WO2018119556A1 - 太阳能吸热器、太阳能集热系统及太阳能发电系统 - Google Patents

太阳能吸热器、太阳能集热系统及太阳能发电系统 Download PDF

Info

Publication number
WO2018119556A1
WO2018119556A1 PCT/CN2016/112040 CN2016112040W WO2018119556A1 WO 2018119556 A1 WO2018119556 A1 WO 2018119556A1 CN 2016112040 W CN2016112040 W CN 2016112040W WO 2018119556 A1 WO2018119556 A1 WO 2018119556A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat collecting
solar
collecting medium
channel
Prior art date
Application number
PCT/CN2016/112040
Other languages
English (en)
French (fr)
Inventor
杨磊
高笑菲
杨阳阳
张晟
田园
张建荣
林平
Original Assignee
中国科学院近代物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院近代物理研究所 filed Critical 中国科学院近代物理研究所
Priority to PCT/CN2016/112040 priority Critical patent/WO2018119556A1/zh
Priority to US16/473,464 priority patent/US11193695B2/en
Priority to EP16925632.8A priority patent/EP3561409B1/en
Priority to HUE16925632A priority patent/HUE056103T2/hu
Publication of WO2018119556A1 publication Critical patent/WO2018119556A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/10Details of absorbing elements characterised by the absorbing material
    • F24S70/16Details of absorbing elements characterised by the absorbing material made of ceramic; made of concrete; made of natural stone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/20Working fluids specially adapted for solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/065Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
    • F03G6/067Binary cycle plants where the fluid from the solar collector heats the working fluid via a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/72Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits being integrated in a block; the tubular conduits touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/80Solar heat collectors using working fluids comprising porous material or permeable masses directly contacting the working fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S2080/01Selection of particular materials
    • F24S2080/011Ceramics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the invention relates to a solar heat absorber, a solar heat collecting system and a solar power generating system.
  • Solar heat sinks are the key components for achieving solar thermal conversion in solar power systems, and their design has always been a key issue in the field of solar power generation.
  • the heat absorbing medium in the solar heat absorber has an important influence on the heat collecting efficiency of the solar heat absorbing device.
  • a heat absorbing device using molten salt, air and saturated wet steam as a heat absorbing medium is often used, but There are shortcomings such as high temperature, easy decomposition, uneven flow, local overheating, easy corrosion and failure of the device.
  • An object of the present invention is to provide a solar heat absorber, a solar heat collecting system, and a solar power generating system, whereby the heat collecting efficiency can be remarkably improved to solve the problems in the prior art.
  • a solar heat absorber comprising: an inlet from which a heat collecting medium enters a solar heat absorber; a passage member that is disposed to be fluidly connected to the inlet such that The heat collecting medium enters the channel member through the inlet; the collecting member is disposed in fluid connection with the channel member such that the heat collecting medium enters the collecting member via the channel member.
  • the heat collecting medium is a ceramic particle stream.
  • the ceramic particles in the stream of ceramic particles have a close-package ratio of 0.5-0.7.
  • the ceramic particles in the stream of ceramic particles have a diameter of from 0.1 mm to 6 mm.
  • the material of the ceramic particles in the stream of ceramic particles is selected from one or a mixture of carbide ceramics, nitride ceramics or oxide ceramics.
  • the flow rate of the ceramic particle stream is from 0.1 to 2 meters per second.
  • the channel member comprises: a plurality of channel units, each The channel unit includes a channel and a substrate surrounding the channel, the heat collecting medium flows within the channel; and an outer layer portion that secures the channel unit into one body.
  • the shape of the channel unit is a prism or a chute.
  • the collecting member is funnel shaped.
  • a solar heat collecting system comprising the aforementioned solar heat sink.
  • the solar heat collecting system further includes: a heat collecting medium storage device disposed upstream of the solar heat absorber in a flow direction of the heat collecting medium, and passing the solar heat absorber through the tube
  • the road is connected such that the heat collecting medium flows from the heat collecting medium storage device into the solar heat absorber; and the heat exchanger is disposed downstream of the solar heat absorber in a flow direction of the heat collecting medium And communicating with the solar heat absorber through a pipeline, which is arranged to derive heat absorbed by the heat collecting medium;
  • the heat collecting medium dust removing device is disposed downstream of the heat exchanger in a flow direction of the heat collecting medium And communicating with the heat exchanger through a pipeline, which is arranged to dedust the heat collecting medium entering the heat collecting medium;
  • the heat collecting medium circulating device is disposed in the direction of the flow of the heat collecting medium, and is disposed in the heat collecting medium dust removing device Downstream, and connected to the heat collecting medium dust removing device through a pipeline, which is arranged to transport the heat collecting medium
  • a solar power generation system comprising: the aforementioned solar heat collection system.
  • a solar power generation system further includes: a concentrating system configured to converge sunlight to the solar heat collecting system; a power generating system that introduces heat into the house The power generation system is described to generate electricity.
  • ceramic particles are used as a heat collecting medium, and a heat absorbing structure having a simplified structure is provided, and the above improvement provides heat collecting efficiency and heat exchange efficiency.
  • the power generation efficiency and operational stability of the power generation system including the above heat absorber are significantly improved.
  • FIG. 1 is a schematic diagram of a solar heat collecting system including a solar heat absorber according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a channel unit of a solar heat absorber according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view of a channel member of a solar heat absorber according to an embodiment of the present invention.
  • FIG. 4 is a partial structural schematic view of a channel unit of a solar heat absorber according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural view of a channel member of a solar heat absorber used in conjunction with a concentrator according to an embodiment of the present invention
  • FIG. 6 is a schematic structural view of a solar power generation system according to an embodiment of the present invention.
  • Figure 7 is a schematic illustration of the relationship between ceramic particles and the space occupied by ceramic particles in accordance with an embodiment of the present invention.
  • FIG. 1 a solar thermal system and a solar thermal absorber according to an embodiment of the present invention are shown, wherein the solar thermal absorber is shown by reference numeral 100.
  • a solar heat absorber comprising: an inlet 6 from which the heat collecting medium enters the solar heat absorber 100; a channel member 5, the channel member 5 being disposed to be The inlet 6 is fluidly connected such that the heat collecting medium enters the channel member 5 through the inlet 6; the collecting member 7 is disposed in fluid connection with the channel member 5 such that the heat collecting medium passes through the channel member 5 Entering the collection member 7.
  • the channel member 5 can be placed either obliquely or vertically.
  • the heat collecting medium is a ceramic particle stream. That is, the ceramic particles are in a flowing state in the heat absorber, that is, a flow of ceramic particles.
  • the flow rate of the ceramic particle stream is from 0.1 to 2 meters per second.
  • the ceramic particles have a close packing ratio of 0.5 to 0.7.
  • the close-package ratio here refers to the ratio of the total volume of all particles to the total volume of space occupied by all particles.
  • the close-package ratio herein characterizes the density of ceramic particles, as shown in Figure 7, which shows the relationship between the ceramic particles and the space occupied by the ceramic particles. As shown in Fig. 7, it shows ceramic particles which are randomly stacked and have voids between the particles, assuming that a 1 , a 2 . . . a n represents the volume of each particle, as shown in FIG. As shown, the space occupied by these ceramic particles has a certain length, width and height, then the close-package ratio is the sum of the volumes of all the particles (a 1 + a 2 + a 3 + ... + a n ) and The ratio of the total volume (length * width * height) occupied by these particles.
  • the flow rate and the accumulation state at different positions vary, and thus the value of the above-mentioned dense pile rate also changes.
  • the inventors have pointed out that the calculation method of the dense pile rate is exemplarily illustrated in FIG. 7 , which shows that the space occupied by the ceramic particles is a cube, and in practical applications, the space occupied by the ceramic particles may be Other shapes, such as cylinders, cones, or other irregular shapes, where the calculation of the closet ratio is the ratio of the total volume of all particles to the total volume of all particles, in other words, The close-package ratio is the ratio of the sum of the volumes of all the particles (a 1 + a 2 + a 3 + ... + a n n ) to the total volume of the space occupied by these particles (the space of any shape).
  • the ceramic particles have a diameter of 0.1 mm to 6 mm.
  • the material of the ceramic particles is selected from one or a mixture of carbide ceramics, nitride ceramics or oxide ceramics.
  • the heat collecting medium inside the heat absorber 100 is a ceramic particle flow.
  • the ceramic particles may be spherical or spheroidal in shape and can flow in the heat absorber 100. The flow of ceramic particles enters the channel member 5 of the heat sink 100 from the inlet 6 of the heat sink 100.
  • a ceramic particle stream is used as the heat collecting medium, and the close packing ratio is 0.5 to 0.7, and preferably, the close packing ratio is about 0.57.
  • a splicable porous channel unit or chute made of endothermic/thermally conductive material of different transparency is used as a flow channel for the heat collecting medium.
  • ceramic particles as a heat collecting medium may be made of a high temperature resistant material such as a carbide ceramic, a nitride ceramic or an oxide ceramic, such as zirconia, alumina, tantalum nitride, silicon carbide, or the like, and These materials are composed of a high temperature resistant material which ensures that the heat sink can be used in the range of 300-1200 ° C or even above 1200 °. Materials such as carbides can absorb/conduct solar energy to the utmost due to their high thermal conductivity and high radiation absorption rate.
  • the above particles have a diameter of from 0.1 to 6 mm, preferably from about 1 mm.
  • the material of the channel unit may be a transparent or translucent/opaque material.
  • high thermal conductivity materials with low thermal conductivity such as carbide ceramics, nitride ceramics or oxygen can be used.
  • high temperature resistant materials such as ceramics and mixtures thereof, materials such as quartz may also be used; opaque materials may be high temperature radiation absorptivity, high thermal conductivity temperature resistant materials such as carbide ceramics, nitride ceramics or oxide ceramics. Thermally optimized high temperature resistant material.
  • the channel member 5 comprises: a plurality of channel units 12, each channel unit 12 comprising a channel 14 and a substrate 15 surrounding the channel, the heat collecting medium being The inside of the tunnel 14 flows; an outer layer portion 13 that fixes the channel unit 12 in one body.
  • the shape of the channel unit 12 is a prism or a chute 16. As shown in FIG. 4, it shows an example in which the channel unit 12 of the present invention is a chute.
  • the heat collecting medium enters from the upper end of the channel unit in the form of a chute, and is heated by the sunlight 4 (radiation energy flow), and flows into the collecting member 7 from the lower end of the channel unit under the action of gravity.
  • the channel member 5 is selected from a prismatic structure, the lateral direction can be spliced into a square or honeycomb structure, and the longitudinal direction can be adjusted according to requirements.
  • the heat collecting medium flows by gravity from the channel of the channel unit 12, and the heat absorbing medium after the heat absorption is delivered to the collecting member 7.
  • the density and size of the tunnel 14 of the channel unit 12 can be set as needed.
  • the structure of the above-mentioned channel member is merely an example and does not constitute a limitation of the present invention, and other forms of channel members may be employed by those skilled in the art.
  • a gas that can be filled in the channel unit may be air or carbon dioxide, helium, nitrogen, oxygen, etc. to improve heat exchange efficiency
  • the gas pressure in the channel may be 0.1 to 10 atmospheres, preferably, one is used. About atmospheric pressure.
  • the collecting member 7 is funnel-shaped, it functions to control the flow rate and flow rate of the heat collecting medium.
  • the outer layer portion 13 functions as a fixed channel unit 12.
  • the base body 15 and the outer layer portion 13 of the channel unit may be a transparent material or an opaque material.
  • the outer layer portion 13 is also made of a transparent material; if the substrate 15 is made of an opaque material, the outer layer portion 13 may be a transparent or opaque material; When the two are transparent materials, sunlight 4 (radiation energy flow) will pass through the material; if it is opaque material, sunlight 4 (radiation energy flow) will be absorbed by the material and transferred to the heat collecting medium in the channel 14. on.
  • outer layer portion 13 is a transparent material, a gap may be left between the channel unit 12 and the outer cladding layer 13 and evacuated to maintain internal heat; if the outer layer portion 13 is opaque, the two may be in close contact with each other to facilitate Heat transfer.
  • a solar heat collecting system comprising the aforementioned solar heat sink.
  • the solar heat collecting system further includes: a heat collecting medium storage device 11 disposed upstream of the solar heat absorber 100 in a flow direction of the heat collecting medium, and The solar heat absorber 100 is connected through a pipeline such that the heat collecting medium flows from the heat collecting medium storage device 11 into the solar heat absorber 100; the heat exchanger 8 is in the flow direction of the heat collecting medium Provided in the downstream of the solar heat absorber 100, and communicated with the solar heat absorber 100 through a pipeline, which is arranged to derive heat absorbed by the heat collecting medium; the heat collecting medium dust removing device 9 is collecting heat In the direction of flow of the medium, it is disposed downstream of the heat exchanger 8 and communicates with the heat exchanger 8 through a pipeline, which is arranged to dedust the heat collecting medium entering the heat collecting medium; In the direction of the flow of the heat collecting medium, it is disposed downstream of the heat collecting medium dust removing device 9, and communicates with the heat collecting medium dust removing device 9 through a
  • the heat-generating ceramic particles flow out of the collecting member 7 and enter the heat exchanger 8 through the conveying pipe.
  • the heat absorbed by the heat collecting medium can be led out in the heat exchanger 8 and is generated in the power generating system 3.
  • the heat collecting medium after heat exchange is processed by the heat collecting medium dust removing device 9 and then enters the heat collecting medium circulating device 10, which transports the heat collecting medium to the heat collecting medium storage device 11 upstream of the heat absorber 100, and then re-passes through the pipeline.
  • the next end of the heat absorption process is carried out, and the cycle is operated.
  • the radiant energy stream collected by the concentrating device is projected onto the heat sink 100, and the radiant energy stream is absorbed by the dense ceramic particle stream.
  • the dense ceramic particle flow in the heat sink is driven by gravity to flow down the channel channel at a vertical or oblique angle. Due to the channel inclination angle or the size of the funnel opening, the dense ceramic particles can be controlled at a flow rate. Pass through the channel to ensure heat collection
  • the medium is capable of adequate heat absorption/heat transfer.
  • the porous structure of the channel components and the small size of the ceramic particles facilitate more efficient heat transfer.
  • the endothermic ceramic particles flow from the channels into the collection device connected to the bottom of the channel and into the downstream heat exchanger to conduct heat for power generation.
  • the heat collecting medium After the heat exchange is finished, the heat collecting medium enters the downstream heat collecting medium dust removing device to perform the filtering and dust removing treatment, and the collected heat collecting medium is transported to the storage device upstream of the heat absorber through the heat collecting medium circulation device, and re-enters the set. Thermal system.
  • the heat collecting medium dust removing device can also be used as a storage device for collecting heat medium.
  • the solar heat absorber and the solar heat collecting system provided by the invention have simple structure, maximize the high-efficiency absorption of the radiant energy flow under different conditions, and significantly improve the heat collecting efficiency. In addition, since there are no interposed components, the problem of fatigue and wear of the interposer components is avoided.
  • the flow state and flow velocity of the ceramic particles can be controlled by the angle of inclination of the channel member and the size of the outlet of the collection device while avoiding blockage of the device.
  • a solar power generation system comprising: the aforementioned solar heat collection system.
  • the solar power generation system further includes: a concentrating system 1 configured to converge the sunlight 4 to the solar heat collecting system 2; the power generating system 3, The solar heat collection system 2 introduces heat into the power generation system 3 to generate electricity.
  • the concentrating system 1 may be composed of a mirror array, and a tower, butterfly or trough concentrator may be selected as needed. As shown in Figure 5, a trough concentrator 17 is shown.
  • a trough concentrator 17 is shown.
  • the above arrangement of the concentrating system is merely an example and is not intended to limit the invention, and those skilled in the art may also adopt other forms of concentrating systems.
  • the power generation system may use steam as a working medium, such as water vapor, supercritical water, ultra-supercritical water, or supercritical carbon dioxide.
  • ceramic particles are used as a heat collecting medium, and a heat absorbing structure having a simplified structure is provided, and the above improvement provides heat collecting efficiency and heat exchange efficiency.
  • the power generation efficiency and operational stability of the power generation system including the above heat absorber are significantly improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Photovoltaic Devices (AREA)
  • Road Paving Structures (AREA)

Abstract

一种太阳能吸热器(100),包括:入口(6),集热介质从所述入口(6)进入太阳能吸热器(100);通道部件(5),所述通道部件(5)设置成与所述入口(6)流体连接,使得集热介质通过入口(6)进入到所述通道部件(5);收集部件(7),所述收集部件(7)设置成与所述通道部件(5)流体连接,使得集热介质经由所述通道部件(5)进入到所述收集部件(7)。该太阳能吸热器(100)采用陶瓷颗粒流作为集热介质,其运行稳定、集热效率高。此外,还提供了一种太阳能集热系统以及一种太阳能发电系统。

Description

太阳能吸热器、太阳能集热系统及太阳能发电系统 技术领域
本发明涉及一种太阳能吸热器、太阳能集热系统及太阳能发电系统。
背景技术
太阳能吸热器是太阳能发电系统中实现光热转化的关键部件,其设计一直都是太阳能发电领域的重点问题。而太阳能吸热器中的吸热介质对太阳能吸热器的集热效率的高低有重要影响,现有技术中多采用以熔盐、空气及饱和湿蒸汽为吸热介质的吸热器,但其存在着高温易分解、流动不均匀、局部过热、装置易腐蚀、失效等缺点。
发明内容
本发明的目的是提供一种太阳能吸热器、太阳能集热系统及太阳能发电系统,由此能够显著提高集热效率,以解决现有技术中的问题。
根据本发明的实施方式,其提供一种太阳能吸热器,包括:入口,集热介质从所述入口进入太阳能吸热器;通道部件,所述通道部件设置成与所述入口流体连接,使得集热介质通过入口进入到所述通道部件;收集部件,所述收集部件设置成与所述通道部件流体连接,使得集热介质经由所述通道部件进入到所述收集部件。
根据本发明的实施方式,其中所述集热介质为陶瓷颗粒流。
根据本发明的实施方式,其中所述陶瓷颗粒流中的陶瓷颗粒的密堆率为0.5-0.7。
根据本发明的实施方式,其中所述陶瓷颗粒流中的陶瓷颗粒的直径为0.1mm至6mm。
根据本发明的实施方式,其中所述陶瓷颗粒流中的陶瓷颗粒的材料选自碳化物陶瓷、氮化物陶瓷或者氧化物陶瓷之一或者几种混合物。
根据本发明的实施方式,其中所述陶瓷颗粒流的流速为0.1~2米/秒。
根据本发明的实施方式,其中所述通道部件包括:多个通道单元,每个 通道单元包括孔道以及包围孔道的基体,所述集热介质在所述孔道内流动;外层部,所述外层部将所述通道单元固定成一体。
根据本发明的实施方式,其中所述通道单元的外形为棱柱体或者斜槽。
根据本发明的实施方式,其中所述收集部件为漏斗形。
根据本发明的另一方面,其提供一种太阳能集热系统,其包括前述的太阳能吸热器。
根据本发明的实施方式,太阳能集热系统还包括:集热介质储存装置,在集热介质流动方向上,其设置在所述太阳能吸热器的上游,并与所述太阳能吸热器通过管路连通,使得所述集热介质从所述集热介质储存装置流动到所述太阳能吸热器内;换热器,在集热介质流动方向上,其设置在所述太阳能吸热器的下游,并与所述太阳能吸热器通过管路连通,其设置成将集热介质吸收的热量导出;集热介质除尘装置,在集热介质流动方向上,其设置在所述换热器的下游,并与所述换热器通过管路连通,其设置成对进入其内的集热介质进行除尘;集热介质循环装置,在集热介质流动方向上,其设置在集热介质除尘装置的下游,并与所述集热介质除尘装置通过管路连通,其设置成将来自集热介质除尘装置的集热介质输送至所述集热介质储存装置内。
根据本发明的又一方面,其提供一种太阳能发电系统其包括:前述的太阳能集热系统。
根据本发明的实施方式,太阳能发电系统还包括:聚光系统,所述聚光系统设置成将太阳光会聚至所述太阳能集热系统;发电系统,所述太阳能集热系统将热量导入到所述发电系统以进行发电。
本发明中,其采用了陶瓷颗粒作为集热介质,并且提供了简化结构的吸热器,上述改进提供了集热效率以及换热效率。而包括上述吸热器的发电系统的发电效率以及运行稳定性都显著改善。
附图说明
图1为根据本发明实施例的太阳能集热系统的示意图,其中包括太阳能吸热器;
图2为根据本发明实施例的太阳能吸热器的通道单元的结构示意图;
图3为根据本发明实施例的太阳能吸热器的通道部件的结构示意图;
图4为根据本发明实施例的太阳能吸热器的通道单元的局部结构示意图;
图5为根据本发明实施例的太阳能吸热器的通道部件与聚光器配合使用的结构示意图;以及
图6为根据本发明实施例的太阳能发电系统的结构示意图;
图7为根据本发明实施例的陶瓷颗粒与陶瓷颗粒所占据的空间之间的关系的示意图。
具体实施方式
下面将参照附图详细描述本发明的实施例,其中相同的标号对应相同的元件。但是,本发明有很多不同的实施方案,不能解释为将本发明限定在所述的实施例;而只是通过提供本发明的实施例,使本公开内容全面而完整,并向本领域技术人员完全的传达本发明的概念。
如图1所示,其示出了根据本发明的实施例的太阳能集热系统以及太阳能吸热器,其中,太阳能吸热器以附图标记100示出。
根据本发明的实施方式,其提供一种太阳能吸热器,包括:入口6,集热介质从所述入口6进入太阳能吸热器100;通道部件5,所述通道部件5设置成与所述入口6流体连接,使得集热介质通过入口6进入到所述通道部件5;收集部件7,所述收集部件7设置成与所述通道部件5流体连接,使得集热介质经由所述通道部件5进入到所述收集部件7。在本发明的实施方式中,通道部件5可倾斜放置,也可竖直放置。
根据本发明的实施方式,其中所述集热介质为陶瓷颗粒流。即,所述陶瓷颗粒在吸热器中呈流动状态,即,陶瓷颗粒流。根据本发明的实施方式,所述陶瓷颗粒流的流速为0.1~2米/秒。
根据本发明的实施方式,其中所述陶瓷颗粒的密堆率为0.5-0.7。这里的密堆率是指所有颗粒的总体积与所有颗粒所占空间总体积之比。
特别的,这里的密堆率表征了陶瓷颗粒的密集度,如图7所示,其示出了陶瓷颗粒与陶瓷颗粒所占据空间之间的关系。如图7所示,其示出了陶瓷 颗粒,这些陶瓷颗粒随机堆积,颗粒之间有空隙,假设a1、a2.......an表示每个颗粒的体积,如图7所示出的,这些陶瓷颗粒所占据的空间具有一定的长、宽和高,那么,密堆率为所有颗粒的体积之和(a1+a2+a3+……+an)与这些颗粒堆积后所占的总体积(长*宽*高)之比。另外一个方面,由于作为集热介质的陶瓷颗粒流在吸热器或者集热系统中流动的随机性,不同位置的流速及堆积情况有所变化,从而,上述密堆率的值也是变化的。
特别的,发明人指出,附图7中仅仅是示例性地阐述密堆率的计算方法,其示出的陶瓷颗粒所占据的空间为立方体,实际应用中,所述陶瓷颗粒所占据的空间可能是其他形状,例如,圆柱体、圆锥体或者其他不规则的形状,这时的密堆率的计算即为所有颗粒的总体积与所有颗粒所占空间总体积之比,换而言之,即,密堆率为所有颗粒的体积之和(a1+a2+a3+……+an)与这些颗粒堆积后所占空间(任何形状的空间)的总体积之比。
根据本发明的实施方式,其中所述陶瓷颗粒的直径为0.1mm至6mm。
根据本发明的实施方式,其中所述陶瓷颗粒的材料选自碳化物陶瓷、氮化物陶瓷或者氧化物陶瓷之一或者几种混合物。
具体的,在吸热器100内部的集热介质为陶瓷颗粒流,在本发明的实施例中,陶瓷颗粒的形状可为球形或类球形,并能在吸热器100中流动。陶瓷颗粒流从吸热器100的入口6进入到吸热器100的通道部件5内。
在本发明的实施例中,采用陶瓷颗粒流作为集热介质,其密堆率为0.5-0.7,优选的,密堆率为0.57左右。采用不同透明度的吸热/导热材料制作的可拼接多孔通道单元或斜槽作为集热介质的流动通道。其中,作为集热介质(热量导出介质)的陶瓷颗粒可以使用碳化物陶瓷、氮化物陶瓷或氧化物陶瓷等耐高温材料,例如:氧化锆、氧化铝、氮化镐、碳化硅等,以及由这些材料混合物构成的耐高温材料),其可以保证吸热器的使用范围达到300-1200℃,甚至也可使之工作在1200°以上。碳化物等材料由于导热系数大、辐射吸收率高,可以最大限度吸收/传导太阳能。上述颗粒直径在0.1-6mm,优选的,在1mm左右。
此外,通道单元的材料可以选用透明或者半透明/不透明材料。对于透明材料,可以选用低热导率的高透光耐温材料如碳化物陶瓷、氮化物陶瓷或氧 化物陶瓷及其混合物等耐高温材料,也可选用石英等材料;而不透明材料可以是高辐射吸收率、高热导率的耐温材料如:碳化物陶瓷、氮化物陶瓷或氧化物陶瓷等经过吸热优化的耐高温材料。
特别的,上述材料不是对本发明的限定,本领域技术人员也可以在上述技术方案的启示下,采用其他合适的材料。
根据本发明的实施方式,如图2和3所示,其中所述通道部件5包括:多个通道单元12,每个通道单元12包括孔道14以及包围孔道的基体15,所述集热介质在所述孔道14内流动;外层部13,所述外层部将所述通道单元12固定成一体。利用外层部13的固定,可以根据需要,由多个通道单位拼接成不同形状而形成的通道部件。
根据本发明的实施方式,其中所述通道单元12的外形为棱柱体或者斜槽16。如图4所示,其示出了本发明的通道单元12为斜槽的示例。集热介质从斜槽形式的通道单元的上端进入,经太阳光4(辐射能流)加热后,在重力的作用下,从通道单元的下端流入到收集部件7中。此外,若通道部件5选用棱柱结构,则横向可拼接为方格或者蜂巢结构,纵向可根据需求调节长度。集热介质在重力驱动下从通道单元12的孔道中流过,将吸热后的集热介质输送至收集部件7中。
其中,通道单元12的孔道14的密度以及尺寸可以根据需要设定。特别的,上述通道部件的结构仅仅为示例,并不构成对本发明的限定,本领域技术人员也可以采用其他形式的通道部件。
此外,在通道单元内可以填充的气体,该气体可以是空气或者二氧化碳、氦气、氮气、氧气等来提高换热效率,通道内的气压可为0.1~10个大气压,优选的,采用1个大气压左右。
根据本发明的实施方式,如图1所述,其中所述收集部件7为漏斗形,其起到控制集热介质流量及流速的作用。
在本发明的实施方式中,所述外层部13起到固定通道单元12的作用。通道单元的基体15以及外层部13可以为透明材料或者不透明材料。其中,在本发明的实施例中,若基体15选用透明材料,则外层部13也选用透明材料;若基体15选用不透明材料,则外层部13可以为透明或者不透明材料; 二者为透明材料时,太阳光4(辐射能流)会透过该材料;若为不透明材料时,太阳光4(辐射能流)会被该材料吸收并传至孔道14内的集热介质上。如果外层部13为透明材料则可以在通道单元12与外包层13之间留有空隙并做抽真空处理以保持内部热量;若外层部13为不透明材料,可以使二者紧密接触以便于传热。
根据本发明的另一方面,其提供一种太阳能集热系统,其包括前述的太阳能吸热器。
根据本发明的实施方式,如图1所示,太阳能集热系统还包括:集热介质储存装置11,在集热介质流动方向上,其设置在所述太阳能吸热器100的上游,并与所述太阳能吸热器100通过管路连通,使得所述集热介质从所述集热介质储存装置11流动到所述太阳能吸热器100内;换热器8,在集热介质流动方向上,其设置在所述太阳能吸热器100的下游,并与所述太阳能吸热器100通过管路连通,其设置成将集热介质吸收的热量导出;集热介质除尘装置9,在集热介质流动方向上,其设置在所述换热器8的下游,并与所述换热器8通过管路连通,其设置成对进入其内的集热介质进行除尘;集热介质循环装置10,在集热介质流动方向上,其设置在集热介质除尘装置9的下游,并与所述集热介质除尘装置9通过管路连通,其设置成将来自集热介质除尘装置9的集热介质输送至所述集热介质储存装置11内。
如图1和6所示,得到热量的陶瓷颗粒流流出收集部件7后,经输送管道进入换热器8中,在换热器8内可将集热介质吸收的热量导出并在发电系统3中进行发电。而换热后的集热介质又经集热介质除尘装置9处理后进入集热介质循环装置10,其将集热介质输送至吸热器100上游的集热介质储存装置11,再通过管道重新回到吸热器入口6,进行下一轮的吸热过程,如此循环运行。
以下简要说明本发明的太阳能集热系统的工作过程。
如图1和6所示,经聚光设备收集的辐射能流投射到吸热器100,辐射能流被密集陶瓷颗粒流吸收。吸热器中的密集陶瓷颗粒流在重力的驱动下以竖直的或者以倾斜的角度从通道孔道流下,由于通道倾斜角度或漏斗口开口大小的作用,使得密集陶瓷颗粒能够以可控的流速通过通道,进而确保集热 介质能够充分的吸热/传热。通道部件的多孔结构以及陶瓷颗粒较小的尺寸有利于更高效的传热。吸热后的陶瓷颗粒从孔道中流入通道底部与之连接的收集装置,并进入下游的换热器,将热量导出用于发电。换热结束后的集热介质进入下游的集热介质除尘装置进行筛选除尘的处理,处理完成后的集热介质通过集热介质循环装置被运送至吸热器上游的储存装置,并重新进入集热系统。其中集热介质除尘装置也可作为集热介质的储存装置使用。
根据本发明所提供的太阳能吸热器和太阳能集热系统,其结构简单,最大限度地实现不同条件下辐射能流的高效吸收,显著提高集热效率。此外,由于没有内插的部件,从而避免了内插部件疲劳和磨损的问题。陶瓷颗粒流动状态及流动速度可以由通道部件的倾斜角度以及收集装置出口的大小来控制,同时避免了装置堵塞。
根据本发明的又一方面,其提供一种太阳能发电系统其包括:前述的太阳能集热系统。
根据本发明的实施方式,如图6所示,太阳能发电系统还包括:聚光系统1,所述聚光系统1设置成将太阳光4会聚至所述太阳能集热系统2;发电系统3,所述太阳能集热系统2将热量导入到所述发电系统3以进行发电。
在本发明的实施方式中,聚光系统1可以由反射镜阵列组成,根据需要可以选用塔式、蝶式或槽式聚光器。如图5所示,其示出了槽式聚光器17。当然,上述聚光系统的设置仅仅是举例不是对本发明的限定,本领域技术人员也可以采用其他形式的聚光系统。
另外,发电系统可以采用蒸气为工作介质,例如:水蒸气、超临界水、超超临界水、或超临界二氧化碳等。
本发明中,其采用了陶瓷颗粒作为集热介质,并且提供了简化结构的吸热器,上述改进提供了集热效率以及换热效率。而包括上述吸热器的发电系统的发电效率以及运行稳定性都显著改善。
尽管对本发明的实施例进行了展示和描述,但本领域技术人员将会理解在不偏离本发明的原理和实质的情况下,可对这些实施例进行改变,其范围也落入本发明的权利要求及其等同物所限定的范围内。

Claims (13)

  1. 一种太阳能吸热器,包括:
    入口,集热介质从所述入口进入太阳能吸热器;
    通道部件,所述通道部件设置成与所述入口流体连接,使得集热介质通过入口进入到所述通道部件;
    收集部件,所述收集部件设置成与所述通道部件流体连接,使得集热介质经由所述通道部件进入到所述收集部件。
  2. 根据权利要求1所述的太阳能吸热器,其中所述集热介质为陶瓷颗粒流。
  3. 根据权利要求2所述的太阳能吸热器,其中所述陶瓷颗粒流中的陶瓷颗粒的密堆率为0.5-0.7。
  4. 根据权利要求2所述的太阳能吸热器,其中所述陶瓷颗粒流中的陶瓷颗粒的直径为O.1mm至6mm。
  5. 根据权利要求2所述的太阳能吸热器,其中所述陶瓷颗粒流中的陶瓷颗粒的材料选自碳化物陶瓷、氮化物陶瓷或者氧化物陶瓷之一或者几种混合物。
  6. 根据权利要求2所述的太阳能吸热器,其中,所述陶瓷颗粒流的流速为0.1~2米/秒。
  7. 根据权利要求1所述的太阳能吸热器,其中所述通道部件包括:
    多个通道单元,每个通道单元包括孔道以及包围孔道的基体,所述集热介质在所述孔道内流动;
    外层部,所述外层部将所述通道单元固定成一体。
  8. 根据权利要求7所述的太阳能吸热器,其中所述通道单元的外形为棱柱体或者斜槽。
  9. 根据权利要求1所述的太阳能吸热器,其中所述收集部件为漏斗形。
  10. 一种太阳能集热系统,其包括:
    权利要求1所述的太阳能吸热器。
  11. 根据权利要求10所述的太阳能集热系统,还包括:
    集热介质储存装置,在集热介质流动方向上,其设置在所述太阳能吸热器的上游,并与所述太阳能吸热器通过管路连通,使得所述集热介质从所述集热介质储存装置流动到所述太阳能吸热器内;
    换热器,在集热介质流动方向上,其设置在所述太阳能吸热器的下游,并与所述太阳能吸热器通过管路连通,其设置成将集热介质吸收的热量导出;
    集热介质除尘装置,在集热介质流动方向上,其设置在所述换热器的下游,并与所述换热器通过管路连通,其设置成对进入其内的集热介质进行除尘;
    集热介质循环装置,在集热介质流动方向上,其设置在集热介质除尘装置的下游,并与所述集热介质除尘装置通过管路连通,其设置成将来自集热介质除尘装置的集热介质输送至所述集热介质储存装置内。
  12. 一种太阳能发电系统,其包括:
    权利要求10所述的太阳能集热系统。
  13. 根据权利要求12所述的太阳能发电系统,还包括:
    聚光系统,所述聚光系统设置成将太阳光会聚至所述太阳能集热系统;
    发电系统,所述太阳能集热系统将热量导入到所述发电系统以进行发电。
PCT/CN2016/112040 2016-12-26 2016-12-26 太阳能吸热器、太阳能集热系统及太阳能发电系统 WO2018119556A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2016/112040 WO2018119556A1 (zh) 2016-12-26 2016-12-26 太阳能吸热器、太阳能集热系统及太阳能发电系统
US16/473,464 US11193695B2 (en) 2016-12-26 2016-12-26 Solar heat absorber, solar heat collecting system and solar power generation system with ceramic particles
EP16925632.8A EP3561409B1 (en) 2016-12-26 2016-12-26 Solar energy heat absorption device, solar energy heat collection system and solar energy power generation system
HUE16925632A HUE056103T2 (hu) 2016-12-26 2016-12-26 Napkollektor, napkollektor-összeállítás, valamint napenergiás energiafejlesztõ eszköz

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/112040 WO2018119556A1 (zh) 2016-12-26 2016-12-26 太阳能吸热器、太阳能集热系统及太阳能发电系统

Publications (1)

Publication Number Publication Date
WO2018119556A1 true WO2018119556A1 (zh) 2018-07-05

Family

ID=62706680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112040 WO2018119556A1 (zh) 2016-12-26 2016-12-26 太阳能吸热器、太阳能集热系统及太阳能发电系统

Country Status (4)

Country Link
US (1) US11193695B2 (zh)
EP (1) EP3561409B1 (zh)
HU (1) HUE056103T2 (zh)
WO (1) WO2018119556A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113323828B (zh) * 2021-06-11 2024-05-07 西安热工研究院有限公司 一种高效颗粒储热综合利用系统及方法
CN113390190B (zh) * 2021-07-14 2022-06-21 吉林建筑大学 一种二次反射式颗粒吸热器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3862485B2 (ja) * 2000-08-02 2006-12-27 独立行政法人科学技術振興機構 多孔質セラミックス球体層を集熱通気層とする空気式太陽集熱器
CN103148596A (zh) * 2011-12-06 2013-06-12 陕西科林能源发展股份有限公司 利用热管的太阳能集热装置
CN105318562A (zh) * 2015-02-07 2016-02-10 成都奥能普科技有限公司 固体粒块塔式太阳能光热转换器
CN105318577A (zh) * 2015-02-07 2016-02-10 成都奥能普科技有限公司 固体粒块塔式太阳能流态化驱动换热传热系统
CN106524541A (zh) * 2016-12-26 2017-03-22 中国科学院近代物理研究所 太阳能吸热器、太阳能集热系统及太阳能发电系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101122422B (zh) * 2007-05-10 2010-12-08 中国科学院电工研究所 用于太阳能塔式热发电的流化床高温吸热器及其“吸热-储热”双流化床系统
WO2010045130A2 (en) * 2008-10-13 2010-04-22 Saint-Gobain Ceramics & Plastics, Inc. System and process for using solar radiation to produce electricity
CN101634490B (zh) * 2009-08-04 2010-12-01 中国科学院电工研究所 太阳能热发电用固体球流吸热器
FR2966567B1 (fr) * 2010-10-20 2014-11-14 Centre Nat Rech Scient Dispositif collecteur d'energie solaire
JP5743485B2 (ja) * 2010-10-25 2015-07-01 イビデン株式会社 集熱レシーバー及び太陽熱発電装置
US20130228163A1 (en) * 2012-03-01 2013-09-05 David Wait Thermal transfer apparatus and method therefor
JP2014184961A (ja) 2013-03-21 2014-10-02 Toshiba Corp 粒子の充填方法及び粒子の充填装置
CN103216952B (zh) * 2013-04-15 2015-02-11 中国科学院电工研究所 太阳能热发电用内循环式固体颗粒空气吸热器
US9857100B2 (en) * 2013-05-17 2018-01-02 Tyk Corporation Heat collector for solar thermal power generation
DE102014106320B4 (de) * 2014-05-06 2020-10-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Solarstrahlungsempfängervorrichtung
CN105318579A (zh) * 2015-02-07 2016-02-10 成都奥能普科技有限公司 固体粒块塔式太阳能脉动驱动换热传热系统
US10508834B1 (en) * 2015-04-09 2019-12-17 National Technology & Engineering Solutions Of Sandia, Llc Falling particle solar receivers
US10107523B2 (en) * 2015-12-07 2018-10-23 Carbo Ceramics Inc. Ceramic particles for use in a solar power tower

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3862485B2 (ja) * 2000-08-02 2006-12-27 独立行政法人科学技術振興機構 多孔質セラミックス球体層を集熱通気層とする空気式太陽集熱器
CN103148596A (zh) * 2011-12-06 2013-06-12 陕西科林能源发展股份有限公司 利用热管的太阳能集热装置
CN105318562A (zh) * 2015-02-07 2016-02-10 成都奥能普科技有限公司 固体粒块塔式太阳能光热转换器
CN105318577A (zh) * 2015-02-07 2016-02-10 成都奥能普科技有限公司 固体粒块塔式太阳能流态化驱动换热传热系统
CN106524541A (zh) * 2016-12-26 2017-03-22 中国科学院近代物理研究所 太阳能吸热器、太阳能集热系统及太阳能发电系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3561409A4 *

Also Published As

Publication number Publication date
EP3561409A4 (en) 2020-06-03
US20200149782A1 (en) 2020-05-14
EP3561409B1 (en) 2021-07-21
EP3561409A1 (en) 2019-10-30
US11193695B2 (en) 2021-12-07
HUE056103T2 (hu) 2022-01-28

Similar Documents

Publication Publication Date Title
CN113108482A (zh) 太阳能吸热器、太阳能集热系统及太阳能发电系统
CN108458506B (zh) 一种太阳能热发电用固体颗粒吸热器
Liu et al. Experimental analysis of a portable atmospheric water generator by thermoelectric cooling method
Chang et al. Simulation study of transfer characteristics for spacer-filled membrane distillation desalination modules
JP6165743B2 (ja) 太陽光を利用した集熱蓄熱装置
CN108592419B (zh) 一种太阳能热发电用延缓下落式固体颗粒吸热器
TW201207330A (en) Storing and transport device and system with high efficiency
KR20140008290A (ko) 태양열 발전 설비를 위한 고온-열 저장기
WO2018119556A1 (zh) 太阳能吸热器、太阳能集热系统及太阳能发电系统
CN104214061B (zh) 一种太阳能热动力系统
Bai et al. Thermal performance of a quartz tube solid particle air receiver
CN111351236A (zh) 光热发电系统
US10281160B2 (en) Methods for meeting localized peak loads in buildings and urban centers
Zhang et al. Experimental study of a single quartz tube solid particle air receiver
CN206478878U (zh) 太阳能吸热器、太阳能集热系统及太阳能发电系统
CN109915906B (zh) 根据旁通管温度智能控制太阳能集热器系统
CN109798794B (zh) 带汽水分离的超长重力热管地热开采装置
CN104307290B (zh) 肥料尾气除尘装置
CN205825595U (zh) 流化床干燥装置
CN210119024U (zh) 太阳能接收器
CN109915907B (zh) 一种智能控制太阳能集热器
CN204073769U (zh) 肥料尾气除尘装置
CN106052308B (zh) 一种利用汽机乏汽的干燥系统以及干燥方法
CN205590298U (zh) 一种碳纳米管制备装置
CN207035522U (zh) 一种基于流动固体颗粒的太阳能高温空气吸热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016925632

Country of ref document: EP

Effective date: 20190726