WO2018119675A1 - Method for visualizing defects in a semi-finished cdte thin film solar cell - Google Patents

Method for visualizing defects in a semi-finished cdte thin film solar cell Download PDF

Info

Publication number
WO2018119675A1
WO2018119675A1 PCT/CN2016/112397 CN2016112397W WO2018119675A1 WO 2018119675 A1 WO2018119675 A1 WO 2018119675A1 CN 2016112397 W CN2016112397 W CN 2016112397W WO 2018119675 A1 WO2018119675 A1 WO 2018119675A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
semi
ion solution
cdte solar
metal ion
Prior art date
Application number
PCT/CN2016/112397
Other languages
French (fr)
Inventor
Drost CHRISTIAN
Spath BETTINA
Frauenstein SVEN
Harr MICHAEL
Peng SHOU
Original Assignee
China Triumph International Engineering Co., Ltd.
Ctf Solar Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Triumph International Engineering Co., Ltd., Ctf Solar Gmbh filed Critical China Triumph International Engineering Co., Ltd.
Priority to CN201680074109.7A priority Critical patent/CN108604616B/en
Priority to PCT/CN2016/112397 priority patent/WO2018119675A1/en
Publication of WO2018119675A1 publication Critical patent/WO2018119675A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/24Optical enhancement of defects or not directly visible states, e.g. selective electrolytic deposition, bubbles in liquids, light emission, colour change
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to a method for process monitoring and inspection ofCdTethin film solar cellproduction process in order to visually identify defects induced by previous process steps.
  • CdTe solar cell has the following structure: on a glass substrate, a transparent conducting oxide layer (TCO) is deposited as front contact.
  • TCO transparent conducting oxide layer
  • the TCO layer can include a high resistive buffer layer which helps to minimize the shunting effect in solar cell.
  • CdS cadmium sulfide
  • CdTe cadmium telluride
  • a metal layer e.g. of molybdenum, nickel vanadium, tantalum, titanium, wolfram, gold or any composition or compound comprising one of these elements, is applied to collect the charge carriers. This structure is called superstrate configuration.
  • thin film CdTe solar cell production process comprises further process steps, like CdCl 2 activation and /or CuCl 2 treatment.
  • Invisible defects like pin-holes, particles and agglomerates, can be induced by all steps of thin film CdTe solar cell production process. Defects can result in shunting and /or reduction of power of the CdTe thin film solar cell.
  • State of the art methods for measuring and identifying shunting effects are current –voltage characteristics and /or electro-and photoluminescence measurements. These methods are either limitedto thin film CdTe solar cells after completing all process steps or small sizes of CdTe solar cell. Furthermore, no correlation to causing process steps can be drawn by results of the before mentioned measuring methods.
  • the object of the present invention is to provide a method for process monitoring and inspection of CdTe thin film solar cell production process, wherein this method enables visual identification of defects (e.g. pin-holes, particles, agglomerates) and correlation to previous process steps.
  • defects e.g. pin-holes, particles, agglomerates
  • the method according to the present application comprises the steps of providing a semi-finished CdTe solar cell, applying a metal ion solution to a CdTe surface and simultaneously illuminate the semi-finished CdTe solar cell, removingmetal ion solution from the semi-finished CdTe solar cell and visually inspecting the metal ion solution treated semi-finished CdTe solar cell by a human operator and /or optical microscopy.
  • the semi-finished CdTe solar cell includes a CdS layer and a CdTe layer, wherein a surface of the CdTe layer opposite to the CdS layer forms thesurface of the semi-finished CdTe solar cell.
  • the semi-finished CdTe solar cell further comprises a substrate and a front contact layer or a front contact layer sequence as known from the prior art.
  • the CdS layer, the CdTe layerand the front contact layer or layer sequence are formed by methods known from the prior art.
  • the metal ion solution may be applied to the surface of the semi-finished CdTe solar cell byprocesses known from the prior art such as, but not limited to:
  • the metal ion solution may be anaqueous solution of metal salts, for instance metal chlorides, metal sulfates, metal nitrates, metal phosphates, metal halogenides and metal pseudo halogenides such as CuCl 2 , AgCl 3 , PdCl 2 , PtCl 4 , CuSO 4 , Ag 2 SO 4 , Cu (NO 3 ) 2 , AgNo 3 , Cu 3 (PO 4 ) 2 , Ag 3 PO 4 , CuBr 2 , AgBr, CuI or CuCN.
  • metal salts for instance metal chlorides, metal sulfates, metal nitrates, metal phosphates, metal halogenides and metal pseudo halogenides such as CuCl 2 , AgCl 3 , PdCl 2 , PtCl 4 , CuSO 4 , Ag 2 SO 4 , Cu (NO 3 ) 2 , AgNo 3 , Cu 3 (PO 4 ) 2 , Ag 3 PO 4 , Cu
  • the metal ion solution may further comprise complexing agents, for example ammonia solution, sodium thiosulfate solution, potassium cyanide solution, ethylenediamine, ethylenediamintetraacetic acid, phosphonates or 1-hydroxyethylidene-1, 1diphosphonic acid.
  • the metal ion solution may additionally further contain diluted hydrochloric acid or phosphoric acid.
  • the concentration of metal ions in the metal ion solution may be in the range between 0, 1 and 50 mmol, preferably between 1 and 10 mmol.
  • a first time period, for which the metal ion solution is present on the surface of the semi-finished CdTe solar cell, for instance the first time period, for which the semi-finished CdTe solar cell (or the surface of the semi-finished CdTe solar cell) is dipped into the metal ion solution may be in the range between 5 and 300 seconds, preferably between 30 and 60 seconds.
  • temperature of the semi-finished CdTe solar cell is controlled to be in the range between 15 °C and 80 °C duringthe time period, the metal ion solution is applied to the surface of semi-finished CdTe solar cells.
  • the semi-finished CdTe solar cell issimultaneously illuminatedfor a second time period while the metal ion solution is present on the surface of the semi-finished CdTe solar cell.
  • the second time period for which the semi-finished CdTe solar cell is simultaneously illuminated, is a time period between the beginning of the step of applying the metal ion solution and the end of the step (according to the first time period) before removing the metal ion solution.
  • the second time period may be equal to the first time period, i.e.
  • the semi-finished CdTe solar cell is illuminated the whole time the metal ion solution is present at least at the surface of the semi-finished CdTe solar cell, or may be shorter than the first time period, i.e. only a part of the duration of the first time period, at least half of the first time period.
  • Illumination generates electron-hole pairs, which will be separated at the pn-junction by the inherent electric field of the CdTe solar cell.
  • generated electrons can move along microshunts to the surface of the semi-finished CdTe solar cell. Reaction of electrons and metal ions at the surface of the semi-finished CdTe solar cells results in galvanic deposition of metals on the surface of the semi-finished CdTe solar cell, which will bevisibleat the location of present microshunts.
  • “Simultaneously illumination” means an illumination which is more than the illumination due to ambient light being present during the metal ion solution treatment.
  • the “simultaneously illumination” is provided additionally to these lighting conditions by an illumination source and provides an additional light with anilluminance (luminous flux per unit area) in the range of 5000 to 200000 lx.
  • the light the semi-finished CdTe solar cell is simultaneously illuminated with has a wavelength in the absorption region of the CdTe solar cell, and preferably in the range between 300 to 900 nm.
  • the metal ion solution may be removed from the surface of the semi-finished CdTe solar cell by removing the semi-finished CdTe solar cell from the metal ion solution held in a container and /or by blowing, rinsing with a cleaning solution, drying or a combination thereof, or by other processes known from the prior art.
  • Visual inspection may be carried out bya human operator and /or optical microscopy with or without combination with image analyzing systems enabling identification of defect structures andcorrelation tocausing process steps.
  • method according to the present application is suitable for monitoring CdTe thin film solar cell production process and enables visual identification of defects and efficient problem-solving by limitation to possible causing process steps.
  • Fig. 1 schematically shows an exemplary process sequence of the method according to the present application.
  • Fig. 2 schematically shows an embodiment of the method according to the present application, wherein application of the metal ion solution is carried out by dipping the semi-finished CdTe solar cell into the metal ion solution while simultaneously illuminating, following steps S40 and S50.
  • Fig. 1 shows a process sequence of the method according to the present application.
  • the semi-finished CdTe solar cell with the surface as described above is provided in step S10.
  • themetal ion solution is applied to the surface of the semi-finished CdTe solar cell.
  • the semi-finished CdTe solar cell is simultaneously illuminated (step S30) while the metal ion solution is present on the surface of the semi-finished CdTe solar cell.
  • the metal ion solution was present on the surface of the semi-finished CdTe solar cell, it will be removed in step S40.
  • visual inspection of the surface of the metal ion solution treated semi-finished CdTe solar cell is performed by a human operator and /or optical microscopy (step S50) .
  • Fig. 2 an exemplary embodiment of the method according to the present application is shown schematically, wherein application of a metal ion solution (step S20) is carried out by dipping the semi-finished CdTe solar cell (10) having a surface (11) into the metal ion solution (15) while simultaneously illuminating (step S30) by anillumination source (14) .
  • the metal ion solution (15) comprises 1 mmol CuCl 2 solution, corresponding to 134.45 mg CuCl 2 diluted in 1 l DI-water (deionized water) and is held in a container (12) .
  • the semi-finished CdTe solar cell supported by a component (13) , for instance a holder with a clamp, is dipped into the metal ion solution (15) for 60 s and simultaneously illuminated for the whole time, the semi-finished CdTe solar cell is dipped in the metal ion solution, whereby temperature of the metal ion solution and the semi-finished CdTe solar cell is about 25 –30 °C.
  • the illumination source (14) a halogen lamp with an illuminance of150000 lx (corresponding to a lamp with a power of 400 W, 8548 lm luminous flux and luminous colourof 2900 K) is used forilluminating the semi-finished CdTe solar cell (10) while it is dipped into the metal ion solution (15) .
  • the metal ion solution is removed from the semi-finished CdTe solar cell (step S40) for instance by a rinsing and drying device (20) according to state of the art prior to visual inspection (step S50) .
  • the following visual inspection (S50) of the surface (11) of the semi-finished CdTe solar cell (10) is carried out by a human operator and /or optical microscopy.
  • the illuminating source (14) is arranged such that the light emitted by the illuminating source (14) impinges on the surface (11) of the semi-finished CdTe solar cell (10) .
  • this is only one exemplary arrangement of the illuminating unit.
  • the semi-finished CdTe solar cell may nevertheless be illuminated on the sunny side in any case, i.e. on the transparent substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A method involves process monitoring and inspection of CdTe thin film solar cell (10) production process in order to visually identify defects induced by previous process steps. Metal ion solution (15) treatment of semi-finished CdTe thin film solar cell (10) in combination with simultaneously illuminating the surface of the semi-finished CdTe solar cell (10) enables visual identification of defects and correlation to previous process steps.

Description

Method for visualizing defects in a semi-finishedCdTe thin film solar cell
Field of Invention
The present application relates to a method for process monitoring and inspection ofCdTethin film solar cellproduction process in order to visually identify defects induced by previous process steps.
Description of Related Arts
State of the art, CdTe solar cell has the following structure: on a glass substrate, a transparent conducting oxide layer (TCO) is deposited as front contact. The TCO layer can include a high resistive buffer layer which helps to minimize the shunting effect in solar cell. On this, a layer of cadmium sulfide (CdS) and on top of that, a layer of cadmium telluride (CdTe) are deposited. Finally a metal layer, e.g. of molybdenum, nickel vanadium, tantalum, titanium, wolfram, gold or any composition or compound comprising one of these elements, is applied to collect the charge carriers. This structure is called superstrate configuration.
State of the Art thin film CdTe solar cell production process comprises further process steps, like CdCl2 activation and /or CuCl2 treatment. Invisible defects, like pin-holes, particles and agglomerates, can be induced by all steps of thin film CdTe solar cell production process. Defects can result in shunting and /or reduction of power of the CdTe thin film solar cell. State of the art methods for measuring and identifying shunting effects are current –voltage characteristics and /or electro-and photoluminescence measurements. These methods are either limitedto thin film CdTe solar cells after completing all process steps or small sizes of CdTe solar cell. Furthermore, no correlation to causing process steps can be drawn by results of the before mentioned measuring methods.
Summary of the Present Invention
The object of the present invention is to provide a method for process monitoring and inspection of CdTe thin film solar cell production process, wherein this method enables visual identification of defects (e.g. pin-holes, particles, agglomerates) and correlation to previous process steps.
This object is achieved by the method according to claim 1. Advantageous embodiments are disclosed in the dependent sub-claims.
The method according to the present application comprises the steps of providing a semi-finished CdTe solar cell, applying a metal ion solution to a CdTe surface and simultaneously illuminate the semi-finished CdTe solar cell, removingmetal ion solution from the semi-finished CdTe solar cell and visually inspecting the metal ion solution treated semi-finished CdTe solar cell by a human operator and /or optical microscopy. The semi-finished CdTe solar cell includes a CdS layer and a CdTe layer, wherein a surface of the CdTe layer opposite to the CdS layer forms thesurface of the semi-finished CdTe solar cell. The semi-finished CdTe solar cell further comprises a substrate and a front contact layer or a front contact layer sequence as known from the prior art. The CdS layer, the CdTe layerand the front contact layer or layer sequence are formed by methods known from the prior art.
The metal ion solution may be applied to the surface of the semi-finished CdTe solar cell byprocesses known from the prior art such as, but not limited to:
- Dipping the semi-finished CdTe solar cell (or the surface of the semi-finished CdTesolar cell) into the metal ion solution held in a container,
- Spraying,
- Spin coating,
- Sponge roller coating, etc.
The metal ion solution may be anaqueous solution of metal salts, for instance metal chlorides, metal sulfates, metal nitrates, metal phosphates, metal halogenides and metal pseudo halogenidessuch as CuCl2, AgCl3, PdCl2, PtCl4, CuSO4, Ag2SO4, Cu (NO32, AgNo3, Cu3 (PO42, Ag3PO4, CuBr2, AgBr, CuI or CuCN. The metal ion solution may further comprise complexing agents, for example ammonia solution, sodium thiosulfate solution, potassium cyanide solution, ethylenediamine, ethylenediamintetraacetic acid, phosphonates or 1-hydroxyethylidene-1, 1diphosphonic acid. The metal ion solution may additionally further contain diluted hydrochloric acid or phosphoric acid.
The concentration of metal ions in the metal ion solution may be in the range between 0, 1 and 50 mmol, preferably between 1 and 10 mmol. A first time period, for which the metal ion solution is present on the surface of the semi-finished CdTe solar cell, for instance the first time period, for which the semi-finished CdTe solar cell (or the surface of the semi-finished CdTe solar cell) is dipped into the metal ion solution, may be in the range between 5 and 300 seconds, preferably between 30 and 60 seconds.
Furthermore, temperature of the semi-finished CdTe solar cell is controlled to be in the range between 15 ℃ and 80 ℃ duringthe time period, the metal ion solution is applied to the surface of semi-finished CdTe solar cells.
According to the present application, the semi-finished CdTe solar cell issimultaneously illuminatedfor a second time period while the metal ion solution is present on the surface of the semi-finished CdTe solar cell. The second time period, for which the semi-finished CdTe solar cell is simultaneously illuminated, is a time period between the beginning of the step of applying the metal ion solution and the end of the step (according to the first time period) before removing the metal ion solution. The second time period may be equal to the first time period, i.e. the semi-finished CdTe solar cell is illuminated the whole time the metal ion solution is present at least at the surface of the semi-finished CdTe solar cell, or may be shorter than the first time period, i.e. only a part of the duration of the first time period, at least half of the first time period.
Illumination generates electron-hole pairs, which will be separated at the pn-junction by the inherent electric field of the CdTe solar cell. In case of present microshunts, caused by pin-holes or other defects induced by previous processsteps, for instance CdS /CdTe deposition or CdCl2 activation treatment, generated electrons can move along microshunts to the surface of the semi-finished CdTe solar cell. Reaction of electrons and metal ions at the surface of the semi-finished CdTe solar cells results in galvanic deposition of metals on the surface of the semi-finished CdTe solar cell, which will bevisibleat the location of present microshunts.
“Simultaneously illumination” means an illumination which is more than the illumination due to ambient light being present during the metal ion solution treatment. The “simultaneously illumination” is provided additionally to these lighting conditions by an illumination source and provides an additional light with anilluminance (luminous flux per unit area) in the range of 5000 to 200000 lx.
The light the semi-finished CdTe solar cell is simultaneously illuminated with has a wavelength in the absorption region of the CdTe solar cell, and preferably in the range between 300 to 900 nm.
The metal ion solution may be removed from the surface of the semi-finished CdTe solar cell by removing the semi-finished CdTe solar cell from the metal ion solution held in a container and /or by blowing, rinsing with a cleaning solution, drying or a combination thereof, or by other processes known from the prior art.
Visual inspection may be carried out bya human operator and /or optical microscopy with or without combination with image analyzing systems enabling identification of defect structures andcorrelation tocausing process steps.
Therefore, method according to the present application is suitable for monitoring CdTe thin film solar cell production process and enables visual identification of defects and efficient problem-solving by limitation to possible causing process steps.
Brief Description of the Drawings
Fig. 1 schematically shows an exemplary process sequence of the method according to the present application.
Fig. 2 schematically shows an embodiment of the method according to the present application, wherein application of the metal ion solution is carried out by dipping the semi-finished CdTe solar cell into the metal ion solution while simultaneously illuminating, following steps S40 and S50.
Detailed Description of the Preferred Embodiments
The methodaccording to the invention is explained in the following exemplary embodiment, wherein the figures are not intended to imply a restriction to the shown embodiments.
Fig. 1 shows a process sequence of the method according to the present application. At the beginning, the semi-finished CdTe solar cell with the surface as described above is provided in step S10. In a next step S20, themetal ion solution is applied to the surface of the semi-finished CdTe solar cell. The semi-finished CdTe solar cell is simultaneously illuminated (step S30) while the metal ion solution is present on the surface of the semi-finished CdTe solar cell. After the metal ion solution was present on the surface of the semi-finished CdTe solar cell, it will be removed in step S40. Subsequently to step S40, visual inspection of the surface of the metal ion solution treated semi-finished CdTe solar cell is performed by a human operator and /or optical microscopy (step S50) .
In Fig. 2, an exemplary embodiment of the method according to the present application is shown schematically, wherein application of a metal ion solution (step S20) is carried out by dipping the semi-finished CdTe solar cell (10) having a surface (11) into the metal ion solution (15) while simultaneously illuminating (step S30) by anillumination source (14) . The metal ion solution (15) comprises 1 mmol CuCl2 solution, corresponding to 134.45 mg CuCl2 diluted in 1 l DI-water (deionized water) and is held in a container (12) . The semi-finished CdTe solar cell,  supported by a component (13) , for instance a holder with a clamp, is dipped into the metal ion solution (15) for 60 s and simultaneously illuminated for the whole time, the semi-finished CdTe solar cell is dipped in the metal ion solution, whereby temperature of the metal ion solution and the semi-finished CdTe solar cell is about 25 –30 ℃. Further, the illumination source (14) , a halogen lamp with an illuminance of150000 lx (corresponding to a lamp with a power of 400 W, 8548 lm luminous flux and luminous colourof 2900 K) is used forilluminating the semi-finished CdTe solar cell (10) while it is dipped into the metal ion solution (15) . The metal ion solution is removed from the semi-finished CdTe solar cell (step S40) for instance by a rinsing and drying device (20) according to state of the art prior to visual inspection (step S50) . The following visual inspection (S50) of the surface (11) of the semi-finished CdTe solar cell (10) is carried out by a human operator and /or optical microscopy.
In the examples shown in Figs. 2, the illuminating source (14) is arranged such that the light emitted by the illuminating source (14) impinges on the surface (11) of the semi-finished CdTe solar cell (10) . However, this is only one exemplary arrangement of the illuminating unit. The semi-finished CdTe solar cell may nevertheless be illuminated on the sunny side in any case, i.e. on the transparent substrate.
The embodiments of the invention described in the foregoing description are examples given by way of illustration and the invention is nowise limited thereto. Any modification, variation and equivalent arrangement as well as combinations of embodiments should be considered as being included within the scope of the invention.
Reference numerals
10    semi-finished CdTe solar cell
11    the surface of the semi-finished CdTe solar cell
12    container
13    component for dipping
14    illumination source
15    metal ion solution
20    rinsing and drying device

Claims (7)

  1. Method for process monitoring and inspection of CdTethin film solar cell productionprocess, comprising the steps:
    a) providing a semi-finished CdTe solar cell including a CdS layer and a CdTe layer, wherein asurface of the CdTelayer opposite to the CdS layer formsthe surface of the semi-finished CdTe solar cell,
    b) applyinga metal ion solution to the surface of the semi-finished CdTe solar celland
    c) simultaneously to b) illuminating the semi-finished CdTe solar cell,
    d) removing the metal ion solution from the semi-finished CdTe solar cell and
    e) visually inspectingthe surface of the semi-finished CdTe solar cell by a human operator and /or optical microscopy after removing the metal ion solution.
  2. Method according to claim 1, characterized in that themetal ion solution is applied by dipping the semi-finished CdTe solar cell intothe metal ion solution.
  3. Method according to claim 1, characterized in that the concentration of metal ions in the metal ion solution may be in the range between 0.1 and 50 mmol.
  4. Method according to claim 1, characterised in that the light the semi-finished CdTe solar cell isilluminated with has a wavelength in the absorption region of the CdTe solar cell.
  5. Method according to claim 4, characterized in that the wavelength of the light is in the range from 400 to 900 nm.
  6. Method according to claim 1, characterized in that the time period for application of the metal ion solution lies in the range between 5 seconds to 5 minutes.
  7. Method according to any one of the preceding claims, characterized in that a temperature of the semi-finished CdTe solar cell and the metal ion solution isin the range between 15 to 80℃during the time period, the metal ion solution is applied to the semi-finished CdTe solar cell.
PCT/CN2016/112397 2016-12-27 2016-12-27 Method for visualizing defects in a semi-finished cdte thin film solar cell WO2018119675A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680074109.7A CN108604616B (en) 2016-12-27 2016-12-27 Method for visualizing defects in semi-finished CdTe thin film solar cell
PCT/CN2016/112397 WO2018119675A1 (en) 2016-12-27 2016-12-27 Method for visualizing defects in a semi-finished cdte thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/112397 WO2018119675A1 (en) 2016-12-27 2016-12-27 Method for visualizing defects in a semi-finished cdte thin film solar cell

Publications (1)

Publication Number Publication Date
WO2018119675A1 true WO2018119675A1 (en) 2018-07-05

Family

ID=62707769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112397 WO2018119675A1 (en) 2016-12-27 2016-12-27 Method for visualizing defects in a semi-finished cdte thin film solar cell

Country Status (2)

Country Link
CN (1) CN108604616B (en)
WO (1) WO2018119675A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275840A (en) * 1997-03-31 1998-10-13 Toshiba Corp Defect evaluation method and device of insulating film
JP2000082727A (en) * 1998-09-04 2000-03-21 Toshiba Corp Method for evaluating fault of insulating film
US6174727B1 (en) * 1998-11-03 2001-01-16 Komatsu Electronic Metals, Co. Method of detecting microscopic defects existing on a silicon wafer
JP2005166705A (en) * 2003-11-28 2005-06-23 Canon Inc Defect detecting method of insulating film or semiconductor film
CN106252432A (en) * 2016-09-28 2016-12-21 中山瑞科新能源有限公司 A kind of cadmium telluride preparation method of solar battery reducing defect concentration

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4144139A (en) * 1977-11-30 1979-03-13 Solarex Corporation Method of plating by means of light
JPH11274257A (en) * 1998-03-18 1999-10-08 Shin Etsu Handotai Co Ltd Method of evaluating defect of semiconductor crystal
CN101257059B (en) * 2007-11-30 2011-04-13 无锡尚德太阳能电力有限公司 Method for electrochemical depositing solar cell metallic electrode
JP6094898B2 (en) * 2014-05-15 2017-03-15 信越半導体株式会社 Contamination assessment method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275840A (en) * 1997-03-31 1998-10-13 Toshiba Corp Defect evaluation method and device of insulating film
JP2000082727A (en) * 1998-09-04 2000-03-21 Toshiba Corp Method for evaluating fault of insulating film
US6174727B1 (en) * 1998-11-03 2001-01-16 Komatsu Electronic Metals, Co. Method of detecting microscopic defects existing on a silicon wafer
JP2005166705A (en) * 2003-11-28 2005-06-23 Canon Inc Defect detecting method of insulating film or semiconductor film
CN106252432A (en) * 2016-09-28 2016-12-21 中山瑞科新能源有限公司 A kind of cadmium telluride preparation method of solar battery reducing defect concentration

Also Published As

Publication number Publication date
CN108604616A (en) 2018-09-28
CN108604616B (en) 2023-03-24

Similar Documents

Publication Publication Date Title
JP4738610B2 (en) Contamination evaluation method for substrate surface, contamination evaluation apparatus and semiconductor device manufacturing method
US10416092B2 (en) Remote detection of plating on wafer holding apparatus
JP5102534B2 (en) Apparatus and method for electrochemical treatment of thin films on resistive semiconductor wafers
JPS60189931A (en) Method of electrically coating semiconductor device
US20220199843A1 (en) Method of manufacturing a photovoltaic cell
US20190067509A1 (en) A method and an apparatus for treating a surface of a tco material in a semiconductor device
CN108604502B (en) Method for forming CdTe thin film solar cells comprising a metal doping step and system for performing said metal doping step
Centeno et al. The formation of chlorine-induced alterations in daguerreotype image particles: a high resolution SEM-EDS study
KR20130112805A (en) Metal plating for ph sensitive applications
WO2018119675A1 (en) Method for visualizing defects in a semi-finished cdte thin film solar cell
JP7145893B2 (en) Remote detection of plating on wafer holder
JP6418868B2 (en) Method for cleaning and passivating chalcogenide layers
TW201506208A (en) A method of anodising a surface of a semiconductor device
US11121282B2 (en) Method for producing a CdTe thin-film solar cell
CN103681931B (en) Photovoltaic devices
JP2012526914A (en) Method and device for processing a wafer
JP2012525694A (en) Electrical and optoelectric properties of large area semiconductor devices.
Treichel et al. Removal of trace metals using a biodegradable complexing agent.
JP2004071626A5 (en)
US20110147230A1 (en) Film Removal
Scheck et al. Photoexcited electrodeposition of Cu structures on p-Si (001)
JP2004342723A (en) Photoelectric conversion semiconductor device, its manufacturing method, and treatment device used therein
JPH03248425A (en) Compound semiconductor surface treatment
CN106591838A (en) Method for passivating surface of InGaAs device with composite film
Boyle The application of low dose SIMS to surface studies on compound semiconductors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925905

Country of ref document: EP

Kind code of ref document: A1