WO2018117596A1 - Polyolefin and manufacturing method thereof - Google Patents

Polyolefin and manufacturing method thereof Download PDF

Info

Publication number
WO2018117596A1
WO2018117596A1 PCT/KR2017/015021 KR2017015021W WO2018117596A1 WO 2018117596 A1 WO2018117596 A1 WO 2018117596A1 KR 2017015021 W KR2017015021 W KR 2017015021W WO 2018117596 A1 WO2018117596 A1 WO 2018117596A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
alkyl
aryl
formula
Prior art date
Application number
PCT/KR2017/015021
Other languages
French (fr)
Korean (ko)
Inventor
전성해
윤성철
장준호
박나영
이현승
Original Assignee
한화케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화케미칼 주식회사 filed Critical 한화케미칼 주식회사
Publication of WO2018117596A1 publication Critical patent/WO2018117596A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/18Bulk density

Definitions

  • the present invention relates to a polyolefin and a method for producing the same.
  • Metallocene catalyst one of the catalysts used to polymerize olefins, is a compound in which ligands such as cyclopentadienyl group, indenyl group, and cycloheptadienyl group are bonded to a transition metal or transition metal halogen compound in a basic form.
  • Olefin copolymers polymerized using such metallocene catalysts are known to have a narrower molecular weight distribution as well as a constant comonomer distribution as compared to copolymers polymerized with conventional Ziegler-Natta catalysts.
  • the olefin content of ethylene / alpha-olefin copolymers and their distribution are one of the most important structural parameters because they affect the crystallization process and morphology, the structure and physical properties in the solid state.
  • the number average lengths (nO, nE) of the monomers, one of the major indices of the microchain structure of the copolymer, can be calculated from the following formula, Seger's method (Anal. Chem. 2004, 76, 5734-5747).
  • nO is the number average comonomer (alpha-olefin) length and the average number of comonomers repeated without the monomer (ethylene) intervening
  • nE is the number average monomer (ethylene) length and conversely the comonomer (alpha-olefin) It is the average number of monomers (ethylene) repeated without lifting.
  • EOE is the mole% of the ethylene (monomer) -octene (comonomer) -ethylene (monomer) block of the copolymer chain
  • EOO is the ethylene (monomer) -octene (comonomer) -octene (comonomer) block of the copolymer chain Mole%
  • OOO is the mole% of the octene (comonomer) -octene (comonomer) -octene (comonomer) block of the copolymer chain
  • EEE is the ethylene (monomer) -ethylene (monomer) -ethylene (monomer) of the copolymer chain ) Mole% of the block
  • EEO is the mole% of the ethylene (monomer) -ethylene (monomer) -octene (comonomer) block of the copolymer chain
  • OEO is the octene (comonomer)
  • the number average length nO of the comonomer is a measure of how continuously the comonomer is present, it can be seen that in the copolymer having the same comonomer content, the smaller the nO, the more uniform the comonomer distribution. In general, as the comonomer is uniformly distributed throughout the chain, the melting temperature of the copolymer is lowered. Thus, even when the copolymer has the same comonomer content, the melting temperature is lower as the number average length nO of the comonomer is smaller.
  • the copolymer may exhibit a heat sealing effect at a lower temperature as the melting temperature is lower, the heat sealing effect may be exerted at different temperatures even if the comonomer content is the same as described above.
  • the problem to be solved by the present invention is to provide a polyolefin that can exhibit a heat-sealing effect at a lower temperature than conventional polyolefin having the same density and comonomer content because the distribution of the comonomer is uniform and the melting temperature is low.
  • Polyolefin according to an embodiment of the present invention for solving the above problems is formed by copolymerizing an olefin monomer and a comonomer, and satisfies the characteristics of the following (1) to (3).
  • At least one of the olefin monomer and the comonomer may include an alpha-olefin.
  • the olefinic monomer and the comonomer may be ethylene and 1-octene, respectively.
  • the polyolefin may be formed by copolymerization under an olefin polymerization catalyst including a transition metal compound represented by Chemical Formula B1.
  • n is 1 to 4
  • X1 and X2 are each independently halogen, C1-20 alkyl, C2-20 alkenyl, C2-20 alkynyl, C6-20 aryl, C1-20 alkyl C6-20 Aryl, C6-20 aryl C1-20 alkyl, C1-20 alkylamido, C6-20 arylamido or C1-20 alkylidene
  • R1 to R12 are each independently hydrogen, substituted or unsubstituted C1-20 alkyl , Substituted or unsubstituted C2-20 alkenyl, substituted or unsubstituted C6-20 aryl, substituted or unsubstituted C1-20 alkyl C6-20 aryl, substituted or unsubstituted C6-20 aryl C1-20 alkyl, Substituted or unsubstituted C1-20 heteroalkyl, substituted or unsubstituted C3-20 heteroaryl, or substituted or un
  • Formula B1 may be the following Formula B2.
  • R1 and R2 are each independently hydrogen or methyl
  • R3 is hydrogen, C1-20 alkyl, C6-20 aryl, C1-20 alkyl C6-20 aryl, C6-20 aryl C1-20 alkyl, C1 -20 alkylamido, C6-20 arylamido, C1-20 heteroalkyl or C3-20 heteroaryl
  • R4 to R10 are hydrogen
  • R13 to R15 are each independently hydrogen, substituted or unsubstituted C1-20 Alkyl, substituted or unsubstituted C2-20 alkenyl, substituted or unsubstituted C6-20 aryl, substituted or unsubstituted C1-20 alkyl C6-20 aryl, substituted or unsubstituted C6-20 aryl C1-20 alkyl , Substituted or unsubstituted C1-20 heteroalkyl, substituted or unsubstituted C3-20 heteroaryl, or substituted or unsubstituted
  • Formula B1 may be one of Formulas 57 to 112.
  • Method for producing a polyolefin according to an embodiment of the present invention for solving the other problem is to form a polyolefin by copolymerizing an olefin monomer and a comonomer under an olefin polymerization catalyst containing a transition metal compound represented by the formula (B1) Steps.
  • n is 1 to 4
  • X1 and X2 are each independently halogen, C1-20 alkyl, C2-20 alkenyl, C2-20 alkynyl, C6-20 aryl, C1-20 alkyl C6-20 Aryl, C6-20 aryl C1-20 alkyl, C1-20 alkylamido, C6-20 arylamido or C1-20 alkylidene
  • R1 to R12 are each independently hydrogen, substituted or unsubstituted C1-20 alkyl , Substituted or unsubstituted C2-20 alkenyl, substituted or unsubstituted C6-20 aryl, substituted or unsubstituted C1-20 alkyl C6-20 aryl, substituted or unsubstituted C6-20 aryl C1-20 alkyl, Substituted or unsubstituted C1-20 heteroalkyl, substituted or unsubstituted C3-20 heteroaryl, or substituted or un
  • the polyolefin may satisfy the following properties (1) to (3).
  • the olefinic monomer and the comonomer may be ethylene and 1-octene, respectively.
  • the polyolefin of the present invention is produced using an olefin polymerization catalyst containing a transition metal compound, so that the distribution of comonomers is uniform and the melting temperature is low, so that the heat sealing effect at a lower temperature than conventional polyolefins having the same density and comonomer content Can be represented.
  • 1 is a schematic view showing a process for synthesizing an ethylene / 1-octene copolymer.
  • CA-B means "carbon number A or more and B or less”
  • a to B means “A or more and B or less”
  • substituted or unsubstituted means that at least one hydrogen of the hydrocarbon compound or hydrocarbon derivative is halogen, C1-20 alkyl, C2-20 alkenyl, C2-20 alkynyl, C6-20 aryl, C1-20 alkyl C6- Substituted with 20 aryl, C6-20 aryl C1-20 alkyl, C1-20 alkylamido, C6-20 arylamido or C1-20 alkylidene, and "unsubstituted” means "hydrocarbon compound or hydrocarbon" At least one hydrogen of the derivative is halogen, C1-20 alkyl, C2-20 alkenyl, C2-20 alkynyl, C6-20 aryl, C1-20 alkyl C6-20 aryl, C6-20 aryl
  • Polyolefin according to an embodiment of the present invention is a copolymer formed by polymerizing an olefin monomer and a comonomer, and has the following characteristics.
  • the polyolefin having such characteristics exhibits a uniform comonomer distribution and a low melting temperature, etc., compared to the conventional polyolefin having the same density and comonomer content, it may exhibit a heat sealing effect at a lower temperature.
  • Olefin monomers and comonomers consist of C2-20 alpha-olefins, C1-20 diolefins, C3-20 cycloolefins, and C3-20 cyclodiolefins. It may include one or more selected from the group.
  • the olefinic monomers and comonomers are propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1 Alpha-olefins comprising at least one selected from the group consisting of dodecene, 1-tetradecene and 1-hexadecene.
  • the polyolefin may be a copolymer in which ethylene, an olefinic monomer, is copolymerized with 1-octene, which is a comonomer, in which case the number average comonomer length may be a number average 1-octene length.
  • the polyolefin may be polymerized by polymerization such as free radicals, cationics, coordination, condensation, addition, and the like.
  • the polyolefin may be prepared by gas phase polymerization, solution polymerization or slurry polymerization.
  • solvents that can be used when the polyolefin is prepared by solution polymerization or slurry polymerization include C5-12 aliphatic hydrocarbon solvents such as pentane, hexane, heptane, nonane, decane and isomers thereof; Aromatic hydrocarbon solvents such as toluene, benzene; Hydrocarbon solvents substituted with chlorine atoms such as dichloromethane and chlorobenzene; Although mixtures of these, etc. are mentioned, It is not limited only to these.
  • the polyolefin may be polymerized under an olefin polymerization catalyst including a transition metal compound for an olefin polymerization catalyst represented by the following formula B1.
  • the transition metal compound for the olefin polymerization catalyst may be prepared from a transition metal compound precursor for the olefin polymerization catalyst represented by the general formula (A1).
  • n may be 1 to 4, and R1 to R12 are each independently hydrogen, substituted or unsubstituted C1-20 alkyl, substituted or unsubstituted C2-20 alkenyl, substituted or unsubstituted C6 -20 aryl, substituted or unsubstituted C1-20 alkyl C6-20 aryl, substituted or unsubstituted C6-20 aryl C1-20 alkyl, substituted or unsubstituted C1-20 heteroalkyl, substituted or unsubstituted C3- 20 heteroaryl, or substituted or unsubstituted C1-20 silyl.
  • R11 and R12 may be connected to each other to form a substituted or unsubstituted C5-20 heterocycle including nitrogen (N).
  • n is 1 to 4
  • X1 and X2 are each independently halogen, C1-20 alkyl, C2-20 alkenyl, C2-20 alkynyl, C6-20 aryl, C1-20 alkyl C6-20 Aryl, C6-20 aryl C1-20 alkyl, C1-20 alkylamido, C6-20 arylamido or C1-20 alkylidene
  • R1 to R12 are each independently hydrogen, substituted or unsubstituted C1-20 alkyl , Substituted or unsubstituted C2-20 alkenyl, substituted or unsubstituted C6-20 aryl, substituted or unsubstituted C1-20 alkyl C6-20 aryl, substituted or unsubstituted C6-20 aryl C1-20 alkyl, Substituted or unsubstituted C1-20 heteroalkyl, substituted or unsubstituted C3-20 heteroaryl, or substituted or un
  • transition metal compound precursor for the olefin polymerization catalyst may be represented by the following Chemical Formula A2.
  • R1 and R2 are each independently hydrogen or methyl
  • R3 is hydrogen, C1-20 alkyl, C6-20 aryl, C1-20 alkyl C6-20 aryl, C6-20 aryl C1-20 alkyl, C1 -20 alkylamido, C6-20 arylamido, C1-20 heteroalkyl or C3-20 heteroaryl
  • R4 to R10 are hydrogen
  • R13 to R15 are each independently hydrogen, substituted or unsubstituted C1-20 Alkyl, substituted or unsubstituted C2-20 alkenyl, substituted or unsubstituted C6-20 aryl, substituted or unsubstituted C1-20 alkyl C6-20 aryl, substituted or unsubstituted C6-20 aryl C1-20 alkyl , Substituted or unsubstituted C1-20 heteroalkyl, substituted or unsubstituted C3-20 heteroaryl, or substituted or unsubstituted
  • the transition metal compound precursor for the olefin polymerization catalyst may be at least one of the following Chemical Formulas 1 to 56.
  • the transition metal compound for the olefin polymerization catalyst may be specifically represented by the following general formula (B2).
  • R1 and R2 are each independently hydrogen or methyl
  • R3 is hydrogen, C1-20 alkyl, C6-20 aryl, C1-20 alkyl C6-20 aryl, C6-20 aryl C1-20 alkyl, C1 -20 alkylamido, C6-20 arylamido, C1-20 heteroalkyl or C3-20 heteroaryl
  • R4 to R10 are hydrogen
  • R13 to R15 are each independently hydrogen, substituted or unsubstituted C1-20 Alkyl, substituted or unsubstituted C2-20 alkenyl, substituted or unsubstituted C6-20 aryl, substituted or unsubstituted C1-20 alkyl C6-20 aryl, substituted or unsubstituted C6-20 aryl C1-20 alkyl , Substituted or unsubstituted C1-20 heteroalkyl, substituted or unsubstituted C3-20 heteroaryl, or substituted or unsubstituted
  • X1 and X2 are each independently halogen or C1-20 alkyl
  • M may be titanium (Ti), zirconium (Zr) or hafnium (Hf).
  • the transition metal compound for the olefin polymerization catalyst may be at least one of the formulas (57) to (112).
  • the olefin polymerization catalyst described above may further include a cocatalyst compound together with a transition metal compound for the olefin polymerization catalyst.
  • the cocatalyst compound may include one or more of a compound represented by Formula A, a compound represented by Formula B, and a compound represented by Formula C.
  • n is an integer of 2 or more
  • Ra may be a halogen atom, a C1-20 hydrocarbon group, or a C1-20 hydrocarbon group substituted with halogen.
  • Ra may be methyl, ethyl, n-butyl or isobutyl, but is not limited thereto.
  • D is aluminum (Al) or boron (B), and Rb, Rc and Rd are each independently a halogen atom, a C1-20 hydrocarbon group, a C1-20 hydrocarbon group substituted with halogen or a C1-20 alkoxy group Can be.
  • Rb, Rc, and Rd may be independently methyl or isobutyl
  • D is boron
  • Rb, Rc, and Rd may be pentafluorophenyl, respectively. It is not limited.
  • L is a neutral or cationic Lewis base
  • [LH] + or [L] + is Bronsted acid
  • Z is a Group 13 element
  • A is each independently substituted or unsubstituted C6-20. It may be an aryl group or a substituted or unsubstituted C1-20 alkyl group.
  • [LH] + may be a dimethylanilinium cation
  • [Z (A) 4 ] ⁇ may be [B (C 6 F 5 ) 4 ] ⁇
  • [L] + is [( C 6 H 5 ) 3 C] + , but is not limited thereto.
  • the olefin polymerization catalyst may further include a carrier.
  • the carrier is not particularly limited as long as it can support the transition metal compound and the promoter compound for the olefin polymerization catalyst.
  • the carrier can be carbon, silica, alumina, zeolite, magnesium chloride, or the like.
  • a physical adsorption method or a chemical adsorption method may be used as a method of supporting the transition metal compound and the promoter compound for the olefin polymerization catalyst on the carrier.
  • the physical adsorption method is a method in which a solution containing a transition metal compound for an olefin polymerization catalyst is contacted with a carrier and dried, and a solution in which the transition metal compound and a promoter compound for an olefin polymerization catalyst is dissolved is contacted with a carrier.
  • a method of drying and a solution in which a transition metal compound for an olefin polymerization catalyst is dissolved in contact with a carrier followed by drying to prepare a carrier in which the transition metal compound for an olefin polymerization catalyst is supported, and separately a solution in which a promoter compound is dissolved. After contacting the carrier and dried to prepare a carrier on which the cocatalyst compound is loaded, and the like may be mixed.
  • the chemical adsorption method first supports a promoter compound on the surface of the carrier, and then a transition metal compound for the olefin polymerization catalyst on the promoter compound, or a functional group (eg, In the case of silica, it may be a method of covalently bonding a hydroxyl group (-OH)) and a catalyst compound on the surface of silica.
  • a transition metal compound for the olefin polymerization catalyst on the promoter compound, or a functional group (eg, In the case of silica, it may be a method of covalently bonding a hydroxyl group (-OH)) and a catalyst compound on the surface of silica.
  • the sum of the supported amount of the main catalyst compound including the transition metal compound may be 0.001 mmol to 1 mmol based on 1 g of the carrier, and the supported amount of the promoter catalyst may be 2 mmol to 15 mmol based on 1 g of the carrier.
  • Such a carrier does not necessarily have to be included and can be appropriately selected depending on necessity.
  • Ethylene and 1-octene were copolymerized using an olefin polymerization catalyst including the transition metal compound synthesized in Preparation Example 1, and polymerization conditions were changed as shown in Table 1 below for each Preparation Example.
  • the compound of formula 74 synthesized in Preparation Example 1 [1- (1,2,3,4-tetrahydroquinolin-8-yl) -2-methyl-4-phenyl-2,3,6, 7-tetrahydro-s-indasenyl] dimethyl titanium was dissolved in an amount of hexane solvent and treated with triisobutylaluminum, followed by copolymerization of ethylene and 1-octene under a continuous solution process.
  • a hexane solvent (1), 1-octene (2) and a scavenger as shown in FIG.
  • Differential scanning calorimeter (DSC: Differential Scanning Calorimeter 2920) manufactured by TA was used for the measurement. Specifically, the temperature was increased to 200 ° C., then maintained at that temperature for 5 minutes, then lowered to 30 ° C., and the temperature increased again to bring the top of the DSC curve to the melting temperature. At this time, the rate of temperature rise and fall was 10 ° C./min, and the melting temperature was obtained while the second temperature was rising.
  • the ethylene / 1-octene copolymers of Preparation Examples 2 to 4 have a lower melting temperature (T m ) than the ethylene / 1-octene copolymers of Comparative Examples 1, 4 and 5 having the same density. And it can be confirmed that the degree of crystallinity is significantly low.
  • the ethylene / 1-octene copolymer of the preparation example had a number average 1-octene length (n0) of 1.03 to 1.07, whereas the ethylene / 1-octene copolymer of the comparative example was 1.13 or more. It can be seen that the copolymer was more uniformly distributed in 1-octene than the ethylene / 1-octene copolymer of the comparative example.
  • the polyolefin of the present invention can be exhibited at a significantly lower temperature than the conventional polyolefin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

A polyolefin and a manufacturing method thereof are provided. The polyolefin is formed by copolymerization of an olefin-based monomer and a comonomer, and satisfies the following characteristics (1) to (3): (1) a melting temperature (Tm) of 20 to 100 °C; (2) a number average comonomer length (n0) of 1.0 to 1.1; and (3) a relation between melt temperature (Tm, °C) and density (a.g/㎤) of 1598.7a-1333.2 > Tm > 1796.3a-1513.4.

Description

폴리올레핀 및 그 제조 방법Polyolefins and Methods for Making the Same
본 발명은 폴리올레핀 및 그 제조 방법에 관한 것이다.The present invention relates to a polyolefin and a method for producing the same.
올레핀을 중합하는데 이용되는 촉매의 하나인 메탈로센 촉매는 전이금속 또는 전이금속 할로겐 화합물에 사이클로펜타디에닐기, 인데닐기, 사이클로헵타디에닐기 등의 리간드가 배위 결합된 화합물로서 샌드위치 구조를 기본적인 형태로 갖는다. Metallocene catalyst, one of the catalysts used to polymerize olefins, is a compound in which ligands such as cyclopentadienyl group, indenyl group, and cycloheptadienyl group are bonded to a transition metal or transition metal halogen compound in a basic form. Have
이와 같은 메탈로센 촉매를 사용하여 중합된 올레핀 공중합체는 종래의 지글러-나타 촉매에 의해 중합된 공중합체에 비해 분자량 분포가 좁을 뿐만 아니라, 일정한 공단량체 분포를 갖는다고 알려져 있다. 특히, 에틸렌/알파-올레핀 공중합체의 올레핀 함량과 그 분포는 결정화 과정과 형태(morphology), 고체 상태에서의 구조 그리고 물리적 성질에 영향을 주기 때문에 가장 중요한 구조적 파라미터 중 하나이다.Olefin copolymers polymerized using such metallocene catalysts are known to have a narrower molecular weight distribution as well as a constant comonomer distribution as compared to copolymers polymerized with conventional Ziegler-Natta catalysts. In particular, the olefin content of ethylene / alpha-olefin copolymers and their distribution are one of the most important structural parameters because they affect the crystallization process and morphology, the structure and physical properties in the solid state.
공중합체의 미세사슬구조를 나타내는 주요한 지표들 중 하나인 단량체의 수평균 길이(nO, nE)는 Seger의 방법인 하기 식으로부터 계산될 수 있다(Anal. Chem. 2004, 76, 5734-5747).The number average lengths (nO, nE) of the monomers, one of the major indices of the microchain structure of the copolymer, can be calculated from the following formula, Seger's method (Anal. Chem. 2004, 76, 5734-5747).
Figure PCTKR2017015021-appb-I000001
Figure PCTKR2017015021-appb-I000001
nO는 수평균 공단량체(알파-올레핀) 길이로서 단량체(에틸렌)가 끼어들지 않고 반복되는 공단량체의 평균 개수이고, nE는 수평균 단량체(에틸렌) 길이로서 반대로 공단량체(알파-올레핀)가 끼어들지 않고 반복되는 단량체(에틸렌)의 평균 개수이다. EOE는 공중합체 사슬의 에틸렌(단량체)-옥텐(공단량체)-에틸렌(단량체) 블록의 몰%, EOO는 공중합체 사슬의 에틸렌(단량체)-옥텐(공단량체)-옥텐(공단량체) 블록의 몰%, OOO는 공중합체 사슬의 옥텐(공단량체)-옥텐(공단량체)-옥텐(공단량체) 블록의 몰%, EEE는 공중합체 사슬의 에틸렌(단량체)-에틸렌(단량체)-에틸렌(단량체) 블록의 몰%, EEO는 공중합체 사슬의 에틸렌(단량체)-에틸렌(단량체)-옥텐(공단량체) 블록의 몰%, OEO는 공중합체 사슬의 옥텐(공단량체)-에틸렌(단량체)-옥텐(공단량체) 블록의 몰%를 나타낸다. 상기 식의 각각의 3원소 연속 몰분율(Triad sequence mole fraction)은 Randall의 방법(Macromol Sci, Part C: Polymer Reviews, 1989, 29, 2-3)을 이용하여 계산할 수 있다. nO is the number average comonomer (alpha-olefin) length and the average number of comonomers repeated without the monomer (ethylene) intervening, nE is the number average monomer (ethylene) length and conversely the comonomer (alpha-olefin) It is the average number of monomers (ethylene) repeated without lifting. EOE is the mole% of the ethylene (monomer) -octene (comonomer) -ethylene (monomer) block of the copolymer chain, EOO is the ethylene (monomer) -octene (comonomer) -octene (comonomer) block of the copolymer chain Mole%, OOO is the mole% of the octene (comonomer) -octene (comonomer) -octene (comonomer) block of the copolymer chain, EEE is the ethylene (monomer) -ethylene (monomer) -ethylene (monomer) of the copolymer chain ) Mole% of the block, EEO is the mole% of the ethylene (monomer) -ethylene (monomer) -octene (comonomer) block of the copolymer chain, OEO is the octene (comonomer) -ethylene (monomer) -octene of the copolymer chain The mole percentage of the (comonomer) block. Each tri-element sequence sequence mole fraction of the above formula can be calculated using Randall's method (Macromol Sci, Part C: Polymer Reviews, 1989, 29, 2-3).
공단량체의 수평균 길이 nO는 공단량체가 연속적으로 얼마나 존재하는가에 대한 척도이므로, 공단량체 함량이 동일한 공중합체에서는 nO가 작을수록 공단량체의 분포가 균일하다고 볼 수 있다. 통상적으로 공단량체가 사슬 전체에 균일하게 분포할수록 공중합체의 용융온도가 낮아지기 때문에, 공단량체 함량이 동일한 공중합체라도 공단량체의 수평균 길이 nO가 작을수록 용융온도가 낮아지는 특성을 나타내게 된다.Since the number average length nO of the comonomer is a measure of how continuously the comonomer is present, it can be seen that in the copolymer having the same comonomer content, the smaller the nO, the more uniform the comonomer distribution. In general, as the comonomer is uniformly distributed throughout the chain, the melting temperature of the copolymer is lowered. Thus, even when the copolymer has the same comonomer content, the melting temperature is lower as the number average length nO of the comonomer is smaller.
한편, 공중합체는 용융온도가 낮을수록 보다 낮은 온도에서 열봉합 효과를 나타낼 수 있기 때문에, 상술한 것처럼 공단량체 함량이 동일하더라도 서로 다른 온도에서 열봉합 효과가 발휘될 수 있다.On the other hand, since the copolymer may exhibit a heat sealing effect at a lower temperature as the melting temperature is lower, the heat sealing effect may be exerted at different temperatures even if the comonomer content is the same as described above.
본 발명이 해결하고자 하는 과제는 공단량체의 분포가 균일하고 용융온도가 낮기 때문에 동일한 밀도 및 공단량체 함량을 갖는 종래의 폴리올레핀보다 낮은 온도에서 열봉합 효과를 나타낼 수 있는 폴리올레핀을 제공하는 것이다.The problem to be solved by the present invention is to provide a polyolefin that can exhibit a heat-sealing effect at a lower temperature than conventional polyolefin having the same density and comonomer content because the distribution of the comonomer is uniform and the melting temperature is low.
본 발명의 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned technical problem, and other technical problems not mentioned will be clearly understood by those skilled in the art from the following description.
상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 폴리올레핀은 올레핀계 단량체와 공단량체가 공중합되어 형성되며, 하기 (1) 내지 (3)의 특성을 만족한다.Polyolefin according to an embodiment of the present invention for solving the above problems is formed by copolymerizing an olefin monomer and a comonomer, and satisfies the characteristics of the following (1) to (3).
(1) 용융온도(Tm): 20~100℃(1) Melting temperature (T m ): 20 ~ 100 ℃
(2) 수평균 공단량체 길이(n0): 1.0~1.1(2) Number average comonomer length (n 0 ): 1.0 to 1.1
(3) 용융온도(Tm, ℃)와 밀도(a, g/㎤)와의 관계: 1598.7a-1333.2 > Tm > 1796.3a-1513.4(3) Relationship between melting temperature (T m , ° C) and density (a, g / cm 3): 1598.7a-1333.2> T m > 1796.3a-1513.4
상기 올레핀계 단량체와 공단량체 중 적어도 하나는 알파-올레핀을 포함할 수 있다.At least one of the olefin monomer and the comonomer may include an alpha-olefin.
상기 올레핀계 단량체와 공단량체는 각각 에틸렌과 1-옥텐일 수 있다.The olefinic monomer and the comonomer may be ethylene and 1-octene, respectively.
상기 폴리올레핀은 하기 화학식 B1로 표현되는 전이금속 화합물을 포함하는 올레핀 중합 촉매 하에 공중합되어 형성될 수 있다.The polyolefin may be formed by copolymerization under an olefin polymerization catalyst including a transition metal compound represented by Chemical Formula B1.
<화학식 B1><Formula B1>
Figure PCTKR2017015021-appb-I000002
Figure PCTKR2017015021-appb-I000002
상기 화학식 B1에서, n은 1 내지 4이고, X1과 X2는 각각 독립적으로 할로겐, C1-20 알킬, C2-20 알케닐, C2-20 알키닐, C6-20 아릴, C1-20 알킬 C6-20 아릴, C6-20 아릴 C1-20 알킬, C1-20 알킬아미도, C6-20 아릴아미도 또는 C1-20 알킬리덴이며, R1 내지 R12는 각각 독립적으로 수소, 치환 또는 비치환된 C1-20 알킬, 치환 또는 비치환된 C2-20 알케닐, 치환 또는 비치환된 C6-20 아릴, 치환 또는 비치환된 C1-20 알킬 C6-20 아릴, 치환 또는 비치환된 C6-20 아릴 C1-20 알킬, 치환 또는 비치환된 C1-20 헤테로알킬, 치환 또는 비치환된 C3-20 헤테로아릴, 또는 치환 또는 비치환된 C1-20 실릴이고, M은 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)일 수 있다.In Formula B1, n is 1 to 4, X1 and X2 are each independently halogen, C1-20 alkyl, C2-20 alkenyl, C2-20 alkynyl, C6-20 aryl, C1-20 alkyl C6-20 Aryl, C6-20 aryl C1-20 alkyl, C1-20 alkylamido, C6-20 arylamido or C1-20 alkylidene, R1 to R12 are each independently hydrogen, substituted or unsubstituted C1-20 alkyl , Substituted or unsubstituted C2-20 alkenyl, substituted or unsubstituted C6-20 aryl, substituted or unsubstituted C1-20 alkyl C6-20 aryl, substituted or unsubstituted C6-20 aryl C1-20 alkyl, Substituted or unsubstituted C1-20 heteroalkyl, substituted or unsubstituted C3-20 heteroaryl, or substituted or unsubstituted C1-20 silyl, and M is titanium (Ti), zirconium (Zr) or hafnium (Hf) Can be.
상기 화학식 B1은 하기 화학식 B2일 수 있다.Formula B1 may be the following Formula B2.
<화학식 B2><Formula B2>
Figure PCTKR2017015021-appb-I000003
Figure PCTKR2017015021-appb-I000003
상기 화학식 B2에서, R1과 R2는 각각 독립적으로 수소 또는 메틸이고, R3는 수소, C1-20 알킬, C6-20 아릴, C1-20 알킬 C6-20 아릴, C6-20 아릴 C1-20 알킬, C1-20 알킬아미도, C6-20 아릴아미도, C1-20 헤테로알킬 또는 C3-20 헤테로아릴이며, R4 내지 R10는 수소이고, R13 내지 R15는 각각 독립적으로 수소, 치환 또는 비치환된 C1-20 알킬, 치환 또는 비치환된 C2-20 알케닐, 치환 또는 비치환된 C6-20 아릴, 치환 또는 비치환된 C1-20 알킬 C6-20 아릴, 치환 또는 비치환된 C6-20 아릴 C1-20 알킬, 치환 또는 비치환된 C1-20 헤테로알킬, 치환 또는 비치환된 C3-20 헤테로아릴, 또는 치환 또는 비치환된 C1-20 실릴이며, X1과 X2는 각각 독립적으로 할로겐 또는 C1-20 알킬이고, M은 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)일 수 있다.In Formula B2, R1 and R2 are each independently hydrogen or methyl, and R3 is hydrogen, C1-20 alkyl, C6-20 aryl, C1-20 alkyl C6-20 aryl, C6-20 aryl C1-20 alkyl, C1 -20 alkylamido, C6-20 arylamido, C1-20 heteroalkyl or C3-20 heteroaryl, R4 to R10 are hydrogen, R13 to R15 are each independently hydrogen, substituted or unsubstituted C1-20 Alkyl, substituted or unsubstituted C2-20 alkenyl, substituted or unsubstituted C6-20 aryl, substituted or unsubstituted C1-20 alkyl C6-20 aryl, substituted or unsubstituted C6-20 aryl C1-20 alkyl , Substituted or unsubstituted C1-20 heteroalkyl, substituted or unsubstituted C3-20 heteroaryl, or substituted or unsubstituted C1-20 silyl, X1 and X2 are each independently halogen or C1-20 alkyl, M may be titanium (Ti), zirconium (Zr) or hafnium (Hf).
상기 화학식 B1은 하기 화학식 57 내지 112 중 하나일 수 있다.Formula B1 may be one of Formulas 57 to 112.
Figure PCTKR2017015021-appb-I000004
Figure PCTKR2017015021-appb-I000004
Figure PCTKR2017015021-appb-I000005
Figure PCTKR2017015021-appb-I000006
Figure PCTKR2017015021-appb-I000007
Figure PCTKR2017015021-appb-I000005
Figure PCTKR2017015021-appb-I000006
Figure PCTKR2017015021-appb-I000007
상기 다른 과제를 해결하기 위한 본 발명의 일 실시예에 따른 폴리올레핀의 제조 방법은 하기 화학식 B1으로 표현되는 전이금속 화합물을 포함하는 올레핀 중합 촉매 하에, 올레핀계 단량체와 공단량체를 공중합하여 폴리올레핀을 형성하는 단계를 포함한다.Method for producing a polyolefin according to an embodiment of the present invention for solving the other problem is to form a polyolefin by copolymerizing an olefin monomer and a comonomer under an olefin polymerization catalyst containing a transition metal compound represented by the formula (B1) Steps.
<화학식 B1><Formula B1>
Figure PCTKR2017015021-appb-I000008
Figure PCTKR2017015021-appb-I000008
상기 화학식 B1에서, n은 1 내지 4이고, X1과 X2는 각각 독립적으로 할로겐, C1-20 알킬, C2-20 알케닐, C2-20 알키닐, C6-20 아릴, C1-20 알킬 C6-20 아릴, C6-20 아릴 C1-20 알킬, C1-20 알킬아미도, C6-20 아릴아미도 또는 C1-20 알킬리덴이며, R1 내지 R12는 각각 독립적으로 수소, 치환 또는 비치환된 C1-20 알킬, 치환 또는 비치환된 C2-20 알케닐, 치환 또는 비치환된 C6-20 아릴, 치환 또는 비치환된 C1-20 알킬 C6-20 아릴, 치환 또는 비치환된 C6-20 아릴 C1-20 알킬, 치환 또는 비치환된 C1-20 헤테로알킬, 치환 또는 비치환된 C3-20 헤테로아릴, 또는 치환 또는 비치환된 C1-20 실릴이고, M은 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)이다.In Formula B1, n is 1 to 4, X1 and X2 are each independently halogen, C1-20 alkyl, C2-20 alkenyl, C2-20 alkynyl, C6-20 aryl, C1-20 alkyl C6-20 Aryl, C6-20 aryl C1-20 alkyl, C1-20 alkylamido, C6-20 arylamido or C1-20 alkylidene, R1 to R12 are each independently hydrogen, substituted or unsubstituted C1-20 alkyl , Substituted or unsubstituted C2-20 alkenyl, substituted or unsubstituted C6-20 aryl, substituted or unsubstituted C1-20 alkyl C6-20 aryl, substituted or unsubstituted C6-20 aryl C1-20 alkyl, Substituted or unsubstituted C1-20 heteroalkyl, substituted or unsubstituted C3-20 heteroaryl, or substituted or unsubstituted C1-20 silyl, and M is titanium (Ti), zirconium (Zr) or hafnium (Hf) to be.
상기 폴리올레핀은 하기 (1) 내지 (3)의 특성을 만족할 수 있다.The polyolefin may satisfy the following properties (1) to (3).
(1) 용융온도(Tm): 20~100℃(1) Melting temperature (Tm): 20 ~ 100 ℃
(2) 수평균 공단량체 길이(n0): 1.0~1.1(2) Number average comonomer length (n0): 1.0 to 1.1
(3) 용융온도(Tm, ℃)와 밀도(a, g/㎤)와의 관계: 1598.7a-1333.2 > Tm > 1796.3a-1513.4(3) Relationship between melting temperature (Tm, ℃) and density (a, g / cm 3): 1598.7a-1333.2> Tm> 1796.3a-1513.4
상기 올레핀계 단량체와 공단량체는 각각 에틸렌과 1-옥텐일 수 있다.The olefinic monomer and the comonomer may be ethylene and 1-octene, respectively.
기타 실시예의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.Specific details of other embodiments are included in the detailed description and drawings.
본 발명의 실시예들에 의하면 적어도 다음과 같은 효과가 있다.According to embodiments of the present invention has at least the following effects.
본 발명의 폴리올레핀은 전이금속 화합물을 포함하는 올레핀 중합 촉매를 사용하여 제조됨으로써 공단량체의 분포가 균일하고 용융온도가 낮기 때문에, 동일한 밀도 및 공단량체 함량을 갖는 종래의 폴리올레핀보다 낮은 온도에서 열봉합 효과를 나타낼 수 있다.The polyolefin of the present invention is produced using an olefin polymerization catalyst containing a transition metal compound, so that the distribution of comonomers is uniform and the melting temperature is low, so that the heat sealing effect at a lower temperature than conventional polyolefins having the same density and comonomer content Can be represented.
본 발명의 실시예들에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.Effects according to embodiments of the present invention are not limited by the contents exemplified above, and more various effects are included in the present specification.
도 1은 에틸렌/1-옥텐 공중합체를 합성하는 공정을 나타낸 개략도이다.1 is a schematic view showing a process for synthesizing an ethylene / 1-octene copolymer.
도 2는 각 제조예 및 비교예의 에틸렌/1-옥텐 공중합체에 대해 밀도와 Tm의 관계를 도시한 그래프이다.2 is a graph showing the relationship between density and Tm for the ethylene / 1-octene copolymers of each production example and comparative example.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the present embodiments are intended to complete the disclosure of the present invention, and the general knowledge in the art to which the present invention pertains. It is provided to fully convey the scope of the invention to those skilled in the art, and the present invention is defined only by the scope of the claims.
본 명세서에서, 용어 "CA-B"는 "탄소수가 A 이상이고 B 이하"인 것을 의미하고, 용어 "A 내지 B"는 "A 이상이고 B 이하"인 것을 의미하며, 용어 "치환 또는 비치환된"에서 "치환된"은 "탄화수소 화합물 또는 탄화수소 유도체의 적어도 하나의 수소가 할로겐, C1-20 알킬, C2-20 알케닐, C2-20 알키닐, C6-20 아릴, C1-20 알킬 C6-20 아릴, C6-20 아릴 C1-20 알킬, C1-20 알킬아미도, C6-20 아릴아미도 또는 C1-20 알킬리덴으로 치환된" 것을 의미하고, "비치환된"은 "탄화수소 화합물 또는 탄화수소 유도체의 적어도 하나의 수소가 할로겐, C1-20 알킬, C2-20 알케닐, C2-20 알키닐, C6-20 아릴, C1-20 알킬 C6-20 아릴, C6-20 아릴 C1-20 알킬, C1-20 알킬아미도, C6-20 아릴아미도 또는 C1-20 알킬리덴으로 치환되지 않은" 것을 의미한다.In the present specification, the term "CA-B" means "carbon number A or more and B or less", the term "A to B" means "A or more and B or less", the term "substituted or unsubstituted" "Substituted" means that at least one hydrogen of the hydrocarbon compound or hydrocarbon derivative is halogen, C1-20 alkyl, C2-20 alkenyl, C2-20 alkynyl, C6-20 aryl, C1-20 alkyl C6- Substituted with 20 aryl, C6-20 aryl C1-20 alkyl, C1-20 alkylamido, C6-20 arylamido or C1-20 alkylidene, and "unsubstituted" means "hydrocarbon compound or hydrocarbon" At least one hydrogen of the derivative is halogen, C1-20 alkyl, C2-20 alkenyl, C2-20 alkynyl, C6-20 aryl, C1-20 alkyl C6-20 aryl, C6-20 aryl C1-20 alkyl, C1 Unsubstituted with -20 alkylamido, C6-20 arylamido or C1-20 alkylidene.
본 발명의 일 실시예에 따른 폴리올레핀은 올레핀계 단량체와 공단량체가 중합되어 형성된 공중합체로서, 다음과 같은 특성을 갖는다.Polyolefin according to an embodiment of the present invention is a copolymer formed by polymerizing an olefin monomer and a comonomer, and has the following characteristics.
(1) 용융온도(Tm): 20~100℃(1) Melting temperature (Tm): 20 ~ 100 ℃
(2) 수평균 공단량체 길이(n0): 1.0~1.1(2) Number average comonomer length (n0): 1.0 to 1.1
(3) 용융온도(Tm)와 밀도(a)와의 관계: 1598.7a-1333.2 > Tm > 1796.3a-1513.4(3) Relationship between melting temperature (Tm) and density (a): 1598.7a-1333.2> Tm> 1796.3a-1513.4
이와 같은 특성을 갖는 폴리올레핀은 동일한 밀도 및 공단량체 함량을 갖는 종래의 폴리올레핀에 비해 균일한 공단량체 분포와 낮은 용융온도 등을 나타내기 때문에, 보다 낮은 온도에서 열봉합 효과를 나타낼 수 있다.Since the polyolefin having such characteristics exhibits a uniform comonomer distribution and a low melting temperature, etc., compared to the conventional polyolefin having the same density and comonomer content, it may exhibit a heat sealing effect at a lower temperature.
올레핀계 단량체 및 공단량체는 C2-20 알파-올레핀(α-olefin), C1-20 디올레핀(diolefin), C3-20 사이클로올레핀(cyclo-olefin) 및 C3-20 사이클로디올레핀(cyclodiolefin)으로 이루어진 군에서 선택되는 하나 이상을 포함할 수 있다.Olefin monomers and comonomers consist of C2-20 alpha-olefins, C1-20 diolefins, C3-20 cycloolefins, and C3-20 cyclodiolefins. It may include one or more selected from the group.
구체적으로, 올레핀계 단량체 및 공단량체는 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센 및 1-헥사데센으로 이루어진 군에서 선택되는 하나 이상을 포함하는 알파-올레핀일 수 있다.Specifically, the olefinic monomers and comonomers are propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1 Alpha-olefins comprising at least one selected from the group consisting of dodecene, 1-tetradecene and 1-hexadecene.
바람직하게는, 폴리올레핀은 올레핀계 단량체인 에틸렌이 공단량체인 1-옥텐과 공중합된 공중합체일 수 있으며, 이 경우 상기 수평균 공단량체 길이는 수평균 1-옥텐 길이일 수 있다.Preferably, the polyolefin may be a copolymer in which ethylene, an olefinic monomer, is copolymerized with 1-octene, which is a comonomer, in which case the number average comonomer length may be a number average 1-octene length.
예시적인 실시예에서, 폴리올레핀은 자유 라디칼(free radical), 양이온(cationic), 배위(coordination), 축합(condensation), 첨가(addition) 등의 중합반응에 의해 중합될 수 있다.In an exemplary embodiment, the polyolefin may be polymerized by polymerization such as free radicals, cationics, coordination, condensation, addition, and the like.
예시적인 실시예에서, 폴리올레핀은 기상 중합법, 용액 중합법 또는 슬러리 중합법 등으로 제조될 수 있다. 폴리올레핀이 용액 중합법 또는 슬러리 중합법으로 제조되는 경우 사용될 수 있는 용매의 예로서, 펜탄, 헥산, 헵탄, 노난, 데칸 및 이들의 이성질체와 같은 C5-12 지방족 탄화수소 용매; 톨루엔, 벤젠과 같은 방향족 탄화수소 용매; 디클로로메탄, 클로로벤젠과 같은 염소 원자로 치환된 탄화수소 용매; 이들의 혼합물 등을 들 수 있으나, 이들만으로 한정되는 것은 아니다.In an exemplary embodiment, the polyolefin may be prepared by gas phase polymerization, solution polymerization or slurry polymerization. Examples of solvents that can be used when the polyolefin is prepared by solution polymerization or slurry polymerization include C5-12 aliphatic hydrocarbon solvents such as pentane, hexane, heptane, nonane, decane and isomers thereof; Aromatic hydrocarbon solvents such as toluene, benzene; Hydrocarbon solvents substituted with chlorine atoms such as dichloromethane and chlorobenzene; Although mixtures of these, etc. are mentioned, It is not limited only to these.
폴리올레핀은 하기 화학식 B1로 표현되는 올레핀 중합 촉매용 전이금속 화합물을 포함하는 올레핀 중합 촉매 하에 중합된 것일 수 있다. 또한, 올레핀 중합 촉매용 전이금속 화합물은 하기 화학식 A1로 표현되는 올레핀 중합 촉매용 전이금속 화합물 전구체로부터 제조된 것일 수 있다.The polyolefin may be polymerized under an olefin polymerization catalyst including a transition metal compound for an olefin polymerization catalyst represented by the following formula B1. In addition, the transition metal compound for the olefin polymerization catalyst may be prepared from a transition metal compound precursor for the olefin polymerization catalyst represented by the general formula (A1).
<화학식 A1><Formula A1>
Figure PCTKR2017015021-appb-I000009
Figure PCTKR2017015021-appb-I000009
상기 화학식 A1에서, n은 1 내지 4일 수 있고, R1 내지 R12는 각각 독립적으로 수소, 치환 또는 비치환된 C1-20 알킬, 치환 또는 비치환된 C2-20 알케닐, 치환 또는 비치환된 C6-20 아릴, 치환 또는 비치환된 C1-20 알킬 C6-20 아릴, 치환 또는 비치환된 C6-20 아릴 C1-20 알킬, 치환 또는 비치환된 C1-20 헤테로알킬, 치환 또는 비치환된 C3-20 헤테로아릴, 또는 치환 또는 비치환된 C1-20 실릴일 수 있다. 또한, R11과 R12는 서로 연결되어 질소(N)를 포함하는 치환 또는 비치환된 C5-20 헤테로고리를 형성할 수 있다.In Formula A1, n may be 1 to 4, and R1 to R12 are each independently hydrogen, substituted or unsubstituted C1-20 alkyl, substituted or unsubstituted C2-20 alkenyl, substituted or unsubstituted C6 -20 aryl, substituted or unsubstituted C1-20 alkyl C6-20 aryl, substituted or unsubstituted C6-20 aryl C1-20 alkyl, substituted or unsubstituted C1-20 heteroalkyl, substituted or unsubstituted C3- 20 heteroaryl, or substituted or unsubstituted C1-20 silyl. In addition, R11 and R12 may be connected to each other to form a substituted or unsubstituted C5-20 heterocycle including nitrogen (N).
<화학식 B1><Formula B1>
Figure PCTKR2017015021-appb-I000010
Figure PCTKR2017015021-appb-I000010
상기 화학식 B1에서, n은 1 내지 4이고, X1과 X2는 각각 독립적으로 할로겐, C1-20 알킬, C2-20 알케닐, C2-20 알키닐, C6-20 아릴, C1-20 알킬 C6-20 아릴, C6-20 아릴 C1-20 알킬, C1-20 알킬아미도, C6-20 아릴아미도 또는 C1-20 알킬리덴이며, R1 내지 R12는 각각 독립적으로 수소, 치환 또는 비치환된 C1-20 알킬, 치환 또는 비치환된 C2-20 알케닐, 치환 또는 비치환된 C6-20 아릴, 치환 또는 비치환된 C1-20 알킬 C6-20 아릴, 치환 또는 비치환된 C6-20 아릴 C1-20 알킬, 치환 또는 비치환된 C1-20 헤테로알킬, 치환 또는 비치환된 C3-20 헤테로아릴, 또는 치환 또는 비치환된 C1-20 실릴이고, M은 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)일 수 있다. 또한, R11과 R12는 서로 연결되어 질소(N)를 포함하는 치환 또는 비치환된 C5-20 헤테로고리를 형성할 수 있다.In Formula B1, n is 1 to 4, X1 and X2 are each independently halogen, C1-20 alkyl, C2-20 alkenyl, C2-20 alkynyl, C6-20 aryl, C1-20 alkyl C6-20 Aryl, C6-20 aryl C1-20 alkyl, C1-20 alkylamido, C6-20 arylamido or C1-20 alkylidene, R1 to R12 are each independently hydrogen, substituted or unsubstituted C1-20 alkyl , Substituted or unsubstituted C2-20 alkenyl, substituted or unsubstituted C6-20 aryl, substituted or unsubstituted C1-20 alkyl C6-20 aryl, substituted or unsubstituted C6-20 aryl C1-20 alkyl, Substituted or unsubstituted C1-20 heteroalkyl, substituted or unsubstituted C3-20 heteroaryl, or substituted or unsubstituted C1-20 silyl, and M is titanium (Ti), zirconium (Zr) or hafnium (Hf) Can be. In addition, R11 and R12 may be connected to each other to form a substituted or unsubstituted C5-20 heterocycle including nitrogen (N).
올레핀 중합 촉매용 전이금속 화합물 전구체는 구체적으로, 하기 화학식 A2로 표현될 수 있다. Specifically, the transition metal compound precursor for the olefin polymerization catalyst may be represented by the following Chemical Formula A2.
<화학식 A2><Formula A2>
Figure PCTKR2017015021-appb-I000011
Figure PCTKR2017015021-appb-I000011
상기 화학식 A2에서, R1과 R2는 각각 독립적으로 수소 또는 메틸이고, R3는 수소, C1-20 알킬, C6-20 아릴, C1-20 알킬 C6-20 아릴, C6-20 아릴 C1-20 알킬, C1-20 알킬아미도, C6-20 아릴아미도, C1-20 헤테로알킬 또는 C3-20 헤테로아릴이며, R4 내지 R10는 수소이고, R13 내지 R15는 각각 독립적으로 수소, 치환 또는 비치환된 C1-20 알킬, 치환 또는 비치환된 C2-20 알케닐, 치환 또는 비치환된 C6-20 아릴, 치환 또는 비치환된 C1-20 알킬 C6-20 아릴, 치환 또는 비치환된 C6-20 아릴 C1-20 알킬, 치환 또는 비치환된 C1-20 헤테로알킬, 치환 또는 비치환된 C3-20 헤테로아릴, 또는 치환 또는 비치환된 C1-20 실릴일 수 있다.In Formula A2, R1 and R2 are each independently hydrogen or methyl, and R3 is hydrogen, C1-20 alkyl, C6-20 aryl, C1-20 alkyl C6-20 aryl, C6-20 aryl C1-20 alkyl, C1 -20 alkylamido, C6-20 arylamido, C1-20 heteroalkyl or C3-20 heteroaryl, R4 to R10 are hydrogen, R13 to R15 are each independently hydrogen, substituted or unsubstituted C1-20 Alkyl, substituted or unsubstituted C2-20 alkenyl, substituted or unsubstituted C6-20 aryl, substituted or unsubstituted C1-20 alkyl C6-20 aryl, substituted or unsubstituted C6-20 aryl C1-20 alkyl , Substituted or unsubstituted C1-20 heteroalkyl, substituted or unsubstituted C3-20 heteroaryl, or substituted or unsubstituted C1-20 silyl.
더욱 구체적으로는, 올레핀 중합 촉매용 전이금속 화합물 전구체는 하기 화학식 1 내지 56 중 적어도 하나일 수 있다. More specifically, the transition metal compound precursor for the olefin polymerization catalyst may be at least one of the following Chemical Formulas 1 to 56.
Figure PCTKR2017015021-appb-I000012
Figure PCTKR2017015021-appb-I000013
Figure PCTKR2017015021-appb-I000014
Figure PCTKR2017015021-appb-I000015
Figure PCTKR2017015021-appb-I000012
Figure PCTKR2017015021-appb-I000013
Figure PCTKR2017015021-appb-I000014
Figure PCTKR2017015021-appb-I000015
올레핀 중합 촉매용 전이금속 화합물은 구체적으로, 하기 화학식 B2로 표현될 수 있다. The transition metal compound for the olefin polymerization catalyst may be specifically represented by the following general formula (B2).
<화학식 B2><Formula B2>
Figure PCTKR2017015021-appb-I000016
Figure PCTKR2017015021-appb-I000016
상기 화학식 B2에서, R1과 R2는 각각 독립적으로 수소 또는 메틸이고, R3는 수소, C1-20 알킬, C6-20 아릴, C1-20 알킬 C6-20 아릴, C6-20 아릴 C1-20 알킬, C1-20 알킬아미도, C6-20 아릴아미도, C1-20 헤테로알킬 또는 C3-20 헤테로아릴이며, R4 내지 R10는 수소이고, R13 내지 R15는 각각 독립적으로 수소, 치환 또는 비치환된 C1-20 알킬, 치환 또는 비치환된 C2-20 알케닐, 치환 또는 비치환된 C6-20 아릴, 치환 또는 비치환된 C1-20 알킬 C6-20 아릴, 치환 또는 비치환된 C6-20 아릴 C1-20 알킬, 치환 또는 비치환된 C1-20 헤테로알킬, 치환 또는 비치환된 C3-20 헤테로아릴, 또는 치환 또는 비치환된 C1-20 실릴일 수 있다.In Formula B2, R1 and R2 are each independently hydrogen or methyl, and R3 is hydrogen, C1-20 alkyl, C6-20 aryl, C1-20 alkyl C6-20 aryl, C6-20 aryl C1-20 alkyl, C1 -20 alkylamido, C6-20 arylamido, C1-20 heteroalkyl or C3-20 heteroaryl, R4 to R10 are hydrogen, R13 to R15 are each independently hydrogen, substituted or unsubstituted C1-20 Alkyl, substituted or unsubstituted C2-20 alkenyl, substituted or unsubstituted C6-20 aryl, substituted or unsubstituted C1-20 alkyl C6-20 aryl, substituted or unsubstituted C6-20 aryl C1-20 alkyl , Substituted or unsubstituted C1-20 heteroalkyl, substituted or unsubstituted C3-20 heteroaryl, or substituted or unsubstituted C1-20 silyl.
또한, X1과 X2는 각각 독립적으로 할로겐 또는 C1-20 알킬이고, M은 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)일 수 있다.In addition, X1 and X2 are each independently halogen or C1-20 alkyl, M may be titanium (Ti), zirconium (Zr) or hafnium (Hf).
더욱 구체적으로는, 올레핀 중합 촉매용 전이금속 화합물은 하기 화학식 57 내지 112 중 적어도 하나일 수 있다. More specifically, the transition metal compound for the olefin polymerization catalyst may be at least one of the formulas (57) to (112).
Figure PCTKR2017015021-appb-I000017
Figure PCTKR2017015021-appb-I000017
Figure PCTKR2017015021-appb-I000018
Figure PCTKR2017015021-appb-I000019
Figure PCTKR2017015021-appb-I000020
Figure PCTKR2017015021-appb-I000018
Figure PCTKR2017015021-appb-I000019
Figure PCTKR2017015021-appb-I000020
상술한 올레핀 중합 촉매는 올레핀 중합 촉매용 전이금속 화합물과 함께 조촉매 화합물을 더 포함할 수 있다.The olefin polymerization catalyst described above may further include a cocatalyst compound together with a transition metal compound for the olefin polymerization catalyst.
조촉매 화합물은 하기 화학식 A로 표현되는 화합물, 화학식 B로 표현되는 화합물 및 화학식 C로 표현되는 화합물 중 하나 이상을 포함할 수 있다.The cocatalyst compound may include one or more of a compound represented by Formula A, a compound represented by Formula B, and a compound represented by Formula C.
<화학식 A><Formula A>
Figure PCTKR2017015021-appb-I000021
Figure PCTKR2017015021-appb-I000021
상기 화학식 A에서 n은 2 이상의 정수이고, Ra는 할로겐 원자, C1-20 탄화수소기 또는 할로겐으로 치환된 C1-20 탄화수소기일 수 있다. 구체적으로, 상기 Ra는 메틸, 에틸, n-부틸 또는 이소부틸일 수 있으나, 이에 한정되는 것은 아니다.In Formula A, n is an integer of 2 or more, and Ra may be a halogen atom, a C1-20 hydrocarbon group, or a C1-20 hydrocarbon group substituted with halogen. Specifically, Ra may be methyl, ethyl, n-butyl or isobutyl, but is not limited thereto.
<화학식 B><Formula B>
Figure PCTKR2017015021-appb-I000022
Figure PCTKR2017015021-appb-I000022
상기 화학식 B에서 D는 알루미늄(Al) 또는 보론(B)이고, Rb, Rc 및 Rd는 각각 독립적으로 할로겐 원자, C1-20 탄화수소기, 할로겐으로 치환된 C1-20 탄화수소기 또는 C1-20 알콕시기일 수 있다. 구체적으로, 상기 D가 알루미늄일 때 상기 Rb, Rc 및 Rd는 각각 독립적으로 메틸 또는 이소부틸일 수 있고, 상기 D가 보론일 때 상기 Rb, Rc 및 Rd는 각각 펜타플루오로페닐일 수 있으나, 이에 한정되는 것은 아니다.In Formula B, D is aluminum (Al) or boron (B), and Rb, Rc and Rd are each independently a halogen atom, a C1-20 hydrocarbon group, a C1-20 hydrocarbon group substituted with halogen or a C1-20 alkoxy group Can be. Specifically, when D is aluminum, each of Rb, Rc, and Rd may be independently methyl or isobutyl, and when D is boron, Rb, Rc, and Rd may be pentafluorophenyl, respectively. It is not limited.
<화학식 C><Formula C>
[L-H]+[Z(A)4]- 또는 [L]+[Z(A)4]- [LH] + [Z (A ) 4] - or [L] + [Z (A ) 4] -
상기 화학식 C에서 L은 중성 또는 양이온성 루이스 염기이고, [L-H]+ 또는 [L]+는 브뢴스테드 산이며, Z는 13족 원소이고, A는 각각 독립적으로 치환 또는 비치환된 C6-20 아릴기이거나 치환 또는 비치환된 C1-20 알킬기일 수 있다. 구체적으로, 상기 [L-H]+는 디메틸아닐리늄 양이온일 수 있고, 상기 [Z(A)4]-는 [B(C6F5)4]-일 수 있으며, 상기 [L]+는 [(C6H5)3C]+일 수 있으나, 이에 한정되는 것은 아니다.In Formula C, L is a neutral or cationic Lewis base, [LH] + or [L] + is Bronsted acid, Z is a Group 13 element, and A is each independently substituted or unsubstituted C6-20. It may be an aryl group or a substituted or unsubstituted C1-20 alkyl group. Specifically, [LH] + may be a dimethylanilinium cation, [Z (A) 4 ] may be [B (C 6 F 5 ) 4 ] , and [L] + is [( C 6 H 5 ) 3 C] + , but is not limited thereto.
상기 올레핀 중합 촉매는 담체를 더 포함할 수 있다.The olefin polymerization catalyst may further include a carrier.
담체는 올레핀 중합 촉매용 전이금속 화합물과 조촉매 화합물을 담지할 수 있는 것이면 특별히 제한되지 않는다. 예시적인 실시예에서, 담체는 탄소, 실리카, 알루미나, 제올라이트, 염화 마그네슘 등일 수 있다.The carrier is not particularly limited as long as it can support the transition metal compound and the promoter compound for the olefin polymerization catalyst. In an exemplary embodiment, the carrier can be carbon, silica, alumina, zeolite, magnesium chloride, or the like.
담체에 올레핀 중합 촉매용 전이금속 화합물 및 조촉매 화합물을 담지하는 방법으로서, 물리적 흡착 방법 또는 화학적 흡착 방법이 사용될 수 있다. As a method of supporting the transition metal compound and the promoter compound for the olefin polymerization catalyst on the carrier, a physical adsorption method or a chemical adsorption method may be used.
예시적인 실시예에서, 물리적 흡착 방법은 올레핀 중합 촉매용 전이금속 화합물이 용해된 용액을 담체에 접촉시킨 후 건조하는 방법, 올레핀 중합 촉매용 전이금속 화합물과 조촉매 화합물이 용해된 용액을 담체에 접촉시킨 후 건조하는 방법 또는 올레핀 중합 촉매용 전이금속 화합물이 용해된 용액을 담체에 접촉시킨 후 건조하고 올레핀 중합 촉매용 전이금속 화합물이 담지된 담체를 제조하고, 이와 별개로 조촉매 화합물이 용해된 용액을 담체에 접촉시킨 후 건조하여 조촉매 화합물이 담지된 담체를 제조한 후, 이들을 혼합하는 방법 등일 수 있다.In an exemplary embodiment, the physical adsorption method is a method in which a solution containing a transition metal compound for an olefin polymerization catalyst is contacted with a carrier and dried, and a solution in which the transition metal compound and a promoter compound for an olefin polymerization catalyst is dissolved is contacted with a carrier. Or a method of drying and a solution in which a transition metal compound for an olefin polymerization catalyst is dissolved in contact with a carrier, followed by drying to prepare a carrier in which the transition metal compound for an olefin polymerization catalyst is supported, and separately a solution in which a promoter compound is dissolved. After contacting the carrier and dried to prepare a carrier on which the cocatalyst compound is loaded, and the like may be mixed.
예시적인 실시예에서, 화학적 흡착 방법은 담체의 표면에 조촉매 화합물을 먼저 담지시킨 후, 조촉매 화합물에 올레핀 중합 촉매용 전이금속 화합물을 담지시키는 방법, 또는 담체의 표면의 작용기(예를 들어, 실리카의 경우 실리카 표면의 수산기(-OH))와 촉매 화합물을 공유 결합시키는 방법 등일 수 있다.In an exemplary embodiment, the chemical adsorption method first supports a promoter compound on the surface of the carrier, and then a transition metal compound for the olefin polymerization catalyst on the promoter compound, or a functional group (eg, In the case of silica, it may be a method of covalently bonding a hydroxyl group (-OH)) and a catalyst compound on the surface of silica.
전이금속 화합물을 포함하는 주촉매 화합물의 담지량의 총합은 담체 1g을 기준으로 0.001mmol 내지 1mmol일 수 있으며, 조촉매 화합물의 담지량은 담체 1g을 기준으로 2mmol 내지 15mmol일 수 있다.The sum of the supported amount of the main catalyst compound including the transition metal compound may be 0.001 mmol to 1 mmol based on 1 g of the carrier, and the supported amount of the promoter catalyst may be 2 mmol to 15 mmol based on 1 g of the carrier.
그러나, 이와 같은 담체는 필수적으로 포함해야 하는 것은 아니며, 필요에 따라 그 사용 여부를 적절하게 선택할 수 있다.However, such a carrier does not necessarily have to be included and can be appropriately selected depending on necessity.
이하, 본 발명의 올레핀 중합 촉매용 전이금속 화합물 중 상기 화학식 74로 표현되는 화합물에 대한 구체적인 제조예와, 이를 포함하는 올레핀 중합 촉매 하에 중합된 에틸렌/1-옥텐 공중합체의 물성을 평가하는 구체적인 실험예에 대해 서술한다.Hereinafter, specific preparation examples of the compound represented by Chemical Formula 74 in the transition metal compound for olefin polymerization catalyst of the present invention, and specific experiments for evaluating the physical properties of the ethylene / 1-octene copolymer polymerized under the olefin polymerization catalyst including the same An example is described.
<제조예 1> 올레핀 중합 촉매용 전이금속 화합물 제조Preparation Example 1 Preparation of Transition Metal Compound for Olefin Polymerization Catalyst
제조예 1-1: 8-(2-메틸-4-페닐-2,3,6,7-테트라하이드로-s-인다센일)-1,2,3,4-테트라하이드로퀴놀린(화학식 1)의 제조Preparation Example 1-1: of 8- (2-methyl-4-phenyl-2,3,6,7-tetrahydro-s-indasenyl) -1,2,3,4-tetrahydroquinoline (Formula 1) Produce
2-메틸-3,5,6,7-테트라하이드로-s-인다센-1(2H)-온 1.0g(5.37mmol)을 염화 알루미늄(AlCl3) 1.65g(12.4mmol)이 분산되어 있는 클로로포름(Chloroform) 용액 30mL에 0에서 천천히 투입하였다. 투입을 완료한 후 1시간 동안 교반하였다. 1시간 후, 상기 용액에 브롬(Bromine) 858mg(5.37mmol)을 0에서 천천히 투입하였다. 투입을 완료한 후에 온도를 상온으로 천천히 올린 뒤 12시간 이상 교반하였다. 교반 후, 물 50mL 넣어 반응을 종결시켰다. 디클로로메탄(Dichloromethane)을 사용하여 유기층을 추출한 뒤 진공 하에서 용매를 제거하였다. 이후, 컬럼 크로마토그래피를 통해 하기와 같은 1H-NMR 스펙트럼을 갖는 4-브로모-2-메틸-2,3,6,7-테트라하이드로-s-인다센-1(5H)-온을 얻었다(수율: 50%).1.0 g (5.37 mmol) of 2-methyl-3,5,6,7-tetrahydro-s-indacene-1 (2H) -one is dissolved in chloroform in which 1.65 g (12.4 mmol) of aluminum chloride (AlCl 3) is dispersed. Chloroform) solution was slowly added at 0 to 30 mL. After the addition was completed, the mixture was stirred for 1 hour. After 1 hour, Bromine (858 mg) (5.37 mmol) was slowly added to the solution at zero. After the addition was completed, the temperature was slowly raised to room temperature, followed by stirring for 12 hours or more. After stirring, 50 mL of water was added to terminate the reaction. The organic layer was extracted using dichloromethane and the solvent was removed under vacuum. Thereafter, 4-bromo-2-methyl-2,3,6,7-tetrahydro-s-indacene-1 (5H) -one having the following 1H-NMR spectrum was obtained by column chromatography ( Yield: 50%).
1H NMR (CDCl3): δ 7.51 (s, 1H), 3.30 (m, 1H), 3.02 (m, 4H), 2.75 (m, 1H), 2.60 (dd, 1H), 2.16 (m, 2H), 1.32 (d, 3H) ppm.1 H NMR (CDCl 3): δ 7.51 (s, 1H), 3.30 (m, 1H), 3.02 (m, 4H), 2.75 (m, 1H), 2.60 (dd, 1H), 2.16 (m, 2H), 1.32 (d, 3H) ppm.
상기 4-브로모-2-메틸-2,3,6,7-테트라하이드로-s-인다센-1(5H)-온 1.06g(4.00mmol)과 페닐보론산(Phenylboronic acid) 634mg(5.20mmol) 및 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4) 230mg(5mol%)을 테트라하이드로퓨란(Tetrahydrofuran) 40mL와 메탄올(Methanol) 10mL에 녹인 용액에 탄산칼륨(K2CO3) 수용액 2.0M(3.3M 당량)를 천천히 투입하였다. 투입을 완료한 후에 80℃로 온도를 올린 뒤 12시간 이상 교반하였다. 교반 후, 물 50mL 넣어 반응을 종결시켰다. 에틸 아세테이트(Ethyl acetate)를 사용하여 유기층을 추출한 뒤 진공 하에 용매를 제거하였다. 이후, 컬럼 크로마토그래피를 통해 하기와 같은 1H-NMR 스펙트럼을 갖는 2-메틸-4-페닐-2,3,6,7-테트라하이드로-s-인다센-1(5H)-온을 얻었다(수율: 77%).1.06 g (4.00 mmol) of 4-bromo-2-methyl-2,3,6,7-tetrahydro-s-indacene-1 (5H) -one and 634 mg (5.20 mmol) of phenylboronic acid ) And 230 mg (5 mol%) of tetrakis (triphenylphosphine) palladium (Pd (PPh3) 4) in 40 mL of tetrahydrofuran and 10 mL of methanol in a solution of potassium carbonate (K2CO3) 2.0 M ( 3.3 M equivalents) was added slowly. After the addition was completed, the temperature was raised to 80 ° C. and stirred for 12 hours or more. After stirring, 50 mL of water was added to terminate the reaction. The organic layer was extracted using ethyl acetate and the solvent was removed in vacuo. Thereafter, 2-methyl-4-phenyl-2,3,6,7-tetrahydro-s-indacene-1 (5H) -one having the following 1H-NMR spectrum was obtained by column chromatography (yield). : 77%).
1H NMR (CDCl3): δ 7.60 (s, 1H), 7.50~7.25 (m, 5H), 3.17 (m, 1H), 3.00 (t, 2H), 2.81 (t, 2H), 2.68 (m, 1H), 2.51 (dd, 1H), 2.08 (m, 2H), 1.26 (d, 3H) ppm. 1 H NMR (CDCl 3): δ 7.60 (s, 1H), 7.50 to 7.25 (m, 5H), 3.17 (m, 1H), 3.00 (t, 2H), 2.81 (t, 2H), 2.68 (m, 1H) , 2.51 (dd, 1H), 2.08 (m, 2H), 1.26 (d, 3H) ppm.
1,2,3,4-테트라하이드로퀴놀린(1,2,3,4-Tetrahydroquinoline) 479mg(3.60 mmol)을 헥산(Hexane) 10mL에 녹인 뒤, n-부틸리튬(n-BuLi) 1.6M(3.78mmol)을 -30℃에서 천천히 투입하였다. 투입을 완료한 후에 온도를 상온으로 천천히 올린 뒤 12시간 이상 교반하였다. 교반 후 생성된 고체를 여과하여 용매를 제거한 후에 디에틸 에테르(Diethyl ether) 10mL에 녹여 -78℃에서 이산화탄소(CO2)를 첨가하였다. 온도를 상온으로 천천히 올린 뒤 12시간 이상 교반하였다. 이후, 테트라하이드로퓨란(Tetrahydrofuran) 285mg(3.95mmol)와 t-부틸리튬(t-BuLi) 1.7M(3.95mmol)을 -20℃에서 연속적으로 투입하고 2시간 동안 교반하였다. 479 mg (3.60 mmol) of 1,2,3,4-tetrahydroquinoline (1,2,3,4-Tetrahydroquinoline) was dissolved in 10 mL of hexane, followed by n-butyllithium (n-BuLi) 1.6 M (3.78 mmol) was slowly added at -30 ° C. After the addition was completed, the temperature was slowly raised to room temperature, followed by stirring for 12 hours or more. After stirring, the resulting solid was filtered to remove the solvent, dissolved in 10 mL of diethyl ether, and carbon dioxide (CO 2) was added at -78 ° C. After slowly raising the temperature to room temperature, the mixture was stirred for 12 hours or more. Thereafter, 285 mg (3.95 mmol) of tetrahydrofuran and 1.7 M (3.95 mmol) of t-butyllithium (t-BuLi) were continuously added at −20 ° C. and stirred for 2 hours.
상기 2-메틸-4-페닐-2,3,6,7-테트라하이드로-s-인다센-1(5H)-온 800mg(3.05mmol)과 염화리튬(LiCl) 260mg(6.11mmol)을 천천히 투입한 후에 온도를 천천히 상온으로 올린 뒤 12시간 이상 교반하였다. 교반 후 물 20mL 넣어 반응을 종결시켰다. 이후, 에틸 아세테이트(Ethyl acetate)를 사용하여 유기층을 추출한 뒤 진공 하에 용매를 제거하고, 컬럼 크로마토그래피를 통해 하기와 같은 1H-NMR 스펙트럼을 갖는 화학식 1의 화합물인 8-(2-메틸-4-페닐-2,3,6,7-테트라하이드로-s-인다센일)-1,2,3,4-테트라하이드로퀴놀린을 얻었다(수율: 30%).800 mg (3.05 mmol) of 2-methyl-4-phenyl-2,3,6,7-tetrahydro-s-indacene-1 (5H) -one and 260 mg (6.11 mmol) of lithium chloride (LiCl) were slowly added thereto. After raising the temperature slowly to room temperature, the mixture was stirred for 12 hours or more. After stirring, 20 mL of water was added to terminate the reaction. Thereafter, the organic layer was extracted using ethyl acetate, and the solvent was removed under vacuum, and the compound of formula 1 having a 1H-NMR spectrum as follows through column chromatography was subjected to 8- (2-methyl-4- Phenyl-2,3,6,7-tetrahydro-s-indasenyl) -1,2,3,4-tetrahydroquinoline was obtained (yield: 30%).
1H NMR (CDCl3): δ 7.50~7.31 (m, 5H), 7.00 (d, 1H), 6.95~6.89 (m, 2H), 6.69 (t, 1H), 3.33 (m, 2H), 3.24 (m, 2H), 2.96~2.83 (m, 4H), 2.79 (t, 2H), 2.03 (m, 2H), 1.98 (s, 3H) ppm. 1 H NMR (CDCl 3): δ 7.50-7.31 (m, 5H), 7.00 (d, 1H), 6.95-6.89 (m, 2H), 6.69 (t, 1H), 3.33 (m, 2H), 3.24 (m, 2H), 2.96-2.83 (m, 4H), 2.79 (t, 2H), 2.03 (m, 2H), 1.98 (s, 3H) ppm.
<화학식 1><Formula 1>
Figure PCTKR2017015021-appb-I000023
Figure PCTKR2017015021-appb-I000023
제조예 1-2: [1-(1,2,3,4-테트라하이드로퀴놀린-8-일)-2-메틸-4-페닐-2,3,6,7-테트라하이드로-s-인다센일]디메틸 티타늄(화학식 74)의 제조Preparation Example 1-2: [1- (1,2,3,4-tetrahydroquinolin-8-yl) -2-methyl-4-phenyl-2,3,6,7-tetrahydro-s-indasenyl ] Dimethyl Titanium (Formula 74)
상기 제조예 1-1에서 합성한 화학식 1의 화합물인 8-(2-메틸-4-페닐-2,3,6,7-테트라하이드로-s-인다센일)-1,2,3,4-테트라하이드로퀴놀린 303mg(0.80 mmol)을 디에틸 에테르(Diethyl ether) 10mL에 녹인 뒤, 메틸리튬(MeLi) 1.6M(3.21mmol)을 -78℃에서 천천히 투입하였다. 투입을 완료한 후에 상온으로 온도를 천천히 올려주었다. 이후, 염화 티탄(TiCl4) 152mg(0.80mmol)를 상온에서 천천히 투입한 후에 4시간 동안 교반하였다. 반응이 종결된 후 진공 하에 용매를 제거한 뒤 헥산(Hexane)을 사용하여 추출하였다. 이후, 진공 하에 용매를 제거하여 하기와 같은 1H-NMR 스펙트럼을 갖는 화학식 74의 화합물인 [1-(1,2,3,4-테트라하이드로퀴놀린-8-일)-2-메틸-4-페닐-2,3,6,7-테트라하이드로-s-인다센일]디메틸 티타늄을 얻었다(수율: 55%).8- (2-methyl-4-phenyl-2,3,6,7-tetrahydro-s-indasenyl) -1,2,3,4- which is a compound of Formula 1 synthesized in Preparation Example 1-1 303 mg (0.80 mmol) of tetrahydroquinoline was dissolved in 10 mL of diethyl ether, and 1.6 M (3.21 mmol) of methyllithium (MeLi) was slowly added at -78 ° C. After the addition was completed, the temperature was slowly raised to room temperature. Then, 152 mg (0.80 mmol) of titanium chloride (TiCl 4) was slowly added at room temperature, followed by stirring for 4 hours. After the reaction was terminated, the solvent was removed in vacuo and then extracted using hexane (Hexane). Thereafter, the solvent was removed in vacuo to give [1- (1,2,3,4-tetrahydroquinolin-8-yl) -2-methyl-4-phenyl, which is a compound of formula 74 having the 1 H-NMR spectrum as follows. -2,3,6,7-tetrahydro-s-indacenyl] dimethyl titanium was obtained (yield: 55%).
1H NMR (C6D6): δ 7.82 (d, 2H), 7.50 (t, 1H), 7.37 (t, 2H), 7.15 (d, 1H), 711~7.01 (m, 2H), 6.79 (s, 1H), 4.61 (m, 2H), 2.88 (m, 2H), 2.63 (m, 4H), 1.95 (s, 3H), 1.82 (m, 4H), 0.93 (s, 3H), 0.28 (s, 3H) ppm. 1 H NMR (C6D6): δ 7.82 (d, 2H), 7.50 (t, 1H), 7.37 (t, 2H), 7.15 (d, 1H), 711-7.01 (m, 2H), 6.79 (s, 1H) , 4.61 (m, 2H), 2.88 (m, 2H), 2.63 (m, 4H), 1.95 (s, 3H), 1.82 (m, 4H), 0.93 (s, 3H), 0.28 (s, 3H) ppm .
<화학식 74><Formula 74>
Figure PCTKR2017015021-appb-I000024
Figure PCTKR2017015021-appb-I000024
<제조예 2~4> 전이금속 화합물을 포함하는 올레핀 중합 촉매를 이용한 에틸렌/1-옥텐 공중합체의 합성Preparation Examples 2 to 4 Synthesis of Ethylene / 1-octene Copolymer Using an Olefin Polymerization Catalyst Containing a Transition Metal Compound
상기 제조예 1에서 합성한 전이금속 화합물을 포함하는 올레핀 중합 촉매를 이용하여 에틸렌과 1-옥텐을 공중합하였으며, 중합 조건은 각 제조예별로 하기 표 1과 같이 다르게 하였다.Ethylene and 1-octene were copolymerized using an olefin polymerization catalyst including the transition metal compound synthesized in Preparation Example 1, and polymerization conditions were changed as shown in Table 1 below for each Preparation Example.
구체적으로, 상기 제조예 1에서 합성한 화학식 74의 화합물인 [1-(1,2,3,4-테트라하이드로퀴놀린-8-일)-2-메틸-4-페닐-2,3,6,7-테트라하이드로-s-인다센일]디메틸 티타늄을 일정량의 헥산 용매에 녹이고 트리이소부틸알루미늄으로 처리한 후, 연속 용액 공정 하에 에틸렌과 1-옥텐의 공중합을 실시하였다. 구체적인 중합 방법으로서, 온도 조절용 자켓을 이용하여 850mL 반응기를 일정 온도로 가열한 후 90bar의 압력을 유지하면서, 도 1에 나타난 바와 같이 헥산 용매(1), 1-옥텐(2), 스캐빈저(3) 및 에틸렌(4)을 단일 스트림으로 반응기(7)에 연속적으로 공급하면서 촉매(5)와 조촉매(6)는 각각 연속적으로 반응기에 직접 주입하였다. 용융된 중합체는 반응기 배출 스트림(8)을 통과해 분리기(9)로 들어가 미반응된 에틸렌, 미반응된 옥텐, 헥산으로부터 분리된 후, 펠렛타이저(12)를 통해 최종적으로 고형 펠렛으로 수집되도록 하였다. 조촉매로는 디메틸아닐리늄 테트라키스(펜타플루오로페닐) 보레이트를 사용하였고, 스캐빈저로 트리이소부틸알루미늄을 사용하였다.Specifically, the compound of formula 74 synthesized in Preparation Example 1 [1- (1,2,3,4-tetrahydroquinolin-8-yl) -2-methyl-4-phenyl-2,3,6, 7-tetrahydro-s-indasenyl] dimethyl titanium was dissolved in an amount of hexane solvent and treated with triisobutylaluminum, followed by copolymerization of ethylene and 1-octene under a continuous solution process. As a specific polymerization method, a hexane solvent (1), 1-octene (2) and a scavenger (as shown in FIG. 1) are maintained by heating a 850 mL reactor to a constant temperature using a jacket for temperature control and maintaining a pressure of 90 bar. 3) and ethylene (4) were continuously fed directly into the reactor (5) and cocatalyst (6), respectively, continuously feeding the reactor (7) in a single stream. The molten polymer is passed through reactor outlet stream (8) into separator (9) to separate from unreacted ethylene, unreacted octene, hexane, and then finally through pelletizer 12 to be collected as solid pellets. It was. Dimethylanilinium tetrakis (pentafluorophenyl) borate was used as a cocatalyst and triisobutylaluminum was used as a scavenger.
제조예Production Example 온도(℃)Temperature (℃) 압력(bar)Pressure (bar) 헥산(g/min)Hexane (g / min) 1-옥텐(g/min)1-octene (g / min) 촉매(μmol/min)Catalyst (μmol / min) 조촉매(μmol/min)Cocatalyst (μmol / min) 스캐빈저(μmol/min)Scavenger (μmol / min)
22 154154 9090 46.746.7 10.010.0 0.180.18 1.11.1 1818
33 150150 9090 46.746.7 6.06.0 0.160.16 0.90.9 1818
44 145145 9090 46.746.7 6.06.0 0.130.13 0.80.8 1818
<실험예 1> 에틸렌/1-옥텐 공중합체의 물성 측정Experimental Example 1 Measurement of Physical Properties of Ethylene / 1-Octene Copolymer
상기 제조예 2 내지 4에서 중합된 에틸렌/1-옥텐 공중합체에 대해 다음과 같이 13C NMR 및 용융온도(Tm) 등을 측정함으로써 그 물성을 측정하였으며, 결과는 하기 표 2와 같았다.The physical properties of the ethylene / 1-octene copolymers polymerized in Preparation Examples 2 to 4 were measured by measuring 13 C NMR and melting temperature (T m ) as follows, and the results are shown in Table 2 below.
실험예 1-1: 13C NMR의 측정Experimental Example 1-1: Measurement of 13 C NMR
benzene-d6와 1,2,4-Trichlorobenzene이 혼합된 용매 약 2~3ml를 10mm NMR tube에 넣은 후, 시료 0.3~0.4g을 넣었다. 이를 오븐을 이용하여 120℃에서 4시간 이상 녹여 solution 상태로 만들었다. 10mm broad-band probe가 장착된 Agilent AS 400 NMR을 120℃로 온도를 올린 후, 샘플 tube를 NMR 장치에 넣었다. 13C-NMR 분석 조건으로 90° pulse, 1.3s acquisition time, 10s relaxation delay를 적용하여 5,000번 scan함으로써 13C-NMR spectrum을 얻었다.About 2-3 ml of a solvent mixed with benzene-d6 and 1,2,4-Trichlorobenzene was placed in a 10 mm NMR tube, and then 0.3 to 0.4 g of the sample was added. This was dissolved in a solution state at 120 ° C. for 4 hours or more using an oven. After raising the temperature of the Agilent AS 400 NMR equipped with a 10 mm broad-band probe to 120 ℃, the sample tube was placed in the NMR apparatus. 13 C-NMR analysis of the conditions applying 90 ° pulse, 1.3s acquisition time, 10s relaxation delay to scan by 5,000 times to obtain a 13 C-NMR spectrum.
실험예 1-2: 용융온도(Tm)의 측정Experimental Example 1-2: Measurement of Melting Temperature (T m )
TA사에서 제조한 시차주사열량계(DSC: Differential Scanning Calorimeter 2920)를 이용하여 측정하였다. 구체적으로, 온도를 200℃까지 증가시킨 후, 5분 동안 그 온도에서 유지하고, 그 다음 30℃까지 내리고, 다시 온도를 증가시켜 DSC 곡선의 꼭대기를 용융온도로 하였다. 이 때, 온도의 상승과 내림의 속도는 10℃/min이었으며, 용융온도는 두 번째 온도가 상승하는 동안 얻어졌다.Differential scanning calorimeter (DSC: Differential Scanning Calorimeter 2920) manufactured by TA was used for the measurement. Specifically, the temperature was increased to 200 ° C., then maintained at that temperature for 5 minutes, then lowered to 30 ° C., and the temperature increased again to bring the top of the DSC curve to the melting temperature. At this time, the rate of temperature rise and fall was 10 ° C./min, and the melting temperature was obtained while the second temperature was rising.
제조예Production Example 활성(kg-PE/g-cat)Active (kg-PE / g-cat) 밀도(g/cm3)Density (g / cm 3 ) MI2(g/10min)MI 2 (g / 10min) 1-옥텐(mol%)1-octene (mol%) Tm(℃)Tm (℃)
22 8282 0.8570.857 7.647.64 13.813.8 25.525.5
33 8585 0.8680.868 1.181.18 10.710.7 47.147.1
44 130130 0.8770.877 0.280.28 9.19.1 61.361.3
<실험예 2> 에틸렌/1-옥텐 공중합체의 물성 비교Experimental Example 2 Comparison of Physical Properties of Ethylene / 1-Octene Copolymer
상기 실험예 1 등을 통해 측정한 상기 제조예 2 내지 4의 에틸렌/1-옥텐 공중합체의 물성과 DOW사에서 구득한 에틸렌/1-옥텐 공중합체인 Engage제품(비교예 1~5)의 물성을 하기 표 3과 같이 비교하였다. 도 2는 각 제조예 및 비교예의 에틸렌/1-옥텐 공중합체에 대해 밀도와 Tm의 관계를 도시한 그래프이다.Properties of the ethylene / 1-octene copolymers of Preparation Examples 2 to 4 measured through Experimental Example 1 and the like and properties of Engage products (Comparative Examples 1 to 5) which are ethylene / 1-octene copolymers obtained from DOW It was compared as shown in Table 3. 2 is a graph showing the relationship between density and Tm for the ethylene / 1-octene copolymers of each production example and comparative example.
구분division 밀도(g/cm3)Density (g / cm 3 ) Tm(℃)T m (℃) 1-옥텐(mol%)1-octene (mol%) 결정화도(%)Crystallinity (%) 수평균 1-옥텐 길이 (n0)Number average 1-octene length (n 0 )
제조예 2Preparation Example 2 0.8570.857 25.525.5 13.813.8 5.45.4 1.071.07
제조예 3Preparation Example 3 0.8680.868 47.147.1 10.710.7 12.612.6 1.051.05
제조예 4Preparation Example 4 0.8770.877 61.361.3 9.19.1 13.513.5 1.031.03
비교예 1Comparative Example 1 0.8570.857 36.936.9 11.711.7 18.318.3 1.181.18
비교예 2Comparative Example 2 0.8650.865 49.849.8 10.810.8 19.419.4 1.151.15
비교예 3Comparative Example 3 0.8670.867 54.054.0 11.111.1 16.916.9 1.141.14
비교예 4Comparative Example 4 0.8680.868 53.453.4 10.710.7 19.219.2 1.131.13
비교예 5Comparative Example 5 0.8770.877 69.069.0 9.09.0 20.520.5 1.161.16
상기 표 3 및 도 2에 나타난 바와 같이, 제조예 2 내지 4의 에틸렌/1-옥텐 공중합체는 밀도가 동일한 비교예 1, 4 및 5의 에틸렌/1-옥텐 공중합체보다 용융온도(Tm) 및 결정화도가 현저히 낮았음을 확인할 수 있다.As shown in Table 3 and FIG. 2, the ethylene / 1-octene copolymers of Preparation Examples 2 to 4 have a lower melting temperature (T m ) than the ethylene / 1-octene copolymers of Comparative Examples 1, 4 and 5 having the same density. And it can be confirmed that the degree of crystallinity is significantly low.
또한, 제조예의 에틸렌/1-옥텐 공중합체는 수평균 1-옥텐 길이(n0)가 1.03~1.07인 반면 비교예의 에틸렌/1-옥텐 공중합체는 1.13 이상인 점으로부터, 제조예의 에틸렌/1-옥텐 공중합체가 비교예의 에틸렌/1-옥텐 공중합체보다 1-옥텐이 더 균일하게 분포되었음을 확인할 수 있다.In addition, the ethylene / 1-octene copolymer of the preparation example had a number average 1-octene length (n0) of 1.03 to 1.07, whereas the ethylene / 1-octene copolymer of the comparative example was 1.13 or more. It can be seen that the copolymer was more uniformly distributed in 1-octene than the ethylene / 1-octene copolymer of the comparative example.
이와 같은 제조예 및 비교예의 에틸렌/1-옥텐 공중합체간의 특성 차이로부터, 본 발명의 폴리올레핀은 열봉합 효과가 종래의 폴리올레핀보다 현저히 낮은 온도에서 발휘될 수 있음을 알 수 있다.From the difference in properties between the ethylene / 1-octene copolymers of the production examples and the comparative examples, it can be seen that the polyolefin of the present invention can be exhibited at a significantly lower temperature than the conventional polyolefin.
이상, 예시된 화학 구조식들과 제조예들 등을 참고하여 발명의 사상에 속하는 실시예들을 구체적으로 설명하였다. 다만, 예시된 화학 구조식들과 제조예들 등으로 발명의 사상이 제한되는 것은 아니고, 예시된 화학 구조식들과 제조예들 등을 기반으로 발명의 사상은 다양하게 변형될 수 있다. 예시된 화학 구조식들과 제조예들 등은 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 사상의 범주를 완전하게 알려주기 위해 제공되는 것이며, 발명의 사상의 권리범위는 청구항의 범주에 의해 정의될 뿐이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The embodiments belonging to the spirit of the present invention have been described in detail with reference to the illustrated chemical structural formulas and preparation examples. However, the spirit of the invention is not limited to the illustrated chemical structures and preparation examples, and the spirit of the invention may be variously modified based on the illustrated chemical structures and preparation examples. Exemplary chemical structural formulas and preparation examples are provided to completely inform those of ordinary skill in the art to the scope of the spirit of the invention, the scope of the spirit of the invention to the scope of the claims It is only defined by Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Claims (9)

  1. 올레핀계 단량체와 공단량체가 공중합되어 형성되며, 하기 (1) 내지 (3)의 특성을 만족하는 폴리올레핀.Polyolefin which is formed by copolymerizing an olefin monomer and a comonomer and satisfying the following characteristics (1) to (3).
    (1) 용융온도(Tm): 20~100℃(1) Melting temperature (Tm): 20 ~ 100 ℃
    (2) 수평균 공단량체 길이(n0): 1.0~1.1(2) Number average comonomer length (n0): 1.0 to 1.1
    (3) 용융온도(Tm, ℃)와 밀도(a, g/㎤)와의 관계: 1598.7a-1333.2 > Tm > 1796.3a-1513.4(3) Relationship between melting temperature (Tm, ℃) and density (a, g / cm 3): 1598.7a-1333.2> Tm> 1796.3a-1513.4
  2. 제1항에 있어서,The method of claim 1,
    상기 올레핀계 단량체와 공단량체 중 적어도 하나는 알파-올레핀을 포함하는 폴리올레핀.At least one of the olefin monomers and comonomers comprises an alpha-olefin.
  3. 제1항에 있어서,The method of claim 1,
    상기 올레핀계 단량체와 공단량체는 각각 에틸렌과 1-옥텐인 폴리올레핀.The olefin monomer and the comonomer are ethylene and 1-octene, respectively.
  4. 제1항에 있어서,The method of claim 1,
    하기 화학식 B1로 표현되는 전이금속 화합물을 포함하는 올레핀 중합 촉매 하에 공중합되어 형성된 폴리올레핀.Polyolefin formed by copolymerization under an olefin polymerization catalyst containing a transition metal compound represented by the following formula (B1).
    <화학식 B1><Formula B1>
    Figure PCTKR2017015021-appb-I000025
    Figure PCTKR2017015021-appb-I000025
    (상기 화학식 B1에서, (In Chemical Formula B1,
    n은 1 내지 4이고, n is 1 to 4,
    X1과 X2는 각각 독립적으로 할로겐, C1-20 알킬, C2-20 알케닐, C2-20 알키닐, C6-20 아릴, C1-20 알킬 C6-20 아릴, C6-20 아릴 C1-20 알킬, C1-20 알킬아미도, C6-20 아릴아미도 또는 C1-20 알킬리덴이며, X1 and X2 are each independently halogen, C1-20 alkyl, C2-20 alkenyl, C2-20 alkynyl, C6-20 aryl, C1-20 alkyl C6-20 aryl, C6-20 aryl C1-20 alkyl, C1 -20 alkylamido, C6-20 arylamido or C1-20 alkylidene,
    R1 내지 R12는 각각 독립적으로 수소, 치환 또는 비치환된 C1-20 알킬, 치환 또는 비치환된 C2-20 알케닐, 치환 또는 비치환된 C6-20 아릴, 치환 또는 비치환된 C1-20 알킬 C6-20 아릴, 치환 또는 비치환된 C6-20 아릴 C1-20 알킬, 치환 또는 비치환된 C1-20 헤테로알킬, 치환 또는 비치환된 C3-20 헤테로아릴, 또는 치환 또는 비치환된 C1-20 실릴이고,R1 to R12 are each independently hydrogen, substituted or unsubstituted C1-20 alkyl, substituted or unsubstituted C2-20 alkenyl, substituted or unsubstituted C6-20 aryl, substituted or unsubstituted C1-20 alkyl C6 -20 aryl, substituted or unsubstituted C6-20 aryl C1-20 alkyl, substituted or unsubstituted C1-20 heteroalkyl, substituted or unsubstituted C3-20 heteroaryl, or substituted or unsubstituted C1-20 silyl ego,
    M은 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)이다)M is titanium (Ti), zirconium (Zr) or hafnium (Hf))
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 화학식 B1은 하기 화학식 B2인 폴리올레핀.Formula (B1) is a polyolefin of formula (B2).
    <화학식 B2><Formula B2>
    Figure PCTKR2017015021-appb-I000026
    Figure PCTKR2017015021-appb-I000026
    (상기 화학식 B2에서, (In Chemical Formula B2,
    R1과 R2는 각각 독립적으로 수소 또는 메틸이고, R1 and R2 are each independently hydrogen or methyl,
    R3는 수소, C1-20 알킬, C6-20 아릴, C1-20 알킬 C6-20 아릴, C6-20 아릴 C1-20 알킬, C1-20 알킬아미도, C6-20 아릴아미도, C1-20 헤테로알킬 또는 C3-20 헤테로아릴이며, R3 is hydrogen, C1-20 alkyl, C6-20 aryl, C1-20 alkyl C6-20 aryl, C6-20 aryl C1-20 alkyl, C1-20 alkylamido, C6-20 arylamido, C1-20 hetero Alkyl or C3-20 heteroaryl,
    R4 내지 R10는 수소이고,R4 to R10 are hydrogen,
    R13 내지 R15는 각각 독립적으로 수소, 치환 또는 비치환된 C1-20 알킬, 치환 또는 비치환된 C2-20 알케닐, 치환 또는 비치환된 C6-20 아릴, 치환 또는 비치환된 C1-20 알킬 C6-20 아릴, 치환 또는 비치환된 C6-20 아릴 C1-20 알킬, 치환 또는 비치환된 C1-20 헤테로알킬, 치환 또는 비치환된 C3-20 헤테로아릴, 또는 치환 또는 비치환된 C1-20 실릴이며,R13 to R15 are each independently hydrogen, substituted or unsubstituted C1-20 alkyl, substituted or unsubstituted C2-20 alkenyl, substituted or unsubstituted C6-20 aryl, substituted or unsubstituted C1-20 alkyl C6 -20 aryl, substituted or unsubstituted C6-20 aryl C1-20 alkyl, substituted or unsubstituted C1-20 heteroalkyl, substituted or unsubstituted C3-20 heteroaryl, or substituted or unsubstituted C1-20 silyl Is,
    X1과 X2는 각각 독립적으로 할로겐 또는 C1-20 알킬이고,X 1 and X 2 are each independently halogen or C 1-20 alkyl,
    M은 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)이다)M is titanium (Ti), zirconium (Zr) or hafnium (Hf))
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 화학식 B1은 하기 화학식 57 내지 112 중 하나인 폴리올레핀. Formula B1 is one of the following formulas 57 to 112 polyolefin.
    Figure PCTKR2017015021-appb-I000027
    Figure PCTKR2017015021-appb-I000027
    Figure PCTKR2017015021-appb-I000028
    Figure PCTKR2017015021-appb-I000028
    Figure PCTKR2017015021-appb-I000029
    Figure PCTKR2017015021-appb-I000029
    Figure PCTKR2017015021-appb-I000030
    Figure PCTKR2017015021-appb-I000030
  7. 하기 화학식 B1으로 표현되는 전이금속 화합물을 포함하는 올레핀 중합 촉매 하에, 올레핀계 단량체와 공단량체를 공중합하여 폴리올레핀을 형성하는 단계를 포함하는 폴리올레핀의 제조 방법.A method for producing a polyolefin comprising copolymerizing an olefin monomer and a comonomer to form a polyolefin under an olefin polymerization catalyst including a transition metal compound represented by the following Formula B1.
    <화학식 B1><Formula B1>
    Figure PCTKR2017015021-appb-I000031
    Figure PCTKR2017015021-appb-I000031
    (상기 화학식 B1에서, (In Chemical Formula B1,
    n은 1 내지 4이고, n is 1 to 4,
    X1과 X2는 각각 독립적으로 할로겐, C1-20 알킬, C2-20 알케닐, C2-20 알키닐, C6-20 아릴, C1-20 알킬 C6-20 아릴, C6-20 아릴 C1-20 알킬, C1-20 알킬아미도, C6-20 아릴아미도 또는 C1-20 알킬리덴이며, X1 and X2 are each independently halogen, C1-20 alkyl, C2-20 alkenyl, C2-20 alkynyl, C6-20 aryl, C1-20 alkyl C6-20 aryl, C6-20 aryl C1-20 alkyl, C1 -20 alkylamido, C6-20 arylamido or C1-20 alkylidene,
    R1 내지 R12는 각각 독립적으로 수소, 치환 또는 비치환된 C1-20 알킬, 치환 또는 비치환된 C2-20 알케닐, 치환 또는 비치환된 C6-20 아릴, 치환 또는 비치환된 C1-20 알킬 C6-20 아릴, 치환 또는 비치환된 C6-20 아릴 C1-20 알킬, 치환 또는 비치환된 C1-20 헤테로알킬, 치환 또는 비치환된 C3-20 헤테로아릴, 또는 치환 또는 비치환된 C1-20 실릴이고,R1 to R12 are each independently hydrogen, substituted or unsubstituted C1-20 alkyl, substituted or unsubstituted C2-20 alkenyl, substituted or unsubstituted C6-20 aryl, substituted or unsubstituted C1-20 alkyl C6 -20 aryl, substituted or unsubstituted C6-20 aryl C1-20 alkyl, substituted or unsubstituted C1-20 heteroalkyl, substituted or unsubstituted C3-20 heteroaryl, or substituted or unsubstituted C1-20 silyl ego,
    M은 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)이다)M is titanium (Ti), zirconium (Zr) or hafnium (Hf))
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 폴리올레핀은 하기 (1) 내지 (3)의 특성을 만족하는 폴리올레핀의 제조 방법.The said polyolefin is a manufacturing method of the polyolefin which satisfy | fills the characteristic of following (1)-(3).
    (1) 용융온도(Tm): 20~100℃(1) Melting temperature (Tm): 20 ~ 100 ℃
    (2) 수평균 공단량체 길이(n0): 1.0~1.1(2) Number average comonomer length (n 0 ): 1.0 to 1.1
    (3) 용융온도(Tm, ℃)와 밀도(a, g/㎤)와의 관계: 1598.7a-1333.2 > Tm > 1796.3a-1513.4(3) Relationship between melting temperature (T m , ° C) and density (a, g / cm 3): 1598.7a-1333.2> T m > 1796.3a-1513.4
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 올레핀계 단량체와 공단량체는 각각 에틸렌과 1-옥텐인 폴리올레핀의 제조 방법.Wherein said olefinic monomer and comonomer are ethylene and 1-octene, respectively.
PCT/KR2017/015021 2016-12-20 2017-12-19 Polyolefin and manufacturing method thereof WO2018117596A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0174379 2016-12-20
KR1020160174379A KR20180071592A (en) 2016-12-20 2016-12-20 Polyolefin and preparing method thereof

Publications (1)

Publication Number Publication Date
WO2018117596A1 true WO2018117596A1 (en) 2018-06-28

Family

ID=62626638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015021 WO2018117596A1 (en) 2016-12-20 2017-12-19 Polyolefin and manufacturing method thereof

Country Status (2)

Country Link
KR (1) KR20180071592A (en)
WO (1) WO2018117596A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020046391A (en) * 2000-12-13 2002-06-21 유현식 Heat-adhesive polyolefine resine composition
JP2007197722A (en) * 2005-12-28 2007-08-09 Nippon Polyethylene Kk Film composed of ethylenic resin composition
KR20080099529A (en) * 2007-05-09 2008-11-13 주식회사 엘지화학 Ethylene alpha-olefin copolymer
KR20140071142A (en) * 2012-12-03 2014-06-11 대림산업 주식회사 Catalyst composition for preparing multimodal polyolefin resin having superior moldability and mechanical properties and polymerization method using the same
KR101618460B1 (en) * 2014-11-28 2016-05-18 롯데케미칼 주식회사 Supported catalyst for olefin polymerization and process for preparing polyolefin using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020046391A (en) * 2000-12-13 2002-06-21 유현식 Heat-adhesive polyolefine resine composition
JP2007197722A (en) * 2005-12-28 2007-08-09 Nippon Polyethylene Kk Film composed of ethylenic resin composition
KR20080099529A (en) * 2007-05-09 2008-11-13 주식회사 엘지화학 Ethylene alpha-olefin copolymer
KR20140071142A (en) * 2012-12-03 2014-06-11 대림산업 주식회사 Catalyst composition for preparing multimodal polyolefin resin having superior moldability and mechanical properties and polymerization method using the same
KR101618460B1 (en) * 2014-11-28 2016-05-18 롯데케미칼 주식회사 Supported catalyst for olefin polymerization and process for preparing polyolefin using the same

Also Published As

Publication number Publication date
KR20180071592A (en) 2018-06-28

Similar Documents

Publication Publication Date Title
WO2010068045A2 (en) Hybrid supported metallocene catalyst, method for preparing the same, and method for preparing polyolefin polymers using same
CN109280119B (en) Olefin-based polymers
WO2011014022A2 (en) Metallocene compound, catalyst composition comprising the same, and olefinic polymers produced using the same
WO2011010891A2 (en) Novel post metallocene-type transition metal compound
WO2015057001A1 (en) Transition metal compound having heteroatom, a catalyst composition comprising same, and method for preparing polymer using same
US7569647B2 (en) Process for the copolymerization of ethylene
WO2022131693A1 (en) Olefin-based polymer and preparation method therefor
WO2017188588A1 (en) Isomeric metallocene catalyst and polyolefin resin prepared using same
KR102223718B1 (en) Ligand compound, transition metal compound, and catalystic composition comprising the same
WO2018117596A1 (en) Polyolefin and manufacturing method thereof
WO2019216541A1 (en) Transition metal compound for olefin polymerization catalyst, and olefin polymerization catalyst including same
CN113286831A (en) Substituted bis 2-indenyl metallocene compounds
WO2020111777A1 (en) Polypropylene resin having excellent melt characteristics, and preparation method therefor
WO2012039560A2 (en) Ethylene copolymer having improved hygienic property and process for preparing the same
KR101792934B1 (en) Olefin-based elastomer
KR101920401B1 (en) Transition metal compound used to prepare catalyst for polymerizing olefin, catalyst for polymerizing olefin comprising the same and polyolefin polymerized by using the same
WO2012176946A1 (en) Transition metal catalyst system with excellent copolymerization and preparation method of ethylene homopolymer or copolymer of ethylene and α-olefin using same
WO2019093720A1 (en) Transition metal compound for olefin polymerization catalyst, olefin polymerization catalyst comprising same, and polyolefin polymerized using same
WO2019182290A1 (en) Transition metal compound for olefin polymerization catalyst, olefin polymerization catalyst including same, and polyolefin polymerized by using olefin polymerization catalyst
WO2023096368A1 (en) Ethylene alpha-olefin copolymer, and preparing method thereof
WO2024112084A1 (en) Ethylene alpha-olefin copolymer and method for preparing same
EP3524612B1 (en) Ligand compound, transition metal compound, and catalyst composition comprising the transition metal compound
WO2024112038A1 (en) Method for preparing ethylene-alpha-olefin copolymer
KR102558310B1 (en) Transition metal compound, catalystic composition comprising the same, and methode for preparing polymers using the same
WO2023096308A1 (en) Polyolefin copolymer having improved light transmittance and productivity, and film prepared using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17883115

Country of ref document: EP

Kind code of ref document: A1