播波束。
  18. 一种装置,该装置为终端设备或集成在终端设备中的功能单元,包括:
    接收模块:用于接收网络设备发送的广播波束的信息;
    检测模块:用于根据所述广播波束的信息进行广播波束检测;
    发送模块:用于将广播波束的检测结果上报给所述网络设备。
  19. 如权利要求18所述的装置,其中,所述检测结果用于所述网络设备确定用于数据通信的下行波束;
    所述检测模块还用于检测所述网络设备发送的用于数据通信的下行波束。
  20. 如权利要求19所述的装置,其中,所述发送模块还用于将检测模块检测的用于数据通信的下行波束的检测结果通知网络设备。
PCT/CN2017/118681 2016-12-28 2017-12-26 一种下行波束调整的方法及装置 WO2018121540A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17887749.4A EP3541108B1 (en) 2016-12-28 2017-12-26 Downlink beam adjustment method and device
BR112019013231A BR112019013231A2 (pt) 2016-12-28 2017-12-26 método e aparelho de ajuste de feixe de enlace descendente
US16/455,786 US11070264B2 (en) 2016-12-28 2019-06-28 Downlink-beam adjustment method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611238127.2A CN108260134B (zh) 2016-12-28 2016-12-28 一种下行波束调整的方法及装置
CN201611238127.2 2016-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/455,786 Continuation US11070264B2 (en) 2016-12-28 2019-06-28 Downlink-beam adjustment method and apparatus

Publications (1)

Publication Number Publication Date
WO2018121540A1 true WO2018121540A1 (zh) 2018-07-05

Family

ID=62706888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118681 WO2018121540A1 (zh) 2016-12-28 2017-12-26 一种下行波束调整的方法及装置

Country Status (5)

Country Link
US (1) US11070264B2 (zh)
EP (1) EP3541108B1 (zh)
CN (1) CN108260134B (zh)
BR (1) BR112019013231A2 (zh)
WO (1) WO2018121540A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10680688B2 (en) * 2018-01-29 2020-06-09 Telefonaktiebolaget Lm Ericsson (Publ) Beam training of a radio transceiver device
US11012881B2 (en) * 2018-07-06 2021-05-18 Mixcomm, Inc. Beam management methods and apparatus
US10972172B2 (en) * 2018-10-05 2021-04-06 Arizona Board Of Regents On Behalf Of The University Of Arizona Method for fast beam sweeping and device discovery in 5G millimeter wave and upper centimeter-wave systems
CN111698761B (zh) * 2019-03-15 2021-10-22 华为技术有限公司 通信方法、装置、设备及系统
CN110611953B (zh) * 2019-08-16 2022-03-01 展讯半导体(南京)有限公司 下行波束指示方法、设备和存储介质
CN114208249A (zh) * 2020-07-16 2022-03-18 北京小米移动软件有限公司 波束调整方法、波束调整装置及存储介质
US11742925B2 (en) 2020-07-30 2023-08-29 Samsung Electronics Co., Ltd. Methods and apparatus for mitigating codebook inaccuracy when using hierarchical beam operations
US11705953B2 (en) * 2021-12-06 2023-07-18 Qualcomm Incorporated Envelope ratio method to improve beam hierarchy design

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140004869A1 (en) * 2012-06-29 2014-01-02 Samsung Electronics Co, Ltd. Method and apparatus for transmitting signal in beam forming-based communication system
CN103765794A (zh) * 2011-09-01 2014-04-30 三星电子株式会社 无线通信系统中选择最佳波束的装置和方法
CN103782524A (zh) * 2011-08-24 2014-05-07 三星电子株式会社 用于在无线通信系统中选择波束的装置和方法
CN105897322A (zh) * 2015-02-17 2016-08-24 财团法人工业技术研究院 毫米波通信的波束形成方法及其基站与用户设备
CN105991175A (zh) * 2015-01-29 2016-10-05 电信科学技术研究院 一种导频信号的发送、接收处理方法及装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7289826B1 (en) * 2002-04-16 2007-10-30 Faulkner Interstices, Llc Method and apparatus for beam selection in a smart antenna system
US8891399B2 (en) * 2010-10-25 2014-11-18 Lg Electronics Inc. Method of reducing intercell interference in wireless communication system and apparatus thereof
KR101881847B1 (ko) * 2012-02-21 2018-08-24 삼성전자주식회사 통신 시스템에서 신호를 송수신하는 방법 및 장치
US9380582B2 (en) * 2012-04-16 2016-06-28 Samsung Electronics Co., Ltd. Methods and apparatus for flexible beam communications in random access in system with large number of antennas
KR20130125903A (ko) * 2012-05-10 2013-11-20 삼성전자주식회사 통신시스템에서 빔포밍을 수행하는 방법 및 장치
KR101995798B1 (ko) * 2012-07-03 2019-07-03 삼성전자주식회사 빔포밍을 사용하는 통신 시스템의 랜덤 억세스 장치 및 방법
KR101995266B1 (ko) * 2012-08-17 2019-07-02 삼성전자 주식회사 빔포밍을 이용한 시스템에서 시스템 액세스 방법 및 장치
KR102029102B1 (ko) * 2012-11-19 2019-11-11 삼성전자주식회사 빔포밍 시스템에서 빔 방향 선택 방법 및 장치
KR102085003B1 (ko) * 2013-04-30 2020-04-14 삼성전자주식회사 빔포밍 시스템에서 최적의 송수신 빔 제공 방법 및 장치
WO2015086080A1 (en) * 2013-12-12 2015-06-18 Telefonaktiebolaget L M Ericsson (Publ) Method and network node for broadcasting
CN104734761A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种上下行波束混合指示的方法、基站、终端和系统
CN103716081B (zh) * 2013-12-20 2019-08-06 中兴通讯股份有限公司 下行波束确定方法、装置及系统
US9578644B2 (en) * 2014-09-26 2017-02-21 Mediatek Inc. Beam misalignment detection for wireless communication system with beamforming
EP3214772A4 (en) * 2014-10-31 2017-10-25 Huawei Technologies Co., Ltd. Beam adjustment method, user equipment, and base station
EP3879881A1 (en) * 2014-11-26 2021-09-15 IDAC Holdings, Inc. Beam switching in wireless systems
US20160344519A1 (en) * 2015-05-22 2016-11-24 Asustek Computer Inc. Method and apparatus for implementing reference signal transmissions in a wireless communication system
WO2017022870A1 (en) * 2015-08-03 2017-02-09 Samsung Electronics Co., Ltd. Method and apparatus for initial access in wireless communication system
EP3381134A1 (en) * 2015-11-23 2018-10-03 Nokia Solutions and Networks Oy User device beamforming training in wireless networks
CN110166085B (zh) * 2015-12-29 2020-08-07 华为技术有限公司 一种下行数据传输方法及设备
US10700752B2 (en) * 2016-01-14 2020-06-30 Samsung Electronics Co., Ltd. System, method, and apparatus of beam-tracking and beam feedback operation in a beam-forming based system
US10270514B2 (en) * 2016-01-14 2019-04-23 Samsung Electronics Co., Ltd. Method and apparatus for generating beam measurement information in a wireless communication system
CA3043786C (en) * 2016-06-21 2021-07-13 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for signal transmission, network device and terminal device
CN108023629A (zh) * 2016-11-03 2018-05-11 株式会社Ntt都科摩 波束确定方法、下行传输解调方法、用户设备和基站
US10567058B2 (en) * 2017-02-08 2020-02-18 Samsung Electronics Co., Ltd. Method and apparatus for beam management
US10708919B2 (en) * 2017-11-07 2020-07-07 Qualcomm Incorporated Techniques and apparatuses for beam management to overcome maximum permissible exposure conditions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103782524A (zh) * 2011-08-24 2014-05-07 三星电子株式会社 用于在无线通信系统中选择波束的装置和方法
CN103765794A (zh) * 2011-09-01 2014-04-30 三星电子株式会社 无线通信系统中选择最佳波束的装置和方法
US20140004869A1 (en) * 2012-06-29 2014-01-02 Samsung Electronics Co, Ltd. Method and apparatus for transmitting signal in beam forming-based communication system
CN105991175A (zh) * 2015-01-29 2016-10-05 电信科学技术研究院 一种导频信号的发送、接收处理方法及装置
CN105897322A (zh) * 2015-02-17 2016-08-24 财团法人工业技术研究院 毫米波通信的波束形成方法及其基站与用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3541108A4 *

Also Published As

Publication number Publication date
EP3541108B1 (en) 2023-03-01
US11070264B2 (en) 2021-07-20
EP3541108A1 (en) 2019-09-18
CN108260134B (zh) 2023-12-29
CN108260134A (zh) 2018-07-06
US20190349049A1 (en) 2019-11-14
BR112019013231A2 (pt) 2019-12-24
EP3541108A4 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
WO2018121540A1 (zh) 一种下行波束调整的方法及装置
US10506606B2 (en) Method and apparatus for aligning antenna beams in high-low frequency co-site network
CN109150362B (zh) 通信方法及装置
US20200022185A1 (en) Signal transmission method and device
US10862652B2 (en) Uplink signal acknowledge method and apparatus
US11838861B2 (en) Handling UE context upon inactivity
US11973563B2 (en) Apparatus, method and computer program for determining beamforming direction
WO2020199902A1 (zh) 一种选择接收波束的方法及装置
EP3406096A1 (en) Hybrid solution for network controlled handover and ue autonomous handover
WO2018082575A1 (zh) 一种下行控制信号的传输方法及装置
KR20230048115A (ko) 정보 보고 방법, 정보 수신 방법 및 관련 기기
WO2021227985A1 (zh) 同步信号块的处理方法及装置、通信设备和可读存储介质
US11399335B2 (en) Network operator assisted connectivity over a second network
US11082902B2 (en) Method and apparatus for enabling a user equipment to use cells having different frequencies
US20190280786A1 (en) Method for transmitting measurement signal and apparatus
WO2022271448A1 (en) Selectively providing unsolicited probe responses in a band of frequencies
CN112740561B (zh) 在多trp系统中管理干扰的方法和系统
EP3391580A1 (en) Methods and devices for signal processing in communication system
CN108809368B (zh) 一种波束管理方法及其装置
WO2023040933A1 (zh) 波束信息的确定方法、终端及网络侧设备
US11051221B2 (en) Network access method and device
CN116235449A (zh) 无线通信方法、装置和系统
WO2015172544A1 (zh) 在异构网络中进行通信的方法和小基站
KR20150008317A (ko) 반송파 집적 동작시 동시 전송 방식 적용을 위한 셀 구성 변경 방법 및 그 방법을 수행하는 이동 통신 시스템과 디지털 신호 처리 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887749

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017887749

Country of ref document: EP

Effective date: 20190614

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019013231

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112019013231

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190626