WO2018120216A1 - 一种控制收发器开关状态的方法及发送端设备 - Google Patents

一种控制收发器开关状态的方法及发送端设备 Download PDF

Info

Publication number
WO2018120216A1
WO2018120216A1 PCT/CN2016/113940 CN2016113940W WO2018120216A1 WO 2018120216 A1 WO2018120216 A1 WO 2018120216A1 CN 2016113940 W CN2016113940 W CN 2016113940W WO 2018120216 A1 WO2018120216 A1 WO 2018120216A1
Authority
WO
WIPO (PCT)
Prior art keywords
transceiver
switching
power consumption
switch
consumption level
Prior art date
Application number
PCT/CN2016/113940
Other languages
English (en)
French (fr)
Inventor
王祥
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/113940 priority Critical patent/WO2018120216A1/zh
Priority to CN201680088564.2A priority patent/CN109644018B/zh
Publication of WO2018120216A1 publication Critical patent/WO2018120216A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/32Reducing cross-talk, e.g. by compensating

Definitions

  • the embodiments of the present invention relate to the field of wireless communications technologies, and in particular, to a method for controlling a switch state of a transceiver and a device at the transmitting end.
  • Digital Subscriber Line is a high-speed data transmission technology for telephone twisted pair transmission.
  • DSL can use frequency division multiplexing technology to make DSL and traditional telephone service (English: Plain Old Telephone Service, POTS). Coexisting on the same pair of twisted pairs, where DSL occupies a high frequency band, POTS occupies a baseband portion below 4 kHz, and POTS signals and DSL signals are separated by a splitter.
  • DSL uses discrete multi-tone modulation, and the system that provides multiple DSL access is called Digital Subscriber Line Access Multiplexer (DSLAM). Due to the principle of electromagnetic induction, DSLAM accesses multiple signals. , will cause interference with each other, this interference is called crosstalk. As shown in FIG.
  • the crosstalk includes Near End Crosstalk (NEXT) and Far End Crosstalk (FEXT).
  • NXT Near End Crosstalk
  • FXT Far End Crosstalk
  • NXT Near End Crosstalk
  • FEXT Far End Crosstalk
  • FIGS. 2a and 2b show the operation of the DSMAC when synchronizing the transmitted signal and synchronizing the received signal, respectively.
  • the shared channel H shown in Figures 2a and 2b can be represented in the form of a matrix:
  • h ij is the transfer equation from line j to line pair i.
  • i, j are the number of receiving ports and sending ports, respectively. In general, the number of receiving ports and sending ports is equal, but they may not be equal.
  • i, j can be the number of receiving antennas and transmitting antennas, respectively.
  • a matrix multiple input/multiple output (MIMO) channel is formed between ports or between antennas. The theoretical capacity (the ability to transmit data) of the matrix channel is different depending on the specific components of the matrix channel.
  • a user has multiple pairs of lines.
  • multiple pairs of lines can be bound by Bonding technology to improve user access rate.
  • the same access point (English: Access Point, AP) generally has multiple antennas, which can increase the rate compared to a single antenna scene.
  • AP Access Point
  • low-power technology can be used to reduce power consumption (or adapt to low traffic) by turning off the transceiver.
  • the sender only has the first two transmitters (ports, antennas) in the above system
  • the receiver only has the first three receivers (ports, antennas) in the above system, and the channel will be 3*2.
  • the transceiver when the transceiver is turned off to reduce power consumption or when the transceiver is turned on to increase power consumption, the transceiver is turned off or turned on in a random selection manner to achieve the purpose of reducing or increasing power consumption, but this The way to turn off or turn on the transceiver is an irregular way. Some transceivers are frequently turned off or on, and the operation of turning off or turning on the transceiver also requires more power consumption, which may make the system unable to achieve reduced power. The purpose of consumption.
  • Embodiments of the present invention provide a method for controlling a switch state of a transceiver and a device for transmitting a terminal, which are used to control the opening or closing of the transceiver regularly to achieve the purpose of reducing power consumption.
  • a method of controlling a state of a transceiver switch comprising:
  • the determining device determines, when switching from the current power consumption level to the power consumption level to be switched, the switching required to switch from the current power consumption level to the power consumption level to be switched according to the transceiver switch path.
  • a transceiver in a switch state the transceiver switch path is a correspondence between different power consumption levels and a switch state of the transceiver and a position of the transceiver in the channel matrix, the sender device determining the determined from the The current power consumption level is switched to the switching state of the transceiver that needs to switch the switch state when the power consumption level to be switched is switched.
  • the transmitting end device determines the transceiver of the required switching state by switching from the current power consumption level to the power consumption level to be switched, according to the transceiver switching path, the switching state of the transceiver is regularly controlled. Switching to avoid adding more power due to frequent switching of the transceiver's switching state.
  • the method further includes: the switch state of the transceiver includes an open state or a closed state; and the transmitting device determines to switch from the current power consumption level to the standby state.
  • Transmitting, according to the transceiver switching path, a transceiver that needs to switch a switch state when switching from the current power consumption level to the power consumption level to be switched including: the transmitting end When determining that the power consumption level to be switched is greater than the current power consumption level, determining, according to the transceiver switch path, that the power state is switched from the current power consumption level to the power consumption level to be switched, Transceiver to the off state; or the transmitting device determines to switch from the current power consumption level according to the transceiver switch path when determining that the power consumption level to be switched is less than or equal to the current power consumption level The power consumption level to be switched needs to be turned off when needed The state switches to the transceiver in the open state.
  • the method further includes: the transceiver including the receiving end device in the transceiver determined according to the transceiver switch path.
  • the method further includes: the transmitting device: Transmitting, by the transceiver device, the transceiver device included in the transceiver of the required switch state determined by the transceiver switch path to the receiving device; or the transmitting device notifying the power consumption level to be switched a receiving end device, so that the receiving end device determines, according to the power consumption level to be switched, a transceiver that needs to switch a switch state when switching from the current power consumption level to the power consumption level to be switched .
  • the transmitting device notifies the transceiver of the switching state of the receiving device to the receiving device, so that the receiving end can also regularly control the switching state of the transceiver, thereby avoiding frequent switching of the switching state of the transceiver. And increase more power consumption.
  • the sending end device determines the transceiver switch path according to the following steps: The transmitting end device determines a sum of signal to noise ratios of the channel matrices when respectively switching the switch states of one transceiver in the set time period, and the transmitting end device separately switches one transceiver for the determined set time period The sum of the signal-to-noise ratios of the channel matrices in the switching state, the power consumption levels are divided, and the transceivers of the switching state and the transceivers of the switching state are established in the channel matrix and the divided power consumption levels. Corresponding relationship, the transmitting end device determines, as the transceiver switch, a correspondence between a position of the transceiver in the switch state and a transceiver of the switch state in the channel matrix and a divided power consumption level. path.
  • the sending end device determines, according to formula (1), a switch that separately switches one transceiver The sum of the signal-to-noise ratios of the channel matrices at the state.
  • the formula (1) is:
  • the sending end device determines the transceiver switch path according to the following steps: The transmitting end device determines a matrix channel capacity of the channel matrix when the switching states of one transceiver are separately switched in the set time period, and the transmitting end device separately switches the switches of one transceiver in the determined set time period.
  • the matrix channel capacity of the channel matrix in the state divides the power consumption level, and establishes a correspondence between the position of the transceiver in the switching state and the transceiver of the switching state in the channel matrix and the divided power consumption level.
  • the transmitting end device determines the correspondence between the position of the transceiver in the switching state and the transceiver of the switching state in the channel matrix and the divided power consumption level as the transceiver switching path.
  • the sending end device determines to separately switch according to formula (2) or formula (3)
  • the formula (2) is:
  • a k is the matrix channel capacity of the channel matrix when switching the switching state of the transceiver k in the non-water injection scenario
  • I is the unit matrix
  • P S is the signal power
  • P N is the noise power
  • H k is the switching transceiver k
  • H k H is the conjugate matrix of the channel matrix when switching the switching state of the transceiver k
  • k is the serial number of the transceiver
  • B k is the matrix channel capacity of the channel matrix when switching the switching state of the transceiver k in the water injection scenario
  • I is the unit matrix
  • P S is the signal power
  • P N is the noise power
  • H k is the switch for switching the transceiver k
  • W is the water injection coefficient
  • H k H is the conjugate matrix of the channel matrix when the switching state of the transceiver k is switched
  • k is the serial number of the transceiver.
  • the sending end device is After determining the transceiver switch path, the method further includes: the sending end device sending the determined transceiver switch path to the receiving end device, so that the receiving end device according to the transceiver switching path A transceiver that determines the state of the desired switch.
  • the rank of the channel matrix varies with the level of power consumption.
  • the coefficients of the transmitting device are synchronously switched.
  • the second aspect provides a sending end device, including:
  • a determining unit configured to determine, when switching from the current power consumption level to the power consumption level to be switched, according to the transceiver switch path when determining to switch from the current power consumption level to the power consumption level to be switched
  • a switch unit configured to switch the determined switch state of the transceiver that needs to switch the switch state when the current power consumption level is switched to the power consumption level to be switched.
  • the switch state of the transceiver includes an open state or a closed state
  • the determining unit is specifically configured to:
  • the method further includes: a transceiver unit;
  • the transceiver of the required switching switch state determined according to the transceiver switch path includes a transceiver of the receiving end device
  • the transceiver unit is configured to notify the receiving end device of a transceiver of the receiving end device included in the transceiver according to the required switching state determined by the transceiver switch path; or
  • the transceiver unit is configured to notify the receiving end device of the power consumption level to be switched, so that the receiving end device determines to switch from the current power consumption level according to the power consumption level to be switched.
  • the transceiver that needs to switch the switch state to the power consumption level to be switched.
  • the determining unit is further configured to: determine the transceiver switch path according to the following steps : determining a sum of signal-to-noise ratios of channel matrices when respectively switching the switch states of one transceiver in a set time period, and respectively selecting a channel matrix when switching states of one transceiver respectively in the determined set time period
  • the sum of the signal-to-noise ratios is divided into power consumption levels, and the correspondence between the position of the transceiver switching state and the transceiver of the switch state in the channel matrix and the divided power consumption levels is established, and the switching is performed.
  • the correspondence between the position of the transceiver in the switch state and the transceiver of the switch state in the channel matrix and the divided power consumption level is determined as the transceiver switch path.
  • the determining unit is further configured to: determine, separately, according to formula (1) The sum of the signal-to-noise ratios of the channel matrices when switching the transceiver state of a transceiver.
  • the formula (1) is:
  • the determining unit is further configured to: determine the transceiver switch path according to the following steps : determining a matrix channel capacity of a channel matrix when a switch state of one transceiver is separately switched in a set time period, and a matrix of a channel matrix when respectively switching a switch state of a transceiver in the determined set time period
  • the channel capacity divides the power consumption level, and establishes a correspondence between the position of the transceiver in the switch state and the transceiver of the switch state in the channel matrix and the divided power consumption level, and transmits and receives the switch state
  • the correspondence between the position of the transceiver and the transceiver of the switch state in the channel matrix and the divided power consumption level is determined as the transceiver switch path.
  • the determining unit is further configured to: determine according to formula (2) or formula (3) The matrix channel capacity of the channel matrix when switching the switching states of one transceiver separately.
  • the formula (2) is:
  • a k is the matrix channel capacity of the channel matrix when switching the switching state of the transceiver k in the non-water injection scenario
  • I is the unit matrix
  • P S is the signal power
  • P N is the noise power
  • H k is the switching transceiver k
  • H k H is the conjugate matrix of the channel matrix when switching the switching state of the transceiver k
  • k is the serial number of the transceiver
  • B k is the matrix channel capacity of the channel matrix when switching the switching state of the transceiver k in the water injection scenario
  • I is the unit matrix
  • P S is the signal power
  • P N is the noise power
  • H k is the switch for switching the transceiver k
  • W is the water injection coefficient
  • H k H is the conjugate matrix of the channel matrix when the switching state of the transceiver k is switched
  • k is the serial number of the transceiver.
  • the transceiver unit further uses After determining the transceiver switch path, transmitting the determined transceiver switch path to the receiving end device, so that the receiving end device determines a required switch according to the transceiver switch path State transceiver.
  • the rank of the channel matrix varies with the level of power consumption.
  • the coefficients of the transmitting device are synchronously switched.
  • the processor is operative to perform the method provided by the first aspect or any implementation of the first aspect.
  • a computer storage medium for storing computer software instructions for execution by a processor provided by a third aspect for performing the first aspect and the method provided by a possible implementation of the first aspect.
  • Figure 1 is a schematic diagram of a crosstalk model
  • FIGS. 2a and 2b are schematic diagrams of a DSLAM transmitting and receiving signals, respectively;
  • FIG. 3 is a schematic diagram of a system architecture according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of a method for controlling a transceiver switch according to an embodiment of the present invention
  • FIG. 5 is a schematic flowchart of determining a switch path of a transceiver according to an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of determining a switch path of a transceiver according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a device at a transmitting end according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a device at a transmitting end according to an embodiment of the present invention.
  • FIG. 3 exemplarily shows a system architecture to which the embodiment of the present invention is applied, and the control of the transceiver switch can be implemented based on the system architecture.
  • the system architecture for controlling the transceiver switch provided by the embodiment of the present invention includes a transmitting device. 301 and receiving device 302.
  • the sender device may be a network side device or a terminal, and the receiver device may be a terminal or a network side device.
  • the sender device is the network device
  • the receiver device is the terminal.
  • the sender device is the terminal
  • the receiver device is the network device.
  • the sender device can be an AP or an STA (English: Station, site), and the receiver device can be an STA or an AP.
  • the sender device is the STA
  • the receiver device is the AP.
  • the sender device is the AP
  • the receiver device is the STA.
  • Both the transmitting device and the receiving device include a plurality of transceivers through which the communication signals are transmitted and received.
  • FIG. 4 exemplarily shows a flow of a method for controlling a transceiver switch provided by an embodiment of the present invention, which may be performed by a transmitting device.
  • the specific steps of the process include:
  • Step 401 When determining, by the sending end device, that the power consumption level is switched from the current power consumption level to the power consumption level to be switched, determining, according to the transceiver switching path, that the power consumption level is switched from the current power consumption level to the power consumption level to be switched.
  • the transceiver that needs to switch the switch state.
  • the switch state of the transceiver includes an open state or a closed state.
  • the determining end device determines that the power consumption level to be switched is greater than the current power consumption level, determining, according to the transceiver switching path, the required switching from the current power consumption level to the power consumption level to be switched Switch the open state to the transceiver in the off state.
  • the determining end device determines that the power consumption level to be switched is less than or equal to the current power consumption level, determining, according to the transceiver switch path, switching from the current power consumption level to the power consumption to be switched. The level is required to switch the off state to the open transceiver.
  • the switching state of the switching transceiver can be expressed as: when the switching state of the transceiver is the open state, the switching state of the switching transceiver is to turn off the transceiver in the open state. When the switch state of the transceiver is off, the switch state of the switch transceiver is to turn on the transceiver in the off state.
  • the power consumption level is L0 and the power consumption level is L3, and the power consumption level indicated by L3 is smaller than the power consumption level L0.
  • the transmitting device can determine the transceiver switch path used during the set time period.
  • the transceiver switch path has a corresponding power consumption level corresponding to the switch state of the transceiver and the position of the transceiver in the channel matrix.
  • the network side device may calculate a correspondence between different power consumption levels and a transceiver that needs to be turned on or off.
  • different power consumption levels and transceivers may be calculated by the AP. The correspondence between the switch state and the position of the transceiver in the channel matrix.
  • Step 501 The transmitting end device determines a sum of signal to noise ratios of channel matrices when the switching states of one transceiver are separately switched within a set time period.
  • the set time period can be set according to experience. Since the channel matrix capacity feature does not change significantly with time in the DSL scenario, in the WiFi scenario, the matrix channel capacity is in a period of time. The quantity characteristics also do not change significantly over time, and therefore, the sum of the signal-to-noise ratios of the channel matrices when the switching states of one transceiver are individually switched within a set period of time can be determined.
  • the embodiment of the present invention will describe the sum of the signal-to-noise ratios of the channel matrices when switching the switch states of one transceiver separately by closing the transceiver form, and all transceivers at the transmitting end device are in the Turning on the state, first, determine the sum of the signal-to-noise ratios of the channel matrices when a transceiver is turned off, and determine the transceiver that is turned off corresponding to the sum of the largest signal-to-noise ratios as the first transceiver to be turned off. Then, based on the first transceiver that needs to be turned off, the second transceiver to be turned off is determined according to the above method, and so on, until a pair of transceivers remain.
  • the transmitting device can determine according to formula (1).
  • the channel matrix For the channel matrix:
  • the formula (1) is:
  • the transceiver k (either a transceiver at the transmitter or a transceiver at the receiver), the sum of the signal-to-noise ratios of the channel matrix, P S is the signal power, P N is the noise power, and h ij is The transceiver j of the transmitting device goes to the channel of the transceiver i of the receiving device, i is the serial number of the transceiver of the receiving device, and j is the serial number of the transceiver of the transmitting device.
  • the transceiver k is the transmitting side transceiver, h ij does not include a transceiver k to the reception side of the transceiver channels; if the transceiver k is the receiving end of the transceiver, h ij does not include the transmitting side transceiver to the receiving end of the transceiver The channel of k.
  • Step 502 The transmitting end device divides the power consumption level of the channel matrix of the channel matrix when the switch state of one transceiver is separately switched in the determined set time period, and establishes a transceiver and a switch state of the switch state. Position and division of the transceiver of the switch state in the channel matrix Correspondence between power consumption levels.
  • the sender device can divide the power consumption level for the transceiver that switches the switch state. For example, when all transceivers are turned on, it is full power consumption, and can be represented by L0, and the power consumption level is the highest. When the first transceiver to be turned off is turned off, the power consumption is reduced in part and can be expressed in L1. When the second transceiver to be turned off is turned off, the L2 representation can be used, and so on, all power consumption levels are divided, and then the transceiver that switches the switch state and the transceiver that switches the switch state are established in the channel matrix. Correspondence between the location and the divided power consumption level, the correspondence between the sequentially turned off transceiver and the divided power consumption levels can be as shown in Table 1. Wherein, the position of the transceiver in the switch state in the channel matrix can be determined by the sequence number of the transceiver in the above formula (1).
  • Step 503 The transmitting end device determines, as the transceiver switch path, a correspondence between a position of the transceiver in the switch state and a transceiver of the switch state in the channel matrix and a divided power consumption level.
  • the determined transceiver switch path may enable the transmitting device to regularly control the switching of the switch state of the transceiver to avoid generating additional power consumption.
  • Step 601 The transmitting end device determines a matrix channel capacity of the channel matrix when the switching states of one transceiver are separately switched in the set time period.
  • the embodiment of the present invention will describe the matrix channel capacity of the channel matrix when switching the switch states of one transceiver separately by turning off the transceiver form.
  • which transceiver is turned off by calculating the size of the matrix channel capacity.
  • all the transceivers of the transmitting device are in an open state.
  • the matrix channel capacity of the channel matrix when a transceiver is turned off is determined, and the transceiver corresponding to the largest matrix channel capacity is determined as the first one.
  • the second transceiver to be turned off is determined according to the above method, and so on, until a pair of transceivers remain.
  • the transmitting device When determining the matrix channel capacity of the channel matrix when a transceiver is turned off, the transmitting device can be determined according to formula (2) or (3) depending on whether it is a non-water injection scenario or a water injection scenario.
  • the channel matrix For the channel matrix:
  • H k such as closing the receiver transceiver 1 based on the channel matrix H of the above M*M, then
  • the transceiver transceiver 2 is turned off based on the channel matrix H of the above M*M, then
  • B k is a matrix channel capacity of the channel matrix when the transceiver k is turned off in the water injection scenario (the transceiver k can be either a transceiver at the transmitting end or a transceiver at the receiving end), and W is a water injection coefficient.
  • Step 602 The transmitting end device divides the power consumption level by the matrix channel capacity of the channel matrix when the switch state of one transceiver is separately switched in the determined set time period, and establishes a transceiver for switching the switch state and the switching. The correspondence between the position of the switch state transceiver in the channel matrix and the divided power consumption level.
  • the sender device can divide the power consumption level for the transceiver that switches the switch state. For example, when all transceivers are turned on, it is full power consumption, and can be represented by L0, and the power consumption level is the highest. When the first transceiver to be turned off is turned off, the power consumption is reduced in part and can be expressed in L1. When the second transceiver to be turned off is turned off, the L2 representation can be used, and so on, all power consumption levels are divided, and then the transceiver that switches the switch state and the transceiver that switches the switch state are established in the channel matrix. Correspondence between the location and the divided power consumption level, the correspondence between the sequentially turned off transceiver and the divided power consumption levels can be as shown in Table 1.
  • Step 603 The transmitting end device determines, as the transceiver switch path, a correspondence between a position of the transceiver in the switch state and a transceiver of the switch state in the channel matrix and a divided power consumption level.
  • the determined transceiver switch path may enable the transmitting device to regularly control the switching of the switch state of the transceiver to avoid generating additional power consumption.
  • the correspondence between the desired closed or open transceiver and power consumption level in Table 1 above may be determined as the transceiver switch path.
  • determining, by the sending end device, that the power consumption level to be switched is greater than the current power consumption level determining, according to the transceiver switching path, that the power consumption level to be switched from the current power consumption level to the power consumption level to be switched is required to be turned on The state switches to the transceiver in the off state.
  • the current power consumption level is L0
  • the power consumption level to be switched is L2, L2>L0.
  • the transceivers to be turned off when switching from L0 to L2 are respectively transceivers K1. And transceiver K2.
  • the transmitting end device determines to switch from the current power consumption level to the to-be-switched according to the transceiver switch path.
  • the power consumption level is required to switch the off state to the open transceiver.
  • the current power consumption level is L2
  • the power consumption level to be switched is L0, L0 ⁇ L2, and the table 1 can be known.
  • the transceivers to be turned on when switching from L2 to L0 are respectively the transceiver K2. And transceiver K1.
  • the power consumption level to be switched is the power consumption level carried in the power consumption request acquired by the sending device when the power consumption is reduced or increased, and the sending device may determine whether to agree to perform the power consumption request. Switching, if it is agreed to switch the power consumption level, the transmitting device determines the power consumption level carried in the power consumption request as the power consumption level to be switched.
  • Step 402 The transmitting end device switches the determined switch state of the transceiver that needs to switch the switch state when the determined power consumption level is switched to the power consumption level to be switched.
  • the transmitting device After the transmitting device determines in step 401 that the transceiver needs to be turned off when switching from the current power consumption level to the power consumption level to be switched, the transmitting device turns off the transceiver that needs to be turned off.
  • the transceivers that need to be turned off when switching from L0 to L2 are transceiver K1 and transceiver K2, respectively, and the transmitting device first turns off the transceiver K1 that needs to be turned off in the power consumption level L1, and then turns off the power consumption level L2.
  • the transceiver K2 that needs to be turned off.
  • the sender device can directly switch from L0 to L2 during the process of turning off the transceiver to be turned off, that is, the transceiver K1 and the transceiver K2 are turned off. It can also be closed step by step, that is, first Switching from L0 to L1, turning off the transceiver K1 that needs to be turned off in the power consumption level L1, and then switching from L1 to L2, turning off the transceiver K2 that needs to be turned off in the power consumption level L2.
  • the transmitting device determines in step 401 that the transceiver needs to be turned on when switching from the current power consumption level to the power consumption level to be switched, the transmitting device turns on the transceiver that needs to be turned off.
  • the transceivers that need to be turned on when switching from L2 to L0 are transceiver K1 and transceiver K2, respectively, and the transmitting device first turns on the transceiver K2 that needs to be turned on in the power consumption level L2, and then turns on the power consumption level L1.
  • Transceiver K1 to be turned on are transceiver K1 and transceiver K2, respectively, and the transmitting device first turns on the transceiver K2 that needs to be turned on in the power consumption level L2, and then turns on the power consumption level L1.
  • the sender device can directly switch from L2 to L0 during the process of turning on the transceiver that needs to be turned on, that is, the transceiver K1 and the transceiver K2 are turned on together. It can also be opened step by step, that is, first switch from L2 to L1, turn on the transceiver K2 that needs to be turned on in the power consumption level L1, and then switch from L1 to L0, and turn on the transceiver that needs to be turned on in the power consumption level L0. K1.
  • the transmitting end device may determine to switch from the current power consumption level to Notifying the transceiver of the receiving end device included in the transceiver of the required switching state determined according to the transceiver switching path to the transceiver when the power consumption level to be switched is required to switch the switch state Receiver device. Or the transmitting device notifies the receiving end device of the power consumption level to be switched, so that the receiving end device determines to switch from the current power consumption level to the power consumption level to be switched. The transceiver that needs to switch the switch state when the power consumption level to be switched is required.
  • the rank of the channel matrix changes with the change of the power consumption level.
  • the rank of the channel matrix does not change or decrease as the power consumption level increases.
  • the transmitting device turns on the transceiver that needs to be turned on, the rank of the channel matrix does not change or rise as the power consumption level decreases.
  • the coefficients of the sender device also need to be switched synchronously, and the coefficients of the sender device may be one of the following coefficients or any combination of MIMO coefficients and vectorization processing. Coefficient, vectoring coefficient, precoding coefficient, cancellation coefficient, etc.
  • A, B, C, and D respectively represent transceivers of the transmitting device, and 1, 2, 3, and 4 respectively represent transceivers of the receiving device.
  • the transceiver switch path determined by the sender device is shown in Table 2.
  • the above power consumption level L2.4 indicates that in order to be able to continue to reduce power consumption when only one pair of transceivers are left, the transmission data time can be reduced and/or the power spectral density can be reduced over all or part of the frequency (or subcarrier).
  • the current power consumption level is L0, and when the power consumption level to be switched is L2.3, the transmitting device can determine from the above Table 2 that the transceivers to be turned off when switching L2.3 from L0 are A, B, D, 1, 2, 4, the transmitting device turns off the transceiver according to the transceiver switch path shown in Table 2, that is, L2.1.5, L2.1, L2.2.5, L2.2, L2.3.5,
  • the transceiver to be turned off in L2.3 may also be a transceiver that needs to be turned off in L2.1.5, L2.1, L2.2.5, L2.2, L2.3.5, L2.3, the present invention
  • the embodiments are merely exemplary and are not intended to be limiting.
  • the current power consumption level is L2.3, and the power consumption level to be switched is L2.1.5.
  • the transmitting device can determine from the above Table 2 that the transceiver to be turned on when switching L2.1.5 from L2.3 is A. B, D, 1, 2, the transmitting device opens the transceiver according to the transceiver switch path shown in Table 2, that is, opens L2.3.5, L2.2, L2.2.5, L2.1, L2.1.5 The transceiver that needs to be turned on.
  • the above embodiment shows that when the transmitting end device determines to switch from the current power consumption level to the power consumption level to be switched, determining, according to the transceiver switching path, switching from the current power consumption level to the power consumption to be switched.
  • the transceiver that needs to switch the switch state at the level switches the determined switch state of the transceiver that needs to switch the switch state when the current power consumption level is switched to the power consumption level to be switched. Since the transmitting end device determines the transceiver of the required switching state by switching from the current power consumption level to the power consumption level to be switched, according to the transceiver switching path, the switching state of the transceiver is regularly controlled. Switching to avoid adding more power due to frequent switching of the transceiver's switching state.
  • FIG. 7 exemplarily shows a transmitting end device according to an embodiment of the present invention, and the transmitting end device can perform a process of controlling a switch state of a transceiver.
  • the sending end device specifically includes:
  • a determining unit 701 configured to determine, in determining a power consumption level from a current power consumption level to be switched And determining, according to the transceiver switch path, a transceiver that needs to switch the switch state when switching from the current power consumption level to the power consumption level to be switched; the transceiver switch path is a different power consumption level and Corresponding relationship between the switching state of the transceiver and the position of the transceiver in the channel matrix;
  • the switch unit 702 is configured to switch the determined switch state of the transceiver that needs to switch the switch state when the current power consumption level is switched to the power consumption level to be switched.
  • the switch state of the transceiver includes an open state or a closed state
  • the determining unit 701 is specifically configured to:
  • the transceiver unit 703 the transceiver unit 703;
  • the transceiver of the required switching switch state determined according to the transceiver switch path includes a transceiver of the receiving end device
  • the transceiver unit 703 is configured to notify the receiving end device of a transceiver of the receiving end device included in the transceiver according to the required switching state determined by the transceiver switch path; or
  • the transceiver unit 703 is configured to notify the receiving end device of the power consumption level to be switched, so that the receiving end device determines the current power consumption level according to the power consumption level to be switched.
  • the transceiver that needs to switch the switch state when switching to the power consumption level to be switched.
  • the determining unit 701 is further configured to:
  • the transceiver switch path is determined according to the following steps:
  • the determining unit 701 is further configured to:
  • the formula (1) is:
  • the determining unit 701 is further configured to:
  • the transceiver switch path is determined according to the following steps:
  • the determining unit 701 is further configured to:
  • a k is the matrix channel capacity of the channel matrix when switching the switching state of the transceiver k in the non-water injection scenario
  • I is the unit matrix
  • P S is the signal power
  • P N is the noise power
  • H k is the switching transceiver k
  • H k H is the conjugate matrix of the channel matrix when switching the switching state of the transceiver k
  • k is the serial number of the transceiver
  • B k is the matrix channel capacity of the channel matrix when switching the switching state of the transceiver k in the water injection scenario
  • I is the unit matrix
  • P S is the signal power
  • P N is the noise power
  • H k is the switch for switching the transceiver k
  • W is the water injection coefficient
  • H k H is the conjugate matrix of the channel matrix when the switching state of the transceiver k is switched
  • k is the serial number of the transceiver.
  • the transceiver unit 703 is further configured to:
  • the rank of the channel matrix varies with changes in power consumption levels during the process of switching the transceivers required to switch state of the switch.
  • the coefficients of the sender device are synchronously switched.
  • FIG. 8 exemplarily shows a transmitting device 800 provided by an embodiment of the present invention.
  • the transmitting device 800 can perform the functions or steps performed by the control transceiver switch in the above embodiments.
  • the transmitting device 800 can include a transceiver 801, a processor 802, and a memory 803.
  • the processor 802 is configured to control the operation of the transmitting device 800;
  • the memory 803 may include a read only memory and a random access memory, and stores instructions executable by the processor 802. And data.
  • the components such as the transceiver 801, the processor 802, and the memory 803 are connected by a bus 809.
  • the bus 809 may include a power bus, a control bus, and a status signal bus in addition to the data bus. However, for clarity of description, various buses are labeled as bus 809 in the figure.
  • the transceiver 801 can include a transmitter and a receiver.
  • a method of controlling a transceiver switch state disclosed herein may be applied to or implemented by processor 802.
  • the processor 802 is configured to read the code in the memory 803 for performing a process of controlling the state of the transceiver switch.
  • embodiments of the present application can be provided as a method, or a computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种控制收发器开关状态的方法及发送端设备,该方法包括发送端设备在确定从当前的功耗等级切换到待切换的功耗等级时,依据收发器开关路径确定出从所述当前的功耗等级切换到所述待切换的功耗等级时所需切换开关状态的收发器,将所述确定的从所述当前的功耗等级切换到所述待切换的功耗等级时所需切换开关状态的收发器的开关状态进行切换。由于发送端设备通过在从当前的功耗等级切换到待切换的功耗等级时,确定出所需切换开关状态的收发器,依据收发器开关路径,实现了有规律的控制收发器的开关状态的切换,避免造成因频繁的切换收发器的开关状态而增加更多的功耗。

Description

一种控制收发器开关状态的方法及发送端设备 技术领域
本发明实施例涉及无线通信技术领域,尤其涉及一种控制收发器开关状态的方法及发送端设备。
背景技术
数字用户线路(英文:Digital Subscriber Line,DSL)是一种在电话双绞线传输的高速数据传输技术,DSL可以利用频分复用技术使得DSL与传统电话业务(英文:Plain Old Telephone Service,POTS)共存于同一对双绞线上,其中DSL占据高频段,POTS占用4KHz以下基带部分,POTS信号与DSL信号通过分离器分离。DSL采用离散多音频调制,提供多路DSL接入的系统叫做数字用户线路接入复用器(英文:Digital Subscriber Line Access Multiplexer,DSLAM),由于电磁感应原理,DSLAM接入的多路信号之间,会相互产生干扰,这种干扰被称为串音。如图1所示,串音包括近端串音(Near End Crosstalk,NEXT)和远端串音(Far End Crosstalk,FEXT)。近端串音对系统的性能不产生太大的危害。但由于DSL使用的频段越来越宽,远端串音愈发严重地影响线路的传输性能。由于所有无失真通信系统都遵循著名的香农公式,在DSL传输中,串音体现为噪声的一部分,所以严重的远端串音可以显著的降低了信道速率。当一捆电缆内有多路用户都要求开通DSL业务时,会因为远端串音使一些线路速率低、性能不稳定、甚至不能开通等,最终导致DSLAM的出线率比较低。
目前业界提出了串音抵消(Vectoring)技术,主要利用在DSLAM端进行联合的收发的可能性,使用信号处理的方法来抵消远端串音的干扰。最终消除每一路信号中远端串音干扰。图2a和图2b分别示出了在DSLAM端同步发送信号和同步接收信号时的工作情况。在图2a和图2b中所示的共享信道H可以表示为矩阵形式:
Figure PCTCN2016113940-appb-000001
其中,hij是从线对j到线对i的传输方程。在实际情况下,i,j分别是接收端口和发送端口的数目。一般情况下,接收端口和发送端口的数目相等,不过也可以不相等。在无线高保真(英文:WIreless-Fidelity,WiFi)的场景中,i,j可以分别是接收天线和发送天线的数目。从而端口之间或者天线之间,形成矩阵多输入多输出(英文:Multiple-Input Multiple-Output,MIMO)信道。根据该矩阵信道具体分量的不同,该矩阵信道的理论容量(传输数据的能力)不同。
在一些DSL应用场景中,一个用户拥有多对线路接入,此时可以采用绑定(Bonding)技术将多对线路绑定,从而提升用户接入速率。在WiFi场景中,同一个接入点(英文:Access Point,AP)一般拥有多个天线,相比单天线场景可以提升速率。比如DSL的4端口或者WiFi中4对天线的场景,该用户内部将存在一个4*4的矩阵信道:
Figure PCTCN2016113940-appb-000002
同时在DSL和WiFi场景中,可以采用低功耗技术,通过关闭收发器来降低功耗(或者适配低流量)。比如,当发送端只剩下上述系统中前2个发送器(端口、天线),接收端只剩下上述系统中前3个接收器(端口、天线),这时信道将为3*2的矩阵信道:
Figure PCTCN2016113940-appb-000003
目前在通过关闭收发器降低功耗时或者打开收发器升高功耗时,采用随机选择的方式来关闭或打开收发器,实现降低或升高功耗的目的,但是这种 关闭或打开收发器的方式是一种无规律方式,部分收发器会被频繁的关闭或打开,而关闭或打开收发器的操作也需产生较多的功耗,从而会使得系统无法实现降低功耗的目的。
发明内容
本发明实施例提供一种控制收发器开关状态的方法及发送端设备,用以实现有规律的控制收发器的打开或关闭,达到降低功耗的目的。
第一方面,提供的一种控制收发器开关状态的方法,包括:
发送端设备在确定从当前的功耗等级切换到待切换的功耗等级时,依据收发器开关路径确定出从所述当前的功耗等级切换到所述待切换的功耗等级时所需切换开关状态的收发器;所述收发器开关路径为不同的功耗等级与收发器的开关状态及收发器在信道矩阵中的位置的对应关系,所述发送端设备将所述确定的从所述当前的功耗等级切换到所述待切换的功耗等级时所需切换开关状态的收发器的开关状态进行切换。
由于发送端设备通过在从当前的功耗等级切换到待切换的功耗等级时,确定出所需切换开关状态的收发器,依据收发器开关路径,实现了有规律的控制收发器的开关状态的切换,避免造成因频繁的切换收发器的开关状态而增加更多的功耗。
结合第一方面,在第一方面的第一种可能的实现方式中,还包括:所述收发器的开关状态包括打开状态或关闭状态;发送端设备在确定从当前的功耗等级切换到待切换的功耗等级时,依据所述收发器开关路径确定出从所述当前的功耗等级切换到所述待切换的功耗等级时所需切换开关状态的收发器,包括:所述发送端设备在确定待切换的功耗等级大于当前的功耗等级时,依据所述收发器开关路径确定出从所述当前功耗等级切换到所述待切换的功耗等级时所需将打开状态切换到关闭状态的收发器;或所述发送端设备在确定待切换的功耗等级小于或等于当前的功耗等级时,依据所述收发器开关路径确定出从所述当前的功耗等级切换到所述待切换的功耗等级时所需将关闭 状态切换到打开状态的收发器。
结合第一方面,在第一方面的第二种可能的实现方式中,还包括:所述依据收发器开关路径确定的所需切换开关状态的收发器中包括接收端设备的收发器。在所述依据收发器开关路径确定出从所述当前的功耗等级切换到所述待切换的功耗等级时所需切换开关状态的收发器之后,还包括:所述发送端设备将所述依据收发器开关路径确定的所需切换开关状态的收发器中包括的接收端设备的收发器通知给所述接收端设备;或所述发送端设备将所述待切换的功耗等级通知给所述接收端设备,以使所述接收端设备根据所述待切换的功耗等级确定出从所述当前的功耗等级切换到所述待切换的功耗等级时所需切换开关状态的收发器。
发送的设备将接收端设备所需切换开关状态的收发器通知给接收端设备,可以使得接收端同样实现有规律的控制收发器的开关状态的切换,避免造成因频繁的切换收发器的开关状态而增加更多的功耗。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第三种可能的实现方式中,所述发送端设备根据下述步骤确定所述收发器开关路径:所述发送端设备确定设定时间段内分别单独切换一个收发器的开关状态时的信道矩阵的信噪比之和,所述发送端设备为所述确定的设定时间段内分别单独切换一个收发器的开关状态时的信道矩阵的信噪比之和划分功耗等级,并建立切换开关状态的收发器及所述切换开关状态的收发器在所述信道矩阵中的位置与划分的功耗等级的对应关系,所述发送端设备将所述切换开关状态的收发器及所述切换开关状态的收发器在所述信道矩阵中的位置与划分的功耗等级的对应关系确定为所述收发器开关路径。
通过确定收发器开关路径,可以使得在切换收发器的开关状态时,能够有规律的控制,避免造成因频繁的切换收发器的开关状态而增加更多的功耗。
结合第一方面或第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,所述发送端设备根据公式(1)确定分别单独切换一个收发器的开关状态时的信道矩阵的信噪比之和。所述公式(1)为:
Figure PCTCN2016113940-appb-000004
其中,
Figure PCTCN2016113940-appb-000005
为切换收发器k的开关状态时的信道矩阵的信噪比之和,PS为信号功率,PN为噪声功率,hij为发送端设备的收发器j到接收端设备的收发器i的信道,i为接收端设备的收发器的序号,j为发送端设备的收发器的序号。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第五种可能的实现方式中,所述发送端设备根据下述步骤确定所述收发器开关路径:所述发送端设备确定设定时间段内分别单独切换一个收发器的开关状态时的信道矩阵的矩阵信道容量,所述发送端设备为所述确定的设定时间段内分别单独切换一个收发器的开关状态时的信道矩阵的矩阵信道容量划分功耗等级,并建立切换开关状态的收发器及所述切换开关状态的收发器在所述信道矩阵中的位置与划分的功耗等级的对应关系,所述发送端设备将所述切换开关状态的收发器及所述切换开关状态的收发器在所述信道矩阵中的位置与划分的功耗等级的对应关系确定为所述收发器开关路径。
通过确定收发器开关路径,可以使得在切换收发器的开关状态时,能够有规律的控制,避免造成因频繁的切换收发器的开关状态而增加更多的功耗。
结合第一方面或第一方面的第五种可能的实现方式,在第一方面的第六种可能的实现方式中,所述发送端设备根据公式(2)或公式(3)确定分别单独切换一个收发器的开关状态时的信道矩阵的矩阵信道容量。所述公式(2)为:
Figure PCTCN2016113940-appb-000006
其中,Ak为非注水场景下切换收发器k的开关状态时的信道矩阵的矩阵信道容量,I为单位矩阵,PS为信号功率,PN为噪声功率,Hk为切换收发器k的开关状态时的信道矩阵,Hk H为切换收发器k的开关状态时的信道矩阵的共轭矩阵,k为收发器的序号;
所述公式(3)为:
Figure PCTCN2016113940-appb-000007
其中,Bk为注水场景下切换收发器k的开关状态时的信道矩阵的矩阵信道容量,I为单位矩阵,PS为信号功率,PN为噪声功率,Hk为切换收发器k的开关状态时的信道矩阵,W是注水系数,Hk H为切换收发器k的开关状态时的信道矩阵的共轭矩阵,k为收发器的序号。
结合第一方面或第一方面的第三种可能的实现方式至第六种可能的实现方式中任一实现方式,在第一方面的第七种可能的实现方式中,所述发送端设备在确定所述收发器开关路径之后,还包括:所述发送端设备将所述确定的所述收发器开关路径发送给所述接收端设备,以使所述接收端设备依据所述收发器开关路径确定所需切换开关状态的收发器。
结合第一方面或第一方面的第一种可能的实现方式至第七种可能的实现方式中任一实现方式,在第一方面的第八种可能的实现方式中,在切换所需切换开关状态的收发器的过程中,所述信道矩阵的秩随功耗等级的变化而变化。
结合第一方面或第一方面的第一种可能的实现方式至第七种可能的实现方式中任一实现方式,在第一方面的第九种可能的实现方式中,在切换所需切换开关状态的收发器的过程中,所述发送端设备的系数同步切换。
第二方面,提供一种发送端设备,包括:
确定单元,用于在确定从当前的功耗等级切换到待切换的功耗等级时,依据收发器开关路径确定出从所述当前的功耗等级切换到所述待切换的功耗等级时所需切换开关状态的收发器,所述收发器开关路径为不同的功耗等级与收发器的开关状态及收发器在信道矩阵中的位置的对应关系。开关单元,用于将所述确定的从所述当前的功耗等级切换到所述待切换的功耗等级时所需切换开关状态的收发器的开关状态进行切换。
结合第二方面,在第二方面的第一种可能的实现方式中,所述收发器的开关状态包括打开状态或关闭状态;
所述确定单元具体用于:
在确定待切换的功耗等级大于当前的功耗等级时,依据所述收发器开关路径确定出从所述当前功耗等级切换到所述待切换的功耗等级时所需将打开状态切换到关闭状态的收发器;或
在确定待切换的功耗等级小于或等于当前的功耗等级时,依据所述收发器开关路径确定出从所述当前的功耗等级切换到所述待切换的功耗等级时所需将关闭状态切换到打开状态的收发器。
结合第二方面,在第二方面的第二种可能的实现方式中,还包括:收发单元;
所述依据收发器开关路径确定的所需切换开关状态的收发器中包括接收端设备的收发器;
所述收发单元用于将所述依据收发器开关路径确定的所需切换开关状态的收发器中包括的接收端设备的收发器通知给所述接收端设备;或
所述收发单元用于将所述待切换的功耗等级通知给所述接收端设备,以使所述接收端设备根据所述待切换的功耗等级确定出从所述当前的功耗等级切换到所述待切换的功耗等级时所需切换开关状态的收发器。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第三种可能的实现方式中,所述确定单元还用于:根据下述步骤确定所述收发器开关路径:确定设定时间段内分别单独切换一个收发器的开关状态时的信道矩阵的信噪比之和,为所述确定的设定时间段内分别单独切换一个收发器的开关状态时的信道矩阵的信噪比之和划分功耗等级,并建立切换开关状态的收发器及所述切换开关状态的收发器在所述信道矩阵中的位置与划分的功耗等级的对应关系,将所述切换开关状态的收发器及所述切换开关状态的收发器在所述信道矩阵中的位置与划分的功耗等级的对应关系确定为所述收发器开关路径。
结合第二方面或第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,所述确定单元还用于:根据公式(1)确定分别单独切 换一个收发器的开关状态时的信道矩阵的信噪比之和。所述公式(1)为:
Figure PCTCN2016113940-appb-000008
其中,
Figure PCTCN2016113940-appb-000009
为切换收发器k的开关状态时的信道矩阵的信噪比之和,PS为信号功率,PN为噪声功率,hij为发送端设备的收发器j到接收端设备的收发器i的信道,i为接收端设备的收发器的序号,j为发送端设备的收发器的序号。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第五种可能的实现方式中,所述确定单元还用于:根据下述步骤确定所述收发器开关路径:确定设定时间段内分别单独切换一个收发器的开关状态时的信道矩阵的矩阵信道容量,为所述确定的设定时间段内分别单独切换一个收发器的开关状态时的信道矩阵的矩阵信道容量划分功耗等级,并建立切换开关状态的收发器及所述切换开关状态的收发器在所述信道矩阵中的位置与划分的功耗等级的对应关系,将所述切换开关状态的收发器及所述切换开关状态的收发器在所述信道矩阵中的位置与划分的功耗等级的对应关系确定为所述收发器开关路径。
结合第二方面或第二方面的第五种可能的实现方式,在第二方面的第六种可能的实现方式中,所述确定单元还用于:根据公式(2)或公式(3)确定分别单独切换一个收发器的开关状态时的信道矩阵的矩阵信道容量。所述公式(2)为:
Figure PCTCN2016113940-appb-000010
其中,Ak为非注水场景下切换收发器k的开关状态时的信道矩阵的矩阵信道容量,I为单位矩阵,PS为信号功率,PN为噪声功率,Hk为切换收发器k的开关状态时的信道矩阵,Hk H为切换收发器k的开关状态时的信道矩阵的共轭矩阵,k为收发器的序号;
所述公式(3)为:
Figure PCTCN2016113940-appb-000011
其中,Bk为注水场景下切换收发器k的开关状态时的信道矩阵的矩阵信道容量,I为单位矩阵,PS为信号功率,PN为噪声功率,Hk为切换收发器k的开关状态时的信道矩阵,W是注水系数,Hk H为切换收发器k的开关状态时的信道矩阵的共轭矩阵,k为收发器的序号。
结合第二方面或第二方面的第三种可能的实现方式至第六种可能的实现方式中任一实现方式,在第二方面的第七种可能的实现方式中,所述收发单元还用于:在确定所述收发器开关路径之后,将所述确定的所述收发器开关路径发送给所述接收端设备,以使所述接收端设备依据所述收发器开关路径确定所需切换开关状态的收发器。
结合第二方面或第二方面的第一种可能的实现方式至第七种可能的实现方式中任一实现方式,在第二方面的第八种可能的实现方式中,在切换所需切换开关状态的收发器的过程中,所述信道矩阵的秩随功耗等级的变化而变化。
结合第二方面或第二方面的第一种可能的实现方式至第七种可能的实现方式中任一实现方式,在第二方面的第九种可能的实现方式中,在切换所需切换开关状态的收发器的过程中,所述发送端设备的系数同步切换。
处理器用于执行第一方面或第一方面任意的实现方式提供的方法。
第四方面,提供一种计算机存储介质,用于存储用于第三方面提供的处理器执行的计算机软件指令,以用于执行第一方面以及第一方面可能的实现方式提供的方法。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所使用的附图作简要介绍。
图1为一种串音模型的示意图;
图2a和图2b分别为一种DSLAM发送信号和接收信号时的示意图;
图3为本发明实施例提供的一种系统架构的示意图;
图4为本发明实施例提供的一种控制收发器开关的方法的流程示意图;
图5为本发明实施例提供的一种确定收发器开关路径的流程示意图;
图6为本发明实施例提供的一种确定收发器开关路径的流程示意图;
图7为本发明实施例提供的一种发送端设备的结构示意图;
图8为本发明实施例提供的一种发送端设备的结构示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图及实施例对本发明作进一步地详细描述。
图3示例性的示出了本发明实施例所适用的一种系统架构,基于该系统架构可实现对收发器开关的控制,本发明实施例提供的控制收发器开关的系统架构包括发送端设备301和接收端设备302。
在DSL场景下,该发送端设备可以为网络侧设备或终端,接收端设备可以为终端或网络侧设备。发送端设备为网络侧设备时,接收端设备为终端;发送端设备为终端时,接收端设备为网络侧设备。在WiFi场景下,该发送端设备可以为AP或STA(英文:Station,站点),接收端设备可以为STA或AP。发送端设备为STA时,接收端设备为AP;发送端设备为AP时,接收端设备为STA。发送端设备和接收端设备都包括多个收发器,通过该多个收发器实现通信信号的收发。
基于上述描述,图4示例性的示出了本发明实施例提供的一种控制收发器开关的方法的流程,该流程可以由发送端设备执行。
如图4所示,该流程具体步骤包括:
步骤401,发送端设备在确定从当前的功耗等级切换到待切换的功耗等级时,依据收发器开关路径确定出从所述当前的功耗等级切换到所述待切换的功耗等级时所需切换开关状态的收发器。
本发明实施例中,收发器的开关状态包括打开状态或关闭状态。所述发送端设备在确定待切换的功耗等级大于当前的功耗等级时,依据所述收发器开关路径确定出从所述当前功耗等级切换到所述待切换的功耗等级时所需将打开状态切换到关闭状态的收发器。或者所述发送端设备在确定待切换的功耗等级小于或等于当前的功耗等级时,依据所述收发器开关路径确定出从所述当前的功耗等级切换到所述待切换的功耗等级时所需将关闭状态切换到打开状态的收发器。
切换收发器的开关状态可以表现为:收发器的开关状态为打开状态时,切换收发器的开关状态是关闭该处于打开状态的收发器。收发器的开关状态为关闭状态时,切换收发器的开关状态是打开该处于关闭状态的收发器。
在本发明实施例中功耗等级越大表示的功耗越小,功耗等级越小表示的功耗越大。比如,功耗等级为L0和功耗等级为L3,功耗等级为L3所表示的功耗要小于功耗等级为L0的功耗,
在系统初始化时,发送端设备可以确定设定时间段内使用的收发器开关路径。该收发器开关路径为不同的功耗等级与收发器的开关状态及收发器在信道矩阵中的位置的对应关系。比如,在DSL场景中,可以由网络侧设备计算不同的功耗等级与所需打开或关闭的收发器的对应关系,在WiFi场景中,可以由AP计算出不同的功耗等级与收发器的开关状态及收发器在信道矩阵中的位置的对应关系。
为了清楚的解释发送端设备确定收发器开关路径的流程,下面将通过两种具体的实施方式来描述发送端设备确定收发器开关路径的流程。
方式一
如图5所示,该流程的具体步骤包括:
步骤501,所述发送端设备确定设定时间段内分别单独切换一个收发器的开关状态时的信道矩阵的信噪比之和。
该设定时间段可以依据经验设置,由于在DSL场景中,信道矩阵容量特征不会随着时间发生显著变化,在WiFi场景中,在一段时间内,矩阵信道容 量特征也不会随着时间发生显著变化,因此,可以确定在设定时间段内分别单独切换一个收发器的开关状态时的信道矩阵的信噪比之和。比如,为了描述清楚,本发明实施例下面将通过关闭收发器的形式来描述分别单独切换一个收发器的开关状态时的信道矩阵的信噪比之和,在发送端设备的所有收发器都处于打开状态,首先,确定在关闭一个收发器时的信道矩阵的信噪比之和,将最大的信噪比之和所对应关闭的收发器确定为第一个所需关闭的收发器。然后在关闭第一个所需关闭的收发器的基础上,再根据上述方法确定出第二个所需关闭的收发器,依次类推,直到剩下一对收发器为止。
在确定关闭一个收发器时的信道矩阵的信噪比之和时,发送端设备可以根据公式(1)来确定。对于信道矩阵:
Figure PCTCN2016113940-appb-000012
该公式(1)为:
Figure PCTCN2016113940-appb-000013
其中,
Figure PCTCN2016113940-appb-000014
为关闭收发器k时(既可以是发送端的一个收发器,也可以是接收端的一个收发器)的信道矩阵的信噪比之和,PS为信号功率,PN为噪声功率,hij为发送端设备的收发器j到接收端设备的收发器i的信道,i为接收端设备的收发器的序号,j为发送端设备的收发器的序号。其中,如果收发器k是发送端的收发器,hij不包含收发器k到接收端收发器的信道;如果收发器k是接收端的收发器,hij不包含发送端收发器到接收端收发器k的信道。
步骤502,发送端设备为所述确定的设定时间段内分别单独切换一个收发器的开关状态时的信道矩阵的信噪比之和划分功耗等级,并建立切换开关状态的收发器及所述切换开关状态的收发器在所述信道矩阵中的位置与划分的 功耗等级的对应关系。
发送端设备可以为切换开关状态的收发器划分功耗等级,比如在所有收发器都打开的状态下,为全功耗,可以使用L0表示,此时功耗等级最高。在关闭第一个所需关闭的收发器时,功耗降低一部分,可以使用L1表示。在关闭第二个所需关闭的收发器时,可以使用L2表示,依次类推,划分出所有的功耗等级,然后建立切换开关状态的收发器及切换开关状态的收发器在所述信道矩阵中的位置与划分的功耗等级的对应关系,该依次关闭的收发器与划分的功耗等级的对应关系可以如表1所示。其中,切换开关状态的收发器在所述信道矩阵中的位置可以由上述公式(1)中的收发器的序号确定。
表1
功耗等级 所需关闭的收发器 所需打开的收发器
L0 收发器K1
L1 收发器K1 收发器K2
L2 收发器K2 ……
…… …… ……
步骤503,发送端设备将所述切换开关状态的收发器及所述切换开关状态的收发器在所述信道矩阵中的位置与划分的功耗等级的对应关系确定为所述收发器开关路径。
在本发明实施例中,上述确定的收发器开关路径可以使得发送端设备有规律的控制收发器的开关状态的切换,避免产生额外的功耗。
方式二
如图6所示,该流程的具体步骤包括:
步骤601,发送端设备确定设定时间段内分别单独切换一个收发器的开关状态时的信道矩阵的矩阵信道容量。
为了描述清楚,本发明实施例下面将通过关闭收发器的形式来描述分别单独切换一个收发器的开关状态时的信道矩阵的矩阵信道容量,本发明实施 例中是通过计算矩阵信道容量的大小来确定关闭哪一个收发器。比如,在发送端设备的所有收发器都处于打开状态,首先,确定在关闭一个收发器时的信道矩阵的矩阵信道容量,将最大的矩阵信道容量所对应关闭的收发器确定为第一个所需关闭的收发器。然后在关闭第一个所需关闭的收发器的基础上,再根据上述方法确定出第二个所需关闭的收发器,依次类推,直到剩下一对收发器为止。
在确定关闭一个收发器时的信道矩阵的矩阵信道容量时,依据是否为非注水场景或注水场景,发送端设备可以根据公式(2)或(3)来确定。对于信道矩阵:
Figure PCTCN2016113940-appb-000015
在非注水场景下,该公式(2)为:
Figure PCTCN2016113940-appb-000016
其中,Ak为非注水场景下关闭收发器k(收发器k既可以是发送端的某一个收发器,也可以是接收端的某一个收发器)时的信道矩阵的矩阵信道容量,I为单位矩阵,PS为信号功率,PN为噪声功率,Hk为关闭收发器k时的信道矩阵,Hk H为关闭收发器k时的信道矩阵的共轭矩阵,k为收发器的序号。对于Hk,比如在上述M*M的信道矩阵H的基础上关闭接收端收发器1,那么
Figure PCTCN2016113940-appb-000017
(即,相当于删除了第一行)
又比如在上述比如在上述M*M的信道矩阵H的基础上关闭发送端收发器2,那么
Figure PCTCN2016113940-appb-000018
(即,相当于删除了第二列)
在注水场景下,该公式(3)为:
Figure PCTCN2016113940-appb-000019
其中,Bk为注水场景下关闭收发器k(收发器k既可以是发送端的某一个收发器,也可以是接收端的某一个收发器)时的信道矩阵的矩阵信道容量,W是注水系数。
步骤602,发送端设备为所述确定的设定时间段内分别单独切换一个收发器的开关状态时的信道矩阵的矩阵信道容量划分功耗等级,并建立切换开关状态的收发器及所述切换开关状态的收发器在所述信道矩阵中的位置与划分的功耗等级的对应关系。
发送端设备可以为切换开关状态的收发器划分功耗等级,比如在所有收发器都打开的状态下,为全功耗,可以使用L0表示,此时功耗等级最高。在关闭第一个所需关闭的收发器时,功耗降低一部分,可以使用L1表示。在关闭第二个所需关闭的收发器时,可以使用L2表示,依次类推,划分出所有的功耗等级,然后建立切换开关状态的收发器及切换开关状态的收发器在所述信道矩阵中的位置与划分的功耗等级的对应关系,该依次关闭的收发器与划分的功耗等级的对应关系可以如表1所示。
步骤603,发送端设备将所述切换开关状态的收发器及所述切换开关状态的收发器在所述信道矩阵中的位置与划分的功耗等级的对应关系确定为所述收发器开关路径。
在本发明实施例中,上述确定的收发器开关路径可以使得发送端设备有规律的控制收发器的开关状态的切换,避免产生额外的功耗。
发送端设备将所述确定的所述收发器开关路径发送给所述接收端设备,以使所述接收端设备依据所述收发器开关路径确定所需切换开关状态的收发 器。
上述表1中的所需关闭或打开的收发器和功耗等级的对应关系可以确定为收发器开关路径。发送端设备在确定待切换的功耗等级大于当前的功耗等级时,依据所述收发器开关路径确定出从所述当前功耗等级切换到所述待切换的功耗等级时所需将打开状态切换到关闭状态的收发器。
比如,依据上述表1,当前功耗等级为L0,待切换的功耗等级为L2,L2>L0,查看表1可以获知,从L0切换到L2时所需关闭的收发器分别为收发器K1和收发器K2。
基于相同的技术构思,发送端设备在确定待切换的功耗等级小于或等于当前的功耗等级时,依据所述收发器开关路径确定出从所述当前的功耗等级切换到所述待切换的功耗等级时所需将关闭状态切换到打开状态的收发器。
比如,依据上述表1,当前功耗等级为L2,待切换的功耗等级为L0,L0<L2,查看表1可以获知,从L2切换到L0时所需打开的收发器分别为收发器K2和收发器K1。
可选地,上述待切换的功耗等级为降低或升高功耗时,发送端设备获取的功耗请求中携带的功耗等级,发送端设备在获取功耗请求时,可以确定是否同意进行切换,如果同意进行切换功耗等级,则发送端设备将功耗请求中携带的功耗等级确定为待切换的功耗等级。
步骤402,发送端设备将所述确定的从所述当前的功耗等级切换到所述待切换的功耗等级时所需切换开关状态的收发器的开关状态进行切换。
发送端设备在步骤401中确定出从当前的功耗等级切换到待切换的功耗等级时所需关闭的收发器之后,发送端设备关闭所需关闭的收发器。比如,从L0切换到L2时所需关闭的收发器分别为收发器K1和收发器K2,发送端设备先关闭功耗等级L1中所需关闭的收发器K1,再关闭功耗等级L2中所述需要关闭的收发器K2。
发送端设备在关闭所需关闭的收发器的过程中,可以直接从L0切换到L2,也就是一并关闭收发器K1和收发器K2。也可以是逐级进行关闭,即先 从L0切换到L1,关闭功耗等级L1中所需关闭的收发器K1,然后再从L1切换到L2,关闭功耗等级L2中所述需要关闭的收发器K2。
相应地,发送端设备在步骤401中确定出从当前的功耗等级切换到待切换的功耗等级时所需打开的收发器之后,发送端设备打开所需关闭的收发器。比如,从L2切换到L0时所需打开的收发器分别为收发器K1和收发器K2,发送端设备先打开功耗等级L2中所需打开的收发器K2,再打开功耗等级L1中所需打开的收发器K1。
发送端设备在打开所需打开的收发器的过程中,可以直接从L2切换到L0,也就是一并打开收发器K1和收发器K2。也可以是逐级进行打开,即先从L2切换到L1,打开功耗等级L1中所需打开的收发器K2,然后再从L1切换到L0,打开功耗等级L0中所需打开的收发器K1。
可选地,为了使得接收端设备可以知道从当前的功耗等级切换到待切换的功耗等级所需切换开关状态的收发器,发送端设备可以在确定从所述当前的功耗等级切换到所述待切换的功耗等级时所需切换开关状态的收发器时,将所述依据收发器开关路径确定的所需切换开关状态的收发器中包括的接收端设备的收发器通知给所述接收端设备。或者是发送端设备将所述待切换的功耗等级通知给所述接收端设备,以使所述接收端设备根据所述待切换的功耗等级确定出从所述当前的功耗等级切换到所述待切换的功耗等级时所需切换开关状态的收发器。
在本发明实施例中,发送端设备在切换所需切换开关状态的收发器的过程中,所述信道矩阵的秩随功耗等级的变化而变化。在关闭所需关闭的收发器时,信道矩阵的秩随功耗等级的升高而不变或降低。发送端设备在打开所需打开的收发器时,信道矩阵的秩随功耗等级的降低而不变或升高。同时发送端设备在切换所需切换开关状态的收发器的过程中,该发送端设备的系数也同步需要切换,该发送端设备的系数可以下述系数之一或任意组合MIMO系数、矢量化处理的系数、vectoring系数、预编码(Precoding)系数、cancellation(消除)系数等。
为了更好的解释本发明实施例,下面将通过具体的实施场景来描述,发送端设备降低功耗的流程。
以4×4的信道矩阵为例,A、B、C、D分别表示发送端设备的收发器,1、2、3、4分别表示接收端设备的收发器。发送端设备确定的收发器开关路径如表2所示。
表2
Figure PCTCN2016113940-appb-000020
Figure PCTCN2016113940-appb-000021
上述功耗等级L2.4表示,在只剩下一对收发器时,为了能够继续降低功耗,可以减少传输数据时间和/或在全部或部分频率(或子载波)上降低功率谱密度。
当前功耗等级为L0,待切换的功耗等级为L2.3时,发送端设备从上述表2中可以确定出从L0切换L2.3时所需关闭的收发器为A、B、D、1、2、4,发送端设备依据表2所示的收发器开关路径关闭收发器,也就是说,可以依次关闭L2.1.5、L2.1、L2.2.5、L2.2、L2.3.5、L2.3中所需关闭的收发器,也可以是一并将L2.1.5、L2.1、L2.2.5、L2.2、L2.3.5、L2.3中所需关闭的收发器,本发明实施例仅是示例作用,对此不做限制。
当前功耗等级为L2.3,待切换的功耗等级为L2.1.5时,发送端设备从上述表2中可以确定出从L2.3切换L2.1.5时所需打开的收发器为A、B、D、1、2,发送端设备依据表2所示的收发器开关路径打开收发器,也就是说,打开L2.3.5、L2.2、L2.2.5、L2.1、L2.1.5中所需打开的收发器。
上述实施例表明,发送端设备在确定从当前的功耗等级切换到待切换的功耗等级时,依据收发器开关路径确定出从所述当前的功耗等级切换到所述待切换的功耗等级时所需切换开关状态的收发器,将所述确定的从所述当前的功耗等级切换到所述待切换的功耗等级时所需切换开关状态的收发器的开关状态进行切换。由于发送端设备通过在从当前的功耗等级切换到待切换的功耗等级时,确定出所需切换开关状态的收发器,依据收发器开关路径,实现了有规律的控制收发器的开关状态的切换,避免造成因频繁的切换收发器的开关状态而增加更多的功耗。
基于相同的技术构思,图7示例性的示出了本发明实施例提供的一种发送端设备,该发送端设备可以执行控制收发器开关状态的流程。
如图7所示,该发送端设备具体包括:
确定单元701,用于在确定从当前的功耗等级切换到待切换的功耗等级 时,依据收发器开关路径确定出从所述当前的功耗等级切换到所述待切换的功耗等级时所需切换开关状态的收发器;所述收发器开关路径为不同的功耗等级与收发器的开关状态及收发器在信道矩阵中的位置的对应关系;
开关单元702,用于将所述确定的从所述当前的功耗等级切换到所述待切换的功耗等级时所需切换开关状态的收发器的开关状态进行切换。
可选地,所述收发器的开关状态包括打开状态或关闭状态;
所述确定单元701具体用于:
在确定待切换的功耗等级大于当前的功耗等级时,依据所述收发器开关路径确定出从所述当前功耗等级切换到所述待切换的功耗等级时所需将打开状态切换到关闭状态的收发器;或
在确定待切换的功耗等级小于或等于当前的功耗等级时,依据所述收发器开关路径确定出从所述当前的功耗等级切换到所述待切换的功耗等级时所需将关闭状态切换到打开状态的收发器。
可选地,收发单元703;
所述依据收发器开关路径确定的所需切换开关状态的收发器中包括接收端设备的收发器;
所述收发单元703用于将所述依据收发器开关路径确定的所需切换开关状态的收发器中包括的接收端设备的收发器通知给所述接收端设备;或
所述收发单元703用于将所述待切换的功耗等级通知给所述接收端设备,以使所述接收端设备根据所述待切换的功耗等级确定出从所述当前的功耗等级切换到所述待切换的功耗等级时所需切换开关状态的收发器。
可选地,所述确定单元701还用于:
根据下述步骤确定所述收发器开关路径:
确定设定时间段内分别单独切换一个收发器的开关状态时的信道矩阵的信噪比之和;
为所述确定的设定时间段内分别单独切换一个收发器的开关状态时的信道矩阵的信噪比之和划分功耗等级,并建立切换开关状态的收发器及所述切 换开关状态的收发器在所述信道矩阵中的位置与划分的功耗等级的对应关系;
将所述切换开关状态的收发器及所述切换开关状态的收发器在所述信道矩阵中的位置与划分的功耗等级的对应关系确定为所述收发器开关路径。
可选地,所述确定单元701还用于:
根据公式(1)确定分别单独切换一个收发器的开关状态时的信道矩阵的信噪比之和;
所述公式(1)为:
Figure PCTCN2016113940-appb-000022
其中,
Figure PCTCN2016113940-appb-000023
为切换收发器k的开关状态时的信道矩阵的信噪比之和,PS为信号功率,PN为噪声功率,hij为发送端设备的收发器j到接收端设备的收发器i的信道,i为接收端设备的收发器的序号,j为发送端设备的收发器的序号。
可选地,所述确定单元701还用于:
根据下述步骤确定所述收发器开关路径:
确定设定时间段内分别单独切换一个收发器的开关状态时的信道矩阵的矩阵信道容量;
为所述确定的设定时间段内分别单独切换一个收发器的开关状态时的信道矩阵的矩阵信道容量划分功耗等级,并建立切换开关状态的收发器及所述切换开关状态的收发器在所述信道矩阵中的位置与划分的功耗等级的对应关系;
将所述切换开关状态的收发器及所述切换开关状态的收发器在所述信道矩阵中的位置与划分的功耗等级的对应关系确定为所述收发器开关路径。
可选地,所述确定单元701还用于:
根据公式(2)或公式(3)确定分别单独切换一个收发器的开关状态时的信道矩阵的矩阵信道容量;
所述公式(2)为:
Figure PCTCN2016113940-appb-000024
其中,Ak为非注水场景下切换收发器k的开关状态时的信道矩阵的矩阵信道容量,I为单位矩阵,PS为信号功率,PN为噪声功率,Hk为切换收发器k的开关状态时的信道矩阵,Hk H为切换收发器k的开关状态时的信道矩阵的共轭矩阵,k为收发器的序号;
所述公式(3)为:
Figure PCTCN2016113940-appb-000025
其中,Bk为注水场景下切换收发器k的开关状态时的信道矩阵的矩阵信道容量,I为单位矩阵,PS为信号功率,PN为噪声功率,Hk为切换收发器k的开关状态时的信道矩阵,W是注水系数,Hk H为切换收发器k的开关状态时的信道矩阵的共轭矩阵,k为收发器的序号。
可选地,所述收发单元703还用于:
在确定所述收发器开关路径之后,将所述确定的所述收发器开关路径发送给所述接收端设备,以使所述接收端设备依据所述收发器开关路径确定所需切换开关状态的收发器。
可选地,在切换所需切换开关状态的收发器的过程中,所述信道矩阵的秩随功耗等级的变化而变化。
可选地,在切换所需切换开关状态的收发器的过程中,所述发送端设备的系数同步切换。
基于相同的技术构思,图8示例性的示出了本发明实施例提供的一种发送端设备800。该发送端设备800可以执行上述各实施例中控制收发器开关所实施的步骤或执行的功能。该发送端设备800可包括:收发机801、处理器802和存储器803。处理器802用于控制发送端设备800的操作;存储器803可以包括只读存储器和随机存取存储器,存储有处理器802可以执行的指令 和数据。收发机801、处理器802和存储器803等各组件通过总线809连接,其中总线809除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线809。收发机801可以包括发送机和接收机。
本申请揭示的一种控制收发器开关状态的方法可以应用于处理器802中,或者由处理器802实现。
处理器802用于读取存储器803中代码,以用于执行控制收发器开关状态的流程。
本领域内的技术人员应明白,本申请的实施例可提供为方法、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (20)

  1. 一种控制收发器开关状态的方法,其特征在于,包括:
    发送端设备在确定从当前的功耗等级切换到待切换的功耗等级时,依据收发器开关路径确定出从所述当前的功耗等级切换到所述待切换的功耗等级时所需切换开关状态的收发器;所述收发器开关路径为不同的功耗等级与收发器的开关状态及收发器在信道矩阵中的位置的对应关系;
    所述发送端设备将所述确定的从所述当前的功耗等级切换到所述待切换的功耗等级时所需切换开关状态的收发器的开关状态进行切换。
  2. 如权利要求1所述的方法,其特征在于,所述收发器的开关状态包括打开状态或关闭状态;
    发送端设备在确定从当前的功耗等级切换到待切换的功耗等级时,依据所述收发器开关路径确定出从所述当前的功耗等级切换到所述待切换的功耗等级时所需切换开关状态的收发器,包括:
    所述发送端设备在确定待切换的功耗等级大于当前的功耗等级时,依据所述收发器开关路径确定出从所述当前功耗等级切换到所述待切换的功耗等级时所需将打开状态切换到关闭状态的收发器;或
    所述发送端设备在确定待切换的功耗等级小于或等于当前的功耗等级时,依据所述收发器开关路径确定出从所述当前的功耗等级切换到所述待切换的功耗等级时所需将关闭状态切换到打开状态的收发器。
  3. 如权利要求1所述的方法,其特征在于,所述依据收发器开关路径确定的所需切换开关状态的收发器中包括接收端设备的收发器;
    在所述依据收发器开关路径确定出从所述当前的功耗等级切换到所述待切换的功耗等级时所需切换开关状态的收发器之后,还包括:
    所述发送端设备将所述依据收发器开关路径确定的所需切换开关状态的收发器中包括的接收端设备的收发器通知给所述接收端设备;或
    所述发送端设备将所述待切换的功耗等级通知给所述接收端设备,以使 所述接收端设备根据所述待切换的功耗等级确定出从所述当前的功耗等级切换到所述待切换的功耗等级时所需切换开关状态的收发器。
  4. 如权利要求1或2所述的方法,其特征在于,所述发送端设备根据下述步骤确定所述收发器开关路径:
    所述发送端设备确定设定时间段内分别单独切换一个收发器的开关状态时的信道矩阵的信噪比之和;
    所述发送端设备为所述确定的设定时间段内分别单独切换一个收发器的开关状态时的信道矩阵的信噪比之和划分功耗等级,并建立切换开关状态的收发器及所述切换开关状态的收发器在所述信道矩阵中的位置与划分的功耗等级的对应关系;
    所述发送端设备将所述切换开关状态的收发器及所述切换开关状态的收发器在所述信道矩阵中的位置与划分的功耗等级的对应关系确定为所述收发器开关路径。
  5. 如权利要求4所述的方法,其特征在于,所述发送端设备根据公式(1)确定分别单独切换一个收发器的开关状态时的信道矩阵的信噪比之和;
    所述公式(1)为:
    Figure PCTCN2016113940-appb-100001
    其中,
    Figure PCTCN2016113940-appb-100002
    为切换收发器k的开关状态时的信道矩阵的信噪比之和,PS为信号功率,PN为噪声功率,hij为发送端设备的收发器j到接收端设备的收发器i的信道,i为接收端设备的收发器的序号,j为发送端设备的收发器的序号。
  6. 如权利要求1或2所述的方法,其特征在于,所述发送端设备根据下述步骤确定所述收发器开关路径:
    所述发送端设备确定设定时间段内分别单独切换一个收发器的开关状态时的信道矩阵的矩阵信道容量;
    所述发送端设备为所述确定的设定时间段内分别单独切换一个收发器的 开关状态时的信道矩阵的矩阵信道容量划分功耗等级,并建立切换开关状态的收发器及所述切换开关状态的收发器在所述信道矩阵中的位置与划分的功耗等级的对应关系;
    所述发送端设备将所述切换开关状态的收发器及所述切换开关状态的收发器在所述信道矩阵中的位置与划分的功耗等级的对应关系确定为所述收发器开关路径。
  7. 如权利要求6所述的方法,其特征在于,所述发送端设备根据公式(2)或公式(3)确定分别单独切换一个收发器的开关状态时的信道矩阵的矩阵信道容量;
    所述公式(2)为:
    Figure PCTCN2016113940-appb-100003
    其中,Ak为非注水场景下切换收发器k的开关状态时的信道矩阵的矩阵信道容量,I为单位矩阵,PS为信号功率,PN为噪声功率,Hk为切换收发器k的开关状态时的信道矩阵,Hk H为切换收发器k的开关状态时的信道矩阵的共轭矩阵,k为收发器的序号;
    所述公式(3)为:
    Figure PCTCN2016113940-appb-100004
    其中,Bk为注水场景下切换收发器k的开关状态时的信道矩阵的矩阵信道容量,I为单位矩阵,PS为信号功率,PN为噪声功率,Hk为切换收发器k的开关状态时的信道矩阵,W是注水系数,Hk H为切换收发器k的开关状态时的信道矩阵的共轭矩阵,k为收发器的序号。
  8. 如权利要求4至7任一项所述的方法,其特征在于,所述发送端设备在确定所述收发器开关路径之后,还包括:
    所述发送端设备将所述确定的所述收发器开关路径发送给所述接收端设备,以使所述接收端设备依据所述收发器开关路径确定所需切换开关状态的 收发器。
  9. 如权利要求1至8任一项所述的方法,其特征在于,在切换所需切换开关状态的收发器的过程中,所述信道矩阵的秩随功耗等级的变化而变化。
  10. 如权利要求2至8任一项所述的方法,其特征在于,在切换所需切换开关状态的收发器的过程中,所述发送端设备的系数同步切换。
  11. 一种发送端设备,其特征在于,包括:
    确定单元,用于在确定从当前的功耗等级切换到待切换的功耗等级时,依据收发器开关路径确定出从所述当前的功耗等级切换到所述待切换的功耗等级时所需切换开关状态的收发器;所述收发器开关路径为不同的功耗等级与收发器的开关状态及收发器在信道矩阵中的位置的对应关系;
    开关单元,用于将所述确定的从所述当前的功耗等级切换到所述待切换的功耗等级时所需切换开关状态的收发器的开关状态进行切换。
  12. 如权利要求11所述的发送端设备,其特征在于,所述收发器的开关状态包括打开状态或关闭状态;
    所述确定单元具体用于:
    在确定待切换的功耗等级大于当前的功耗等级时,依据所述收发器开关路径确定出从所述当前功耗等级切换到所述待切换的功耗等级时所需将打开状态切换到关闭状态的收发器;或
    在确定待切换的功耗等级小于或等于当前的功耗等级时,依据所述收发器开关路径确定出从所述当前的功耗等级切换到所述待切换的功耗等级时所需将关闭状态切换到打开状态的收发器。
  13. 如权利要求11所述的发送端设备,其特征在于,还包括:收发单元;
    所述依据收发器开关路径确定的所需切换开关状态的收发器中包括接收端设备的收发器;
    所述收发单元用于将所述依据收发器开关路径确定的所需切换开关状态的收发器中包括的接收端设备的收发器通知给所述接收端设备;或
    所述收发单元用于将所述待切换的功耗等级通知给所述接收端设备,以 使所述接收端设备根据所述待切换的功耗等级确定出从所述当前的功耗等级切换到所述待切换的功耗等级时所需切换开关状态的收发器。
  14. 如权利要求11或12所述的发送端设备,其特征在于,所述确定单元还用于:
    根据下述步骤确定所述收发器开关路径:
    确定设定时间段内分别单独切换一个收发器的开关状态时的信道矩阵的信噪比之和;
    为所述确定的设定时间段内分别单独切换一个收发器的开关状态时的信道矩阵的信噪比之和划分功耗等级,并建立切换开关状态的收发器及所述切换开关状态的收发器在所述信道矩阵中的位置与划分的功耗等级的对应关系;
    将所述切换开关状态的收发器及所述切换开关状态的收发器在所述信道矩阵中的位置与划分的功耗等级的对应关系确定为所述收发器开关路径。
  15. 如权利要求14所述的发送端设备,其特征在于,所述确定单元还用于:
    根据公式(1)确定分别单独切换一个收发器的开关状态时的信道矩阵的信噪比之和;
    所述公式(1)为:
    Figure PCTCN2016113940-appb-100005
    其中,
    Figure PCTCN2016113940-appb-100006
    为切换收发器k的开关状态时的信道矩阵的信噪比之和,PS为信号功率,PN为噪声功率,hij为发送端设备的收发器j到接收端设备的收发器i的信道,i为接收端设备的收发器的序号,j为发送端设备的收发器的序号。
  16. 如权利要求11或12所述的发送端设备,其特征在于,所述确定单元还用于:
    根据下述步骤确定所述收发器开关路径:
    确定设定时间段内分别单独切换一个收发器的开关状态时的信道矩阵的矩阵信道容量;
    为所述确定的设定时间段内分别单独切换一个收发器的开关状态时的信道矩阵的矩阵信道容量划分功耗等级,并建立切换开关状态的收发器及所述切换开关状态的收发器在所述信道矩阵中的位置与划分的功耗等级的对应关系;
    将所述切换开关状态的收发器及所述切换开关状态的收发器在所述信道矩阵中的位置与划分的功耗等级的对应关系确定为所述收发器开关路径。
  17. 如权利要求16所述的发送端设备,其特征在于,所述确定单元还用于:
    根据公式(2)或公式(3)确定分别单独切换一个收发器的开关状态时的信道矩阵的矩阵信道容量;
    所述公式(2)为:
    Figure PCTCN2016113940-appb-100007
    其中,Ak为非注水场景下切换收发器k的开关状态时的信道矩阵的矩阵信道容量,I为单位矩阵,PS为信号功率,PN为噪声功率,Hk为切换收发器k的开关状态时的信道矩阵,Hk H为切换收发器k的开关状态时的信道矩阵的共轭矩阵,k为收发器的序号;
    所述公式(3)为:
    Figure PCTCN2016113940-appb-100008
    其中,Bk为注水场景下切换收发器k的开关状态时的信道矩阵的矩阵信道容量,I为单位矩阵,PS为信号功率,PN为噪声功率,Hk为切换收发器k的开关状态时的信道矩阵,W是注水系数,Hk H为切换收发器k的开关状态时的信道矩阵的共轭矩阵,k为收发器的序号。
  18. 如权利要求14至17任一项所述的发送端设备,其特征在于,所述 收发单元还用于:
    在确定所述收发器开关路径之后,将所述确定的所述收发器开关路径发送给所述接收端设备,以使所述接收端设备依据所述收发器开关路径确定所需切换开关状态的收发器。
  19. 如权利要求12至18任一项所述的发送端设备,其特征在于,在切换所需切换开关状态的收发器的过程中,所述信道矩阵的秩随功耗等级的变化而变化。
  20. 如权利要求12至18任一项所述的发送端设备,其特征在于,在切换所需切换开关状态的收发器的过程中,所述发送端设备的系数同步切换。
PCT/CN2016/113940 2016-12-30 2016-12-30 一种控制收发器开关状态的方法及发送端设备 WO2018120216A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/113940 WO2018120216A1 (zh) 2016-12-30 2016-12-30 一种控制收发器开关状态的方法及发送端设备
CN201680088564.2A CN109644018B (zh) 2016-12-30 2016-12-30 一种控制收发器开关状态的方法及发送端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/113940 WO2018120216A1 (zh) 2016-12-30 2016-12-30 一种控制收发器开关状态的方法及发送端设备

Publications (1)

Publication Number Publication Date
WO2018120216A1 true WO2018120216A1 (zh) 2018-07-05

Family

ID=62706653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113940 WO2018120216A1 (zh) 2016-12-30 2016-12-30 一种控制收发器开关状态的方法及发送端设备

Country Status (2)

Country Link
CN (1) CN109644018B (zh)
WO (1) WO2018120216A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047459A (zh) * 2006-05-19 2007-10-03 华为技术有限公司 用于动态管理xDSL频谱的方法及其装置
WO2010129378A2 (en) * 2009-05-02 2010-11-11 Alcatel-Lucent Usa Inc. Validated signal resumption in dsl systems
US20110176588A1 (en) * 2008-09-24 2011-07-21 Nokia Siemens Networks Oy Method and device for data processing and communication system comprising such device
CN102308486A (zh) * 2011-07-05 2012-01-04 华为技术有限公司 生成扩展信道的方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100336368C (zh) * 1997-08-01 2007-09-05 萨尔布研究及发展私人有限公司 多站网络中的功率匹配
CN101213805A (zh) * 2005-06-02 2008-07-02 适应性频谱和信号校正股份有限公司 多使用者矢量化dsl传输中的音调预编码
WO2008044233A2 (en) * 2006-10-08 2008-04-17 Mainnet Communications Ltd. System, apparatus and method for enabling optimal communication over power lines
WO2014176788A1 (zh) * 2013-05-03 2014-11-06 华为技术有限公司 功率控制方法、设备及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047459A (zh) * 2006-05-19 2007-10-03 华为技术有限公司 用于动态管理xDSL频谱的方法及其装置
US20110176588A1 (en) * 2008-09-24 2011-07-21 Nokia Siemens Networks Oy Method and device for data processing and communication system comprising such device
WO2010129378A2 (en) * 2009-05-02 2010-11-11 Alcatel-Lucent Usa Inc. Validated signal resumption in dsl systems
CN102308486A (zh) * 2011-07-05 2012-01-04 华为技术有限公司 生成扩展信道的方法和装置

Also Published As

Publication number Publication date
CN109644018B (zh) 2020-09-08
CN109644018A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
US9531491B2 (en) Communication method, apparatus and system
US8270523B2 (en) Crosstalk control method and apparatus using a bandwidth-adaptive precoder interface
CN106233635B (zh) 用于向设备指派传输资源的方法和装置
US9654172B2 (en) Method and device for line initialization
WO2011035596A1 (zh) 滤波处理方法、系统及设备
EP2907282B1 (en) Initialization and tracking for low power link states
CN103891154A (zh) Xdsl中调整的传送
US9020145B2 (en) MIMO mechanism for strong FEXT mitigation
US10700739B2 (en) Crosstalk mitigation
CN107005265B (zh) 通信信号收发组件、终端和信号收发方法
EP3058677A1 (en) Method and apparatus for managing processing in tdd frames to enable power dissipation reduction
US11159230B2 (en) Digital subscriber line transceiver
US20160105216A1 (en) Line initialization method, device, and system
CN107294561B (zh) 一种dsl系统中抵消线路串扰的方法、设备和系统
JP7174771B2 (ja) アクティブ干渉除去装置、信号絶縁制御装置、および干渉をアクティブ的に除去する方法
US10432350B2 (en) Method for adjusting parameters of sending device and receiving device, and terminal device
CN106464460B (zh) 非线性预编码的比特加载方法、发送端、接收端及系统
WO2018120216A1 (zh) 一种控制收发器开关状态的方法及发送端设备
CN102165724B (zh) 一种降低用户线路串扰的方法、装置和系统
EP2514109A1 (en) Crosstalk control method and apparatus using a bandwidth-adaptive precoder interface
EP3200354B1 (en) Crosstalk cancellation method, apparatus and system
CN105659504A (zh) 矢量化组内的有序离开
WO2012092895A2 (zh) 接入设备端口线路的串扰抵销处理方法、相关设备及系统
WO2016082221A1 (zh) 信号发送的方法、装置和系统
WO2020001397A1 (zh) 信号处理方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925293

Country of ref document: EP

Kind code of ref document: A1