WO2018117485A1 - Radiation detector comprising transistor formed on silicon carbide substrate - Google Patents

Radiation detector comprising transistor formed on silicon carbide substrate Download PDF

Info

Publication number
WO2018117485A1
WO2018117485A1 PCT/KR2017/014119 KR2017014119W WO2018117485A1 WO 2018117485 A1 WO2018117485 A1 WO 2018117485A1 KR 2017014119 W KR2017014119 W KR 2017014119W WO 2018117485 A1 WO2018117485 A1 WO 2018117485A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
radiation detector
electrode
radiation
substrate
Prior art date
Application number
PCT/KR2017/014119
Other languages
French (fr)
Korean (ko)
Inventor
정원규
이진민
김동욱
Original Assignee
경희대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160173413A external-priority patent/KR101864963B1/en
Priority claimed from KR1020170026026A external-priority patent/KR101804090B1/en
Application filed by 경희대학교산학협력단 filed Critical 경희대학교산학협력단
Publication of WO2018117485A1 publication Critical patent/WO2018117485A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation

Definitions

  • One embodiment of the present invention relates to a radiation detector including a transistor formed on a silicon carbide substrate, and more particularly, to a radiation detector that can be measured at a high level of 1MeV or more.
  • a radiation detector including a photoelectric conversion unit including a first region formed on a silicon carbide (SiC) substrate and a second region partially formed in the first region.
  • SiC silicon carbide
  • Radiation such as X-rays and gamma rays ( ⁇ -rays), are highly transparent and can be used to see the inside of an object. Therefore, radiation is important for medical field and nondestructive testing.
  • the amount of radiation varies depending on the density inside the subject, and the difference in the amount of radiation may be measured to image the inside of the subject.
  • the radiographic apparatus includes a radiation generator for radiating radiation onto a subject and a radiation detector for detecting radiation passing through the subject.
  • the radiation detector emits radiation so that a radiation image or a real time radiation image is output as a digital signal.
  • the radiation detector includes a photoelectric conversion unit that converts light into an electrical signal, and a scintillator layer that contacts the photoelectric conversion substrate and converts radiation incident from the outside into light. Then, the light converted from the radiation incident by the scintillator layer reaches the photoelectric conversion portion and is converted into electric charge. This charge is transferred to a transistor connected to the photoelectric conversion unit, which is read as an output signal and converted into a digital image signal by, for example, a predetermined signal processing circuit.
  • a photodiode may be used as the photoelectric conversion unit, and the photodiode may be a PIN diode or p (p) including a p (positive) type semiconductor layer, an i (intrinsic) type semiconductor layer (i layer), and an n (negative) type semiconductor layer. It may be a PN type diode including a positive type semiconductor layer and an n (negative) type semiconductor layer.
  • Conventional radiation detectors are mostly for detecting low-level radiation doses such as X-rays, and all radiation detectors are destroyed when high-level radiation doses of 1 MeV or more are irradiated to these systems.
  • the diode formed in the photoelectric conversion portion has a vertical PIN structure or a PN structure, which is not suitable for integration because it has a structure that penetrates the silicon wafer. If the resolution is 1 mm or less, there is a problem that detection is difficult.
  • the radiation detector is made of a hard hard material, there is a problem that can not adhere to the curved surface of the human body.
  • One embodiment of the present invention relates to a radiation detector that can be measured even at a high level of 1MeV or more by manufacturing a transistor using a silicon carbide (SiC; Silicon Carbide) substrate.
  • SiC silicon carbide
  • One embodiment of the present invention relates to a radiation detector capable of detecting high-level radiation using a gradual breakdown of a silicon carbide substrate, thereby removing a photodiode conventionally used as a photoelectric conversion unit.
  • An embodiment of the present invention detects low-level radiation by using a change in dielectric constant of a gate insulating layer or a change in an electron hole pair (EHP) in a drain region, thereby removing a photodiode conventionally used as a photoelectric conversion unit. It relates to a radiation detector.
  • One embodiment of the present invention relates to a radiation detector in which all the wirings are formed on a silicon carbide (SiC) substrate, whereby the size of a transistor can be reduced and the device can be manufactured in a planar structure.
  • SiC silicon carbide
  • One embodiment of the present invention relates to a radiation detector for simplifying the inspection, measurement, and measurement analysis of a device by forming all wirings on a silicon carbide (SiC) substrate.
  • SiC silicon carbide
  • One embodiment of the invention relates to a flexible radiation detector fabricated using a flexible printed circuit (FPC) to connect with external wiring.
  • FPC flexible printed circuit
  • One embodiment of the present invention relates to a radiation detector capable of detecting radiation irradiation in real time even from various angles by using a flexible substrate, the contact of the curved surface of the human body.
  • Another embodiment of the present invention relates to a radiation detector capable of measuring even at a high level of 1 MeV or more by manufacturing a photoelectric conversion unit using silicon carbide (SiC).
  • Another embodiment of the present invention relates to a radiation detector capable of improving the degree of integration by reducing the size of the photoelectric conversion part by forming a photoelectric conversion part as a photodiode having a horizontal structure to induce a current flow path to flow horizontally on the surface of the substrate. .
  • Another embodiment of the present invention relates to a radiation detector in which all electrodes are placed on top of the photoelectric conversion unit to simplify the device process and facilitate inspection and measurement analysis.
  • Another embodiment of the invention is directed to a flexible radiation detector fabricated using a flexible printed circuit (FPC) to connect with external wiring.
  • FPC flexible printed circuit
  • Another embodiment of the present invention relates to a radiation detector capable of detecting radiation irradiation in real time even at various angles using a flexible substrate, and capable of contacting the curved surface of the human body.
  • Radiation detector is a silicon carbide (SiC) substrate; A gate insulating film formed on the silicon carbide substrate; A gate electrode formed on the gate insulating film; Source and drain regions disposed on both sides of the gate electrode and spaced apart from each other in the silicon carbide substrate; An interlayer insulating layer formed on the gate electrode; A word line formed on the interlayer insulating layer and connected to the gate electrode; And a scintillator formed on the interlayer insulating layer, the bit line connected to the drain region, and a scintillator disposed on the interlayer insulating layer.
  • SiC silicon carbide
  • the radiation detector may destroy the silicon carbide substrate by the high level radiation and detect the high level radiation.
  • the radiation detector may detect the low level radiation by changing the dielectric constant of the gate insulating layer due to the low level radiation.
  • the radiation detector may change the electron-hole pair (EHP) of the drain region by low level radiation to detect the low level radiation.
  • EHP electron-hole pair
  • the display device may further include a bias line connected to the source region on the interlayer insulating layer.
  • All wirings connected to the gate electrode, the source region and the drain region may be formed on the silicon carbide substrate.
  • At least one contact hole may be included in the interlayer insulating layer.
  • the gate electrode may include at least one of amorphous Si, poly crystalline Si, single crystalline Si, and a metal.
  • the radiation detector may include at least one flexible printed circuit (FPC).
  • FPC flexible printed circuit
  • the radiation detector may be connected to an external wiring by using a flexible printed circuit (FPC).
  • FPC flexible printed circuit
  • the radiation detector may be a flexible device.
  • a radiation detector may include a substrate of a first impurity type; At least one photoelectric conversion unit including a first region of a first impurity type formed on the substrate of the first impurity type and a second region of a second impurity type separated from the first region; A first electrode formed on the first region; A second electrode formed on the second region; And a scintillator formed on the first electrode and the second electrode.
  • the first impurity type substrate may be formed of silicon carbide (SiC), the first impurity type may be n-type, and the second impurity type may be p-type.
  • the second region may be partially formed in the first region.
  • the first electrode and the second electrode may be formed on the same layer.
  • the substrate of the first impurity type may further include an I-type semiconductor layer between the first region of the first impurity type and the second region of the second impurity type.
  • the first electrode and the second electrode may be connected to the first region and the second region through vias.
  • a method of manufacturing a radiation detector comprising: preparing a substrate of a first impurity type; Forming at least one photoelectric conversion part including a first region of a first impurity type and a second region of a second impurity type separated from the first region on the substrate of the first impurity type; Forming a first electrode on the first region; Forming a second electrode on the second region; And forming a scintillator on the first electrode and the second electrode.
  • the second region may be formed by ion implantation.
  • the method may further include forming a first via connecting the first region and the first electrode.
  • the method may further include forming a second via connecting the second region and the second electrode.
  • the radiation detector according to an embodiment of the present invention can measure even at a high level of 1 MeV or more by manufacturing a radiation detector including a transistor formed on a silicon carbide (SiC) substrate.
  • the radiation detector according to an embodiment of the present invention detects high-level radiation by using gradual destruction of the silicon carbide substrate, thereby removing a photodiode conventionally used as a photoelectric converter.
  • the radiation detector according to an embodiment of the present invention detects low-level radiation by using a change in dielectric constant of a gate insulating layer or a change of an electron-hole pair (EHP) in a drain region, and thus is a photoelectric conversion unit.
  • the diode can be removed.
  • the radiation detector according to the embodiment of the present invention forms all the wirings connected to the gate electrode, the source region, and the drain region on the silicon carbide substrate to reduce the size of the transistor, thereby manufacturing the device in a planar structure. have.
  • the radiation detector according to the embodiment of the present invention may manufacture the transistor in a planar structure on the surface of the silicon carbide substrate, thereby reducing the size of the photoelectric conversion portion, thereby improving the degree of integration.
  • the transistor is manufactured in a planar structure on the surface of the silicon carbide substrate so that the device can operate at 100V or less.
  • the radiation detector according to an embodiment of the present invention exists on a silicon carbide substrate within 1 mm x 1 mm in width and width, but manufactures a transistor smaller than a silicon carbide substrate, so that most of the incident radiation is transmitted to the human body. You can do that.
  • all the wirings are formed on the silicon carbide substrate, thereby simplifying the structure of the device, and inspecting and measuring analysis.
  • the radiation detector according to the exemplary embodiment of the present invention may be manufactured as a flexible device by using a flexible printed circuit (FPC) to connect with an external wiring.
  • FPC flexible printed circuit
  • the radiation detector according to an embodiment of the present invention can detect a linear signal instead of on / off by using an FPC.
  • the radiation detector according to an embodiment of the present invention may detect radiation in real time even at various angles using a flexible substrate, and may manufacture a radiation detector capable of contacting a curved surface of a human body.
  • the radiation detector according to an embodiment of the present invention can be attached to a human body to track even small movements of a patient.
  • the radiation detector according to another embodiment of the present invention can be measured even at a high level of 1 MeV or more by manufacturing a photoelectric conversion unit using silicon carbide (SiC).
  • the radiation detector according to another embodiment of the present invention forms a photodiode with a photodiode having a horizontal structure to induce a current flow path to flow horizontally on the surface of the substrate, thereby reducing the size of the photoelectric converter and improving integration. have.
  • the radiation detector according to another embodiment of the present invention forms a photodiode with a photodiode having a horizontal structure and adjusts the size thereof, so that the driving voltage range of 400V, which is an electrical characteristic of existing silicon carbide (SiC), is less than 40V. It can be implemented to eliminate the risk of direct human contact.
  • the radiation detector according to another embodiment of the present invention may increase the detection position sophistication by manufacturing a current path of 100 ⁇ m to 650 ⁇ m of a semiconductor passing through a simple PIN diode and a PN diode to ⁇ 100 ⁇ m or less. .
  • the radiation detector according to another embodiment of the present invention may increase the amount of radiation transmitted to the human body by forming a sensor area only on a part of the radiation detector by partially forming the second region on the first region.
  • all electrodes are disposed on the upper portion of the photoelectric conversion unit to simplify the structure of the device, and to facilitate inspection and measurement analysis.
  • the radiation detector according to another embodiment of the present invention may be manufactured as a flexible device using a flexible printed circuit (FPC) to connect with an external wiring.
  • FPC flexible printed circuit
  • the radiation detector according to another embodiment of the present invention may detect a linear signal instead of on / off by using a flexible printed circuit (FPC).
  • FPC flexible printed circuit
  • the radiation detector according to another embodiment of the present invention may detect radiation in real time even at various angles using a flexible substrate, and may manufacture a radiation detector capable of contacting a curved surface of a human body.
  • the radiation detector according to another embodiment of the present invention can be attached to a human body to track even small movements of a patient.
  • FIG. 1 is a cross-sectional view of a radiation detector according to an embodiment of the present invention.
  • FIGS. 2A and 2B illustrate a surface of a silicon carbide on which a transistor of a radiation detector according to an embodiment of the present invention is formed.
  • FIG 3 illustrates a cross-sectional view of a radiation detector according to another embodiment of the present invention.
  • Figure 4 is a three-dimensional view showing a radiation detector according to another embodiment of the present invention.
  • 5A and 5B are images illustrating an FPC used in a radiation detector according to embodiments of the present invention.
  • FIG. 6 is a flowchart illustrating a method of manufacturing a radiation detector according to another embodiment of the present invention.
  • an embodiment As used herein, “an embodiment”, “an example”, “side”, “an example”, etc., should be construed that any aspect or design described is better or advantageous than other aspects or designs. It is not.
  • the term 'or' refers to an inclusive or 'inclusive or' rather than an exclusive or 'exclusive or'.
  • the expression 'x uses a or b' means any one of natural inclusive permutations.
  • first and second may be used to describe various components, but the components are not limited by the terms. The terms are used only to distinguish one component from another.
  • a part such as a film, layer, area, configuration request, etc. is said to be "on” or “on” another part, the other film, layer, area, component in the middle, as well as when it is directly above another part. It also includes the case where it is interposed.
  • FIG. 1 is a cross-sectional view of a radiation detector according to an embodiment of the present invention.
  • a radiation detector 100 may include a silicon carbide (SiC) substrate 110, a gate insulating layer 120 formed on a silicon carbide substrate 110, and a gate.
  • the source electrode 141, the drain region 142, and the gate which are disposed on both sides of the gate electrode 130 and the gate electrode 130 formed on the insulating film 120 and are spaced apart from each other in the silicon carbide substrate 110.
  • a transistor including an interlayer insulating layer 150 formed on the electrode 130 is provided.
  • the radiation detector 100 may include at least one transistor in a chip.
  • At least one wiring may be formed on the interlayer insulating layer 150.
  • a word line 173 connected to the gate electrode 130, a bit line 172 connected to the drain region 142, and a source region 141 may be connected to the interlayer insulating layer 150.
  • the interlayer insulating layer 150 may include at least one contact hole 161, 162, and 163.
  • Conventional radiation detectors use a scintillator to convert the irradiated radiation into visible light when the radiation is irradiated.
  • the converted visible light is incident on the photodiode used as the photoelectric converter, and the photoelectric converter may generate an electrical signal corresponding to the intensity of the incident visible light.
  • the photodiode changes the electron-hole pair (EHP) in the depletion layer of the photodiode due to the incident visible light, so that a current flows inside the photodiode.
  • EHP electron-hole pair
  • the electrical signal generated at the photodiode is provided to a transistor disposed on the substrate.
  • the radiation detector 100 may be used to change the dielectric constant of the gate insulating layer 120, the electron-hole pair change of the depletion layer of the drain region 142, or the change of the silicon carbide substrate 110. Since radiation can be detected by this, the photodiode conventionally used as a photoelectric conversion part can be removed.
  • the radiation detector 100 includes a silicon carbide substrate 110.
  • the silicon carbide substrate 110 of the radiation detector 100 includes a first surface (top) and a second surface (bottom) facing each other, the first surface (top) Transistors and scintillators can be formed.
  • Si substrates which are mainly used for X-ray detection.
  • the radiation detector is used for high-level radiation rather than X-rays, the silicon substrate is destroyed by high-level radiation, and thus the silicon substrate is not suitable for high-level radiation.
  • the radiation detector 100 since the radiation detector 100 according to the embodiment of the present invention uses silicon carbide as the substrate 110, the substrate is not destroyed even at a high level of 1 MeV or more, and thus may be used to detect various radiations in addition to X-rays.
  • the silicon carbide substrate 110 may serve as a photoelectric conversion unit.
  • the radiation detector 100 converts the radiation irradiated with the scintillator into visible light when the radiation is irradiated, and the converted visible light changes the silicon carbide substrate 110 used as the photoelectric conversion unit.
  • the radiation can be detected.
  • the silicon carbide substrate 110 may be gradually destroyed by the irradiated high level radiation, thereby detecting the high level radiation.
  • the photodiode since the destruction of the silicon carbide substrate 110 plays the same role as the photodiode used as the photoconversion unit, the photodiode may be removed.
  • the silicon carbide substrate 110 may be used as a disposable element because the high-level radiation is detected by the destruction of the silicon carbide substrate 110.
  • the gate insulating layer 120 is formed on the silicon carbide substrate 110.
  • a patterning process may be performed to form the gate insulating layer 120 having a desired size and shape.
  • the gate insulating layer 120 may serve as a photoelectric converter.
  • the radiation detector 100 converts the radiation irradiated with the scintillator into visible light when the radiation is irradiated, and the converted visible light changes the dielectric constant of the gate insulating film 120 used as the photoelectric converter. Radiation can be detected.
  • the dielectric constant of the gate insulating layer 120 may be changed by the low level radiation to detect the low level radiation.
  • the gate insulating film 120 When the gate insulating film 120 is used as the photoelectric conversion part, the gate insulating film 120 may be used as a disposable device because low level radiation is detected by the gradual breakdown of the gate insulating film 120.
  • the photodiode can be removed.
  • the gate insulating film 120 may be formed of any one of an inorganic insulating film, an organic insulating film, a dual structure of an inorganic insulating film, and an organic / inorganic hybrid insulating film.
  • a spin coating method may be used. .
  • the gate insulating film 120 is, for example, aluminum oxide (Al 2 O 3), silicon oxide (SiO 2), hafnium oxide (HfO 2), zirconium oxide (ZrO 2) or silicon nitride (Si3N4) etc. At least one of materials having a dielectric property of may be used.
  • the gate electrode 130 is formed on the silicon carbide substrate 110.
  • a patterning process may be performed to form a gate electrode 130 having a desired size and shape.
  • the gate electrode 120 may have the same size and shape as the gate insulating layer 120, but is not limited thereto.
  • the gate electrode 130 may be formed to extend from the word line 173, and the gate electrode 130 may be formed of the same material as the word line 173 through the same process.
  • the gate electrode 130 may include at least one of amorphous silicon, poly crystalline Si, single crystalline Si, and a metal.
  • the metal used as the gate electrode 130 may include molybdenum (Mo), aluminum (Al), chromium (Cr), gold (Au), titanium (Ti), nickel (Ni), copper (Cu), or the like. At least one of the metals may be included.
  • Source and drain regions 141 and 142 are disposed on both sides of the gate electrode 130 and are formed to be spaced apart from each other in the silicon carbide substrate 110.
  • the source region 141 and the drain region 142 may be formed at both ends of the gate electrode 130 to be spaced apart from each other in the silicon carbide substrate 113.
  • the channel region may be formed between the lower side of the gate electrode 130, the source region 141, and the drain region 142, and serves as a channel through which electrons move.
  • the source region 141 and the drain region 142 may be formed by performing an ion implantation process for implanting impurities into the silicon carbide substrate 110.
  • the source region 141 or the drain region 142 performs ion implantation to have a P-type, and the channel region of the silicon carbide substrate 110 is performed. If the P-type, the source region 141 or drain region 142 is implanted to have an N-type, the silicon carbide substrate 110 of the radiation detector 100 according to an embodiment of the present invention May have a PIN or PN structure.
  • the drain region 142 may be used as the photoelectric conversion unit.
  • the radiation detector 100 converts the radiation irradiated with the scintillator into visible light when the radiation is irradiated, and the converted visible light is electron-holes in the drain region 142 used as the photoelectric conversion unit.
  • the pair can be changed to detect radiation.
  • the electron-hole pair of the drain region 142 may be changed by the irradiated low level radiation to detect the low level radiation.
  • the drain region 142 When the drain region 142 is used as the photoelectric conversion unit, since the low level radiation is detected by the change of the electron-hole pair of the drain region 142, the drain region 142 may be used as a multi-use device.
  • the photodiode can be removed.
  • An interlayer insulating layer 150 is formed on the silicon carbide substrate 110 to form at least one contact hole 161, 162, and 163.
  • the interlayer insulating layer 150 may protect the transistor in a subsequent process such as etching or polishing.
  • the interlayer insulating layer 150 an inorganic insulating layer or an organic insulating layer may be used.
  • the interlayer insulating layer 150 may include at least one of an insulating layer such as silicon oxide (SiO 2 ) silicon nitride (SiNx) or silicon oxynitride (SiON). It can be formed as one.
  • the radiation detector 100 may include the silicon carbide substrate 110, the gate insulating layer 120, the gate electrode 130, the source region 141, and the drain region 142 as described above. And a transistor including an interlayer insulating layer 150.
  • the radiation detector 100 may include at least one transistor in a chip.
  • the radiation detector 100 may increase the amount of radiation transmitted to the human body as the number of transistors included in the chip decreases. On the contrary, the radiation detector 100 increases as the number of transistors included in the chip increases. The accuracy of the detector 100 may be improved.
  • the radiation detector 100 is preferably manufactured by adjusting the number of transistors included in the chip according to the purpose of use.
  • the radiation detector 100 may manufacture the transistor in a planar structure on the surface of the silicon carbide substrate 110 so that the device may operate even at 100V or less.
  • the radiation detector 100 may manufacture the transistor in a planar structure on the surface of the silicon carbide substrate 110 to reduce the size of the radiation detector 100, thereby improving the degree of integration.
  • the radiation detector 100 is present on the silicon carbide substrate within 1mm x 1mm width of the transistor, the majority of the radiation incident by manufacturing the transistor size smaller than the substrate It can be transmitted through the human body.
  • the interlayer insulating layer 150 may include at least one contact hole 161, 162, and 163.
  • the first contact hole 161 to the third contact hole 163 may be formed in the interlayer insulating layer 150, and the first contact hole 161 to the third contact hole 163 may include a conductive material therein. have.
  • the first contact hole 161 connects the source region 141 and the bias line 171
  • the second contact hole 162 connects the drain region 142 and the bit line
  • the gate electrode 130 may be connected to the word line 193.
  • the first contact hole 161 to the third contact hole 163 are molybdenum (Mo), aluminum (Al), chromium (Cr), gold (Au), titanium (Ti), nickel (Ni), and neodium. At least one of metals such as (Nd) and copper (Cu) may be included.
  • the radiation detector 100 includes at least one wire connected to the gate electrode 130, the source region 141, and the drain region 142.
  • a word line 173 connected to the gate electrode 130 may be formed on the interlayer insulating layer 150.
  • the word line 173 is connected to the gate electrode 130 through the third contact hole 163, and the word line 173 may be formed of the same material as the gate electrode 130 through the same process, but is not limited thereto. It doesn't happen.
  • the word line 173 may be formed of a metal such as molybdenum (Mo), aluminum (Al), chromium (Cr), gold (Au), titanium (Ti), nickel (Ni), neodium (Nd), or copper (Cu). It may be made of an alloy thereof, and may be made of a single layer or multiple layers of two or more such metals or alloys.
  • Mo molybdenum
  • Al aluminum
  • Cr chromium
  • Au gold
  • Ti titanium
  • Ni nickel
  • Nd neodium
  • Cu copper
  • It may be made of an alloy thereof, and may be made of a single layer or multiple layers of two or more such metals or alloys.
  • the bit line 172 connected to the drain region 142 may be formed on the interlayer insulating layer 150.
  • the bit line 172 is connected to the drain region 142 through the second contact hole 162, and the electronic signal is passed through the bit line 172 connected to the drain region 142 and the drain region 142 of the transistor. Can be displayed as a signal.
  • Bit line 172 is a metal such as molybdenum (Mo), aluminum (Al), chromium (Cr), gold (Au), titanium (Ti), nickel (Ni), neodium (Nd) or copper (Cu), or It may be made of an alloy thereof, and may be made of a single layer or multiple layers of two or more such metals or alloys.
  • Mo molybdenum
  • Al aluminum
  • Cr chromium
  • Au gold
  • Ti titanium
  • Ni nickel
  • Nd neodium
  • Cu copper
  • It may be made of an alloy thereof, and may be made of a single layer or multiple layers of two or more such metals or alloys.
  • the bias line 171 connected to the source region 141 may be formed on the interlayer insulating layer 150.
  • the bias line 171 may be connected to the source region 141 through the first contact hole 141 formed in the interlayer insulating layer 150, and may apply a bias voltage through the bias line 171.
  • the bias line 171 may receive a reverse bias voltage and a forward bias voltage from an external power supply, but is not limited thereto.
  • the bias line 171 is a metal such as molybdenum (Mo), aluminum (Al), chromium (Cr), gold (Au), titanium (Ti), nickel (Ni), neodium (Nd), or copper (Cu), or It may be made of an alloy thereof, and may be made of a single layer or multiple layers of two or more such metals or alloys.
  • Mo molybdenum
  • Al aluminum
  • Cr chromium
  • Au gold
  • Ti titanium
  • Ni nickel
  • Nd neodium
  • Cu copper
  • It may be made of an alloy thereof, and may be made of a single layer or multiple layers of two or more such metals or alloys.
  • bias line 171, the bit line 172, and the word line 173 may be formed in parallel in the same direction.
  • the bias line 171, the bit line 172, and the word line 173 are formed in parallel in the same direction, thereby forming a plurality of wires in a single patterning process. Can reduce process difficulty.
  • the radiation detector 100 forms all wirings connected to the gate electrode 130, the source region 141, and the drain region 142 on the silicon carbide substrate 110. Since the size of the transistor can be reduced, the device can be manufactured in a planar structure.
  • all wirings connected to the gate electrode 130, the source region 141, and the drain region 142 are formed on the silicon carbide substrate 110. Device simplification, inspection and measurement analysis can be facilitated.
  • the radiation detector 100 may include a scintillator (not shown) disposed on the interlayer insulating layer 150.
  • the scintillator is formed in the front direction of the radiation detector 100 to allow the radiation transmitted through the object to be incident, and converts the light into a wavelength of light that can be absorbed by the photoelectric conversion unit, for example, visible light in the green wavelength range. You can.
  • the scintillator can include solid, liquid and gas scintillators, and the solid scintillator can include organic and inorganic scintillators.
  • the radiation conversion efficiency is low but the reaction rate is fast, and the inorganic scintillator has an advantage of high light output and good linearity, and an appropriate scintillator may be used if necessary.
  • the scintillator may be formed of a halogen compound such as thallium or sodium doped cesium iodide or may include an oxide-based compound such as gadolinium sulfate, but is not limited thereto.
  • a halogen compound such as thallium or sodium doped cesium iodide
  • an oxide-based compound such as gadolinium sulfate, but is not limited thereto.
  • the scintillator may be attached to the front surface of the transistor in the form of a film and may be deposited and formed by a chemical vapor deposition (CVD) method.
  • CVD chemical vapor deposition
  • the scintillator may further include a reflective layer on a front surface of which radiation is incident.
  • the reflective layer may be formed of a material that can transmit radiation, for example, the reflective layer may be formed of a metal such as aluminum or titanium, or may be formed of an organic material such as glass, carbon, or ceramic, but is not limited thereto. It doesn't happen.
  • the reflective layer may improve the light utilization efficiency by reflecting the visible light, which is emitted to the outside of the visible light converted by the scintillator and lost, to the inside.
  • the radiation detector 100 may include at least one flexible printed circuit (FPC).
  • FPC flexible printed circuit
  • the radiation detector 100 may be connected to an external wiring by using a flexible printed circuit (FPC).
  • FPC flexible printed circuit
  • the FPC includes a first surface (top) of the silicon carbide substrate 110 on which transistors and scintillators are formed to form wirings connected to the gate electrode 130, the source region 141, or the drain region 142. Can be formed (or connected).
  • an FPC may be formed (or connected) in a region where no device exists.
  • the FPC is manufactured so that the radiation detector 100 has a flexible structure by additionally forming an FPC on the second surface (bottom) instead of the first surface (top) on which the transistor and scintillator are formed on the silicon carbide substrate 110. can do.
  • the radiation detector 100 may be formed with a back bias combined reference line (not shown) on the second surface (bottom) of the silicon carbide substrate 110. have.
  • the back bias dual reference line may apply a back bias to the second surface (lower end) of the silicon carbide substrate 110 to form a depletion layer in the channel region or the drain region.
  • the radiation detector 100 In order to form the radiation detector 100 in a flexible structure, the upper and lower wirings must be formed of FPC. Therefore, the radiation detector 100 according to the embodiment of the present invention may have a flexible structure by using the FPC, and thus may be formed of a flexible device.
  • the radiation detector 100 may be attached to a human body, thereby addressing the matrix array of the radiation detector 100, and positioning the signal detected by the radiation detector at the time of irradiation to position tracking. Can be used to track even small movements.
  • gold can be inserted in or around a subject (eg, cancer cell) to be measured, and then the radiation can be tracked more precisely in conjunction with the signal.
  • the FPC formed on the top and the FPC formed on the bottom can be arranged at 90 degrees, the FPC formed on the top can be used for the purpose of detecting electrical characteristics, the FPC formed on the bottom rather than the role of electrical wiring for device fixing It can be configured to have more function of fixing.
  • the FPC may be connected by using electrical wiring and soldering by forming a hole in a part.
  • the radiation detector 100 may detect a linear signal instead of on / off by using an FPC.
  • the radiation detector 100 by forming the radiation detector 100 according to an embodiment of the present invention as a flexible element, it is possible to manufacture a radiation detector 100 capable of human contact.
  • the conventional method of preparing the radiation to be irradiated to the device before the patient lying down, the radiation detector on the floor and the method of preparing the position or quantity is fixed or prepared by adjusting the coordinate value like a cyber knife As a result, a person was moved to a fixed position to determine the position, or a fixed patient was examined to determine the position.
  • the radiation detector 100 can directly sense the position of the patient to track the position only to the point of very low radiation during the pre-irradiation, and irradiate any part with the value generated in the signal You can determine if you want to do so, which reduces preliminary preparation time and speeds up response time.
  • FIGS. 2A and 2B illustrate a surface of a silicon carbide on which a transistor of a radiation detector according to an embodiment of the present invention is formed.
  • 2A and 2B include the same components as those of FIG. 1 except that the surface of the silicon carbide on which the transistor of the radiation detector is formed according to an embodiment of the present invention is omitted. do.
  • the radiation detector according to an embodiment of the present invention includes, but is not limited to, four pixels P, and includes at least one pixel P.
  • At least one pixel P may include a transistor as shown in FIG. 1.
  • the radiation detector according to the exemplary embodiment of the present invention may form the transistor on the silicon carbide substrate 110 within 1 mm ⁇ 1 mm.
  • the transistor is formed in the center of the pixel P in order to clearly illustrate the transistor.
  • the transistor is not limited thereto, and the transistor may be manufactured in a smaller size than the silicon carbide substrate 110 or the pixel P.
  • the transistor may be formed in a portion smaller than the pixel P instead of the center portion of the pixel P.
  • the radiation detector according to an embodiment of the present invention is present on the silicon carbide substrate 110 within 1 mm x 1 mm in width and width, but by making the transistor smaller than the silicon carbide substrate 110, Most of the incident radiation can be transmitted to the human body.
  • the transistor as shown in FIG. 1 may have various planar structures on the silicon carbide substrate 110, and preferably may have the structures of FIGS. 2A and 2B, but is not limited thereto.
  • a transistor of a radiation detector includes a gate electrode 130, a source region 141, and a drain region 142, each of which includes a gate electrode 130, Wires are connected to the source region 141 and the drain region 142.
  • the bias line 171 is electrically connected to the source region 141
  • the bit line 172 is electrically connected to the drain region 142
  • the word line 173 is connected to the gate electrode 130. Can be electrically connected.
  • the radiation detector according to the exemplary embodiment of the present invention may include a bias line 171, a bit line 172, and a word line 173 formed in parallel to the same layer.
  • the radiation detector according to the exemplary embodiment of the present invention may be formed such that the bias line 171, the bit line 172, and the word line 173 cross different layers, in this case, the bias line 171. It is assumed that both the bit line 172 and the word line 173 are formed on top of the transistor.
  • all wirings connected to the gate electrode 130, the source region 141, and the drain region 142 may be disposed on the upper end of the transistor, thereby simplifying the structure of the device and inspecting the radiation detector. And measurement analysis is convenient.
  • the gate electrode 130, the source region 141, and the drain region 142 are formed side by side on the same line to form a trident shape ⁇ . It may have a planar structure.
  • the source region 141 and the drain region 142 are formed side by side on the same line, and the gate electrode 130 includes the source region 141 and Protruding from the drain region 142 may have a cross-shaped (+) planar structure.
  • FIG 3 illustrates a cross-sectional view of a radiation detector according to another embodiment of the present invention.
  • a radiation detector may include a substrate 210 of a first impurity type and a first region 221 of a first impurity type formed on a substrate 210 of a first impurity type. And at least one photoelectric conversion unit including a second region 222 of a second impurity type distinct from the first region 221, a first electrode 241, and a second formed on the first region 221. A second electrode 242 and a scintillator 250 formed on the first electrode 241 and the second electrode 242 are formed on the region 222.
  • first electrode 241 and the second electrode 242 may be connected to the first region 221 and the second region 222 through the vias 231 and 232, and the vias 231 and 232 may be connected to the first region. It may include a first via 231 formed on the region 221 and a second via 232 formed on the second region 222.
  • FIG. 3 illustrates a structure in which the first region 221 of the first impurity type is formed on the substrate 210 of the first impurity type, but is not limited thereto, and the substrate 210 of the first impurity type is not limited thereto. It may be formed in a structure that is itself a first region 221 of the first impurity type.
  • the substrate 210 of the first impurity type may be formed of silicon carbide (SiC).
  • Si substrates which are mainly used for X-ray detection.
  • the radiation detector is used for high-level radiation rather than X-rays, the silicon substrate is destroyed by high-level radiation, and thus the silicon substrate is not suitable for high-level radiation.
  • the substrate 210 of the first impurity type uses silicon carbide (SiC), the substrate is not destroyed even at a high level of 1 MeV or more, and thus may be used to detect various radiations in addition to X-rays. have.
  • SiC silicon carbide
  • the first region 221 is formed on the substrate 210 of the first impurity type.
  • the first region 221 may be formed on the substrate 210 of the first impurity type, the first impurity type may be the same material as the substrate 210, and the first impurity type may be n-type.
  • a second region 222 of a second impurity type may be formed on the first region 221.
  • the second impurity type of the second region 222 may be a p-type.
  • the second region may include at least one selected from the group consisting of B, Al, and Ga.
  • the radiation detector according to another embodiment of the present invention may include at least one photoelectric conversion unit including a first region 221 of the first impurity type and a second region 222 of the second impurity type. .
  • the photoelectric conversion part includes a PN structure photodiode or a P (positive) type semiconductor layer, an I (intrinsic) type semiconductor layer, and a N (negative type) semiconductor layer including a P (positive) type semiconductor layer and a N (negative) type semiconductor layer. It may include a photodiode having a PIN structure.
  • the photodiode having a PIN structure uses an intrinsic SiC wafer, and may have a structure in which an I (intrinsic) type semiconductor layer is formed in the middle by implanting p-type and n-type separately.
  • the radiation detector according to another embodiment of the present invention may increase the detection position sophistication by manufacturing a current path of 100 ⁇ m to 650 ⁇ m of a semiconductor passing through a simple PIN diode and a PN diode to ⁇ 100 ⁇ m or less. Can be.
  • the photoelectric conversion unit uses a photodiode having a horizontal structure instead of a vertical photodiode. It may include.
  • the current flowing through the photodiode has a problem of being fixed by the thickness of the substrate. .
  • the radiation detector according to another embodiment of the present invention can adjust the width and length of the current flowing through the photodiode by forming the photoelectric conversion unit in a horizontal structure according to the designer's intention.
  • the cross-sectional area through which current flows is small, but it is advantageous in that the size required in the integrated device, i.e., the change in current, can be made multiple.
  • the photoelectric conversion unit may be formed of a photodiode having a horizontal structure to induce a current flow path to flow horizontally on the surface of the substrate, thereby reducing the size of the photoelectric conversion unit and improving the degree of integration.
  • the driving voltage of 400V which is an electrical characteristic of silicon carbide, is dangerous even when a small current flows. To reduce this risk, the driving voltage must be reduced by reducing the path through which the current flows.
  • the radiation detector according to another embodiment of the present invention forms a photodiode with a photodiode having a horizontal structure and adjusts the size thereof, so that the driving voltage range of 400V, which is an electrical characteristic of conventional silicon carbide (SiC), is less than 40V. It can be implemented to eliminate the risk of direct human contact.
  • the threshold voltage depends on the concentration of the impurity, the threshold voltage adjustment can be controlled by changing the amount of the impurity.
  • the radiation detector according to another embodiment of the present invention includes a second region 222 partially formed in the first region 221 to form a sensor area on only a part of the radiation detector, thereby transmitting radiation to the human body. You can increase the amount.
  • the photoelectric conversion unit is formed on the rear surface of the scintillator 250, absorbs the converted visible light through the scintillator 250, and converts it into an electrical signal. That is, an electron-hole pair may occur inside the photoelectric conversion unit, and the electron-hole pair may be separated into electrons and holes and converted into an electrical signal.
  • the photoelectric conversion unit may be formed on the substrate 210 in a plurality of pixel units to form a pixel array constituting a radiographic image.
  • Vias 231 and 232 connected to the first electrode 241 and the second electrode 242 are formed on the first region 221 and the second region 222.
  • the vias 231 and 232 include a first via 231 and a second via 232, and the first via 231 connects the first region 221 and the first electrode 241 to the second via 231.
  • the via 232 may connect the electrode of the second region 222 and the second electrode 242.
  • the first via 231 and the second via 232 may be patterned on the first insulating layer 260 formed on the first region 221 and the second region 222.
  • the first via 231 and the second via 232 may be formed of a metal such as aluminum, molybdenum, chromium, neodymium, tantalum, titanium, tungsten, copper, silver, gold, platinum, or an alloy thereof.
  • a metal such as aluminum, molybdenum, chromium, neodymium, tantalum, titanium, tungsten, copper, silver, gold, platinum, or an alloy thereof.
  • a first electrode 241 and a second electrode 242 are formed on the first region 221 and the second region 222 through the first via 231 and the second via 232.
  • the first electrode 241 and the second electrode 242 may be formed on the same layer, and both may be formed on the upper end of the photoelectric conversion unit.
  • the first electrode 241 is formed at the lower end of the photoelectric conversion unit and the second electrode 242 is formed at the upper end of the photoelectric conversion unit, according to another embodiment of the present invention, the first electrode 241 is formed on the upper end of the photoelectric conversion unit.
  • the second electrode 242 the process for forming the first electrode 241 and the second electrode 242 can be simplified.
  • first electrode 241 and the second electrode 242 are formed on the upper end of the photoelectric conversion unit, Inspection and measurement analysis are convenient.
  • the first electrode 241 may be a data electrode and may be connected to the first region 221 to derive an electrical signal corresponding to the electrical signal generated by the photoelectric converter, but is not limited thereto.
  • a readout IC connected to the first electrode 241 detects an electrical signal of the first electrode 241 and outputs an image signal accordingly.
  • the second electrode 242 may be a signal electrode and may be connected to the second region 222 to receive a reverse bias voltage and a forward bias voltage from an external power supply, but are not limited thereto. no.
  • the first electrode 241 and the second electrode 242 may be formed in parallel in the same direction, and may be arranged in the form of a wiring.
  • the first electrode 241 and the second electrode 242 may be formed by patterning the second insulating layer 270 formed on the first region 221 and the second region 222.
  • first electrode 241 and the second electrode 242 may be aluminum, molybdenum, chromium, neodymium, tantalum, titanium, tungsten, copper, silver or alloys thereof, indium tin oxide (ITO), or indium zinc oxide ( It may be formed of a transparent conductive material so as to transmit light such as IZO.
  • a scintillator 250 is formed on the first electrode 241 and the second electrode 242.
  • the scintillator 250 is formed in the front direction of the radiation detector so that the radiation that penetrates the object can be incident, and converts the radiation into light having a wavelength that can be absorbed by the photoelectric conversion unit, for example, visible light in the green wavelength range. You can.
  • the scintillator 250 can include solid, liquid and gas scintillator 250, and the solid scintillator 250 can include organic and inorganic scintillator 250.
  • the organic scintillator 250 the X-ray conversion efficiency is low but the reaction speed is high, and the inorganic scintillator 250 has the advantage of high light output and good linearity, and an appropriate scintillator may be used as necessary. have.
  • the scintillator 250 may be formed of a halogen compound such as thallium or sodium doped cesium iodide, or may include an oxide-based compound such as gadolinium sulfate.
  • the scintillator 250 may be attached to the entire surface of the photoelectric conversion unit in the form of a film, and may be deposited and formed by a chemical vapor deposition (CVD) method.
  • CVD chemical vapor deposition
  • the scintillator 250 may further include a reflective layer on the entire surface where the X-rays are incident.
  • the reflective layer may be formed of a material through which X-rays may be transmitted.
  • the reflective layer may be formed of a metal such as aluminum or titanium, or may be formed of an organic material such as glass, carbon, or ceramic, but is not limited thereto. It doesn't happen.
  • the reflective layer may improve the light utilization efficiency by reflecting the visible light, which is emitted out of the visible light converted by the scintillator 250 to the outside, and lost again.
  • the radiation detector according to another embodiment of the present invention may be connected to an external wiring by using a flexible printed circuit (FPC).
  • FPC flexible printed circuit
  • the radiation detector according to another embodiment of the present invention may have a flexible structure by using FPC, and thus may be formed of a flexible device.
  • the radiation detector according to another embodiment of the present invention can be attached to a human body, so that the matrix array of the radiation detector can be addressed, and the signal detected by the radiation detector at the time of irradiation is used as a position tracking for fine movement. Tracking can be enabled.
  • gold can be inserted in or around a subject (eg, cancer cell) to be measured, and then the radiation can be tracked more precisely in conjunction with the signal.
  • the FPC formed on the top and the FPC formed on the bottom can be arranged at 90 degrees, the FPC formed on the top can be used for the purpose of detecting electrical characteristics, the FPC formed on the bottom rather than the role of electrical wiring for device fixing It can be configured to have more function of fixing.
  • the FPC may be connected by using electrical wiring and soldering by forming a hole in a part.
  • the radiation detector according to another embodiment of the present invention can detect a linear signal instead of on / off by using an FPC.
  • a radiation detector according to another embodiment of the present invention as a flexible element, it is possible to manufacture a radiation detector capable of human contact.
  • the conventional method of preparing the radiation to be irradiated to the device before the patient lying down, the radiation detector on the floor and the method of preparing the position or quantity is fixed or prepared by adjusting the coordinate value like a cyber knife
  • a person was moved to a fixed position to determine a position or a fixed patient was irradiated with a third radiation to determine a position.
  • the radiation detector according to another embodiment of the present invention can directly sense the position of the patient to track the position only with a very low point of radiation at the time of pre-irradiation, and determine which part to irradiate with the value generated from the signal. This reduces pre-preparation time and makes response time very fast.
  • Figure 4 is a three-dimensional view showing a radiation detector according to another embodiment of the present invention.
  • FIG. 4 includes the same components as those of FIG. 3 except that the radiation detector according to another embodiment of the present invention has a three-dimensional structure, and thus, overlapping components will be omitted.
  • the photoelectric conversion unit may be formed on the substrate 210 in units of a plurality of pixels to form a pixel array constituting a radiographic image.
  • the second region 222 of the radiation detector according to another embodiment of the present invention may be partially formed instead of being entirely formed in the first region 221.
  • the radiation detector according to another embodiment of the present invention forms a photodiode with a photodiode having a horizontal structure to induce a current flow path to flow horizontally on the surface of the substrate, thereby reducing the size of the photoelectric converter and improving integration. Can be.
  • the radiation detector according to another embodiment of the present invention forms a second area 222 in the first area 221 to form a sensor area on a part of the radiation detector, thereby reducing the amount of radiation transmitted to the human body. Can be increased.
  • the radiation detector according to another embodiment of the present invention may include a first electrode 241 and a second electrode 242 formed in parallel to the same layer.
  • the first electrode 241 and the second electrode 242 may be formed to cross different layers, in this case, the first electrode 241 and the second electrode. It is assumed that the electrodes 242 are all formed on the upper end of the photoelectric conversion unit.
  • the radiation detector according to another embodiment of the present invention can simplify the structure of the device by arranging both the first electrode 241 and the second electrode 242 on the upper side of the photoelectric conversion unit. It is convenient.
  • the first via 231 and the second via 232 connecting the first region 221 and the second region 222, the first electrode 241, and the second electrode 242 are illustrated in a cylindrical shape. It is not limited, but may be formed in various structures.
  • 5A and 5B are images illustrating an FPC used in a radiation detector according to embodiments of the present invention.
  • the FPC 300 may be formed in a branch shape, and in the FPC 300, an electrode may be formed as an integrated wiring on an upper end of the radiation detector.
  • the radiation detector according to the embodiments of the present invention may detect the linear signal instead of on / off by using the FPC 300.
  • FPCs 310 and 320 may be disposed at the top and bottom of the radiation detector 400 according to embodiments of the present invention, and the FPCs may be disposed at the top and bottom of the radiation detector 400.
  • the 310 and 320 may be formed at 90 degrees.
  • the FPC 320 formed at the top may be used for the purpose of detecting electrical characteristics, and the FPC 310 formed at the bottom may be formed to have more functions of fixing than the role of electrical wiring for device fixing.
  • the FPC 310 formed at the bottom may be used as a back bias combined reference line.
  • the FPCs 310 and 320 may be formed to form a hole in a part thereof to be connected by using electrical wiring and soldering.
  • the radiation detector 400 may be manufactured as a flexible device using the FPC 300 to connect with an external wiring.
  • FIG. 6 is a flowchart illustrating a method of manufacturing a radiation detector according to another embodiment of the present invention.
  • FIGS. 3 and 4 includes the same components as those of FIGS. 3 and 4, and thus redundant descriptions thereof will be omitted.
  • a substrate of a first impurity type may be prepared. And forming at least one photoelectric conversion unit including a second region of a second impurity type distinct from the first region.
  • step S430 of forming a first electrode on the first region the step S440 of forming a second electrode on the second region, and the step S450 of forming a scintillator on the first electrode and the second electrode are performed. Include.
  • the method may further include forming a first via connecting the first region and the first electrode and forming a second via connecting the second region and the second electrode.
  • step S410 a substrate of a first impurity type is prepared.
  • the substrate of the first impurity type may be made of silicon carbide (SiC).
  • At least one photoelectric conversion unit including a first region of the first impurity type and a second region of the second impurity type distinct from the first region is formed on the substrate of the first impurity type.
  • the substrate of the first impurity type may itself be a first region, and a first region of the first impurity type may be formed on the substrate of the first impurity type separately including the same material as the substrate of the first impurity type.
  • the second region may be partially formed in the first region.
  • the first region of the first impurity type is an epitaxial method, a solution. It may be formed on the substrate through a coating method or a deposition method.
  • the solution coating method for forming the first region of the first impurity type is, for example, spin coating, spray coating, ultra-spray coating, electrospin coating, slot die coating. (slot die coating), gravure coating, bar coating, roll coating, dip coating, shear coating, screen printing, inkjet printing (inkjet printing) or nozzle printing (nozzle printing) may be used, and the deposition method is, for example, under reduced pressure, atmospheric pressure or pressurized conditions, sputtering, atomic layer deposition (ALD), chemical vapor deposition (CVD), Thermal evaporation, co-evaporation or plasma enhanced chemical vapor deposition (PECVD) can be used.
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • PECVD plasma enhanced chemical vapor deposition
  • the substrate of the first impurity type may be silicon carbide (SiC), the first impurity type may be p-type, and the second region of the second impurity type may be n-type.
  • a photodiode having a PN structure or a PIN structure may be used in the photoelectric conversion unit.
  • the second region of the second impurity type may be formed by implanting ions into the first region of the first impurity type.
  • the second region of the second impurity type may be formed of B, Al, and Ga. It may include at least one selected.
  • a first electrode is formed on the first region.
  • the first electrode may be a data electrode and may be connected to the first region to induce an electrical signal corresponding to the electrical signal generated by the photoelectric converter.
  • the first electrode may be formed by patterning a second insulating layer formed on the first region.
  • the first electrode may be connected through a first via formed on the first region, and the first via may be formed by patterning a first insulating layer formed on the first region.
  • the first electrode may be a metal such as aluminum, molybdenum, chromium, neodymium, tantalum, titanium, tungsten, copper, silver, gold, platinum, or an alloy thereof or light such as indium tin oxide (ITO) or indium zinc oxide (IZO). It may be formed of a transparent conductive material to transmit the light.
  • a metal such as aluminum, molybdenum, chromium, neodymium, tantalum, titanium, tungsten, copper, silver, gold, platinum, or an alloy thereof or light such as indium tin oxide (ITO) or indium zinc oxide (IZO). It may be formed of a transparent conductive material to transmit the light.
  • a second electrode is formed on the second region.
  • the second electrode may be a signal electrode and may be connected to the second region to receive a reverse bias voltage and a forward bias voltage from an external power supply (not shown).
  • the second electrode may be formed by patterning a second insulating layer formed on the second region.
  • the second electrode may be connected through a second via formed on the second region, and the second via may be formed by patterning the first insulating layer formed on the second region.
  • the second electrode 242 is a metal such as aluminum, molybdenum, chromium, neodymium, tantalum, titanium, tungsten, copper, silver, gold, platinum, or an alloy thereof or indium tin oxide (ITO) or indium zinc oxide (IZO). It may be formed of a transparent conductive material so as to transmit light such as.
  • step S450 a scintillator is formed on the first electrode and the second electrode.
  • the scintillator may be attached in the form of a film on the first electrode and the second electrode, and may be formed by being deposited by chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • the scintillator is formed in the front direction of the radiation detector so that radiation transmitted through the object can be incident, and can convert the radiation into light having a wavelength that can be absorbed by the photoelectric conversion unit, for example, visible light in the green wavelength range. .
  • the scintillator may be formed of a halogen compound, such as cesium iodide doped with thallium or sodium, or may include an oxide-based compound such as gadolinium sulfate.
  • a halogen compound such as cesium iodide doped with thallium or sodium
  • an oxide-based compound such as gadolinium sulfate.
  • the radiation detector according to another embodiment of the present invention may further form an FPC on the top or bottom of the radiation detector.
  • the FPC formed at the top and the FPC formed at the bottom may be arranged at 90 degrees, the FPC formed at the top may be used for detecting electrical characteristics, and the FPC formed at the bottom may be fixed rather than the role of electrical wiring for device fixing. It can be configured to have more functions.
  • the FPC may be connected by using electrical wiring and soldering by forming a hole in a part.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

Disclosed in the present invention are a radiation detector and a manufacturing method therefor. According to one embodiment of the present invention, the radiator detector comprises: a silicon carbide (SiC) substrate; a gate insulating film formed on the SiC substrate; a gate electrode formed on the gate insulating film; a source region and a drain region arranged at both sides of the gate electrode and formed in the SiC substrate so as to be spaced apart from each other; an interlayer insulating layer formed on the gate electrode; a word line formed on the interlayer insulating layer and connected to the gate electrode; a bit line formed on the interlayer insulating layer and connected to the drain region; and a scintillator disposed on the interlayer insulating layer.

Description

실리콘 카바이드 기판 상에 형성된 트랜지스터를 포함하는 방사선 디텍터Radiation detector comprising a transistor formed on a silicon carbide substrate
본 발명의 일 실시예는 실리콘 카바이드 기판 상에 형성된 트랜지스터를 포함하는 방사선 디텍터에 관한 것으로, 보다 구체적으로는, 1MeV 이상의 고준위에서도 측정이 가능한 방사선 디텍터에 관한 것이다.One embodiment of the present invention relates to a radiation detector including a transistor formed on a silicon carbide substrate, and more particularly, to a radiation detector that can be measured at a high level of 1MeV or more.
또한, 본 발명의 다른 실시예는 실리콘카바이드(SiC) 기판 상에 형성된 제1 영역 및 제1 영역에 부분적으로 형성된 제2 영역을 포함하는 광전변환부를 구비하는 방사선 디텍터에 관한 것이다.In addition, another embodiment of the present invention relates to a radiation detector including a photoelectric conversion unit including a first region formed on a silicon carbide (SiC) substrate and a second region partially formed in the first region.
엑스선(X-ray) 및 감마선(γ-ray)과 같은 방사선은 투과성이 강하여 이를 이용하면 물체의 내부를 볼 수 있다. 따라서 방사선은 의료 분야 및 비파괴 검사 등에 중요하게 쓰인다. 피사체 내부의 밀도에 따라서 방사선의 투과량이 달라지고, 이러한 투과량의 차이를 측정하여 피사체의 내부를 영상화할 수 있다.Radiation, such as X-rays and gamma rays (γ-rays), are highly transparent and can be used to see the inside of an object. Therefore, radiation is important for medical field and nondestructive testing. The amount of radiation varies depending on the density inside the subject, and the difference in the amount of radiation may be measured to image the inside of the subject.
방사선 촬영장치는 방사선을 피사체에 조사하는 방사선 발생장치(Radiation Generator)와 피사체를 투과한 방사선을 검출하는 방사선 디텍터(Radiation Detector)로 구성된다.The radiographic apparatus includes a radiation generator for radiating radiation onto a subject and a radiation detector for detecting radiation passing through the subject.
방사선 디텍터는 방사선을 조사함으로써 방사선 이미지 또는 실시간 방사선 이미지가 디지털 신호로서 출력된다. 방사선 디텍터는 광을 전기 신호로 변환하는 광전변환부와, 광전변환기판에 접촉하고 외부에서 입사한 방사선을 광으로 변환하는 신틸레이터 층을 포함한다. 그 다음, 신틸레이터 층에 의해 입사된 방사선으로부터 변환된 광은 광전변환부에 도달하여 전하로 변환된다. 이 전하는 광전변환부와 연결된 트랜지스터로 전달되어, 출력 신호로 읽혀서 예를 들면 소정의 신호처리회로에 의해 디지털 이미지 신호로 변환된다.The radiation detector emits radiation so that a radiation image or a real time radiation image is output as a digital signal. The radiation detector includes a photoelectric conversion unit that converts light into an electrical signal, and a scintillator layer that contacts the photoelectric conversion substrate and converts radiation incident from the outside into light. Then, the light converted from the radiation incident by the scintillator layer reaches the photoelectric conversion portion and is converted into electric charge. This charge is transferred to a transistor connected to the photoelectric conversion unit, which is read as an output signal and converted into a digital image signal by, for example, a predetermined signal processing circuit.
광전변환부로는 포토 다이오드가 사용될 수 있고, 포토다이오드는 p(positive)형 반도체층, i(intrinsic)형 반도체층(i층) 및 n(negative)형 반도체층을 포함하는 PIN형 다이오드 또는 p(positive)형 반도체층 및 n(negative)형 반도체층을 포함하는 PN형 다이오드일 수 있다.A photodiode may be used as the photoelectric conversion unit, and the photodiode may be a PIN diode or p (p) including a p (positive) type semiconductor layer, an i (intrinsic) type semiconductor layer (i layer), and an n (negative) type semiconductor layer. It may be a PN type diode including a positive type semiconductor layer and an n (negative) type semiconductor layer.
기존의 방사선 디텍터는 대부분 엑스선과 같은 저준위 방사선량을 검출하기 위한 것으로 이러한 시스템에 1MeV 이상의 고준위 방사선량을 조사할 경우 모든 방사선 디텍터가 파괴되는 문제점이 있다.Conventional radiation detectors are mostly for detecting low-level radiation doses such as X-rays, and all radiation detectors are destroyed when high-level radiation doses of 1 MeV or more are irradiated to these systems.
또한, 광전변환부에 형성되는 다이오드는 수직 구조의 PIN 구조 또는 PN구조를 가지고 있으며, 이는 실리콘 웨이퍼를 관통하는 구조를 가지고 있기 때문에 집적화에 적합하지 않아. 해상도가 1㎜ 이하에서는 검출이 어려운 문제점이 있다.In addition, the diode formed in the photoelectric conversion portion has a vertical PIN structure or a PN structure, which is not suitable for integration because it has a structure that penetrates the silicon wafer. If the resolution is 1 mm or less, there is a problem that detection is difficult.
또한, 방사선 디텍터를 경질의 하드한 재료로 제조함으로써, 인체의 곡면에 부착하지 못하는 문제점이 있다.In addition, the radiation detector is made of a hard hard material, there is a problem that can not adhere to the curved surface of the human body.
본 발명의 일 실시예는 실리콘카바이드(SiC; Silicon Carbide) 기판을 이용하여 트랜지스터를 제조함으로써, 1MeV 이상의 고준위에서도 측정이 가능한 방사선 디텍터에 관한 것이다.One embodiment of the present invention relates to a radiation detector that can be measured even at a high level of 1MeV or more by manufacturing a transistor using a silicon carbide (SiC; Silicon Carbide) substrate.
본 발명의 일 실시예는 실리콘카바이드 기판의 점진적 파괴를 이용하여 고준위 방사선을 검출하여, 종래에 광전변환부로 사용되는 포토 다이오드 제거가 가능한 방사선 디텍터에 관한 것이다.One embodiment of the present invention relates to a radiation detector capable of detecting high-level radiation using a gradual breakdown of a silicon carbide substrate, thereby removing a photodiode conventionally used as a photoelectric conversion unit.
본 발명의 일 실시예는 게이트 절연막의 유전율 변화 또는 드레인 영역의 전자-정공 쌍(EHP; electron hole pair)이 변화를 이용하여 저준위 방사선을 검출하여, 종래에 광전변환부로 사용되는 포토 다이오드 제거가 가능한 방사선 디텍터에 관한 것이다.An embodiment of the present invention detects low-level radiation by using a change in dielectric constant of a gate insulating layer or a change in an electron hole pair (EHP) in a drain region, thereby removing a photodiode conventionally used as a photoelectric conversion unit. It relates to a radiation detector.
본 발명의 일 실시예는 모든 배선을 실리콘카바이드(SiC) 기판 상부에 형성함으로써, 트랜지스터의 크기를 감소할 수 있어, 소자를 평면 구조로 제조가 가능한 방사선 디텍터에 관한 것이다.One embodiment of the present invention relates to a radiation detector in which all the wirings are formed on a silicon carbide (SiC) substrate, whereby the size of a transistor can be reduced and the device can be manufactured in a planar structure.
본 발명의 일 실시예는 모든 배선을 실리콘카바이드(SiC) 기판 상부에 형성함으로써, 소자의 공정을 단순화, 검사 및 측정 분석이 편리한 방사선 디텍터에 관한 것이다.One embodiment of the present invention relates to a radiation detector for simplifying the inspection, measurement, and measurement analysis of a device by forming all wirings on a silicon carbide (SiC) substrate.
본 발명의 일 실시예는 외부 배선과 연결시키기 위해 FPC(flexible printed circuit)를 사용하여 제조된 유연한 방사선 디텍터에 관한 것이다.One embodiment of the invention relates to a flexible radiation detector fabricated using a flexible printed circuit (FPC) to connect with external wiring.
본 발명의 일 실시예는 유연 기판을 이용하여 다양한 각도에서도 방사선 조사를 실시간으로 검출할 수 있고, 인체의 곡면에 접촉이 가능한 방사선 디텍터에 관한 것이다.One embodiment of the present invention relates to a radiation detector capable of detecting radiation irradiation in real time even from various angles by using a flexible substrate, the contact of the curved surface of the human body.
본 발명의 다른 실시예는 실리콘카바이드(SiC)를 이용하여 광전변환부를 제조함으로써, 1MeV 이상의 고준위에서도 측정이 가능한 방사선 디텍터에 관한 것이다.Another embodiment of the present invention relates to a radiation detector capable of measuring even at a high level of 1 MeV or more by manufacturing a photoelectric conversion unit using silicon carbide (SiC).
본 발명의 다른 실시예는 광전변환부를 수평 구조의 포토다이오드로 형성하여 전류 이동 경로를 기판의 표면에서 수평으로 흐르도록 유도하여, 광전변환부의 사이즈를 감소시켜, 집적도 향상이 가능한 방사선 디텍터에 관한 것이다.Another embodiment of the present invention relates to a radiation detector capable of improving the degree of integration by reducing the size of the photoelectric conversion part by forming a photoelectric conversion part as a photodiode having a horizontal structure to induce a current flow path to flow horizontally on the surface of the substrate. .
본 발명의 다른 실시예는 모든 전극을 광전변환부의 상단에 배치하여 소자의 공정을 단순화하고, 검사 및 측정 분석이 편리한 방사선 디텍터에 관한 것이다.Another embodiment of the present invention relates to a radiation detector in which all electrodes are placed on top of the photoelectric conversion unit to simplify the device process and facilitate inspection and measurement analysis.
본 발명의 다른 실시예는 외부 배선과 연결시키기 위해 FPC(flexible printed circuit)를 사용하여 제조된 유연한 방사선 디텍터에 관한 것이다.Another embodiment of the invention is directed to a flexible radiation detector fabricated using a flexible printed circuit (FPC) to connect with external wiring.
본 발명의 다른 실시예는 유연 기판을 이용하여 다양한 각도에서도 방사선 조사를 실시간으로 검출할 수 있고, 인체의 곡면에 접촉이 가능한 방사선 디텍터에 관한 것이다.Another embodiment of the present invention relates to a radiation detector capable of detecting radiation irradiation in real time even at various angles using a flexible substrate, and capable of contacting the curved surface of the human body.
본 발명의 일 실시예에 따른 방사선 디텍터는 실리콘카바이드(SiC) 기판; 상기 실리콘카바이드 기판 상에 형성되는 게이트 절연막; 상기 게이트 절연막 상에 형성되는 게이트 전극; 상기 게이트 전극의 양측에 배치되고, 상기 실리콘카바이드 기판 내에 서로 이격되도록 형성되는 소스 영역 및 드레인 영역; 상기 게이트 전극 상에 형성되는 층간 절연막; 상기 층간 절연막 상에 형성되고, 상기 게이트 전극과 연결되는 워드 라인(Word Line); 상기 층간 절연막 상에 형성되고, 상기 드레인 영역과 연결되는 비트 라인(Bit Line) 및 상기 층간 절연막 상에 배치되는 신틸레이터를 포함한다.Radiation detector according to an embodiment of the present invention is a silicon carbide (SiC) substrate; A gate insulating film formed on the silicon carbide substrate; A gate electrode formed on the gate insulating film; Source and drain regions disposed on both sides of the gate electrode and spaced apart from each other in the silicon carbide substrate; An interlayer insulating layer formed on the gate electrode; A word line formed on the interlayer insulating layer and connected to the gate electrode; And a scintillator formed on the interlayer insulating layer, the bit line connected to the drain region, and a scintillator disposed on the interlayer insulating layer.
상기 방사선 디텍터는 고준위 방사선에 의해 상기 실리콘카바이드 기판이 파괴되어, 상기 고준위 방사선을 검출할 수 있다.The radiation detector may destroy the silicon carbide substrate by the high level radiation and detect the high level radiation.
상기 방사선 디텍터는 저준위 방사선에 의해 상기 게이트 절연막의 유전율이 변화되어, 상기 저준위 방사선을 검출을 검출할 수 있다.The radiation detector may detect the low level radiation by changing the dielectric constant of the gate insulating layer due to the low level radiation.
상기 방사선 디텍터는 저준위 방사선에 의해 상기 드레인 영역의 전자-정공 쌍(EHP; electron hole pair)이 변화되어, 상기 저준위 방사선을 검출할 수 있다.The radiation detector may change the electron-hole pair (EHP) of the drain region by low level radiation to detect the low level radiation.
상기 층간 절연막 상에 상기 소스 영역과 연결되는 바이어스 라인(Bias Line)을 더 포함할 수 있다.The display device may further include a bias line connected to the source region on the interlayer insulating layer.
상기 게이트 전극, 상기 소스 영역 및 상기 드레인 영역과 연결되는 모든 배선은 상기 실리콘카바이드 기판 상부에 형성될 수 있다.All wirings connected to the gate electrode, the source region and the drain region may be formed on the silicon carbide substrate.
상기 층간 절연막 내에는 적어도 하나 이상의 콘택홀을 포함할 수 있다.At least one contact hole may be included in the interlayer insulating layer.
상기 게이트 전극은 비정질 실리콘(amorphous Si), 다결정 실리콘(poly crystalline Si), 단결정 실리콘(single crystalline Si) 및 금속 중 적어도 어느 하나를 포함할 수 있다.The gate electrode may include at least one of amorphous Si, poly crystalline Si, single crystalline Si, and a metal.
상기 방사선 디텍터는 적어도 하나의 FPC(flexible printed circuit)를 포함할 수 있다.The radiation detector may include at least one flexible printed circuit (FPC).
상기 방사선 디텍터는 FPC(flexible printed circuit)를 이용하여 외부 배선과 연결될 수 있다.The radiation detector may be connected to an external wiring by using a flexible printed circuit (FPC).
상기 방사선 디텍터는 유연 소자일 수 있다.The radiation detector may be a flexible device.
본 발명의 다른 실시예에 따른 방사선 디텍터는 제1 불순물 타입의 기판; 상기 제1 불순물 타입의 기판 상에 형성된 제1 불순물 타입의 제1 영역과, 상기 제1 영역과 구분되는 제2 불순물 타입의 제2 영역을 포함하는 적어도 하나 이상의 광전변환부; 상기 제1 영역 상에 형성되는 제1 전극; 상기 제2 영역 상에 형성되는 제2 전극; 및 상기 제1 전극 및 상기 제2 전극 상에 형성되는 신틸레이터(scintillator)를 포함한다.According to another embodiment of the present invention, a radiation detector may include a substrate of a first impurity type; At least one photoelectric conversion unit including a first region of a first impurity type formed on the substrate of the first impurity type and a second region of a second impurity type separated from the first region; A first electrode formed on the first region; A second electrode formed on the second region; And a scintillator formed on the first electrode and the second electrode.
상기 제1 불순물 타입의 기판은 실리콘카바이드(SiC)로 구성되고, 상기 제1 불순물 타입은 n-type 및 상기 제2 불순물 타입은 p-type 일 수 있다.The first impurity type substrate may be formed of silicon carbide (SiC), the first impurity type may be n-type, and the second impurity type may be p-type.
상기 제2 영역은 상기 제1 영역 내에 부분적으로 형성될 수 있다.The second region may be partially formed in the first region.
상기 제1 전극 및 상기 제2 전극은 동일 층에 형성될 수 있다.The first electrode and the second electrode may be formed on the same layer.
상기 제1 불순물 타입의 기판은 상기 제1 불순물 타입의 제1 영역 및 상기 제2 불순물 타입의 제2 영역 사이에 I-type 반도체층을 더 포함할 수 있다.The substrate of the first impurity type may further include an I-type semiconductor layer between the first region of the first impurity type and the second region of the second impurity type.
상기 제1 전극 및 상기 제2 전극은 비아 통해 상기 제1 영역 및 상기 제2 영역에 연결될 수 있다.The first electrode and the second electrode may be connected to the first region and the second region through vias.
본 발명의 다른 실시예에 따른 방사선 디텍터의 제조 방법은 제1 불순물 타입의 기판을 준비하는 단계; 상기 제1 불순물 타입의 기판 상에 제1 불순물 타입의 제1 영역과, 상기 제1 영역과 구분되는 제2 불순물 타입의 제2 영역을 포함하는 적어도 하나 이상의 광전변환부를 형성하는 단계; 상기 제1 영역 상에 제1 전극을 형성하는 단계; 상기 제2 영역 상에 제2 전극을 형성하는 단계; 및 상기 제1 전극 및 상기 제2 전극 상에 신틸레이터(scintillator)를 형성하는 단계를 포함한다.According to another aspect of the present invention, there is provided a method of manufacturing a radiation detector, comprising: preparing a substrate of a first impurity type; Forming at least one photoelectric conversion part including a first region of a first impurity type and a second region of a second impurity type separated from the first region on the substrate of the first impurity type; Forming a first electrode on the first region; Forming a second electrode on the second region; And forming a scintillator on the first electrode and the second electrode.
상기 제2 영역은 이온 주입에 의해 형성될 수 있다.The second region may be formed by ion implantation.
상기 제1 영역과 상기 제1 전극을 연결하는 제1 비아를 형성하는 단계를 더 포함할 수 있다.The method may further include forming a first via connecting the first region and the first electrode.
상기 제2 영역과 상기 제2 전극을 연결하는 제2 비아를 형성하는 단계를 더 포함할 수 있다.The method may further include forming a second via connecting the second region and the second electrode.
본 발명의 일 실시예에 따른 방사선 디텍터는 실리콘카바이드(SiC) 기판 상에 형성된 트랜지스터를 구비하는 방사선 디텍터를 제조함으로써, 1MeV 이상의 고준위에서도 측정할 수 있다.The radiation detector according to an embodiment of the present invention can measure even at a high level of 1 MeV or more by manufacturing a radiation detector including a transistor formed on a silicon carbide (SiC) substrate.
본 발명의 일 실시예에 따른 방사선 디텍터는 실리콘카바이드 기판의 점진적 파괴를 이용하여 고준위 방사선을 검출하여, 종래에 광전변환부로 사용되는 포토 다이오드를 제거할 수 있다.The radiation detector according to an embodiment of the present invention detects high-level radiation by using gradual destruction of the silicon carbide substrate, thereby removing a photodiode conventionally used as a photoelectric converter.
본 발명의 일 실시예에 따른 방사선 디텍터는 게이트 절연막의 유전율 변화 또는 드레인 영역의 전자-정공 쌍(EHP; electron hole pair)의 변화를 이용하여 저준위 방사선을 검출하여, 종래에 광전변환부로 사용되는 포토 다이오드를 제거할 수 있다.The radiation detector according to an embodiment of the present invention detects low-level radiation by using a change in dielectric constant of a gate insulating layer or a change of an electron-hole pair (EHP) in a drain region, and thus is a photoelectric conversion unit. The diode can be removed.
본 발명의 일 실시예에 따른 방사선 디텍터는 게이트 전극, 소스 영역 및 드레인 영역과 연결되는 모든 배선을 실리콘카바이드 기판 상부에 형성함으로써, 트랜지스터의 크기를 감소할 수 있어, 소자를 평면 구조로 제조할 수 있다.The radiation detector according to the embodiment of the present invention forms all the wirings connected to the gate electrode, the source region, and the drain region on the silicon carbide substrate to reduce the size of the transistor, thereby manufacturing the device in a planar structure. have.
본 발명의 일 실시예에 따른 방사선 디텍터는 트랜지스터를 실리콘카바이드 기판 표면에 평면 구조로 제조하여, 광전변환부의 사이즈를 감소시켜, 집적도를 향상시킬 수 있다.The radiation detector according to the embodiment of the present invention may manufacture the transistor in a planar structure on the surface of the silicon carbide substrate, thereby reducing the size of the photoelectric conversion portion, thereby improving the degree of integration.
또한, 트랜지스터를 실리콘카바이드 기판 표면에 평면 구조로 제조하여 100V이하에서도 소자가 작동할 수 있다.In addition, the transistor is manufactured in a planar structure on the surface of the silicon carbide substrate so that the device can operate at 100V or less.
본 발명의 일 실시예에 따른 방사선 디텍터는 트랜지스터를 가로세로 1㎜×1㎜ 이 내의 실리콘카바이드 기판 상에 존재하되, 트랜지스터의 크기를 실리콘카바이드 기판 보다 작게 제조하여 입사되는 방사선의 대부분이 인체로 투과 되도록 할 수 있다.The radiation detector according to an embodiment of the present invention exists on a silicon carbide substrate within 1 mm x 1 mm in width and width, but manufactures a transistor smaller than a silicon carbide substrate, so that most of the incident radiation is transmitted to the human body. You can do that.
본 발명의 일 실시예에 따른 방사선 디텍터는 모든 배선은 실리콘카바이드 기판 상부에 형성함으로써, 소자의 구조 단순화, 검사 및 측정 분석이 편리해질 수 있다.In the radiation detector according to the exemplary embodiment of the present invention, all the wirings are formed on the silicon carbide substrate, thereby simplifying the structure of the device, and inspecting and measuring analysis.
본 발명의 일 실시예에 따른 방사선 디텍터는 외부 배선과 연결시키기 위해 FPC(flexible printed circuit)를 사용하여 유연 소자로 제조할 수 있다.The radiation detector according to the exemplary embodiment of the present invention may be manufactured as a flexible device by using a flexible printed circuit (FPC) to connect with an external wiring.
본 발명의 일 실시예에 따른 방사선 디텍터는 FPC를 사용함으로써, 온/오프(on/off)가 아닌 리니어 신호를 검출 할 수 있다.The radiation detector according to an embodiment of the present invention can detect a linear signal instead of on / off by using an FPC.
본 발명의 일 실시예에 따른 방사선 디텍터는 유연 기판을 이용하여 다양한 각도에서도 방사선 조사를 실시간으로 검출할 수 있고, 인체의 곡면에 접촉이 가능한 방사선 디텍터를 제조할 수 있다.The radiation detector according to an embodiment of the present invention may detect radiation in real time even at various angles using a flexible substrate, and may manufacture a radiation detector capable of contacting a curved surface of a human body.
본 발명의 일 실시예에 따른 방사선 디텍터는 인체에 부착이 가능하여 환자의 작은 움직임에 대해서도 트래킹시킬 수 있다.The radiation detector according to an embodiment of the present invention can be attached to a human body to track even small movements of a patient.
본 발명의 다른 실시예에 따른 방사선 디텍터는 실리콘카바이드(SiC)를 이용하여 광전변환부를 제조함으로써 1MeV 이상의 고준위에서도 측정할 수 있다.The radiation detector according to another embodiment of the present invention can be measured even at a high level of 1 MeV or more by manufacturing a photoelectric conversion unit using silicon carbide (SiC).
본 발명의 다른 실시예에 따른 방사선 디텍터는 광전변환부를 수평 구조의 포토다이오드로 형성하여 전류이동 경로를 기판의 표면에서 수평으로 흐르도록 유도하여, 광전변환부의 사이즈를 감소시켜, 집적도를 향상시킬 수 있다.The radiation detector according to another embodiment of the present invention forms a photodiode with a photodiode having a horizontal structure to induce a current flow path to flow horizontally on the surface of the substrate, thereby reducing the size of the photoelectric converter and improving integration. have.
본 발명의 다른 실시예에 따른 방사선 디텍터는 광전변환부를 수평 구조의 포토다이오드로 형성하여 사이즈를 조절함으로써, 기존 실리콘카바이드(SiC)가 가지는 전기적 특성인 400V의 구동전압 범위를 40V미만의 구동전압 범위로 구현시켜 직접적인 인체접촉의 위험성을 제거할 수 있다.The radiation detector according to another embodiment of the present invention forms a photodiode with a photodiode having a horizontal structure and adjusts the size thereof, so that the driving voltage range of 400V, which is an electrical characteristic of existing silicon carbide (SiC), is less than 40V. It can be implemented to eliminate the risk of direct human contact.
본 발명의 다른 실시예에 따른 방사선 디텍터는 단순 PIN 다이오드 및 PN 다이오드를 관통하는 반도체가 가지는 전류 경로(current path) 100㎛~650㎛를 ≤100㎛ 이하로 제조하여 검출 위치 정교함을 증가시킬 수 있다.The radiation detector according to another embodiment of the present invention may increase the detection position sophistication by manufacturing a current path of 100 μm to 650 μm of a semiconductor passing through a simple PIN diode and a PN diode to ≦ 100 μm or less. .
본 발명의 다른 실시예에 따른 방사선 디텍터는 제1 영역 상에 부분적으로 제2 영역을 형성함으로써, 방사선 디텍터의 일부에만 센서 면적을 형성함으로써, 방사선이 인체로 투과되는 양을 증가시킬 수 있다.The radiation detector according to another embodiment of the present invention may increase the amount of radiation transmitted to the human body by forming a sensor area only on a part of the radiation detector by partially forming the second region on the first region.
본 발명의 다른 실시예에 따른 방사선 디텍터는 모든 전극을 광전변환부의 상단에 배치하여 소자의 구조를 단순화시키고, 검사 및 측정 분석이 편리해질 수 있다.In the radiation detector according to another embodiment of the present invention, all electrodes are disposed on the upper portion of the photoelectric conversion unit to simplify the structure of the device, and to facilitate inspection and measurement analysis.
본 발명의 다른 실시예에 따른 방사선 디텍터는 외부 배선과 연결시키기 위해 FPC(flexible printed circuit)를 사용하여 유연 소자로 제조할 수 있다.The radiation detector according to another embodiment of the present invention may be manufactured as a flexible device using a flexible printed circuit (FPC) to connect with an external wiring.
본 발명의 다른 실시예에 따른 방사선 디텍터는 FPC(flexible printed circuit)를 사용함으로써, 온/오프(on/off)가 아닌 리니어 신호를 검출 할 수 있다.The radiation detector according to another embodiment of the present invention may detect a linear signal instead of on / off by using a flexible printed circuit (FPC).
본 발명의 다른 실시예에 따른 방사선 디텍터는 유연 기판을 이용하여 다양한 각도에서도 방사선 조사를 실시간으로 검출할 수 있고, 인체의 곡면에 접촉이 가능한 방사선 디텍터를 제조할 수 있다.The radiation detector according to another embodiment of the present invention may detect radiation in real time even at various angles using a flexible substrate, and may manufacture a radiation detector capable of contacting a curved surface of a human body.
본 발명의 다른 실시예에 따른 방사선 디텍터는 인체에 부착이 가능하여 환자의 작은 움직임에 대해서도 트래킹시킬 수 있다.The radiation detector according to another embodiment of the present invention can be attached to a human body to track even small movements of a patient.
도 1은 본 발명의 일 실시예에 따른 방사선 디텍터의 단면도를 도시한 것이다.1 is a cross-sectional view of a radiation detector according to an embodiment of the present invention.
도 2a 및 도 2b는 본 발명의 일 실시예에 따른 방사선 디텍터의 트랜지스터가 형성된 실리콘카바이드의 표면을 도면이다.2A and 2B illustrate a surface of a silicon carbide on which a transistor of a radiation detector according to an embodiment of the present invention is formed.
도 3은 본 발명의 다른 실시예에 따른 방사선 디텍터의 단면도를 도시한 것이다.3 illustrates a cross-sectional view of a radiation detector according to another embodiment of the present invention.
도 4는 본 발명의 다른 실시예에 따른 방사선 디텍터를 도시한 입체도이다.Figure 4 is a three-dimensional view showing a radiation detector according to another embodiment of the present invention.
도 5a 및 도 5b는 본 발명의 실시예들에 따른 방사선 디텍터에 사용되는 FPC를 도시한 이미지 이다.5A and 5B are images illustrating an FPC used in a radiation detector according to embodiments of the present invention.
도 6는 본 발명의 다른 실시예에 따른 방사선 디텍터의 제조 방법을 도시한 흐름도이다. 6 is a flowchart illustrating a method of manufacturing a radiation detector according to another embodiment of the present invention.
이하 첨부 도면들 및 첨부 도면들에 기재된 내용들을 참조하여 본 발명의 일 실시예를 상세하게 설명하지만, 본 발명이 실시예에 의해 제한되거나 한정되는 것은 아니다.Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings and the contents described in the accompanying drawings, but the present invention is not limited or limited to the embodiments.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. In this specification, the singular also includes the plural unless specifically stated otherwise in the phrase. As used herein, “comprises” and / or “comprising” refers to the presence of one or more other components, steps, operations and / or elements. Or does not exclude additions.
본 명세서에서 사용되는 "실시예", "예", "측면", "예시" 등은 기술된 임의의 양상(aspect) 또는 설계가 다른 양상 또는 설계들보다 양호하다거나, 이점이 있는 것으로 해석되어야 하는 것은 아니다.As used herein, “an embodiment”, “an example”, “side”, “an example”, etc., should be construed that any aspect or design described is better or advantageous than other aspects or designs. It is not.
또한, '또는' 이라는 용어는 배타적 논리합 'exclusive or'이기보다는 포함적인 논리합 'inclusive or'를 의미한다. 즉, 달리 언급되지 않는 한 또는 문맥으로부터 명확하지 않는 한, 'x가 a 또는 b를 이용한다'라는 표현은 포함적인 자연 순열들(natural inclusive permutations) 중 어느 하나를 의미한다.In addition, the term 'or' refers to an inclusive or 'inclusive or' rather than an exclusive or 'exclusive or'. In other words, unless stated otherwise or unclear from the context, the expression 'x uses a or b' means any one of natural inclusive permutations.
또한, 본 명세서 및 청구항들에서 사용되는 단수 표현("a" 또는 "an")은, 달리 언급하지 않는 한 또는 단수 형태에 관한 것이라고 문맥으로부터 명확하지 않는 한, 일반적으로 "하나 이상"을 의미하는 것으로 해석되어야 한다.Also, the singular forms “a” or “an”, as used in this specification and in the claims, generally refer to “one or more” unless the context clearly dictates otherwise or in reference to a singular form. Should be interpreted as
아래 설명에서 사용되는 용어는, 연관되는 기술 분야에서 일반적이고 보편적인 것으로 선택되었으나, 기술의 발달 및/또는 변화, 관례, 기술자의 선호 등에 따라 다른 용어가 있을 수 있다. 따라서, 아래 설명에서 사용되는 용어는 기술적 사상을 한정하는 것으로 이해되어서는 안 되며, 실시예들을 설명하기 위한 예시적 용어로 이해되어야 한다.The terminology used in the description below has been selected to be general and universal in the art to which it relates, although other terms may vary depending on the development and / or change in technology, conventions, and preferences of those skilled in the art. Therefore, the terms used in the following description should not be understood as limiting the technical spirit, and should be understood as exemplary terms for describing the embodiments.
또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 설명 부분에서 상세한 그 의미를 기재할 것이다. 따라서 아래 설명에서 사용되는 용어는 단순한 용어의 명칭이 아닌 그 용어가 가지는 의미와 명세서 전반에 걸친 내용을 토대로 이해되어야 한다.In addition, in certain cases, there is a term arbitrarily selected by the applicant, and in this case, the meaning will be described in detail in the corresponding description. Therefore, the terms used in the following description should be understood based on the meanings of the terms and the contents throughout the specification, rather than simply the names of the terms.
한편, 제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 구성 요소들은 용어들에 의하여 한정되지 않는다. 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다.Meanwhile, terms such as first and second may be used to describe various components, but the components are not limited by the terms. The terms are used only to distinguish one component from another.
또한, 막, 층, 영역, 구성 요청 등의 부분이 다른 부분 "위에" 또는 "상에" 있다고 할 때, 다른 부분의 바로 위에 있는 경우뿐만 아니라, 그 중간에 다른 막, 층, 영역, 구성 요소 등이 개재되어 있는 경우도 포함한다.In addition, when a part such as a film, layer, area, configuration request, etc. is said to be "on" or "on" another part, the other film, layer, area, component in the middle, as well as when it is directly above another part. It also includes the case where it is interposed.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used in the present specification may be used in a sense that can be commonly understood by those skilled in the art. In addition, the terms defined in the commonly used dictionaries are not ideally or excessively interpreted unless they are specifically defined clearly.
한편, 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는, 그 상세한 설명을 생략할 것이다. 그리고, 본 명세서에서 사용되는 용어(terminology)들은 본 발명의 일 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.On the other hand, in describing the present invention, when it is determined that the detailed description of the related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. Terms used in the present specification are terms used to properly express an embodiment of the present invention, which may vary depending on a user, an operator's intention, or customs in the field to which the present invention belongs. Therefore, the definitions of the terms should be made based on the contents throughout the specification.
도 1은 본 발명의 일 실시예에 따른 방사선 디텍터의 단면도를 도시한 것이다.1 is a cross-sectional view of a radiation detector according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 방사선 디텍터(100)는 실리콘카바이드(SiC; Silicon Carbide) 기판(110), 실리콘카바이드 기판(110) 상에 형성되는 게이트 절연막(120), 게이트 절연막(120) 상에 형성되는 게이트 전극(130), 게이트 전극(130)의 양측에 배치되고, 실리콘카바이드 기판(110) 내에 서로 이격되도록 형성되는 소스 영역(141) 및 드레인 영역(142) 및 게이트 전극(130) 상에 형성되는 층간 절연막(150)을 포함하는 트랜지스터를 구비한다.Referring to FIG. 1, a radiation detector 100 according to an embodiment of the present invention may include a silicon carbide (SiC) substrate 110, a gate insulating layer 120 formed on a silicon carbide substrate 110, and a gate. The source electrode 141, the drain region 142, and the gate which are disposed on both sides of the gate electrode 130 and the gate electrode 130 formed on the insulating film 120 and are spaced apart from each other in the silicon carbide substrate 110. A transistor including an interlayer insulating layer 150 formed on the electrode 130 is provided.
또한, 본 발명의 일 실시예에 따른 방사선 디텍터(100)는 칩 내에 적어도 하나의 트랜지스터를 포함할 수 있다.In addition, the radiation detector 100 according to an embodiment of the present invention may include at least one transistor in a chip.
또한, 층간 절연막(150) 상에는 적어도 하나의 배선이 형성될 수 있다.In addition, at least one wiring may be formed on the interlayer insulating layer 150.
구체적으로, 층간 절연막(150) 상에는 게이트 전극(130)과 연결되는 워드 라인(Word Line; 173), 드레인 영역(142)과 연결되는 비트 라인(Bit Line; 172) 및 소스 영역(141)과 연결되는 바이어스 라인(Bias Line; 171)을 포함한다.In detail, a word line 173 connected to the gate electrode 130, a bit line 172 connected to the drain region 142, and a source region 141 may be connected to the interlayer insulating layer 150. And a bias line (171).
또한, 층간 절연막(150) 내에는 적어도 하나 이상의 콘택홀(161, 162, 163)을 포함할 수 있다.In addition, the interlayer insulating layer 150 may include at least one contact hole 161, 162, and 163.
종래의 사용되는 방사선 디텍터는 방사선이 조사되면 신틸레이터가 조사된 방사선을 가시광선으로 전환시킨다. 전환된 가시광은 광전변환부로 사용되는 포토 다이오드에 입사되고, 광전변환부는 입사된 가시광선의 세기에 대응하는 전기적 신호를 발생시킬 수 있다.Conventional radiation detectors use a scintillator to convert the irradiated radiation into visible light when the radiation is irradiated. The converted visible light is incident on the photodiode used as the photoelectric converter, and the photoelectric converter may generate an electrical signal corresponding to the intensity of the incident visible light.
바람직하게는, 포토 다이오드는 입사된 가시광선으로 인해 포토 다이오드의 공핍층에서 전자-정공 쌍(EHP; electron hole pair)이 변화되어, 포토 다이오드의 내부에 전류가 흐르게 된다.Preferably, the photodiode changes the electron-hole pair (EHP) in the depletion layer of the photodiode due to the incident visible light, so that a current flows inside the photodiode.
또한, 포토 다이오드에서 발생된 전기적 신호는 기판에 배치된 트랜지스터에 제공된다.In addition, the electrical signal generated at the photodiode is provided to a transistor disposed on the substrate.
그러나, 본 발명의 일 실시예에 따른 방사선 디텍터(100)는 게이트 절연막(120)의 유전율 변화, 드레인 영역(142)의 공핍층의 전자-정공 쌍의 변화 또는 실리콘카바이드 기판(110)의 변화에 의해 방사선을 검출할 수 있기 때문에 종래에 광전변환부로 사용되는 포토 다이오드를 제거할 수 있다.However, the radiation detector 100 according to the embodiment of the present invention may be used to change the dielectric constant of the gate insulating layer 120, the electron-hole pair change of the depletion layer of the drain region 142, or the change of the silicon carbide substrate 110. Since radiation can be detected by this, the photodiode conventionally used as a photoelectric conversion part can be removed.
도 1을 참조하면, 본 발명의 일 실시예에 따른 방사선 디텍터(100)는 실리콘카바이트 기판(110)을 포함한다.Referring to FIG. 1, the radiation detector 100 according to an embodiment of the present invention includes a silicon carbide substrate 110.
또한, 본 발명의 일 실시예에 따른 방사선 디텍터(100)의 실리콘카바이드 기판(110)은 서로 대향하는 제1 면(상단) 및 제2 면(하단)을 포함하고, 제1 면(상단)에는 트랜지스터 및 신틸레이터가 형성될 수 있다.In addition, the silicon carbide substrate 110 of the radiation detector 100 according to an embodiment of the present invention includes a first surface (top) and a second surface (bottom) facing each other, the first surface (top) Transistors and scintillators can be formed.
종래에 사용되는 방사선 디텍터는 실리콘(Si) 기판을 사용하고, 이는 주로 엑스레이 검출을 위해 사용된다.Conventionally used radiation detectors use silicon (Si) substrates, which are mainly used for X-ray detection.
하지만 방사선 디텍터를 엑스선이 아닌 고준위 방사선에 사용하게 되면 실리콘 기판이 고준위 방사선에 의해 파괴되는 문제가 발생하기 때문에 실리콘 기판을 고준위 방사선에 사용하기에 적합하지 않다.However, if the radiation detector is used for high-level radiation rather than X-rays, the silicon substrate is destroyed by high-level radiation, and thus the silicon substrate is not suitable for high-level radiation.
하지만 본 발명의 일 실시예에 따른 방사선 디텍터(100)는 기판(110)으로 실리콘카바이드를 사용하기 때문에 1MeV 이상의 고준위에서도 기판이 파괴되지 않는 장점이 있어, 엑스선 외에 다양한 방사선을 검출하는데 사용될 수 있다.However, since the radiation detector 100 according to the embodiment of the present invention uses silicon carbide as the substrate 110, the substrate is not destroyed even at a high level of 1 MeV or more, and thus may be used to detect various radiations in addition to X-rays.
본 발명의 일 실시예에 따른 방사선 디텍터(100)는 실리콘카바이드 기판(110)이 광전변환부 역할을 할 수 있다.In the radiation detector 100 according to an embodiment of the present invention, the silicon carbide substrate 110 may serve as a photoelectric conversion unit.
본 발명의 일 실시예에 따른 방사선 디텍터(100)는 방사선이 조사되면 신틸레이터로 조사된 방사선을 가시광선으로 전환시키고, 전환된 가시광선은 광전변환부로 사용되는 실리콘카바이드 기판(110)을 변화시켜 방사선을 검출할 수 있다.The radiation detector 100 according to an embodiment of the present invention converts the radiation irradiated with the scintillator into visible light when the radiation is irradiated, and the converted visible light changes the silicon carbide substrate 110 used as the photoelectric conversion unit. The radiation can be detected.
구체적으로, 고준위 방사선이 조사되면, 실리콘카바이드 기판(110)은 조사된 고준위 방사선에 의해 점진적으로 파괴되어, 고준위 방사선을 검출할 수 있다.In detail, when the high level radiation is irradiated, the silicon carbide substrate 110 may be gradually destroyed by the irradiated high level radiation, thereby detecting the high level radiation.
또한, 실리콘카바이드 기판(110)의 파괴는 기존에 광변변환부로 사용되는 포토 다이오드와 동일한 역할을 하기 때문에 포토 다이오드를 제거할 수 있다.In addition, since the destruction of the silicon carbide substrate 110 plays the same role as the photodiode used as the photoconversion unit, the photodiode may be removed.
실리콘카바이드 기판(110)을 광전변환부로 사용하는 경우, 실리콘카바이드 기판(110)의 파괴에 의해 고준위 방사선의 검출하기 때문에 1회용 소자로 사용될 수 있다.In the case where the silicon carbide substrate 110 is used as a photoelectric converter, the silicon carbide substrate 110 may be used as a disposable element because the high-level radiation is detected by the destruction of the silicon carbide substrate 110.
실리콘 카바이드 기판(110) 상에 게이트 절연막(120)을 형성한다.The gate insulating layer 120 is formed on the silicon carbide substrate 110.
실리콘 카바이드 기판(110) 상에 게이트 절연막(120)을 성막한 다음, 패터닝 공정을 진행하여 원하는 크기 및 형상의 게이트 절연막(120)을 형성할 수 있다.After forming the gate insulating layer 120 on the silicon carbide substrate 110, a patterning process may be performed to form the gate insulating layer 120 having a desired size and shape.
본 발명의 일 실시예에 따른 방사선 디텍터(100)는 게이트 절연막(120)이 광전변환부 역할을 할 수 있다.In the radiation detector 100 according to the exemplary embodiment of the present invention, the gate insulating layer 120 may serve as a photoelectric converter.
본 발명의 일 실시예에 따른 방사선 디텍터(100)는 방사선이 조사되면 신틸레이터로 조사된 방사선을 가시광선으로 전환시키고, 전환된 가시광선은 광전변환부로 사용되는 게이트 절연막(120)의 유전율을 변화시켜 방사선을 검출할 수 있다.The radiation detector 100 according to an embodiment of the present invention converts the radiation irradiated with the scintillator into visible light when the radiation is irradiated, and the converted visible light changes the dielectric constant of the gate insulating film 120 used as the photoelectric converter. Radiation can be detected.
구체적으로, 저준위 방사선이 조사되면, 게이트 절연막(120)은 조사된 저준위 방사선에 의해 유전율이 변화되어, 저준위 방사선을 검출할 수 있다.Specifically, when the low level radiation is irradiated, the dielectric constant of the gate insulating layer 120 may be changed by the low level radiation to detect the low level radiation.
게이트 절연막(120)을 광전변환부로 사용하는 경우, 게이트 절연막(120)의 점진적 파괴에 의해 저준위 방사선의 검출하기 때문에 1회용 소자로 사용될 수 있다.When the gate insulating film 120 is used as the photoelectric conversion part, the gate insulating film 120 may be used as a disposable device because low level radiation is detected by the gradual breakdown of the gate insulating film 120.
또한, 게이트 절연막(120)의 유전율 변화는 기존에 광변변환부로 사용되는 포토 다이오드와 동일한 역할을 하기 때문에 포토 다이오드를 제거할 수 있다.In addition, since the change of the dielectric constant of the gate insulating layer 120 plays the same role as the photodiode used as the photoconversion unit, the photodiode can be removed.
게이트 절연막(120)은 무기 절연막, 유기 절연막, 무기 절연막의 이중 구조 및 유기/무기 하이브리드 절연막 중 어느 하나의 재질로 형성될 수 있고, 유기 절연막 재질로 형성되는 경우에는 스핀 코팅 방법이 이용될 수 있다.The gate insulating film 120 may be formed of any one of an inorganic insulating film, an organic insulating film, a dual structure of an inorganic insulating film, and an organic / inorganic hybrid insulating film. In the case of the organic insulating film, a spin coating method may be used. .
바람직하게는, 게이트 절연막(120)은 예를 들어, 알루미늄 산화물(Al2O3), 실리콘 산화물(SiO2), 하프늄 산화물(HfO2), 지르코늄 산화물(ZrO2) 또는 실리콘질화막(Si3N4) 등의 유전 성질을 갖는 물질 중 적어도 어느 하나가 사용될 수 있다.Preferably, the gate insulating film 120 is, for example, aluminum oxide (Al 2 O 3), silicon oxide (SiO 2), hafnium oxide (HfO 2), zirconium oxide (ZrO 2) or silicon nitride (Si3N4) etc. At least one of materials having a dielectric property of may be used.
실리콘 카바이드 기판(110) 상에 게이트 전극(130)을 형성한다.The gate electrode 130 is formed on the silicon carbide substrate 110.
게이트 절연막(120)이 형성된 실리콘 카바이드 기판(110) 상에 게이트 전극(130)을 성막한 다음, 패터닝 공정을 진행하여 원하는 크기 및 형상의 게이트 전극(130)을 형성할 수 있다.After forming the gate electrode 130 on the silicon carbide substrate 110 on which the gate insulating layer 120 is formed, a patterning process may be performed to form a gate electrode 130 having a desired size and shape.
게이트 전극(120)은 게이트 절연막(120)과 동일한 크기 및 형상을 가질 수 있으나, 이에 제한되는 것은 아니다.The gate electrode 120 may have the same size and shape as the gate insulating layer 120, but is not limited thereto.
게이트 전극(130)은 워드 라인(173)으로부터 연장되어 형성될 수 있고, 게이트 전극(130)은 워드 라인(173)과 동일한 물질로 동일한 공정을 통해 형성될 수 있다.The gate electrode 130 may be formed to extend from the word line 173, and the gate electrode 130 may be formed of the same material as the word line 173 through the same process.
게이트 전극(130)은 비정질 실리콘(amorphous Si), 다결정 실리콘(poly crystalline Si), 단결정 실리콘(single crystalline Si) 및 금속 중 적어도 어느 하나를 포함할 수 있다.The gate electrode 130 may include at least one of amorphous silicon, poly crystalline Si, single crystalline Si, and a metal.
예를 들면, 게이트 전극(130)으로 사용되는 금속은, 몰리브덴(Mo), 알루미늄(Al), 크롬(Cr), 금(Au), 티타늄(Ti), 니켈(Ni) 또는 구리(Cu) 등의 금속 중 적어도 어느 하나를 포함할 수 있다.For example, the metal used as the gate electrode 130 may include molybdenum (Mo), aluminum (Al), chromium (Cr), gold (Au), titanium (Ti), nickel (Ni), copper (Cu), or the like. At least one of the metals may be included.
게이트 전극(130)의 양측에 배치되고, 실리콘카바이드 기판(110) 내에 서로 이격되도록 형성되는 소스 영역(141) 및 드레인 영역(142)을 형성한다.Source and drain regions 141 and 142 are disposed on both sides of the gate electrode 130 and are formed to be spaced apart from each other in the silicon carbide substrate 110.
소스 영역(141) 및 드레인 영역(142)은 실리콘카바이드 기판(113) 내에 서로 이격되도록 게이트 전극(130)의 양 측단에 형성될 수 있다.The source region 141 and the drain region 142 may be formed at both ends of the gate electrode 130 to be spaced apart from each other in the silicon carbide substrate 113.
따라서, 채널 영역은 게이트 전극(130)의 하측, 소스 영역(141) 및 드레인 영역(142) 사이에 형성될 수 있고, 전자가 이동하는 채널 역할을 한다.Therefore, the channel region may be formed between the lower side of the gate electrode 130, the source region 141, and the drain region 142, and serves as a channel through which electrons move.
소스 영역(141) 및 드레인 영역(142)은 실리콘카바이드 기판(110) 내에 불순물을 주입하는 이온 주입 공정을 진행하여 형성될 수 있다.The source region 141 and the drain region 142 may be formed by performing an ion implantation process for implanting impurities into the silicon carbide substrate 110.
만약, 실리콘카바이드 기판(110)의 채널 영역이 N-type이라면, 소스 영역(141) 또는 드레인 영역(142)은 P-type을 가지도록 이온 주입을 진행하고, 실리콘카바이드 기판(110)의 채널 영역이 P-type이라면, 소스 영역(141) 또는 드레인 영역(142)은 N-type을 가지도록 이온 주입을 진행함으로써, 본 발명의 일 실시예에 따른 방사선 디텍터(100)의 실리콘카바이드 기판(110)은 PIN 또는 PN 구조를 가질 수 있다.If the channel region of the silicon carbide substrate 110 is N-type, the source region 141 or the drain region 142 performs ion implantation to have a P-type, and the channel region of the silicon carbide substrate 110 is performed. If the P-type, the source region 141 or drain region 142 is implanted to have an N-type, the silicon carbide substrate 110 of the radiation detector 100 according to an embodiment of the present invention May have a PIN or PN structure.
따라서, 본 발명의 일 실시예에 따른 방사선 디텍터(100)는 드레인 영역(142)이 광전변환부로 사용될 수 있다.Accordingly, in the radiation detector 100 according to the exemplary embodiment, the drain region 142 may be used as the photoelectric conversion unit.
본 발명의 일 실시예에 따른 방사선 디텍터(100)는 방사선이 조사되면 신틸레이터로 조사된 방사선을 가시광선으로 전환시키고, 전환된 가시광선은 광전변환부로 사용되는 드레인 영역(142)의 전자-정공 쌍을 변화시켜 방사선을 검출할 수 있다.The radiation detector 100 according to an embodiment of the present invention converts the radiation irradiated with the scintillator into visible light when the radiation is irradiated, and the converted visible light is electron-holes in the drain region 142 used as the photoelectric conversion unit. The pair can be changed to detect radiation.
구체적으로, 저준위의 방사선이 조사되면, 드레인 영역(142)은 조사된 저준위 방사선에 의해 드레인 영역(142)의 전자-정공 쌍이 변화되어, 저준위 방사선을 검출할 수 있다.In detail, when the radiation of the low level is irradiated, the electron-hole pair of the drain region 142 may be changed by the irradiated low level radiation to detect the low level radiation.
드레인 영역(142)을 광전변환부로 사용하는 경우, 드레인 영역(142)의 전자-정공 쌍의 변화에 의해 저준위 방사선의 검출하기 때문에 다회용 소자로 사용될 수 있다.When the drain region 142 is used as the photoelectric conversion unit, since the low level radiation is detected by the change of the electron-hole pair of the drain region 142, the drain region 142 may be used as a multi-use device.
또한, 드레인 영역(142)의 전자-정공 쌍의 변화는 기존에 광변변환부로 사용되는 포토 다이오드와 동일한 역할을 하기 때문에 포토 다이오드를 제거할 수 있다.In addition, since the change of the electron-hole pair of the drain region 142 plays the same role as the photodiode used as the photoconversion unit, the photodiode can be removed.
실리콘카바이드 기판(110) 상에는 적어도 하나의 콘택홀(161, 162, 163)을 형성하기 위해 층간 절연막(150)을 형성한다.An interlayer insulating layer 150 is formed on the silicon carbide substrate 110 to form at least one contact hole 161, 162, and 163.
또한, 층간 절연막(150)은 에칭 또는 연마와 같은 후속 공정 시, 트랜지스터를 보호할 수 있다.In addition, the interlayer insulating layer 150 may protect the transistor in a subsequent process such as etching or polishing.
층간 절연막(150)은 무기 절연막 또는 유기 절연막이 사용될 수 있고, 바람직하게는, 층간 절연막(150)은 실리콘 산화물(SiO2) 실리콘 질화물(SiNx) 또는 실리콘 산질화물(SiON) 등의 절연막 중 적어도 어느 하나로 형성될 수 있다.As the interlayer insulating layer 150, an inorganic insulating layer or an organic insulating layer may be used. Preferably, the interlayer insulating layer 150 may include at least one of an insulating layer such as silicon oxide (SiO 2 ) silicon nitride (SiNx) or silicon oxynitride (SiON). It can be formed as one.
따라서, 본 발명의 일 실시예에 따른 방사선 디텍터(100)는 앞서 전술한 바와 같은 실리콘카바이드 기판(110), 게이트 절연막(120), 게이트 전극(130), 소스 영역(141), 드레인 영역(142) 및 층간 절연막(150)을 포함하는 트랜지스터를 포함할 수 있다.Therefore, the radiation detector 100 according to the exemplary embodiment of the present invention may include the silicon carbide substrate 110, the gate insulating layer 120, the gate electrode 130, the source region 141, and the drain region 142 as described above. And a transistor including an interlayer insulating layer 150.
본 발명의 일 실시예에 따른 방사선 디텍터(100)는 칩 내에 적어도 하나 이상의 트랜지스터를 포함할 수 있다.The radiation detector 100 according to an embodiment of the present invention may include at least one transistor in a chip.
본 발명의 일 실시예에 따른 방사선 디텍터(100)는 칩 내에 포함되는 트랜지스터의 개수가 감소할수록 인체로 투과되는 방사선의 양을 증가시킬 수 있고, 반대로, 칩 내에 포함되는 트랜지스터의 개수가 증가할수록 방사선 디텍터(100)의 정확도를 향상시킬 수 있다.The radiation detector 100 according to an embodiment of the present invention may increase the amount of radiation transmitted to the human body as the number of transistors included in the chip decreases. On the contrary, the radiation detector 100 increases as the number of transistors included in the chip increases. The accuracy of the detector 100 may be improved.
따라서, 본 발명의 일 실시예에 따른 방사선 디텍터(100)는 활용 목적에 따라, 칩 내에 포함되는 트랜지스터의 개수를 조절하여 제조하는 것이 바람직하다.Therefore, the radiation detector 100 according to an embodiment of the present invention is preferably manufactured by adjusting the number of transistors included in the chip according to the purpose of use.
따라서, 본 발명의 일 실시예에 따른 방사선 디텍터(100)는 트랜지스터를 실리콘카바이드 기판(110) 표면에 평면 구조로 제조하여 100V이하에서도 소자가 작동할 수 있다.Accordingly, the radiation detector 100 according to the embodiment of the present invention may manufacture the transistor in a planar structure on the surface of the silicon carbide substrate 110 so that the device may operate even at 100V or less.
또한, 본 발명의 일 실시예에 따른 방사선 디텍터(100)는 트랜지스터를 실리콘카바이드 기판(110) 표면에 평면 구조로 제조하여, 방사선 디텍터(100)의 사이즈를 감소시켜, 집적도를 향상시킬 수 있다.In addition, the radiation detector 100 according to the embodiment of the present invention may manufacture the transistor in a planar structure on the surface of the silicon carbide substrate 110 to reduce the size of the radiation detector 100, thereby improving the degree of integration.
또한, 본 발명의 일 실시예에 따른 방사선 디텍터(100)는 트랜지스터를 가로세로 1㎜×1㎜ 이 내의 실리콘카바이드 기판 상에 존재하되, 트랜지스터의 크기를 기판보다 작게 제조하여 입사되는 방사선의 대부분이 인체로 투과 되도록 할 수 있다.In addition, the radiation detector 100 according to an embodiment of the present invention is present on the silicon carbide substrate within 1mm x 1mm width of the transistor, the majority of the radiation incident by manufacturing the transistor size smaller than the substrate It can be transmitted through the human body.
층간 절연막(150) 내에는 적어도 하나의 콘택홀(161, 162, 163)을 포함할 수 있다.The interlayer insulating layer 150 may include at least one contact hole 161, 162, and 163.
층간 절연막(150) 내에는 제1 콘택홀(161) 내지 제3 콘택홀(163)이 형성되고, 제1 콘택홀(161) 내지 제3 콘택홀(163)은 내부에 전도성 물질을 포함할 수 있다.The first contact hole 161 to the third contact hole 163 may be formed in the interlayer insulating layer 150, and the first contact hole 161 to the third contact hole 163 may include a conductive material therein. have.
제1 콘택홀(161)은 소스 영역(141)과 바이어스 라인(171)을 연결하고, 제2 콘택홀(162)은 드레인 영역(142)과 비트 라인을 연결하고, 제3 콘택홀(163)은 게이트 전극(130)과 워드 라인(193)을 연결할 수 있다.The first contact hole 161 connects the source region 141 and the bias line 171, the second contact hole 162 connects the drain region 142 and the bit line, and the third contact hole 163. The gate electrode 130 may be connected to the word line 193.
제1 콘택홀(161) 내지 제3 콘택홀(163)은 각각, 몰리브덴(Mo), 알루미늄(Al), 크롬(Cr), 금(Au), 티타늄(Ti), 니켈(Ni), 네오듐(Nd) 또는 구리(Cu) 등의 금속 중 적어도 어느 하나를 포함할 수 있다.The first contact hole 161 to the third contact hole 163 are molybdenum (Mo), aluminum (Al), chromium (Cr), gold (Au), titanium (Ti), nickel (Ni), and neodium. At least one of metals such as (Nd) and copper (Cu) may be included.
본 발명의 일 실시예에 따른 방사선 디텍터(100)는 게이트 전극(130), 소스 영역(141) 및 드레인 영역(142)과 연결되는 적어도 하나의 배선을 포함한다.The radiation detector 100 according to an embodiment of the present invention includes at least one wire connected to the gate electrode 130, the source region 141, and the drain region 142.
구체적으로, 층간 절연막(150) 상에는 게이트 전극(130)과 연결되는 워드 라인(173)을 형성할 수 있다.In detail, a word line 173 connected to the gate electrode 130 may be formed on the interlayer insulating layer 150.
워드 라인(173)은 제3 콘택홀(163)을 통해 게이트 전극(130)과 연결되고, 워드 라인(173)은 게이트 전극(130)과 동일한 물질로 동일한 공정을 통해 형성될 수 있으나, 이에 제한되는 것은 아니다.The word line 173 is connected to the gate electrode 130 through the third contact hole 163, and the word line 173 may be formed of the same material as the gate electrode 130 through the same process, but is not limited thereto. It doesn't happen.
워드 라인(173)은 몰리브덴(Mo), 알루미늄(Al), 크롬(Cr), 금(Au), 티타늄(Ti), 니켈(Ni), 네오듐(Nd) 또는 구리(Cu) 등의 금속 또는 그들의 합금으로 이루어질 수 있고, 이러한 금속 또는 합금의 단일층 또는 2층 이상의 다중층으로 이루어질 수 있다.The word line 173 may be formed of a metal such as molybdenum (Mo), aluminum (Al), chromium (Cr), gold (Au), titanium (Ti), nickel (Ni), neodium (Nd), or copper (Cu). It may be made of an alloy thereof, and may be made of a single layer or multiple layers of two or more such metals or alloys.
층간 절연막(150) 상에는 드레인 영역(142)과 연결되는 비트 라인(172)을 형성할 수 있다.The bit line 172 connected to the drain region 142 may be formed on the interlayer insulating layer 150.
비트 라인(172)은 제2 콘택홀(162)을 통해 드레인 영역(142)에 연결되고, 전자 신호는 트랜지스터의 드레인 영역(142) 및 드레인 영역(142)에 연결된 비트 라인(172)을 거쳐서 영상 신호로 디스플레이 될 수 있다.The bit line 172 is connected to the drain region 142 through the second contact hole 162, and the electronic signal is passed through the bit line 172 connected to the drain region 142 and the drain region 142 of the transistor. Can be displayed as a signal.
비트 라인(172)은 몰리브덴(Mo), 알루미늄(Al), 크롬(Cr), 금(Au), 티타늄(Ti), 니켈(Ni), 네오듐(Nd) 또는 구리(Cu) 등의 금속 또는 그들의 합금으로 이루어질 수 있고, 이러한 금속 또는 합금의 단일층 또는 2층 이상의 다중층으로 이루어질 수 있다. Bit line 172 is a metal such as molybdenum (Mo), aluminum (Al), chromium (Cr), gold (Au), titanium (Ti), nickel (Ni), neodium (Nd) or copper (Cu), or It may be made of an alloy thereof, and may be made of a single layer or multiple layers of two or more such metals or alloys.
층간 절연막(150) 상에는 소스 영역(141)과 연결되는 바이어스 라인(171)을 형성할 수 있다.The bias line 171 connected to the source region 141 may be formed on the interlayer insulating layer 150.
바이어스 라인(171)은 층간 절연막(150) 내에 형성된 제1 콘택홀(141)을 통해 소스 영역(141)에 연결될 수 있고, 바이어스 라인(171)을 통해 바이어스 전압을 인가할 수 있다.The bias line 171 may be connected to the source region 141 through the first contact hole 141 formed in the interlayer insulating layer 150, and may apply a bias voltage through the bias line 171.
바이어스 라인(171)은 외부의 전원공급부로부터 역방향(reverse bias)전압 및 순방향(forward bias)전압을 인가 받을 수 있으나, 이에 제한되는 것은 아니다.The bias line 171 may receive a reverse bias voltage and a forward bias voltage from an external power supply, but is not limited thereto.
바이어스 라인(171)은 몰리브덴(Mo), 알루미늄(Al), 크롬(Cr), 금(Au), 티타늄(Ti), 니켈(Ni), 네오듐(Nd) 또는 구리(Cu) 등의 금속 또는 그들의 합금으로 이루어질 수 있고, 이러한 금속 또는 합금의 단일층 또는 2층 이상의 다중층으로 이루어질 수 있다.The bias line 171 is a metal such as molybdenum (Mo), aluminum (Al), chromium (Cr), gold (Au), titanium (Ti), nickel (Ni), neodium (Nd), or copper (Cu), or It may be made of an alloy thereof, and may be made of a single layer or multiple layers of two or more such metals or alloys.
또한, 바이어스 라인(171), 비트 라인(172) 및 워드 라인(173)은 동일한 방향으로 평행하게 형성될 수 있다.In addition, the bias line 171, the bit line 172, and the word line 173 may be formed in parallel in the same direction.
본 발명의 일 실시예에 따른 방사선 디텍터(100)는 바이어스 라인(171), 비트 라인(172) 및 워드 라인(173)은 동일한 방향으로 평행하게 형성함으로써, 단일 패터닝 공정으로 다수의 배선을 형성할 수 있어, 공정 난이도를 감소시킬 수 있다.In the radiation detector 100 according to the exemplary embodiment, the bias line 171, the bit line 172, and the word line 173 are formed in parallel in the same direction, thereby forming a plurality of wires in a single patterning process. Can reduce process difficulty.
또한, 본 발명의 일 실시예에 따른 방사선 디텍터(100)는 게이트 전극(130), 소스 영역(141) 및 드레인 영역(142)와 연결되는 모든 배선을 실리콘카바이드 기판(110) 상부에 형성함으로써, 트랜지스터의 크기를 감소시킬 수 있어, 소자를 평면 구조로 제조할 수 있다.In addition, the radiation detector 100 according to an embodiment of the present invention forms all wirings connected to the gate electrode 130, the source region 141, and the drain region 142 on the silicon carbide substrate 110. Since the size of the transistor can be reduced, the device can be manufactured in a planar structure.
또한, 본 발명의 일 실시예에 따른 방사선 디텍터(100)는 게이트 전극(130), 소스 영역(141) 및 드레인 영역(142)과 연결되는 모든 배선이 실리콘카바이드 기판(110) 상부에 형성하여, 소자의 구조 단순화, 검사 및 측정 분석이 편리해질 수 있다.In addition, in the radiation detector 100 according to the embodiment of the present invention, all wirings connected to the gate electrode 130, the source region 141, and the drain region 142 are formed on the silicon carbide substrate 110. Device simplification, inspection and measurement analysis can be facilitated.
또한, 본 발명의 일 실시예에 따른 방사선 디텍터(100)는 층간 절연막(150) 상에 배치되는 신틸레이터(scintillator; 도시되지 않음)를 포함할 수 있다.In addition, the radiation detector 100 according to an embodiment of the present invention may include a scintillator (not shown) disposed on the interlayer insulating layer 150.
신틸레이터는 피조체를 투과한 방사선이 입사할 수 있도록 방사선 디텍터(100)의 전면 방향에 형성되고, 방사선을 광전변환부에서 흡수할 수 있는 파장의 광, 예를 들면 녹색 파장대의 가시광선으로 변환시킬 수 있다.The scintillator is formed in the front direction of the radiation detector 100 to allow the radiation transmitted through the object to be incident, and converts the light into a wavelength of light that can be absorbed by the photoelectric conversion unit, for example, visible light in the green wavelength range. You can.
신틸레이터는 고체, 액체 및 기체 신틸레이터를 포함할 수 있고, 고체 신틸레이터는 유기 및 무기 신틸레이터를 포함할 수 있다.The scintillator can include solid, liquid and gas scintillators, and the solid scintillator can include organic and inorganic scintillators.
유기 신틸레이터의 경우, 방사선 변환 효율이 낮은 반면 반응속도가 빠른 장점이 있고, 무기 신틸레이터는 광출력이 높고 선형성이 좋은 장점이 있으며, 필요에 따라 적절한 신틸레이터를 사용할 수 있다.In the case of an organic scintillator, the radiation conversion efficiency is low but the reaction rate is fast, and the inorganic scintillator has an advantage of high light output and good linearity, and an appropriate scintillator may be used if necessary.
예를 들어, 신틸레이터는 탈륨 또는 나트륨이 도핑된 요오드화 세슘과 같은 할로겐 화합물로 형성되거나 가돌리늄 황산화물과 같은 산화물계 화합물이 포함될 수 있으나, 이에 제한되는 것은 아니다.For example, the scintillator may be formed of a halogen compound such as thallium or sodium doped cesium iodide or may include an oxide-based compound such as gadolinium sulfate, but is not limited thereto.
신틸레이터는 트랜지스터의 전면에 필름형태로 부착될 수 있고 화학기상증착(CVD)방법에 의해 증착되어 형성될 수도 있다.The scintillator may be attached to the front surface of the transistor in the form of a film and may be deposited and formed by a chemical vapor deposition (CVD) method.
또한, 신틸레이터는 방사선이 입사되는 전면에 반사층을 더 포함할 수 있다. 반사층은 방사선이 투과될 수 있는 물질로 형성될 수 있고, 예를 들면, 반사층은 알루미늄 또는 티탄과 같은 금속으로 형성될 수 있고, 유리, 탄소 또는 세라믹과 같은 유기재료로 형성될 수도 있으나, 이에 한정되는 것은 아니다.In addition, the scintillator may further include a reflective layer on a front surface of which radiation is incident. The reflective layer may be formed of a material that can transmit radiation, for example, the reflective layer may be formed of a metal such as aluminum or titanium, or may be formed of an organic material such as glass, carbon, or ceramic, but is not limited thereto. It doesn't happen.
반사층은 신틸레이터에서 변환된 가시광선 중 외부로 방출되어 손실되는 가시광선을 다시 내부로 반사시킴으로써 광 이용 효율을 향상시킬 수 있다.The reflective layer may improve the light utilization efficiency by reflecting the visible light, which is emitted to the outside of the visible light converted by the scintillator and lost, to the inside.
또한, 본 발명의 일 실시예에 따른 방사선 디텍터(100)는 적어도 하나의 FPC(flexible printed circuit; 미도시)를 포함할 수 있다.In addition, the radiation detector 100 according to an embodiment of the present invention may include at least one flexible printed circuit (FPC).
또한, 본 발명의 일 실시예에 따른 방사선 디텍터(100)는 FPC(flexible printed circuit)를 이용하여 외부 배선과 연결될 수 있다.In addition, the radiation detector 100 according to an embodiment of the present invention may be connected to an external wiring by using a flexible printed circuit (FPC).
바람직하게는, FPC는 게이트 전극(130), 소스 영역(141) 또는 드레인 영역(142)과 연결되는 배선을 형성하기 위해, 트랜지스터 및 신틸레이터가 형성된 실리콘카바이드 기판(110)의 제1 면(상단)에 형성(또는 연결)될 수 있다.Preferably, the FPC includes a first surface (top) of the silicon carbide substrate 110 on which transistors and scintillators are formed to form wirings connected to the gate electrode 130, the source region 141, or the drain region 142. Can be formed (or connected).
또한, 방사선 디텍터(100)를 유연 소자로 제조하기 위해 소자가 존재하지 않는 영역에도 FPC가 형성(또는 연결)될 수 있다.Also, in order to manufacture the radiation detector 100 as a flexible device, an FPC may be formed (or connected) in a region where no device exists.
따라서, FPC는 실리콘카바이드 기판(110) 상에 트랜지스터 및 신틸레이터가 형성된 제1 면(상단)이 아닌, 제2 면(하단)에 FPC를 추가적으로 형성하여 방사선 디텍터(100)가 플렉서블 구조를 갖도록 제조할 수 있다.Accordingly, the FPC is manufactured so that the radiation detector 100 has a flexible structure by additionally forming an FPC on the second surface (bottom) instead of the first surface (top) on which the transistor and scintillator are formed on the silicon carbide substrate 110. can do.
바람직하게는, 실시예에 따라, 본 발명의 일 실시예에 따른 방사선 디텍터(100)는 실리콘카바이드 기판(110)의 제2 면(하단)에 백바이어스 겸용 기준라인(미도시)이 형성될 수 있다. Preferably, according to the embodiment, the radiation detector 100 according to an embodiment of the present invention may be formed with a back bias combined reference line (not shown) on the second surface (bottom) of the silicon carbide substrate 110. have.
백바이어스 겸용 기준라인(미도시)은 실리콘카바이드 기판(110) 제2 면(하단)에 백바이어스를 인가하여 채널 영역 또는 드레인 영역에 공핍층이 형성되도록 할 수 있다.The back bias dual reference line (not shown) may apply a back bias to the second surface (lower end) of the silicon carbide substrate 110 to form a depletion layer in the channel region or the drain region.
방사선 디텍터(100)를 플렉서블 구조로 형성시키기 위해서는 상단과 하단의 배선이 FPC로 형성되어야 한다. 따라서, 본 발명의 일 실시예에 따른 방사선 디텍터(100)는 FPC를 사용함으로써, 플렉서블 구조를 가질 수 있어, 유연 소자로 형성될 수 있다.In order to form the radiation detector 100 in a flexible structure, the upper and lower wirings must be formed of FPC. Therefore, the radiation detector 100 according to the embodiment of the present invention may have a flexible structure by using the FPC, and thus may be formed of a flexible device.
종래에는 사람을 고정시킨다 하더라도 기침 또는 심호흡과 같은 임의의 상황에 의한 신체의 미세한 움직임에도 치료 또는 측정 위치가 변화되는 문제점이 있었다.Conventionally, even if a person is fixed, there is a problem that the treatment or measurement position is changed even in the minute movement of the body due to any situation such as coughing or deep breathing.
그러나, 본 발명의 일 실시예에 따른 방사선 디텍터(100)는 인체에 부착이 가능하여, 방사선 디텍터(100)의 매트릭스 배열을 주소화시키고, 방사선 조사 시에 방사선 디텍터에서 검출되는 신호를 위치 추적으로 사용하여 미세한 움직임에 대해서도 트래킹이 가능해질 수 있다.However, the radiation detector 100 according to an embodiment of the present invention may be attached to a human body, thereby addressing the matrix array of the radiation detector 100, and positioning the signal detected by the radiation detector at the time of irradiation to position tracking. Can be used to track even small movements.
또한, 측정하려고 하는 대상체(예; 암세포) 또는 그 주변에 금을 삽입한 후, 그 신호와 연동시켜 보다 정교하게 방사선을 트래킹할 수 있다.In addition, gold can be inserted in or around a subject (eg, cancer cell) to be measured, and then the radiation can be tracked more precisely in conjunction with the signal.
또한, 상단에 형성된 FPC와 하단에 형성된 FPC는 90도로 배치될 수 있고, 상단에 형성된 FPC는 전기적 특성을 검출하기 위한 용도로 사용될 수 있고, 하단에 형성된 FPC는 소자 고정용으로 전기적 배선의 역할보다는 고정의 기능이 더 많도록 형성될 수 있다.In addition, the FPC formed on the top and the FPC formed on the bottom can be arranged at 90 degrees, the FPC formed on the top can be used for the purpose of detecting electrical characteristics, the FPC formed on the bottom rather than the role of electrical wiring for device fixing It can be configured to have more function of fixing.
FPC는 일부에 홀을 형성하여 전기적 배선과 납땜을 이용하여 연결될 수 있다.The FPC may be connected by using electrical wiring and soldering by forming a hole in a part.
본 발명의 일 실시예에 따른 방사선 디텍터(100)는 FPC를 사용함으로써, 온/오프(on/off)가 아닌 리니어 신호를 검출 할 수 있다. The radiation detector 100 according to an embodiment of the present invention may detect a linear signal instead of on / off by using an FPC.
또한, 본 발명의 일 실시예에 따른 방사선 디텍터(100)를 유연 소자로 형성함으로써, 인체 접촉이 가능한 방사선 디텍터(100)를 제조할 수 있다.In addition, by forming the radiation detector 100 according to an embodiment of the present invention as a flexible element, it is possible to manufacture a radiation detector 100 capable of human contact.
또한, 종래에는 환자가 누워 있기 전에 기기에 조사되는 방사선을 준비하는 방식, 바닥에 방사선 디텍터를 두고 그 위치나 양이 맞는지 고정된 상태로 준비하는 방식 또는 사이버 나이프처럼 좌표 값으로 조정하여 준비하는 방식으로 사람을 고정된 위치에 맞게 이동하여 위치를 파악하거나 고정된 환자에게 제3의 방서선을 조사하여 위치를 파악하였다.In addition, the conventional method of preparing the radiation to be irradiated to the device before the patient lying down, the radiation detector on the floor and the method of preparing the position or quantity is fixed or prepared by adjusting the coordinate value like a cyber knife As a result, a person was moved to a fixed position to determine the position, or a fixed patient was examined to determine the position.
그러나, 환자에게 제3의 방사선을 조사하여 위치를 파악 것은 위험성이 존재하고 방사선 조사 전후로 인체의 변동이 파악되었다 하더라도 인체의 위치 변동이 생기면 변동된 값들이 피드백되지 않은 상태에서 대략적인 위치로 치료를 진행하게 된다.However, it is dangerous to identify the location by irradiating the third radiation to the patient, and even if the human body fluctuates before and after the radiation, if the human body fluctuates, the fluctuations in the position are not fed back to the approximate location. Will proceed.
반면, 본 발명의 일 실시예에 따른 방사선 디텍터(100)는 환자의 위치를 직접 센싱시킬 수 있어 사전 조사 시에 매우 낮은 방사선의 포인트로만 위치를 추적하고, 신호에서 발생되는 값으로 어느 부분을 조사시킬 것인지 파악할 수 있어, 사전 준비 시간 감소 및 대응 시간이 매우 빨라지게 된다.On the other hand, the radiation detector 100 according to an embodiment of the present invention can directly sense the position of the patient to track the position only to the point of very low radiation during the pre-irradiation, and irradiate any part with the value generated in the signal You can determine if you want to do so, which reduces preliminary preparation time and speeds up response time.
도 2a 및 도 2b는 본 발명의 일 실시예에 따른 방사선 디텍터의 트랜지스터가 형성된 실리콘카바이드의 표면을 도면이다.2A and 2B illustrate a surface of a silicon carbide on which a transistor of a radiation detector according to an embodiment of the present invention is formed.
도 2a 및 도 2b는 본 발명의 일 실시예에 따른 방사선 디텍터의 트랜지스터가 형성된 실리콘카바이드의 표면을 도시한 것을 제외하면, 도 1과 동일한 구성요소를 포함함으로, 중복되는 구성요소에 대해서는 생략하기로 한다.2A and 2B include the same components as those of FIG. 1 except that the surface of the silicon carbide on which the transistor of the radiation detector is formed according to an embodiment of the present invention is omitted. do.
도 2a 및 도 2b에 도시된 바와 같은, 본 발명의 일 실시예에 따른 방사선 디텍터는 4개의 픽셀(P; pixel)을 포함하나, 이에 제한되지 않고, 적어도 하나의 픽셀(P; pixel)을 포함할 수 있고, 적어도 하나의 픽셀(P) 내에는 도 1에서 도시된 바와 같은 트랜지스터를 포함할 수 있다.As shown in FIGS. 2A and 2B, the radiation detector according to an embodiment of the present invention includes, but is not limited to, four pixels P, and includes at least one pixel P. At least one pixel P may include a transistor as shown in FIG. 1.
본 발명의 일 실시예에 따른 방사선 디텍터는 트랜지스터를 가로세로 1㎜×1㎜ 이 내의 실리콘카바이드 기판(110) 상에 형성할 수 있다.The radiation detector according to the exemplary embodiment of the present invention may form the transistor on the silicon carbide substrate 110 within 1 mm × 1 mm.
도 2a 및 도 2b에서는 트랜지스터를 명확히 도시하기 위해 픽셀(P)의 중심부에 트랜지스터를 형성하였으나, 이에 한정되지 않고, 트랜지스터는 실리콘카바이드 기판(110) 또는 픽셀(P)보다 작은 크기로 제조될 수 있고, 픽셀(P)의 중심 부분이 아닌 모서리 부분 일부에 픽셀(P)보다 작은 크기로 트랜지스터가 형성될 수 도 있다.In FIGS. 2A and 2B, the transistor is formed in the center of the pixel P in order to clearly illustrate the transistor. However, the transistor is not limited thereto, and the transistor may be manufactured in a smaller size than the silicon carbide substrate 110 or the pixel P. In an exemplary embodiment, the transistor may be formed in a portion smaller than the pixel P instead of the center portion of the pixel P. FIG.
따라서, 본 발명의 일 실시예에 따른 방사선 디텍터는 트랜지스터를 가로 세로 1㎜×1㎜ 이 내의 실리콘카바이드 기판(110) 상에 존재하되, 트랜지스터의 크기를 실리콘카바이드 기판(110)보다 작게 제조함으로써, 입사되는 방사선의 대부분이 인체로 투과될 수 있다.Therefore, the radiation detector according to an embodiment of the present invention is present on the silicon carbide substrate 110 within 1 mm x 1 mm in width and width, but by making the transistor smaller than the silicon carbide substrate 110, Most of the incident radiation can be transmitted to the human body.
도 1에서 도시된 바와 같은 트랜지스터는 실리콘카바이드 기판(110) 상에 다양한 평면 구조를 가질 수 있고, 바람직하게는, 도 2a 및 도 2b의 구조를 가질 수 있으나, 이에 제한되는 것은 아니다.The transistor as shown in FIG. 1 may have various planar structures on the silicon carbide substrate 110, and preferably may have the structures of FIGS. 2A and 2B, but is not limited thereto.
도 2a 및 도 2b를 참조하면, 본 발명의 일 실시예에 따른 방사선 디텍터의 트랜지스터는 게이트 전극(130), 소스 영역(141) 및 드레인 영역(142)를 포함하고, 각각 게이트 전극(130), 소스 영역(141) 및 드레인 영역(142)에 배선이 연결되어 있다.2A and 2B, a transistor of a radiation detector according to an embodiment of the present invention includes a gate electrode 130, a source region 141, and a drain region 142, each of which includes a gate electrode 130, Wires are connected to the source region 141 and the drain region 142.
구체적으로는, 소스 영역(141) 상에는 바이어스 라인(171)이 전기적으로 연결되고, 드레인 영역(142) 상에는 비트 라인(172)이 전기적으로 연결되며, 게이트 전극(130) 상에는 워드 라인(173)이 전기적으로 연결될 수 있다.Specifically, the bias line 171 is electrically connected to the source region 141, the bit line 172 is electrically connected to the drain region 142, and the word line 173 is connected to the gate electrode 130. Can be electrically connected.
본 발명의 일 실시예에 따른 방사선 디텍터는 동일한 층에 평행하게 형성된 바이어스 라인(171), 비트 라인(172) 및 워드 라인(173)을 포함할 수 있다.The radiation detector according to the exemplary embodiment of the present invention may include a bias line 171, a bit line 172, and a word line 173 formed in parallel to the same layer.
또한, 본 발명의 일 실시예에 따른 방사선 디텍터는 바이어스 라인(171), 비트 라인(172) 및 워드 라인(173)이 서로 다른 층에 교차하게 형성될 수 있으나, 이 경우, 바이어스 라인(171), 비트 라인(172) 및 워드 라인(173)은 모두 트랜지스터의 상단에 형성되는 것을 전제로 한다.In addition, the radiation detector according to the exemplary embodiment of the present invention may be formed such that the bias line 171, the bit line 172, and the word line 173 cross different layers, in this case, the bias line 171. It is assumed that both the bit line 172 and the word line 173 are formed on top of the transistor.
본 발명의 일 실시예에 따른 방사선 디텍터는 게이트 전극(130), 소스 영역(141) 및 드레인 영역(142)과 연결되는 모든 배선을 트랜지스터의 상단에 배치함으로써, 소자의 구조 단순화가 가능하고, 검사 및 측정 분석이 편리하다.In the radiation detector according to the exemplary embodiment of the present invention, all wirings connected to the gate electrode 130, the source region 141, and the drain region 142 may be disposed on the upper end of the transistor, thereby simplifying the structure of the device and inspecting the radiation detector. And measurement analysis is convenient.
도 2a에 도시된 바와 같은 본 발명의 일 실시예에 따른 방사선 디텍터는 게이트 전극(130), 소스 영역(141) 및 드레인 영역(142)이 동일 선상에 나란히 형성되어 있어, 삼지창 형상(Ψ)의 평면 구조를 가질 수 있다.In the radiation detector according to the exemplary embodiment of the present invention as shown in FIG. 2A, the gate electrode 130, the source region 141, and the drain region 142 are formed side by side on the same line to form a trident shape Ψ. It may have a planar structure.
도 2b에 도시된 바와 같은 본 발명의 일 실시예에 따른 방사선 디텍터는 소스 영역(141) 및 드레인 영역(142)이 동일 선상에 나란히 형성되어 있고, 게이트 전극(130)은 소스 영역(141) 및 드레인 영역(142) 보다 돌출되어있어, 십자 형상(+)의 평면 구조를 가질 수 있다.In the radiation detector according to the exemplary embodiment of the present invention as shown in FIG. 2B, the source region 141 and the drain region 142 are formed side by side on the same line, and the gate electrode 130 includes the source region 141 and Protruding from the drain region 142 may have a cross-shaped (+) planar structure.
도 3은 본 발명의 다른 실시예에 따른 방사선 디텍터의 단면도를 도시한 것이다.3 illustrates a cross-sectional view of a radiation detector according to another embodiment of the present invention.
도 3을 참조하면, 본 발명의 다른 실시예에 따른 방사선 디텍터는 제1 불순물 타입의 기판(210), 제1 불순물 타입의 기판(210) 상에 형성된 제1 불순물 타입의 제1 영역(221)과 제1 영역(221)과 구분되는 제2 불순물 타입의 제2 영역(222)을 포함하는 적어도 하나 이상의 광전변환부, 제1 영역(221) 상에 형성되는 제1 전극(241), 제2 영역(222) 상에 형성되는 제2 전극(242) 및 제1 전극(241) 및 제2 전극(242) 상에 형성되는 신틸레이터(scintillator, 250)를 포함한다.Referring to FIG. 3, a radiation detector according to another embodiment of the present invention may include a substrate 210 of a first impurity type and a first region 221 of a first impurity type formed on a substrate 210 of a first impurity type. And at least one photoelectric conversion unit including a second region 222 of a second impurity type distinct from the first region 221, a first electrode 241, and a second formed on the first region 221. A second electrode 242 and a scintillator 250 formed on the first electrode 241 and the second electrode 242 are formed on the region 222.
또한, 제1 전극(241) 및 제2 전극(242)은 비아(231, 232) 통해 제1 영역(221) 및 제2 영역(222)에 연결될 수 있고, 비아(231, 232)는 제1 영역(221) 상에 형성되는 제1 비아(231) 및 제2 영역(222) 상에 형성되는 제2 비아(232)를 포함할 수 있다.In addition, the first electrode 241 and the second electrode 242 may be connected to the first region 221 and the second region 222 through the vias 231 and 232, and the vias 231 and 232 may be connected to the first region. It may include a first via 231 formed on the region 221 and a second via 232 formed on the second region 222.
도 3은 제1 불순물 타입의 기판(210) 상에 별도로 제1 불순물 타입의 제1 영역(221)이 형성되는 구조에 대해 도시하고 있으나, 이에 제한되지 않고, 제1 불순물 타입의 기판(210) 자체가 제1 불순물 타입의 제1 영역(221)인 구조로 형성될 수도 있다.FIG. 3 illustrates a structure in which the first region 221 of the first impurity type is formed on the substrate 210 of the first impurity type, but is not limited thereto, and the substrate 210 of the first impurity type is not limited thereto. It may be formed in a structure that is itself a first region 221 of the first impurity type.
제1 불순물 타입의 기판(210)은 실리콘카바이드(SiC)로 구성될 수 있다.The substrate 210 of the first impurity type may be formed of silicon carbide (SiC).
종래에 사용되는 방사선 디텍터는 실리콘(Si) 기판을 사용하고, 이는 주로 엑스레이 검출을 위해 사용된다.Conventionally used radiation detectors use silicon (Si) substrates, which are mainly used for X-ray detection.
하지만 방사선 디텍터를 엑스선이 아닌 고준위 방사선에 사용하게 되면 실리콘 기판이 고준위 방사선에 의해 파괴되는 문제가 발생하기 때문에 실리콘 기판을 고준위 방사선에 사용하기에 적합하지 않다.However, if the radiation detector is used for high-level radiation rather than X-rays, the silicon substrate is destroyed by high-level radiation, and thus the silicon substrate is not suitable for high-level radiation.
하지만 본 발명의 다른 실시예에 따른 제1 불순물 타입의 기판(210)은 실리콘카바이드(SiC)를 사용하기 때문에 1MeV 이상의 고준위에서도 기판이 파괴되지 않는 장점이 있어, 엑스선 외에 다양한 방사선을 검출하는데 사용될 수 있다.However, since the substrate 210 of the first impurity type according to another embodiment of the present invention uses silicon carbide (SiC), the substrate is not destroyed even at a high level of 1 MeV or more, and thus may be used to detect various radiations in addition to X-rays. have.
제1 불순물 타입의 기판(210) 상에 제1 영역(221)이 형성된다.The first region 221 is formed on the substrate 210 of the first impurity type.
제1 영역(221)은 제1 불순물 타입의 기판(210) 상에 형성되고, 제1 불순물 타입은 기판(210)과 동일한 물질이 사용될 수 있으며, 제1 불순물 타입은 n-type일 수 있다.The first region 221 may be formed on the substrate 210 of the first impurity type, the first impurity type may be the same material as the substrate 210, and the first impurity type may be n-type.
또한, 제1 영역(221) 상에 제2 불순물 타입의 제2 영역(222)이 형성될 수 있다.In addition, a second region 222 of a second impurity type may be formed on the first region 221.
제2 영역(222)의 제2 불순물 타입은 p-type 일 수 있고, 예를 들어, 제2 영역은 B, Al 및 Ga로 이루어지는 군에서 선택되는 적어도 하나를 포함할 수 있다.The second impurity type of the second region 222 may be a p-type. For example, the second region may include at least one selected from the group consisting of B, Al, and Ga.
이로 인해, 본 발명의 다른 실시예에 따른 방사선 디텍터는 제1 불순물 타입의 제1 영역(221)과 제2 불순물 타입의 제2 영역(222)을 포함하는 적어도 하나 이상의 광전변환부를 포함할 수 있다.Thus, the radiation detector according to another embodiment of the present invention may include at least one photoelectric conversion unit including a first region 221 of the first impurity type and a second region 222 of the second impurity type. .
광전변환부는 P(positive)형 반도체층 및 N(negative)형 반도체층으로 이루어진 PN 구조의 포토 다이오드 또는 P(positive)형 반도체층, I(intrinsic)형 반도체층 및 N(negative)형 반도체층으로 이루어진 PIN 구조의 포토 다이오드를 포함할 수 있다.The photoelectric conversion part includes a PN structure photodiode or a P (positive) type semiconductor layer, an I (intrinsic) type semiconductor layer, and a N (negative type) semiconductor layer including a P (positive) type semiconductor layer and a N (negative) type semiconductor layer. It may include a photodiode having a PIN structure.
또한, PIN 구조의 포토 다이오드는 진성(intrinsic) SiC 웨이퍼를 사용하고, 이때, p형과 n형을 따로 이온 주입시킴으로써, 중간에 I(intrinsic)형 반도체층이 형성되는 구조를 가질 수 있다.In addition, the photodiode having a PIN structure uses an intrinsic SiC wafer, and may have a structure in which an I (intrinsic) type semiconductor layer is formed in the middle by implanting p-type and n-type separately.
또한, 본 발명의 다른 실시예에 따른 방사선 디텍터는 단순 PIN 다이오드 및 PN 다이오드를 관통하는 반도체가 가지는 전류 경로(current path) 100㎛~650㎛를 ≤100㎛ 이하로 제조하여 검출 위치 정교함을 증가시킬 수 있다.In addition, the radiation detector according to another embodiment of the present invention may increase the detection position sophistication by manufacturing a current path of 100 μm to 650 μm of a semiconductor passing through a simple PIN diode and a PN diode to ≦ 100 μm or less. Can be.
또한, 제2 영역(222)은 제1 영역(221) 내에 부분적으로 형성될 수 있고, 이로 인해, 본 발명의 다른 실시예에 따른 광전변환부는 수직 구조의 포토 다이오드가 아닌 수평 구조의 포토 다이오드를 포함할 수 있다.In addition, the second region 222 may be partially formed in the first region 221. As a result, the photoelectric conversion unit according to another exemplary embodiment of the present invention uses a photodiode having a horizontal structure instead of a vertical photodiode. It may include.
종래와 같은 상하로 전류가 흐르는 즉, 기판을 관통시키는 수직 구조의 포토 다이오드는 변화시킬 수 있는 값이 면적 밖에 없기 때문에 포토 다이오드의 전류가 흐르는 전류의 길이는 기판의 두께에 의해 고정되는 문제점이 있다.As the current flows up and down in the prior art, that is, the vertical structure of the photodiode penetrating the substrate has only a changeable area, the current flowing through the photodiode has a problem of being fixed by the thickness of the substrate. .
그러나, 본 발명의 다른 실시예에 따른 방사선 디텍터는 광전변환부를 수평 구조로 형성함으로써, 포토 다이오드로 흐르는 전류의 폭과 길이를 설계자의 의도대로 조정할 수 있다.However, the radiation detector according to another embodiment of the present invention can adjust the width and length of the current flowing through the photodiode by forming the photoelectric conversion unit in a horizontal structure according to the designer's intention.
다만, 이온주입에 의한 깊이(두께)가 얕아지므로 전류가 흐르는 단면적은 작아지지만 집적화 소자에서 요구되는 크기 즉, 전류의 변화를 다면화 시킬 수 있다는 장점이 있다.However, since the depth (thickness) due to ion implantation becomes shallow, the cross-sectional area through which current flows is small, but it is advantageous in that the size required in the integrated device, i.e., the change in current, can be made multiple.
또한, 광전변환부를 수평 구조의 포토다이오드로 형성하여 전류 이동 경로를 기판의 표면에서 수평으로 흐르도록 유도하여, 광전변환부의 사이즈를 감소시켜, 집적도를 향상시킬 수 있다.In addition, the photoelectric conversion unit may be formed of a photodiode having a horizontal structure to induce a current flow path to flow horizontally on the surface of the substrate, thereby reducing the size of the photoelectric conversion unit and improving the degree of integration.
또한, 실리콘카바이드가 가지는 전기적 특성인 400V의 구동전압은 전류가 적게 흐른다 하더라도 인체 접촉 시에 위험성이 존재한다. 이러한 위험성을 감소시키기 위해서는 전류가 흐르는 경로를 감소시킴으로써, 구동 전압이 감소시켜야 된다.In addition, the driving voltage of 400V, which is an electrical characteristic of silicon carbide, is dangerous even when a small current flows. To reduce this risk, the driving voltage must be reduced by reducing the path through which the current flows.
즉, 본 발명의 다른 실시예에 방사선 디텍터는 광전변환부를 수평 구조의 포토다이오드로 형성하여 사이즈를 조절함으로써, 기존 실리콘카바이드(SiC)가 가지는 전기적 특성인 400V의 구동전압 범위를 40V미만의 구동전압으로 구현시켜 직접적인 인체접촉의 위험성을 제거할 수 있다. 이때, 문턱 전압은 불순물의 농도에 의존되기 때문에 문턱 전압 조절은 불순물의 양을 변화시켜 조절할 수 있다.That is, the radiation detector according to another embodiment of the present invention forms a photodiode with a photodiode having a horizontal structure and adjusts the size thereof, so that the driving voltage range of 400V, which is an electrical characteristic of conventional silicon carbide (SiC), is less than 40V. It can be implemented to eliminate the risk of direct human contact. At this time, since the threshold voltage depends on the concentration of the impurity, the threshold voltage adjustment can be controlled by changing the amount of the impurity.
또한, 본 발명의 다른 실시예에 따른 방사선 디텍터는 제1 영역(221)에 부분적으로 형성된 제2 영역(222)을 포함하여, 방사선 디텍터의 일부에만 센서 면적을 형성함으로써, 방사선이 인체로 투과되는 양을 증가시킬 수 있다.In addition, the radiation detector according to another embodiment of the present invention includes a second region 222 partially formed in the first region 221 to form a sensor area on only a part of the radiation detector, thereby transmitting radiation to the human body. You can increase the amount.
광전변환부는 신틸레이터(250)의 후면에 형성되어 신틸레이터(250)를 통과하여 변환된 가시광선을 흡수하고 이를 전기적 신호로 변환시킨다. 즉, 광전변환부 내부에서 전자-정공 쌍(electron-hole pair)이 발생할 수 있고, 전자-정공 쌍은 전자와 정공으로 분리되어 전기적 신호로 변환될 수 있다.The photoelectric conversion unit is formed on the rear surface of the scintillator 250, absorbs the converted visible light through the scintillator 250, and converts it into an electrical signal. That is, an electron-hole pair may occur inside the photoelectric conversion unit, and the electron-hole pair may be separated into electrons and holes and converted into an electrical signal.
또한, 광전변환부는 기판(210)상에 복수 개의 픽셀 단위로 형성되어 방사선 영상을 구성하는 픽셀 어레이를 형성할 수 있다.In addition, the photoelectric conversion unit may be formed on the substrate 210 in a plurality of pixel units to form a pixel array constituting a radiographic image.
제1 영역(221) 및 제2 영역(222) 상에는 제1 전극(241) 및 제2 전극(242)과 연결되는 비아(231, 232)가 형성된다. Vias 231 and 232 connected to the first electrode 241 and the second electrode 242 are formed on the first region 221 and the second region 222.
비아(231, 232)는 제1 비아(231) 및 제2 비아(232)를 포함하고, 제1 비아(231)은 제1 영역(221) 및 제1 전극(241)을 연결하며, 제2 비아(232)는 제2 영역(222) 및 제2 전극(242) 전극을 연결할 수 있다.The vias 231 and 232 include a first via 231 and a second via 232, and the first via 231 connects the first region 221 and the first electrode 241 to the second via 231. The via 232 may connect the electrode of the second region 222 and the second electrode 242.
제1 비아(231) 및 제2 비아(232)는 제1 영역(221) 및 제2 영역(222) 상에 형성된 제1 절연층(260)에 패터닝되어 형성될 수 있다.The first via 231 and the second via 232 may be patterned on the first insulating layer 260 formed on the first region 221 and the second region 222.
제1 비아(231) 및 제2 비아(232)는 알루미늄, 몰리브덴, 크롬, 네오디뮴, 탄탈륨, 티타늄, 텅스텐, 구리, 은, 금, 백금 등의 금속 또는 이들의 합금으로 형성될 수 있다.The first via 231 and the second via 232 may be formed of a metal such as aluminum, molybdenum, chromium, neodymium, tantalum, titanium, tungsten, copper, silver, gold, platinum, or an alloy thereof.
제1 영역(221) 및 제2 영역(222) 상에는 제1 비아(231) 및 제2 비아(232)를 통해 연결되는 제1 전극(241) 및 제2 전극(242)이 형성된다.A first electrode 241 and a second electrode 242 are formed on the first region 221 and the second region 222 through the first via 231 and the second via 232.
제1 전극(241) 및 제2 전극(242)은 동일 층에 형성될 수 있고, 모두 광전변환부의 상단에 형성될 수 있다.The first electrode 241 and the second electrode 242 may be formed on the same layer, and both may be formed on the upper end of the photoelectric conversion unit.
종래에는 광전변환부의 하단에 제1 전극(241)을 형성하고 광전변환부의 상단에 제2 전극(242)을 형성하였으나, 본 발명의 다른 실시예에 따르면, 광전변환부의 상단에 제1 전극(241) 및 제2 전극(242)을 모두 형성하기 때문에, 제1 전극(241) 및 제2 전극(242)을 형성하기 위한 공정을 단순화시킬 수 있다.Conventionally, although the first electrode 241 is formed at the lower end of the photoelectric conversion unit and the second electrode 242 is formed at the upper end of the photoelectric conversion unit, according to another embodiment of the present invention, the first electrode 241 is formed on the upper end of the photoelectric conversion unit. ) And the second electrode 242, the process for forming the first electrode 241 and the second electrode 242 can be simplified.
또한, 제1 전극(241) 및 제2 전극(242)을 형성하기 위한 패터닝 공정이 필요하게 되지만, 광전변환부의 상단에 제1 전극(241) 및 제2 전극(242)이 모두 형성되기 때문에, 검사 및 측정 분석이 편리하다.In addition, although a patterning process for forming the first electrode 241 and the second electrode 242 is required, since both the first electrode 241 and the second electrode 242 are formed on the upper end of the photoelectric conversion unit, Inspection and measurement analysis are convenient.
제1 전극(241)은 데이터전극일 수 있고, 제1 영역(221)에 연결되어 광전변환부에서 발생한 전기적 신호에 대응되는 전기적 신호가 유도될 수 있으나, 이에 제한되는 것은 아니다.The first electrode 241 may be a data electrode and may be connected to the first region 221 to derive an electrical signal corresponding to the electrical signal generated by the photoelectric converter, but is not limited thereto.
제1 전극(241)과 연결되는 리드아웃소자(ROIC, Read out IC)는 이러한 제1 전극(241)의 전기적 신호를 감지하여 그에 따른 영상신호를 출력한다.A readout IC (ROIC) connected to the first electrode 241 detects an electrical signal of the first electrode 241 and outputs an image signal accordingly.
제2 전극(242)은 신호전극일 수 있고, 제2 영역(222)에 연결되어 외부의 전원공급부로부터 역방향(reverse bias)전압 및 순방향(forward bias)전압을 인가 받을 수 있으나, 이에 제한되는 것은 아니다.The second electrode 242 may be a signal electrode and may be connected to the second region 222 to receive a reverse bias voltage and a forward bias voltage from an external power supply, but are not limited thereto. no.
제1 전극(241) 및 제2 전극(242)은 동일한 방향으로 평행하게 형성될 수 있고, 배선 형태로 배열될 수 있다.The first electrode 241 and the second electrode 242 may be formed in parallel in the same direction, and may be arranged in the form of a wiring.
제1 전극(241) 및 제2 전극(242)은 제1 영역(221) 및 제2 영역(222) 상에 형성된 제2 절연층(270)에 패터닝되어 형성될 수 있다.The first electrode 241 and the second electrode 242 may be formed by patterning the second insulating layer 270 formed on the first region 221 and the second region 222.
또한, 제1 전극(241) 및 제2 전극(242)은 알루미늄, 몰리브덴, 크롬, 네오 디뮴, 탄탈륨, 티타늄, 텅스텐, 구리, 은 또는 이들의 합금, 산화인듐주석(ITO) 또는 산화인듐아연(IZO)과 같은 광을 투과시킬 수 있도록 투명한 도전성 물질로 형성될 수 있다.In addition, the first electrode 241 and the second electrode 242 may be aluminum, molybdenum, chromium, neodymium, tantalum, titanium, tungsten, copper, silver or alloys thereof, indium tin oxide (ITO), or indium zinc oxide ( It may be formed of a transparent conductive material so as to transmit light such as IZO.
제1 전극(241) 및 제2 전극(242) 상에는 신틸레이터(scintillator, 250)가 형성된다.A scintillator 250 is formed on the first electrode 241 and the second electrode 242.
신틸레이터(250)는 피조체를 투과한 방사선이 입사할 수 있도록 방사선 디텍터의 전면 방향에 형성되고, 방사선을 광전변환부에서 흡수할 수 있는 파장의 광, 예를 들면 녹색 파장대의 가시광선으로 변환시킬 수 있다.The scintillator 250 is formed in the front direction of the radiation detector so that the radiation that penetrates the object can be incident, and converts the radiation into light having a wavelength that can be absorbed by the photoelectric conversion unit, for example, visible light in the green wavelength range. You can.
신틸레이터(250)는 고체, 액체 및 기체 신틸레이터(250)를 포함할 수 있고, 고체 신틸레이터(250)는 유기 및 무기 신틸레이터(250)를 포함할 수 있다.The scintillator 250 can include solid, liquid and gas scintillator 250, and the solid scintillator 250 can include organic and inorganic scintillator 250.
유기 신틸레이터(250)의 경우, 엑스선 변환 효율이 낮은 반면 반응속도가 빠른 장점이 있고, 무기 신틸레이터(250)는 광출력이 높고 선형성이 좋은 장점이 있으며, 필요에 따라 적절한 신틸레이터가 사용될 수 있다.In the case of the organic scintillator 250, the X-ray conversion efficiency is low but the reaction speed is high, and the inorganic scintillator 250 has the advantage of high light output and good linearity, and an appropriate scintillator may be used as necessary. have.
예를 들어, 신틸레이터(250)는 탈륨 또는 나트륨이 도핑된 요오드화 세슘과 같은 할로겐 화합물로 형성되거나 가돌리늄 황산화물과 같은 산화물계 화합물이 포함될 수 있으나, 이에 제한되는 것은 아니다.For example, the scintillator 250 may be formed of a halogen compound such as thallium or sodium doped cesium iodide, or may include an oxide-based compound such as gadolinium sulfate.
신틸레이터(250)는 광전변환부의 전면에 필름형태로 부착될 수 있고 화학기상증착(CVD)방법에 의해 증착되어 형성될 수도 있다.The scintillator 250 may be attached to the entire surface of the photoelectric conversion unit in the form of a film, and may be deposited and formed by a chemical vapor deposition (CVD) method.
또한, 신틸레이터(250)는 엑스선이 입사되는 전면에 반사층을 더 포함할 수 있다. 반사층은 엑스선이 투과될 수 있는 물질로 형성될 수 있고, 예를 들면, 반사층은 알루미늄 또는 티탄과 같은 금속으로 형성될 수 있고, 유리, 탄소 또는 세라믹과 같은 유기재료로 형성될 수도 있으나, 이에 한정되는 것은 아니다.In addition, the scintillator 250 may further include a reflective layer on the entire surface where the X-rays are incident. The reflective layer may be formed of a material through which X-rays may be transmitted. For example, the reflective layer may be formed of a metal such as aluminum or titanium, or may be formed of an organic material such as glass, carbon, or ceramic, but is not limited thereto. It doesn't happen.
반사층은 신틸레이터(250)에서 변환된 가시광선 중 외부로 방출되어 손실되는 가시광선을 다시 내부로 반사시킴으로써 광 이용 효율을 향상시킬 수 있다. The reflective layer may improve the light utilization efficiency by reflecting the visible light, which is emitted out of the visible light converted by the scintillator 250 to the outside, and lost again.
또한, 본 발명의 다른 실시예에 따른 방사선 디텍터는 FPC(flexible printed circuit)를 이용하여 외부 배선과 연결될 수 있다.In addition, the radiation detector according to another embodiment of the present invention may be connected to an external wiring by using a flexible printed circuit (FPC).
방사선 디텍터를 플렉서블 구조로 형성하기 위해서는 상단과 하단의 배선이 FPC로 형성되어야 한다. 그렇기 때문에 본 발명의 다른 실시예에 따른 방사선 디텍터는 FPC를 사용함으로써, 플렉서블 구조를 가질 수 있어, 유연 소자로 형성될 수 있다.In order to form the radiation detector in a flexible structure, the upper and lower wirings must be formed of FPC. Therefore, the radiation detector according to another embodiment of the present invention may have a flexible structure by using FPC, and thus may be formed of a flexible device.
종래에는 사람을 고정시킨다 하더라도 기침 또는 심호흡과 같은 임의의 상황에 의한 신체의 미세한 움직임에도 치료 또는 측정 위치가 변화되는 문제점이 있었다.Conventionally, even if a person is fixed, there is a problem that the treatment or measurement position is changed even in the minute movement of the body due to any situation such as coughing or deep breathing.
그러나, 본 발명의 다른 실시예에 따른 방사선 디텍터는 인체에 부착이 가능하여, 방사선 디텍터의 매트릭스 배열을 주소화시키고, 방사선 조사 시에 방사선 디텍터에서 검출되는 신호를 위치 추적으로 사용하여 미세한 움직임에 대해서도 트래킹이 가능해질 수 있다.However, the radiation detector according to another embodiment of the present invention can be attached to a human body, so that the matrix array of the radiation detector can be addressed, and the signal detected by the radiation detector at the time of irradiation is used as a position tracking for fine movement. Tracking can be enabled.
또한, 측정하려고 하는 대상체(예; 암세포) 또는 그 주변에 금을 삽입한 후, 그 신호와 연동시켜 보다 정교하게 방사선을 트래킹할 수 있다.In addition, gold can be inserted in or around a subject (eg, cancer cell) to be measured, and then the radiation can be tracked more precisely in conjunction with the signal.
또한, 상단에 형성된 FPC와 하단에 형성된 FPC는 90도로 배치될 수 있고, 상단에 형성된 FPC는 전기적 특성을 검출하기 위한 용도로 사용될 수 있고, 하단에 형성된 FPC는 소자 고정용으로 전기적 배선의 역할보다는 고정의 기능이 더 많도록 형성될 수 있다.In addition, the FPC formed on the top and the FPC formed on the bottom can be arranged at 90 degrees, the FPC formed on the top can be used for the purpose of detecting electrical characteristics, the FPC formed on the bottom rather than the role of electrical wiring for device fixing It can be configured to have more function of fixing.
FPC는 일부에 홀을 형성하여 전기적 배선과 납땜을 이용하여 연결될 수 있다.The FPC may be connected by using electrical wiring and soldering by forming a hole in a part.
본 발명의 다른 실시예에 따른 방사선 디텍터는 FPC를 사용함으로써, 온/오프(on/off)가 아닌 리니어 신호를 검출 할 수 있다.The radiation detector according to another embodiment of the present invention can detect a linear signal instead of on / off by using an FPC.
또한, 본 발명의 다른 실시예에 따른 방사선 디텍터를 유연 소자로 형성함으로써, 인체 접촉이 가능한 방사선 디텍터를 제조할 수 있다.In addition, by forming a radiation detector according to another embodiment of the present invention as a flexible element, it is possible to manufacture a radiation detector capable of human contact.
또한, 종래에는 환자가 누워 있기 전에 기기에 조사되는 방사선을 준비하는 방식, 바닥에 방사선 디텍터를 두고 그 위치나 양이 맞는지 고정된 상태로 준비하는 방식 또는 사이버 나이프처럼 좌표 값으로 조정하여 준비하는 방식으로 사람을 고정된 위치에 맞게 이동하여 위치를 파악하거나 고정된 환자에게 제3의 방사선을 조사하여 위치를 파악하였다.In addition, the conventional method of preparing the radiation to be irradiated to the device before the patient lying down, the radiation detector on the floor and the method of preparing the position or quantity is fixed or prepared by adjusting the coordinate value like a cyber knife As a result, a person was moved to a fixed position to determine a position or a fixed patient was irradiated with a third radiation to determine a position.
그러나, 환자에게 제3의 방사선을 조사하여 위치를 파악 것은 위험성이 존재하고 방사선 조사 전후로 인체의 변동이 파악되었다 하더라도 인체의 위치 변동이 생기면 변동된 값들이 피드백되지 않은 상태에서 대략적인 위치로 치료를 진행하게 된다.However, it is dangerous to identify the location by irradiating the third radiation to the patient, and even if the human body fluctuates before and after the radiation, if the human body fluctuates, the fluctuations in the position are not fed back to the approximate location. Will proceed.
반면, 본 발명의 다른 실시예에 따른 방사선 디텍터는 환자의 위치를 직접 센싱시킬 수 있어 사전 조사 시에 매우 낮은 방사선의 포인트로만 위치를 추적하고, 신호에서 발생되는 값으로 어느 부분을 조사시킬 것인지 파악할 수 있어, 사전 준비 시간 감소 및 대응 시간이 매우 빨라지게 된다.On the other hand, the radiation detector according to another embodiment of the present invention can directly sense the position of the patient to track the position only with a very low point of radiation at the time of pre-irradiation, and determine which part to irradiate with the value generated from the signal. This reduces pre-preparation time and makes response time very fast.
도 4는 본 발명의 다른 실시예에 따른 방사선 디텍터를 도시한 입체도이다.Figure 4 is a three-dimensional view showing a radiation detector according to another embodiment of the present invention.
도 4는 본 발명의 다른 실시예에 따른 방사선 디텍터를 입체 구조로 도시한 것을 제외하면, 도 3과 동일한 구성요소를 포함함으로, 중복되는 구성요소에 대해서는 생략하기로 한다.FIG. 4 includes the same components as those of FIG. 3 except that the radiation detector according to another embodiment of the present invention has a three-dimensional structure, and thus, overlapping components will be omitted.
도 4를 참조하면, 광전변환부는 기판(210)상에 복수 개의 픽셀 단위로 형성되어 방사선 영상을 구성하는 픽셀 어레이를 형성할 수 있다.Referring to FIG. 4, the photoelectric conversion unit may be formed on the substrate 210 in units of a plurality of pixels to form a pixel array constituting a radiographic image.
또한, 본 발명의 다른 실시예에 따른 방사선 디텍터의 제2 영역(222)는 제1 영역(221)에 전체적으로 형성되지 않고 부분적으로 형성될 수 있다.In addition, the second region 222 of the radiation detector according to another embodiment of the present invention may be partially formed instead of being entirely formed in the first region 221.
본 발명의 다른 실시예에 따른 방사선 디텍터는 광전변환부를 수평 구조의 포토다이오드로 형성하여 전류이동 경로를 기판의의 표면에서 수평으로 흐르도록 유도하여, 광전변환부의 사이즈를 감소시켜, 집적도를 향상시킬 수 있다.The radiation detector according to another embodiment of the present invention forms a photodiode with a photodiode having a horizontal structure to induce a current flow path to flow horizontally on the surface of the substrate, thereby reducing the size of the photoelectric converter and improving integration. Can be.
또한, 본 발명의 다른 실시예에 따른 방사선 디텍터는 제1 영역(221)에 부분적으로 제2 영역(222)을 형성함으로써, 방사선 디텍터의 일부에 센서 면적 형성됨으로써, 방사선이 인체로 투과되는 양을 증가시킬 수 있다.In addition, the radiation detector according to another embodiment of the present invention forms a second area 222 in the first area 221 to form a sensor area on a part of the radiation detector, thereby reducing the amount of radiation transmitted to the human body. Can be increased.
또한, 본 발명의 다른 실시예에 따른 방사선 디텍터는 동일한 층에 평행하게 형성된 제1 전극(241) 및 제2 전극(242)을 포함할 수 있다.In addition, the radiation detector according to another embodiment of the present invention may include a first electrode 241 and a second electrode 242 formed in parallel to the same layer.
또한, 본 발명의 다른 실시예에 따른 방사선 디텍터는 제1 전극(241) 및 제2 전극(242)이 서로 다른 층에 교차하게 형성될 수 있으나, 이 경우, 제1 전극(241) 및 제2 전극(242)은 모두 광전변환부의 상단에 형성되는 것을 전제로 한다.In addition, in the radiation detector according to another embodiment of the present invention, the first electrode 241 and the second electrode 242 may be formed to cross different layers, in this case, the first electrode 241 and the second electrode. It is assumed that the electrodes 242 are all formed on the upper end of the photoelectric conversion unit.
이로 인해, 본 발명의 다른 실시예에 따른 방사선 디텍터는 제1 전극(241) 및 제2 전극(242)을 모두 광전변환부의 상단에 배치함으로써, 소자의 구조 단순화가 가능하고, 검사 및 측정 분석이 편리하다.For this reason, the radiation detector according to another embodiment of the present invention can simplify the structure of the device by arranging both the first electrode 241 and the second electrode 242 on the upper side of the photoelectric conversion unit. It is convenient.
제1 영역(221) 및 제2 영역(222)과 제1 전극(241) 및 제2 전극(242)을 연결하는 제1 비아(231) 및 제2 비아(232)는 원통형으로 도시되었으나, 이에 한정되지 않고, 다양한 구조로 형성될 수 있다.The first via 231 and the second via 232 connecting the first region 221 and the second region 222, the first electrode 241, and the second electrode 242 are illustrated in a cylindrical shape. It is not limited, but may be formed in various structures.
도 5a 및 도 5b는 본 발명의 실시예들에 따른 방사선 디텍터에 사용되는 FPC를 도시한 이미지 이다.5A and 5B are images illustrating an FPC used in a radiation detector according to embodiments of the present invention.
도 5a 및 도 5b의 FPC(300, 310, 320)는 도 1 또는 도 3에서 전술된 FPC와 동일하므로, 중복되는 구성요소에 대해서는 생략하기로 한다.Since the FPCs 300, 310, and 320 of FIGS. 5A and 5B are the same as the FPC described above with reference to FIG. 1 or 3, overlapping elements will be omitted.
도 5a를 참조하면, FPC(300)는 가지(branch) 형태로 형성될 수 있고, FPC(300)는 방사선 디텍터의 상단에 전극이 일체 배선으로 형성될 수 있다.Referring to FIG. 5A, the FPC 300 may be formed in a branch shape, and in the FPC 300, an electrode may be formed as an integrated wiring on an upper end of the radiation detector.
또한, 본 발명의 실시예들에 따른 방사선 디텍터는 FPC(300)를 사용함으로써, 온/오프(on/off)가 아닌 리니어 신호를 검출 할 수 있다.In addition, the radiation detector according to the embodiments of the present invention may detect the linear signal instead of on / off by using the FPC 300.
도 5b를 참조하면, FPC(310,320)는 본 발명의 실시예들에 따른 방사선 디텍터(400)의 상단 및 하단에 배치될 수 있고, 방사선 디텍터(또는 픽셀; 400)의 상단 및 하단에 배치된 FPC(310,320)는 90도로 형성될 수 있다.Referring to FIG. 5B, FPCs 310 and 320 may be disposed at the top and bottom of the radiation detector 400 according to embodiments of the present invention, and the FPCs may be disposed at the top and bottom of the radiation detector 400. The 310 and 320 may be formed at 90 degrees.
상단에 형성된 FPC(320)는 전기적 특성을 검출하기 위한 용도로 사용될 수 있고, 하단에 형성된 FPC(310)는 소자 고정용으로 전기적 배선의 역할보다는 고정의 기능이 더 많도록 형성될 수 있다.The FPC 320 formed at the top may be used for the purpose of detecting electrical characteristics, and the FPC 310 formed at the bottom may be formed to have more functions of fixing than the role of electrical wiring for device fixing.
또한, 하단에 형성된 FPC(310)는 백바이어스 겸용 기준라인으로 사용될 수 있다.In addition, the FPC 310 formed at the bottom may be used as a back bias combined reference line.
또한, FPC(310,320)는 일부에 홀을 형성하여 전기적 배선과 납땜을 이용하여 연결되도록 형성될 수 있다.In addition, the FPCs 310 and 320 may be formed to form a hole in a part thereof to be connected by using electrical wiring and soldering.
본 발명의 실시예들에 따른 방사선 디텍터(400)는 외부 배선과 연결시키기 위해 FPC(300)를 사용하여 유연 소자로 제조될 수 있다.The radiation detector 400 according to the embodiments of the present invention may be manufactured as a flexible device using the FPC 300 to connect with an external wiring.
도 6는 본 발명의 다른 실시예에 따른 방사선 디텍터의 제조 방법을 도시한 흐름도이다.6 is a flowchart illustrating a method of manufacturing a radiation detector according to another embodiment of the present invention.
도 6는 도 3 및 도 4와 동일한 구성요소를 포함함으로, 중복되는 설명에 대해서는 생략하기로 한다.6 includes the same components as those of FIGS. 3 and 4, and thus redundant descriptions thereof will be omitted.
도 6를 참조하면, 본 발명의 다른 실시예에 따른 방사선 디텍터 제조 방법은 제1 불순물 타입의 기판을 준비하는 단계 S410, 제1 불순물 타입의 기판 상에 제1 불순물 타입의 제1 영역과, 제1 영역과 구분되는 제2 불순물 타입의 제2 영역을 포함하는 적어도 하나 이상의 광전변환부를 형성하는 단계 S420을 포함한다.Referring to FIG. 6, in a method of manufacturing a radiation detector according to another embodiment of the present invention, in operation S410, a substrate of a first impurity type may be prepared. And forming at least one photoelectric conversion unit including a second region of a second impurity type distinct from the first region.
또한, 제1 영역 상에 제1 전극을 형성하는 단계 S430, 제2 영역 상에 제2 전극을 형성하는 단계 S440 및 제1 전극 및 제2 전극 상에 신틸레이터(scintillator)를 형성하는 단계 S450을 포함한다.Further, the step S430 of forming a first electrode on the first region, the step S440 of forming a second electrode on the second region, and the step S450 of forming a scintillator on the first electrode and the second electrode are performed. Include.
또한, 제1 영역과 제1 전극을 연결하는 제1 비아를 형성하는 단계 및 제2 영역과 제2 전극을 연결하는 제2 비아를 형성하는 단계를 더 포함할 수 있다.The method may further include forming a first via connecting the first region and the first electrode and forming a second via connecting the second region and the second electrode.
단계 S410에서, 제1 불순물 타입의 기판을 준비한다.In step S410, a substrate of a first impurity type is prepared.
제1 불순물 타입의 기판은 실리콘카바이드(SiC)로 구성될 수 있다.The substrate of the first impurity type may be made of silicon carbide (SiC).
단계 S420에서, 제1 불순물 타입의 기판 상에 제1 불순물 타입의 제1 영역과, 제1 영역과 구분되는 제2 불순물 타입의 제2 영역을 포함하는 적어도 하나 이상의 광전변환부를 형성한다.In operation S420, at least one photoelectric conversion unit including a first region of the first impurity type and a second region of the second impurity type distinct from the first region is formed on the substrate of the first impurity type.
제1 불순물 타입의 기판 자체가 제1 영역일 있고, 제1 불순물 타입의 기판 상에 별도로 제1 불순물 타입의 기판과 동일한 물질을 포함하는 제1 불순물 타입의 제1 영역이 형성될 수 있다.The substrate of the first impurity type may itself be a first region, and a first region of the first impurity type may be formed on the substrate of the first impurity type separately including the same material as the substrate of the first impurity type.
또한, 제2 영역은 제1 영역 내에 부분적으로 형성될 수 있다.In addition, the second region may be partially formed in the first region.
제1 불순물 타입의 기판 상에 별도로 제1 불순물 타입의 기판과 동일한 물질을 포함하는 제1 불순물 타입의 제1 영역이 형성되는 경우, 제1 불순물 타입의 제1 영역은 성장(epitaxy) 방법, 용액코팅 방법 또는 증착 방법을 통해 기판 상에 형성될 수 있다.When a first region of the first impurity type including the same material as the substrate of the first impurity type is formed on the substrate of the first impurity type separately, the first region of the first impurity type is an epitaxial method, a solution. It may be formed on the substrate through a coating method or a deposition method.
제1 불순물 타입의 제1 영역을 형성하는 용액코팅 방법은 예를 들어, 스핀코팅(spin coating), 스프레이코팅(spray coating), 울트라스프레이코팅(ultra-spray coating), 전기방사코팅, 슬롯다이코팅(slot die coating), 그라비아코팅(gravure coating), 바코팅(bar coating), 롤코팅(roll coating), 딥코팅(dip coating), 쉬어코팅(shear coating), 스크린 프린팅(screen printing), 잉크젯 프린팅(inkjet printing) 또는 노즐 프린팅(nozzle printing)이 사용될 수 있고, 증착 방법은 예를 들어, 감압, 상압 또는 가압조건에서, 스퍼터링(sputtering), 원자층증착(ALD), 화학기상증착(CVD), 열증착(thermal evaporation), 동시증발법(co-evaporation) 또는 플라즈마 강화 화학기상증착(PECVD)이 사용될 수 있다.The solution coating method for forming the first region of the first impurity type is, for example, spin coating, spray coating, ultra-spray coating, electrospin coating, slot die coating. (slot die coating), gravure coating, bar coating, roll coating, dip coating, shear coating, screen printing, inkjet printing (inkjet printing) or nozzle printing (nozzle printing) may be used, and the deposition method is, for example, under reduced pressure, atmospheric pressure or pressurized conditions, sputtering, atomic layer deposition (ALD), chemical vapor deposition (CVD), Thermal evaporation, co-evaporation or plasma enhanced chemical vapor deposition (PECVD) can be used.
제1 불순물 타입의 기판은 실리콘카바이드(SiC)일 수 있고, 제1 불순물 타입은 p-type이며, 제2 불순물 타입의 제2 영역은 n-type일 수 있다.The substrate of the first impurity type may be silicon carbide (SiC), the first impurity type may be p-type, and the second region of the second impurity type may be n-type.
이로 인해, 광전변환부는 PN 구조 또는 PIN 구조의 포토 다이오드가 사용될 수 있다.For this reason, a photodiode having a PN structure or a PIN structure may be used in the photoelectric conversion unit.
제2 불순물 타입의 제2 영역은 제1 불순물 타입의 제1 영역에 이온 주입을 진행하여 형성될 수 있고, 예를 들어, 제2 불순물 타입의 제2 영역은 B, Al 및 Ga로 이루어지는 군에서 선택되는 적어도 하나를 포함할 수 있다.The second region of the second impurity type may be formed by implanting ions into the first region of the first impurity type. For example, the second region of the second impurity type may be formed of B, Al, and Ga. It may include at least one selected.
단계 S430에서, 제1 영역 상에 제1 전극을 형성한다.In operation S430, a first electrode is formed on the first region.
제1 전극은 데이터전극일 수 있고, 제1 영역에 연결되어 광전변환부에서 발생한 전기적 신호에 대응되는 전기적 신호가 유도될 수 있다.The first electrode may be a data electrode and may be connected to the first region to induce an electrical signal corresponding to the electrical signal generated by the photoelectric converter.
제1 전극은 제1 영역 상에 형성된 제2 절연층에 패터닝되어 형성될 수 있다.The first electrode may be formed by patterning a second insulating layer formed on the first region.
또한, 제1 전극은 제1 영역 상에 형성된 제1 비아를 통해 연결될 수 있고, 제1 비아는 제1 영역 상에 형성된 제1 절연층에 패터닝되어 형성될 수 있다.In addition, the first electrode may be connected through a first via formed on the first region, and the first via may be formed by patterning a first insulating layer formed on the first region.
제1 전극은 알루미늄, 몰리브덴, 크롬, 네오 디뮴, 탄탈륨, 티타늄, 텅스텐, 구리, 은, 금, 백금 등의 금속 또는 이들의 합금 또는 산화인듐주석(ITO) 또는 산화인듐아연(IZO)과 같은 광을 투과시킬 수 있도록 투명한 도전성 물질로 형성될 수 있다.The first electrode may be a metal such as aluminum, molybdenum, chromium, neodymium, tantalum, titanium, tungsten, copper, silver, gold, platinum, or an alloy thereof or light such as indium tin oxide (ITO) or indium zinc oxide (IZO). It may be formed of a transparent conductive material to transmit the light.
단계 S440에서, 제2 영역 상에 제2 전극을 형성한다.In operation S440, a second electrode is formed on the second region.
제2 전극은 신호전극일 수 있고, 제2 영역에 연결되어 외부의 전원공급부(미도시)로부터 역방향(reverse bias)전압 및 순방향(forward bias)전압을 인가 받을 수 있다.The second electrode may be a signal electrode and may be connected to the second region to receive a reverse bias voltage and a forward bias voltage from an external power supply (not shown).
제2 전극은 제2 영역 상에 형성된 제2 절연층에 패터닝되어 형성될 수 있다.The second electrode may be formed by patterning a second insulating layer formed on the second region.
또한, 제2 전극은 제2 영역 상에 형성된 제2 비아를 통해 연결될 수 있고, 제2 비아는 제2 영역 상에 형성된 제1 절연층에 패터닝되어 형성될 수 있다.In addition, the second electrode may be connected through a second via formed on the second region, and the second via may be formed by patterning the first insulating layer formed on the second region.
제2 전극(242)은 알루미늄, 몰리브덴, 크롬, 네오 디뮴, 탄탈륨, 티타늄, 텅스텐, 구리, 은, 금, 백금 등의 금속 또는 이들의 합금 또는 산화인듐주석(ITO) 또는 산화인듐아연(IZO)과 같은 광을 투과시킬 수 있도록 투명한 도전성 물질로 형성될 수 있다.The second electrode 242 is a metal such as aluminum, molybdenum, chromium, neodymium, tantalum, titanium, tungsten, copper, silver, gold, platinum, or an alloy thereof or indium tin oxide (ITO) or indium zinc oxide (IZO). It may be formed of a transparent conductive material so as to transmit light such as.
단계 S450에서, 제1 전극 및 제2 전극 상에 신틸레이터(scintillator)를 형성한다.In step S450, a scintillator is formed on the first electrode and the second electrode.
신틸레이터는 제1 전극 및 제2 전극 상에 필름형태로 부착될 수 있고 화학기상증착(CVD)방법에 의해 증착되어 형성될 수도 있다.The scintillator may be attached in the form of a film on the first electrode and the second electrode, and may be formed by being deposited by chemical vapor deposition (CVD).
신틸레이터는 피조체를 투과한 방사선이 입사할 수 있도록 방사선 디텍터의 전면방향에 형성되고, 방사선을 광전변환부에서 흡수할 수 있는 파장의 광, 예를 들면 녹색 파장대의 가시광선으로 변환시킬 수 있다.The scintillator is formed in the front direction of the radiation detector so that radiation transmitted through the object can be incident, and can convert the radiation into light having a wavelength that can be absorbed by the photoelectric conversion unit, for example, visible light in the green wavelength range. .
신틸레이터는 탈륨 또는 나트륨이 도핑된 요오드화 세슘과 같은 할로겐 화합물로 형성되거나 가돌리늄 황산화물과 같은 산화물계 화합물이 포함될 수 있으나 이에 제한되는 것은 아니다.The scintillator may be formed of a halogen compound, such as cesium iodide doped with thallium or sodium, or may include an oxide-based compound such as gadolinium sulfate.
또한, 본 발명의 다른 실시예에 따른 방사선 검출기는 방사선 검출기 상단 또는 하단에 FPC를 더 형성할 수 있다.In addition, the radiation detector according to another embodiment of the present invention may further form an FPC on the top or bottom of the radiation detector.
상단에 형성된 FPC와 하단에 형성된 FPC는 90도로 배치될 수 있고, 상단에 형성된 FPC는 전기적 특성을 검출하기 위한 용도로 사용될 수 있고, 하단에 형성된 FPC는 소자 고정용으로 전기적 배선의 역할보다는 고정의 기능이 더 많도록 형성될 수 있다.The FPC formed at the top and the FPC formed at the bottom may be arranged at 90 degrees, the FPC formed at the top may be used for detecting electrical characteristics, and the FPC formed at the bottom may be fixed rather than the role of electrical wiring for device fixing. It can be configured to have more functions.
또한, FPC는 일부에 홀을 형성하여 전기적 배선과 납땜을 이용하여 연결될 수 있다.In addition, the FPC may be connected by using electrical wiring and soldering by forming a hole in a part.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.As described above, the present invention has been described by way of limited embodiments and drawings, but the present invention is not limited to the above embodiments, and those skilled in the art to which the present invention pertains various modifications and variations from such descriptions. This is possible.
그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.Therefore, the scope of the present invention should not be limited to the described embodiments, but should be determined not only by the claims below but also by the equivalents of the claims.

Claims (21)

  1. 실리콘카바이드(SiC; Silicon Carbide) 기판;Silicon Carbide (SiC) substrates;
    상기 실리콘카바이드 기판 상에 형성되는 게이트 절연막;A gate insulating film formed on the silicon carbide substrate;
    상기 게이트 절연막 상에 형성되는 게이트 전극;A gate electrode formed on the gate insulating film;
    상기 게이트 전극의 양측에 배치되고, 상기 실리콘카바이드 기판 내에 서로 이격되도록 형성되는 소스 영역 및 드레인 영역;Source and drain regions disposed on both sides of the gate electrode and spaced apart from each other in the silicon carbide substrate;
    상기 게이트 전극 상에 형성되는 층간 절연막;An interlayer insulating layer formed on the gate electrode;
    상기 층간 절연막 상에 형성되고, 상기 게이트 전극과 연결되는 워드 라인(Word Line);A word line formed on the interlayer insulating layer and connected to the gate electrode;
    상기 층간 절연막 상에 형성되고, 상기 드레인 영역과 연결되는 비트 라인(Bit Line) 및A bit line formed on the interlayer insulating layer and connected to the drain region;
    상기 층간 절연막 상에 배치되는 신틸레이터를 포함하는 것을 특징으로 하는 방사선 디텍터.And a scintillator disposed on the interlayer insulating film.
  2. 제1항에 있어서,The method of claim 1,
    상기 방사선 디텍터는 고준위 방사선에 의해 상기 실리콘카바이드 기판이 파괴되어, 상기 고준위 방사선을 검출하는 것을 특징으로 하는 방사선 디텍터.The radiation detector is a radiation detector, characterized in that the silicon carbide substrate is destroyed by the high-level radiation, to detect the high-level radiation.
  3. 제1항에 있어서,The method of claim 1,
    상기 방사선 디텍터는 저준위 방사선에 의해 상기 게이트 절연막의 유전율이 변화되어, 상기 저준위 방사선을 검출하는 것을 특징으로 하는 방사선 디텍터.The radiation detector is a radiation detector, characterized in that the dielectric constant of the gate insulating film is changed by the low level radiation, to detect the low level radiation.
  4. 제1항에 있어서,The method of claim 1,
    상기 방사선 디텍터는 저준위 방사선에 의해 상기 드레인 영역의 전자-정공 쌍(EHP; electron hole pair)이 변화되어, 상기 저준위 방사선을 검출하는 것을 특징으로 하는 방사선 디텍터.And the radiation detector detects the low level radiation by changing an electron-hole pair (EHP) in the drain region by low level radiation.
  5. 제1항에 있어서,The method of claim 1,
    상기 층간 절연막 상에 상기 소스 영역과 연결되는 바이어스 라인(Bias Line)을 더 포함하는 것을 특징으로 하는 방사선 디텍터.And a bias line connected to the source region on the interlayer insulating layer.
  6. 제1항에 있어서,The method of claim 1,
    상기 게이트 전극, 상기 소스 영역 및 상기 드레인 영역과 연결되는 모든 배선은 상기 실리콘카바이드 기판 상부에 형성되는 것을 특징으로 하는 방사선 디텍터.And all wirings connected to the gate electrode, the source region and the drain region are formed on the silicon carbide substrate.
  7. 제1항에 있어서,The method of claim 1,
    상기 층간 절연막 내에는 적어도 하나 이상의 콘택홀을 포함하는 것을 특징으로 하는 방사선 디텍터.And at least one contact hole in the interlayer insulating film.
  8. 제1항에 있어서,The method of claim 1,
    상기 게이트 전극은 비정질 실리콘(amorphous Si), 다결정 실리콘(poly crystalline Si), 단결정 실리콘(single crystalline Si) 및 금속 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 방사선 디텍터.And the gate electrode comprises at least one of amorphous Si, poly crystalline Si, single crystalline Si, and a metal.
  9. 제1항에 있어서,The method of claim 1,
    상기 방사선 디텍터는 적어도 하나의 FPC(flexible printed circuit)를 포함하는 것을 특징으로 하는 방사선 디텍터.And the radiation detector comprises at least one flexible printed circuit (FPC).
  10. 제1항에 있어서,The method of claim 1,
    상기 방사선 디텍터는 FPC(flexible printed circuit)를 이용하여 외부 배선과 연결되는 것을 특징으로 하는 방사선 디텍터.The radiation detector is connected to the external wiring using a flexible printed circuit (FPC).
  11. 제1항에 있어서,The method of claim 1,
    상기 방사선 디텍터는 유연 소자인 것을 특징으로 하는 방사선 디텍터.The radiation detector is a radiation detector, characterized in that the flexible element.
  12. 제1 불순물 타입의 기판;A substrate of a first impurity type;
    상기 제1 불순물 타입의 기판 상에 형성된 제1 불순물 타입의 제1 영역과, 상기 제1 영역과 구분되는 제2 불순물 타입의 제2 영역을 포함하는 적어도 하나 이상의 광전변환부;At least one photoelectric conversion unit including a first region of a first impurity type formed on the substrate of the first impurity type and a second region of a second impurity type separated from the first region;
    상기 제1 영역 상에 형성되는 제1 전극;A first electrode formed on the first region;
    상기 제2 영역 상에 형성되는 제2 전극; 및A second electrode formed on the second region; And
    상기 제1 전극 및 상기 제2 전극 상에 형성되는 신틸레이터(scintillator)Scintillator formed on the first electrode and the second electrode
    를 포함하는 방사선 디텍터.Radiation detector comprising a.
  13. 제12항에 있어서,The method of claim 12,
    상기 제1 불순물 타입의 기판은The first impurity type substrate
    실리콘카바이드(SiC)로 구성되고, 상기 제1 불순물 타입은 n-type 및 상기 제2 불순물 타입은 p-type 인 것을 특징으로 하는 방사선 디텍터.And a silicon carbide (SiC), wherein the first impurity type is n-type and the second impurity type is p-type.
  14. 제12항에 있어서,The method of claim 12,
    상기 제2 영역은The second area is
    상기 제1 영역 내에 부분적으로 형성되는 것을 특징으로 하는 방사선 디텍터.And a radiation detector partially formed in the first region.
  15. 제12항에 있어서,The method of claim 12,
    상기 제1 전극 및 상기 제2 전극은 동일 층에 형성되는 것을 특징으로 하는 방사선 디텍터.And the first electrode and the second electrode are formed on the same layer.
  16. 제12항에 있어서,The method of claim 12,
    상기 제1 불순물 타입의 기판은The first impurity type substrate
    상기 제1 불순물 타입의 제1 영역 및 상기 제2 불순물 타입의 제2 영역 사이에 I-type 반도체층을 더 포함하는 것을 특징으로 하는 방사선 디텍터.And a I-type semiconductor layer between the first region of the first impurity type and the second region of the second impurity type.
  17. 제12항에 있어서,The method of claim 12,
    상기 제1 전극 및 상기 제2 전극은 비아 통해 상기 제1 영역 및 상기 제2 영역에 연결되는 것을 특징으로 하는 방사선 디텍터.And the first electrode and the second electrode are connected to the first region and the second region through vias.
  18. 제1 불순물 타입의 기판을 준비하는 단계;Preparing a substrate of a first impurity type;
    상기 제1 불순물 타입의 기판 상에 제1 불순물 타입의 제1 영역과, 상기 제1 영역과 구분되는 제2 불순물 타입의 제2 영역을 포함하는 적어도 하나 이상의 광전변환부를 형성하는 단계;Forming at least one photoelectric conversion part including a first region of a first impurity type and a second region of a second impurity type separated from the first region on the substrate of the first impurity type;
    상기 제1 영역 상에 제1 전극을 형성하는 단계;Forming a first electrode on the first region;
    상기 제2 영역 상에 제2 전극을 형성하는 단계; 및Forming a second electrode on the second region; And
    상기 제1 전극 및 상기 제2 전극 상에 신틸레이터(scintillator)를 형성하는 단계Forming a scintillator on the first electrode and the second electrode
    를 포함하는 방사선 디텍터 제조 방법.Radiation detector manufacturing method comprising a.
  19. 제18항에 있어서,The method of claim 18,
    상기 제2 영역은 이온 주입에 의해 형성되는 것을 특징으로 하는 방사선 디텍터 제조 방법.And said second region is formed by ion implantation.
  20. 제18항에 있어서,The method of claim 18,
    상기 제1 영역과 상기 제1 전극을 연결하는 제1 비아를 형성하는 단계를 더 포함하는 것을 특징으로 하는 방사선 디텍터 제조 방법.And forming a first via connecting the first region and the first electrode.
  21. 제18항에 있어서,The method of claim 18,
    상기 제2 영역과 상기 제2 전극을 연결하는 제2 비아를 형성하는 단계를 더 포함하는 것을 특징으로 하는 방사선 디텍터 제조 방법.And forming a second via connecting the second region and the second electrode.
PCT/KR2017/014119 2016-12-19 2017-12-05 Radiation detector comprising transistor formed on silicon carbide substrate WO2018117485A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020160173413A KR101864963B1 (en) 2016-12-19 2016-12-19 Radiation detector and method for manufacturing of the same
KR10-2016-0173413 2016-12-19
KR1020170026026A KR101804090B1 (en) 2017-02-28 2017-02-28 Radiation detector comprising transistor formed on silicon carbide substrate
KR10-2017-0026026 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018117485A1 true WO2018117485A1 (en) 2018-06-28

Family

ID=62626839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014119 WO2018117485A1 (en) 2016-12-19 2017-12-05 Radiation detector comprising transistor formed on silicon carbide substrate

Country Status (1)

Country Link
WO (1) WO2018117485A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220102410A1 (en) * 2020-09-29 2022-03-31 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor with passivation layer for dark current reduction
TWI797348B (en) * 2018-06-30 2023-04-01 德商羅伯特博斯奇股份有限公司 Electrical contact-connection, method for producing an electrical contact-connection, system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2611295B2 (en) * 1987-12-28 1997-05-21 株式会社日立製作所 Radiation detector and manufacturing method thereof
JP2003302472A (en) * 2002-04-08 2003-10-24 Japan Atom Energy Res Inst Silicon carbide semiconductor radiation dosimeter
WO2006046434A1 (en) * 2004-10-28 2006-05-04 Sharp Kabushiki Kaisha 2-dimensional image detection device and manufacturing method thereof
JP2008157717A (en) * 2006-12-22 2008-07-10 Toshiba Corp Radiation detector and manufacturing method therefor
KR20120090169A (en) * 2011-02-07 2012-08-17 삼성전자주식회사 Radiation detector and manufacturing method thereof
JP2014045198A (en) * 2006-04-25 2014-03-13 Koninklijke Philips Nv METHOD OF MANUFACTURING AVALANCHE PHOTODIODE BY Bi-CMOS PROCESS
JP2016123087A (en) * 2014-12-10 2016-07-07 株式会社半導体エネルギー研究所 Semiconductor device and electronic apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2611295B2 (en) * 1987-12-28 1997-05-21 株式会社日立製作所 Radiation detector and manufacturing method thereof
JP2003302472A (en) * 2002-04-08 2003-10-24 Japan Atom Energy Res Inst Silicon carbide semiconductor radiation dosimeter
WO2006046434A1 (en) * 2004-10-28 2006-05-04 Sharp Kabushiki Kaisha 2-dimensional image detection device and manufacturing method thereof
JP2014045198A (en) * 2006-04-25 2014-03-13 Koninklijke Philips Nv METHOD OF MANUFACTURING AVALANCHE PHOTODIODE BY Bi-CMOS PROCESS
JP2008157717A (en) * 2006-12-22 2008-07-10 Toshiba Corp Radiation detector and manufacturing method therefor
KR20120090169A (en) * 2011-02-07 2012-08-17 삼성전자주식회사 Radiation detector and manufacturing method thereof
JP2016123087A (en) * 2014-12-10 2016-07-07 株式会社半導体エネルギー研究所 Semiconductor device and electronic apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI797348B (en) * 2018-06-30 2023-04-01 德商羅伯特博斯奇股份有限公司 Electrical contact-connection, method for producing an electrical contact-connection, system
US11897758B2 (en) 2018-06-30 2024-02-13 Robert Bosch Gmbh Electrical contacting and method for producing an electrical contacting
US20220102410A1 (en) * 2020-09-29 2022-03-31 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor with passivation layer for dark current reduction
US11848345B2 (en) * 2020-09-29 2023-12-19 Taiwan Semiconductor Manufacturing Company, Ltd. Image sensor with passivation layer for dark current reduction

Similar Documents

Publication Publication Date Title
WO2015080500A1 (en) X-ray imaging apparatus and control method thereof
WO2018212443A1 (en) Stretchable electronic device and manufacturing method thereof
WO2016144108A1 (en) Display device capable of scanning images
WO2017074103A1 (en) Electro-luminescence display apparatus
EP2884901A1 (en) X-ray detector, x-ray imaging apparatus and method of controlling the same
WO2017086537A1 (en) Device and method for measuring biological information by using sensor array
WO2016182248A1 (en) Light-emitting element
WO2020145462A1 (en) Display device and manufacturing method therefor
WO2011046388A2 (en) Solar photovoltaic device and a production method for the same
WO2016171369A1 (en) Photoreactive sensor including optical amplifying phototransistor, display panel including photoreactive sensor, and vehicle control system
WO2016195253A1 (en) Ultraviolet measuring device, photodetector element, ultraviolet detector, ultraviolet index calculation device, and electronic device including same
WO2018117485A1 (en) Radiation detector comprising transistor formed on silicon carbide substrate
WO2016099061A1 (en) Semiconductor light emitting device and method of manufacturing the same
WO2022108157A1 (en) Display device
WO2018174539A1 (en) Semiconductor element package and autofocusing device
WO2018008960A1 (en) Semiconductor element
WO2021015578A1 (en) Self-powered perovskite x-ray detector
WO2017122918A1 (en) Thin film transistor substrate, and display panel and display device including same
WO2019190025A1 (en) Pressure sensors constituting plurality of channels, touch input device comprising same, and pressure detecting method using same
WO2022231170A1 (en) Display device
WO2022234892A1 (en) Detection unit, semiconductor film layer inspection apparatus having same, and inspection method using same
WO2015170848A1 (en) Light emitting device
WO2018217006A2 (en) Semiconductor light-emitting element and method for manufacturing same
WO2021020714A1 (en) Dipole alignment device, dipole alignment method and display device manufacturing method
WO2023211102A1 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884948

Country of ref document: EP

Kind code of ref document: A1