WO2018117488A1 - Austenitic stainless steel with excellent sulfuric acid corrosion resistance - Google Patents

Austenitic stainless steel with excellent sulfuric acid corrosion resistance Download PDF

Info

Publication number
WO2018117488A1
WO2018117488A1 PCT/KR2017/014202 KR2017014202W WO2018117488A1 WO 2018117488 A1 WO2018117488 A1 WO 2018117488A1 KR 2017014202 W KR2017014202 W KR 2017014202W WO 2018117488 A1 WO2018117488 A1 WO 2018117488A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion
sulfuric acid
stainless steel
less
solution
Prior art date
Application number
PCT/KR2017/014202
Other languages
French (fr)
Korean (ko)
Inventor
유한진
김영태
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2018117488A1 publication Critical patent/WO2018117488A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Definitions

  • the present invention relates to an austenitic stainless steel having excellent sulfuric acid corrosion resistance.
  • SO X sulfur oxide
  • the low alloy steel disclosed in the above patent documents cannot exhibit sufficient corrosion resistance for a facility using a high S containing fuel having an S content of more than 2%. This is because the higher the S content, the higher the concentration of sulfuric acid in the exhaust gas, so that the amount of sulfuric acid condensation due to temperature decreases, so that the corrosive environment is severe. Due to these problems, the development of new steel grades that can secure stable corrosion resistance is required.
  • Patent Document 4 Korean Patent Laid-Open Publication No. 2000-0068736
  • high alloy austenitic stainless steel, which is% has been disclosed, there are limitations in manufacturing and processing, such as poor workability and cracking during hot rolling.
  • Patent Document 0002 JP 1997025536 A
  • Patent Document 0003 JP 1998110237 A
  • Patent Document 0004 KR 1020000068736 A
  • the present invention by adjusting the content of the component elements affecting the sulfuric acid corrosion characteristics appropriately, by controlling the sulfuric acid corrosion index (SCI) derived from the content of these elements, It is an object to provide austenitic stainless steel having excellent hot workability.
  • SCI sulfuric acid corrosion index
  • Austenitic stainless steel in weight percent, carbon (C): 0.05% or less (excluding 0%), nitrogen (N): 0.05% or less (excluding 0%), silicon (Si): 1.0 to 2.0%, manganese (Mn): 1.0% or less (excluding 0%), chromium (Cr): 15 to 18%, nickel (Ni): 6.5 to 9.0%, copper (Cu): 2.0 ⁇ 5.0%, molybdenum (Mo): 0.5 to 2.0%, residual iron (Fe) and inevitable impurities, characterized in that the sulfuric acid corrosion index (SCI) defined by the following formula (1) is 40 or more.
  • SCI sulfuric acid corrosion index
  • [Cr], [Ni], [Mo], and [Cu] in Formula 1 refer to the weight% of Cr, Ni, Mo, and Cu, respectively.
  • the sulfuric acid corrosion index may be preferably 42 to 70.
  • the stainless steel, phosphorus (P): 0.05% or less (excluding 0%), sulfur (S): 0.03% or less (excluding 0%), niobium (Nb) : 1.0% or less (excluding 0%), titanium (Ti): 0.5% or less (excluding 0%) and tungsten (W): 1.0% or less (excluding 0%) Can be.
  • the austenitic stainless steel is austenite-based in a boiling solution in which a 0.2% concentration of ferric chloride (FeCl 3 ) solution is added to a 50% sulfuric acid solution
  • the corrosion loss of the gas phase and immersion parts of the stainless steel may be 20 mg / m 2 hr or less.
  • corrosion loss means an amount of evaporated boiling solution condensed on the surface of an austenitic stainless steel
  • immersion corrosion loss refers to an austenitic stainless steel. It means the amount of corrosion by dipping in boiling solution.
  • the austenitic stainless steel is a gas phase part of the austenitic stainless steel in a boiling solution in which 0.2% hydrochloric acid (HCl) solution is added to a 50% sulfuric acid solution
  • immersion corrosion loss may be 20 mg / m 2 hr or less.
  • the austenitic stainless steel when the immersion in sulfuric acid solution of 50% concentration may be formed a continuous Cu concentration layer on the surface of the stainless steel.
  • the austenitic stainless steel, the Cu content ratio in the Cu enriched layer region may be 3 to 10 times the Cu content ratio in the non-concentrated layer region,
  • the content ratio is defined by Equation 2 below.
  • [Cr], [Fe], [Ni], and [Cu] mean the weight% of Cr, Fe, Ni, and Cu, respectively.
  • an austenitic stainless steel having excellent sulfuric acid corrosion resistance and good hot workability in an environment where sulfuric acid of high concentration condenses can be provided by appropriately adjusting the content of each component element affecting sulfuric acid corrosion resistance.
  • the austenitic stainless steel according to the present invention can be used as a member of a heat exchanger, a stack, a chimney, which is a facility in which exhaust gases are concentrated and condensed, such as a thermal power boiler and an industrial boiler. It is also suitable for use as a member of GGH (gas-gas-heater) of soot desulfurization equipment.
  • GGH gas-gas-heater
  • Example 1 is a graph showing the polarization polarization characteristics of 50% H 2 SO 4 aqueous solution of steel specimens having the composition of Example 6, Comparative Example 2, and Comparative Example 3.
  • FIG. 2 shows photographs and hot work evaluation criteria for steel specimens prepared according to Example 1 and Comparative Example 7.
  • FIG. 2 shows photographs and hot work evaluation criteria for steel specimens prepared according to Example 1 and Comparative Example 7.
  • Figure 4 is a graph showing the corrosion loss of the immersion portion according to the SCI value in the corrosion solution (1) (50% H 2 SO 4 + 0.2% FeCl 3 solution).
  • FIG. 7 is according to Example 1, Example 5, Comparative Example 2, Comparative Example 5, Comparative Example 6, Comparative Example 9 and Comparative Example 10 in the Greendes solution (17% H 2 SO 4 + 0.35% HCl solution) It is a graph showing the corrosion loss of the gas phase portion and immersion portion of the manufactured steel specimens.
  • Example 8 is a graph showing surface coating composition analysis results according to the depth of the steel specimen after immersing the steel specimen of Example 3 (Cu content: 4.1%) in 50% H 2 SO 4 solution.
  • FIG. 1 It is a schematic diagram which shows the surface film formation mechanism of said FIG.
  • Austenitic stainless steel in weight percent, carbon (C): 0.05% or less (excluding 0%), nitrogen (N): 0.05% or less (excluding 0%), Si : 1.0 to 2.0%, manganese (Mn): 1.0% or less (excluding 0%), chromium (Cr): 15 to 18%, nickel (Ni): 6.5 to 9.0%, copper (Cu): 2.0 to 5.0% , Molybdenum (Mo): 0.5 to 2.0%, residual iron (Fe) and inevitable impurities, characterized in that the sulfuric acid corrosion index (SCI) defined by the following formula (1) is 40 or more.
  • SCI sulfuric acid corrosion index
  • the austenitic stainless steel having excellent sulfuric acid corrosion resistance of the present invention is, in weight%, carbon (C): 0.05% or less (excluding 0%), nitrogen (N): 0.05% or less (excluding 0%), Si: 1.0 to 2.0%, manganese (Mn): 1.0% or less (excluding 0%), chromium (Cr): 15 to 18%, nickel (Ni): 6.5 to 9.0%, copper (Cu): 2.0 to 5.0 %, Molybdenum (Mo): 0.5 to 2.0%, residual iron (Fe) and inevitable impurities, characterized in that the sulfuric acid corrosion index (SCI) defined by the following formula (1) is 40 or more.
  • SCI sulfuric acid corrosion index
  • [Cr], [Ni], [Mo], and [Cu] in Formula 1 refer to the weight% of Cr, Ni, Mo, and Cu, respectively.
  • Carbon (C) is an austenite forming element, and is an effective element for increasing the strength of a material by solid solution strengthening.
  • the content of carbon (C) is excessively high, it is easily combined with chromium (Cr), which is effective for improving corrosion resistance, to form Cr carbide, which lowers the content of chromium (Cr) around grain boundaries, thereby reducing corrosion resistance of steel. . Therefore, in the present invention, the content of carbon (C) is limited to 0.05% or less in order to maximize corrosion resistance.
  • Nitrogen (N) is an austenite stabilizing element and is an element that simultaneously improves high temperature strength and pitting resistance. However, when the nitrogen (N) is excessively added, the blown (pin hole), pin holes (pin hole), etc. during the casting to cause surface defects, such as hot workability is poor, so the content of nitrogen (N) Limit to 0.05%.
  • Silicon (Si) is an element added as a deoxidation element, and the ferrite phase stability increases when the content is increased as a ferrite phase forming element. Increasing the content of silicon (Si) will increase the formula potential and oxidation resistance. Therefore, in the case of the present invention, it is preferable to add at least 1.0% of silicon (Si) content, and when the content of silicon (Si) is increased to 2.0% or more, problems such as an increase in steelmaking Si inclusions and surface defects occur. It is limited not to exceed 2.0% or more at maximum.
  • MnS manganese sulfide
  • the content of the manganese (Mn) is limited to 1.0% or less.
  • the content of the manganese (Mn) is excessively reduced since problems such as an increase in the purification cost may occur, preferably the content of the manganese may be limited to 0.6% or more. Therefore, the preferred content range of the manganese in the present invention may be 0.6 ⁇ 1.0%.
  • Chromium (Cr) is an essential element for securing corrosion resistance of austenitic stainless steel.
  • constituents of the austenitic stainless steel according to the present invention contain at least 15% of chromium (Cr) together with Cu and Mo in amounts described below, it is possible to ensure good corrosion resistance in a sulfuric acid atmosphere in which the high concentration of sulfuric acid condenses. Can be.
  • the content of chromium (Cr) is more than 18%, even if Cu and Mo are added in combination, the corrosion resistance decreases and the cost increases in a high sulfuric acid atmosphere. Therefore, in the present invention, the chromium (Cr) content is limited to 15 to 18%.
  • Nickel (Ni) is an austenite stabilizing element, and at the same time, it is an essential element for securing corrosion resistance in an environment where high concentration of sulfuric acid is condensed.
  • content of nickel (Ni) is less than 6.5%, it is impossible to secure corrosion resistance in an environment where high concentration of sulfuric acid is condensed.
  • content of nickel (Ni) exceeds 9%, the effect of increasing the corrosion resistance compared to the input amount is It does not appear and the high price of nickel makes the economy less expensive. Therefore, in this invention, content of nickel (Ni) is restrict
  • Copper (Cu) is an essential element for securing corrosion resistance in an environment where high concentration of sulfuric acid is condensed.
  • the content of copper (Cu) is less than 2.0%, it is impossible to secure corrosion resistance in an environment where high concentration of sulfuric acid is condensed, whereas when the content of copper (Cu) exceeds 5.0%, Corrosion resistance increases, but problems such as a sudden drop in hot workability occur. Therefore, in the present invention, the content of copper (Cu) is limited to 2.0 to 5.0%.
  • Molybdenum (Mo) is an effective element for securing the corrosion resistance of austenitic stainless steel.
  • the content of molybdenum (Mo) is lowered, it is difficult to secure corrosion resistance, but when including more than 0.5% molybdenum (Mo) with the above-described copper (Cu) it can maximize the corrosion resistance in the environment of high concentration of sulfuric acid condensed. .
  • the content of molybdenum (Mo) exceeds 2.0%, the corrosion resistance is increased, but the hot workability is poor, manufacturing difficulties occur, and the economical price is low due to the high price of the molybdenum (Mo). Therefore, in the present invention, the content of molybdenum (Mo) is limited to 0.5 to 2.0%.
  • the austenitic stainless steel according to the present invention is phosphorus (P): 0.05% or less (excluding 0%), sulfur (S): 0.03% or less (excluding 0%), niobium (Nb): 1.0% Or less (excluding 0%), titanium (Ti): 0.5% or less (excluding 0%), and tungsten (W): 1.0% or less (excluding 0%) may further include one or more kinds.
  • P phosphorus
  • S sulfur
  • S 0.03% or less
  • Nb niobium
  • Ti titanium
  • W tungsten
  • Phosphorus (P) is an element that can be incorporated as an impurity in steel production, and may cause deterioration of hot workability and corrosion resistance, so that the content is as small as possible. In particular, when the content of phosphorus (P) exceeds 0.05%, the corrosion resistance is remarkably reduced in the environment where the high concentration of sulfuric acid is condensed.
  • Sulfur (S) is an impurity that is inevitably contained in steel and is an element that degrades hot workability and corrosion resistance, so the content thereof is preferably as small as possible.
  • sulfur (S) exceeds 0.03%, corrosion resistance decreases significantly in an environment where sulfuric acid of high concentration is condensed.
  • niobium (Nb) When niobium (Nb) is included in the components of the austenitic stainless steel, carbon (C) may be fixed to act to increase corrosion resistance, intergranular corrosion resistance. However, when the content of niobium (Nb) is greater than 1.0%, the above-mentioned nitrogen (N) and nitride may be formed, thereby reducing corrosion resistance and hot workability.
  • titanium (Ti) When titanium (Ti) is included in the components of the austenitic stainless steel, carbon (C) may be fixed as in niobium (Nb) to increase corrosion resistance, intergranular corrosion resistance. However, when the content of titanium (Ti) is greater than 1.0%, the above-mentioned nitrogen (N) and nitride may be formed, thereby reducing corrosion resistance and hot workability.
  • tungsten (W) When tungsten (W) is included in the components of the austenitic stainless steel, it may act to increase corrosion resistance in an environment where high concentration of sulfuric acid is condensed. However, when the content of tungsten (W) exceeds 1.0%, the effect of increasing the corrosion resistance compared to the input amount may be insignificant and economic efficiency may be reduced.
  • sulfuric acid corrosion index defined by the following formula (1) derived from the content of Cr, Ni, Mo and Cu on the corrosion resistance of the sulfuric acid atmosphere in the austenitic stainless steel element according to the present invention Is characterized in that more than 40.
  • [Cr], [Ni], [Mo] and [Cu] in the formula 1 refer to the weight percent of Cr, Ni, Mo and Cu, respectively.
  • the corrosion loss value in an environment where high concentration of sulfuric acid is condensed may be higher than 20 mg / m 2 hr.
  • the corrosion reduction target value is determined by the value of corrosion loss in a high concentration of sulfuric acid boiling solution of a 6% Mo-containing austenitic stainless steel having excellent corrosion resistance among steels commonly used in the desulfurization equipment member.
  • the austenite in a boiling solution in which a 0.2% concentration of ferric chloride (FeCl 3 ) solution is added to a 50% sulfuric acid solution The austenitic stainless steel in a boiling solution in which the gas phase and immersion corrosion loss of nitrous stainless steel is 20 mg / m 2 hr or less, and 0.2% hydrochloric acid (HCl) solution is added to 50% sulfuric acid solution. It can be seen that the corrosion loss of the gas phase part and the immersion part is 20 mg / m 2 hr or less.
  • the sulfuric acid corrosion index (SCI) is 42 to 70, it is more preferable to provide an austenitic stainless steel having excellent corrosion resistance in an environment where high concentration of sulfuric acid is condensed, and at the same time, also excellent in hot workability. .
  • a continuous Cu thickening layer may be formed on the surface of the stainless steel.
  • the Cu content ratio in the Cu enriched layer region may be 3 to 10 times the Cu content ratio in the non-concentrated layer region, and the content ratio of Cu is defined by Equation 2 below.
  • [Cr], [Fe], [Ni], and [Cu] mean the weight% of Cr, Fe, Ni, and Cu, respectively.
  • the Cu concentrated layer is the film layer on the Cu of the austenitic stainless steel constituting elements in the H 2 SO 4 solution is preferentially dissolved by produced by forming a continuous Cu precipitates in the steel surface, the corrosion resistance in H 2 SO 4 solution It increases the role.
  • FIG. 9 schematically illustrates the above-described Cu thickening layer generating mechanism.
  • Comparative Example 1 An enamel coated specimen of the stainless steel specimen having the same chemical composition as that of Comparative Example 2.
  • the 50% H 2 SO 4 aqueous solution environment simulates the section showing the maximum corrosion rate as a result of measuring the corrosion resistance according to the sulfuric acid concentration change.
  • the steel having a composition of Comparative Example 2 is a carbon steel base sulfuric acid resistant steel (Cu content: 0.5%) mainly used in gas gas heater (GGH) parts of a conventional soot desulfurization facility, and a steel having a composition of Comparative Example 3 Is an STS 304 steel (Cu content: 0.1%), and the steel having the composition of Example 6 is an austenitic stainless steel in which the alloy component is configured so that the Cu content is 3.0%.
  • FIG. 1 Details that can be confirmed from FIG. 1 are as follows.
  • sulfuric acid resistant steel of Comparative Example 2 is -350 mV
  • STS 304 of Comparative Example 3 is -300 mV
  • the steel manufactured according to Example 6 exhibits a natural potential value of -250 mV. From this, it can be seen that in the case of the steel having a composition of Example 6 having a Cu content of 3%, the natural potential is higher than that of the steel having the compositions of Comparative Examples 2 and 3.
  • the sulfuric acid resistant steel (Cu content: 0.5%) of Comparative Example 2 is 500 ⁇ A level
  • STS 304 steel (Cu content: 0.1%) of Comparative Example 3 is 10mA level
  • the steel produced according to Example 6 (Cu content: 3.0%) can be seen that represents the corrosion current density in the state of natural potential of 50 mA level. That is, the STS 304 steel (Comparative Example 3) is about 10 times higher than the sulfuric acid resistant steel (Comparative Example 2), and the steel manufactured according to Example 6 is about 10 times higher than the sulfuric acid resistant steel (Comparative Example 2). Corrosion current density value in the natural potential state about twice as low, it can be seen that the corrosion current density in the state at the natural potential tends to increase with increasing Cu content.
  • the sulfuric acid resistant steel of Comparative Example 2 is 0.5A level
  • the STS 304 steel of Comparative Example 3 is 0.1A level
  • the steel produced according to Example 6 has a maximum current density according to potential application of 0.02A level. It can confirm that it shows. From this, it can be seen that the steel having a composition of Example 6 having a Cu content of 3% has a maximum current density value several tens of times lower than that of steels having the compositions of Comparative Examples 2 and 3.
  • the corrosion current density of the STS 304 steel (Comparative Example 3) is higher than that of sulfuric acid resistant steel (Comparative Example 2). Its corrosion resistance is inferior to that of sulfuric acid steel (Comparative Example 2), and its use is not appropriate.
  • the corrosion current density in the natural potential state has a low value, but the current density rapidly increases as the potential is applied.
  • the corrosion rate of sulfuric acid resistant steels increases rapidly because H 2 SO 4 does not exist alone, but metal ions, which are oxidants, coexist.
  • SCI sulfuric acid corrosion index
  • SCI Sulfuric acid corrosion index
  • the sulfuric acid corrosion index (SCI) is to index the effect of the Cr, Ni, Mo and Cu content on the corrosion resistance of the steel specimen in the environment of high concentration sulfuric acid through various experiments, when the SCI is 40 or more in sulfuric acid atmosphere It was judged that the corrosion resistance was excellent.
  • the sulfuric acid corrosion index (SCI) is a value calculated according to the following formula (1).
  • [Cr], [Ni], [Mo] and [Cu] in Formula 1 refer to the weight% of Cr, Ni, Mo, and Cu, respectively.
  • the hot workability was evaluated by the width and the depth of cracks generated at the edges of the hot rolled plates subjected to the hot rolling. In this case, it is determined that the hot workability is secured in the case of steel specimens having a width and depth of 10 mm or less, and is marked with " ⁇ ", and the hot workability is not determined in the case of steel specimens having a width and depth of cracks of 10 mm or more. As indicated by "X”.
  • the structure of the steel specimens completed with pickling was observed using a ferrite scope (Fisher, Ferritescope MP30) and an optical microscope. At this time, the steel specimen having a ferrite single-phase structure "F”, the steel specimen having an austenitic single-phase structure "A”, the specimen having an austenitic + martensite structure is marked as "A + M”.
  • the steel specimens prepared according to Examples and Comparative Examples were cut into a width of 30 mm ⁇ length of 30 mm, and the surface of the cut steel specimens were ground with # 120 abrasive paper, and then a mother liquor solution containing a high concentration of sulfuric acid (corrosive solution) ) was tested for corrosion. At this time, the corrosion test was carried out in the ISO 28706 method.
  • a glass ball was placed on the bottom of the 3L beaker, and a condenser was installed on the top of the beaker to condense hot gas and water vapor. And, the corrosion solution was added to the extent that only a part of the glass ball in the beaker is submerged.
  • the corrosion test was carried out using three kinds of corrosion solutions, each of the corrosion solution composition and the corrosion test conditions are as follows.
  • Corrosion solution (1) is a solution in which 0.2% FeCl 3 solution is added to 50% sulfuric acid, which simulates an environment in which a small amount of oxidant is added to an environment where high concentration of sulfuric acid is condensed.
  • the corrosion solution (1) is a solution that simulates the environment, found that the Fe ions generated from trace amounts of oxidant is contained as a result of analyzing the gas gas heater (GHG) environmental solution of the desulfurization facility.
  • GSG gas gas heater
  • the corrosion test conditions are as follows, the weight difference before and after the corrosion test was measured to calculate the corrosion loss per unit time (hr) and unit area (m2), and the results are shown in Table 2 below.
  • the corrosion test in the corrosion solution (1) was performed on the steel having an austenitic structure and the steel having a ferrite structure.
  • Corrosion solution (2) is a solution in which 0.2% HCl solution is added to 50% sulfuric acid, which simulates an environment in which a small amount of chloride is added to an environment where a high concentration of sulfuric acid is condensed.
  • the corrosion solution (2) is a solution that simulates the environment found to contain Cl ions generated from a small amount of chloride as a result of analyzing the gas gas heater (GHG) environmental solution of the desulfurization facility.
  • GSG gas gas heater
  • the corrosion test conditions are as follows, and the weight loss before and after the corrosion test was measured to calculate the corrosion loss per unit time (hr) and unit area (m2), and the results are shown in Table 3 below.
  • Table 2 showing the results of corrosion loss in the corrosion solutions (1) and (2) is shown below.
  • FIGS. 3 and 4 show graphs of gas phase corrosion loss and immersion corrosion loss depending on the SCI value in the corrosion solution 1 (50% H 2 SO 4 + 0.2% FeCl 3 solution), respectively.
  • the graph was created using the data of Examples 1 to 6, Comparative Examples 1 to 8, and Comparative Example 11 described in Table 2 above.
  • FIG. 3 shows a graph of corrosion loss of the gas phase according to the SCI value in the corrosion solution (1)
  • SCI sulfuric acid corrosion index
  • FIG. 4 which shows a graph of corrosion loss of the immersion part according to the SCI value in the corrosion solution (1), the corrosion loss is less than the reference value of 20 mg / m 2 hr in all steel specimens except the steel specimens of Comparative Examples 1 and 2.
  • the corrosion loss is less than the reference value of 20 mg / m 2 hr in all steel specimens except the steel specimens of Comparative Examples 1 and 2.
  • the potential was gradually increased with the addition of the oxidizing agent, and the potential was -0.2 V vs. .
  • sulfuric acid resistant steels Comparative Examples 1 to 2 of the carbon steel component
  • the corrosion rate increases rapidly with the addition of the oxidizing agent, thereby increasing the corrosion loss.
  • FIG. 5 shows a graph of corrosion loss of gas phase according to SCI value in corrosion solution (2)
  • SCI sulfuric acid corrosion index
  • the corrosion loss value is lower than the 20 mg / m 2 hr target value of corrosion reduction.
  • the sulfuric acid corrosion index (SCI) value should be 40 or more in order to have excellent corrosion resistance in the gas phase of the corrosion solution (2).
  • FIG. 6 which shows a graph of immersion corrosion loss according to the SCI value in the corrosion solution (2)
  • the corrosion loss gradually decreases as the sulfuric acid corrosion index (SCI) increases, unlike the result of immersion in FIG. Able to know. If chloride is added to the environment where sulfuric acid is concentrated in high concentration, corrosion is promoted by chloride, but even if the sulfuric acid corrosion index (SCI) value is above 40, it is lower than 20mg / m 2 hr. You can see that it has.
  • FIG. 7 is a graph showing the corrosion loss value of the gas phase portion and the immersion portion corrosion value in the Greendes solution for the steel specimens of the Examples and Comparative Examples described in Table 3. Referring to FIG. 7, it can be seen that in the steel specimens of the comparative examples, the immersion corrosion loss value is larger than the gas phase corrosion loss value.
  • austenitic stainless steels having compositions of Examples 1 and 5 have excellent corrosion loss characteristics in immersion and gas phase mode environments, and thus can be suitably used in a GGH corrosion atmosphere of a desulfurization facility.
  • Evaluation example 4 film composition analysis evaluation
  • Example 8 and 10 show the results of the film composition analysis according to the depth after immersion in the H 2 SO 4 solution for the steel specimen of Example 3 having a Cu content of 4.1% and the steel specimen of Comparative Example 8 having a Cu content of 1.6%. have.
  • the coating composition analysis was performed by immersing each steel specimen in 50% H 2 SO 4 solution at room temperature for about 5 minutes, and then drying and using XPS analysis.
  • Example 3 in the case of the steel specimen having the composition of Example 3, it was found that Cu and Ni were concentrated about 3 to 10 times compared to the base metal within about 6 nm in the depth direction from the surface after being immersed in H 2 SO 4 solution.
  • the present inventors observed the steel specimen coating characteristics of Example 3 through TEM observation, and found that Cu was continuously distributed on the surface of the steel specimen.
  • 9 is a schematic diagram showing a continuous film formation mechanism.
  • the Cu content is more than 2% is to increase the corrosion resistance of the Cu in the preferentially dissolved, to form a continuous Cu precipitates on the surface of steel specimens H 2 SO 4 solution in H 2 SO 4 solution.
  • the Cu content is 2% or less, the Cu precipitates are discontinuously deposited on the surface of the steel specimen, and corrosion occurs in the place where Cu is not deposited, resulting in corrosion oxides, and as a result, corrosion resistance in the H 2 SO 4 solution. Is lowered.
  • Austenitic stainless steel having excellent sulfuric acid corrosion resistance according to embodiments of the present invention is used in heat exchangers, stacks and chimneys, and soot degassing devices used in thermal power generation or industrial boilers, and in sulfuric acid environments. It is applicable to various equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

The present invention relates to austenitic stainless steel comprising, in percentage by weight: 0.05% or less (excluding 0%) of carbon (C); 0.05% or less (excluding 0%) of nitrogen (N); 1.0-2.0% of Si; 1.0% or less (excluding 0%) of manganese (Mn); 15-18% of chromium (Cr); 6.5-9.0% of nickel (Ni); 2.0-5.0% of copper (Cu); 0.5-2.0% of molybdenum (Mo); and the balance being Fe and inevitable impurities, wherein the austenitic stainless steel has a sulfuric acid corrosion index (SCI) of 40 or more that is represented by the formula: SCI = - [Cr] + 4[Ni] + 5[Mo] + 12 [Cu] (where [Cr], [Ni], [Mo], and [Cu] represent a weight percentage of Cr, Ni, Mo, and Cu, respectively). The present invention can provide austenitic stainless steel having excellent corrosion resistance to sulfuric acid dew point corrosion that causes various problems in a heat exchanger, stack, and chimney used for thermal power generation or industrial boilers, members for flue gas desulfurization facilities used in various industrial fields, or various members for equipment used in sulfuric acid environments.

Description

내황산 부식특성이 우수한 오스테나이트계 스테인리스강Austenitic stainless steel with excellent sulfuric acid corrosion resistance
본 발명은 내황산 부식특성이 우수한 오스테나이트계 스테인리스강에 관한 것이다.The present invention relates to an austenitic stainless steel having excellent sulfuric acid corrosion resistance.
화력발전용이나 산업용 보일러의 연료로서 사용되는 석유나 석탄 등 소위 화석 연료에는 황(S)이 다량으로 함유되어 있다. 이 때문에 화석 연료가 연소되면 배기가스 중에 황산화물(SOX)가 생성된다. 배기가스의 온도가 저하되면, 황산화물(SOX)가 가스 중의 수분과 반응해서 황산이 되고, 노점 이하의 저온에서는 각종부재 표면에서 결로하고, 이것에 의해 황산노점부식이 발생한다. 마찬가지로, 각종 산업에 사용되는 배연탈황장치에 있어서도 황산화물(SOX)를 함유하는 가스가 흐르는 경우, 그 온도가 저하하면, 황산노점부식이 발생하게 된다.So-called fossil fuels such as petroleum and coal, which are used as fuels for thermal power generation or industrial boilers, contain a large amount of sulfur (S). For this reason, when the fossil fuel is burned, sulfur oxides (SO X ) are generated in the exhaust gas. When the temperature of the exhaust gas decreases, and this reacts with moisture in the gas it is sulfur oxide (SO X) sulfuric acid, at low temperatures below the dew point of the dew condensation on the surface of various members, and the sulfuric acid dew point corrosion develops. Similarly, in the flue gas desulfurization apparatus used in various industries, when the gas containing sulfur oxides (SO X ) flows, sulfuric acid dew point corrosion occurs when the temperature decreases.
이와 같은 황산노점부식 문제로 인해, 황산화물을 함유하는 열교환기 등의 부재에서는 부재표면에 황산이 결로하지 않도록 배기가스 온도를 150℃ 이상의 높은 온도로 유지하고 있다. 그러나, 최근 에너지 수요의 증대와 에너지 효율 증대 관점에서, 열에너지를 유효하기 회수하기 위해 황산화물이 함유된 배기가스의 온도를 황산노점 이하의 온도로 낮게 유지하는 경향이 있고, 또한 발전설비의 유지보수 등의 환경에서 황산화물이 함유된 배기가스의 온도를 황산노점 이하의 온도로 낮게 유지하는 경향이 있다. 이에 따라, 황산노점부식 문제를 해소할 수 있는, 즉 황산 환경에서 내식성을 발휘하는 강재의 개발이 진행되어 왔다.Due to the problem of dew point corrosion of sulfuric acid, in a member such as a heat exchanger containing sulfur oxide, the exhaust gas temperature is maintained at a high temperature of 150 ° C. or higher so that sulfuric acid does not condense on the member surface. However, in view of the recent increase in energy demand and increase in energy efficiency, there is a tendency to keep the temperature of the exhaust gas containing sulfur oxides lower than the dew point of sulfuric acid in order to effectively recover the thermal energy, and also to maintain the power generation equipment. There is a tendency to keep the temperature of the exhaust gas containing sulfur oxides at a temperature below the dew point of sulfuric acid in such an environment. Accordingly, development of steel materials capable of solving the problem of dew point corrosion of sulfuric acid, that is, exhibiting corrosion resistance in sulfuric acid environment has been in progress.
예를 들면, 특허문헌 1(일본 공개특허공보 제1963-14585호)에는 내황산 부식성에 유효한 Sb, Cu를 복합 첨가한 저합금강이 개시되어 있다. 그리고, 특허문헌 2(일본 공개특허공보 제1997-25536호)에는 구리 함유 강에 Sb 또는 Sn을 함유시켜 내황산성을 유지하면서 내염산성을 향상시킨 강이 개시되어 있다. 또한, 특허문헌 3(일본 공개특허공보 제1998-110237호)에는 상기 특허문헌 2와 동일한 강 성분으로 내황산성, 내염산성을 향상시키는 동시에, Mo 또는 B를 함유시켜 열간 가공성을 개선한 강이 개시되어 있다. For example, Patent Document 1 (Unexamined-Japanese-Patent No. 1963-14585) discloses a low alloy steel in which Sb and Cu are compositely added to sulfuric acid corrosion resistance. Patent Literature 2 (JP-A-1997-25536) discloses a steel containing Sb or Sn in a copper-containing steel and improving hydrochloric acid resistance while maintaining sulfuric acid resistance. In addition, Patent Document 3 (Japanese Laid-Open Patent Publication No. 1998-110237) discloses steels having the same steel components as those described in Patent Document 2, improving sulfuric acid resistance and hydrochloric acid resistance, and containing Mo or B to improve hot workability. It is.
그러나, 상기 특허문헌들에 개시된 저합금강은 S 함유량이 2%를 넘는 고S 함유 연료를 사용하는 설비에 대하여서는 충분한 내식성을 발휘할 수 없다. 이는, S 함유량이 높아지면 배기 가스 중의 황산 농도가 높아져서 온도 저하에 따른 황산 응결량이 증대되기 때문에 부식환경이 가혹하게 되기 때문이다. 이러한 문제점 등으로 인하여 안정적인 내식성을 확보할 수 있는 새로운 강종의 개발이 요구되고 있다.However, the low alloy steel disclosed in the above patent documents cannot exhibit sufficient corrosion resistance for a facility using a high S containing fuel having an S content of more than 2%. This is because the higher the S content, the higher the concentration of sulfuric acid in the exhaust gas, so that the amount of sulfuric acid condensation due to temperature decreases, so that the corrosive environment is severe. Due to these problems, the development of new steel grades that can secure stable corrosion resistance is required.
이에, 고농도 황산이 응결하는 환경(황산노점환경)에서의 내식성을 개선하는 방안으로서, 특허문헌 4(대한민국 공개특허공보 제2000-0068736호)는 Ni 함량이 12 ~ 27% Mo 함량이 2 ~ 5%인 고합금 오스테나이트 스테인리스강에 대해 개시하고 있으나, 열간가공성이 떨어져 열간압연 과정에서 크랙이 발생하는 등 제조 및 가공상의 제약이 있었다.Accordingly, as a method for improving the corrosion resistance in an environment where sulfuric acid is concentrated (sulfuric acid dew point environment), Patent Document 4 (Korean Patent Laid-Open Publication No. 2000-0068736) has a Ni content of 12 to 27% and a Mo content of 2 to 5 Although high alloy austenitic stainless steel, which is%, has been disclosed, there are limitations in manufacturing and processing, such as poor workability and cracking during hot rolling.
(특허문헌 0001) JP 1963014585 A(Patent Document 0001) JP 1963014585 A
(특허문헌 0002) JP 1997025536 A(Patent Document 0002) JP 1997025536 A
(특허문헌 0003) JP 1998110237 A(Patent Document 0003) JP 1998110237 A
(특허문헌 0004) KR 1020000068736 A(Patent Document 0004) KR 1020000068736 A
본 발명은 이러한 종래의 문제점을 해결하기 위해, 내황산 부식특성에 영향을 미치는 성분 원소의 함량을 적절히 조절하고, 이들 원소의 함량으로부터 도출한 황산부식지수(SCI)를 제어함으로써 내황산 부식특성 및 열간가공성이 우수한 오스테나이트계 스테인리스강을 제공하는데 그 목적이 있다.In order to solve such a conventional problem, the present invention, by adjusting the content of the component elements affecting the sulfuric acid corrosion characteristics appropriately, by controlling the sulfuric acid corrosion index (SCI) derived from the content of these elements, It is an object to provide austenitic stainless steel having excellent hot workability.
본 발명의 일 실시예에 따른 오스테나이트계 스테인리스강은, 중량%로, 탄소(C): 0.05% 이하(0%는 제외), 질소(N): 0.05% 이하(0%는 제외), 실리콘(Si): 1.0 ~ 2.0%, 망간(Mn): 1.0% 이하(0%는 제외), 크롬(Cr): 15 ~ 18%, 니켈(Ni): 6.5 ~ 9.0%, 구리(Cu): 2.0 ~ 5.0%, 몰리브덴(Mo): 0.5 ~ 2.0%, 잔부 철(Fe) 및 불가피한 불순물을 포함하고, 하기의 식 (1)으로 정의되는 황산부식지수(SCI)가 40 이상인 것을 특징으로 한다.Austenitic stainless steel according to an embodiment of the present invention, in weight percent, carbon (C): 0.05% or less (excluding 0%), nitrogen (N): 0.05% or less (excluding 0%), silicon (Si): 1.0 to 2.0%, manganese (Mn): 1.0% or less (excluding 0%), chromium (Cr): 15 to 18%, nickel (Ni): 6.5 to 9.0%, copper (Cu): 2.0 ~ 5.0%, molybdenum (Mo): 0.5 to 2.0%, residual iron (Fe) and inevitable impurities, characterized in that the sulfuric acid corrosion index (SCI) defined by the following formula (1) is 40 or more.
SCI = -[Cr] + 4[Ni] + 5[Mo] + 12[Cu]------ 식 (1)SCI =-[Cr] + 4 [Ni] + 5 [Mo] + 12 [Cu] ------ Equation (1)
단, 상기 식 1에서 [Cr], [Ni], [Mo] 및 [Cu]는 각각 Cr, Ni, Mo 및 Cu의 중량%를 의미한다.However, [Cr], [Ni], [Mo], and [Cu] in Formula 1 refer to the weight% of Cr, Ni, Mo, and Cu, respectively.
또한, 본 발명의 일 실시예에 따르면, 상기 황산부식지수(SCI)는, 바람직하게 42 ~ 70일 수 있다.In addition, according to an embodiment of the present invention, the sulfuric acid corrosion index (SCI) may be preferably 42 to 70.
또한, 본 발명의 일 실시예에 따르면, 상기 스테인리스강은, 인(P): 0.05% 이하(0%는 제외), 황(S): 0.03% 이하(0%는 제외), 니오븀(Nb): 1.0% 이하(0%는 제외), 티타늄(Ti): 0.5% 이하(0%는 제외) 및 텅스텐(W): 1.0% 이하(0%는 제외)로 이루어진 군에서 일종 이상을 더 포함할 수 있다.In addition, according to an embodiment of the present invention, the stainless steel, phosphorus (P): 0.05% or less (excluding 0%), sulfur (S): 0.03% or less (excluding 0%), niobium (Nb) : 1.0% or less (excluding 0%), titanium (Ti): 0.5% or less (excluding 0%) and tungsten (W): 1.0% or less (excluding 0%) Can be.
또한, 본 발명의 일 실시예에 따르면, 상기 오스테나이트계 스테인리스강은, 50% 농도의 황산 용액에 0.2% 농도의 염화제2철(FeCl3) 용액을 첨가한 비등용액에서의 상기 오스테나이트계 스테인리스강의 기상부 및 침지부 부식감량은 20mg/m2hr 이하일 수 있다. 본 명세서에서 "기상부 부식감량"이라 함은 비등용액이 증발되어 오스테나이트계 스테인리스강 표면에 응축된 상태에서 부식되는 양을 의미하고, "침지부 부식감량"이라 함은 오스테나이트계 스테인리스강을 비등용액에 침지시켜 부식되는 양을 의미한다.In addition, according to an embodiment of the present invention, the austenitic stainless steel is austenite-based in a boiling solution in which a 0.2% concentration of ferric chloride (FeCl 3 ) solution is added to a 50% sulfuric acid solution The corrosion loss of the gas phase and immersion parts of the stainless steel may be 20 mg / m 2 hr or less. As used herein, the term "corrosion loss" means an amount of evaporated boiling solution condensed on the surface of an austenitic stainless steel, and the term "immersion corrosion loss" refers to an austenitic stainless steel. It means the amount of corrosion by dipping in boiling solution.
또한, 본 발명의 일 실시예에 따르면, 상기 오스테나이트계 스테인리스강은, 50% 농도의 황산 용액에 0.2% 농도의 염산(HCl) 용액을 첨가한 비등용액에서의 상기 오스테나이트계 스테인리스강의 기상부 및 침지부 부식감량은 20mg/m2hr 이하일 수 있다.In addition, according to an embodiment of the present invention, the austenitic stainless steel is a gas phase part of the austenitic stainless steel in a boiling solution in which 0.2% hydrochloric acid (HCl) solution is added to a 50% sulfuric acid solution And immersion corrosion loss may be 20 mg / m 2 hr or less.
또한, 본 발명의 일 실시예에 따르면, 상기 오스테나이트계 스테인리스강은, 50% 농도의 황산용액에 침지시 상기 스테인리스강 표면에 연속적인 Cu 농화층이 형성될 수 있다.In addition, according to an embodiment of the present invention, the austenitic stainless steel, when the immersion in sulfuric acid solution of 50% concentration may be formed a continuous Cu concentration layer on the surface of the stainless steel.
또한, 본 발명의 일 실시예에 따르면, 상기 오스테나이트계 스테인리스강은, 상기 Cu 농화층 영역에서의 Cu 함량비는 비농화층 영역에서의 Cu 함량비의 3 ~ 10배일 수 있고, 상기 Cu의 함량비는 하기의 식 2로 정의된다.In addition, according to an embodiment of the present invention, the austenitic stainless steel, the Cu content ratio in the Cu enriched layer region may be 3 to 10 times the Cu content ratio in the non-concentrated layer region, The content ratio is defined by Equation 2 below.
Cu 함량비(%) = [Cu] / ( [Cr] + [Fe] + [Ni] + [Cu] ) * 100 ------ 식 (2)Cu content ratio (%) = [Cu] / ([Cr] + [Fe] + [Ni] + [Cu]) * 100 ------ Equation (2)
단, 상기 식 (2)에서 [Cr], [Fe], [Ni] 및 [Cu]는 각각 Cr, Fe, Ni 및 Cu의 중량%를 의미한다.However, in the formula (2), [Cr], [Fe], [Ni], and [Cu] mean the weight% of Cr, Fe, Ni, and Cu, respectively.
본 발명에 따르면 내황산 부식특성에 영향을 미치는 각 성분 원소들의 함량을 적절히 조절함으로써 고농도의 황산이 응결하는 환경에서 우수한 내황산 부식특성 및 양호한 열간가공성을 갖는 오스테나이트계 스테인리스강을 제공할 수 있다.According to the present invention, an austenitic stainless steel having excellent sulfuric acid corrosion resistance and good hot workability in an environment where sulfuric acid of high concentration condenses can be provided by appropriately adjusting the content of each component element affecting sulfuric acid corrosion resistance. .
또한, 본 발명에 따르면, 특히 황산분위기의 내식성에 미치는 Cr, Ni, Mo 및 Cu의 함량을 이용하여 도출한 황산부식지수(SCI)를 40이상으로 제어함으로써 황산 분위기에서 낮은 부식감량 값을 갖는 오스테나이트계 스테인리스강을 제공할 수 있다.In addition, according to the present invention, in particular, by controlling the sulfuric acid corrosion index (SCI) derived by using the content of Cr, Ni, Mo and Cu to the corrosion resistance of sulfuric acid atmosphere to 40 or more auster having a low corrosion loss value in sulfuric acid atmosphere Knight-based stainless steel can be provided.
결과적으로, 본 발명에 따른 오스테나이트계 스테인리스강은 화력발전용 보일러 및 산업용 보일러 등의 배기가스가 농화 응축되는 부위의 설비인 열교환기, 연돌, 굴뚝의 부재로 사용이 가능하고, 또한 각종 산업설비의 매연탈황장치의 GGH(gas-gas-heater)의 부재로도 사용이 적합하다.As a result, the austenitic stainless steel according to the present invention can be used as a member of a heat exchanger, a stack, a chimney, which is a facility in which exhaust gases are concentrated and condensed, such as a thermal power boiler and an industrial boiler. It is also suitable for use as a member of GGH (gas-gas-heater) of soot desulfurization equipment.
도 1은 실시예 6, 비교예 2, 및 비교예 3의 조성을 갖는 강 시편의 50% H2SO4 수용액에서의 양극 분극특성을 나타내는 그래프이다.1 is a graph showing the polarization polarization characteristics of 50% H 2 SO 4 aqueous solution of steel specimens having the composition of Example 6, Comparative Example 2, and Comparative Example 3.
도 2는 실시예 1 및 비교예 7에 따라 제조된 강 시편의 사진 및 열간가공성 평가기준이 도시된 것이다.FIG. 2 shows photographs and hot work evaluation criteria for steel specimens prepared according to Example 1 and Comparative Example 7. FIG.
도 3은 부식용액(1)(50% H2SO4 + 0.2% FeCl3 용액)에서의 SCI 값에 따른 기상부 부식감량 및 침지부 부식감량을 나타내는 그래프이다.3 is a graph showing the corrosion loss of the gas phase and the immersion corrosion according to the SCI value in the corrosion solution (1) (50% H 2 SO 4 + 0.2% FeCl 3 solution).
도 4는 부식용액(1)(50% H2SO4 + 0.2% FeCl3 용액)에서의 SCI 값에 따른 침지부 부식감량을 나타내는 그래프이다.Figure 4 is a graph showing the corrosion loss of the immersion portion according to the SCI value in the corrosion solution (1) (50% H 2 SO 4 + 0.2% FeCl 3 solution).
도 5는 부식용액(2)(50% H2SO4 + 0.2% HCl 용액)에서의 SCI 값에 따른 기상부 부식감량을 나타내는 그래프이다.5 is a graph showing the corrosion loss of the gas phase according to the SCI value in the corrosion solution (2) (50% H 2 SO 4 + 0.2% HCl solution).
도 6은 부식용액(2) (50% H2SO4 + 0.2% HCl 용액)에서의 SCI 값에 따른 침지부 부식감량을 나타내는 그래프이다.6 is a graph showing the corrosion loss of the immersion portion according to the SCI value in the corrosion solution (2) (50% H 2 SO 4 + 0.2% HCl solution).
도 7은 그린데쓰 용액(17% H2SO4 + 0.35% HCl 용액)에서의 실시예 1, 실시예 5, 비교예 2, 비교예 5, 비교예 6, 비교예 9 및 비교예 10에 따라 제조된 강 시편의 기상부 및 침지부 부식감량을 나타내는 그래프이다.FIG. 7 is according to Example 1, Example 5, Comparative Example 2, Comparative Example 5, Comparative Example 6, Comparative Example 9 and Comparative Example 10 in the Greendes solution (17% H 2 SO 4 + 0.35% HCl solution) It is a graph showing the corrosion loss of the gas phase portion and immersion portion of the manufactured steel specimens.
도 8은 실시예 3(Cu 함량: 4.1%)의 강 시편을 50% H2SO4 용액에 침지한 후, 상기 강 시편의 깊이에 따른 표면 피막조성 분석 결과를 나타내는 그래프이다.8 is a graph showing surface coating composition analysis results according to the depth of the steel specimen after immersing the steel specimen of Example 3 (Cu content: 4.1%) in 50% H 2 SO 4 solution.
도 9는 상기 도 8의 표면 피막 형성 메커니즘을 나타내는 모식도이다.It is a schematic diagram which shows the surface film formation mechanism of said FIG.
도 10은 비교예 8(Cu 함량: 1.6%)의 강 시편을 50% H2SO4 용액에 침지한 후, 상기 강 시편의 깊이에 따른 표면 피막조성 분석 결과를 나타내는 그래프이다.10 is a graph showing the results of surface coating composition analysis according to the depth of the steel specimen after immersing the steel specimen of Comparative Example 8 (Cu content: 1.6%) in 50% H 2 SO 4 solution.
도 11은 상기 도 10의 표면 피막 형성 메커니즘을 나타내는 모식도이다.It is a schematic diagram which shows the surface film formation mechanism of said FIG.
본 발명의 일 실시예에 따른 오스테나이트계 스테인리스강은, 중량%로, 탄소(C): 0.05% 이하(0%는 제외), 질소(N): 0.05% 이하(0%는 제외), Si: 1.0 ~ 2.0%, 망간(Mn): 1.0% 이하(0%는 제외), 크롬(Cr): 15 ~ 18%, 니켈(Ni): 6.5 ~ 9.0%, 구리(Cu): 2.0 ~ 5.0%, 몰리브덴(Mo): 0.5 ~ 2.0%, 잔부 철(Fe) 및 불가피한 불순물을 포함하고, 하기의 식 (1)으로 정의되는 황산부식지수(SCI)가 40 이상인 것을 특징으로 한다.Austenitic stainless steel according to an embodiment of the present invention, in weight percent, carbon (C): 0.05% or less (excluding 0%), nitrogen (N): 0.05% or less (excluding 0%), Si : 1.0 to 2.0%, manganese (Mn): 1.0% or less (excluding 0%), chromium (Cr): 15 to 18%, nickel (Ni): 6.5 to 9.0%, copper (Cu): 2.0 to 5.0% , Molybdenum (Mo): 0.5 to 2.0%, residual iron (Fe) and inevitable impurities, characterized in that the sulfuric acid corrosion index (SCI) defined by the following formula (1) is 40 or more.
SCI = -[Cr] + 4[Ni] + 5[Mo] + 12[Cu]------ 식 (1)SCI =-[Cr] + 4 [Ni] + 5 [Mo] + 12 [Cu] ------ Equation (1)
단, 상기 식 1에서 [Cr], [Ni], [Mo] 및 [Cu]는 각각 Cr, Ni, Mo 및 Cu의 중량%를 의미한다.However, [Cr], [Ni], [Mo], and [Cu] in Formula 1 refer to the weight% of Cr, Ni, Mo, and Cu, respectively.
이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 내황산 부식특성이 우수한 오스테나이트계 스테인리스강에 대하여 설명한다.Hereinafter, an austenitic stainless steel having excellent sulfuric acid corrosion resistance according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings.
본 발명의 내황산 부식특성이 우수한 오스테나이트계 스테인리스강은, 중량%로, 탄소(C): 0.05% 이하(0%는 제외), 질소(N): 0.05% 이하(0%는 제외), Si: 1.0 ~ 2.0%, 망간(Mn): 1.0% 이하(0%는 제외), 크롬(Cr): 15 ~ 18%, 니켈(Ni): 6.5 ~ 9.0%, 구리(Cu): 2.0 ~ 5.0%, 몰리브덴(Mo): 0.5 ~ 2.0%, 잔부 철(Fe) 및 불가피한 불순물을 포함하고, 하기의 식 (1)으로 정의되는 황산부식지수(SCI)가 40 이상인 것을 특징으로 한다.The austenitic stainless steel having excellent sulfuric acid corrosion resistance of the present invention is, in weight%, carbon (C): 0.05% or less (excluding 0%), nitrogen (N): 0.05% or less (excluding 0%), Si: 1.0 to 2.0%, manganese (Mn): 1.0% or less (excluding 0%), chromium (Cr): 15 to 18%, nickel (Ni): 6.5 to 9.0%, copper (Cu): 2.0 to 5.0 %, Molybdenum (Mo): 0.5 to 2.0%, residual iron (Fe) and inevitable impurities, characterized in that the sulfuric acid corrosion index (SCI) defined by the following formula (1) is 40 or more.
SCI = -[Cr] + 4[Ni] + 5[Mo] + 12[Cu]------ 식 (1)SCI =-[Cr] + 4 [Ni] + 5 [Mo] + 12 [Cu] ------ Equation (1)
단, 상기 식 1에서 [Cr], [Ni], [Mo] 및 [Cu]는 각각 Cr, Ni, Mo 및 Cu의 중량%를 의미한다.However, [Cr], [Ni], [Mo], and [Cu] in Formula 1 refer to the weight% of Cr, Ni, Mo, and Cu, respectively.
이하, 본 발명의 일 실시예에 따른 상기 오스테나이트계 스테인리스강의 성분계를 보다 상세하게 설명한다. 별도로 언급되지 않는 한 각 성분들의 함량은 중량%를 의미한다.Hereinafter, the component system of the austenitic stainless steel according to an embodiment of the present invention will be described in detail. Unless stated otherwise, the content of each component means weight percent.
탄소(C): 0.05% 이하(0%는 제외)Carbon (C): 0.05% or less (except 0%)
탄소(C)는 오스테나이트 형성 원소로, 고용강화에 의한 재료 강도 증가에 유효한 원소이다. 그러나, 상기 탄소(C)의 함량이 과도하게 높아질 경우, 내식성 향상에 유효한 크롬(Cr)과 쉽게 결합하여 Cr 탄화물을 형성하고, 이로 인해 결정립계 주위의 크롬(Cr) 함량이 낮아져 강의 내식성이 떨어지게 된다. 따라서, 본 발명에서는 내식성의 극대화를 위하여 탄소(C)의 함량을 0.05% 이하로 제한한다.Carbon (C) is an austenite forming element, and is an effective element for increasing the strength of a material by solid solution strengthening. However, when the content of carbon (C) is excessively high, it is easily combined with chromium (Cr), which is effective for improving corrosion resistance, to form Cr carbide, which lowers the content of chromium (Cr) around grain boundaries, thereby reducing corrosion resistance of steel. . Therefore, in the present invention, the content of carbon (C) is limited to 0.05% or less in order to maximize corrosion resistance.
질소(N): 0.05% 이하(0%는 제외)Nitrogen (N): 0.05% or less (excluding 0%)
질소(N)는 오스테나이트상 안정화 원소로, 고온 강도와 내공식성을 동시에 향상시키는 원소이다. 그러나, 상기 질소(N)이 과다하게 첨가되는 경우, 주조시 블로우홀(blow hole), 핀홀(pin hole) 등이 발생하여 표면 결함을 유발하는 등 열간가공성이 떨어지므로 질소(N)의 함량을 0.05%로 제한한다.Nitrogen (N) is an austenite stabilizing element and is an element that simultaneously improves high temperature strength and pitting resistance. However, when the nitrogen (N) is excessively added, the blown (pin hole), pin holes (pin hole), etc. during the casting to cause surface defects, such as hot workability is poor, so the content of nitrogen (N) Limit to 0.05%.
실리콘(Si): 1.0 ~ 2.0%Silicon (Si): 1.0 to 2.0%
실리콘(Si)는 탈산원소로 첨가되는 원소이며, 페라이트상 형성원소로 함량 증가시 페라이트 상의 안정성이 높아진다. 실리콘(Si)는 함량의 증가는 공식전위의 향상 및 내산화특성이 증가하게 된다. 따라서 본 발명의 경우 실리콘(Si) 함량을 최소 1.0% 이상으로 첨가하는 것이 바람직하며 실리콘(Si)의 함량이 2.0% 이상으로 증가할 경우에는 제강성 Si 개재물의 증가 및 표면결함 등의 문제점 발생으로 최대 2.0% 이상을 초과하지 않는 것으로 한정한다.Silicon (Si) is an element added as a deoxidation element, and the ferrite phase stability increases when the content is increased as a ferrite phase forming element. Increasing the content of silicon (Si) will increase the formula potential and oxidation resistance. Therefore, in the case of the present invention, it is preferable to add at least 1.0% of silicon (Si) content, and when the content of silicon (Si) is increased to 2.0% or more, problems such as an increase in steelmaking Si inclusions and surface defects occur. It is limited not to exceed 2.0% or more at maximum.
망간(Mn): 1.0% 이하(0%는 제외)Manganese (Mn): 1.0% or less (except 0%)
망간(Mn)은 질소(N)와 마찬가지로 오스테나이트상 안정화에 유효한 원소이다. 그러나, 상기 망간(Mn)의 함량이 높아지면 황화망간(MnS) 등과 같은 석출물을 형성하여 내공식성이 저하되므로 상기 망간(Mn)의 함량을 1.0% 이하로 제한한다. 한편, 상기 망간(Mn)의 함량이 과도하게 저감될 경우 정제비용 증가 등의 문제가 발생할 수 있으므로, 바람직하게 상기 망간의 함량은 0.6% 이상으로 한정될 수 있다. 따라서, 본 발명에서의 상기 망간의 바람직한 함량 범위는 0.6 ~ 1.0%일 수 있다.Manganese (Mn), like nitrogen (N), is an element effective for stabilizing austenite phase. However, when the content of the manganese (Mn) is increased to form a precipitate, such as manganese sulfide (MnS) to reduce the pitting resistance, so the content of the manganese (Mn) is limited to 1.0% or less. On the other hand, if the content of the manganese (Mn) is excessively reduced since problems such as an increase in the purification cost may occur, preferably the content of the manganese may be limited to 0.6% or more. Therefore, the preferred content range of the manganese in the present invention may be 0.6 ~ 1.0%.
크롬(Cr): 15 ~ 18%Chromium (Cr): 15-18%
크롬(Cr)은 오스테나이트계 스테인리스강의 내식성 확보를 위한 필수 원소이다. 내식성 향상을 위해서는 크롬(Cr) 함량이 높을수록 효과적이나, 본 발명에서와 같이 고농도의 황산이 응축된 환경에서 크롬(Cr) 함량의 증가는 황산분위기에서의 내식성 감소의 원인이 될 수 있다. Chromium (Cr) is an essential element for securing corrosion resistance of austenitic stainless steel. The higher the chromium (Cr) content is effective to improve the corrosion resistance, but as in the present invention, an increase in the chromium (Cr) content in a high concentration of sulfuric acid condensation may cause a decrease in corrosion resistance in the sulfuric acid atmosphere.
그런데, 본 발명에 따른 오스테나이트계 스테인리스강의 구성성분으로서 15% 이상의 크롬(Cr)을 후술하는 양의 Cu 및 Mo와 동시에 포함시키면, 상기한 고농도의 황산이 응결하는 황산 분위기에서 양호한 내식성을 확보할 수 있다. 그러나, 상기 크롬(Cr)의 함량이 18%를 초과하면 Cu 및 Mo를 복합 첨가하더라도 고농도의 황산 분위기에서 내식성이 감소하고 원가가 상승한다. 따라서, 본 발명에서는 크롬(Cr) 함량을 15 ~ 18%로 제한한다.However, when constituents of the austenitic stainless steel according to the present invention contain at least 15% of chromium (Cr) together with Cu and Mo in amounts described below, it is possible to ensure good corrosion resistance in a sulfuric acid atmosphere in which the high concentration of sulfuric acid condenses. Can be. However, when the content of chromium (Cr) is more than 18%, even if Cu and Mo are added in combination, the corrosion resistance decreases and the cost increases in a high sulfuric acid atmosphere. Therefore, in the present invention, the chromium (Cr) content is limited to 15 to 18%.
니켈(Ni): 6.5 ~ 9.0%Nickel (Ni): 6.5-9.0%
니켈(Ni)은 오스테나이트상 안정화 원소이며, 동시에 고농도의 황산이 응축된 환경에서 내식성을 확보하기 위한 필수 원소이다. 상기 니켈(Ni)의 함량이 6.5% 미만일 경우에는 고농도의 황산이 응축된 환경에서의 내식성 확보가 불가능하고, 반면 상기 니켈(Ni)의 함량이 9%를 초과할 경우에는 투입량 대비 내식성 증가 효과는 나타나지 않고 니켈의 비싼 가격으로 인해 경제성이 떨어지게 된다. 따라서, 본 발명에서는 니켈(Ni)의 함유량을 6.5 ~ 9.0%로 제한한다. Nickel (Ni) is an austenite stabilizing element, and at the same time, it is an essential element for securing corrosion resistance in an environment where high concentration of sulfuric acid is condensed. When the content of nickel (Ni) is less than 6.5%, it is impossible to secure corrosion resistance in an environment where high concentration of sulfuric acid is condensed. On the other hand, when the content of nickel (Ni) exceeds 9%, the effect of increasing the corrosion resistance compared to the input amount is It does not appear and the high price of nickel makes the economy less expensive. Therefore, in this invention, content of nickel (Ni) is restrict | limited to 6.5 to 9.0%.
구리(Cu): 2.0 ~ 5.0%Copper (Cu): 2.0 to 5.0%
구리(Cu)는 고농도의 황산이 응축된 환경에서 내식성을 확보하기 위한 필수 원소이다. 상기 구리(Cu)의 함량이 2.0% 미만일 경우에는 고농도의 황산이 응축된 환경에서의 내식성 확보가 불가능하고, 반면 상기 구리(Cu)의 함량이 5.0%를 초과할 경우에는 고농도의 황산 분위기에서의 내식성은 증가하나 급격한 열간가공성의 저하 등의 문제가 발생한다. 따라서, 본 발명에서는 구리(Cu)의 함량을 2.0 ~ 5.0%로 제한한다. Copper (Cu) is an essential element for securing corrosion resistance in an environment where high concentration of sulfuric acid is condensed. When the content of copper (Cu) is less than 2.0%, it is impossible to secure corrosion resistance in an environment where high concentration of sulfuric acid is condensed, whereas when the content of copper (Cu) exceeds 5.0%, Corrosion resistance increases, but problems such as a sudden drop in hot workability occur. Therefore, in the present invention, the content of copper (Cu) is limited to 2.0 to 5.0%.
몰리브덴(Mo): 0.5 ~ 2.0%Molybdenum (Mo): 0.5 to 2.0%
몰리브덴(Mo)은 오스테나이트계 스테인리스강의 내식성을 확보하는데 유효한 원소이다. 상기 몰리브덴(Mo)의 함량이 낮아지면 내식성 확보가 어렵지만, 0.5% 이상의 몰리브덴(Mo)를 상기한 함량의 구리(Cu)와 함께 포함할 경우 고농도의 황산이 응축된 환경에서 내식성을 극대화시킬 수 있다. 반면, 상기 몰리브덴(Mo)의 함량이 2.0%를 초과할 경우, 내식성은 증가하지만 열간가공성이 떨어져 제조상의 어려움이 발생하고, 상기 몰리브덴(Mo)의 비싼 가격으로 인해 경제성이 떨어진다. 따라서, 본 발명에서는 몰리브덴(Mo)의 함량을 0.5 ~ 2.0%로 제한한다. Molybdenum (Mo) is an effective element for securing the corrosion resistance of austenitic stainless steel. When the content of molybdenum (Mo) is lowered, it is difficult to secure corrosion resistance, but when including more than 0.5% molybdenum (Mo) with the above-described copper (Cu) it can maximize the corrosion resistance in the environment of high concentration of sulfuric acid condensed. . On the other hand, when the content of molybdenum (Mo) exceeds 2.0%, the corrosion resistance is increased, but the hot workability is poor, manufacturing difficulties occur, and the economical price is low due to the high price of the molybdenum (Mo). Therefore, in the present invention, the content of molybdenum (Mo) is limited to 0.5 to 2.0%.
이 밖에도, 본 발명에 따른 오스테나이트계 스테인리스강은 인(P): 0.05% 이하(0%는 제외), 황(S): 0.03% 이하(0%는 제외), 니오븀(Nb): 1.0% 이하(0%는 제외), 티타늄(Ti): 0.5% 이하(0%는 제외) 및 텅스텐(W): 1.0% 이하(0%는 제외)로 이루어진 군에서 일종 이상을 더 포함할 수 있다. 이하, 이들 성분의 함량에 대한 수치한정 이유에 대하여 설명한다. In addition, the austenitic stainless steel according to the present invention is phosphorus (P): 0.05% or less (excluding 0%), sulfur (S): 0.03% or less (excluding 0%), niobium (Nb): 1.0% Or less (excluding 0%), titanium (Ti): 0.5% or less (excluding 0%), and tungsten (W): 1.0% or less (excluding 0%) may further include one or more kinds. Hereinafter, the reason for numerical limitation regarding the content of these components is demonstrated.
인(P): 0.05% 이하(0%는 제외)Phosphorus (P): 0.05% or less (excluding 0%)
인(P)은 강 제조시 불순물로 혼입될 수 있는 원소로서, 열간가공성 및 내식성을 열화시키는 원인이 될 수 있으므로, 그 함유량은 가능한 한 적을수록 좋다. 특히, 상기 인(P)의 함량이 0.05%를 초과하면 고농도의 황산이 응축된 환경에서 내식성 저하가 현저하게 된다.Phosphorus (P) is an element that can be incorporated as an impurity in steel production, and may cause deterioration of hot workability and corrosion resistance, so that the content is as small as possible. In particular, when the content of phosphorus (P) exceeds 0.05%, the corrosion resistance is remarkably reduced in the environment where the high concentration of sulfuric acid is condensed.
황(S): 0.03% 이하(0%는 제외)Sulfur (S): 0.03% or less (excluding 0%)
황(S)은 강 내에 불가피하게 함유되는 불순물이며, 열간가공성 및 내식성을 열화시키는 원소이므로, 그 함유량은 가능한 한 적을수록 좋다. 특히, 상기 황(S)의 함량이 0.03%를 초과하면 고농도의 황산이 응축된 환경에서 내식성 저하가 현저하게 된다.Sulfur (S) is an impurity that is inevitably contained in steel and is an element that degrades hot workability and corrosion resistance, so the content thereof is preferably as small as possible. In particular, when the content of sulfur (S) exceeds 0.03%, corrosion resistance decreases significantly in an environment where sulfuric acid of high concentration is condensed.
니오븀(Nb): 1.0% 이하(0%는 제외)Niobium (Nb): 1.0% or less (excluding 0%)
니오븀(Nb)이 오스테나이트계 스테인리스강의 구성성분에 포함되면 탄소(C)를 고정하여 내식성, 그 중에서도 내입계 부식성을 높이는 작용을 할 수 있다. 그러나, 상기 니오븀(Nb)의 함량이 1.0%를 초과할 경우에는 상기한 질소(N)와 질화물을 생성하여 도리어 내식성 및 열간가공성이 떨어질 수 있다. When niobium (Nb) is included in the components of the austenitic stainless steel, carbon (C) may be fixed to act to increase corrosion resistance, intergranular corrosion resistance. However, when the content of niobium (Nb) is greater than 1.0%, the above-mentioned nitrogen (N) and nitride may be formed, thereby reducing corrosion resistance and hot workability.
티타늄(Ti): 0.5% 이하(0%는 제외) Titanium (Ti): 0.5% or less (except 0%)
티타늄(Ti)이 오스테나이트계 스테인리스강의 구성성분에 포함되면 상기 니오븀(Nb)과 마찬가지로 탄소(C)를 고정하여 내식성, 그 중에서도 내입계 부식성을 높이는 작용을 할 수 있다. 그러나, 상기 티타늄(Ti)의 함량이 1.0%를 초과할 경우에는 상기한 질소(N)와 질화물을 생성하여 도리어 내식성 및 열간가공성이 떨어질 수 있다.When titanium (Ti) is included in the components of the austenitic stainless steel, carbon (C) may be fixed as in niobium (Nb) to increase corrosion resistance, intergranular corrosion resistance. However, when the content of titanium (Ti) is greater than 1.0%, the above-mentioned nitrogen (N) and nitride may be formed, thereby reducing corrosion resistance and hot workability.
텅스텐(W): 1.0% 이하(0%는 제외)Tungsten (W): 1.0% or less (except 0%)
텅스텐(W)이 오스테나이트계 스테인리스강의 구성성분에 포함되면 고농도의 황산이 응축된 환경에서 내식성을 높이는 작용을 할 있다. 그러나, 상기 텅스텐(W)의 함량이 1.0%를 초과할 경우에는 투입량 대비 내식성 증가 효과가 미미하여 경제성이 떨어질 수 있다. When tungsten (W) is included in the components of the austenitic stainless steel, it may act to increase corrosion resistance in an environment where high concentration of sulfuric acid is condensed. However, when the content of tungsten (W) exceeds 1.0%, the effect of increasing the corrosion resistance compared to the input amount may be insignificant and economic efficiency may be reduced.
한편, 본 발명에 따른 오스테나이트계 스테인리스강 구성원소 중 특히 황산분위기의 내식성에 미치는 Cr, Ni, Mo 및 Cu의 함량을 이용하여 도출한 하기의 식 (1)으로 정의되는 황산부식지수(SCI)는 40이상 인 것을 특징으로 한다.On the other hand, sulfuric acid corrosion index (SCI) defined by the following formula (1) derived from the content of Cr, Ni, Mo and Cu on the corrosion resistance of the sulfuric acid atmosphere in the austenitic stainless steel element according to the present invention Is characterized in that more than 40.
SCI = -[Cr] + 4[Ni] + 5[Mo] + 12[Cu]------ 식 (1)SCI =-[Cr] + 4 [Ni] + 5 [Mo] + 12 [Cu] ------ Equation (1)
단, 상기 식 1에서 [Cr], [Ni], [Mo] 및 [Cu]는 각각 Cr, Ni, Mo 및 Cu의 중량%를 의미한다.However, [Cr], [Ni], [Mo] and [Cu] in the formula 1 refer to the weight percent of Cr, Ni, Mo and Cu, respectively.
상기 황산부식지수(SCI)가 40 미만일 경우에는 고농도의 황산이 응축된 환경에서의 부식감량 값이 부식감량 기준 목표값인 20mg/m2hr보다 높은 값을 나타낼 수 있으므로 바람직하지 않다. 이때, 상기 부식감량 기준 목표값은 통상 탈황설비 부재에서 사용되는 강재 중 우수한 내식성을 갖는 6% Mo 함유 오스테나이트계 스테인리스강의 고농도의 황산 비등용액에서의 부식감량 값으로 판단한 것이다. When the sulfuric acid corrosion index (SCI) is less than 40, the corrosion loss value in an environment where high concentration of sulfuric acid is condensed may be higher than 20 mg / m 2 hr. At this time, the corrosion reduction target value is determined by the value of corrosion loss in a high concentration of sulfuric acid boiling solution of a 6% Mo-containing austenitic stainless steel having excellent corrosion resistance among steels commonly used in the desulfurization equipment member.
구체적으로, 도 3 내지 6을 살펴보면, 황산부식지수(SCI)가 40 이상일 경우, 50% 농도의 황산 용액에 0.2% 농도의 염화제2철(FeCl3) 용액을 첨가한 비등용액에서의 상기 오스테나이트계 스테인리스강의 기상부 및 침지부 부식감량이 모두 20mg/m2hr 이하이고, 50% 농도의 황산 용액에 0.2% 농도의 염산(HCl) 용액을 첨가한 비등용액에서의 상기 오스테나이트계 스테인리스강의 기상부 및 침지부 부식감량이 모두 20mg/m2hr 이하임을 알 수 있다.Specifically, referring to FIGS. 3 to 6, when the sulfuric acid corrosion index (SCI) is 40 or more, the austenite in a boiling solution in which a 0.2% concentration of ferric chloride (FeCl 3 ) solution is added to a 50% sulfuric acid solution The austenitic stainless steel in a boiling solution in which the gas phase and immersion corrosion loss of nitrous stainless steel is 20 mg / m 2 hr or less, and 0.2% hydrochloric acid (HCl) solution is added to 50% sulfuric acid solution. It can be seen that the corrosion loss of the gas phase part and the immersion part is 20 mg / m 2 hr or less.
그리고, 상기 황산부식지수(SCI)가 42 ~ 70일 경우, 고농도의 황산이 응축된 환경에서의 내식성이 우수할 뿐 아니라, 동시에 열간가공성 또한 우수한 오스테나이트계 스테인리스강을 제공할 수 있어 더욱 바람직하다.In addition, when the sulfuric acid corrosion index (SCI) is 42 to 70, it is more preferable to provide an austenitic stainless steel having excellent corrosion resistance in an environment where high concentration of sulfuric acid is condensed, and at the same time, also excellent in hot workability. .
본 발명에 따른 오스테나이트계 스테인리스강을 50% 농도의 황산용액에 침지할 경우, 상기 스테인리스강 표면에 연속적인 Cu 농화층이 형성될 수 있다. When the austenitic stainless steel according to the present invention is immersed in a 50% sulfuric acid solution, a continuous Cu thickening layer may be formed on the surface of the stainless steel.
상기 Cu 농화층 영역에서의 Cu 함량비는 비농화층 영역에서의 Cu 함량비의 3 ~ 10배일 수 있고, 상기 Cu의 함량비는 하기의 식 2로 정의된다. The Cu content ratio in the Cu enriched layer region may be 3 to 10 times the Cu content ratio in the non-concentrated layer region, and the content ratio of Cu is defined by Equation 2 below.
Cu 함량비(%) = [Cu] / ( [Cr] + [Fe] + [Ni] + [Cu] ) * 100 ------ 식 (2)Cu content ratio (%) = [Cu] / ([Cr] + [Fe] + [Ni] + [Cu]) * 100 ------ Equation (2)
단, 상기 식 (2)에서 [Cr], [Fe], [Ni] 및 [Cu]는 각각 Cr, Fe, Ni 및 Cu의 중량%를 의미한다.However, in the formula (2), [Cr], [Fe], [Ni], and [Cu] mean the weight% of Cr, Fe, Ni, and Cu, respectively.
상기 Cu 농화층은 H2SO4 용액에서 오스테나이트계 스테인리스강의 구성원소들 중 Cu가 우선적으로 용해되어 강 표면에 연속적인 Cu 석출물을 형성함으로써 생성되는 피막층으로, H2SO4 용액에서의 내식성을 증가시켜주는 역할을 한다. 구체적으로, 도9에는 상기 Cu 농화층 생성 메커니즘이 모식적으로 도시되어 있다.The Cu concentrated layer is the film layer on the Cu of the austenitic stainless steel constituting elements in the H 2 SO 4 solution is preferentially dissolved by produced by forming a continuous Cu precipitates in the steel surface, the corrosion resistance in H 2 SO 4 solution It increases the role. Specifically, FIG. 9 schematically illustrates the above-described Cu thickening layer generating mechanism.
이하, 실시예들을 들어 본 발명에 관하여 더욱 상세히 설명하지만, 본 발명이 이러한 실시예들에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
실시예Example 1 내지 6 및  1 to 6 and 비교예Comparative example 1 내지 11 1 to 11
하기 표 1의 실시예1 내지 6, 그리고 비교예1 내지 11에 따른 각 조성 성분을 포함하는 120mm 두께의 잉곳(Ingot)을 주조한 후, 1,150℃의 온도에서 열간 압연을 수행하여 3.0mm 두께의 열연 강판을 제조하였다. 이후, 냉간 압연을 통하여 1.2mm 두께의 냉연 강판을 제조한 후, 1,100℃의 온도에서 냉연 소둔 및 냉연 산세하여 최종 냉연 산세 강판을 제조하였다.Ingots of 120 mm thickness containing each composition component according to Examples 1 to 6 and Comparative Examples 1 to 11 of Table 1 were then hot rolled at a temperature of 1,150 ° C. to 3.0 mm thick. A hot rolled steel sheet was produced. Thereafter, a cold rolled steel sheet having a thickness of 1.2 mm was manufactured through cold rolling, followed by cold rolling annealing and cold rolling at a temperature of 1,100 ° C. to prepare a final cold rolled pickling steel sheet.
SiSi MnMn CrCr NiNi MoMo CuCu NN CC SbSb
실시예1Example 1 1.11.1 0.60.6 15.115.1 7.87.8 1.11.1 3.13.1 0.030.03 0.030.03 --
실시예2Example 2 1.11.1 0.60.6 16.116.1 7.17.1 1.11.1 3.13.1 0.030.03 0.030.03 --
실시예3Example 3 1.11.1 0.60.6 16.116.1 7.17.1 1.11.1 4.14.1 0.030.03 0.030.03 --
실시예4Example 4 1.11.1 0.60.6 16.116.1 8.18.1 1.51.5 3.13.1 0.030.03 0.030.03 --
실시예5Example 5 1.51.5 0.90.9 17.517.5 8.58.5 0.80.8 2.02.0 0.030.03 0.030.03 --
실시예6Example 6 1.51.5 0.80.8 17.817.8 7.67.6 0.60.6 3.03.0 0.030.03 0.030.03 --
비교예1Comparative Example 1 0.030.03 0.030.03 0.030.03 0.030.03 0.030.03 0.50.5 0.030.03 0.030.03 0.10.1
비교예2Comparative Example 2 0.030.03 0.030.03 0.030.03 0.030.03 0.030.03 0.50.5 0.030.03 0.030.03 0.10.1
비교예3Comparative Example 3 0.60.6 1One 1818 88 0.20.2 0.10.1 0.030.03 0.040.04 --
비교예4Comparative Example 4 0.60.6 1One 1818 1010 22 0.20.2 0.030.03 0.030.03 --
비교예5Comparative Example 5 17.517.5 0.30.3 1717 0.10.1 1One 0.20.2 0.010.01 0.010.01 --
비교예6Comparative Example 6 0.60.6 0.30.3 1717 0.10.1 0.10.1 0.10.1 0.010.01 0.010.01 --
비교예7Comparative Example 7 0.60.6 1One 2323 2222 66 0.10.1 0.030.03 0.030.03 --
비교예8Comparative Example 8 1.11.1 0.60.6 20.120.1 15.115.1 3.13.1 1.61.6 0.160.16 0.030.03 --
비교예9Comparative Example 9 1.11.1 0.60.6 15.115.1 6.16.1 1.11.1 2.12.1 0.030.03 0.030.03 --
비교예10Comparative Example 10 1.11.1 0.60.6 15.115.1 6.16.1 1.11.1 3.13.1 0.030.03 0.030.03 --
비교예11Comparative Example 11 1.11.1 0.60.6 15.115.1 6.16.1 1.11.1 5.15.1 0.030.03 0.030.03 --
* 비교예 1: 비교예 2와 동일한 화학조성을 갖는 스테인리스강 시편에 에나멜(Enamel)을 코팅한 시편이다.Comparative Example 1: An enamel coated specimen of the stainless steel specimen having the same chemical composition as that of Comparative Example 2.
평가예 1: Cu 함량에 따른 황산수용액에서의 분극특성 평가Evaluation Example 1: Evaluation of Polarization Characteristics in Aqueous Sulfuric Acid Solution According to Cu Content
황산화물을 함유하는 황산노점부식 환경에서의 내식성에 Cu가 미치는 효과를 분석하기 위하여, 실시예 6, 비교예2 및 비교예 3에 따라 제조된 강 시편의 양극분극 실험을 70℃, 50% H2SO4 수용액 환경에서 실시하였다. 도 1에는 상기 실험결과를 나타내는 양극분극 곡선이 도시되어 있다.In order to analyze the effect of Cu on corrosion resistance in sulfuric acid dew point corrosion environment containing sulfur oxides, anodic polarization experiments of steel specimens prepared according to Example 6, Comparative Example 2 and Comparative Example 3 were carried out at 70 ° C., 50% H. 2 SO 4 aqueous solution environment. 1 shows a polarization polarization curve showing the experimental results.
본 실험에서 상기한 50% H2SO4 수용액 환경은 황산 농도 변화에 따른 내식성 측정결과 최대 부식속도를 나타내는 구간을 모사한 환경이다. 그리고, 상기 비교예 2의 조성을 갖는 강은 통상의 매연탈황설비의 GGH(Gas Gas Heater) 부품에 주로 사용되는 탄소강 베이스의 내황산강(Cu 함량: 0.5%)이고, 비교예 3의 조성을 갖는 강은 STS 304강(Cu 함량: 0.1%)이며, 실시예 6의 조성을 갖는 강은 Cu 함량이 3.0%가 되도록 합금 성분을 구성한 발명강으로 오스테나이트계 스테인리스강이다.In this experiment, the 50% H 2 SO 4 aqueous solution environment simulates the section showing the maximum corrosion rate as a result of measuring the corrosion resistance according to the sulfuric acid concentration change. In addition, the steel having a composition of Comparative Example 2 is a carbon steel base sulfuric acid resistant steel (Cu content: 0.5%) mainly used in gas gas heater (GGH) parts of a conventional soot desulfurization facility, and a steel having a composition of Comparative Example 3 Is an STS 304 steel (Cu content: 0.1%), and the steel having the composition of Example 6 is an austenitic stainless steel in which the alloy component is configured so that the Cu content is 3.0%.
상기 도 1로부터 확인할 수 있는 사항들은 하기와 같다.Details that can be confirmed from FIG. 1 are as follows.
(1) 50% H2SO4 용액에서의 자연전위(1) Natural potential in 50% H 2 SO 4 solution
도 1을 살펴보면, 비교예 2의 내황산강은 -350mV, 비교예 3의 STS 304는 -300mV, 그리고 실시예 6에 따라 제조된 강은 -250mV의 자연전위 값을 나타내는 것을 확인할 수 있다. 이로부터, Cu 함량이 3%인 실시예 6의 조성을 갖는 강의 경우, 비교예 2 및 3의 조성을 갖는 강에 비하여 자연전위가 높게 나타난다는 것을 알 수 있다.Referring to FIG. 1, it can be seen that sulfuric acid resistant steel of Comparative Example 2 is -350 mV, STS 304 of Comparative Example 3 is -300 mV, and the steel manufactured according to Example 6 exhibits a natural potential value of -250 mV. From this, it can be seen that in the case of the steel having a composition of Example 6 having a Cu content of 3%, the natural potential is higher than that of the steel having the compositions of Comparative Examples 2 and 3.
(2) 자연전위 상태에서의 부식전류 밀도(2) Corrosion current density at natural potential
도 1을 살펴보면, 비교예 2의 내황산강(Cu 함량: 0.5%)은 500㎂ 수준, 비교예 3의 STS 304강(Cu 함량: 0.1%)은 10mA 수준, 실시예 6에 따라 제조된 강(Cu 함량: 3.0%)은 50㎂ 수준의 자연전위 상태에서의 부식전류 밀도를 나타내는 것을 확인할 수 있다. 즉, 상기 STS 304강(비교예 3)은 상기 내황산강(비교예 2)보다 약 10배 이상 높고, 그리고 실시예 6에 따라 제조된 강은 상기 내황산강(비교예 2)보다 약 10배 정도 낮은 자연전위 상태에서의 부식전류 밀도 값을 나타내는바, Cu 함량이 증가함에 따라 자연전위에 상태에서의 부식전류 밀도가 증가하는 경향을 나타내는 것을 알 수 있다.Referring to Figure 1, the sulfuric acid resistant steel (Cu content: 0.5%) of Comparative Example 2 is 500㎂ level, STS 304 steel (Cu content: 0.1%) of Comparative Example 3 is 10mA level, the steel produced according to Example 6 (Cu content: 3.0%) can be seen that represents the corrosion current density in the state of natural potential of 50 mA level. That is, the STS 304 steel (Comparative Example 3) is about 10 times higher than the sulfuric acid resistant steel (Comparative Example 2), and the steel manufactured according to Example 6 is about 10 times higher than the sulfuric acid resistant steel (Comparative Example 2). Corrosion current density value in the natural potential state about twice as low, it can be seen that the corrosion current density in the state at the natural potential tends to increase with increasing Cu content.
이 밖에도 도 1을 살펴보면, 내황산강(비교예 2)의 경우는 상기 자연전위에서 전위를 점점 인가함에 따라 전류밀도가 계속 증가하는 경향을 가지고 있음을 알 수 있다. 그러나, 스테인리스강인 비교예 3 및 실시예 6의 강의 경우, -200mV 이상의 영역에서는 전위를 점점 인가함에 따라 전류밀도가 급격히 감소하는 것을 확인할 수 있고, 이는 상기 전위 영역에서 스테인리스강 표면에 부동태 피막이 생성되기 때문이다.In addition, referring to FIG. 1, it can be seen that in case of sulfuric acid resistant steel (Comparative Example 2), the current density tends to increase as the potential is gradually applied at the natural potential. However, in the steels of Comparative Examples 3 and 6, which are stainless steels, it can be seen that the current density rapidly decreases as a potential is gradually applied in a region of -200 mV or more, which results in the formation of a passive film on the surface of the stainless steel in the dislocation region. Because.
(3) 전위 인가에 따른 최대 전류밀도(3) Maximum current density due to potential application
도 1을 살펴보면, 비교예 2의 내황산강은 0.5A 수준, 비교예 3의 STS 304강은 0.1A 수준, 실시예 6에 따라 제조된 강은 0.02A 수준의 전위 인가에 따른 최대 전류밀도를 나타내는 것을 확인할 수 있다. 이로부터, Cu 함량이 3%인 실시예 6의 조성을 갖는 강의 경우, 비교예 2 및 3의 조성을 갖는 강에 비하여 수십배 낮은 최대 전류밀도 값을 갖는다는 것을 알 수 있다.1, the sulfuric acid resistant steel of Comparative Example 2 is 0.5A level, the STS 304 steel of Comparative Example 3 is 0.1A level, and the steel produced according to Example 6 has a maximum current density according to potential application of 0.02A level. It can confirm that it shows. From this, it can be seen that the steel having a composition of Example 6 having a Cu content of 3% has a maximum current density value several tens of times lower than that of steels having the compositions of Comparative Examples 2 and 3.
상기 (1) 내지 (3)의 양극분극 측정 결과로부터, 상기 STS 304강(비교예 3)의 경우 부식전류밀도가 내황산강(비교예 2)보다 높은 값을 가지고 있기 때문에 황산 노점 분위기에서의 내식성이 내황산강(비교예 2)보다 열위하여 사용이 적절하지 않다. 또한, 상기 내황산강(비교예 2)의 경우 자연전위 상태에서의 부식전류밀도는 낮은 값을 가지고 있으나 전위 인가에 따라 전류밀도가 급격히 증가한다. 실제 매연탈황설비의 경우, H2SO4이 단독으로 존재하는 것이 아니라 산화제인 금속이온이 공존하기 때문에 내황산강의 부식속도는 급격히 증가하게 된다. 반면, 실시예 6에 따라 제조된 강(Cu 함량: 3%)의 경우, 부식전류밀도 및 최대 전류밀도가 내황산강(비교예 2)보다 낮은 값을 나타내기 때문에, 황산 노점 분위기에서 내식성이 우수할 뿐만 아니라 산화제인 금속이온이 존재하는 환경에서도 강 표면에 부동태 피막을 생성시켜 우수한 내식성을 갖는다.From the anode polarization measurement results of (1) to (3), the corrosion current density of the STS 304 steel (Comparative Example 3) is higher than that of sulfuric acid resistant steel (Comparative Example 2). Its corrosion resistance is inferior to that of sulfuric acid steel (Comparative Example 2), and its use is not appropriate. In addition, in the case of the sulfuric acid resistant steel (Comparative Example 2), the corrosion current density in the natural potential state has a low value, but the current density rapidly increases as the potential is applied. In the case of a soot desulfurization facility, the corrosion rate of sulfuric acid resistant steels increases rapidly because H 2 SO 4 does not exist alone, but metal ions, which are oxidants, coexist. On the other hand, in the case of the steel produced according to Example 6 (Cu content: 3%), since the corrosion current density and the maximum current density show lower values than the sulfuric acid resistant steel (Comparative Example 2), the corrosion resistance in sulfuric acid dew point atmosphere Not only is it excellent, it also has excellent corrosion resistance by creating a passivation film on the steel surface even in the presence of metal ions as oxidants.
평가예 2: SCI, 열간 가공성 및 조직구조 평가Evaluation Example 2: Evaluation of SCI, Hot Workability and Structure
황산부식지수(SCI), 열간 가공성 및 조직구조는 하기의 방법에 따라 평가하고, 그 결과를 하기의 표 2 및 3에 나타내었다.Sulfuric acid corrosion index (SCI), hot workability and structure were evaluated according to the following method, and the results are shown in Tables 2 and 3 below.
(1) 황산부식지수(SCI)(1) Sulfuric acid corrosion index (SCI)
상기 황산부식지수(SCI)는 다양한 실험을 통해 Cr, Ni, Mo 및 Cu의 함량이 고농도 황산이 응축된 환경에서 강 시편의 내식성에 미치는 영향을 지수화한 것으로, SCI가 40이상일 경우 황산 분위기에서의 내식성이 우수한 것으로 판단하였다. 이때, 상기 황산부식지수(SCI)하기의 식(1)에 따라 계산된 값이다.The sulfuric acid corrosion index (SCI) is to index the effect of the Cr, Ni, Mo and Cu content on the corrosion resistance of the steel specimen in the environment of high concentration sulfuric acid through various experiments, when the SCI is 40 or more in sulfuric acid atmosphere It was judged that the corrosion resistance was excellent. At this time, the sulfuric acid corrosion index (SCI) is a value calculated according to the following formula (1).
SCI = -[Cr] + 4[Ni] + 5[Mo] + 12[Cu]------ 식 (1)SCI =-[Cr] + 4 [Ni] + 5 [Mo] + 12 [Cu] ------ Equation (1)
이때, 상기 식 1에서 [Cr], [Ni], [Mo] 및 [Cu]는 각각 Cr, Ni, Mo 및 Cu의 중량%를 의미한다.In this case, [Cr], [Ni], [Mo] and [Cu] in Formula 1 refer to the weight% of Cr, Ni, Mo, and Cu, respectively.
(2) 열간가공성(2) hot workability
상기 실시예 1 내지 6 및 비교예 1 내지 11에 따라 열간압연공정을 거친 열간압연판의 가장자리(Edge)에 발생한 크랙의 폭과 깊이로 열간가공성을 평가하였다. 이때, 상기 크랙의 폭과 깊이가 10mm이하인 강 시편의 경우 열간가공성이 확보된 것으로 판단하여 "◎"로 표시하고, 크랙의 폭과 깊이가 10mm이상인 강 시편의 경우 열간가공성이 확보되지 않는 것으로 판단하여 "X"로 표시하였다. According to Examples 1 to 6 and Comparative Examples 1 to 11, the hot workability was evaluated by the width and the depth of cracks generated at the edges of the hot rolled plates subjected to the hot rolling. In this case, it is determined that the hot workability is secured in the case of steel specimens having a width and depth of 10 mm or less, and is marked with "◎", and the hot workability is not determined in the case of steel specimens having a width and depth of cracks of 10 mm or more. As indicated by "X".
구체적으로, 도 2에는 실시예 1 및 비교예 7에 따라 제조된 강 시편의 사진 및 열간가공성 평가기준이 도시되어 있다.Specifically, FIG. 2 shows photographs and hot work evaluation criteria for steel specimens prepared according to Example 1 and Comparative Example 7.
(3) 조직(3) organization
상기 실시예 1 내지 6 및 비교예 1 내지 11에 따라 산세작업이 완료된 강 시편의 조직 구조를 페라이트 스코프(Fisher사, Ferritescope MP30) 및 광학현미경을 이용하여 관찰하였다. 이때, 페라이트 단상 조직을 가지고 있는 강 시편은 "F", 오스테나이트 단상 조직을 가지고 있는 강 시편은 "A", 오스테나이트+마르텐사이트 조직을 가지고 있는 시편은 "A+M"으로 표시하였다.According to Examples 1 to 6 and Comparative Examples 1 to 11, the structure of the steel specimens completed with pickling was observed using a ferrite scope (Fisher, Ferritescope MP30) and an optical microscope. At this time, the steel specimen having a ferrite single-phase structure "F", the steel specimen having an austenitic single-phase structure "A", the specimen having an austenitic + martensite structure is marked as "A + M".
평가예 3: 부식감량 평가Evaluation Example 3: Corrosion Loss Evaluation
실시예 및 비교예들에 따라 제조된 강 시편을 폭 30mm × 길이 30mm로 절단하고, 상기 절단된 강 시편의 표면을 #120번 연마지로 연마한 후, 고농도의 황산이 농축된 모사용액(부식용액)을 이용하여 부식시험을 실시하였다. 이때, 상기 부식실험은 ISO 28706 방식으로 실시하였다.The steel specimens prepared according to Examples and Comparative Examples were cut into a width of 30 mm × length of 30 mm, and the surface of the cut steel specimens were ground with # 120 abrasive paper, and then a mother liquor solution containing a high concentration of sulfuric acid (corrosive solution) ) Was tested for corrosion. At this time, the corrosion test was carried out in the ISO 28706 method.
우선, 3L 비이커의 바닥에 글라스 볼을 깔고, 상기 비이커의 상부에는 응축기를 설치하여 고온의 가스와 수증기가 응축되도록 하였다. 그리고, 상기 비이커 내의 글라스 볼의 일부만 잠길 정도로 부식용액을 투입하였다. First, a glass ball was placed on the bottom of the 3L beaker, and a condenser was installed on the top of the beaker to condense hot gas and water vapor. And, the corrosion solution was added to the extent that only a part of the glass ball in the beaker is submerged.
본 평가예에서는 침지부 및 기상부 부식감량을 측정하였으며, 먼저 침지부 부식감량을 평가하기 위하여, 상기 비이커의 바닥(글라스 볼 하부)에 강 시편을 위치시켜, 상기 시편이 비등상태의 부식용액에 침지되도록 하였다. 그리고, 기상부 부식감량을 평가하기 위하여, 상기 비이커의 최상부(글라스 볼 상부)에 강 시편을 위치시켜 비등상태의 부식용액이 증발되어 형성된 고온의 가스 및 수증기가 상기 강 시편의 표면에 응축되어 부식이 발생하도록 하였다. 이때, 부식시험은 각각의 비이커에 하나의 강종만 사용하여 시편간의 상호 간섭을 최소화하였다.In this evaluation example, the corrosion loss of the immersion part and the gaseous part was measured. First, in order to evaluate the erosion loss of the immersion part, a steel specimen was placed at the bottom of the beaker (the lower glass ball), and the specimen was placed in a boiling corrosion solution. Immersion was allowed. In order to evaluate the loss of corrosion of the gas phase, a steel specimen is placed on the top of the beaker (upper glass ball), and hot gas and water vapor formed by evaporation of a boiling corrosion solution are condensed on the surface of the steel specimen. This was to occur. At this time, the corrosion test used only one steel grade in each beaker to minimize the mutual interference between the specimens.
본 평가예에서는 세 종류의 부식용액을 이용하여 부식시험을 실시하였으며, 각각의 부식용액 조성 및 부식시험 조건은 하기와 같다.In this evaluation example, the corrosion test was carried out using three kinds of corrosion solutions, each of the corrosion solution composition and the corrosion test conditions are as follows.
(1) 50% H2SO4 + 0.2% FeCl3 용액 (1) 50% H 2 SO 4 + 0.2% FeCl 3 solution
부식용액(1)은 50% 황산에 0.2% FeCl3 용액을 첨가한 용액으로, 상기 용액은 고농도의 황산이 응축된 환경에 미량의 산화제가 첨가된 환경을 모사한 용액이다. 상기 부식용액(1)은 탈황설비의 GGH(Gas Gas Heater) 환경 용액을 분석한 결과, 미량의 산화제로부터 생성된 Fe이온이 포함되어 있는 것을 발견하고, 상기 환경을 모사한 용액이다. Corrosion solution (1) is a solution in which 0.2% FeCl 3 solution is added to 50% sulfuric acid, which simulates an environment in which a small amount of oxidant is added to an environment where high concentration of sulfuric acid is condensed. The corrosion solution (1) is a solution that simulates the environment, found that the Fe ions generated from trace amounts of oxidant is contained as a result of analyzing the gas gas heater (GHG) environmental solution of the desulfurization facility.
상기 부식시험 조건은 하기와 같으며, 부식시험 전후의 무게차이를 측정하여 단위시간(hr) 및 단위면적(m2) 당 부식감량을 계산하고, 그 결과를 하기의 표 2에 나타내었다.The corrosion test conditions are as follows, the weight difference before and after the corrosion test was measured to calculate the corrosion loss per unit time (hr) and unit area (m2), and the results are shown in Table 2 below.
- 부식용액 상태: 비등상태-Corrosion solution: boiling
- 부식시간: 24시간Corrosion time: 24 hours
이때, 부식용액(1)에서의 부식시험은 오스테나이트 조직을 갖는 강과 페라이트 조직을 갖는 강을 대상으로 수행하였다.At this time, the corrosion test in the corrosion solution (1) was performed on the steel having an austenitic structure and the steel having a ferrite structure.
(2) 50% H2SO4 + 0.2% HCl 용액(2) 50% H 2 SO 4 + 0.2% HCl solution
부식용액(2)는 50% 황산에 0.2% HCl 용액을 첨가한 용액으로, 상기 용액은 고농도의 황산이 응축된 환경에 미량의 염화물이 첨가된 환경을 모사한 용액이다. 상기 부식용액(2)는 탈황설비의 GGH(Gas Gas Heater) 환경 용액을 분석한 결과 미량의 염화물로부터 생성된 Cl이온이 포함되어 있는 것을 발견하고, 상기 환경을 모사한 용액이다. Corrosion solution (2) is a solution in which 0.2% HCl solution is added to 50% sulfuric acid, which simulates an environment in which a small amount of chloride is added to an environment where a high concentration of sulfuric acid is condensed. The corrosion solution (2) is a solution that simulates the environment found to contain Cl ions generated from a small amount of chloride as a result of analyzing the gas gas heater (GHG) environmental solution of the desulfurization facility.
그리고, 부식시험 조건, 부식감량 측정방식 및 측정대상은 상기 부식용액 (1)에서와 동일하며, 부식감량 측경결과는 하기의 표 2에 나타내었다.In addition, the corrosion test conditions, corrosion loss measurement method and the measurement target are the same as in the corrosion solution (1), the corrosion loss side diameter results are shown in Table 2 below.
(3) 17% H2SO4 + 0.35% HCl 용액(3) 17% H 2 SO 4 + 0.35% HCl solution
부식용액(3)은 17% 황산 용액에 0.35% 염산 용액을 첨가한 용액으로, 매연탈황설비 GGH(Gas Gas Heater) 부품의 실제 부식환경을 모사한 용액이며, 그린데쓰(Green death) 용액이라고도 한다.Corrosion solution (3) is a solution that adds 0.35% hydrochloric acid solution to 17% sulfuric acid solution and simulates the actual corrosive environment of GGH (Gas Gas Heater) parts of soot desulfurization facility. It is also called Green death solution. .
상기 부식시험 조건은 하기와 같으며, 부식시험 전후의 무게차이를 측정하여 단위시간(hr) 및 단위면적(m2) 당 부식감량을 계산하고, 그 결과를 하기의 표 3에 나타내었다.The corrosion test conditions are as follows, and the weight loss before and after the corrosion test was measured to calculate the corrosion loss per unit time (hr) and unit area (m2), and the results are shown in Table 3 below.
- 부식용액 온도: 80℃-Corrosion solution temperature: 80 ℃
- 부식시간: 6시간Corrosion time: 6 hours
이때, 부식용액(3)에서의 부식시험은 실시예 1, 실시예 5, 비교예 2, 비교예 5, 비교예 6, 비교예 9 및 비교예 10의 강 시편을 대상으로 수행하였다.At this time, the corrosion test in the corrosion solution (3) was performed on the steel specimens of Example 1, Example 5, Comparative Example 2, Comparative Example 5, Comparative Example 6, Comparative Example 9 and Comparative Example 10.
먼저, 상기 부식용액 (1) 및 (2)에서의 부식감량 결과가 기재된 표 2를 하기에 나타내었다.First, Table 2 showing the results of corrosion loss in the corrosion solutions (1) and (2) is shown below.
SCISCI 열간가공성 Hot workability 조직group 50% H2SO4 + 0.2% FeCl3 용액부식감량(mg/cm2hr)50% H 2 SO 4 + 0.2% FeCl 3 solution Corrosion loss (mg / cm 2 hr) 50% H2SO4 + 0.2% HCl 용액부식감량(mg/cm2hr)50% H 2 SO 4 + 0.2% HCl solution Corrosion loss (mg / cm 2 hr)
침지부Immersion 기상부Meteorology 침지부Immersion 기상부Meteorology
실시예1Example 1 58.858.8 AA 0.660.66 1.521.52 5.655.65 1.651.65
실시예2Example 2 5555 AA 0.850.85 1.051.05 6.326.32 1.951.95
실시예3Example 3 6767 AA 0.710.71 2.092.09 5.885.88 2.382.38
실시예4Example 4 6161 AA 0.750.75 2.392.39 4.484.48 2.002.00
실시예5Example 5 44.544.5 AA 0.280.28 4.944.94 15.2315.23 7.877.87
실시예6Example 6 51.651.6 AA 0.710.71 10.4210.42 10.3510.35 9.119.11
비교예1Comparative Example 1 6.246.24 FF 137.16137.16 30.0230.02 139.10139.10 65.0065.00
비교예2Comparative Example 2 6.246.24 FF 127.96127.96 35.2835.28 167.56167.56 73.0273.02
비교예3Comparative Example 3 16.216.2 AA 0.520.52 61.5161.51 95.2095.20 63.3263.32
비교예4Comparative Example 4 34.434.4 AA 0.270.27 28.0028.00 65.2065.20 13.6613.66
비교예5Comparative Example 5 -9.2-9.2 FF 0.710.71 69.4769.47 177.74177.74 93.1393.13
비교예6Comparative Example 6 -14.9-14.9 FF 1.891.89 83.9283.92 175.31175.31 95.3795.37
비교예7Comparative Example 7 96.296.2 ×× AA 1.291.29 18.9518.95 16.4516.45 17.4517.45
비교예8Comparative Example 8 7575 ×× AA 0.520.52 3.533.53 10.0010.00 3.693.69
비교예11Comparative Example 11 7676 ×× AA 1.221.22 1.721.72 6.126.12 2.42.4
상기 표 2를 살펴보면, 실시예 1 내지 6에 따라 제조된 강 시편의 경우, 열간가공성 및 내황산 부식특성이 우수한 것을 알 수 있다. 반면, 비교예 7, 8 및 11에 따라 제조된 강 시편의 경우 열간가공성이 열위하여 제조상의 문제를 야기하므로 사용이 적절하지 않다. 그리고, 비교예 1 내지 6에 따라 제조된 강 시편의 경우, 부식용액(1)(50% H2SO4 + 0.2% FeCl3 용액)에서의 기상부 부식감량 및 부식용액(2)(50% H2SO4 + 0.2% HCl 용액)에서의 침지부/기상부 부식감량이 상기 실시예들에 비하여 현저히 높게 나타났음을 확인할 수 있다.Looking at Table 2, in the case of the steel specimens prepared according to Examples 1 to 6, it can be seen that the hot workability and sulfuric acid corrosion resistance is excellent. On the other hand, steel specimens prepared according to Comparative Examples 7, 8 and 11 are not suitable for use because they are inferior in hot workability and cause manufacturing problems. And, in the case of steel specimens prepared according to Comparative Examples 1 to 6, the corrosion loss of the gas phase in the corrosion solution (1) (50% H 2 SO 4 + 0.2% FeCl 3 solution) and corrosion solution (2) (50% H 2 SO 4 + 0.2% HCl solution) in the immersion / gas phase corrosion loss can be seen that significantly higher than the above examples.
한편, 비교예 3 내지 6에 따라 제조된 강 시편의 경우, 부식용액 (1)에서의 침지부 부식감량이 실시예들과 동등하거나 낮은 수준을 나타내었지만, 실제 탈황설비의 GGH 부식 분위기에서는 침지부 부식과 기상부 부식이 반복하여 발생하게 되므로 기상부에서 부식감량이 낮더라도 침지부에서의 부식감량이 크기 때문에 실제 사용수명은 단축된다.On the other hand, in the case of steel specimens prepared according to Comparative Examples 3 to 6, although the corrosion loss of the immersion portion in the corrosion solution (1) showed the same or lower level than the examples, the immersion portion in the GGH corrosion atmosphere of the actual desulfurization equipment Corrosion and gaseous phase corrosion occurs repeatedly, so even if the loss of corrosion in the gas phase is reduced corrosion life in the immersion part, the actual service life is shortened.
상기 비교예 7에 따라 제조된 강 시편의 경우, 열간가공성이 열위하게 나타나기는 하였지만, 탈황설비 등의 부재에서 사용되는 가장 우수한 내황산 부식특성을 가지고 있는 6% Mo를 함유하고 있는 강재이므로, 상기 비교예 7의 강 시편을 기준으로 내황산 부식특성이 우수한지 여부를 판단하였다. 이에, 부식감량 기준 목표값을 20mg/m2hr 수준으로 잡았으며, 본 발명의 실시예 1 내지 6에 따라 제조된 강 시편은 모두 상기 부식감량 목표값 이하의 낮은 값을 나타내므로 우수한 내황산 부식성을 나타낸다고 할 수 있다.In the case of the steel specimen prepared according to Comparative Example 7, the hot workability was inferior, but the steel specimen contained 6% Mo having the best sulfuric acid corrosion resistance property used in a member such as a desulfurization facility. Based on the steel specimens of Comparative Example 7, it was determined whether the sulfuric acid corrosion resistance is excellent. Accordingly, the corrosion reduction standard target value was set to 20 mg / m 2 hr, and all steel specimens prepared according to Examples 1 to 6 of the present invention exhibited low values below the corrosion reduction target value, so that excellent sulfuric acid corrosion resistance was achieved. It can be said that.
한편, 도 3 및 4에는 각각 부식용액(1)(50% H2SO4 + 0.2% FeCl3 용액)에서의 SCI 값에 따른 기상부 부식감량 및 침지부 부식감량 그래프가 도시되어 있다. 이때, 상기 그래프는 상기 표 2에 기재된 실시예 1 내지 6, 비교예 1 내지 8 및 비교예 11의 데이터를 이용하여 작성되었다.Meanwhile, FIGS. 3 and 4 show graphs of gas phase corrosion loss and immersion corrosion loss depending on the SCI value in the corrosion solution 1 (50% H 2 SO 4 + 0.2% FeCl 3 solution), respectively. At this time, the graph was created using the data of Examples 1 to 6, Comparative Examples 1 to 8, and Comparative Example 11 described in Table 2 above.
먼저, 부식용액(1)에서의 SCI 값에 따른 기상부 부식감량 그래프를 나타내는 도 3을 살펴보면, 황산부식지수(SCI)가 증가함에 따라서 부식감량은 점점 감소하고, 황산부식지수(SCI) 값이 40이상의 경우에는 부식감량 값이 부식감량 기준 목표값인 20mg/m2hr 보다 낮은 값을 가지고 있음을 확인할 수 있다. 이상의 결과로부터 본 발명자들은 부식용액(1)의 기상부에서 우수한 부식저항을 가지기 위하여서는 황산부식지수(SCI) 값이 40 이상이 되어야 되는 것을 발견하였다.First, referring to FIG. 3, which shows a graph of corrosion loss of the gas phase according to the SCI value in the corrosion solution (1), as the sulfuric acid corrosion index (SCI) increases, the corrosion loss gradually decreases, and the sulfuric acid corrosion index (SCI) value increases. In the case of 40 or more, it can be seen that the corrosion loss value is lower than the 20 mg / m 2 hr target value of corrosion reduction. From the above results, the present inventors found that the sulfuric acid corrosion index (SCI) value should be 40 or more in order to have excellent corrosion resistance in the gas phase of the corrosion solution (1).
그리고, 부식용액(1)에서의 SCI 값에 따른 침지부 부식감량 그래프를 나타내는 도 4를 살펴보면, 비교예 1 및 2의 강 시편 제외한 모든 강 시편에서 부식감량이 기준 값 20mg/m2hr 이하로 나타났다. 상기 결과는, 도 1에 도시된 바와 같이, 스테인리스강(실시예 1 ~ 6, 비교예 3 ~ 8, 비교예 11)의 경우 산화제의 첨가에 따라 전위는 점점 증가하고, 전위가 -0.2V vs. AgCl 이상이 되면 스테인리스강 표면에 부동태 피막이 생겨 부식속도가 급격하게 감소되어 부식감량이 줄어드는 현상에서부터 기인하는 것이다. 반면, 탄소강 성분의 내황산강(비교예 1 ~ 2)의 경우는 산화제의 첨가에 따라 부식속도는 급격히 증가하게 되어 부식감량이 증가하게 된다.In addition, referring to FIG. 4 which shows a graph of corrosion loss of the immersion part according to the SCI value in the corrosion solution (1), the corrosion loss is less than the reference value of 20 mg / m 2 hr in all steel specimens except the steel specimens of Comparative Examples 1 and 2. appear. As shown in FIG. 1, in the case of stainless steel (Examples 1 to 6, Comparative Examples 3 to 8, and Comparative Example 11), the potential was gradually increased with the addition of the oxidizing agent, and the potential was -0.2 V vs. . If AgCl or higher, passivation film is formed on the surface of stainless steel, and the corrosion rate is drastically reduced, resulting from the reduction of corrosion loss. On the other hand, in the case of sulfuric acid resistant steels (Comparative Examples 1 to 2) of the carbon steel component, the corrosion rate increases rapidly with the addition of the oxidizing agent, thereby increasing the corrosion loss.
그리고, 도 5 및 6에는 각각 부식용액(2)(50% H2SO4 + 0.2% HCl 용액)에서의 SCI 값에 따른 기상부 부식감량 및 침지부 부식감량 그래프가 도시되어 있다. 이때, 상기 그래프는 상기 표 2에 기재된 실시예 1 내지 6, 비교예 1 내지 8 및 비교예 11의 데이터를 이용하여 작성되었다.5 and 6 show graphs of gas phase corrosion loss and immersion corrosion loss according to SCI values in the corrosion solution 2 (50% H 2 SO 4 + 0.2% HCl solution), respectively. At this time, the graph was created using the data of Examples 1 to 6, Comparative Examples 1 to 8, and Comparative Example 11 described in Table 2 above.
먼저, 부식용액(2)에서의 SCI 값에 따른 기상부 부식감량 그래프를 나타내는 도 5를 살펴보면, 황산부식지수(SCI)가 증가함에 따라서 부식감량은 점점 감소하고, 황산부식지수(SCI) 값이 40이상의 경우에는 부식감량 값이 부식감량 기준 목표값인 20mg/m2hr 보다 낮은 값을 가지고 있음을 확인할 수 있다. 이상의 결과로부터 본 발명자들은 부식용액(2)의 기상부에서 우수한 부식저항을 가지기 위하여서는 황산부식지수(SCI) 값이 40 이상이 되어야 되는 것을 발견하였다.First, referring to FIG. 5 which shows a graph of corrosion loss of gas phase according to SCI value in corrosion solution (2), as the sulfuric acid corrosion index (SCI) increases, the corrosion loss gradually decreases, and the sulfuric acid corrosion index (SCI) value increases. In the case of 40 or more, it can be seen that the corrosion loss value is lower than the 20 mg / m 2 hr target value of corrosion reduction. From the above results, the present inventors found that the sulfuric acid corrosion index (SCI) value should be 40 or more in order to have excellent corrosion resistance in the gas phase of the corrosion solution (2).
또한, 부식용액(2)에서의 SCI 값에 따른 침지부 부식감량 그래프를 나타내는 도 6을 살펴보면, 도 4의 침지부 결과와 달리 황산부식지수(SCI)가 증가함에 따라서 부식감량은 점점 감소하는 것을 알 수 있다. 고농도의 황산이 농화된 환경에 염화물이 첨가되면 염화물에 의하여 부식발생이 촉진되지만, 상기 용액에서도 황산부식지수(SCI) 값이 40 이상의 경우에는 부식감량 기준 목표값인 20mg/m2hr 보다 낮은 값을 가지고 있음을 확인할 수 있다.In addition, referring to FIG. 6 which shows a graph of immersion corrosion loss according to the SCI value in the corrosion solution (2), the corrosion loss gradually decreases as the sulfuric acid corrosion index (SCI) increases, unlike the result of immersion in FIG. Able to know. If chloride is added to the environment where sulfuric acid is concentrated in high concentration, corrosion is promoted by chloride, but even if the sulfuric acid corrosion index (SCI) value is above 40, it is lower than 20mg / m 2 hr. You can see that it has.
한편, 상기 부식용액 (3)에서의 부식시험 평가데이터가 기재된 표 3을 하기에 나타내었다.On the other hand, Table 3 showing the corrosion test evaluation data in the corrosion solution (3) is shown below.
SCISCI 열간가공성Hot workability 조직group Green Death 용액 부식감량(g/cm2hr)Green Death Solution Corrosion Loss (g / cm 2 hr)
침지부* Immersion * 기상부** Meteorological Department **
실시예1Example 1 58.858.8 AA 1.1621.162 0.5170.517
실시예5Example 5 44.544.5 AA 2.2452.245 0.5230.523
비교예2Comparative Example 2 6.246.24 FF 89.68589.685 8.1168.116
비교예5Comparative Example 5 -9.2-9.2 FF 72.5672.56 12.5612.56
비교예6Comparative Example 6 -14.9-14.9 FF 76.4576.45 15.6515.65
비교예9Comparative Example 9 4040 A+MA + M 32.2532.25 2.562.56
비교예10Comparative Example 10 5252 A+MA + M 35.4535.45 4.234.23
상기 표 3을 살펴보면, 실시예 1 및 5에 따라 제조된 강 시편의 경우, 비교예 2, 5, 6, 9 및 10에 따라 제조된 강 시편에 비하여 침지부 및 기상부 부식감량이 작은 값을 나타내는 것을 확인할 수 있다.Referring to Table 3, in the case of the steel specimens prepared according to Examples 1 and 5, compared to the steel specimens prepared according to Comparative Examples 2, 5, 6, 9 and 10, the value of corrosion loss of the immersion part and the gas phase part is small. It can confirm that it shows.
또한, 도 7에는 상기 표 3에 기재된 각 실시예 및 비교예의 강 시편에 대한 그린데쓰 용액에서의 기상부 부식감량 및 침지부 부식감량 값이 그래프로 도시되어 있다. 상기 도 7을 살펴보면, 비교예들의 강 시편의 경우 침지부 부식감량이 값이 기상부 부식감량 값보다 큰 값을 나타내는 것을 확인할 수 있다.In addition, FIG. 7 is a graph showing the corrosion loss value of the gas phase portion and the immersion portion corrosion value in the Greendes solution for the steel specimens of the Examples and Comparative Examples described in Table 3. Referring to FIG. 7, it can be seen that in the steel specimens of the comparative examples, the immersion corrosion loss value is larger than the gas phase corrosion loss value.
그러나, 실제 탈황설비의 GGH 부식분위기의 경우, 고농도의 황산 용액에 침지되어 부식이 발생하는 침지부 부식과 황산 흄 등에 노출되어 부식이 발생하는 기상부 부식이 반복하여 발생하게 된다. 따라서, 상기 비교예들에 따라 제조된 강 시편들의 경우 기상부에서 부식감량이 낮은 우수한 특성을 가지고 있어도 고농도의 황산에 침적되는 침지부에서의 부식감량이 크기 때문에 실재 사용수명은 단축된다. However, in the case of the GGH corrosion atmosphere of the actual desulfurization equipment, the corrosion of the gas phase part that is exposed to corrosion by immersion in high concentration sulfuric acid solution and exposure to sulfuric acid fume and the like occur repeatedly. Therefore, even in the case of steel specimens prepared according to the comparative examples, even though the corrosion loss in the gas phase portion has excellent characteristics of low corrosion loss in the immersion portion deposited in high concentration of sulfuric acid, the actual service life is shortened.
반면, 실시예 1 및 5의 조성을 갖는 오스테나이트 스테인리스강의 경우 침지부 및 기상부 모드 환경에서 우수한 부식감량을 특성을 가지고 있기 때문에 탈황설비의 GGH 부식분위기에서 적절하게 사용할 수 있다.On the other hand, austenitic stainless steels having compositions of Examples 1 and 5 have excellent corrosion loss characteristics in immersion and gas phase mode environments, and thus can be suitably used in a GGH corrosion atmosphere of a desulfurization facility.
평가예Evaluation example 4: 피막조성 분석 평가 4: film composition analysis evaluation
도 8 및 10에는 Cu 함량이 4.1%인 실시예 3의 강 시편 및 Cu 함량이 1.6%인 비교예 8의 강 시편에 대한 H2SO4 용액에 침지 후의 깊이에 따른 피막조성 분석 결과가 도시되어 있다. 구체적으로, 상기 피막조성 분석은 상온의 50% H2SO4 용액에 각각의 강 시편을 약 5분간 침지한 후, 건조하여 XPS 분석법을 이용하여 실시하였다.8 and 10 show the results of the film composition analysis according to the depth after immersion in the H 2 SO 4 solution for the steel specimen of Example 3 having a Cu content of 4.1% and the steel specimen of Comparative Example 8 having a Cu content of 1.6%. have. Specifically, the coating composition analysis was performed by immersing each steel specimen in 50% H 2 SO 4 solution at room temperature for about 5 minutes, and then drying and using XPS analysis.
도 8을 살펴보면, 상기 실시예 3의 조성을 갖는 강 시편의 경우, H2SO4 용액에 침지 후 표면에서 깊이 방향으로 약 6nm 이내에 Cu 및 Ni이 모재 대비 약 3 ~ 10배 농화된 것을 발견하였다. 본 발명자들은 TEM 관찰을 통하여 상기 실시예 3의 강 시편 피막 특성을 관찰한 결과, Cu가 강 시편의 표면에 연속적으로 분포하고 있는 것을 발견하였다. 도 9에는 연속적인 피막형성 메커니즘을 나타내는 모식도가 도시되어 있다.Referring to FIG. 8, in the case of the steel specimen having the composition of Example 3, it was found that Cu and Ni were concentrated about 3 to 10 times compared to the base metal within about 6 nm in the depth direction from the surface after being immersed in H 2 SO 4 solution. The present inventors observed the steel specimen coating characteristics of Example 3 through TEM observation, and found that Cu was continuously distributed on the surface of the steel specimen. 9 is a schematic diagram showing a continuous film formation mechanism.
도 10을 살펴보면, 상기 비교예 8의 조성을 갖는 강 시편의 경우, H2SO4 용액에 침지 후 표면에서 깊이 방향으로 약 2nm 이내에 Cu 및 Ni이 모재 대비 다소 농화 현상이 나타나고 있음을 알 수 있다. 본 발명자 들은 TEM 관찰들을 통하여 상기 비교예 8의 강 시편 피막 특성을 관찰한 결과, 표면에 Cu, 부식산화물, 모재가 불연속적으로 분포하고 있는 것을 발견하였다. 도 11에는 불연속적인 피박형성 메커니즘을 나타내는 모식도가 도시되어 있다.Referring to FIG. 10, in the case of the steel specimen having the composition of Comparative Example 8, after the immersion in the H 2 SO 4 solution, it can be seen that the concentration of Cu and Ni in about 2 nm in the depth direction from the surface appeared somewhat thicker than the base metal. As a result of observing the steel specimen coating property of Comparative Example 8 through TEM observations, the inventors found that Cu, corrosion oxide, and base metal were discontinuously distributed on the surface. 11 is a schematic diagram illustrating a discontinuous peeling mechanism.
이상의 결과로 보아, Cu함량이 2%이상의 경우에는 H2SO4용액에서 Cu가 우선적으로 용해하여 강 시편의 표면에 연속적인 Cu 석출물을 형성하여 H2SO4 용액에서의 내식성이 증가한다. 반면, Cu 함유량이 2% 이하의 경우 Cu 석출물은 강 시편의 표면에 불연속적으로 석출되고, Cu가 석출되지 않는 곳에서 부식이 발생하여 부식 산화물이 관찰되고, 결과적으로 H2SO4 용액에서 내식성이 저하된다.If the above results seen in, the Cu content is more than 2% is to increase the corrosion resistance of the Cu in the preferentially dissolved, to form a continuous Cu precipitates on the surface of steel specimens H 2 SO 4 solution in H 2 SO 4 solution. On the other hand, when the Cu content is 2% or less, the Cu precipitates are discontinuously deposited on the surface of the steel specimen, and corrosion occurs in the place where Cu is not deposited, resulting in corrosion oxides, and as a result, corrosion resistance in the H 2 SO 4 solution. Is lowered.
이상, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것으로서, 본 발명의 권리범위는 아래의 특허청구범위에 의하여 해석되어야 하며 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.As described above, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to explain the present invention, and the scope of the present invention should be interpreted by the following claims, and all technical ideas within the scope equivalent thereto. Should be construed as being included in the scope of the present invention.
본 발명의 실시예들에 따른 내황산 부식특성이 우수한 오스테나이트계 스테인리스강은 화력발전이나 산업용 보일러에 사용되는 열교환기, 연돌 및 굴뚝 그리고 각종 산업에 사용되는 매연탈활장치용 부재나 황산환경에 사용되는 설비에 다양하게 적용 가능하다.Austenitic stainless steel having excellent sulfuric acid corrosion resistance according to embodiments of the present invention is used in heat exchangers, stacks and chimneys, and soot degassing devices used in thermal power generation or industrial boilers, and in sulfuric acid environments. It is applicable to various equipment.

Claims (7)

  1. 중량%로, 탄소(C): 0.05% 이하(0%는 제외), 질소(N): 0.05% 이하(0%는 제외), 실리콘(Si): 1.0 ~ 2.0%, 망간(Mn): 1.0% 이하(0%는 제외), 크롬(Cr): 15 ~ 18%, 니켈(Ni): 6.5 ~ 9.0%, 구리(Cu): 2.0 ~ 5.0%, 몰리브덴(Mo): 0.5 ~ 2.0%, 잔부 철(Fe) 및 불가피한 불순물을 포함하고,By weight, carbon (C): 0.05% or less (except 0%), nitrogen (N): 0.05% or less (except 0%), silicon (Si): 1.0-2.0%, manganese (Mn): 1.0 % Or less (excluding 0%), chromium (Cr): 15 to 18%, nickel (Ni): 6.5 to 9.0%, copper (Cu): 2.0 to 5.0%, molybdenum (Mo): 0.5 to 2.0%, balance Contains iron (Fe) and unavoidable impurities,
    하기의 식 (1)으로 정의되는 황산부식지수(SCI)가 40 이상인 오스테나이트계 스테인리스강:Austenitic stainless steel having a sulfuric acid corrosion index (SCI) of 40 or more, which is defined by the following formula (1):
    SCI = -[Cr] + 4[Ni] + 5[Mo] + 12[Cu]------ 식 (1)SCI =-[Cr] + 4 [Ni] + 5 [Mo] + 12 [Cu] ------ Equation (1)
    단, 상기 식 1에서 [Cr], [Ni], [Mo] 및 [Cu]는 각각 Cr, Ni, Mo 및 Cu의 중량%를 의미한다.However, [Cr], [Ni], [Mo], and [Cu] in Formula 1 refer to the weight% of Cr, Ni, Mo, and Cu, respectively.
  2. 제1항에 있어서,The method of claim 1,
    상기 황산부식지수(SCI)가 42 ~ 70인 오스테나이트계 스테인리스강.The sulfuric acid corrosion index (SCI) is 42 ~ 70 austenitic stainless steel.
  3. 제1항에 있어서,The method of claim 1,
    상기 스테인리스강은 인(P): 0.05% 이하(0%는 제외), 황(S): 0.03% 이하(0%는 제외), 니오븀(Nb): 1.0% 이하(0%는 제외), 티타늄(Ti): 0.5% 이하(0%는 제외) 및 텅스텐(W): 1.0% 이하(0%는 제외)로 이루어진 군에서 일종 이상을 더 포함하는 오스테나이트계 스테인리스강.The stainless steel is phosphorus (P): 0.05% or less (excluding 0%), sulfur (S): 0.03% or less (excluding 0%), niobium (Nb): 1.0% or less (excluding 0%), titanium (Ti): Austenitic stainless steel further comprising at least one kind from the group consisting of 0.5% or less (excluding 0%) and tungsten (W): 1.0% or less (excluding 0%).
  4. 제1항에 있어서,The method of claim 1,
    50% 농도의 황산 용액에 0.2% 농도의 염화제2철(FeCl3) 용액을 첨가한 비등용액에서의 상기 오스테나이트계 스테인리스강의 기상부 및 침지부 부식감량이 20mg/m2hr 이하인 오스테나이트계 스테인리스강.Austenite-based austenite-based corrosion loss of the austenitic stainless steel in the boiling solution of 0.2% concentration of ferric chloride (FeCl 3 ) solution in 50% sulfuric acid solution of 20 mg / m 2 hr or less Stainless steel.
  5. 제1항에 있어서,The method of claim 1,
    50% 농도의 황산 용액에 0.2% 농도의 염산(HCl) 용액을 첨가한 비등용액에서의 상기 오스테나이트계 스테인리스강의 부식감량이 20mg/m2hr 이하인 오스테나이트계 스테인리스강.An austenitic stainless steel having a corrosion reduction of the austenitic stainless steel in a boiling solution in which a 0.2% concentration of hydrochloric acid (HCl) is added to a 50% sulfuric acid solution of 20 mg / m 2 hr or less.
  6. 제1항에 있어서,The method of claim 1,
    상기 스테인리스강을 50% 농도의 황산용액에 침지시 상기 스테인리스강 표면에 연속적인 Cu 농화층이 형성되는 오스테나이트계 스테인리스강.An austenitic stainless steel in which a continuous Cu thickening layer is formed on the surface of the stainless steel when the stainless steel is immersed in a 50% sulfuric acid solution.
  7. 제6항에 있어서,The method of claim 6,
    상기 Cu 농화층 영역에서의 Cu 함량비는 비농화층 영역에서의 Cu 함량비의 3 ~ 10배이고, 상기 Cu의 함량비는 하기의 식 2로 정의되는 오스테나이트계 스테인리스강:The Cu content ratio in the Cu enriched layer region is 3 to 10 times the Cu content ratio in the non-concentrated layer region, and the content ratio of Cu is an austenitic stainless steel defined by Equation 2 below:
    Cu 함량비(%) = [Cu] / ( [Cr] + [Fe] + [Ni] + [Cu] ) * 100 ------ 식 (2)Cu content ratio (%) = [Cu] / ([Cr] + [Fe] + [Ni] + [Cu]) * 100 ------ Equation (2)
    단, 상기 식 (2)에서 [Cr], [Fe], [Ni] 및 [Cu]는 각각 Cr, Fe, Ni 및 Cu의 중량%를 의미한다.However, in the formula (2), [Cr], [Fe], [Ni], and [Cu] mean the weight% of Cr, Fe, Ni, and Cu, respectively.
PCT/KR2017/014202 2016-12-23 2017-12-06 Austenitic stainless steel with excellent sulfuric acid corrosion resistance WO2018117488A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0178453 2016-12-23
KR1020160178453A KR20180074408A (en) 2016-12-23 2016-12-23 Austenitic stainless steel having excellent corrosion resistance to sulfuric acid

Publications (1)

Publication Number Publication Date
WO2018117488A1 true WO2018117488A1 (en) 2018-06-28

Family

ID=62627567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014202 WO2018117488A1 (en) 2016-12-23 2017-12-06 Austenitic stainless steel with excellent sulfuric acid corrosion resistance

Country Status (2)

Country Link
KR (1) KR20180074408A (en)
WO (1) WO2018117488A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3875624A4 (en) * 2018-10-30 2022-08-31 NIPPON STEEL Stainless Steel Corporation Austenitic stainless steel sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003328087A (en) * 2002-05-10 2003-11-19 Nippon Steel Corp Steel for chemical tank excellent in resistance to sulfuric acid corrosion and pitting corrosion
JP2009041103A (en) * 2007-07-17 2009-02-26 Hitachi Metals Ltd Austenitic stainless steel for component of exhaust gas re-circulation system, and manufacturing method therefor
KR20100060026A (en) * 2007-10-04 2010-06-04 수미도모 메탈 인더스트리즈, 리미티드 Austenitic stainless steel
JP2012207259A (en) * 2011-03-29 2012-10-25 Nippon Steel & Sumikin Stainless Steel Corp Austenitic stainless steel excellent in corrosion resistance and brazing property
KR20130074218A (en) * 2011-12-26 2013-07-04 주식회사 포스코 Austenitic stainless steel with high corrosion resistance and the method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003328087A (en) * 2002-05-10 2003-11-19 Nippon Steel Corp Steel for chemical tank excellent in resistance to sulfuric acid corrosion and pitting corrosion
JP2009041103A (en) * 2007-07-17 2009-02-26 Hitachi Metals Ltd Austenitic stainless steel for component of exhaust gas re-circulation system, and manufacturing method therefor
KR20100060026A (en) * 2007-10-04 2010-06-04 수미도모 메탈 인더스트리즈, 리미티드 Austenitic stainless steel
JP2012207259A (en) * 2011-03-29 2012-10-25 Nippon Steel & Sumikin Stainless Steel Corp Austenitic stainless steel excellent in corrosion resistance and brazing property
KR20130074218A (en) * 2011-12-26 2013-07-04 주식회사 포스코 Austenitic stainless steel with high corrosion resistance and the method of manufacturing the same

Also Published As

Publication number Publication date
KR20180074408A (en) 2018-07-03

Similar Documents

Publication Publication Date Title
JP4319817B2 (en) Low alloy steel excellent in hydrochloric acid corrosion resistance and sulfuric acid corrosion resistance and its welded joint
JP4374320B2 (en) Steel with excellent resistance to sulfuric acid dew point corrosion
KR100470046B1 (en) Cold rolled steel sheet having excellent corrosion resistance to sulfuric acid
CN109563594B (en) Sulfuric acid dew point corrosion resistant steel
JP2007262558A (en) Sulfuric acid dew point corrosion resistant steel having excellent hydrochloric acid resistance
KR100615126B1 (en) Ferritic stainless steel having high temperature creep resistance
KR101417295B1 (en) Cold-rolled steel sheet having excellent sulfuric acid-corrosion resistant and surface properties and method for manufacturing thereof
KR102654713B1 (en) Seamless steel pipe with excellent sulfuric acid dew point corrosion resistance and manufacturing method thereof
JP4427207B2 (en) Steel excellent in cold workability, high temperature characteristics, and low temperature corrosion resistance, and its manufacturing method
WO2016105115A1 (en) High-strength hot-dip galvanized steel sheet having excellent surface quality, coating adhesion, and moldability, and production method therefor
WO2018117488A1 (en) Austenitic stainless steel with excellent sulfuric acid corrosion resistance
WO2020111782A1 (en) Steel sheet having corrosion resistance in low concentration sulfuric acid/hydrochloric acid complex condensation atmosphere and manufacturing method therefor
WO2018110906A1 (en) High-carbon hot-rolled steel sheet having excellent surface quality and manufacturing method therefor
WO2013048181A2 (en) Low-alloy duplex stainless steel having outstanding corrosion resistance and hot working properties
KR101903173B1 (en) Austenitic stainless steel having excellent hot workability and corrosion resistance and method of manufacturing the same
CN101864544A (en) The exhaust phase of acid-resistant steel material and burning, burning facility is low temperature member associated
WO2019074215A1 (en) Austenite-based stainless steel with excellent electric conductivity and manufacturing method therefor
JP2007224377A (en) Steel material superior in acid-corrosion resistance
WO2021080205A1 (en) Chromium steel having excellent high-temperature oxidation resistance and high-temperature strength, and method of manufacturing same
JP3529946B2 (en) Ferritic stainless steel for heat transfer member of exhaust gas and manufacturing method
WO2021125730A2 (en) Steel sheet having excellent wear resistance and composite corrosion resistance, and method of manufacturing same
KR100544507B1 (en) The hot rolled sheet steel with the excellent anti-corrosion resistance to sulfuric acid
KR100544506B1 (en) Cold rolled high strength steel with the excellent anti-corrosion resistance to sufferic acid and method for manufaxturing thereof
KR102276233B1 (en) A steel sheet having corrosion resistance in a low concentration sulfuric/hydrochloric acid condensation atmosphere and manufacturing method the same
JP4245720B2 (en) High Mn austenitic stainless steel with improved high temperature oxidation characteristics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17883671

Country of ref document: EP

Kind code of ref document: A1